3.1.33 \(\int \frac {(a+b \arctan (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}))^2}{1-c^2 x^2} \, dx\) [33]

3.1.33.1 Optimal result
3.1.33.2 Mathematica [F]
3.1.33.3 Rubi [A] (verified)
3.1.33.4 Maple [B] (verified)
3.1.33.5 Fricas [F]
3.1.33.6 Sympy [F]
3.1.33.7 Maxima [F]
3.1.33.8 Giac [F]
3.1.33.9 Mupad [F(-1)]

3.1.33.1 Optimal result

Integrand size = 40, antiderivative size = 283 \[ \int \frac {\left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{1-c^2 x^2} \, dx=-\frac {2 \left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2 \text {arctanh}\left (1-\frac {2}{1+\frac {i \sqrt {1-c x}}{\sqrt {1+c x}}}\right )}{c}+\frac {i b \left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right ) \operatorname {PolyLog}\left (2,1-\frac {2}{1+\frac {i \sqrt {1-c x}}{\sqrt {1+c x}}}\right )}{c}-\frac {i b \left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right ) \operatorname {PolyLog}\left (2,-1+\frac {2}{1+\frac {i \sqrt {1-c x}}{\sqrt {1+c x}}}\right )}{c}+\frac {b^2 \operatorname {PolyLog}\left (3,1-\frac {2}{1+\frac {i \sqrt {1-c x}}{\sqrt {1+c x}}}\right )}{2 c}-\frac {b^2 \operatorname {PolyLog}\left (3,-1+\frac {2}{1+\frac {i \sqrt {1-c x}}{\sqrt {1+c x}}}\right )}{2 c} \]

output
2*(a+b*arctan((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2*arctanh(-1+2/(1+I*(-c*x+1)^ 
(1/2)/(c*x+1)^(1/2)))/c+I*b*(a+b*arctan((-c*x+1)^(1/2)/(c*x+1)^(1/2)))*pol 
ylog(2,1-2/(1+I*(-c*x+1)^(1/2)/(c*x+1)^(1/2)))/c-I*b*(a+b*arctan((-c*x+1)^ 
(1/2)/(c*x+1)^(1/2)))*polylog(2,-1+2/(1+I*(-c*x+1)^(1/2)/(c*x+1)^(1/2)))/c 
+1/2*b^2*polylog(3,1-2/(1+I*(-c*x+1)^(1/2)/(c*x+1)^(1/2)))/c-1/2*b^2*polyl 
og(3,-1+2/(1+I*(-c*x+1)^(1/2)/(c*x+1)^(1/2)))/c
 
3.1.33.2 Mathematica [F]

\[ \int \frac {\left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{1-c^2 x^2} \, dx=\int \frac {\left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{1-c^2 x^2} \, dx \]

input
Integrate[(a + b*ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2/(1 - c^2*x^2),x]
 
output
Integrate[(a + b*ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2/(1 - c^2*x^2), x]
 
3.1.33.3 Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 285, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {7232, 5357, 5523, 5529, 7164}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^2}{1-c^2 x^2} \, dx\)

\(\Big \downarrow \) 7232

\(\displaystyle -\frac {\int \frac {\sqrt {c x+1} \left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^2}{\sqrt {1-c x}}d\frac {\sqrt {1-c x}}{\sqrt {c x+1}}}{c}\)

\(\Big \downarrow \) 5357

\(\displaystyle -\frac {2 \text {arctanh}\left (1-\frac {2}{1+\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}}\right ) \left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^2-4 b \int \frac {\left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right ) \text {arctanh}\left (1-\frac {2}{\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}+1}\right )}{\frac {1-c x}{c x+1}+1}d\frac {\sqrt {1-c x}}{\sqrt {c x+1}}}{c}\)

\(\Big \downarrow \) 5523

\(\displaystyle -\frac {2 \text {arctanh}\left (1-\frac {2}{1+\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}}\right ) \left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^2-4 b \left (\frac {1}{2} \int \frac {\left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right ) \log \left (2-\frac {2}{\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}+1}\right )}{\frac {1-c x}{c x+1}+1}d\frac {\sqrt {1-c x}}{\sqrt {c x+1}}-\frac {1}{2} \int \frac {\left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right ) \log \left (\frac {2}{\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}+1}\right )}{\frac {1-c x}{c x+1}+1}d\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )}{c}\)

\(\Big \downarrow \) 5529

\(\displaystyle -\frac {2 \text {arctanh}\left (1-\frac {2}{1+\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}}\right ) \left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^2-4 b \left (\frac {1}{2} \left (\frac {1}{2} i \operatorname {PolyLog}\left (2,1-\frac {2}{\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}+1}\right ) \left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )-\frac {1}{2} i b \int \frac {\operatorname {PolyLog}\left (2,1-\frac {2}{\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}+1}\right )}{\frac {1-c x}{c x+1}+1}d\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )+\frac {1}{2} \left (\frac {1}{2} i b \int \frac {\operatorname {PolyLog}\left (2,\frac {2}{\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}+1}-1\right )}{\frac {1-c x}{c x+1}+1}d\frac {\sqrt {1-c x}}{\sqrt {c x+1}}-\frac {1}{2} i \operatorname {PolyLog}\left (2,\frac {2}{\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}+1}-1\right ) \left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )\right )\right )}{c}\)

\(\Big \downarrow \) 7164

\(\displaystyle -\frac {2 \text {arctanh}\left (1-\frac {2}{1+\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}}\right ) \left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^2-4 b \left (\frac {1}{2} \left (\frac {1}{2} i \operatorname {PolyLog}\left (2,1-\frac {2}{\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}+1}\right ) \left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )+\frac {1}{4} b \operatorname {PolyLog}\left (3,1-\frac {2}{\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}+1}\right )\right )+\frac {1}{2} \left (-\frac {1}{2} i \operatorname {PolyLog}\left (2,\frac {2}{\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}+1}-1\right ) \left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )-\frac {1}{4} b \operatorname {PolyLog}\left (3,\frac {2}{\frac {i \sqrt {1-c x}}{\sqrt {c x+1}}+1}-1\right )\right )\right )}{c}\)

input
Int[(a + b*ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2/(1 - c^2*x^2),x]
 
output
-((2*(a + b*ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2*ArcTanh[1 - 2/(1 + (I*S 
qrt[1 - c*x])/Sqrt[1 + c*x])] - 4*b*(((I/2)*(a + b*ArcTan[Sqrt[1 - c*x]/Sq 
rt[1 + c*x]])*PolyLog[2, 1 - 2/(1 + (I*Sqrt[1 - c*x])/Sqrt[1 + c*x])] + (b 
*PolyLog[3, 1 - 2/(1 + (I*Sqrt[1 - c*x])/Sqrt[1 + c*x])])/4)/2 + ((-1/2*I) 
*(a + b*ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]])*PolyLog[2, -1 + 2/(1 + (I*Sqr 
t[1 - c*x])/Sqrt[1 + c*x])] - (b*PolyLog[3, -1 + 2/(1 + (I*Sqrt[1 - c*x])/ 
Sqrt[1 + c*x])])/4)/2))/c)
 

3.1.33.3.1 Defintions of rubi rules used

rule 5357
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)/(x_), x_Symbol] :> Simp[2*(a + 
b*ArcTan[c*x])^p*ArcTanh[1 - 2/(1 + I*c*x)], x] - Simp[2*b*c*p   Int[(a + b 
*ArcTan[c*x])^(p - 1)*(ArcTanh[1 - 2/(1 + I*c*x)]/(1 + c^2*x^2)), x], x] /; 
 FreeQ[{a, b, c}, x] && IGtQ[p, 1]
 

rule 5523
Int[(ArcTanh[u_]*((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x 
_)^2), x_Symbol] :> Simp[1/2   Int[Log[1 + u]*((a + b*ArcTan[c*x])^p/(d + e 
*x^2)), x], x] - Simp[1/2   Int[Log[1 - u]*((a + b*ArcTan[c*x])^p/(d + e*x^ 
2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && 
EqQ[u^2 - (1 - 2*(I/(I - c*x)))^2, 0]
 

rule 5529
Int[(Log[u_]*((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2 
), x_Symbol] :> Simp[(-I)*(a + b*ArcTan[c*x])^p*(PolyLog[2, 1 - u]/(2*c*d)) 
, x] + Simp[b*p*(I/2)   Int[(a + b*ArcTan[c*x])^(p - 1)*(PolyLog[2, 1 - u]/ 
(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c 
^2*d] && EqQ[(1 - u)^2 - (1 - 2*(I/(I - c*x)))^2, 0]
 

rule 7164
Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, 
x]}, Simp[w*PolyLog[n + 1, v], x] /;  !FalseQ[w]] /; FreeQ[n, x]
 

rule 7232
Int[((a_.) + (b_.)*(F_)[((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.) 
*(x_)]])^(n_.)/((A_.) + (C_.)*(x_)^2), x_Symbol] :> Simp[2*e*(g/(C*(e*f - d 
*g)))   Subst[Int[(a + b*F[c*x])^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g*x]], 
x] /; FreeQ[{a, b, c, d, e, f, g, A, C, F}, x] && EqQ[C*d*f - A*e*g, 0] && 
EqQ[e*f + d*g, 0] && IGtQ[n, 0]
 
3.1.33.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 915 vs. \(2 (240 ) = 480\).

Time = 0.48 (sec) , antiderivative size = 916, normalized size of antiderivative = 3.24

method result size
default \(-\frac {a^{2} \ln \left (c x -1\right )}{2 c}+\frac {a^{2} \ln \left (c x +1\right )}{2 c}-b^{2} \left (\frac {\arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2} \ln \left (1-\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}-\frac {2 i \arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \operatorname {polylog}\left (2, \frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}+\frac {2 \operatorname {polylog}\left (3, \frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}-\frac {\arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2} \ln \left (1+\frac {\left (1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2}}{\frac {-c x +1}{c x +1}+1}\right )}{c}+\frac {i \arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \operatorname {polylog}\left (2, -\frac {\left (1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2}}{\frac {-c x +1}{c x +1}+1}\right )}{c}-\frac {\operatorname {polylog}\left (3, -\frac {\left (1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2}}{\frac {-c x +1}{c x +1}+1}\right )}{2 c}+\frac {\arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2} \ln \left (1+\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}-\frac {2 i \arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \operatorname {polylog}\left (2, -\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}+\frac {2 \operatorname {polylog}\left (3, -\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}\right )-2 a b \left (\frac {\arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \ln \left (1-\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}-\frac {i \operatorname {polylog}\left (2, \frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}-\frac {\arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \ln \left (1+\frac {\left (1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2}}{\frac {-c x +1}{c x +1}+1}\right )}{c}+\frac {i \operatorname {polylog}\left (2, -\frac {\left (1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2}}{\frac {-c x +1}{c x +1}+1}\right )}{2 c}+\frac {\arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \ln \left (1+\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}-\frac {i \operatorname {polylog}\left (2, -\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}\right )\) \(916\)
parts \(-\frac {a^{2} \ln \left (c x -1\right )}{2 c}+\frac {a^{2} \ln \left (c x +1\right )}{2 c}-b^{2} \left (\frac {\arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2} \ln \left (1-\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}-\frac {2 i \arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \operatorname {polylog}\left (2, \frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}+\frac {2 \operatorname {polylog}\left (3, \frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}-\frac {\arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2} \ln \left (1+\frac {\left (1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2}}{\frac {-c x +1}{c x +1}+1}\right )}{c}+\frac {i \arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \operatorname {polylog}\left (2, -\frac {\left (1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2}}{\frac {-c x +1}{c x +1}+1}\right )}{c}-\frac {\operatorname {polylog}\left (3, -\frac {\left (1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2}}{\frac {-c x +1}{c x +1}+1}\right )}{2 c}+\frac {\arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2} \ln \left (1+\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}-\frac {2 i \arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \operatorname {polylog}\left (2, -\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}+\frac {2 \operatorname {polylog}\left (3, -\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}\right )-2 a b \left (\frac {\arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \ln \left (1-\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}-\frac {i \operatorname {polylog}\left (2, \frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}-\frac {\arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \ln \left (1+\frac {\left (1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2}}{\frac {-c x +1}{c x +1}+1}\right )}{c}+\frac {i \operatorname {polylog}\left (2, -\frac {\left (1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2}}{\frac {-c x +1}{c x +1}+1}\right )}{2 c}+\frac {\arctan \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \ln \left (1+\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}-\frac {i \operatorname {polylog}\left (2, -\frac {1+\frac {i \sqrt {-c x +1}}{\sqrt {c x +1}}}{\sqrt {\frac {-c x +1}{c x +1}+1}}\right )}{c}\right )\) \(916\)

input
int((a+b*arctan((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/(-c^2*x^2+1),x,method=_RE 
TURNVERBOSE)
 
output
-1/2*a^2/c*ln(c*x-1)+1/2*a^2/c*ln(c*x+1)-b^2*(1/c*arctan((-c*x+1)^(1/2)/(c 
*x+1)^(1/2))^2*ln(1-(1+I*(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1 
)^(1/2))-2*I/c*arctan((-c*x+1)^(1/2)/(c*x+1)^(1/2))*polylog(2,(1+I*(-c*x+1 
)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1)^(1/2))+2/c*polylog(3,(1+I*(-c* 
x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1)^(1/2))-1/c*arctan((-c*x+1)^ 
(1/2)/(c*x+1)^(1/2))^2*ln(1+(1+I*(-c*x+1)^(1/2)/(c*x+1)^(1/2))^2/((-c*x+1) 
/(c*x+1)+1))+I/c*arctan((-c*x+1)^(1/2)/(c*x+1)^(1/2))*polylog(2,-(1+I*(-c* 
x+1)^(1/2)/(c*x+1)^(1/2))^2/((-c*x+1)/(c*x+1)+1))-1/2/c*polylog(3,-(1+I*(- 
c*x+1)^(1/2)/(c*x+1)^(1/2))^2/((-c*x+1)/(c*x+1)+1))+1/c*arctan((-c*x+1)^(1 
/2)/(c*x+1)^(1/2))^2*ln(1+(1+I*(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c* 
x+1)+1)^(1/2))-2*I/c*arctan((-c*x+1)^(1/2)/(c*x+1)^(1/2))*polylog(2,-(1+I* 
(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1)^(1/2))+2/c*polylog(3,-( 
1+I*(-c*x+1)^(1/2)/(c*x+1)^(1/2))/((-c*x+1)/(c*x+1)+1)^(1/2)))-2*a*b*(1/c* 
arctan((-c*x+1)^(1/2)/(c*x+1)^(1/2))*ln(1-(1+I*(-c*x+1)^(1/2)/(c*x+1)^(1/2 
))/((-c*x+1)/(c*x+1)+1)^(1/2))-I/c*polylog(2,(1+I*(-c*x+1)^(1/2)/(c*x+1)^( 
1/2))/((-c*x+1)/(c*x+1)+1)^(1/2))-1/c*arctan((-c*x+1)^(1/2)/(c*x+1)^(1/2)) 
*ln(1+(1+I*(-c*x+1)^(1/2)/(c*x+1)^(1/2))^2/((-c*x+1)/(c*x+1)+1))+1/2*I/c*p 
olylog(2,-(1+I*(-c*x+1)^(1/2)/(c*x+1)^(1/2))^2/((-c*x+1)/(c*x+1)+1))+1/c*a 
rctan((-c*x+1)^(1/2)/(c*x+1)^(1/2))*ln(1+(1+I*(-c*x+1)^(1/2)/(c*x+1)^(1/2) 
)/((-c*x+1)/(c*x+1)+1)^(1/2))-I/c*polylog(2,-(1+I*(-c*x+1)^(1/2)/(c*x+1...
 
3.1.33.5 Fricas [F]

\[ \int \frac {\left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{1-c^2 x^2} \, dx=\int { -\frac {{\left (b \arctan \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right ) + a\right )}^{2}}{c^{2} x^{2} - 1} \,d x } \]

input
integrate((a+b*arctan((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/(-c^2*x^2+1),x, alg 
orithm="fricas")
 
output
integral(-(b^2*arctan(sqrt(-c*x + 1)/sqrt(c*x + 1))^2 + 2*a*b*arctan(sqrt( 
-c*x + 1)/sqrt(c*x + 1)) + a^2)/(c^2*x^2 - 1), x)
 
3.1.33.6 Sympy [F]

\[ \int \frac {\left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{1-c^2 x^2} \, dx=- \int \frac {a^{2}}{c^{2} x^{2} - 1}\, dx - \int \frac {b^{2} \operatorname {atan}^{2}{\left (\frac {\sqrt {- c x + 1}}{\sqrt {c x + 1}} \right )}}{c^{2} x^{2} - 1}\, dx - \int \frac {2 a b \operatorname {atan}{\left (\frac {\sqrt {- c x + 1}}{\sqrt {c x + 1}} \right )}}{c^{2} x^{2} - 1}\, dx \]

input
integrate((a+b*atan((-c*x+1)**(1/2)/(c*x+1)**(1/2)))**2/(-c**2*x**2+1),x)
 
output
-Integral(a**2/(c**2*x**2 - 1), x) - Integral(b**2*atan(sqrt(-c*x + 1)/sqr 
t(c*x + 1))**2/(c**2*x**2 - 1), x) - Integral(2*a*b*atan(sqrt(-c*x + 1)/sq 
rt(c*x + 1))/(c**2*x**2 - 1), x)
 
3.1.33.7 Maxima [F]

\[ \int \frac {\left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{1-c^2 x^2} \, dx=\int { -\frac {{\left (b \arctan \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right ) + a\right )}^{2}}{c^{2} x^{2} - 1} \,d x } \]

input
integrate((a+b*arctan((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/(-c^2*x^2+1),x, alg 
orithm="maxima")
 
output
1/2*a^2*(log(c*x + 1)/c - log(c*x - 1)/c) - 1/32*(b^2*log(2)^2*log(c*x + 1 
) - b^2*log(2)^2*log(-c*x + 1) - 4*(b^2*log(c*x + 1) - b^2*log(-c*x + 1))* 
arctan2(sqrt(-c*x + 1), sqrt(c*x + 1))^2 - (b^2*(log(c*x + 1)/c - log(c*x 
- 1)/c)*log(2)^2 - 64*b^2*integrate(1/16*sqrt(c*x + 1)*sqrt(-c*x + 1)*arct 
an(sqrt(-c*x + 1)/sqrt(c*x + 1))*log(c*x + 1)/(c^2*x^2 - 1), x) + 64*b^2*i 
ntegrate(1/16*sqrt(c*x + 1)*sqrt(-c*x + 1)*arctan(sqrt(-c*x + 1)/sqrt(c*x 
+ 1))*log(-c*x + 1)/(c^2*x^2 - 1), x) - 384*b^2*integrate(1/16*arctan(sqrt 
(-c*x + 1)/sqrt(c*x + 1))^2/(c^2*x^2 - 1), x) - 1024*a*b*integrate(1/16*ar 
ctan(sqrt(-c*x + 1)/sqrt(c*x + 1))/(c^2*x^2 - 1), x))*c)/c
 
3.1.33.8 Giac [F]

\[ \int \frac {\left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{1-c^2 x^2} \, dx=\int { -\frac {{\left (b \arctan \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right ) + a\right )}^{2}}{c^{2} x^{2} - 1} \,d x } \]

input
integrate((a+b*arctan((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/(-c^2*x^2+1),x, alg 
orithm="giac")
 
output
integrate(-(b*arctan(sqrt(-c*x + 1)/sqrt(c*x + 1)) + a)^2/(c^2*x^2 - 1), x 
)
 
3.1.33.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b \arctan \left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{1-c^2 x^2} \, dx=\int -\frac {{\left (a+b\,\mathrm {atan}\left (\frac {\sqrt {1-c\,x}}{\sqrt {c\,x+1}}\right )\right )}^2}{c^2\,x^2-1} \,d x \]

input
int(-(a + b*atan((1 - c*x)^(1/2)/(c*x + 1)^(1/2)))^2/(c^2*x^2 - 1),x)
 
output
int(-(a + b*atan((1 - c*x)^(1/2)/(c*x + 1)^(1/2)))^2/(c^2*x^2 - 1), x)