3.3.73 \(\int x^2 (a+b \coth ^{-1}(c x)) (d+e \log (1-c^2 x^2)) \, dx\) [273]

3.3.73.1 Optimal result
3.3.73.2 Mathematica [A] (verified)
3.3.73.3 Rubi [A] (verified)
3.3.73.4 Maple [A] (verified)
3.3.73.5 Fricas [A] (verification not implemented)
3.3.73.6 Sympy [C] (verification not implemented)
3.3.73.7 Maxima [C] (verification not implemented)
3.3.73.8 Giac [C] (verification not implemented)
3.3.73.9 Mupad [B] (verification not implemented)

3.3.73.1 Optimal result

Integrand size = 27, antiderivative size = 247 \[ \int x^2 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right ) \, dx=-\frac {2 a e x}{3 c^2}-\frac {5 b e x^2}{18 c}-\frac {2}{9} a e x^3-\frac {2 b e x \coth ^{-1}(c x)}{3 c^2}-\frac {2}{9} b e x^3 \coth ^{-1}(c x)+\frac {b e \coth ^{-1}(c x)^2}{3 c^3}-\frac {(2 a+b) e \log (1-c x)}{6 c^3}+\frac {(2 a-b) e \log (1+c x)}{6 c^3}-\frac {4 b e \log \left (1-c^2 x^2\right )}{9 c^3}-\frac {b e \log ^2\left (1-c^2 x^2\right )}{12 c^3}+\frac {b x^2 \left (d+e \log \left (1-c^2 x^2\right )\right )}{6 c}+\frac {1}{3} x^3 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )+\frac {b \log \left (1-c^2 x^2\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )}{6 c^3} \]

output
-2/3*a*e*x/c^2-5/18*b*e*x^2/c-2/9*a*e*x^3-2/3*b*e*x*arccoth(c*x)/c^2-2/9*b 
*e*x^3*arccoth(c*x)+1/3*b*e*arccoth(c*x)^2/c^3-1/6*(2*a+b)*e*ln(-c*x+1)/c^ 
3+1/6*(2*a-b)*e*ln(c*x+1)/c^3-4/9*b*e*ln(-c^2*x^2+1)/c^3-1/12*b*e*ln(-c^2* 
x^2+1)^2/c^3+1/6*b*x^2*(d+e*ln(-c^2*x^2+1))/c+1/3*x^3*(a+b*arccoth(c*x))*( 
d+e*ln(-c^2*x^2+1))+1/6*b*ln(-c^2*x^2+1)*(d+e*ln(-c^2*x^2+1))/c^3
 
3.3.73.2 Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 183, normalized size of antiderivative = 0.74 \[ \int x^2 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right ) \, dx=\frac {-24 a c e x+2 b c^2 (3 d-5 e) x^2+4 a c^3 (3 d-2 e) x^3+4 b c x \left (3 c^2 d x^2-2 e \left (3+c^2 x^2\right )\right ) \coth ^{-1}(c x)+12 b e \coth ^{-1}(c x)^2+2 (3 b d-6 a e-11 b e) \log (1-c x)+2 (3 b d+6 a e-11 b e) \log (1+c x)+6 c^2 e x^2 \left (b+2 a c x+2 b c x \coth ^{-1}(c x)\right ) \log \left (1-c^2 x^2\right )+3 b e \log ^2\left (1-c^2 x^2\right )}{36 c^3} \]

input
Integrate[x^2*(a + b*ArcCoth[c*x])*(d + e*Log[1 - c^2*x^2]),x]
 
output
(-24*a*c*e*x + 2*b*c^2*(3*d - 5*e)*x^2 + 4*a*c^3*(3*d - 2*e)*x^3 + 4*b*c*x 
*(3*c^2*d*x^2 - 2*e*(3 + c^2*x^2))*ArcCoth[c*x] + 12*b*e*ArcCoth[c*x]^2 + 
2*(3*b*d - 6*a*e - 11*b*e)*Log[1 - c*x] + 2*(3*b*d + 6*a*e - 11*b*e)*Log[1 
 + c*x] + 6*c^2*e*x^2*(b + 2*a*c*x + 2*b*c*x*ArcCoth[c*x])*Log[1 - c^2*x^2 
] + 3*b*e*Log[1 - c^2*x^2]^2)/(36*c^3)
 
3.3.73.3 Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 223, normalized size of antiderivative = 0.90, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {6648, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 \left (a+b \coth ^{-1}(c x)\right ) \left (e \log \left (1-c^2 x^2\right )+d\right ) \, dx\)

\(\Big \downarrow \) 6648

\(\displaystyle 2 c^2 e \int \left (\frac {\left (2 c x \coth ^{-1}(c x) b+b+2 a c x\right ) x^3}{6 c \left (1-c^2 x^2\right )}+\frac {b \log \left (1-c^2 x^2\right ) x}{6 c^3 \left (1-c^2 x^2\right )}\right )dx+\frac {1}{3} x^3 \left (a+b \coth ^{-1}(c x)\right ) \left (e \log \left (1-c^2 x^2\right )+d\right )+\frac {b x^2 \left (e \log \left (1-c^2 x^2\right )+d\right )}{6 c}+\frac {b \log \left (1-c^2 x^2\right ) \left (e \log \left (1-c^2 x^2\right )+d\right )}{6 c^3}\)

\(\Big \downarrow \) 2009

\(\displaystyle 2 c^2 e \left (\frac {a \text {arctanh}(c x)}{3 c^5}-\frac {a x}{3 c^4}-\frac {a x^3}{9 c^2}+\frac {b \coth ^{-1}(c x)^2}{6 c^5}-\frac {b x \coth ^{-1}(c x)}{3 c^4}-\frac {5 b x^2}{36 c^3}-\frac {b x^3 \coth ^{-1}(c x)}{9 c^2}-\frac {b \log ^2\left (1-c^2 x^2\right )}{24 c^5}-\frac {11 b \log \left (1-c^2 x^2\right )}{36 c^5}\right )+\frac {1}{3} x^3 \left (a+b \coth ^{-1}(c x)\right ) \left (e \log \left (1-c^2 x^2\right )+d\right )+\frac {b x^2 \left (e \log \left (1-c^2 x^2\right )+d\right )}{6 c}+\frac {b \log \left (1-c^2 x^2\right ) \left (e \log \left (1-c^2 x^2\right )+d\right )}{6 c^3}\)

input
Int[x^2*(a + b*ArcCoth[c*x])*(d + e*Log[1 - c^2*x^2]),x]
 
output
(b*x^2*(d + e*Log[1 - c^2*x^2]))/(6*c) + (x^3*(a + b*ArcCoth[c*x])*(d + e* 
Log[1 - c^2*x^2]))/3 + (b*Log[1 - c^2*x^2]*(d + e*Log[1 - c^2*x^2]))/(6*c^ 
3) + 2*c^2*e*(-1/3*(a*x)/c^4 - (5*b*x^2)/(36*c^3) - (a*x^3)/(9*c^2) - (b*x 
*ArcCoth[c*x])/(3*c^4) - (b*x^3*ArcCoth[c*x])/(9*c^2) + (b*ArcCoth[c*x]^2) 
/(6*c^5) + (a*ArcTanh[c*x])/(3*c^5) - (11*b*Log[1 - c^2*x^2])/(36*c^5) - ( 
b*Log[1 - c^2*x^2]^2)/(24*c^5))
 

3.3.73.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6648
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]* 
(e_.))*(x_)^(m_.), x_Symbol] :> With[{u = IntHide[x^m*(a + b*ArcCoth[c*x]), 
 x]}, Simp[(d + e*Log[f + g*x^2])   u, x] - Simp[2*e*g   Int[ExpandIntegran 
d[x*(u/(f + g*x^2)), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && Inte 
gerQ[m] && NeQ[m, -1]
 
3.3.73.4 Maple [A] (verified)

Time = 2.12 (sec) , antiderivative size = 229, normalized size of antiderivative = 0.93

method result size
parallelrisch \(\frac {12 \,\operatorname {arccoth}\left (c x \right ) b d +6 b \,c^{2} d \,x^{2}-24 a e c x -10 b e \,x^{2} c^{2}+12 b e \ln \left (-c^{2} x^{2}+1\right ) \operatorname {arccoth}\left (c x \right ) x^{3} c^{3}+12 \ln \left (c x -1\right ) b d -44 \ln \left (c x -1\right ) b e +6 x^{2} \ln \left (-c^{2} x^{2}+1\right ) b \,c^{2} e -24 e b x \,\operatorname {arccoth}\left (c x \right ) c -8 e b \,\operatorname {arccoth}\left (c x \right ) x^{3} c^{3}+12 e b \operatorname {arccoth}\left (c x \right )^{2}+12 a e \,x^{3} \ln \left (-c^{2} x^{2}+1\right ) c^{3}+12 b \,\operatorname {arccoth}\left (c x \right ) x^{3} c^{3} d -8 a e \,x^{3} c^{3}-44 \,\operatorname {arccoth}\left (c x \right ) b e +12 a d \,x^{3} c^{3}+3 e b \ln \left (-c^{2} x^{2}+1\right )^{2}+24 \,\operatorname {arccoth}\left (c x \right ) a e}{36 c^{3}}\) \(229\)
risch \(\text {Expression too large to display}\) \(1459\)
default \(\text {Expression too large to display}\) \(3355\)
parts \(\text {Expression too large to display}\) \(3355\)

input
int(x^2*(a+b*arccoth(c*x))*(d+e*ln(-c^2*x^2+1)),x,method=_RETURNVERBOSE)
 
output
1/36*(12*arccoth(c*x)*b*d+6*b*c^2*d*x^2-24*a*e*c*x-10*b*e*x^2*c^2+12*b*e*l 
n(-c^2*x^2+1)*arccoth(c*x)*x^3*c^3+12*ln(c*x-1)*b*d-44*ln(c*x-1)*b*e+6*x^2 
*ln(-c^2*x^2+1)*b*c^2*e-24*e*b*x*arccoth(c*x)*c-8*e*b*arccoth(c*x)*x^3*c^3 
+12*e*b*arccoth(c*x)^2+12*a*e*x^3*ln(-c^2*x^2+1)*c^3+12*b*arccoth(c*x)*x^3 
*c^3*d-8*a*e*x^3*c^3-44*arccoth(c*x)*b*e+12*a*d*x^3*c^3+3*e*b*ln(-c^2*x^2+ 
1)^2+24*arccoth(c*x)*a*e)/c^3
 
3.3.73.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 198, normalized size of antiderivative = 0.80 \[ \int x^2 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right ) \, dx=-\frac {24 \, a c e x - 4 \, {\left (3 \, a c^{3} d - 2 \, a c^{3} e\right )} x^{3} - 3 \, b e \log \left (-c^{2} x^{2} + 1\right )^{2} - 3 \, b e \log \left (\frac {c x + 1}{c x - 1}\right )^{2} - 2 \, {\left (3 \, b c^{2} d - 5 \, b c^{2} e\right )} x^{2} - 2 \, {\left (6 \, a c^{3} e x^{3} + 3 \, b c^{2} e x^{2} + 3 \, b d - 11 \, b e\right )} \log \left (-c^{2} x^{2} + 1\right ) - 2 \, {\left (3 \, b c^{3} e x^{3} \log \left (-c^{2} x^{2} + 1\right ) - 6 \, b c e x + {\left (3 \, b c^{3} d - 2 \, b c^{3} e\right )} x^{3} + 6 \, a e\right )} \log \left (\frac {c x + 1}{c x - 1}\right )}{36 \, c^{3}} \]

input
integrate(x^2*(a+b*arccoth(c*x))*(d+e*log(-c^2*x^2+1)),x, algorithm="frica 
s")
 
output
-1/36*(24*a*c*e*x - 4*(3*a*c^3*d - 2*a*c^3*e)*x^3 - 3*b*e*log(-c^2*x^2 + 1 
)^2 - 3*b*e*log((c*x + 1)/(c*x - 1))^2 - 2*(3*b*c^2*d - 5*b*c^2*e)*x^2 - 2 
*(6*a*c^3*e*x^3 + 3*b*c^2*e*x^2 + 3*b*d - 11*b*e)*log(-c^2*x^2 + 1) - 2*(3 
*b*c^3*e*x^3*log(-c^2*x^2 + 1) - 6*b*c*e*x + (3*b*c^3*d - 2*b*c^3*e)*x^3 + 
 6*a*e)*log((c*x + 1)/(c*x - 1)))/c^3
 
3.3.73.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.79 (sec) , antiderivative size = 265, normalized size of antiderivative = 1.07 \[ \int x^2 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right ) \, dx=\begin {cases} \frac {a d x^{3}}{3} + \frac {a e x^{3} \log {\left (- c^{2} x^{2} + 1 \right )}}{3} - \frac {2 a e x^{3}}{9} - \frac {2 a e x}{3 c^{2}} + \frac {2 a e \operatorname {acoth}{\left (c x \right )}}{3 c^{3}} + \frac {b d x^{3} \operatorname {acoth}{\left (c x \right )}}{3} + \frac {b e x^{3} \log {\left (- c^{2} x^{2} + 1 \right )} \operatorname {acoth}{\left (c x \right )}}{3} - \frac {2 b e x^{3} \operatorname {acoth}{\left (c x \right )}}{9} + \frac {b d x^{2}}{6 c} + \frac {b e x^{2} \log {\left (- c^{2} x^{2} + 1 \right )}}{6 c} - \frac {5 b e x^{2}}{18 c} - \frac {2 b e x \operatorname {acoth}{\left (c x \right )}}{3 c^{2}} + \frac {b d \log {\left (- c^{2} x^{2} + 1 \right )}}{6 c^{3}} + \frac {b e \log {\left (- c^{2} x^{2} + 1 \right )}^{2}}{12 c^{3}} - \frac {11 b e \log {\left (- c^{2} x^{2} + 1 \right )}}{18 c^{3}} + \frac {b e \operatorname {acoth}^{2}{\left (c x \right )}}{3 c^{3}} & \text {for}\: c \neq 0 \\\frac {d x^{3} \left (a + \frac {i \pi b}{2}\right )}{3} & \text {otherwise} \end {cases} \]

input
integrate(x**2*(a+b*acoth(c*x))*(d+e*ln(-c**2*x**2+1)),x)
 
output
Piecewise((a*d*x**3/3 + a*e*x**3*log(-c**2*x**2 + 1)/3 - 2*a*e*x**3/9 - 2* 
a*e*x/(3*c**2) + 2*a*e*acoth(c*x)/(3*c**3) + b*d*x**3*acoth(c*x)/3 + b*e*x 
**3*log(-c**2*x**2 + 1)*acoth(c*x)/3 - 2*b*e*x**3*acoth(c*x)/9 + b*d*x**2/ 
(6*c) + b*e*x**2*log(-c**2*x**2 + 1)/(6*c) - 5*b*e*x**2/(18*c) - 2*b*e*x*a 
coth(c*x)/(3*c**2) + b*d*log(-c**2*x**2 + 1)/(6*c**3) + b*e*log(-c**2*x**2 
 + 1)**2/(12*c**3) - 11*b*e*log(-c**2*x**2 + 1)/(18*c**3) + b*e*acoth(c*x) 
**2/(3*c**3), Ne(c, 0)), (d*x**3*(a + I*pi*b/2)/3, True))
 
3.3.73.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.21 (sec) , antiderivative size = 252, normalized size of antiderivative = 1.02 \[ \int x^2 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right ) \, dx=\frac {1}{3} \, a d x^{3} + \frac {1}{9} \, {\left (3 \, x^{3} \log \left (-c^{2} x^{2} + 1\right ) - c^{2} {\left (\frac {2 \, {\left (c^{2} x^{3} + 3 \, x\right )}}{c^{4}} - \frac {3 \, \log \left (c x + 1\right )}{c^{5}} + \frac {3 \, \log \left (c x - 1\right )}{c^{5}}\right )}\right )} b e \operatorname {arcoth}\left (c x\right ) + \frac {1}{6} \, {\left (2 \, x^{3} \operatorname {arcoth}\left (c x\right ) + c {\left (\frac {x^{2}}{c^{2}} + \frac {\log \left (c^{2} x^{2} - 1\right )}{c^{4}}\right )}\right )} b d + \frac {1}{9} \, {\left (3 \, x^{3} \log \left (-c^{2} x^{2} + 1\right ) - c^{2} {\left (\frac {2 \, {\left (c^{2} x^{3} + 3 \, x\right )}}{c^{4}} - \frac {3 \, \log \left (c x + 1\right )}{c^{5}} + \frac {3 \, \log \left (c x - 1\right )}{c^{5}}\right )}\right )} a e + \frac {{\left ({\left (3 i \, \pi c^{2} - 5 \, c^{2}\right )} x^{2} + {\left (3 i \, \pi + 3 \, c^{2} x^{2} + 6 \, \log \left (c x - 1\right ) - 11\right )} \log \left (c x + 1\right ) + {\left (3 i \, \pi + 3 \, c^{2} x^{2} - 11\right )} \log \left (c x - 1\right )\right )} b e}{18 \, c^{3}} \]

input
integrate(x^2*(a+b*arccoth(c*x))*(d+e*log(-c^2*x^2+1)),x, algorithm="maxim 
a")
 
output
1/3*a*d*x^3 + 1/9*(3*x^3*log(-c^2*x^2 + 1) - c^2*(2*(c^2*x^3 + 3*x)/c^4 - 
3*log(c*x + 1)/c^5 + 3*log(c*x - 1)/c^5))*b*e*arccoth(c*x) + 1/6*(2*x^3*ar 
ccoth(c*x) + c*(x^2/c^2 + log(c^2*x^2 - 1)/c^4))*b*d + 1/9*(3*x^3*log(-c^2 
*x^2 + 1) - c^2*(2*(c^2*x^3 + 3*x)/c^4 - 3*log(c*x + 1)/c^5 + 3*log(c*x - 
1)/c^5))*a*e + 1/18*((3*I*pi*c^2 - 5*c^2)*x^2 + (3*I*pi + 3*c^2*x^2 + 6*lo 
g(c*x - 1) - 11)*log(c*x + 1) + (3*I*pi + 3*c^2*x^2 - 11)*log(c*x - 1))*b* 
e/c^3
 
3.3.73.8 Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.41 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.14 \[ \int x^2 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right ) \, dx=-\frac {1}{6} \, b e x^{3} \log \left (-c x + 1\right )^{2} - \frac {1}{18} \, {\left (-3 i \, \pi b d + 2 i \, \pi b e - 6 \, a d + 4 \, a e\right )} x^{3} + \frac {1}{6} \, {\left (b e x^{3} + \frac {b e}{c^{3}}\right )} \log \left (c x + 1\right )^{2} + \frac {{\left (3 \, b d - 5 \, b e\right )} x^{2}}{18 \, c} - \frac {1}{18} \, {\left ({\left (-3 i \, \pi b e - 3 \, b d - 6 \, a e + 2 \, b e\right )} x^{3} - \frac {3 \, b e x^{2}}{c} + \frac {6 \, b e x}{c^{2}}\right )} \log \left (c x + 1\right ) - \frac {1}{18} \, {\left ({\left (-3 i \, \pi b e + 3 \, b d - 6 \, a e - 2 \, b e\right )} x^{3} - \frac {3 \, b e x^{2}}{c} - \frac {6 \, b e x}{c^{2}} - \frac {6 \, b e \log \left (c x - 1\right )}{c^{3}}\right )} \log \left (-c x + 1\right ) - \frac {b e \log \left (c x - 1\right )^{2}}{6 \, c^{3}} - \frac {{\left (i \, \pi b e + 2 \, a e\right )} x}{3 \, c^{2}} + \frac {{\left (3 i \, \pi b e + 3 \, b d + 6 \, a e - 11 \, b e\right )} \log \left (c x + 1\right )}{18 \, c^{3}} + \frac {{\left (-3 i \, \pi b e + 3 \, b d - 6 \, a e - 11 \, b e\right )} \log \left (c x - 1\right )}{18 \, c^{3}} \]

input
integrate(x^2*(a+b*arccoth(c*x))*(d+e*log(-c^2*x^2+1)),x, algorithm="giac" 
)
 
output
-1/6*b*e*x^3*log(-c*x + 1)^2 - 1/18*(-3*I*pi*b*d + 2*I*pi*b*e - 6*a*d + 4* 
a*e)*x^3 + 1/6*(b*e*x^3 + b*e/c^3)*log(c*x + 1)^2 + 1/18*(3*b*d - 5*b*e)*x 
^2/c - 1/18*((-3*I*pi*b*e - 3*b*d - 6*a*e + 2*b*e)*x^3 - 3*b*e*x^2/c + 6*b 
*e*x/c^2)*log(c*x + 1) - 1/18*((-3*I*pi*b*e + 3*b*d - 6*a*e - 2*b*e)*x^3 - 
 3*b*e*x^2/c - 6*b*e*x/c^2 - 6*b*e*log(c*x - 1)/c^3)*log(-c*x + 1) - 1/6*b 
*e*log(c*x - 1)^2/c^3 - 1/3*(I*pi*b*e + 2*a*e)*x/c^2 + 1/18*(3*I*pi*b*e + 
3*b*d + 6*a*e - 11*b*e)*log(c*x + 1)/c^3 + 1/18*(-3*I*pi*b*e + 3*b*d - 6*a 
*e - 11*b*e)*log(c*x - 1)/c^3
 
3.3.73.9 Mupad [B] (verification not implemented)

Time = 5.34 (sec) , antiderivative size = 414, normalized size of antiderivative = 1.68 \[ \int x^2 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right ) \, dx=\ln \left (\frac {1}{c\,x}+1\right )\,\left (\frac {b\,d\,x^3}{6}-\frac {\frac {2\,b\,e\,c^3\,x^3}{3}+2\,b\,e\,c\,x}{6\,c^3}+\frac {b\,e\,x^3\,\ln \left (1-c^2\,x^2\right )}{6}\right )+x\,\left (\frac {a\,\left (3\,d-2\,e\right )}{3\,c^2}-\frac {a\,d}{c^2}\right )+\ln \left (1-\frac {1}{c\,x}\right )\,\left (\frac {\frac {4\,b\,e\,x^4}{9}-\frac {2\,b\,e\,x^2}{3\,c^2}+\frac {2\,b\,c^2\,e\,x^6}{9}}{2\,\left (c\,x^2+x\right )\,\left (c\,x-1\right )}+\frac {\frac {b\,d\,x^4}{3}-\frac {b\,c^2\,d\,x^6}{3}}{2\,\left (c\,x^2+x\right )\,\left (c\,x-1\right )}+\frac {\ln \left (1-c^2\,x^2\right )\,\left (\frac {b\,e\,x^4}{3}-\frac {b\,c^2\,e\,x^6}{3}\right )}{2\,\left (c\,x^2+x\right )\,\left (c\,x-1\right )}-\frac {b\,e\,\ln \left (\frac {1}{c\,x}+1\right )}{6\,c^3}\right )+\frac {a\,x^3\,\left (3\,d-2\,e\right )}{9}+c^2\,\ln \left (1-c^2\,x^2\right )\,\left (\frac {a\,e\,x^3}{3\,c^2}+\frac {b\,e\,x^2}{6\,c^3}\right )-\frac {\ln \left (c\,x-1\right )\,\left (6\,a\,e-3\,b\,d+11\,b\,e\right )}{18\,c^3}+\frac {\ln \left (c\,x+1\right )\,\left (6\,a\,e+3\,b\,d-11\,b\,e\right )}{18\,c^3}+\frac {b\,e\,{\ln \left (\frac {1}{c\,x}+1\right )}^2}{12\,c^3}+\frac {b\,e\,{\ln \left (1-\frac {1}{c\,x}\right )}^2}{12\,c^3}+\frac {b\,e\,{\ln \left (1-c^2\,x^2\right )}^2}{12\,c^3}+\frac {b\,x^2\,\left (3\,d-5\,e\right )}{18\,c} \]

input
int(x^2*(a + b*acoth(c*x))*(d + e*log(1 - c^2*x^2)),x)
 
output
log(1/(c*x) + 1)*((b*d*x^3)/6 - (2*b*c*e*x + (2*b*c^3*e*x^3)/3)/(6*c^3) + 
(b*e*x^3*log(1 - c^2*x^2))/6) + x*((a*(3*d - 2*e))/(3*c^2) - (a*d)/c^2) + 
log(1 - 1/(c*x))*(((4*b*e*x^4)/9 - (2*b*e*x^2)/(3*c^2) + (2*b*c^2*e*x^6)/9 
)/(2*(x + c*x^2)*(c*x - 1)) + ((b*d*x^4)/3 - (b*c^2*d*x^6)/3)/(2*(x + c*x^ 
2)*(c*x - 1)) + (log(1 - c^2*x^2)*((b*e*x^4)/3 - (b*c^2*e*x^6)/3))/(2*(x + 
 c*x^2)*(c*x - 1)) - (b*e*log(1/(c*x) + 1))/(6*c^3)) + (a*x^3*(3*d - 2*e)) 
/9 + c^2*log(1 - c^2*x^2)*((a*e*x^3)/(3*c^2) + (b*e*x^2)/(6*c^3)) - (log(c 
*x - 1)*(6*a*e - 3*b*d + 11*b*e))/(18*c^3) + (log(c*x + 1)*(6*a*e + 3*b*d 
- 11*b*e))/(18*c^3) + (b*e*log(1/(c*x) + 1)^2)/(12*c^3) + (b*e*log(1 - 1/( 
c*x))^2)/(12*c^3) + (b*e*log(1 - c^2*x^2)^2)/(12*c^3) + (b*x^2*(3*d - 5*e) 
)/(18*c)