3.1.27 \(\int \frac {\arctan (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}})}{\sqrt {x}} \, dx\) [27]

3.1.27.1 Optimal result
3.1.27.2 Mathematica [C] (verified)
3.1.27.3 Rubi [A] (verified)
3.1.27.4 Maple [F]
3.1.27.5 Fricas [C] (verification not implemented)
3.1.27.6 Sympy [C] (verification not implemented)
3.1.27.7 Maxima [F]
3.1.27.8 Giac [F]
3.1.27.9 Mupad [F(-1)]

3.1.27.1 Optimal result

Integrand size = 27, antiderivative size = 260 \[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}} \, dx=-\frac {4 \sqrt {-e} \sqrt {x} \sqrt {d+e x^2}}{\sqrt {e} \left (\sqrt {d}+\sqrt {e} x\right )}+2 \sqrt {x} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )+\frac {4 \sqrt [4]{d} \sqrt {-e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{e^{3/4} \sqrt {d+e x^2}}-\frac {2 \sqrt [4]{d} \sqrt {-e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right ),\frac {1}{2}\right )}{e^{3/4} \sqrt {d+e x^2}} \]

output
2*x^(1/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))-4*(-e)^(1/2)*x^(1/2)*(e*x^2 
+d)^(1/2)/e^(1/2)/(d^(1/2)+x*e^(1/2))+4*d^(1/4)*(cos(2*arctan(e^(1/4)*x^(1 
/2)/d^(1/4)))^2)^(1/2)/cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))*EllipticE(si 
n(2*arctan(e^(1/4)*x^(1/2)/d^(1/4))),1/2*2^(1/2))*(-e)^(1/2)*(d^(1/2)+x*e^ 
(1/2))*((e*x^2+d)/(d^(1/2)+x*e^(1/2))^2)^(1/2)/e^(3/4)/(e*x^2+d)^(1/2)-2*d 
^(1/4)*(cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))^2)^(1/2)/cos(2*arctan(e^(1/ 
4)*x^(1/2)/d^(1/4)))*EllipticF(sin(2*arctan(e^(1/4)*x^(1/2)/d^(1/4))),1/2* 
2^(1/2))*(-e)^(1/2)*(d^(1/2)+x*e^(1/2))*((e*x^2+d)/(d^(1/2)+x*e^(1/2))^2)^ 
(1/2)/e^(3/4)/(e*x^2+d)^(1/2)
 
3.1.27.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.08 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.34 \[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}} \, dx=2 \sqrt {x} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {4 \sqrt {-e} x^{3/2} \sqrt {1+\frac {e x^2}{d}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {e x^2}{d}\right )}{3 \sqrt {d+e x^2}} \]

input
Integrate[ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/Sqrt[x],x]
 
output
2*Sqrt[x]*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]] - (4*Sqrt[-e]*x^(3/2)*Sqrt[ 
1 + (e*x^2)/d]*Hypergeometric2F1[1/2, 3/4, 7/4, -((e*x^2)/d)])/(3*Sqrt[d + 
 e*x^2])
 
3.1.27.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 253, normalized size of antiderivative = 0.97, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {5674, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}} \, dx\)

\(\Big \downarrow \) 5674

\(\displaystyle 2 \sqrt {x} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-2 \sqrt {-e} \int \frac {\sqrt {x}}{\sqrt {e x^2+d}}dx\)

\(\Big \downarrow \) 266

\(\displaystyle 2 \sqrt {x} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-4 \sqrt {-e} \int \frac {x}{\sqrt {e x^2+d}}d\sqrt {x}\)

\(\Big \downarrow \) 834

\(\displaystyle 2 \sqrt {x} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-4 \sqrt {-e} \left (\frac {\sqrt {d} \int \frac {1}{\sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}-\frac {\sqrt {d} \int \frac {\sqrt {d}-\sqrt {e} x}{\sqrt {d} \sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \sqrt {x} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-4 \sqrt {-e} \left (\frac {\sqrt {d} \int \frac {1}{\sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}-\frac {\int \frac {\sqrt {d}-\sqrt {e} x}{\sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}\right )\)

\(\Big \downarrow \) 761

\(\displaystyle 2 \sqrt {x} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-4 \sqrt {-e} \left (\frac {\sqrt [4]{d} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right ),\frac {1}{2}\right )}{2 e^{3/4} \sqrt {d+e x^2}}-\frac {\int \frac {\sqrt {d}-\sqrt {e} x}{\sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}\right )\)

\(\Big \downarrow \) 1510

\(\displaystyle 2 \sqrt {x} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-4 \sqrt {-e} \left (\frac {\sqrt [4]{d} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right ),\frac {1}{2}\right )}{2 e^{3/4} \sqrt {d+e x^2}}-\frac {\frac {\sqrt [4]{d} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{\sqrt [4]{e} \sqrt {d+e x^2}}-\frac {\sqrt {x} \sqrt {d+e x^2}}{\sqrt {d}+\sqrt {e} x}}{\sqrt {e}}\right )\)

input
Int[ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/Sqrt[x],x]
 
output
2*Sqrt[x]*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]] - 4*Sqrt[-e]*(-((-((Sqrt[x] 
*Sqrt[d + e*x^2])/(Sqrt[d] + Sqrt[e]*x)) + (d^(1/4)*(Sqrt[d] + Sqrt[e]*x)* 
Sqrt[(d + e*x^2)/(Sqrt[d] + Sqrt[e]*x)^2]*EllipticE[2*ArcTan[(e^(1/4)*Sqrt 
[x])/d^(1/4)], 1/2])/(e^(1/4)*Sqrt[d + e*x^2]))/Sqrt[e]) + (d^(1/4)*(Sqrt[ 
d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d] + Sqrt[e]*x)^2]*EllipticF[2*ArcT 
an[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(2*e^(3/4)*Sqrt[d + e*x^2]))
 

3.1.27.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 5674
Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_S 
ymbol] :> Simp[(d*x)^(m + 1)*(ArcTan[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1))), x 
] - Simp[c/(d*(m + 1))   Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /; FreeQ 
[{a, b, c, d, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1]
 
3.1.27.4 Maple [F]

\[\int \frac {\arctan \left (\frac {x \sqrt {-e}}{\sqrt {e \,x^{2}+d}}\right )}{\sqrt {x}}d x\]

input
int(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x)
 
output
int(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x)
 
3.1.27.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.21 \[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}} \, dx=\frac {2 \, {\left (e \sqrt {x} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right ) + 2 \, \sqrt {-e} \sqrt {e} {\rm weierstrassZeta}\left (-\frac {4 \, d}{e}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, d}{e}, 0, x\right )\right )\right )}}{e} \]

input
integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x, algorithm="frica 
s")
 
output
2*(e*sqrt(x)*arctan(sqrt(-e)*x/sqrt(e*x^2 + d)) + 2*sqrt(-e)*sqrt(e)*weier 
strassZeta(-4*d/e, 0, weierstrassPInverse(-4*d/e, 0, x)))/e
 
3.1.27.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 9.31 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.27 \[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}} \, dx=2 \sqrt {x} \operatorname {atan}{\left (\frac {x \sqrt {- e}}{\sqrt {d + e x^{2}}} \right )} - \frac {x^{\frac {3}{2}} \sqrt {- e} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {e x^{2} e^{i \pi }}{d}} \right )}}{\sqrt {d} \Gamma \left (\frac {7}{4}\right )} \]

input
integrate(atan(x*(-e)**(1/2)/(e*x**2+d)**(1/2))/x**(1/2),x)
 
output
2*sqrt(x)*atan(x*sqrt(-e)/sqrt(d + e*x**2)) - x**(3/2)*sqrt(-e)*gamma(3/4) 
*hyper((1/2, 3/4), (7/4,), e*x**2*exp_polar(I*pi)/d)/(sqrt(d)*gamma(7/4))
 
3.1.27.7 Maxima [F]

\[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}} \, dx=\int { \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right )}{\sqrt {x}} \,d x } \]

input
integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x, algorithm="maxim 
a")
 
output
-2*d*sqrt(-e)*integrate(sqrt(e*x^2 + d)*x/((e*x^2 + d)*e^(log(e*x^2 + d) + 
 1/2*log(x)) - (e^2*x^4 + d*e*x^2)*sqrt(x)), x) + 2*sqrt(x)*arctan2(sqrt(- 
e)*x, sqrt(e*x^2 + d))
 
3.1.27.8 Giac [F]

\[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}} \, dx=\int { \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right )}{\sqrt {x}} \,d x } \]

input
integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x, algorithm="giac" 
)
 
output
integrate(arctan(sqrt(-e)*x/sqrt(e*x^2 + d))/sqrt(x), x)
 
3.1.27.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}} \, dx=\int \frac {\mathrm {atan}\left (\frac {\sqrt {-e}\,x}{\sqrt {e\,x^2+d}}\right )}{\sqrt {x}} \,d x \]

input
int(atan(((-e)^(1/2)*x)/(d + e*x^2)^(1/2))/x^(1/2),x)
 
output
int(atan(((-e)^(1/2)*x)/(d + e*x^2)^(1/2))/x^(1/2), x)