3.21.51 \(\int \frac {e^x (-8+2 e^3) (i \pi +\log (10))+e^x (-4 x+e^3 x) (i \pi +\log (10)) \log (\frac {5}{x^2})+(-4 x+e^3 x) (i \pi +\log (10)) \log ^2(\frac {5}{x^2})}{e^x x \log (\frac {5}{x^2})+x^2 \log ^2(\frac {5}{x^2})} \, dx\) [2051]

3.21.51.1 Optimal result
3.21.51.2 Mathematica [A] (verified)
3.21.51.3 Rubi [F]
3.21.51.4 Maple [B] (verified)
3.21.51.5 Fricas [B] (verification not implemented)
3.21.51.6 Sympy [B] (verification not implemented)
3.21.51.7 Maxima [B] (verification not implemented)
3.21.51.8 Giac [B] (verification not implemented)
3.21.51.9 Mupad [B] (verification not implemented)

3.21.51.1 Optimal result

Integrand size = 100, antiderivative size = 29 \[ \int \frac {e^x \left (-8+2 e^3\right ) (i \pi +\log (10))+e^x \left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log \left (\frac {5}{x^2}\right )+\left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log ^2\left (\frac {5}{x^2}\right )}{e^x x \log \left (\frac {5}{x^2}\right )+x^2 \log ^2\left (\frac {5}{x^2}\right )} \, dx=\left (-4+e^3\right ) (i \pi +\log (10)) \log \left (x+\frac {e^x}{\log \left (\frac {5}{x^2}\right )}\right ) \]

output
(ln(10)+I*Pi)*(exp(3)-4)*ln(exp(x)/ln(5/x^2)+x)
 
3.21.51.2 Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.28 \[ \int \frac {e^x \left (-8+2 e^3\right ) (i \pi +\log (10))+e^x \left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log \left (\frac {5}{x^2}\right )+\left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log ^2\left (\frac {5}{x^2}\right )}{e^x x \log \left (\frac {5}{x^2}\right )+x^2 \log ^2\left (\frac {5}{x^2}\right )} \, dx=\left (-4+e^3\right ) (i \pi +\log (10)) \left (-\log \left (\log \left (\frac {5}{x^2}\right )\right )+\log \left (e^x+x \log \left (\frac {5}{x^2}\right )\right )\right ) \]

input
Integrate[(E^x*(-8 + 2*E^3)*(I*Pi + Log[10]) + E^x*(-4*x + E^3*x)*(I*Pi + 
Log[10])*Log[5/x^2] + (-4*x + E^3*x)*(I*Pi + Log[10])*Log[5/x^2]^2)/(E^x*x 
*Log[5/x^2] + x^2*Log[5/x^2]^2),x]
 
output
(-4 + E^3)*(I*Pi + Log[10])*(-Log[Log[5/x^2]] + Log[E^x + x*Log[5/x^2]])
 
3.21.51.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (e^3 x-4 x\right ) (\log (10)+i \pi ) \log ^2\left (\frac {5}{x^2}\right )+e^x \left (e^3 x-4 x\right ) (\log (10)+i \pi ) \log \left (\frac {5}{x^2}\right )+\left (2 e^3-8\right ) e^x (\log (10)+i \pi )}{x^2 \log ^2\left (\frac {5}{x^2}\right )+e^x x \log \left (\frac {5}{x^2}\right )} \, dx\)

\(\Big \downarrow \) 7292

\(\displaystyle \int \frac {\left (4-e^3\right ) (\log (10)+i \pi ) \left (-x \log ^2\left (\frac {5}{x^2}\right )-e^x x \log \left (\frac {5}{x^2}\right )-2 e^x\right )}{x \log \left (\frac {5}{x^2}\right ) \left (x \log \left (\frac {5}{x^2}\right )+e^x\right )}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \left (4-e^3\right ) (\log (10)+i \pi ) \int -\frac {x \log ^2\left (\frac {5}{x^2}\right )+e^x x \log \left (\frac {5}{x^2}\right )+2 e^x}{x \log \left (\frac {5}{x^2}\right ) \left (x \log \left (\frac {5}{x^2}\right )+e^x\right )}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\left (\left (4-e^3\right ) (\log (10)+i \pi ) \int \frac {x \log ^2\left (\frac {5}{x^2}\right )+e^x x \log \left (\frac {5}{x^2}\right )+2 e^x}{x \log \left (\frac {5}{x^2}\right ) \left (x \log \left (\frac {5}{x^2}\right )+e^x\right )}dx\right )\)

\(\Big \downarrow \) 7293

\(\displaystyle -\left (\left (4-e^3\right ) (\log (10)+i \pi ) \int \left (\frac {x \log \left (\frac {5}{x^2}\right )+2}{x \log \left (\frac {5}{x^2}\right )}-\frac {x \log \left (\frac {5}{x^2}\right )-\log \left (\frac {5}{x^2}\right )+2}{x \log \left (\frac {5}{x^2}\right )+e^x}\right )dx\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle -\left (\left (4-e^3\right ) (\log (10)+i \pi ) \left (-2 \int \frac {1}{x \log \left (\frac {5}{x^2}\right )+e^x}dx+\int \frac {\log \left (\frac {5}{x^2}\right )}{x \log \left (\frac {5}{x^2}\right )+e^x}dx-\int \frac {x \log \left (\frac {5}{x^2}\right )}{x \log \left (\frac {5}{x^2}\right )+e^x}dx-\log \left (\log \left (\frac {5}{x^2}\right )\right )+x\right )\right )\)

input
Int[(E^x*(-8 + 2*E^3)*(I*Pi + Log[10]) + E^x*(-4*x + E^3*x)*(I*Pi + Log[10 
])*Log[5/x^2] + (-4*x + E^3*x)*(I*Pi + Log[10])*Log[5/x^2]^2)/(E^x*x*Log[5 
/x^2] + x^2*Log[5/x^2]^2),x]
 
output
$Aborted
 

3.21.51.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.21.51.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 63 vs. \(2 (26 ) = 52\).

Time = 0.69 (sec) , antiderivative size = 64, normalized size of antiderivative = 2.21

method result size
norman \(\left (-i \pi \,{\mathrm e}^{3}-\ln \left (10\right ) {\mathrm e}^{3}+4 i \pi +4 \ln \left (10\right )\right ) \ln \left (\ln \left (\frac {5}{x^{2}}\right )\right )+\left (i \pi \,{\mathrm e}^{3}+\ln \left (10\right ) {\mathrm e}^{3}-4 i \pi -4 \ln \left (10\right )\right ) \ln \left (x \ln \left (\frac {5}{x^{2}}\right )+{\mathrm e}^{x}\right )\) \(64\)
default \(\left (-i \pi \,{\mathrm e}^{3}-\ln \left (10\right ) {\mathrm e}^{3}+4 i \pi +4 \ln \left (10\right )\right ) \ln \left (-\ln \left (\frac {5}{x^{2}}\right )\right )+\left (i \pi \,{\mathrm e}^{3}+\ln \left (10\right ) {\mathrm e}^{3}-4 i \pi -4 \ln \left (10\right )\right ) \ln \left (2 x \ln \left (x \right )-x \left (\ln \left (\frac {5}{x^{2}}\right )+2 \ln \left (x \right )\right )-{\mathrm e}^{x}\right )\) \(79\)
parallelrisch \(-i \pi \,{\mathrm e}^{3} \ln \left (\ln \left (\frac {5}{x^{2}}\right )\right )-\ln \left (10\right ) {\mathrm e}^{3} \ln \left (\ln \left (\frac {5}{x^{2}}\right )\right )+4 i \pi \ln \left (\ln \left (\frac {5}{x^{2}}\right )\right )+4 \ln \left (10\right ) \ln \left (\ln \left (\frac {5}{x^{2}}\right )\right )+i \pi \,{\mathrm e}^{3} \ln \left (x \ln \left (\frac {5}{x^{2}}\right )+{\mathrm e}^{x}\right )+\ln \left (10\right ) {\mathrm e}^{3} \ln \left (x \ln \left (\frac {5}{x^{2}}\right )+{\mathrm e}^{x}\right )-4 i \pi \ln \left (x \ln \left (\frac {5}{x^{2}}\right )+{\mathrm e}^{x}\right )-4 \ln \left (10\right ) \ln \left (x \ln \left (\frac {5}{x^{2}}\right )+{\mathrm e}^{x}\right )\) \(117\)
risch \(\text {Expression too large to display}\) \(856\)

input
int(((x*exp(3)-4*x)*(ln(10)+I*Pi)*ln(5/x^2)^2+(x*exp(3)-4*x)*(ln(10)+I*Pi) 
*exp(x)*ln(5/x^2)+(2*exp(3)-8)*(ln(10)+I*Pi)*exp(x))/(x^2*ln(5/x^2)^2+x*ex 
p(x)*ln(5/x^2)),x,method=_RETURNVERBOSE)
 
output
(-I*Pi*exp(3)-ln(10)*exp(3)+4*I*Pi+4*ln(10))*ln(ln(5/x^2))+(I*Pi*exp(3)+ln 
(10)*exp(3)-4*I*Pi-4*ln(10))*ln(x*ln(5/x^2)+exp(x))
 
3.21.51.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 86 vs. \(2 (25) = 50\).

Time = 0.27 (sec) , antiderivative size = 86, normalized size of antiderivative = 2.97 \[ \int \frac {e^x \left (-8+2 e^3\right ) (i \pi +\log (10))+e^x \left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log \left (\frac {5}{x^2}\right )+\left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log ^2\left (\frac {5}{x^2}\right )}{e^x x \log \left (\frac {5}{x^2}\right )+x^2 \log ^2\left (\frac {5}{x^2}\right )} \, dx=-{\left (4 i \, \pi - i \, \pi e^{3} - {\left (e^{3} - 4\right )} \log \left (10\right )\right )} \log \left (\frac {x \log \left (\frac {5}{x^{2}}\right ) + e^{x}}{x}\right ) + \frac {1}{2} \, {\left (4 i \, \pi - i \, \pi e^{3} - {\left (e^{3} - 4\right )} \log \left (10\right )\right )} \log \left (\frac {5}{x^{2}}\right ) - {\left (-4 i \, \pi + i \, \pi e^{3} + {\left (e^{3} - 4\right )} \log \left (10\right )\right )} \log \left (\log \left (\frac {5}{x^{2}}\right )\right ) \]

input
integrate(((x*exp(3)-4*x)*(log(10)+I*pi)*log(5/x^2)^2+(x*exp(3)-4*x)*(log( 
10)+I*pi)*exp(x)*log(5/x^2)+(2*exp(3)-8)*(log(10)+I*pi)*exp(x))/(x^2*log(5 
/x^2)^2+x*exp(x)*log(5/x^2)),x, algorithm=\
 
output
-(4*I*pi - I*pi*e^3 - (e^3 - 4)*log(10))*log((x*log(5/x^2) + e^x)/x) + 1/2 
*(4*I*pi - I*pi*e^3 - (e^3 - 4)*log(10))*log(5/x^2) - (-4*I*pi + I*pi*e^3 
+ (e^3 - 4)*log(10))*log(log(5/x^2))
 
3.21.51.6 Sympy [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 53 vs. \(2 (24) = 48\).

Time = 0.88 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.83 \[ \int \frac {e^x \left (-8+2 e^3\right ) (i \pi +\log (10))+e^x \left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log \left (\frac {5}{x^2}\right )+\left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log ^2\left (\frac {5}{x^2}\right )}{e^x x \log \left (\frac {5}{x^2}\right )+x^2 \log ^2\left (\frac {5}{x^2}\right )} \, dx=- \left (-4 + e^{3}\right ) \left (\log {\left (10 \right )} + i \pi \right ) \log {\left (\log {\left (\frac {1}{x^{2}} \right )} + \log {\left (5 \right )} \right )} + \left (-4 + e^{3}\right ) \left (\log {\left (10 \right )} + i \pi \right ) \log {\left (x \log {\left (\frac {1}{x^{2}} \right )} + x \log {\left (5 \right )} + e^{x} \right )} \]

input
integrate(((x*exp(3)-4*x)*(ln(10)+I*pi)*ln(5/x**2)**2+(x*exp(3)-4*x)*(ln(1 
0)+I*pi)*exp(x)*ln(5/x**2)+(2*exp(3)-8)*(ln(10)+I*pi)*exp(x))/(x**2*ln(5/x 
**2)**2+x*exp(x)*ln(5/x**2)),x)
 
output
-(-4 + exp(3))*(log(10) + I*pi)*log(log(x**(-2)) + log(5)) + (-4 + exp(3)) 
*(log(10) + I*pi)*log(x*log(x**(-2)) + x*log(5) + exp(x))
 
3.21.51.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 74 vs. \(2 (25) = 50\).

Time = 0.31 (sec) , antiderivative size = 74, normalized size of antiderivative = 2.55 \[ \int \frac {e^x \left (-8+2 e^3\right ) (i \pi +\log (10))+e^x \left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log \left (\frac {5}{x^2}\right )+\left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log ^2\left (\frac {5}{x^2}\right )}{e^x x \log \left (\frac {5}{x^2}\right )+x^2 \log ^2\left (\frac {5}{x^2}\right )} \, dx={\left (-4 i \, \pi + {\left (i \, \pi + \log \left (5\right ) + \log \left (2\right )\right )} e^{3} - 4 \, \log \left (5\right ) - 4 \, \log \left (2\right )\right )} \log \left (x \log \left (5\right ) - 2 \, x \log \left (x\right ) + e^{x}\right ) + {\left (4 i \, \pi + {\left (-i \, \pi - \log \left (5\right ) - \log \left (2\right )\right )} e^{3} + 4 \, \log \left (5\right ) + 4 \, \log \left (2\right )\right )} \log \left (-\frac {1}{2} \, \log \left (5\right ) + \log \left (x\right )\right ) \]

input
integrate(((x*exp(3)-4*x)*(log(10)+I*pi)*log(5/x^2)^2+(x*exp(3)-4*x)*(log( 
10)+I*pi)*exp(x)*log(5/x^2)+(2*exp(3)-8)*(log(10)+I*pi)*exp(x))/(x^2*log(5 
/x^2)^2+x*exp(x)*log(5/x^2)),x, algorithm=\
 
output
(-4*I*pi + (I*pi + log(5) + log(2))*e^3 - 4*log(5) - 4*log(2))*log(x*log(5 
) - 2*x*log(x) + e^x) + (4*I*pi + (-I*pi - log(5) - log(2))*e^3 + 4*log(5) 
 + 4*log(2))*log(-1/2*log(5) + log(x))
 
3.21.51.8 Giac [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 205 vs. \(2 (25) = 50\).

Time = 0.38 (sec) , antiderivative size = 205, normalized size of antiderivative = 7.07 \[ \int \frac {e^x \left (-8+2 e^3\right ) (i \pi +\log (10))+e^x \left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log \left (\frac {5}{x^2}\right )+\left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log ^2\left (\frac {5}{x^2}\right )}{e^x x \log \left (\frac {5}{x^2}\right )+x^2 \log ^2\left (\frac {5}{x^2}\right )} \, dx=i \, \pi e^{3} \log \left (x \log \left (5\right ) - x \log \left (x^{2}\right ) + e^{x}\right ) + e^{3} \log \left (5\right ) \log \left (x \log \left (5\right ) - x \log \left (x^{2}\right ) + e^{x}\right ) + e^{3} \log \left (2\right ) \log \left (x \log \left (5\right ) - x \log \left (x^{2}\right ) + e^{x}\right ) - i \, \pi e^{3} \log \left (\log \left (5\right ) - \log \left (x^{2}\right )\right ) - e^{3} \log \left (5\right ) \log \left (\log \left (5\right ) - \log \left (x^{2}\right )\right ) - e^{3} \log \left (2\right ) \log \left (\log \left (5\right ) - \log \left (x^{2}\right )\right ) - 4 i \, \pi \log \left (x \log \left (5\right ) - x \log \left (x^{2}\right ) + e^{x}\right ) - 4 \, \log \left (5\right ) \log \left (x \log \left (5\right ) - x \log \left (x^{2}\right ) + e^{x}\right ) - 4 \, \log \left (2\right ) \log \left (x \log \left (5\right ) - x \log \left (x^{2}\right ) + e^{x}\right ) + 4 i \, \pi \log \left (\log \left (5\right ) - \log \left (x^{2}\right )\right ) + 4 \, \log \left (5\right ) \log \left (\log \left (5\right ) - \log \left (x^{2}\right )\right ) + 4 \, \log \left (2\right ) \log \left (\log \left (5\right ) - \log \left (x^{2}\right )\right ) \]

input
integrate(((x*exp(3)-4*x)*(log(10)+I*pi)*log(5/x^2)^2+(x*exp(3)-4*x)*(log( 
10)+I*pi)*exp(x)*log(5/x^2)+(2*exp(3)-8)*(log(10)+I*pi)*exp(x))/(x^2*log(5 
/x^2)^2+x*exp(x)*log(5/x^2)),x, algorithm=\
 
output
I*pi*e^3*log(x*log(5) - x*log(x^2) + e^x) + e^3*log(5)*log(x*log(5) - x*lo 
g(x^2) + e^x) + e^3*log(2)*log(x*log(5) - x*log(x^2) + e^x) - I*pi*e^3*log 
(log(5) - log(x^2)) - e^3*log(5)*log(log(5) - log(x^2)) - e^3*log(2)*log(l 
og(5) - log(x^2)) - 4*I*pi*log(x*log(5) - x*log(x^2) + e^x) - 4*log(5)*log 
(x*log(5) - x*log(x^2) + e^x) - 4*log(2)*log(x*log(5) - x*log(x^2) + e^x) 
+ 4*I*pi*log(log(5) - log(x^2)) + 4*log(5)*log(log(5) - log(x^2)) + 4*log( 
2)*log(log(5) - log(x^2))
 
3.21.51.9 Mupad [B] (verification not implemented)

Time = 12.51 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.21 \[ \int \frac {e^x \left (-8+2 e^3\right ) (i \pi +\log (10))+e^x \left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log \left (\frac {5}{x^2}\right )+\left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log ^2\left (\frac {5}{x^2}\right )}{e^x x \log \left (\frac {5}{x^2}\right )+x^2 \log ^2\left (\frac {5}{x^2}\right )} \, dx=-\left (\ln \left (10\right )+\Pi \,1{}\mathrm {i}\right )\,\left ({\mathrm {e}}^3-4\right )\,\left (\ln \left (\ln \left (\frac {5}{x^2}\right )\right )-\ln \left ({\mathrm {e}}^x+x\,\ln \left (\frac {5}{x^2}\right )\right )\right ) \]

input
int(-(log(5/x^2)^2*(4*x - x*exp(3))*(Pi*1i + log(10)) - exp(x)*(2*exp(3) - 
 8)*(Pi*1i + log(10)) + exp(x)*log(5/x^2)*(4*x - x*exp(3))*(Pi*1i + log(10 
)))/(x^2*log(5/x^2)^2 + x*exp(x)*log(5/x^2)),x)
 
output
-(Pi*1i + log(10))*(exp(3) - 4)*(log(log(5/x^2)) - log(exp(x) + x*log(5/x^ 
2)))