3.9.1 \(\int e^{4 \text {arctanh}(a x)} (c-\frac {c}{a^2 x^2})^p \, dx\) [801]

3.9.1.1 Optimal result
3.9.1.2 Mathematica [C] (warning: unable to verify)
3.9.1.3 Rubi [A] (verified)
3.9.1.4 Maple [F]
3.9.1.5 Fricas [F]
3.9.1.6 Sympy [F]
3.9.1.7 Maxima [F]
3.9.1.8 Giac [F]
3.9.1.9 Mupad [F(-1)]

3.9.1.1 Optimal result

Integrand size = 22, antiderivative size = 339 \[ \int e^{4 \text {arctanh}(a x)} \left (c-\frac {c}{a^2 x^2}\right )^p \, dx=\frac {2 a \left (c-\frac {c}{a^2 x^2}\right )^p x^2}{(1-p) (1-a x) (1+a x)}+\frac {\left (c-\frac {c}{a^2 x^2}\right )^p x (1-a x)^{-p} (1+a x)^{-p} \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (1-2 p),2-p,\frac {1}{2} (3-2 p),a^2 x^2\right )}{1-2 p}+\frac {6 a^2 \left (c-\frac {c}{a^2 x^2}\right )^p x^3 (1-a x)^{-p} (1+a x)^{-p} \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (3-2 p),2-p,\frac {1}{2} (5-2 p),a^2 x^2\right )}{3-2 p}+\frac {a^4 \left (c-\frac {c}{a^2 x^2}\right )^p x^5 (1-a x)^{-p} (1+a x)^{-p} \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (5-2 p),2-p,\frac {1}{2} (7-2 p),a^2 x^2\right )}{5-2 p}+\frac {2 a^3 \left (c-\frac {c}{a^2 x^2}\right )^p x^4 (1-a x)^{-p} (1+a x)^{-p} \operatorname {Hypergeometric2F1}\left (2-p,2-p,3-p,a^2 x^2\right )}{2-p} \]

output
2*a*(c-c/a^2/x^2)^p*x^2/(1-p)/(-a*x+1)/(a*x+1)+(c-c/a^2/x^2)^p*x*hypergeom 
([2-p, 1/2-p],[3/2-p],a^2*x^2)/(1-2*p)/((-a*x+1)^p)/((a*x+1)^p)+6*a^2*(c-c 
/a^2/x^2)^p*x^3*hypergeom([2-p, 3/2-p],[5/2-p],a^2*x^2)/(3-2*p)/((-a*x+1)^ 
p)/((a*x+1)^p)+a^4*(c-c/a^2/x^2)^p*x^5*hypergeom([2-p, 5/2-p],[7/2-p],a^2* 
x^2)/(5-2*p)/((-a*x+1)^p)/((a*x+1)^p)+2*a^3*(c-c/a^2/x^2)^p*x^4*hypergeom( 
[2-p, 2-p],[3-p],a^2*x^2)/(2-p)/((-a*x+1)^p)/((a*x+1)^p)
 
3.9.1.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 5 in optimal.

Time = 0.17 (sec) , antiderivative size = 217, normalized size of antiderivative = 0.64 \[ \int e^{4 \text {arctanh}(a x)} \left (c-\frac {c}{a^2 x^2}\right )^p \, dx=-\frac {\left (c-\frac {c}{a^2 x^2}\right )^p x (1-a x)^{-p} \left (-\left (-1+a^2 x^2\right )^2\right )^{-p} \left (-4 (-1+a x)^p (1+a x) \left (1-a^2 x^2\right )^p \operatorname {AppellF1}(1-2 p,1-p,-p,2-2 p,a x,-a x)+4 (-1+a x)^p (1+a x)^{2 p} \left (1-a^2 x^2\right )^p \operatorname {Hypergeometric2F1}\left (1-2 p,2-p,2-2 p,\frac {2 a x}{1+a x}\right )+(1-a x)^p (1+a x) \left (-1+a^2 x^2\right )^p \operatorname {Hypergeometric2F1}\left (\frac {1}{2}-p,-p,\frac {3}{2}-p,a^2 x^2\right )\right )}{(-1+2 p) (1+a x)} \]

input
Integrate[E^(4*ArcTanh[a*x])*(c - c/(a^2*x^2))^p,x]
 
output
-(((c - c/(a^2*x^2))^p*x*(-4*(-1 + a*x)^p*(1 + a*x)*(1 - a^2*x^2)^p*Appell 
F1[1 - 2*p, 1 - p, -p, 2 - 2*p, a*x, -(a*x)] + 4*(-1 + a*x)^p*(1 + a*x)^(2 
*p)*(1 - a^2*x^2)^p*Hypergeometric2F1[1 - 2*p, 2 - p, 2 - 2*p, (2*a*x)/(1 
+ a*x)] + (1 - a*x)^p*(1 + a*x)*(-1 + a^2*x^2)^p*Hypergeometric2F1[1/2 - p 
, -p, 3/2 - p, a^2*x^2]))/((-1 + 2*p)*(1 - a*x)^p*(1 + a*x)*(-(-1 + a^2*x^ 
2)^2)^p))
 
3.9.1.3 Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 230, normalized size of antiderivative = 0.68, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {6709, 559, 25, 2339, 278, 2340, 27, 557, 242, 278}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int e^{4 \text {arctanh}(a x)} \left (c-\frac {c}{a^2 x^2}\right )^p \, dx\)

\(\Big \downarrow \) 6709

\(\displaystyle x^{2 p} \left (1-a^2 x^2\right )^{-p} \left (c-\frac {c}{a^2 x^2}\right )^p \int x^{-2 p} (a x+1)^4 \left (1-a^2 x^2\right )^{p-2}dx\)

\(\Big \downarrow \) 559

\(\displaystyle x^{2 p} \left (1-a^2 x^2\right )^{-p} \left (c-\frac {c}{a^2 x^2}\right )^p \left (-\frac {\int -x^{-2 p} \left (1-a^2 x^2\right )^{p-2} \left (4 x^3 a^5+(9-2 p) x^2 a^4+4 x a^3+a^2\right )dx}{a^2}-a^2 x^{3-2 p} \left (1-a^2 x^2\right )^{p-1}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle x^{2 p} \left (1-a^2 x^2\right )^{-p} \left (c-\frac {c}{a^2 x^2}\right )^p \left (\frac {\int x^{-2 p} \left (1-a^2 x^2\right )^{p-2} \left (4 x^3 a^5+(9-2 p) x^2 a^4+4 x a^3+a^2\right )dx}{a^2}-a^2 x^{3-2 p} \left (1-a^2 x^2\right )^{p-1}\right )\)

\(\Big \downarrow \) 2339

\(\displaystyle x^{2 p} \left (1-a^2 x^2\right )^{-p} \left (c-\frac {c}{a^2 x^2}\right )^p \left (\frac {4 a^5 \int x^{3-2 p} \left (1-a^2 x^2\right )^{p-2}dx+\int x^{-2 p} \left (1-a^2 x^2\right )^{p-2} \left ((9-2 p) x^2 a^4+4 x a^3+a^2\right )dx}{a^2}-a^2 x^{3-2 p} \left (1-a^2 x^2\right )^{p-1}\right )\)

\(\Big \downarrow \) 278

\(\displaystyle x^{2 p} \left (1-a^2 x^2\right )^{-p} \left (c-\frac {c}{a^2 x^2}\right )^p \left (\frac {\int x^{-2 p} \left (1-a^2 x^2\right )^{p-2} \left ((9-2 p) x^2 a^4+4 x a^3+a^2\right )dx+\frac {2 a^5 x^{4-2 p} \operatorname {Hypergeometric2F1}\left (2-p,2-p,3-p,a^2 x^2\right )}{2-p}}{a^2}-a^2 x^{3-2 p} \left (1-a^2 x^2\right )^{p-1}\right )\)

\(\Big \downarrow \) 2340

\(\displaystyle x^{2 p} \left (1-a^2 x^2\right )^{-p} \left (c-\frac {c}{a^2 x^2}\right )^p \left (\frac {\frac {\int -4 a^4 x^{-2 p} \left (p^2-5 p-a x+2\right ) \left (1-a^2 x^2\right )^{p-2}dx}{a^2}+a^2 (9-2 p) x^{1-2 p} \left (1-a^2 x^2\right )^{p-1}+\frac {2 a^5 x^{4-2 p} \operatorname {Hypergeometric2F1}\left (2-p,2-p,3-p,a^2 x^2\right )}{2-p}}{a^2}-a^2 x^{3-2 p} \left (1-a^2 x^2\right )^{p-1}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle x^{2 p} \left (1-a^2 x^2\right )^{-p} \left (c-\frac {c}{a^2 x^2}\right )^p \left (\frac {-4 a^2 \int x^{-2 p} \left (p^2-5 p-a x+2\right ) \left (1-a^2 x^2\right )^{p-2}dx+a^2 (9-2 p) x^{1-2 p} \left (1-a^2 x^2\right )^{p-1}+\frac {2 a^5 x^{4-2 p} \operatorname {Hypergeometric2F1}\left (2-p,2-p,3-p,a^2 x^2\right )}{2-p}}{a^2}-a^2 x^{3-2 p} \left (1-a^2 x^2\right )^{p-1}\right )\)

\(\Big \downarrow \) 557

\(\displaystyle x^{2 p} \left (1-a^2 x^2\right )^{-p} \left (c-\frac {c}{a^2 x^2}\right )^p \left (\frac {-4 a^2 \left (\left (p^2-5 p+2\right ) \int x^{-2 p} \left (1-a^2 x^2\right )^{p-2}dx-a \int x^{1-2 p} \left (1-a^2 x^2\right )^{p-2}dx\right )+a^2 (9-2 p) x^{1-2 p} \left (1-a^2 x^2\right )^{p-1}+\frac {2 a^5 x^{4-2 p} \operatorname {Hypergeometric2F1}\left (2-p,2-p,3-p,a^2 x^2\right )}{2-p}}{a^2}-a^2 x^{3-2 p} \left (1-a^2 x^2\right )^{p-1}\right )\)

\(\Big \downarrow \) 242

\(\displaystyle x^{2 p} \left (1-a^2 x^2\right )^{-p} \left (c-\frac {c}{a^2 x^2}\right )^p \left (\frac {-4 a^2 \left (\left (p^2-5 p+2\right ) \int x^{-2 p} \left (1-a^2 x^2\right )^{p-2}dx-\frac {a x^{2-2 p} \left (1-a^2 x^2\right )^{p-1}}{2 (1-p)}\right )+a^2 (9-2 p) x^{1-2 p} \left (1-a^2 x^2\right )^{p-1}+\frac {2 a^5 x^{4-2 p} \operatorname {Hypergeometric2F1}\left (2-p,2-p,3-p,a^2 x^2\right )}{2-p}}{a^2}-a^2 x^{3-2 p} \left (1-a^2 x^2\right )^{p-1}\right )\)

\(\Big \downarrow \) 278

\(\displaystyle x^{2 p} \left (1-a^2 x^2\right )^{-p} \left (c-\frac {c}{a^2 x^2}\right )^p \left (\frac {-4 a^2 \left (\frac {\left (p^2-5 p+2\right ) x^{1-2 p} \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (1-2 p),2-p,\frac {1}{2} (3-2 p),a^2 x^2\right )}{1-2 p}-\frac {a x^{2-2 p} \left (1-a^2 x^2\right )^{p-1}}{2 (1-p)}\right )+a^2 (9-2 p) x^{1-2 p} \left (1-a^2 x^2\right )^{p-1}+\frac {2 a^5 x^{4-2 p} \operatorname {Hypergeometric2F1}\left (2-p,2-p,3-p,a^2 x^2\right )}{2-p}}{a^2}-a^2 x^{3-2 p} \left (1-a^2 x^2\right )^{p-1}\right )\)

input
Int[E^(4*ArcTanh[a*x])*(c - c/(a^2*x^2))^p,x]
 
output
((c - c/(a^2*x^2))^p*x^(2*p)*(-(a^2*x^(3 - 2*p)*(1 - a^2*x^2)^(-1 + p)) + 
(a^2*(9 - 2*p)*x^(1 - 2*p)*(1 - a^2*x^2)^(-1 + p) - 4*a^2*(-1/2*(a*x^(2 - 
2*p)*(1 - a^2*x^2)^(-1 + p))/(1 - p) + ((2 - 5*p + p^2)*x^(1 - 2*p)*Hyperg 
eometric2F1[(1 - 2*p)/2, 2 - p, (3 - 2*p)/2, a^2*x^2])/(1 - 2*p)) + (2*a^5 
*x^(4 - 2*p)*Hypergeometric2F1[2 - p, 2 - p, 3 - p, a^2*x^2])/(2 - p))/a^2 
))/(1 - a^2*x^2)^p
 

3.9.1.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 242
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] /; FreeQ[{a, b, c, m, p}, x 
] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 557
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Sym 
bol] :> Simp[c   Int[(e*x)^m*(a + b*x^2)^p, x], x] + Simp[d/e   Int[(e*x)^( 
m + 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x]
 

rule 559
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
x_Symbol] :> Simp[d^n*(e*x)^(m + n - 1)*((a + b*x^2)^(p + 1)/(b*e^(n - 1)*( 
m + n + 2*p + 1))), x] + Simp[1/(b*(m + n + 2*p + 1))   Int[(e*x)^m*(a + b* 
x^2)^p*ExpandToSum[b*(m + n + 2*p + 1)*(c + d*x)^n - b*d^n*(m + n + 2*p + 1 
)*x^n - a*d^n*(m + n - 1)*x^(n - 2), x], x], x] /; FreeQ[{a, b, c, d, e, m, 
 p}, x] && IGtQ[n, 1] &&  !IntegerQ[m] && NeQ[m + n + 2*p + 1, 0]
 

rule 2339
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> With 
[{q = Expon[Pq, x]}, Simp[Coeff[Pq, x, q]/c^q   Int[(c*x)^(m + q)*(a + b*x^ 
2)^p, x], x] + Simp[1/c^q   Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[c^q*Pq - 
Coeff[Pq, x, q]*(c*x)^q, x], x], x] /; EqQ[q, 1] || EqQ[m + q + 2*p + 1, 0] 
] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] &&  !(IGtQ[m, 0] && ILtQ[p + 
 1/2, 0])
 

rule 2340
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[ 
{q = Expon[Pq, x], f = Coeff[Pq, x, Expon[Pq, x]]}, Simp[f*(c*x)^(m + q - 1 
)*((a + b*x^2)^(p + 1)/(b*c^(q - 1)*(m + q + 2*p + 1))), x] + Simp[1/(b*(m 
+ q + 2*p + 1))   Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1) 
*Pq - b*f*(m + q + 2*p + 1)*x^q - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; 
GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ 
[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])
 

rule 6709
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbo 
l] :> Simp[x^(2*p)*((c + d/x^2)^p/(1 - a^2*x^2)^p)   Int[u*((1 + a*x)^n/(x^ 
(2*p)*(1 - a^2*x^2)^(n/2 - p))), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c 
+ a^2*d, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !GtQ[c, 0]
 
3.9.1.4 Maple [F]

\[\int \frac {\left (a x +1\right )^{4} \left (c -\frac {c}{a^{2} x^{2}}\right )^{p}}{\left (-a^{2} x^{2}+1\right )^{2}}d x\]

input
int((a*x+1)^4/(-a^2*x^2+1)^2*(c-c/a^2/x^2)^p,x)
 
output
int((a*x+1)^4/(-a^2*x^2+1)^2*(c-c/a^2/x^2)^p,x)
 
3.9.1.5 Fricas [F]

\[ \int e^{4 \text {arctanh}(a x)} \left (c-\frac {c}{a^2 x^2}\right )^p \, dx=\int { \frac {{\left (a x + 1\right )}^{4} {\left (c - \frac {c}{a^{2} x^{2}}\right )}^{p}}{{\left (a^{2} x^{2} - 1\right )}^{2}} \,d x } \]

input
integrate((a*x+1)^4/(-a^2*x^2+1)^2*(c-c/a^2/x^2)^p,x, algorithm="fricas")
 
output
integral((a^2*x^2 + 2*a*x + 1)*((a^2*c*x^2 - c)/(a^2*x^2))^p/(a^2*x^2 - 2* 
a*x + 1), x)
 
3.9.1.6 Sympy [F]

\[ \int e^{4 \text {arctanh}(a x)} \left (c-\frac {c}{a^2 x^2}\right )^p \, dx=\int \frac {\left (- c \left (-1 + \frac {1}{a x}\right ) \left (1 + \frac {1}{a x}\right )\right )^{p} \left (a x + 1\right )^{2}}{\left (a x - 1\right )^{2}}\, dx \]

input
integrate((a*x+1)**4/(-a**2*x**2+1)**2*(c-c/a**2/x**2)**p,x)
 
output
Integral((-c*(-1 + 1/(a*x))*(1 + 1/(a*x)))**p*(a*x + 1)**2/(a*x - 1)**2, x 
)
 
3.9.1.7 Maxima [F]

\[ \int e^{4 \text {arctanh}(a x)} \left (c-\frac {c}{a^2 x^2}\right )^p \, dx=\int { \frac {{\left (a x + 1\right )}^{4} {\left (c - \frac {c}{a^{2} x^{2}}\right )}^{p}}{{\left (a^{2} x^{2} - 1\right )}^{2}} \,d x } \]

input
integrate((a*x+1)^4/(-a^2*x^2+1)^2*(c-c/a^2/x^2)^p,x, algorithm="maxima")
 
output
integrate((a*x + 1)^4*(c - c/(a^2*x^2))^p/(a^2*x^2 - 1)^2, x)
 
3.9.1.8 Giac [F]

\[ \int e^{4 \text {arctanh}(a x)} \left (c-\frac {c}{a^2 x^2}\right )^p \, dx=\int { \frac {{\left (a x + 1\right )}^{4} {\left (c - \frac {c}{a^{2} x^{2}}\right )}^{p}}{{\left (a^{2} x^{2} - 1\right )}^{2}} \,d x } \]

input
integrate((a*x+1)^4/(-a^2*x^2+1)^2*(c-c/a^2/x^2)^p,x, algorithm="giac")
 
output
integrate((a*x + 1)^4*(c - c/(a^2*x^2))^p/(a^2*x^2 - 1)^2, x)
 
3.9.1.9 Mupad [F(-1)]

Timed out. \[ \int e^{4 \text {arctanh}(a x)} \left (c-\frac {c}{a^2 x^2}\right )^p \, dx=\int \frac {{\left (c-\frac {c}{a^2\,x^2}\right )}^p\,{\left (a\,x+1\right )}^4}{{\left (a^2\,x^2-1\right )}^2} \,d x \]

input
int(((c - c/(a^2*x^2))^p*(a*x + 1)^4)/(a^2*x^2 - 1)^2,x)
 
output
int(((c - c/(a^2*x^2))^p*(a*x + 1)^4)/(a^2*x^2 - 1)^2, x)