3.26.52 \(\int \frac {(b+a x^2) \sqrt [4]{b x^3+a x^4}}{x^2 (-b+a x^2)} \, dx\) [2552]

3.26.52.1 Optimal result
3.26.52.2 Mathematica [A] (verified)
3.26.52.3 Rubi [B] (verified)
3.26.52.4 Maple [N/A]
3.26.52.5 Fricas [C] (verification not implemented)
3.26.52.6 Sympy [N/A]
3.26.52.7 Maxima [N/A]
3.26.52.8 Giac [N/A]
3.26.52.9 Mupad [N/A]

3.26.52.1 Optimal result

Integrand size = 37, antiderivative size = 215 \[ \int \frac {\left (b+a x^2\right ) \sqrt [4]{b x^3+a x^4}}{x^2 \left (-b+a x^2\right )} \, dx=\frac {4 \sqrt [4]{b x^3+a x^4}}{x}-2 \sqrt [4]{a} \arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b x^3+a x^4}}\right )+2 \sqrt [4]{a} \text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b x^3+a x^4}}\right )+a \text {RootSum}\left [a^2-a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-a \log (x)+b \log (x)+a \log \left (\sqrt [4]{b x^3+a x^4}-x \text {$\#$1}\right )-b \log \left (\sqrt [4]{b x^3+a x^4}-x \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-\log \left (\sqrt [4]{b x^3+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{a \text {$\#$1}^3-\text {$\#$1}^7}\&\right ] \]

output
Unintegrable
 
3.26.52.2 Mathematica [A] (verified)

Time = 0.49 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.12 \[ \int \frac {\left (b+a x^2\right ) \sqrt [4]{b x^3+a x^4}}{x^2 \left (-b+a x^2\right )} \, dx=\frac {x^2 (b+a x)^{3/4} \left (4 \sqrt [4]{b+a x}-2 \sqrt [4]{a} \sqrt [4]{x} \arctan \left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{b+a x}}\right )+2 \sqrt [4]{a} \sqrt [4]{x} \text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{b+a x}}\right )-\frac {1}{4} a \sqrt [4]{x} \text {RootSum}\left [a^2-a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-a \log (x)+b \log (x)+4 a \log \left (\sqrt [4]{b+a x}-\sqrt [4]{x} \text {$\#$1}\right )-4 b \log \left (\sqrt [4]{b+a x}-\sqrt [4]{x} \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-4 \log \left (\sqrt [4]{b+a x}-\sqrt [4]{x} \text {$\#$1}\right ) \text {$\#$1}^4}{-a \text {$\#$1}^3+\text {$\#$1}^7}\&\right ]\right )}{\left (x^3 (b+a x)\right )^{3/4}} \]

input
Integrate[((b + a*x^2)*(b*x^3 + a*x^4)^(1/4))/(x^2*(-b + a*x^2)),x]
 
output
(x^2*(b + a*x)^(3/4)*(4*(b + a*x)^(1/4) - 2*a^(1/4)*x^(1/4)*ArcTan[(a^(1/4 
)*x^(1/4))/(b + a*x)^(1/4)] + 2*a^(1/4)*x^(1/4)*ArcTanh[(a^(1/4)*x^(1/4))/ 
(b + a*x)^(1/4)] - (a*x^(1/4)*RootSum[a^2 - a*b - 2*a*#1^4 + #1^8 & , (-(a 
*Log[x]) + b*Log[x] + 4*a*Log[(b + a*x)^(1/4) - x^(1/4)*#1] - 4*b*Log[(b + 
 a*x)^(1/4) - x^(1/4)*#1] + Log[x]*#1^4 - 4*Log[(b + a*x)^(1/4) - x^(1/4)* 
#1]*#1^4)/(-(a*#1^3) + #1^7) & ])/4))/(x^3*(b + a*x))^(3/4)
 
3.26.52.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(624\) vs. \(2(215)=430\).

Time = 2.26 (sec) , antiderivative size = 624, normalized size of antiderivative = 2.90, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {2467, 25, 2035, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a x^2+b\right ) \sqrt [4]{a x^4+b x^3}}{x^2 \left (a x^2-b\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{a x^4+b x^3} \int -\frac {\sqrt [4]{b+a x} \left (a x^2+b\right )}{x^{5/4} \left (b-a x^2\right )}dx}{x^{3/4} \sqrt [4]{a x+b}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{a x^4+b x^3} \int \frac {\sqrt [4]{b+a x} \left (a x^2+b\right )}{x^{5/4} \left (b-a x^2\right )}dx}{x^{3/4} \sqrt [4]{a x+b}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {4 \sqrt [4]{a x^4+b x^3} \int \frac {\sqrt [4]{b+a x} \left (a x^2+b\right )}{\sqrt {x} \left (b-a x^2\right )}d\sqrt [4]{x}}{x^{3/4} \sqrt [4]{a x+b}}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {4 \sqrt [4]{a x^4+b x^3} \int \left (\frac {\sqrt [4]{b+a x}}{\sqrt {x}}-\frac {2 a x^{3/2} \sqrt [4]{b+a x}}{a x^2-b}\right )d\sqrt [4]{x}}{x^{3/4} \sqrt [4]{a x+b}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {4 \sqrt [4]{a x^4+b x^3} \left (-\frac {a^{5/8} \arctan \left (\frac {\sqrt [8]{a} \sqrt [4]{x} \sqrt [4]{\sqrt {a}-\sqrt {b}}}{\sqrt [4]{a x+b}}\right )}{2 \left (\sqrt {a}-\sqrt {b}\right )^{3/4}}-\frac {a^{5/8} \arctan \left (\frac {\sqrt [8]{a} \sqrt [4]{x} \sqrt [4]{\sqrt {a}+\sqrt {b}}}{\sqrt [4]{a x+b}}\right )}{2 \left (\sqrt {a}+\sqrt {b}\right )^{3/4}}+\frac {a^{5/8} \text {arctanh}\left (\frac {\sqrt [8]{a} \sqrt [4]{x} \sqrt [4]{\sqrt {a}-\sqrt {b}}}{\sqrt [4]{a x+b}}\right )}{2 \left (\sqrt {a}-\sqrt {b}\right )^{3/4}}+\frac {a^{5/8} \text {arctanh}\left (\frac {\sqrt [8]{a} \sqrt [4]{x} \sqrt [4]{\sqrt {a}+\sqrt {b}}}{\sqrt [4]{a x+b}}\right )}{2 \left (\sqrt {a}+\sqrt {b}\right )^{3/4}}+\frac {1}{2} \sqrt [4]{a} \arctan \left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{a x+b}}\right )+\frac {\sqrt [8]{a} \sqrt {b} \arctan \left (\frac {\sqrt [8]{a} \sqrt [4]{x} \sqrt [4]{\sqrt {a}-\sqrt {b}}}{\sqrt [4]{a x+b}}\right )}{2 \left (\sqrt {a}-\sqrt {b}\right )^{3/4}}-\frac {\sqrt [8]{a} \sqrt {b} \arctan \left (\frac {\sqrt [8]{a} \sqrt [4]{x} \sqrt [4]{\sqrt {a}+\sqrt {b}}}{\sqrt [4]{a x+b}}\right )}{2 \left (\sqrt {a}+\sqrt {b}\right )^{3/4}}-\frac {1}{2} \sqrt [4]{a} \text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{a x+b}}\right )-\frac {\sqrt [8]{a} \sqrt {b} \text {arctanh}\left (\frac {\sqrt [8]{a} \sqrt [4]{x} \sqrt [4]{\sqrt {a}-\sqrt {b}}}{\sqrt [4]{a x+b}}\right )}{2 \left (\sqrt {a}-\sqrt {b}\right )^{3/4}}+\frac {\sqrt [8]{a} \sqrt {b} \text {arctanh}\left (\frac {\sqrt [8]{a} \sqrt [4]{x} \sqrt [4]{\sqrt {a}+\sqrt {b}}}{\sqrt [4]{a x+b}}\right )}{2 \left (\sqrt {a}+\sqrt {b}\right )^{3/4}}-\frac {\sqrt [4]{a x+b}}{\sqrt [4]{x}}\right )}{x^{3/4} \sqrt [4]{a x+b}}\)

input
Int[((b + a*x^2)*(b*x^3 + a*x^4)^(1/4))/(x^2*(-b + a*x^2)),x]
 
output
(-4*(b*x^3 + a*x^4)^(1/4)*(-((b + a*x)^(1/4)/x^(1/4)) + (a^(1/4)*ArcTan[(a 
^(1/4)*x^(1/4))/(b + a*x)^(1/4)])/2 - (a^(5/8)*ArcTan[(a^(1/8)*(Sqrt[a] - 
Sqrt[b])^(1/4)*x^(1/4))/(b + a*x)^(1/4)])/(2*(Sqrt[a] - Sqrt[b])^(3/4)) + 
(a^(1/8)*Sqrt[b]*ArcTan[(a^(1/8)*(Sqrt[a] - Sqrt[b])^(1/4)*x^(1/4))/(b + a 
*x)^(1/4)])/(2*(Sqrt[a] - Sqrt[b])^(3/4)) - (a^(5/8)*ArcTan[(a^(1/8)*(Sqrt 
[a] + Sqrt[b])^(1/4)*x^(1/4))/(b + a*x)^(1/4)])/(2*(Sqrt[a] + Sqrt[b])^(3/ 
4)) - (a^(1/8)*Sqrt[b]*ArcTan[(a^(1/8)*(Sqrt[a] + Sqrt[b])^(1/4)*x^(1/4))/ 
(b + a*x)^(1/4)])/(2*(Sqrt[a] + Sqrt[b])^(3/4)) - (a^(1/4)*ArcTanh[(a^(1/4 
)*x^(1/4))/(b + a*x)^(1/4)])/2 + (a^(5/8)*ArcTanh[(a^(1/8)*(Sqrt[a] - Sqrt 
[b])^(1/4)*x^(1/4))/(b + a*x)^(1/4)])/(2*(Sqrt[a] - Sqrt[b])^(3/4)) - (a^( 
1/8)*Sqrt[b]*ArcTanh[(a^(1/8)*(Sqrt[a] - Sqrt[b])^(1/4)*x^(1/4))/(b + a*x) 
^(1/4)])/(2*(Sqrt[a] - Sqrt[b])^(3/4)) + (a^(5/8)*ArcTanh[(a^(1/8)*(Sqrt[a 
] + Sqrt[b])^(1/4)*x^(1/4))/(b + a*x)^(1/4)])/(2*(Sqrt[a] + Sqrt[b])^(3/4) 
) + (a^(1/8)*Sqrt[b]*ArcTanh[(a^(1/8)*(Sqrt[a] + Sqrt[b])^(1/4)*x^(1/4))/( 
b + a*x)^(1/4)])/(2*(Sqrt[a] + Sqrt[b])^(3/4))))/(x^(3/4)*(b + a*x)^(1/4))
 

3.26.52.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.26.52.4 Maple [N/A]

Time = 0.41 (sec) , antiderivative size = 154, normalized size of antiderivative = 0.72

method result size
pseudoelliptic \(\frac {a \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-2 a \,\textit {\_Z}^{4}+a^{2}-a b \right )}{\sum }\frac {\left (\textit {\_R}^{4}-a +b \right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{3} \left (a x +b \right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{3} \left (\textit {\_R}^{4}-a \right )}\right ) x +a^{\frac {1}{4}} x \ln \left (\frac {x \,a^{\frac {1}{4}}+\left (x^{3} \left (a x +b \right )\right )^{\frac {1}{4}}}{-x \,a^{\frac {1}{4}}+\left (x^{3} \left (a x +b \right )\right )^{\frac {1}{4}}}\right )+2 a^{\frac {1}{4}} x \arctan \left (\frac {\left (x^{3} \left (a x +b \right )\right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right )+4 \left (x^{3} \left (a x +b \right )\right )^{\frac {1}{4}}}{x}\) \(154\)

input
int((a*x^2+b)*(a*x^4+b*x^3)^(1/4)/x^2/(a*x^2-b),x,method=_RETURNVERBOSE)
 
output
(a*sum((_R^4-a+b)*ln((-_R*x+(x^3*(a*x+b))^(1/4))/x)/_R^3/(_R^4-a),_R=RootO 
f(_Z^8-2*_Z^4*a+a^2-a*b))*x+a^(1/4)*x*ln((x*a^(1/4)+(x^3*(a*x+b))^(1/4))/( 
-x*a^(1/4)+(x^3*(a*x+b))^(1/4)))+2*a^(1/4)*x*arctan(1/a^(1/4)/x*(x^3*(a*x+ 
b))^(1/4))+4*(x^3*(a*x+b))^(1/4))/x
 
3.26.52.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.31 (sec) , antiderivative size = 541, normalized size of antiderivative = 2.52 \[ \int \frac {\left (b+a x^2\right ) \sqrt [4]{b x^3+a x^4}}{x^2 \left (-b+a x^2\right )} \, dx=-\frac {x \sqrt {-\sqrt {a + \sqrt {a b}}} \log \left (\frac {2 \, {\left (x \sqrt {-\sqrt {a + \sqrt {a b}}} + {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}\right )}}{x}\right ) - x \sqrt {-\sqrt {a + \sqrt {a b}}} \log \left (-\frac {2 \, {\left (x \sqrt {-\sqrt {a + \sqrt {a b}}} - {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}\right )}}{x}\right ) + x \sqrt {-\sqrt {a - \sqrt {a b}}} \log \left (\frac {2 \, {\left (x \sqrt {-\sqrt {a - \sqrt {a b}}} + {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}\right )}}{x}\right ) - x \sqrt {-\sqrt {a - \sqrt {a b}}} \log \left (-\frac {2 \, {\left (x \sqrt {-\sqrt {a - \sqrt {a b}}} - {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}\right )}}{x}\right ) + {\left (a + \sqrt {a b}\right )}^{\frac {1}{4}} x \log \left (\frac {2 \, {\left ({\left (a + \sqrt {a b}\right )}^{\frac {1}{4}} x + {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}\right )}}{x}\right ) - {\left (a + \sqrt {a b}\right )}^{\frac {1}{4}} x \log \left (-\frac {2 \, {\left ({\left (a + \sqrt {a b}\right )}^{\frac {1}{4}} x - {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}\right )}}{x}\right ) + {\left (a - \sqrt {a b}\right )}^{\frac {1}{4}} x \log \left (\frac {2 \, {\left ({\left (a - \sqrt {a b}\right )}^{\frac {1}{4}} x + {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}\right )}}{x}\right ) - {\left (a - \sqrt {a b}\right )}^{\frac {1}{4}} x \log \left (-\frac {2 \, {\left ({\left (a - \sqrt {a b}\right )}^{\frac {1}{4}} x - {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}\right )}}{x}\right ) - a^{\frac {1}{4}} x \log \left (\frac {a^{\frac {1}{4}} x + {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + a^{\frac {1}{4}} x \log \left (-\frac {a^{\frac {1}{4}} x - {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - i \, a^{\frac {1}{4}} x \log \left (\frac {i \, a^{\frac {1}{4}} x + {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + i \, a^{\frac {1}{4}} x \log \left (\frac {-i \, a^{\frac {1}{4}} x + {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - 4 \, {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x} \]

input
integrate((a*x^2+b)*(a*x^4+b*x^3)^(1/4)/x^2/(a*x^2-b),x, algorithm="fricas 
")
 
output
-(x*sqrt(-sqrt(a + sqrt(a*b)))*log(2*(x*sqrt(-sqrt(a + sqrt(a*b))) + (a*x^ 
4 + b*x^3)^(1/4))/x) - x*sqrt(-sqrt(a + sqrt(a*b)))*log(-2*(x*sqrt(-sqrt(a 
 + sqrt(a*b))) - (a*x^4 + b*x^3)^(1/4))/x) + x*sqrt(-sqrt(a - sqrt(a*b)))* 
log(2*(x*sqrt(-sqrt(a - sqrt(a*b))) + (a*x^4 + b*x^3)^(1/4))/x) - x*sqrt(- 
sqrt(a - sqrt(a*b)))*log(-2*(x*sqrt(-sqrt(a - sqrt(a*b))) - (a*x^4 + b*x^3 
)^(1/4))/x) + (a + sqrt(a*b))^(1/4)*x*log(2*((a + sqrt(a*b))^(1/4)*x + (a* 
x^4 + b*x^3)^(1/4))/x) - (a + sqrt(a*b))^(1/4)*x*log(-2*((a + sqrt(a*b))^( 
1/4)*x - (a*x^4 + b*x^3)^(1/4))/x) + (a - sqrt(a*b))^(1/4)*x*log(2*((a - s 
qrt(a*b))^(1/4)*x + (a*x^4 + b*x^3)^(1/4))/x) - (a - sqrt(a*b))^(1/4)*x*lo 
g(-2*((a - sqrt(a*b))^(1/4)*x - (a*x^4 + b*x^3)^(1/4))/x) - a^(1/4)*x*log( 
(a^(1/4)*x + (a*x^4 + b*x^3)^(1/4))/x) + a^(1/4)*x*log(-(a^(1/4)*x - (a*x^ 
4 + b*x^3)^(1/4))/x) - I*a^(1/4)*x*log((I*a^(1/4)*x + (a*x^4 + b*x^3)^(1/4 
))/x) + I*a^(1/4)*x*log((-I*a^(1/4)*x + (a*x^4 + b*x^3)^(1/4))/x) - 4*(a*x 
^4 + b*x^3)^(1/4))/x
 
3.26.52.6 Sympy [N/A]

Not integrable

Time = 4.25 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.13 \[ \int \frac {\left (b+a x^2\right ) \sqrt [4]{b x^3+a x^4}}{x^2 \left (-b+a x^2\right )} \, dx=\int \frac {\sqrt [4]{x^{3} \left (a x + b\right )} \left (a x^{2} + b\right )}{x^{2} \left (a x^{2} - b\right )}\, dx \]

input
integrate((a*x**2+b)*(a*x**4+b*x**3)**(1/4)/x**2/(a*x**2-b),x)
 
output
Integral((x**3*(a*x + b))**(1/4)*(a*x**2 + b)/(x**2*(a*x**2 - b)), x)
 
3.26.52.7 Maxima [N/A]

Not integrable

Time = 0.22 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.17 \[ \int \frac {\left (b+a x^2\right ) \sqrt [4]{b x^3+a x^4}}{x^2 \left (-b+a x^2\right )} \, dx=\int { \frac {{\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}} {\left (a x^{2} + b\right )}}{{\left (a x^{2} - b\right )} x^{2}} \,d x } \]

input
integrate((a*x^2+b)*(a*x^4+b*x^3)^(1/4)/x^2/(a*x^2-b),x, algorithm="maxima 
")
 
output
integrate((a*x^4 + b*x^3)^(1/4)*(a*x^2 + b)/((a*x^2 - b)*x^2), x)
 
3.26.52.8 Giac [N/A]

Not integrable

Time = 0.76 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.17 \[ \int \frac {\left (b+a x^2\right ) \sqrt [4]{b x^3+a x^4}}{x^2 \left (-b+a x^2\right )} \, dx=\int { \frac {{\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}} {\left (a x^{2} + b\right )}}{{\left (a x^{2} - b\right )} x^{2}} \,d x } \]

input
integrate((a*x^2+b)*(a*x^4+b*x^3)^(1/4)/x^2/(a*x^2-b),x, algorithm="giac")
 
output
integrate((a*x^4 + b*x^3)^(1/4)*(a*x^2 + b)/((a*x^2 - b)*x^2), x)
 
3.26.52.9 Mupad [N/A]

Not integrable

Time = 8.60 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.18 \[ \int \frac {\left (b+a x^2\right ) \sqrt [4]{b x^3+a x^4}}{x^2 \left (-b+a x^2\right )} \, dx=-\int \frac {\left (a\,x^2+b\right )\,{\left (a\,x^4+b\,x^3\right )}^{1/4}}{x^2\,\left (b-a\,x^2\right )} \,d x \]

input
int(-((b + a*x^2)*(a*x^4 + b*x^3)^(1/4))/(x^2*(b - a*x^2)),x)
 
output
-int(((b + a*x^2)*(a*x^4 + b*x^3)^(1/4))/(x^2*(b - a*x^2)), x)