3.1.49 \(\int \frac {1}{(b \coth ^4(c+d x))^{4/3}} \, dx\) [49]

3.1.49.1 Optimal result
3.1.49.2 Mathematica [A] (verified)
3.1.49.3 Rubi [A] (verified)
3.1.49.4 Maple [F]
3.1.49.5 Fricas [B] (verification not implemented)
3.1.49.6 Sympy [F]
3.1.49.7 Maxima [F]
3.1.49.8 Giac [F]
3.1.49.9 Mupad [F(-1)]

3.1.49.1 Optimal result

Integrand size = 14, antiderivative size = 369 \[ \int \frac {1}{\left (b \coth ^4(c+d x)\right )^{4/3}} \, dx=-\frac {3 \coth (c+d x)}{b d \sqrt [3]{b \coth ^4(c+d x)}}+\frac {\sqrt {3} \arctan \left (\frac {1-2 \sqrt [3]{\coth (c+d x)}}{\sqrt {3}}\right ) \coth ^{\frac {4}{3}}(c+d x)}{2 b d \sqrt [3]{b \coth ^4(c+d x)}}-\frac {\sqrt {3} \arctan \left (\frac {1+2 \sqrt [3]{\coth (c+d x)}}{\sqrt {3}}\right ) \coth ^{\frac {4}{3}}(c+d x)}{2 b d \sqrt [3]{b \coth ^4(c+d x)}}+\frac {\text {arctanh}\left (\sqrt [3]{\coth (c+d x)}\right ) \coth ^{\frac {4}{3}}(c+d x)}{b d \sqrt [3]{b \coth ^4(c+d x)}}-\frac {\coth ^{\frac {4}{3}}(c+d x) \log \left (1-\sqrt [3]{\coth (c+d x)}+\coth ^{\frac {2}{3}}(c+d x)\right )}{4 b d \sqrt [3]{b \coth ^4(c+d x)}}+\frac {\coth ^{\frac {4}{3}}(c+d x) \log \left (1+\sqrt [3]{\coth (c+d x)}+\coth ^{\frac {2}{3}}(c+d x)\right )}{4 b d \sqrt [3]{b \coth ^4(c+d x)}}-\frac {3 \tanh (c+d x)}{7 b d \sqrt [3]{b \coth ^4(c+d x)}}-\frac {3 \tanh ^3(c+d x)}{13 b d \sqrt [3]{b \coth ^4(c+d x)}} \]

output
-3*coth(d*x+c)/b/d/(b*coth(d*x+c)^4)^(1/3)+arctanh(coth(d*x+c)^(1/3))*coth 
(d*x+c)^(4/3)/b/d/(b*coth(d*x+c)^4)^(1/3)-1/4*coth(d*x+c)^(4/3)*ln(1-coth( 
d*x+c)^(1/3)+coth(d*x+c)^(2/3))/b/d/(b*coth(d*x+c)^4)^(1/3)+1/4*coth(d*x+c 
)^(4/3)*ln(1+coth(d*x+c)^(1/3)+coth(d*x+c)^(2/3))/b/d/(b*coth(d*x+c)^4)^(1 
/3)+1/2*arctan(1/3*(1-2*coth(d*x+c)^(1/3))*3^(1/2))*coth(d*x+c)^(4/3)*3^(1 
/2)/b/d/(b*coth(d*x+c)^4)^(1/3)-1/2*arctan(1/3*(1+2*coth(d*x+c)^(1/3))*3^( 
1/2))*coth(d*x+c)^(4/3)*3^(1/2)/b/d/(b*coth(d*x+c)^4)^(1/3)-3/7*tanh(d*x+c 
)/b/d/(b*coth(d*x+c)^4)^(1/3)-3/13*tanh(d*x+c)^3/b/d/(b*coth(d*x+c)^4)^(1/ 
3)
 
3.1.49.2 Mathematica [A] (verified)

Time = 1.75 (sec) , antiderivative size = 274, normalized size of antiderivative = 0.74 \[ \int \frac {1}{\left (b \coth ^4(c+d x)\right )^{4/3}} \, dx=\frac {-91 \coth (c+d x) \left (6+\sqrt [6]{\coth ^2(c+d x)} \log \left (1-\sqrt [6]{\coth ^2(c+d x)}\right )-\sqrt [6]{\coth ^2(c+d x)} \log \left (1+\sqrt [6]{\coth ^2(c+d x)}\right )+\sqrt [3]{-1} \sqrt [6]{\coth ^2(c+d x)} \log \left (1-\sqrt [3]{-1} \sqrt [6]{\coth ^2(c+d x)}\right )-\sqrt [3]{-1} \sqrt [6]{\coth ^2(c+d x)} \log \left (1+\sqrt [3]{-1} \sqrt [6]{\coth ^2(c+d x)}\right )+(-1)^{2/3} \sqrt [6]{\coth ^2(c+d x)} \log \left (1-(-1)^{2/3} \sqrt [6]{\coth ^2(c+d x)}\right )-(-1)^{2/3} \sqrt [6]{\coth ^2(c+d x)} \log \left (1+(-1)^{2/3} \sqrt [6]{\coth ^2(c+d x)}\right )\right )-6 \tanh (c+d x) \left (13+7 \tanh ^2(c+d x)\right )}{182 b d \sqrt [3]{b \coth ^4(c+d x)}} \]

input
Integrate[(b*Coth[c + d*x]^4)^(-4/3),x]
 
output
(-91*Coth[c + d*x]*(6 + (Coth[c + d*x]^2)^(1/6)*Log[1 - (Coth[c + d*x]^2)^ 
(1/6)] - (Coth[c + d*x]^2)^(1/6)*Log[1 + (Coth[c + d*x]^2)^(1/6)] + (-1)^( 
1/3)*(Coth[c + d*x]^2)^(1/6)*Log[1 - (-1)^(1/3)*(Coth[c + d*x]^2)^(1/6)] - 
 (-1)^(1/3)*(Coth[c + d*x]^2)^(1/6)*Log[1 + (-1)^(1/3)*(Coth[c + d*x]^2)^( 
1/6)] + (-1)^(2/3)*(Coth[c + d*x]^2)^(1/6)*Log[1 - (-1)^(2/3)*(Coth[c + d* 
x]^2)^(1/6)] - (-1)^(2/3)*(Coth[c + d*x]^2)^(1/6)*Log[1 + (-1)^(2/3)*(Coth 
[c + d*x]^2)^(1/6)]) - 6*Tanh[c + d*x]*(13 + 7*Tanh[c + d*x]^2))/(182*b*d* 
(b*Coth[c + d*x]^4)^(1/3))
 
3.1.49.3 Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 221, normalized size of antiderivative = 0.60, number of steps used = 21, number of rules used = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.429, Rules used = {3042, 4141, 3042, 3955, 3042, 3955, 3042, 3955, 3042, 3957, 25, 266, 825, 27, 219, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (b \coth ^4(c+d x)\right )^{4/3}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (b \tan \left (i c+i d x+\frac {\pi }{2}\right )^4\right )^{4/3}}dx\)

\(\Big \downarrow \) 4141

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \int \frac {1}{\coth ^{\frac {16}{3}}(c+d x)}dx}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \int \frac {1}{\left (-i \tan \left (i c+i d x+\frac {\pi }{2}\right )\right )^{16/3}}dx}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 3955

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\int \frac {1}{\coth ^{\frac {10}{3}}(c+d x)}dx-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}+\int \frac {1}{\left (-i \tan \left (i c+i d x+\frac {\pi }{2}\right )\right )^{10/3}}dx\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 3955

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\int \frac {1}{\coth ^{\frac {4}{3}}(c+d x)}dx-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\int \frac {1}{\left (-i \tan \left (i c+i d x+\frac {\pi }{2}\right )\right )^{4/3}}dx-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 3955

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\int \coth ^{\frac {2}{3}}(c+d x)dx-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\int \left (-i \tan \left (i c+i d x+\frac {\pi }{2}\right )\right )^{2/3}dx-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (-\frac {\int -\frac {\coth ^{\frac {2}{3}}(c+d x)}{1-\coth ^2(c+d x)}d\coth (c+d x)}{d}-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\frac {\int \frac {\coth ^{\frac {2}{3}}(c+d x)}{1-\coth ^2(c+d x)}d\coth (c+d x)}{d}-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\frac {3 \int \frac {\coth ^{\frac {4}{3}}(c+d x)}{1-\coth ^2(c+d x)}d\sqrt [3]{\coth (c+d x)}}{d}-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 825

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\frac {3 \left (\frac {1}{3} \int \frac {1}{1-\coth ^{\frac {2}{3}}(c+d x)}d\sqrt [3]{\coth (c+d x)}+\frac {1}{3} \int -\frac {\sqrt [3]{\coth (c+d x)}+1}{2 \left (\coth ^{\frac {2}{3}}(c+d x)-\sqrt [3]{\coth (c+d x)}+1\right )}d\sqrt [3]{\coth (c+d x)}+\frac {1}{3} \int -\frac {1-\sqrt [3]{\coth (c+d x)}}{2 \left (\coth ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\coth (c+d x)}+1\right )}d\sqrt [3]{\coth (c+d x)}\right )}{d}-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\frac {3 \left (\frac {1}{3} \int \frac {1}{1-\coth ^{\frac {2}{3}}(c+d x)}d\sqrt [3]{\coth (c+d x)}-\frac {1}{6} \int \frac {\sqrt [3]{\coth (c+d x)}+1}{\coth ^{\frac {2}{3}}(c+d x)-\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}-\frac {1}{6} \int \frac {1-\sqrt [3]{\coth (c+d x)}}{\coth ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}\right )}{d}-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\frac {3 \left (-\frac {1}{6} \int \frac {\sqrt [3]{\coth (c+d x)}+1}{\coth ^{\frac {2}{3}}(c+d x)-\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}-\frac {1}{6} \int \frac {1-\sqrt [3]{\coth (c+d x)}}{\coth ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}+\frac {1}{3} \text {arctanh}\left (\sqrt [3]{\coth (c+d x)}\right )\right )}{d}-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\frac {3 \left (\frac {1}{6} \left (-\frac {3}{2} \int \frac {1}{\coth ^{\frac {2}{3}}(c+d x)-\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}-\frac {1}{2} \int -\frac {1-2 \sqrt [3]{\coth (c+d x)}}{\coth ^{\frac {2}{3}}(c+d x)-\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}\right )+\frac {1}{6} \left (\frac {1}{2} \int \frac {2 \sqrt [3]{\coth (c+d x)}+1}{\coth ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}-\frac {3}{2} \int \frac {1}{\coth ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}\right )+\frac {1}{3} \text {arctanh}\left (\sqrt [3]{\coth (c+d x)}\right )\right )}{d}-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\frac {3 \left (\frac {1}{6} \left (\frac {1}{2} \int \frac {1-2 \sqrt [3]{\coth (c+d x)}}{\coth ^{\frac {2}{3}}(c+d x)-\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}-\frac {3}{2} \int \frac {1}{\coth ^{\frac {2}{3}}(c+d x)-\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}\right )+\frac {1}{6} \left (\frac {1}{2} \int \frac {2 \sqrt [3]{\coth (c+d x)}+1}{\coth ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}-\frac {3}{2} \int \frac {1}{\coth ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}\right )+\frac {1}{3} \text {arctanh}\left (\sqrt [3]{\coth (c+d x)}\right )\right )}{d}-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\frac {3 \left (\frac {1}{6} \left (3 \int \frac {1}{-\coth ^{\frac {2}{3}}(c+d x)-3}d\left (2 \sqrt [3]{\coth (c+d x)}-1\right )+\frac {1}{2} \int \frac {1-2 \sqrt [3]{\coth (c+d x)}}{\coth ^{\frac {2}{3}}(c+d x)-\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}\right )+\frac {1}{6} \left (3 \int \frac {1}{-\coth ^{\frac {2}{3}}(c+d x)-3}d\left (2 \sqrt [3]{\coth (c+d x)}+1\right )+\frac {1}{2} \int \frac {2 \sqrt [3]{\coth (c+d x)}+1}{\coth ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}\right )+\frac {1}{3} \text {arctanh}\left (\sqrt [3]{\coth (c+d x)}\right )\right )}{d}-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\frac {3 \left (\frac {1}{6} \left (\frac {1}{2} \int \frac {1-2 \sqrt [3]{\coth (c+d x)}}{\coth ^{\frac {2}{3}}(c+d x)-\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}-\sqrt {3} \arctan \left (\frac {2 \sqrt [3]{\coth (c+d x)}-1}{\sqrt {3}}\right )\right )+\frac {1}{6} \left (\frac {1}{2} \int \frac {2 \sqrt [3]{\coth (c+d x)}+1}{\coth ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\coth (c+d x)}+1}d\sqrt [3]{\coth (c+d x)}-\sqrt {3} \arctan \left (\frac {2 \sqrt [3]{\coth (c+d x)}+1}{\sqrt {3}}\right )\right )+\frac {1}{3} \text {arctanh}\left (\sqrt [3]{\coth (c+d x)}\right )\right )}{d}-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\coth ^{\frac {4}{3}}(c+d x) \left (\frac {3 \left (\frac {1}{6} \left (-\sqrt {3} \arctan \left (\frac {2 \sqrt [3]{\coth (c+d x)}-1}{\sqrt {3}}\right )-\frac {1}{2} \log \left (\coth ^{\frac {2}{3}}(c+d x)-\sqrt [3]{\coth (c+d x)}+1\right )\right )+\frac {1}{6} \left (\frac {1}{2} \log \left (\coth ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\coth (c+d x)}+1\right )-\sqrt {3} \arctan \left (\frac {2 \sqrt [3]{\coth (c+d x)}+1}{\sqrt {3}}\right )\right )+\frac {1}{3} \text {arctanh}\left (\sqrt [3]{\coth (c+d x)}\right )\right )}{d}-\frac {3}{7 d \coth ^{\frac {7}{3}}(c+d x)}-\frac {3}{13 d \coth ^{\frac {13}{3}}(c+d x)}-\frac {3}{d \sqrt [3]{\coth (c+d x)}}\right )}{b \sqrt [3]{b \coth ^4(c+d x)}}\)

input
Int[(b*Coth[c + d*x]^4)^(-4/3),x]
 
output
(Coth[c + d*x]^(4/3)*(-3/(13*d*Coth[c + d*x]^(13/3)) - 3/(7*d*Coth[c + d*x 
]^(7/3)) - 3/(d*Coth[c + d*x]^(1/3)) + (3*(ArcTanh[Coth[c + d*x]^(1/3)]/3 
+ (-(Sqrt[3]*ArcTan[(-1 + 2*Coth[c + d*x]^(1/3))/Sqrt[3]]) - Log[1 - Coth[ 
c + d*x]^(1/3) + Coth[c + d*x]^(2/3)]/2)/6 + (-(Sqrt[3]*ArcTan[(1 + 2*Coth 
[c + d*x]^(1/3))/Sqrt[3]]) + Log[1 + Coth[c + d*x]^(1/3) + Coth[c + d*x]^( 
2/3)]/2)/6))/d))/(b*(b*Coth[c + d*x]^4)^(1/3))
 

3.1.49.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 825
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator 
[Rt[-a/b, n]], s = Denominator[Rt[-a/b, n]], k, u}, Simp[u = Int[(r*Cos[2*k 
*m*(Pi/n)] - s*Cos[2*k*(m + 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[2*k*(Pi/n)]*x + 
s^2*x^2), x] + Int[(r*Cos[2*k*m*(Pi/n)] + s*Cos[2*k*(m + 1)*(Pi/n)]*x)/(r^2 
 + 2*r*s*Cos[2*k*(Pi/n)]*x + s^2*x^2), x]; 2*(r^(m + 2)/(a*n*s^m))   Int[1/ 
(r^2 - s^2*x^2), x] + 2*(r^(m + 1)/(a*n*s^m))   Sum[u, {k, 1, (n - 2)/4}], 
x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && IGtQ[m, 0] && LtQ[m, n - 1 
] && NegQ[a/b]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3955
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x] 
)^(n + 1)/(b*d*(n + 1)), x] - Simp[1/b^2   Int[(b*Tan[c + d*x])^(n + 2), x] 
, x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 

rule 4141
Int[(u_.)*((b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff 
= FreeFactors[Tan[e + f*x], x]}, Simp[(b*ff^n)^IntPart[p]*((b*Tan[e + f*x]^ 
n)^FracPart[p]/(Tan[e + f*x]/ff)^(n*FracPart[p]))   Int[ActivateTrig[u]*(Ta 
n[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] &&  !IntegerQ[p] 
 && IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) / 
; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]])
 
3.1.49.4 Maple [F]

\[\int \frac {1}{\left (b \coth \left (d x +c \right )^{4}\right )^{\frac {4}{3}}}d x\]

input
int(1/(b*coth(d*x+c)^4)^(4/3),x)
 
output
int(1/(b*coth(d*x+c)^4)^(4/3),x)
 
3.1.49.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3650 vs. \(2 (311) = 622\).

Time = 0.54 (sec) , antiderivative size = 15579, normalized size of antiderivative = 42.22 \[ \int \frac {1}{\left (b \coth ^4(c+d x)\right )^{4/3}} \, dx=\text {Too large to display} \]

input
integrate(1/(b*coth(d*x+c)^4)^(4/3),x, algorithm="fricas")
 
output
Too large to include
 
3.1.49.6 Sympy [F]

\[ \int \frac {1}{\left (b \coth ^4(c+d x)\right )^{4/3}} \, dx=\int \frac {1}{\left (b \coth ^{4}{\left (c + d x \right )}\right )^{\frac {4}{3}}}\, dx \]

input
integrate(1/(b*coth(d*x+c)**4)**(4/3),x)
 
output
Integral((b*coth(c + d*x)**4)**(-4/3), x)
 
3.1.49.7 Maxima [F]

\[ \int \frac {1}{\left (b \coth ^4(c+d x)\right )^{4/3}} \, dx=\int { \frac {1}{\left (b \coth \left (d x + c\right )^{4}\right )^{\frac {4}{3}}} \,d x } \]

input
integrate(1/(b*coth(d*x+c)^4)^(4/3),x, algorithm="maxima")
 
output
integrate((b*coth(d*x + c)^4)^(-4/3), x)
 
3.1.49.8 Giac [F]

\[ \int \frac {1}{\left (b \coth ^4(c+d x)\right )^{4/3}} \, dx=\int { \frac {1}{\left (b \coth \left (d x + c\right )^{4}\right )^{\frac {4}{3}}} \,d x } \]

input
integrate(1/(b*coth(d*x+c)^4)^(4/3),x, algorithm="giac")
 
output
integrate((b*coth(d*x + c)^4)^(-4/3), x)
 
3.1.49.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (b \coth ^4(c+d x)\right )^{4/3}} \, dx=\int \frac {1}{{\left (b\,{\mathrm {coth}\left (c+d\,x\right )}^4\right )}^{4/3}} \,d x \]

input
int(1/(b*coth(c + d*x)^4)^(4/3),x)
 
output
int(1/(b*coth(c + d*x)^4)^(4/3), x)