3.5.35 \(\int \frac {1}{(\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x))^{3/2}} \, dx\) [435]

3.5.35.1 Optimal result
3.5.35.2 Mathematica [F(-1)]
3.5.35.3 Rubi [A] (verified)
3.5.35.4 Maple [B] (verified)
3.5.35.5 Fricas [B] (verification not implemented)
3.5.35.6 Sympy [F]
3.5.35.7 Maxima [F(-2)]
3.5.35.8 Giac [F(-1)]
3.5.35.9 Mupad [F(-1)]

3.5.35.1 Optimal result

Integrand size = 32, antiderivative size = 160 \[ \int \frac {1}{\left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt [4]{b^2+c^2} \sin \left (d+e x-\tan ^{-1}(b,c)\right )}{\sqrt {2} \sqrt {\sqrt {b^2+c^2}+\sqrt {b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )}}\right )}{2 \sqrt {2} \left (b^2+c^2\right )^{3/4} e}-\frac {c \cos (d+e x)-b \sin (d+e x)}{2 \sqrt {b^2+c^2} e \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}} \]

output
1/4*arctanh(1/2*(b^2+c^2)^(1/4)*sin(d+e*x-arctan(b,c))*2^(1/2)/((b^2+c^2)^ 
(1/2)+cos(d+e*x-arctan(b,c))*(b^2+c^2)^(1/2))^(1/2))/(b^2+c^2)^(3/4)/e*2^( 
1/2)+1/2*(-c*cos(e*x+d)+b*sin(e*x+d))/e/(b^2+c^2)^(1/2)/(b*cos(e*x+d)+c*si 
n(e*x+d)+(b^2+c^2)^(1/2))^(3/2)
 
3.5.35.2 Mathematica [F(-1)]

Timed out. \[ \int \frac {1}{\left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}} \, dx=\text {\$Aborted} \]

input
Integrate[(Sqrt[b^2 + c^2] + b*Cos[d + e*x] + c*Sin[d + e*x])^(-3/2),x]
 
output
$Aborted
 
3.5.35.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {3042, 3595, 3042, 3594, 3042, 3128, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}}dx\)

\(\Big \downarrow \) 3595

\(\displaystyle \frac {\int \frac {1}{\sqrt {b \cos (d+e x)+c \sin (d+e x)+\sqrt {b^2+c^2}}}dx}{4 \sqrt {b^2+c^2}}-\frac {c \cos (d+e x)-b \sin (d+e x)}{2 e \sqrt {b^2+c^2} \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\sqrt {b \cos (d+e x)+c \sin (d+e x)+\sqrt {b^2+c^2}}}dx}{4 \sqrt {b^2+c^2}}-\frac {c \cos (d+e x)-b \sin (d+e x)}{2 e \sqrt {b^2+c^2} \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}}\)

\(\Big \downarrow \) 3594

\(\displaystyle \frac {\int \frac {1}{\sqrt {\sqrt {b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )+\sqrt {b^2+c^2}}}dx}{4 \sqrt {b^2+c^2}}-\frac {c \cos (d+e x)-b \sin (d+e x)}{2 e \sqrt {b^2+c^2} \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\sqrt {\sqrt {b^2+c^2} \sin \left (d+e x-\tan ^{-1}(b,c)+\frac {\pi }{2}\right )+\sqrt {b^2+c^2}}}dx}{4 \sqrt {b^2+c^2}}-\frac {c \cos (d+e x)-b \sin (d+e x)}{2 e \sqrt {b^2+c^2} \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}}\)

\(\Big \downarrow \) 3128

\(\displaystyle -\frac {\int \frac {1}{2 \sqrt {b^2+c^2}-\frac {\left (b^2+c^2\right ) \sin ^2\left (d+e x-\tan ^{-1}(b,c)\right )}{\sqrt {b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )+\sqrt {b^2+c^2}}}d\left (-\frac {\sqrt {b^2+c^2} \sin \left (d+e x-\tan ^{-1}(b,c)\right )}{\sqrt {\sqrt {b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )+\sqrt {b^2+c^2}}}\right )}{2 e \sqrt {b^2+c^2}}-\frac {c \cos (d+e x)-b \sin (d+e x)}{2 e \sqrt {b^2+c^2} \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\text {arctanh}\left (\frac {\sqrt [4]{b^2+c^2} \sin \left (-\tan ^{-1}(b,c)+d+e x\right )}{\sqrt {2} \sqrt {\sqrt {b^2+c^2} \cos \left (-\tan ^{-1}(b,c)+d+e x\right )+\sqrt {b^2+c^2}}}\right )}{2 \sqrt {2} e \left (b^2+c^2\right )^{3/4}}-\frac {c \cos (d+e x)-b \sin (d+e x)}{2 e \sqrt {b^2+c^2} \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}}\)

input
Int[(Sqrt[b^2 + c^2] + b*Cos[d + e*x] + c*Sin[d + e*x])^(-3/2),x]
 
output
ArcTanh[((b^2 + c^2)^(1/4)*Sin[d + e*x - ArcTan[b, c]])/(Sqrt[2]*Sqrt[Sqrt 
[b^2 + c^2] + Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]]])]/(2*Sqrt[2]*(b 
^2 + c^2)^(3/4)*e) - (c*Cos[d + e*x] - b*Sin[d + e*x])/(2*Sqrt[b^2 + c^2]* 
e*(Sqrt[b^2 + c^2] + b*Cos[d + e*x] + c*Sin[d + e*x])^(3/2))
 

3.5.35.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3594
Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*( 
x_)]], x_Symbol] :> Int[1/Sqrt[a + Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, 
c]]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2 - c^2, 0]
 

rule 3595
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^ 
(n_), x_Symbol] :> Simp[(c*Cos[d + e*x] - b*Sin[d + e*x])*((a + b*Cos[d + e 
*x] + c*Sin[d + e*x])^n/(a*e*(2*n + 1))), x] + Simp[(n + 1)/(a*(2*n + 1)) 
 Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1), x], x] /; FreeQ[{a, b, 
c, d, e}, x] && EqQ[a^2 - b^2 - c^2, 0] && LtQ[n, -1]
 
3.5.35.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(349\) vs. \(2(137)=274\).

Time = 1.54 (sec) , antiderivative size = 350, normalized size of antiderivative = 2.19

method result size
default \(-\frac {\left (\sin \left (e x +d -\arctan \left (-b , c\right )\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-\sqrt {b^{2}+c^{2}}\, \sin \left (e x +d -\arctan \left (-b , c\right )\right )+\sqrt {b^{2}+c^{2}}}\, \sqrt {2}}{2 \left (b^{2}+c^{2}\right )^{\frac {1}{4}}}\right ) \left (b^{2}+c^{2}\right )+\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-\sqrt {b^{2}+c^{2}}\, \sin \left (e x +d -\arctan \left (-b , c\right )\right )+\sqrt {b^{2}+c^{2}}}\, \sqrt {2}}{2 \left (b^{2}+c^{2}\right )^{\frac {1}{4}}}\right ) b^{2}+\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-\sqrt {b^{2}+c^{2}}\, \sin \left (e x +d -\arctan \left (-b , c\right )\right )+\sqrt {b^{2}+c^{2}}}\, \sqrt {2}}{2 \left (b^{2}+c^{2}\right )^{\frac {1}{4}}}\right ) c^{2}+2 \sqrt {-\sqrt {b^{2}+c^{2}}\, \sin \left (e x +d -\arctan \left (-b , c\right )\right )+\sqrt {b^{2}+c^{2}}}\, \left (b^{2}+c^{2}\right )^{\frac {3}{4}}\right ) \sqrt {-\sqrt {b^{2}+c^{2}}\, \left (\sin \left (e x +d -\arctan \left (-b , c\right )\right )-1\right )}}{4 \left (b^{2}+c^{2}\right )^{\frac {7}{4}} \cos \left (e x +d -\arctan \left (-b , c\right )\right ) \sqrt {\frac {b^{2} \sin \left (e x +d -\arctan \left (-b , c\right )\right )+c^{2} \sin \left (e x +d -\arctan \left (-b , c\right )\right )+b^{2}+c^{2}}{\sqrt {b^{2}+c^{2}}}}\, e}\) \(350\)

input
int(1/(b*cos(e*x+d)+c*sin(e*x+d)+(b^2+c^2)^(1/2))^(3/2),x,method=_RETURNVE 
RBOSE)
 
output
-1/4/(b^2+c^2)^(7/4)*(sin(e*x+d-arctan(-b,c))*2^(1/2)*arctanh(1/2*(-(b^2+c 
^2)^(1/2)*sin(e*x+d-arctan(-b,c))+(b^2+c^2)^(1/2))^(1/2)*2^(1/2)/(b^2+c^2) 
^(1/4))*(b^2+c^2)+2^(1/2)*arctanh(1/2*(-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(- 
b,c))+(b^2+c^2)^(1/2))^(1/2)*2^(1/2)/(b^2+c^2)^(1/4))*b^2+2^(1/2)*arctanh( 
1/2*(-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+(b^2+c^2)^(1/2))^(1/2)*2^(1/ 
2)/(b^2+c^2)^(1/4))*c^2+2*(-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+(b^2+c 
^2)^(1/2))^(1/2)*(b^2+c^2)^(3/4))*(-(b^2+c^2)^(1/2)*(sin(e*x+d-arctan(-b,c 
))-1))^(1/2)/cos(e*x+d-arctan(-b,c))/((b^2*sin(e*x+d-arctan(-b,c))+c^2*sin 
(e*x+d-arctan(-b,c))+b^2+c^2)/(b^2+c^2)^(1/2))^(1/2)/e
 
3.5.35.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 646 vs. \(2 (143) = 286\).

Time = 0.51 (sec) , antiderivative size = 646, normalized size of antiderivative = 4.04 \[ \int \frac {1}{\left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}} \, dx=-\frac {{\left (3 \, \sqrt {2} b^{2} c \cos \left (e x + d\right ) - \sqrt {2} {\left (3 \, b^{2} c - c^{3}\right )} \cos \left (e x + d\right )^{3} - {\left (\sqrt {2} b^{3} - \sqrt {2} {\left (b^{3} - 3 \, b c^{2}\right )} \cos \left (e x + d\right )^{2}\right )} \sin \left (e x + d\right )\right )} {\left (b^{2} + c^{2}\right )}^{\frac {1}{4}} \log \left (\frac {{\left (3 \, b^{2} c - c^{3}\right )} \cos \left (e x + d\right )^{3} + {\left (b^{2} c + 4 \, c^{3}\right )} \cos \left (e x + d\right ) - {\left (3 \, b^{3} + 4 \, b c^{2} + {\left (b^{3} - 3 \, b c^{2}\right )} \cos \left (e x + d\right )^{2}\right )} \sin \left (e x + d\right ) - 2 \, {\left (2 \, \sqrt {2} b c \cos \left (e x + d\right ) \sin \left (e x + d\right ) + \sqrt {2} {\left (b^{2} - c^{2}\right )} \cos \left (e x + d\right )^{2} + \sqrt {2} {\left (b^{2} + 2 \, c^{2}\right )} - 2 \, {\left (\sqrt {2} b \cos \left (e x + d\right ) + \sqrt {2} c \sin \left (e x + d\right )\right )} \sqrt {b^{2} + c^{2}}\right )} {\left (b^{2} + c^{2}\right )}^{\frac {1}{4}} \sqrt {b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + \sqrt {b^{2} + c^{2}}} - 4 \, {\left (2 \, b c \cos \left (e x + d\right )^{2} - {\left (b^{2} - c^{2}\right )} \cos \left (e x + d\right ) \sin \left (e x + d\right ) - b c\right )} \sqrt {b^{2} + c^{2}}}{3 \, b^{2} c \cos \left (e x + d\right ) - {\left (3 \, b^{2} c - c^{3}\right )} \cos \left (e x + d\right )^{3} - {\left (b^{3} - {\left (b^{3} - 3 \, b c^{2}\right )} \cos \left (e x + d\right )^{2}\right )} \sin \left (e x + d\right )}\right ) + 4 \, {\left (2 \, {\left (b^{3} + b c^{2}\right )} \cos \left (e x + d\right ) + 2 \, {\left (b^{2} c + c^{3}\right )} \sin \left (e x + d\right ) - {\left (2 \, b c \cos \left (e x + d\right ) \sin \left (e x + d\right ) + {\left (b^{2} - c^{2}\right )} \cos \left (e x + d\right )^{2} + b^{2} + 2 \, c^{2}\right )} \sqrt {b^{2} + c^{2}}\right )} \sqrt {b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + \sqrt {b^{2} + c^{2}}}}{8 \, {\left ({\left (3 \, b^{4} c + 2 \, b^{2} c^{3} - c^{5}\right )} e \cos \left (e x + d\right )^{3} - 3 \, {\left (b^{4} c + b^{2} c^{3}\right )} e \cos \left (e x + d\right ) - {\left ({\left (b^{5} - 2 \, b^{3} c^{2} - 3 \, b c^{4}\right )} e \cos \left (e x + d\right )^{2} - {\left (b^{5} + b^{3} c^{2}\right )} e\right )} \sin \left (e x + d\right )\right )}} \]

input
integrate(1/(b*cos(e*x+d)+c*sin(e*x+d)+(b^2+c^2)^(1/2))^(3/2),x, algorithm 
="fricas")
 
output
-1/8*((3*sqrt(2)*b^2*c*cos(e*x + d) - sqrt(2)*(3*b^2*c - c^3)*cos(e*x + d) 
^3 - (sqrt(2)*b^3 - sqrt(2)*(b^3 - 3*b*c^2)*cos(e*x + d)^2)*sin(e*x + d))* 
(b^2 + c^2)^(1/4)*log(((3*b^2*c - c^3)*cos(e*x + d)^3 + (b^2*c + 4*c^3)*co 
s(e*x + d) - (3*b^3 + 4*b*c^2 + (b^3 - 3*b*c^2)*cos(e*x + d)^2)*sin(e*x + 
d) - 2*(2*sqrt(2)*b*c*cos(e*x + d)*sin(e*x + d) + sqrt(2)*(b^2 - c^2)*cos( 
e*x + d)^2 + sqrt(2)*(b^2 + 2*c^2) - 2*(sqrt(2)*b*cos(e*x + d) + sqrt(2)*c 
*sin(e*x + d))*sqrt(b^2 + c^2))*(b^2 + c^2)^(1/4)*sqrt(b*cos(e*x + d) + c* 
sin(e*x + d) + sqrt(b^2 + c^2)) - 4*(2*b*c*cos(e*x + d)^2 - (b^2 - c^2)*co 
s(e*x + d)*sin(e*x + d) - b*c)*sqrt(b^2 + c^2))/(3*b^2*c*cos(e*x + d) - (3 
*b^2*c - c^3)*cos(e*x + d)^3 - (b^3 - (b^3 - 3*b*c^2)*cos(e*x + d)^2)*sin( 
e*x + d))) + 4*(2*(b^3 + b*c^2)*cos(e*x + d) + 2*(b^2*c + c^3)*sin(e*x + d 
) - (2*b*c*cos(e*x + d)*sin(e*x + d) + (b^2 - c^2)*cos(e*x + d)^2 + b^2 + 
2*c^2)*sqrt(b^2 + c^2))*sqrt(b*cos(e*x + d) + c*sin(e*x + d) + sqrt(b^2 + 
c^2)))/((3*b^4*c + 2*b^2*c^3 - c^5)*e*cos(e*x + d)^3 - 3*(b^4*c + b^2*c^3) 
*e*cos(e*x + d) - ((b^5 - 2*b^3*c^2 - 3*b*c^4)*e*cos(e*x + d)^2 - (b^5 + b 
^3*c^2)*e)*sin(e*x + d))
 
3.5.35.6 Sympy [F]

\[ \int \frac {1}{\left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}} \, dx=\int \frac {1}{\left (b \cos {\left (d + e x \right )} + c \sin {\left (d + e x \right )} + \sqrt {b^{2} + c^{2}}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(1/(b*cos(e*x+d)+c*sin(e*x+d)+(b**2+c**2)**(1/2))**(3/2),x)
 
output
Integral((b*cos(d + e*x) + c*sin(d + e*x) + sqrt(b**2 + c**2))**(-3/2), x)
 
3.5.35.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(1/(b*cos(e*x+d)+c*sin(e*x+d)+(b^2+c^2)^(1/2))^(3/2),x, algorithm 
="maxima")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.5.35.8 Giac [F(-1)]

Timed out. \[ \int \frac {1}{\left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}} \, dx=\text {Timed out} \]

input
integrate(1/(b*cos(e*x+d)+c*sin(e*x+d)+(b^2+c^2)^(1/2))^(3/2),x, algorithm 
="giac")
 
output
Timed out
 
3.5.35.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^{3/2}} \, dx=\int \frac {1}{{\left (b\,\cos \left (d+e\,x\right )+c\,\sin \left (d+e\,x\right )+\sqrt {b^2+c^2}\right )}^{3/2}} \,d x \]

input
int(1/(b*cos(d + e*x) + c*sin(d + e*x) + (b^2 + c^2)^(1/2))^(3/2),x)
 
output
int(1/(b*cos(d + e*x) + c*sin(d + e*x) + (b^2 + c^2)^(1/2))^(3/2), x)