3.2.96 \(\int \frac {\text {sech}^{\frac {5}{2}}(a+b \log (c x^n))}{x} \, dx\) [196]

3.2.96.1 Optimal result
3.2.96.2 Mathematica [A] (verified)
3.2.96.3 Rubi [A] (verified)
3.2.96.4 Maple [B] (verified)
3.2.96.5 Fricas [C] (verification not implemented)
3.2.96.6 Sympy [F(-1)]
3.2.96.7 Maxima [F]
3.2.96.8 Giac [F(-1)]
3.2.96.9 Mupad [F(-1)]

3.2.96.1 Optimal result

Integrand size = 19, antiderivative size = 97 \[ \int \frac {\text {sech}^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {2 i \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} \operatorname {EllipticF}\left (\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right ),2\right ) \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{3 b n}+\frac {2 \text {sech}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right ) \sinh \left (a+b \log \left (c x^n\right )\right )}{3 b n} \]

output
2/3*sech(a+b*ln(c*x^n))^(3/2)*sinh(a+b*ln(c*x^n))/b/n-2/3*I*(cosh(1/2*a+1/ 
2*b*ln(c*x^n))^2)^(1/2)/cosh(1/2*a+1/2*b*ln(c*x^n))*EllipticF(I*sinh(1/2*a 
+1/2*b*ln(c*x^n)),2^(1/2))*cosh(a+b*ln(c*x^n))^(1/2)*sech(a+b*ln(c*x^n))^( 
1/2)/b/n
 
3.2.96.2 Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.76 \[ \int \frac {\text {sech}^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2 \text {sech}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right ) \left (-i \cosh ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right ) \operatorname {EllipticF}\left (\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right ),2\right )+\sinh \left (a+b \log \left (c x^n\right )\right )\right )}{3 b n} \]

input
Integrate[Sech[a + b*Log[c*x^n]]^(5/2)/x,x]
 
output
(2*Sech[a + b*Log[c*x^n]]^(3/2)*((-I)*Cosh[a + b*Log[c*x^n]]^(3/2)*Ellipti 
cF[(I/2)*(a + b*Log[c*x^n]), 2] + Sinh[a + b*Log[c*x^n]]))/(3*b*n)
 
3.2.96.3 Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.98, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {3039, 3042, 4255, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {sech}^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \text {sech}^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (i a+i b \log \left (c x^n\right )+\frac {\pi }{2}\right )^{5/2}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\frac {1}{3} \int \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )+\frac {2 \sinh \left (a+b \log \left (c x^n\right )\right ) \text {sech}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{3 b}}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \sinh \left (a+b \log \left (c x^n\right )\right ) \text {sech}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{3 b}+\frac {1}{3} \int \sqrt {\csc \left (i a+i b \log \left (c x^n\right )+\frac {\pi }{2}\right )}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {\frac {1}{3} \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )} \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} \int \frac {1}{\sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )+\frac {2 \sinh \left (a+b \log \left (c x^n\right )\right ) \text {sech}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{3 b}}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \sinh \left (a+b \log \left (c x^n\right )\right ) \text {sech}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{3 b}+\frac {1}{3} \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )} \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} \int \frac {1}{\sqrt {\sin \left (i a+i b \log \left (c x^n\right )+\frac {\pi }{2}\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 \sinh \left (a+b \log \left (c x^n\right )\right ) \text {sech}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{3 b}-\frac {2 i \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )} \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} \operatorname {EllipticF}\left (\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right ),2\right )}{3 b}}{n}\)

input
Int[Sech[a + b*Log[c*x^n]]^(5/2)/x,x]
 
output
((((-2*I)/3)*Sqrt[Cosh[a + b*Log[c*x^n]]]*EllipticF[(I/2)*(a + b*Log[c*x^n 
]), 2]*Sqrt[Sech[a + b*Log[c*x^n]]])/b + (2*Sech[a + b*Log[c*x^n]]^(3/2)*S 
inh[a + b*Log[c*x^n]])/(3*b))/n
 

3.2.96.3.1 Defintions of rubi rules used

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
3.2.96.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(294\) vs. \(2(123)=246\).

Time = 119.73 (sec) , antiderivative size = 295, normalized size of antiderivative = 3.04

method result size
derivativedivides \(\frac {2 \left (2 \sqrt {-{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sqrt {-2 {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, \operatorname {EllipticF}\left (\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right ) {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}+2 \cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}+\sqrt {-{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sqrt {-2 {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, \operatorname {EllipticF}\left (\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (-1+2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}\right ) {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}}{3 n \sqrt {2 {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}+{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, {\left (-1+2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}\right )}^{\frac {3}{2}} \sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) b}\) \(295\)
default \(\frac {2 \left (2 \sqrt {-{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sqrt {-2 {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, \operatorname {EllipticF}\left (\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right ) {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}+2 \cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}+\sqrt {-{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sqrt {-2 {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, \operatorname {EllipticF}\left (\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (-1+2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}\right ) {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}}{3 n \sqrt {2 {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}+{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, {\left (-1+2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}\right )}^{\frac {3}{2}} \sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) b}\) \(295\)

input
int(sech(a+b*ln(c*x^n))^(5/2)/x,x,method=_RETURNVERBOSE)
 
output
2/3/n*(2*(-sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*(-2*sinh(1/2*a+1/2*b*ln(c* 
x^n))^2-1)^(1/2)*EllipticF(cosh(1/2*a+1/2*b*ln(c*x^n)),2^(1/2))*sinh(1/2*a 
+1/2*b*ln(c*x^n))^2+2*cosh(1/2*a+1/2*b*ln(c*x^n))*sinh(1/2*a+1/2*b*ln(c*x^ 
n))^2+(-sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*(-2*sinh(1/2*a+1/2*b*ln(c*x^n 
))^2-1)^(1/2)*EllipticF(cosh(1/2*a+1/2*b*ln(c*x^n)),2^(1/2)))*((-1+2*cosh( 
1/2*a+1/2*b*ln(c*x^n))^2)*sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)/(2*sinh(1/2 
*a+1/2*b*ln(c*x^n))^4+sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)/(-1+2*cosh(1/2* 
a+1/2*b*ln(c*x^n))^2)^(3/2)/sinh(1/2*a+1/2*b*ln(c*x^n))/b
 
3.2.96.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 315, normalized size of antiderivative = 3.25 \[ \int \frac {\text {sech}^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2 \, {\left (\sqrt {2} {\left (\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} - 1\right )} \sqrt {\frac {\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}{\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 1}} + {\left (\sqrt {2} \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, \sqrt {2} \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sqrt {2} \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )\right )}}{3 \, {\left (b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + b n \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + b n\right )}} \]

input
integrate(sech(a+b*log(c*x^n))^(5/2)/x,x, algorithm="fricas")
 
output
2/3*(sqrt(2)*(cosh(b*n*log(x) + b*log(c) + a)^2 + 2*cosh(b*n*log(x) + b*lo 
g(c) + a)*sinh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a 
)^2 - 1)*sqrt((cosh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c 
) + a))/(cosh(b*n*log(x) + b*log(c) + a)^2 + 2*cosh(b*n*log(x) + b*log(c) 
+ a)*sinh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a)^2 + 
 1)) + (sqrt(2)*cosh(b*n*log(x) + b*log(c) + a)^2 + 2*sqrt(2)*cosh(b*n*log 
(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log(c) + a) + sqrt(2)*sinh(b*n*log 
(x) + b*log(c) + a)^2 + sqrt(2))*weierstrassPInverse(-4, 0, cosh(b*n*log(x 
) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a)))/(b*n*cosh(b*n*log(x) 
 + b*log(c) + a)^2 + 2*b*n*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) 
 + b*log(c) + a) + b*n*sinh(b*n*log(x) + b*log(c) + a)^2 + b*n)
 
3.2.96.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\text {sech}^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\text {Timed out} \]

input
integrate(sech(a+b*ln(c*x**n))**(5/2)/x,x)
 
output
Timed out
 
3.2.96.7 Maxima [F]

\[ \int \frac {\text {sech}^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int { \frac {\operatorname {sech}\left (b \log \left (c x^{n}\right ) + a\right )^{\frac {5}{2}}}{x} \,d x } \]

input
integrate(sech(a+b*log(c*x^n))^(5/2)/x,x, algorithm="maxima")
 
output
integrate(sech(b*log(c*x^n) + a)^(5/2)/x, x)
 
3.2.96.8 Giac [F(-1)]

Timed out. \[ \int \frac {\text {sech}^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\text {Timed out} \]

input
integrate(sech(a+b*log(c*x^n))^(5/2)/x,x, algorithm="giac")
 
output
Timed out
 
3.2.96.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\text {sech}^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {{\left (\frac {1}{\mathrm {cosh}\left (a+b\,\ln \left (c\,x^n\right )\right )}\right )}^{5/2}}{x} \,d x \]

input
int((1/cosh(a + b*log(c*x^n)))^(5/2)/x,x)
 
output
int((1/cosh(a + b*log(c*x^n)))^(5/2)/x, x)