3.1.26 \(\int x^{3/2} \arctan (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}) \, dx\) [26]

3.1.26.1 Optimal result
3.1.26.2 Mathematica [C] (verified)
3.1.26.3 Rubi [A] (verified)
3.1.26.4 Maple [F]
3.1.26.5 Fricas [C] (verification not implemented)
3.1.26.6 Sympy [C] (verification not implemented)
3.1.26.7 Maxima [F]
3.1.26.8 Giac [F]
3.1.26.9 Mupad [F(-1)]

3.1.26.1 Optimal result

Integrand size = 27, antiderivative size = 296 \[ \int x^{3/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \, dx=\frac {4 x^{3/2} \sqrt {d+e x^2}}{25 \sqrt {-e}}+\frac {12 d \sqrt {-e} \sqrt {x} \sqrt {d+e x^2}}{25 e^{3/2} \left (\sqrt {d}+\sqrt {e} x\right )}+\frac {2}{5} x^{5/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {12 d^{5/4} \sqrt {-e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{25 e^{7/4} \sqrt {d+e x^2}}+\frac {6 d^{5/4} \sqrt {-e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right ),\frac {1}{2}\right )}{25 e^{7/4} \sqrt {d+e x^2}} \]

output
2/5*x^(5/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))+4/25*x^(3/2)*(e*x^2+d)^(1 
/2)/(-e)^(1/2)+12/25*d*(-e)^(1/2)*x^(1/2)*(e*x^2+d)^(1/2)/e^(3/2)/(d^(1/2) 
+x*e^(1/2))-12/25*d^(5/4)*(cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))^2)^(1/2) 
/cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))*EllipticE(sin(2*arctan(e^(1/4)*x^( 
1/2)/d^(1/4))),1/2*2^(1/2))*(-e)^(1/2)*(d^(1/2)+x*e^(1/2))*((e*x^2+d)/(d^( 
1/2)+x*e^(1/2))^2)^(1/2)/e^(7/4)/(e*x^2+d)^(1/2)+6/25*d^(5/4)*(cos(2*arcta 
n(e^(1/4)*x^(1/2)/d^(1/4)))^2)^(1/2)/cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)) 
)*EllipticF(sin(2*arctan(e^(1/4)*x^(1/2)/d^(1/4))),1/2*2^(1/2))*(-e)^(1/2) 
*(d^(1/2)+x*e^(1/2))*((e*x^2+d)/(d^(1/2)+x*e^(1/2))^2)^(1/2)/e^(7/4)/(e*x^ 
2+d)^(1/2)
 
3.1.26.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.08 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.40 \[ \int x^{3/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \, dx=\frac {2 x^{3/2} \left (-2 \sqrt {-e} \left (d+e x^2\right )+5 e x \sqrt {d+e x^2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )+2 d \sqrt {-e} \sqrt {1+\frac {e x^2}{d}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {e x^2}{d}\right )\right )}{25 e \sqrt {d+e x^2}} \]

input
Integrate[x^(3/2)*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]],x]
 
output
(2*x^(3/2)*(-2*Sqrt[-e]*(d + e*x^2) + 5*e*x*Sqrt[d + e*x^2]*ArcTan[(Sqrt[- 
e]*x)/Sqrt[d + e*x^2]] + 2*d*Sqrt[-e]*Sqrt[1 + (e*x^2)/d]*Hypergeometric2F 
1[1/2, 3/4, 7/4, -((e*x^2)/d)]))/(25*e*Sqrt[d + e*x^2])
 
3.1.26.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 289, normalized size of antiderivative = 0.98, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {5674, 262, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^{3/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \, dx\)

\(\Big \downarrow \) 5674

\(\displaystyle \frac {2}{5} x^{5/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {2}{5} \sqrt {-e} \int \frac {x^{5/2}}{\sqrt {e x^2+d}}dx\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {2}{5} x^{5/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {2}{5} \sqrt {-e} \left (\frac {2 x^{3/2} \sqrt {d+e x^2}}{5 e}-\frac {3 d \int \frac {\sqrt {x}}{\sqrt {e x^2+d}}dx}{5 e}\right )\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2}{5} x^{5/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {2}{5} \sqrt {-e} \left (\frac {2 x^{3/2} \sqrt {d+e x^2}}{5 e}-\frac {6 d \int \frac {x}{\sqrt {e x^2+d}}d\sqrt {x}}{5 e}\right )\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {2}{5} x^{5/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {2}{5} \sqrt {-e} \left (\frac {2 x^{3/2} \sqrt {d+e x^2}}{5 e}-\frac {6 d \left (\frac {\sqrt {d} \int \frac {1}{\sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}-\frac {\sqrt {d} \int \frac {\sqrt {d}-\sqrt {e} x}{\sqrt {d} \sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}\right )}{5 e}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2}{5} x^{5/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {2}{5} \sqrt {-e} \left (\frac {2 x^{3/2} \sqrt {d+e x^2}}{5 e}-\frac {6 d \left (\frac {\sqrt {d} \int \frac {1}{\sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}-\frac {\int \frac {\sqrt {d}-\sqrt {e} x}{\sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}\right )}{5 e}\right )\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {2}{5} x^{5/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {2}{5} \sqrt {-e} \left (\frac {2 x^{3/2} \sqrt {d+e x^2}}{5 e}-\frac {6 d \left (\frac {\sqrt [4]{d} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right ),\frac {1}{2}\right )}{2 e^{3/4} \sqrt {d+e x^2}}-\frac {\int \frac {\sqrt {d}-\sqrt {e} x}{\sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}\right )}{5 e}\right )\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {2}{5} x^{5/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {2}{5} \sqrt {-e} \left (\frac {2 x^{3/2} \sqrt {d+e x^2}}{5 e}-\frac {6 d \left (\frac {\sqrt [4]{d} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right ),\frac {1}{2}\right )}{2 e^{3/4} \sqrt {d+e x^2}}-\frac {\frac {\sqrt [4]{d} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{\sqrt [4]{e} \sqrt {d+e x^2}}-\frac {\sqrt {x} \sqrt {d+e x^2}}{\sqrt {d}+\sqrt {e} x}}{\sqrt {e}}\right )}{5 e}\right )\)

input
Int[x^(3/2)*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]],x]
 
output
(2*x^(5/2)*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]])/5 - (2*Sqrt[-e]*((2*x^(3/ 
2)*Sqrt[d + e*x^2])/(5*e) - (6*d*(-((-((Sqrt[x]*Sqrt[d + e*x^2])/(Sqrt[d] 
+ Sqrt[e]*x)) + (d^(1/4)*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d] + 
 Sqrt[e]*x)^2]*EllipticE[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(e^(1/ 
4)*Sqrt[d + e*x^2]))/Sqrt[e]) + (d^(1/4)*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e 
*x^2)/(Sqrt[d] + Sqrt[e]*x)^2]*EllipticF[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1/4 
)], 1/2])/(2*e^(3/4)*Sqrt[d + e*x^2])))/(5*e)))/5
 

3.1.26.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 5674
Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_S 
ymbol] :> Simp[(d*x)^(m + 1)*(ArcTan[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1))), x 
] - Simp[c/(d*(m + 1))   Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /; FreeQ 
[{a, b, c, d, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1]
 
3.1.26.4 Maple [F]

\[\int x^{\frac {3}{2}} \arctan \left (\frac {x \sqrt {-e}}{\sqrt {e \,x^{2}+d}}\right )d x\]

input
int(x^(3/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2)),x)
 
output
int(x^(3/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2)),x)
 
3.1.26.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.27 \[ \int x^{3/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \, dx=\frac {2 \, {\left (5 \, e^{2} x^{\frac {5}{2}} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right ) - 2 \, \sqrt {e x^{2} + d} \sqrt {-e} e x^{\frac {3}{2}} - 6 \, d \sqrt {-e} \sqrt {e} {\rm weierstrassZeta}\left (-\frac {4 \, d}{e}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, d}{e}, 0, x\right )\right )\right )}}{25 \, e^{2}} \]

input
integrate(x^(3/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2)),x, algorithm="frica 
s")
 
output
2/25*(5*e^2*x^(5/2)*arctan(sqrt(-e)*x/sqrt(e*x^2 + d)) - 2*sqrt(e*x^2 + d) 
*sqrt(-e)*e*x^(3/2) - 6*d*sqrt(-e)*sqrt(e)*weierstrassZeta(-4*d/e, 0, weie 
rstrassPInverse(-4*d/e, 0, x)))/e^2
 
3.1.26.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 9.88 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.25 \[ \int x^{3/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \, dx=\frac {2 x^{\frac {5}{2}} \operatorname {atan}{\left (\frac {x \sqrt {- e}}{\sqrt {d + e x^{2}}} \right )}}{5} - \frac {x^{\frac {7}{2}} \sqrt {- e} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {e x^{2} e^{i \pi }}{d}} \right )}}{5 \sqrt {d} \Gamma \left (\frac {11}{4}\right )} \]

input
integrate(x**(3/2)*atan(x*(-e)**(1/2)/(e*x**2+d)**(1/2)),x)
 
output
2*x**(5/2)*atan(x*sqrt(-e)/sqrt(d + e*x**2))/5 - x**(7/2)*sqrt(-e)*gamma(7 
/4)*hyper((1/2, 7/4), (11/4,), e*x**2*exp_polar(I*pi)/d)/(5*sqrt(d)*gamma( 
11/4))
 
3.1.26.7 Maxima [F]

\[ \int x^{3/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \, dx=\int { x^{\frac {3}{2}} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right ) \,d x } \]

input
integrate(x^(3/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2)),x, algorithm="maxim 
a")
 
output
2/5*x^(5/2)*arctan2(sqrt(-e)*x, sqrt(e*x^2 + d)) - 2*d*sqrt(-e)*integrate( 
-1/5*x*e^(1/2*log(e*x^2 + d) + 3/2*log(x))/(e^2*x^4 + d*e*x^2 - (e*x^2 + d 
)^2), x)
 
3.1.26.8 Giac [F]

\[ \int x^{3/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \, dx=\int { x^{\frac {3}{2}} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right ) \,d x } \]

input
integrate(x^(3/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2)),x, algorithm="giac" 
)
 
output
integrate(x^(3/2)*arctan(sqrt(-e)*x/sqrt(e*x^2 + d)), x)
 
3.1.26.9 Mupad [F(-1)]

Timed out. \[ \int x^{3/2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \, dx=\int x^{3/2}\,\mathrm {atan}\left (\frac {\sqrt {-e}\,x}{\sqrt {e\,x^2+d}}\right ) \,d x \]

input
int(x^(3/2)*atan(((-e)^(1/2)*x)/(d + e*x^2)^(1/2)),x)
 
output
int(x^(3/2)*atan(((-e)^(1/2)*x)/(d + e*x^2)^(1/2)), x)