3.14.11 \(\int \frac {1+3 x^4+x^8}{x^2 (1+x^4)^{3/4} (1+3 x^4+3 x^8)} \, dx\) [1311]

3.14.11.1 Optimal result
3.14.11.2 Mathematica [A] (verified)
3.14.11.3 Rubi [C] (verified)
3.14.11.4 Maple [A] (verified)
3.14.11.5 Fricas [B] (verification not implemented)
3.14.11.6 Sympy [F(-1)]
3.14.11.7 Maxima [F]
3.14.11.8 Giac [F]
3.14.11.9 Mupad [F(-1)]

3.14.11.1 Optimal result

Integrand size = 37, antiderivative size = 94 \[ \int \frac {1+3 x^4+x^8}{x^2 \left (1+x^4\right )^{3/4} \left (1+3 x^4+3 x^8\right )} \, dx=-\frac {\sqrt [4]{1+x^4}}{x}-\frac {\arctan \left (\frac {\sqrt {3} x \sqrt [4]{1+x^4}}{-x^2+\sqrt {1+x^4}}\right )}{\sqrt {3}}+\frac {\text {arctanh}\left (\frac {\sqrt {3} x \sqrt [4]{1+x^4}}{x^2+\sqrt {1+x^4}}\right )}{\sqrt {3}} \]

output
-(x^4+1)^(1/4)/x-1/3*arctan(3^(1/2)*x*(x^4+1)^(1/4)/(-x^2+(x^4+1)^(1/2)))* 
3^(1/2)+1/3*arctanh(3^(1/2)*x*(x^4+1)^(1/4)/(x^2+(x^4+1)^(1/2)))*3^(1/2)
 
3.14.11.2 Mathematica [A] (verified)

Time = 0.53 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.19 \[ \int \frac {1+3 x^4+x^8}{x^2 \left (1+x^4\right )^{3/4} \left (1+3 x^4+3 x^8\right )} \, dx=-\frac {\sqrt [4]{1+x^4}}{x}+\frac {\arctan \left (\frac {\sqrt {3} x}{x-2 \sqrt [4]{1+x^4}}\right )}{\sqrt {3}}-\frac {\arctan \left (\frac {\sqrt {3} x}{x+2 \sqrt [4]{1+x^4}}\right )}{\sqrt {3}}+\frac {\text {arctanh}\left (\frac {\sqrt {3} x \sqrt [4]{1+x^4}}{x^2+\sqrt {1+x^4}}\right )}{\sqrt {3}} \]

input
Integrate[(1 + 3*x^4 + x^8)/(x^2*(1 + x^4)^(3/4)*(1 + 3*x^4 + 3*x^8)),x]
 
output
-((1 + x^4)^(1/4)/x) + ArcTan[(Sqrt[3]*x)/(x - 2*(1 + x^4)^(1/4))]/Sqrt[3] 
 - ArcTan[(Sqrt[3]*x)/(x + 2*(1 + x^4)^(1/4))]/Sqrt[3] + ArcTanh[(Sqrt[3]* 
x*(1 + x^4)^(1/4))/(x^2 + Sqrt[1 + x^4])]/Sqrt[3]
 
3.14.11.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.91 (sec) , antiderivative size = 347, normalized size of antiderivative = 3.69, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^8+3 x^4+1}{x^2 \left (x^4+1\right )^{3/4} \left (3 x^8+3 x^4+1\right )} \, dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {1}{x^2 \left (x^4+1\right )^{3/4}}-\frac {2 x^6}{\left (x^4+1\right )^{3/4} \left (3 x^8+3 x^4+1\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {1}{6} \left (3+i \sqrt {3}\right ) \sqrt [4]{-\frac {-\sqrt {3}+3 i}{\sqrt {3}+3 i}} \arctan \left (\frac {x}{\sqrt [4]{-\frac {-\sqrt {3}+3 i}{\sqrt {3}+3 i}} \sqrt [4]{x^4+1}}\right )-\frac {\left (3-i \sqrt {3}\right ) \arctan \left (\frac {\sqrt [4]{-\frac {-\sqrt {3}+3 i}{\sqrt {3}+3 i}} x}{\sqrt [4]{x^4+1}}\right )}{6 \sqrt [4]{-\frac {-\sqrt {3}+3 i}{\sqrt {3}+3 i}}}+\frac {1}{6} \left (3+i \sqrt {3}\right ) \sqrt [4]{-\frac {-\sqrt {3}+3 i}{\sqrt {3}+3 i}} \text {arctanh}\left (\frac {x}{\sqrt [4]{-\frac {-\sqrt {3}+3 i}{\sqrt {3}+3 i}} \sqrt [4]{x^4+1}}\right )+\frac {\left (3-i \sqrt {3}\right ) \text {arctanh}\left (\frac {\sqrt [4]{-\frac {-\sqrt {3}+3 i}{\sqrt {3}+3 i}} x}{\sqrt [4]{x^4+1}}\right )}{6 \sqrt [4]{-\frac {-\sqrt {3}+3 i}{\sqrt {3}+3 i}}}-\frac {\sqrt [4]{x^4+1}}{x}\)

input
Int[(1 + 3*x^4 + x^8)/(x^2*(1 + x^4)^(3/4)*(1 + 3*x^4 + 3*x^8)),x]
 
output
-((1 + x^4)^(1/4)/x) - ((3 + I*Sqrt[3])*(-((3*I - Sqrt[3])/(3*I + Sqrt[3]) 
))^(1/4)*ArcTan[x/((-((3*I - Sqrt[3])/(3*I + Sqrt[3])))^(1/4)*(1 + x^4)^(1 
/4))])/6 - ((3 - I*Sqrt[3])*ArcTan[((-((3*I - Sqrt[3])/(3*I + Sqrt[3])))^( 
1/4)*x)/(1 + x^4)^(1/4)])/(6*(-((3*I - Sqrt[3])/(3*I + Sqrt[3])))^(1/4)) + 
 ((3 + I*Sqrt[3])*(-((3*I - Sqrt[3])/(3*I + Sqrt[3])))^(1/4)*ArcTanh[x/((- 
((3*I - Sqrt[3])/(3*I + Sqrt[3])))^(1/4)*(1 + x^4)^(1/4))])/6 + ((3 - I*Sq 
rt[3])*ArcTanh[((-((3*I - Sqrt[3])/(3*I + Sqrt[3])))^(1/4)*x)/(1 + x^4)^(1 
/4)])/(6*(-((3*I - Sqrt[3])/(3*I + Sqrt[3])))^(1/4))
 

3.14.11.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.14.11.4 Maple [A] (verified)

Time = 49.72 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.45

method result size
pseudoelliptic \(\frac {\sqrt {3}\, \ln \left (\frac {\sqrt {3}\, \left (x^{4}+1\right )^{\frac {1}{4}} x +x^{2}+\sqrt {x^{4}+1}}{x^{2}}\right ) x -\sqrt {3}\, \ln \left (\frac {-\sqrt {3}\, \left (x^{4}+1\right )^{\frac {1}{4}} x +x^{2}+\sqrt {x^{4}+1}}{x^{2}}\right ) x +2 \sqrt {3}\, \arctan \left (\frac {\left (2 \left (x^{4}+1\right )^{\frac {1}{4}}+x \right ) \sqrt {3}}{3 x}\right ) x -2 \sqrt {3}\, \arctan \left (\frac {\left (-2 \left (x^{4}+1\right )^{\frac {1}{4}}+x \right ) \sqrt {3}}{3 x}\right ) x -6 \left (x^{4}+1\right )^{\frac {1}{4}}}{6 x}\) \(136\)
trager \(-\frac {\left (x^{4}+1\right )^{\frac {1}{4}}}{x}-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) \ln \left (-\frac {12 \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) \sqrt {x^{4}+1}\, x^{6}-9 \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) x^{8}-18 \left (x^{4}+1\right )^{\frac {3}{4}} x^{5}+18 x^{7} \left (x^{4}+1\right )^{\frac {1}{4}}+6 \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) \sqrt {x^{4}+1}\, x^{2}-9 \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) x^{4}-6 \left (x^{4}+1\right )^{\frac {3}{4}} x +12 x^{3} \left (x^{4}+1\right )^{\frac {1}{4}}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right )}{3 x^{8}+3 x^{4}+1}\right )}{6}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) \ln \left (\frac {12 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) \sqrt {x^{4}+1}\, x^{6}+9 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x^{8}+18 \left (x^{4}+1\right )^{\frac {3}{4}} x^{5}+18 x^{7} \left (x^{4}+1\right )^{\frac {1}{4}}+6 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) \sqrt {x^{4}+1}\, x^{2}+9 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x^{4}+6 \left (x^{4}+1\right )^{\frac {3}{4}} x +12 x^{3} \left (x^{4}+1\right )^{\frac {1}{4}}+\operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right )}{3 x^{8}+3 x^{4}+1}\right )}{6}\) \(287\)
risch \(-\frac {\left (x^{4}+1\right )^{\frac {1}{4}}}{x}+\frac {\left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) \ln \left (-\frac {9 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x^{16}-18 \left (x^{12}+3 x^{8}+3 x^{4}+1\right )^{\frac {1}{4}} x^{13}+12 \sqrt {x^{12}+3 x^{8}+3 x^{4}+1}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x^{10}+27 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x^{12}-18 \left (x^{12}+3 x^{8}+3 x^{4}+1\right )^{\frac {3}{4}} x^{7}-42 \left (x^{12}+3 x^{8}+3 x^{4}+1\right )^{\frac {1}{4}} x^{9}+18 \sqrt {x^{12}+3 x^{8}+3 x^{4}+1}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x^{6}+28 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x^{8}-12 \left (x^{12}+3 x^{8}+3 x^{4}+1\right )^{\frac {3}{4}} x^{3}-30 \left (x^{12}+3 x^{8}+3 x^{4}+1\right )^{\frac {1}{4}} x^{5}+6 \sqrt {x^{12}+3 x^{8}+3 x^{4}+1}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x^{2}+11 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x^{4}-6 \left (x^{12}+3 x^{8}+3 x^{4}+1\right )^{\frac {1}{4}} x +\operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right )}{\left (x^{4}+1\right )^{2} \left (3 x^{8}+3 x^{4}+1\right )}\right )}{6}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) \ln \left (-\frac {-9 \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) x^{16}+18 \left (x^{12}+3 x^{8}+3 x^{4}+1\right )^{\frac {1}{4}} x^{13}+12 \sqrt {x^{12}+3 x^{8}+3 x^{4}+1}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) x^{10}-27 \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) x^{12}-18 \left (x^{12}+3 x^{8}+3 x^{4}+1\right )^{\frac {3}{4}} x^{7}+42 \left (x^{12}+3 x^{8}+3 x^{4}+1\right )^{\frac {1}{4}} x^{9}+18 \sqrt {x^{12}+3 x^{8}+3 x^{4}+1}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) x^{6}-28 \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) x^{8}-12 \left (x^{12}+3 x^{8}+3 x^{4}+1\right )^{\frac {3}{4}} x^{3}+30 \left (x^{12}+3 x^{8}+3 x^{4}+1\right )^{\frac {1}{4}} x^{5}+6 \sqrt {x^{12}+3 x^{8}+3 x^{4}+1}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) x^{2}-11 \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) x^{4}+6 \left (x^{12}+3 x^{8}+3 x^{4}+1\right )^{\frac {1}{4}} x -\operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right )}{\left (x^{4}+1\right )^{2} \left (3 x^{8}+3 x^{4}+1\right )}\right )}{6}\right ) {\left (\left (x^{4}+1\right )^{3}\right )}^{\frac {1}{4}}}{\left (x^{4}+1\right )^{\frac {3}{4}}}\) \(628\)

input
int((x^8+3*x^4+1)/x^2/(x^4+1)^(3/4)/(3*x^8+3*x^4+1),x,method=_RETURNVERBOS 
E)
 
output
1/6*(3^(1/2)*ln((3^(1/2)*(x^4+1)^(1/4)*x+x^2+(x^4+1)^(1/2))/x^2)*x-3^(1/2) 
*ln((-3^(1/2)*(x^4+1)^(1/4)*x+x^2+(x^4+1)^(1/2))/x^2)*x+2*3^(1/2)*arctan(1 
/3*(2*(x^4+1)^(1/4)+x)*3^(1/2)/x)*x-2*3^(1/2)*arctan(1/3*(-2*(x^4+1)^(1/4) 
+x)*3^(1/2)/x)*x-6*(x^4+1)^(1/4))/x
 
3.14.11.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 227 vs. \(2 (78) = 156\).

Time = 11.62 (sec) , antiderivative size = 227, normalized size of antiderivative = 2.41 \[ \int \frac {1+3 x^4+x^8}{x^2 \left (1+x^4\right )^{3/4} \left (1+3 x^4+3 x^8\right )} \, dx=-\frac {2 \, \sqrt {3} x \arctan \left (\frac {2 \, {\left (\sqrt {3} {\left (3 \, x^{5} - x\right )} {\left (x^{4} + 1\right )}^{\frac {3}{4}} - \sqrt {3} {\left (3 \, x^{7} + 4 \, x^{3}\right )} {\left (x^{4} + 1\right )}^{\frac {1}{4}}\right )}}{21 \, x^{8} + 21 \, x^{4} - 1}\right ) - \sqrt {3} x \log \left (-\frac {441 \, x^{16} + 882 \, x^{12} + 543 \, x^{8} + 102 \, x^{4} + 4 \, \sqrt {3} {\left (63 \, x^{13} + 78 \, x^{9} + 24 \, x^{5} + x\right )} {\left (x^{4} + 1\right )}^{\frac {3}{4}} + 4 \, \sqrt {3} {\left (63 \, x^{15} + 111 \, x^{11} + 57 \, x^{7} + 8 \, x^{3}\right )} {\left (x^{4} + 1\right )}^{\frac {1}{4}} + 24 \, {\left (18 \, x^{14} + 27 \, x^{10} + 11 \, x^{6} + x^{2}\right )} \sqrt {x^{4} + 1} + 1}{9 \, x^{16} + 18 \, x^{12} + 15 \, x^{8} + 6 \, x^{4} + 1}\right ) + 12 \, {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{12 \, x} \]

input
integrate((x^8+3*x^4+1)/x^2/(x^4+1)^(3/4)/(3*x^8+3*x^4+1),x, algorithm="fr 
icas")
 
output
-1/12*(2*sqrt(3)*x*arctan(2*(sqrt(3)*(3*x^5 - x)*(x^4 + 1)^(3/4) - sqrt(3) 
*(3*x^7 + 4*x^3)*(x^4 + 1)^(1/4))/(21*x^8 + 21*x^4 - 1)) - sqrt(3)*x*log(- 
(441*x^16 + 882*x^12 + 543*x^8 + 102*x^4 + 4*sqrt(3)*(63*x^13 + 78*x^9 + 2 
4*x^5 + x)*(x^4 + 1)^(3/4) + 4*sqrt(3)*(63*x^15 + 111*x^11 + 57*x^7 + 8*x^ 
3)*(x^4 + 1)^(1/4) + 24*(18*x^14 + 27*x^10 + 11*x^6 + x^2)*sqrt(x^4 + 1) + 
 1)/(9*x^16 + 18*x^12 + 15*x^8 + 6*x^4 + 1)) + 12*(x^4 + 1)^(1/4))/x
 
3.14.11.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1+3 x^4+x^8}{x^2 \left (1+x^4\right )^{3/4} \left (1+3 x^4+3 x^8\right )} \, dx=\text {Timed out} \]

input
integrate((x**8+3*x**4+1)/x**2/(x**4+1)**(3/4)/(3*x**8+3*x**4+1),x)
 
output
Timed out
 
3.14.11.7 Maxima [F]

\[ \int \frac {1+3 x^4+x^8}{x^2 \left (1+x^4\right )^{3/4} \left (1+3 x^4+3 x^8\right )} \, dx=\int { \frac {x^{8} + 3 \, x^{4} + 1}{{\left (3 \, x^{8} + 3 \, x^{4} + 1\right )} {\left (x^{4} + 1\right )}^{\frac {3}{4}} x^{2}} \,d x } \]

input
integrate((x^8+3*x^4+1)/x^2/(x^4+1)^(3/4)/(3*x^8+3*x^4+1),x, algorithm="ma 
xima")
 
output
integrate((x^8 + 3*x^4 + 1)/((3*x^8 + 3*x^4 + 1)*(x^4 + 1)^(3/4)*x^2), x)
 
3.14.11.8 Giac [F]

\[ \int \frac {1+3 x^4+x^8}{x^2 \left (1+x^4\right )^{3/4} \left (1+3 x^4+3 x^8\right )} \, dx=\int { \frac {x^{8} + 3 \, x^{4} + 1}{{\left (3 \, x^{8} + 3 \, x^{4} + 1\right )} {\left (x^{4} + 1\right )}^{\frac {3}{4}} x^{2}} \,d x } \]

input
integrate((x^8+3*x^4+1)/x^2/(x^4+1)^(3/4)/(3*x^8+3*x^4+1),x, algorithm="gi 
ac")
 
output
integrate((x^8 + 3*x^4 + 1)/((3*x^8 + 3*x^4 + 1)*(x^4 + 1)^(3/4)*x^2), x)
 
3.14.11.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1+3 x^4+x^8}{x^2 \left (1+x^4\right )^{3/4} \left (1+3 x^4+3 x^8\right )} \, dx=\int \frac {x^8+3\,x^4+1}{x^2\,{\left (x^4+1\right )}^{3/4}\,\left (3\,x^8+3\,x^4+1\right )} \,d x \]

input
int((3*x^4 + x^8 + 1)/(x^2*(x^4 + 1)^(3/4)*(3*x^4 + 3*x^8 + 1)),x)
 
output
int((3*x^4 + x^8 + 1)/(x^2*(x^4 + 1)^(3/4)*(3*x^4 + 3*x^8 + 1)), x)