3.9.58 \(\int \frac {1}{\cos ^{\frac {3}{2}}(x) \sqrt {3 \cos (x)+\sin (x)}} \, dx\) [858]

3.9.58.1 Optimal result
3.9.58.2 Mathematica [A] (verified)
3.9.58.3 Rubi [B] (verified)
3.9.58.4 Maple [A] (verified)
3.9.58.5 Fricas [A] (verification not implemented)
3.9.58.6 Sympy [F]
3.9.58.7 Maxima [B] (verification not implemented)
3.9.58.8 Giac [F]
3.9.58.9 Mupad [B] (verification not implemented)

3.9.58.1 Optimal result

Integrand size = 18, antiderivative size = 19 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(x) \sqrt {3 \cos (x)+\sin (x)}} \, dx=\frac {2 \sqrt {3 \cos (x)+\sin (x)}}{\sqrt {\cos (x)}} \]

output
2*(3*cos(x)+sin(x))^(1/2)/cos(x)^(1/2)
 
3.9.58.2 Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 19, normalized size of antiderivative = 1.00 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(x) \sqrt {3 \cos (x)+\sin (x)}} \, dx=\frac {2 \sqrt {3 \cos (x)+\sin (x)}}{\sqrt {\cos (x)}} \]

input
Integrate[1/(Cos[x]^(3/2)*Sqrt[3*Cos[x] + Sin[x]]),x]
 
output
(2*Sqrt[3*Cos[x] + Sin[x]])/Sqrt[Cos[x]]
 
3.9.58.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(100\) vs. \(2(19)=38\).

Time = 0.87 (sec) , antiderivative size = 100, normalized size of antiderivative = 5.26, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 4902, 2058, 7270, 2136, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {3}{2}}(x) \sqrt {\sin (x)+3 \cos (x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cos (x)^{3/2} \sqrt {\sin (x)+3 \cos (x)}}dx\)

\(\Big \downarrow \) 4902

\(\displaystyle 2 \int \frac {1}{\left (1-\tan ^2\left (\frac {x}{2}\right )\right ) \sqrt {\frac {-3 \tan ^2\left (\frac {x}{2}\right )+2 \tan \left (\frac {x}{2}\right )+3}{\tan ^2\left (\frac {x}{2}\right )+1}} \sqrt {\frac {1-\tan ^2\left (\frac {x}{2}\right )}{\tan ^2\left (\frac {x}{2}\right )+1}}}d\tan \left (\frac {x}{2}\right )\)

\(\Big \downarrow \) 2058

\(\displaystyle \frac {2 \sqrt {1-\tan ^2\left (\frac {x}{2}\right )} \int \frac {\sqrt {\tan ^2\left (\frac {x}{2}\right )+1}}{\left (1-\tan ^2\left (\frac {x}{2}\right )\right )^{3/2} \sqrt {\frac {-3 \tan ^2\left (\frac {x}{2}\right )+2 \tan \left (\frac {x}{2}\right )+3}{\tan ^2\left (\frac {x}{2}\right )+1}}}d\tan \left (\frac {x}{2}\right )}{\sqrt {\frac {1-\tan ^2\left (\frac {x}{2}\right )}{\tan ^2\left (\frac {x}{2}\right )+1}} \sqrt {\tan ^2\left (\frac {x}{2}\right )+1}}\)

\(\Big \downarrow \) 7270

\(\displaystyle \frac {2 \sqrt {-3 \tan ^2\left (\frac {x}{2}\right )+2 \tan \left (\frac {x}{2}\right )+3} \sqrt {1-\tan ^2\left (\frac {x}{2}\right )} \int \frac {\tan ^2\left (\frac {x}{2}\right )+1}{\sqrt {-3 \tan ^2\left (\frac {x}{2}\right )+2 \tan \left (\frac {x}{2}\right )+3} \left (1-\tan ^2\left (\frac {x}{2}\right )\right )^{3/2}}d\tan \left (\frac {x}{2}\right )}{\sqrt {\frac {-3 \tan ^2\left (\frac {x}{2}\right )+2 \tan \left (\frac {x}{2}\right )+3}{\tan ^2\left (\frac {x}{2}\right )+1}} \sqrt {\frac {1-\tan ^2\left (\frac {x}{2}\right )}{\tan ^2\left (\frac {x}{2}\right )+1}} \left (\tan ^2\left (\frac {x}{2}\right )+1\right )}\)

\(\Big \downarrow \) 2136

\(\displaystyle \frac {2 \sqrt {-3 \tan ^2\left (\frac {x}{2}\right )+2 \tan \left (\frac {x}{2}\right )+3} \sqrt {1-\tan ^2\left (\frac {x}{2}\right )} \left (\frac {1}{8} \int 0d\tan \left (\frac {x}{2}\right )+\frac {\sqrt {-3 \tan ^2\left (\frac {x}{2}\right )+2 \tan \left (\frac {x}{2}\right )+3}}{\sqrt {1-\tan ^2\left (\frac {x}{2}\right )}}\right )}{\sqrt {\frac {-3 \tan ^2\left (\frac {x}{2}\right )+2 \tan \left (\frac {x}{2}\right )+3}{\tan ^2\left (\frac {x}{2}\right )+1}} \sqrt {\frac {1-\tan ^2\left (\frac {x}{2}\right )}{\tan ^2\left (\frac {x}{2}\right )+1}} \left (\tan ^2\left (\frac {x}{2}\right )+1\right )}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {2 \left (-3 \tan ^2\left (\frac {x}{2}\right )+2 \tan \left (\frac {x}{2}\right )+3\right )}{\sqrt {\frac {-3 \tan ^2\left (\frac {x}{2}\right )+2 \tan \left (\frac {x}{2}\right )+3}{\tan ^2\left (\frac {x}{2}\right )+1}} \sqrt {\frac {1-\tan ^2\left (\frac {x}{2}\right )}{\tan ^2\left (\frac {x}{2}\right )+1}} \left (\tan ^2\left (\frac {x}{2}\right )+1\right )}\)

input
Int[1/(Cos[x]^(3/2)*Sqrt[3*Cos[x] + Sin[x]]),x]
 
output
(2*(3 + 2*Tan[x/2] - 3*Tan[x/2]^2))/(Sqrt[(3 + 2*Tan[x/2] - 3*Tan[x/2]^2)/ 
(1 + Tan[x/2]^2)]*Sqrt[(1 - Tan[x/2]^2)/(1 + Tan[x/2]^2)]*(1 + Tan[x/2]^2) 
)
 

3.9.58.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 2058
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^ 
(r_.))^(p_), x_Symbol] :> Simp[Simp[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + 
 b*x^n)^(p*q)*(c + d*x^n)^(p*r))]   Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)^(p* 
r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
 

rule 2136
Int[(Px_)*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_ 
), x_Symbol] :> With[{A = Coeff[Px, x, 0], B = Coeff[Px, x, 1], C = Coeff[P 
x, x, 2]}, Simp[(a + c*x^2)^(p + 1)*((d + e*x + f*x^2)^(q + 1)/((-4*a*c)*(a 
*c*e^2 + (c*d - a*f)^2)*(p + 1)))*((A*c - a*C)*(2*a*c*e) + ((-a)*B)*(2*c^2* 
d - c*(2*a*f)) + c*(A*(2*c^2*d - c*(2*a*f)) - B*(-2*a*c*e) + C*(-2*a*(c*d - 
 a*f)))*x), x] + Simp[1/((-4*a*c)*(a*c*e^2 + (c*d - a*f)^2)*(p + 1))   Int[ 
(a + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q*Simp[(-2*A*c - 2*a*C)*((c*d - a*f)^ 
2 - ((-a)*e)*(c*e))*(p + 1) + (2*(A*c*(c*d - a*f) - a*(c*C*d - B*c*e - a*C* 
f)))*(a*f*(p + 1) - c*d*(p + 2)) - e*((A*c - a*C)*(2*a*c*e) + ((-a)*B)*(2*c 
^2*d - c*((Plus[2])*a*f)))*(p + q + 2) - (2*f*((A*c - a*C)*(2*a*c*e) + ((-a 
)*B)*(2*c^2*d + (-c)*((Plus[2])*a*f)))*(p + q + 2) - (2*(A*c*(c*d - a*f) - 
a*(c*C*d - B*c*e - a*C*f)))*((-c)*e*(2*p + q + 4)))*x - c*f*(2*(A*c*(c*d - 
a*f) - a*(c*C*d - B*c*e - a*C*f)))*(2*p + 2*q + 5)*x^2, x], x], x]] /; Free 
Q[{a, c, d, e, f, q}, x] && PolyQ[Px, x, 2] && LtQ[p, -1] && NeQ[a*c*e^2 + 
(c*d - a*f)^2, 0] &&  !( !IntegerQ[p] && ILtQ[q, -1]) &&  !IGtQ[q, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4902
Int[u_, x_Symbol] :> With[{w = Block[{$ShowSteps = False, $StepCounter = Nu 
ll}, Int[SubstFor[1/(1 + FreeFactors[Tan[FunctionOfTrig[u, x]/2], x]^2*x^2) 
, Tan[FunctionOfTrig[u, x]/2]/FreeFactors[Tan[FunctionOfTrig[u, x]/2], x], 
u, x], x]]}, Module[{v = FunctionOfTrig[u, x], d}, Simp[d = FreeFactors[Tan 
[v/2], x]; 2*(d/Coefficient[v, x, 1])   Subst[Int[SubstFor[1/(1 + d^2*x^2), 
 Tan[v/2]/d, u, x], x], x, Tan[v/2]/d], x]] /; CalculusFreeQ[w, x]] /; Inve 
rseFunctionFreeQ[u, x] &&  !FalseQ[FunctionOfTrig[u, x]]
 

rule 7270
Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Simp[a^IntPart[p 
]*((a*v^m*w^n)^FracPart[p]/(v^(m*FracPart[p])*w^(n*FracPart[p])))   Int[u*v 
^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !Free 
Q[v, x] &&  !FreeQ[w, x]
 
3.9.58.4 Maple [A] (verified)

Time = 5.02 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.84

method result size
default \(\frac {2 \sqrt {3 \cos \left (x \right )+\sin \left (x \right )}}{\sqrt {\cos \left (x \right )}}\) \(16\)

input
int(1/cos(x)^(3/2)/(3*cos(x)+sin(x))^(1/2),x,method=_RETURNVERBOSE)
 
output
2*(3*cos(x)+sin(x))^(1/2)/cos(x)^(1/2)
 
3.9.58.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.79 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(x) \sqrt {3 \cos (x)+\sin (x)}} \, dx=\frac {2 \, \sqrt {3 \, \cos \left (x\right ) + \sin \left (x\right )}}{\sqrt {\cos \left (x\right )}} \]

input
integrate(1/cos(x)^(3/2)/(3*cos(x)+sin(x))^(1/2),x, algorithm="fricas")
 
output
2*sqrt(3*cos(x) + sin(x))/sqrt(cos(x))
 
3.9.58.6 Sympy [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(x) \sqrt {3 \cos (x)+\sin (x)}} \, dx=\int \frac {1}{\sqrt {\sin {\left (x \right )} + 3 \cos {\left (x \right )}} \cos ^{\frac {3}{2}}{\left (x \right )}}\, dx \]

input
integrate(1/cos(x)**(3/2)/(3*cos(x)+sin(x))**(1/2),x)
 
output
Integral(1/(sqrt(sin(x) + 3*cos(x))*cos(x)**(3/2)), x)
 
3.9.58.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 145 vs. \(2 (15) = 30\).

Time = 0.34 (sec) , antiderivative size = 145, normalized size of antiderivative = 7.63 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(x) \sqrt {3 \cos (x)+\sin (x)}} \, dx=\frac {2 \, {\left (\frac {2 \, \sin \left (x\right )}{\cos \left (x\right ) + 1} - \frac {6 \, \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} - \frac {2 \, \sin \left (x\right )^{3}}{{\left (\cos \left (x\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (x\right )^{4}}{{\left (\cos \left (x\right ) + 1\right )}^{4}} + 3\right )} {\left (\frac {\sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} + 1\right )}^{2}}{\sqrt {\frac {2 \, \sin \left (x\right )}{\cos \left (x\right ) + 1} - \frac {3 \, \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} + 3} {\left (\frac {\sin \left (x\right )}{\cos \left (x\right ) + 1} + 1\right )}^{\frac {3}{2}} {\left (-\frac {\sin \left (x\right )}{\cos \left (x\right ) + 1} + 1\right )}^{\frac {3}{2}} {\left (\frac {2 \, \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} + \frac {\sin \left (x\right )^{4}}{{\left (\cos \left (x\right ) + 1\right )}^{4}} + 1\right )}} \]

input
integrate(1/cos(x)^(3/2)/(3*cos(x)+sin(x))^(1/2),x, algorithm="maxima")
 
output
2*(2*sin(x)/(cos(x) + 1) - 6*sin(x)^2/(cos(x) + 1)^2 - 2*sin(x)^3/(cos(x) 
+ 1)^3 + 3*sin(x)^4/(cos(x) + 1)^4 + 3)*(sin(x)^2/(cos(x) + 1)^2 + 1)^2/(s 
qrt(2*sin(x)/(cos(x) + 1) - 3*sin(x)^2/(cos(x) + 1)^2 + 3)*(sin(x)/(cos(x) 
 + 1) + 1)^(3/2)*(-sin(x)/(cos(x) + 1) + 1)^(3/2)*(2*sin(x)^2/(cos(x) + 1) 
^2 + sin(x)^4/(cos(x) + 1)^4 + 1))
 
3.9.58.8 Giac [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(x) \sqrt {3 \cos (x)+\sin (x)}} \, dx=\int { \frac {1}{\sqrt {3 \, \cos \left (x\right ) + \sin \left (x\right )} \cos \left (x\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/cos(x)^(3/2)/(3*cos(x)+sin(x))^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(3*cos(x) + sin(x))*cos(x)^(3/2)), x)
 
3.9.58.9 Mupad [B] (verification not implemented)

Time = 26.86 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.79 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(x) \sqrt {3 \cos (x)+\sin (x)}} \, dx=\frac {2\,\sqrt {3\,\cos \left (x\right )+\sin \left (x\right )}}{\sqrt {\cos \left (x\right )}} \]

input
int(1/(cos(x)^(3/2)*(3*cos(x) + sin(x))^(1/2)),x)
 
output
(2*(3*cos(x) + sin(x))^(1/2))/cos(x)^(1/2)