3.2.56 \(\int \frac {(c e+d e x)^4}{a+b \text {arcsinh}(c+d x)} \, dx\) [156]

3.2.56.1 Optimal result
3.2.56.2 Mathematica [A] (verified)
3.2.56.3 Rubi [A] (verified)
3.2.56.4 Maple [A] (verified)
3.2.56.5 Fricas [F]
3.2.56.6 Sympy [F]
3.2.56.7 Maxima [F]
3.2.56.8 Giac [F]
3.2.56.9 Mupad [F(-1)]

3.2.56.1 Optimal result

Integrand size = 23, antiderivative size = 213 \[ \int \frac {(c e+d e x)^4}{a+b \text {arcsinh}(c+d x)} \, dx=\frac {e^4 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{8 b d}-\frac {3 e^4 \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )}{16 b d}+\frac {e^4 \cosh \left (\frac {5 a}{b}\right ) \text {Chi}\left (\frac {5 (a+b \text {arcsinh}(c+d x))}{b}\right )}{16 b d}-\frac {e^4 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{8 b d}+\frac {3 e^4 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )}{16 b d}-\frac {e^4 \sinh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 (a+b \text {arcsinh}(c+d x))}{b}\right )}{16 b d} \]

output
1/8*e^4*Chi((a+b*arcsinh(d*x+c))/b)*cosh(a/b)/b/d-3/16*e^4*Chi(3*(a+b*arcs 
inh(d*x+c))/b)*cosh(3*a/b)/b/d+1/16*e^4*Chi(5*(a+b*arcsinh(d*x+c))/b)*cosh 
(5*a/b)/b/d-1/8*e^4*Shi((a+b*arcsinh(d*x+c))/b)*sinh(a/b)/b/d+3/16*e^4*Shi 
(3*(a+b*arcsinh(d*x+c))/b)*sinh(3*a/b)/b/d-1/16*e^4*Shi(5*(a+b*arcsinh(d*x 
+c))/b)*sinh(5*a/b)/b/d
 
3.2.56.2 Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.71 \[ \int \frac {(c e+d e x)^4}{a+b \text {arcsinh}(c+d x)} \, dx=\frac {e^4 \left (2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )-3 \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (3 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )\right )+\cosh \left (\frac {5 a}{b}\right ) \text {Chi}\left (5 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )\right )-2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )+3 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (3 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )\right )-\sinh \left (\frac {5 a}{b}\right ) \text {Shi}\left (5 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )\right )\right )}{16 b d} \]

input
Integrate[(c*e + d*e*x)^4/(a + b*ArcSinh[c + d*x]),x]
 
output
(e^4*(2*Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c + d*x]] - 3*Cosh[(3*a)/b]*C 
oshIntegral[3*(a/b + ArcSinh[c + d*x])] + Cosh[(5*a)/b]*CoshIntegral[5*(a/ 
b + ArcSinh[c + d*x])] - 2*Sinh[a/b]*SinhIntegral[a/b + ArcSinh[c + d*x]] 
+ 3*Sinh[(3*a)/b]*SinhIntegral[3*(a/b + ArcSinh[c + d*x])] - Sinh[(5*a)/b] 
*SinhIntegral[5*(a/b + ArcSinh[c + d*x])]))/(16*b*d)
 
3.2.56.3 Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 169, normalized size of antiderivative = 0.79, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {6274, 27, 6195, 5971, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c e+d e x)^4}{a+b \text {arcsinh}(c+d x)} \, dx\)

\(\Big \downarrow \) 6274

\(\displaystyle \frac {\int \frac {e^4 (c+d x)^4}{a+b \text {arcsinh}(c+d x)}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e^4 \int \frac {(c+d x)^4}{a+b \text {arcsinh}(c+d x)}d(c+d x)}{d}\)

\(\Big \downarrow \) 6195

\(\displaystyle \frac {e^4 \int \frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right ) \sinh ^4\left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b d}\)

\(\Big \downarrow \) 5971

\(\displaystyle \frac {e^4 \int \left (\frac {\cosh \left (\frac {5 a}{b}-\frac {5 (a+b \text {arcsinh}(c+d x))}{b}\right )}{16 (a+b \text {arcsinh}(c+d x))}-\frac {3 \cosh \left (\frac {3 a}{b}-\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )}{16 (a+b \text {arcsinh}(c+d x))}+\frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{8 (a+b \text {arcsinh}(c+d x))}\right )d(a+b \text {arcsinh}(c+d x))}{b d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^4 \left (\frac {1}{8} \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arcsinh}(c+d x)}{b}\right )-\frac {3}{16} \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )+\frac {1}{16} \cosh \left (\frac {5 a}{b}\right ) \text {Chi}\left (\frac {5 (a+b \text {arcsinh}(c+d x))}{b}\right )-\frac {1}{8} \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c+d x)}{b}\right )+\frac {3}{16} \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )-\frac {1}{16} \sinh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 (a+b \text {arcsinh}(c+d x))}{b}\right )\right )}{b d}\)

input
Int[(c*e + d*e*x)^4/(a + b*ArcSinh[c + d*x]),x]
 
output
(e^4*((Cosh[a/b]*CoshIntegral[(a + b*ArcSinh[c + d*x])/b])/8 - (3*Cosh[(3* 
a)/b]*CoshIntegral[(3*(a + b*ArcSinh[c + d*x]))/b])/16 + (Cosh[(5*a)/b]*Co 
shIntegral[(5*(a + b*ArcSinh[c + d*x]))/b])/16 - (Sinh[a/b]*SinhIntegral[( 
a + b*ArcSinh[c + d*x])/b])/8 + (3*Sinh[(3*a)/b]*SinhIntegral[(3*(a + b*Ar 
cSinh[c + d*x]))/b])/16 - (Sinh[(5*a)/b]*SinhIntegral[(5*(a + b*ArcSinh[c 
+ d*x]))/b])/16))/(b*d)
 

3.2.56.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5971
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + 
(b_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sinh[a + 
b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] & 
& IGtQ[p, 0]
 

rule 6195
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
1/(b*c^(m + 1))   Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b], x], x, 
 a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
 

rule 6274
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.2.56.4 Maple [A] (verified)

Time = 1.41 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.91

method result size
derivativedivides \(\frac {-\frac {e^{4} {\mathrm e}^{\frac {5 a}{b}} \operatorname {Ei}_{1}\left (5 \,\operatorname {arcsinh}\left (d x +c \right )+\frac {5 a}{b}\right )}{32 b}+\frac {3 e^{4} {\mathrm e}^{\frac {3 a}{b}} \operatorname {Ei}_{1}\left (3 \,\operatorname {arcsinh}\left (d x +c \right )+\frac {3 a}{b}\right )}{32 b}-\frac {e^{4} {\mathrm e}^{\frac {a}{b}} \operatorname {Ei}_{1}\left (\operatorname {arcsinh}\left (d x +c \right )+\frac {a}{b}\right )}{16 b}-\frac {e^{4} {\mathrm e}^{-\frac {a}{b}} \operatorname {Ei}_{1}\left (-\operatorname {arcsinh}\left (d x +c \right )-\frac {a}{b}\right )}{16 b}+\frac {3 e^{4} {\mathrm e}^{-\frac {3 a}{b}} \operatorname {Ei}_{1}\left (-3 \,\operatorname {arcsinh}\left (d x +c \right )-\frac {3 a}{b}\right )}{32 b}-\frac {e^{4} {\mathrm e}^{-\frac {5 a}{b}} \operatorname {Ei}_{1}\left (-5 \,\operatorname {arcsinh}\left (d x +c \right )-\frac {5 a}{b}\right )}{32 b}}{d}\) \(194\)
default \(\frac {-\frac {e^{4} {\mathrm e}^{\frac {5 a}{b}} \operatorname {Ei}_{1}\left (5 \,\operatorname {arcsinh}\left (d x +c \right )+\frac {5 a}{b}\right )}{32 b}+\frac {3 e^{4} {\mathrm e}^{\frac {3 a}{b}} \operatorname {Ei}_{1}\left (3 \,\operatorname {arcsinh}\left (d x +c \right )+\frac {3 a}{b}\right )}{32 b}-\frac {e^{4} {\mathrm e}^{\frac {a}{b}} \operatorname {Ei}_{1}\left (\operatorname {arcsinh}\left (d x +c \right )+\frac {a}{b}\right )}{16 b}-\frac {e^{4} {\mathrm e}^{-\frac {a}{b}} \operatorname {Ei}_{1}\left (-\operatorname {arcsinh}\left (d x +c \right )-\frac {a}{b}\right )}{16 b}+\frac {3 e^{4} {\mathrm e}^{-\frac {3 a}{b}} \operatorname {Ei}_{1}\left (-3 \,\operatorname {arcsinh}\left (d x +c \right )-\frac {3 a}{b}\right )}{32 b}-\frac {e^{4} {\mathrm e}^{-\frac {5 a}{b}} \operatorname {Ei}_{1}\left (-5 \,\operatorname {arcsinh}\left (d x +c \right )-\frac {5 a}{b}\right )}{32 b}}{d}\) \(194\)

input
int((d*e*x+c*e)^4/(a+b*arcsinh(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/d*(-1/32*e^4/b*exp(5*a/b)*Ei(1,5*arcsinh(d*x+c)+5*a/b)+3/32*e^4/b*exp(3* 
a/b)*Ei(1,3*arcsinh(d*x+c)+3*a/b)-1/16*e^4/b*exp(a/b)*Ei(1,arcsinh(d*x+c)+ 
a/b)-1/16*e^4/b*exp(-a/b)*Ei(1,-arcsinh(d*x+c)-a/b)+3/32*e^4/b*exp(-3*a/b) 
*Ei(1,-3*arcsinh(d*x+c)-3*a/b)-1/32*e^4/b*exp(-5*a/b)*Ei(1,-5*arcsinh(d*x+ 
c)-5*a/b))
 
3.2.56.5 Fricas [F]

\[ \int \frac {(c e+d e x)^4}{a+b \text {arcsinh}(c+d x)} \, dx=\int { \frac {{\left (d e x + c e\right )}^{4}}{b \operatorname {arsinh}\left (d x + c\right ) + a} \,d x } \]

input
integrate((d*e*x+c*e)^4/(a+b*arcsinh(d*x+c)),x, algorithm="fricas")
 
output
integral((d^4*e^4*x^4 + 4*c*d^3*e^4*x^3 + 6*c^2*d^2*e^4*x^2 + 4*c^3*d*e^4* 
x + c^4*e^4)/(b*arcsinh(d*x + c) + a), x)
 
3.2.56.6 Sympy [F]

\[ \int \frac {(c e+d e x)^4}{a+b \text {arcsinh}(c+d x)} \, dx=e^{4} \left (\int \frac {c^{4}}{a + b \operatorname {asinh}{\left (c + d x \right )}}\, dx + \int \frac {d^{4} x^{4}}{a + b \operatorname {asinh}{\left (c + d x \right )}}\, dx + \int \frac {4 c d^{3} x^{3}}{a + b \operatorname {asinh}{\left (c + d x \right )}}\, dx + \int \frac {6 c^{2} d^{2} x^{2}}{a + b \operatorname {asinh}{\left (c + d x \right )}}\, dx + \int \frac {4 c^{3} d x}{a + b \operatorname {asinh}{\left (c + d x \right )}}\, dx\right ) \]

input
integrate((d*e*x+c*e)**4/(a+b*asinh(d*x+c)),x)
 
output
e**4*(Integral(c**4/(a + b*asinh(c + d*x)), x) + Integral(d**4*x**4/(a + b 
*asinh(c + d*x)), x) + Integral(4*c*d**3*x**3/(a + b*asinh(c + d*x)), x) + 
 Integral(6*c**2*d**2*x**2/(a + b*asinh(c + d*x)), x) + Integral(4*c**3*d* 
x/(a + b*asinh(c + d*x)), x))
 
3.2.56.7 Maxima [F]

\[ \int \frac {(c e+d e x)^4}{a+b \text {arcsinh}(c+d x)} \, dx=\int { \frac {{\left (d e x + c e\right )}^{4}}{b \operatorname {arsinh}\left (d x + c\right ) + a} \,d x } \]

input
integrate((d*e*x+c*e)^4/(a+b*arcsinh(d*x+c)),x, algorithm="maxima")
 
output
integrate((d*e*x + c*e)^4/(b*arcsinh(d*x + c) + a), x)
 
3.2.56.8 Giac [F]

\[ \int \frac {(c e+d e x)^4}{a+b \text {arcsinh}(c+d x)} \, dx=\int { \frac {{\left (d e x + c e\right )}^{4}}{b \operatorname {arsinh}\left (d x + c\right ) + a} \,d x } \]

input
integrate((d*e*x+c*e)^4/(a+b*arcsinh(d*x+c)),x, algorithm="giac")
 
output
integrate((d*e*x + c*e)^4/(b*arcsinh(d*x + c) + a), x)
 
3.2.56.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c e+d e x)^4}{a+b \text {arcsinh}(c+d x)} \, dx=\int \frac {{\left (c\,e+d\,e\,x\right )}^4}{a+b\,\mathrm {asinh}\left (c+d\,x\right )} \,d x \]

input
int((c*e + d*e*x)^4/(a + b*asinh(c + d*x)),x)
 
output
int((c*e + d*e*x)^4/(a + b*asinh(c + d*x)), x)