\(\int \frac {(a+\frac {b}{x^2})^p (c+\frac {d}{x^2})^q}{x^7} \, dx\) [204]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 230 \[ \int \frac {\left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q}{x^7} \, dx=\frac {(b c (2+p)+a d (4+p+2 q)) \left (a+\frac {b}{x^2}\right )^{1+p} \left (c+\frac {d}{x^2}\right )^{1+q}}{2 b^2 d^2 (2+p+q) (3+p+q)}-\frac {\left (a+\frac {b}{x^2}\right )^{2+p} \left (c+\frac {d}{x^2}\right )^{1+q}}{2 b^2 d (3+p+q)}-\frac {\left (b^2 c^2 \left (2+3 p+p^2\right )+2 a b c d (1+p) (1+q)+a^2 d^2 \left (2+3 q+q^2\right )\right ) \left (a+\frac {b}{x^2}\right )^{1+p} \left (c+\frac {d}{x^2}\right )^{1+q} \operatorname {Hypergeometric2F1}\left (1,2+p+q,2+p,-\frac {d \left (a+\frac {b}{x^2}\right )}{b c-a d}\right )}{2 b^2 d^2 (b c-a d) (1+p) (2+p+q) (3+p+q)} \] Output:

1/2*(b*c*(2+p)+a*d*(4+p+2*q))*(a+b/x^2)^(p+1)*(c+d/x^2)^(1+q)/b^2/d^2/(2+p 
+q)/(3+p+q)-1/2*(a+b/x^2)^(2+p)*(c+d/x^2)^(1+q)/b^2/d/(3+p+q)-1/2*(b^2*c^2 
*(p^2+3*p+2)+2*a*b*c*d*(p+1)*(1+q)+a^2*d^2*(q^2+3*q+2))*(a+b/x^2)^(p+1)*(c 
+d/x^2)^(1+q)*hypergeom([1, 2+p+q],[2+p],-d*(a+b/x^2)/(-a*d+b*c))/b^2/d^2/ 
(-a*d+b*c)/(p+1)/(2+p+q)/(3+p+q)
 

Mathematica [A] (warning: unable to verify)

Time = 5.35 (sec) , antiderivative size = 206, normalized size of antiderivative = 0.90 \[ \int \frac {\left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q}{x^7} \, dx=\frac {\left (a+\frac {b}{x^2}\right )^{1+p} \left (c+\frac {d}{x^2}\right )^q \left (-\frac {d+c x^2}{x^4}+\frac {(b c (2+p)+a d (2+q)) \left (d+c x^2\right )}{b d (2+p+q) x^2}-\frac {\left (b^2 c^2 \left (2+3 p+p^2\right )+2 a b c d (1+p) (1+q)+a^2 d^2 \left (2+3 q+q^2\right )\right ) \left (\frac {b \left (d+c x^2\right )}{(b c-a d) x^2}\right )^{-q} \operatorname {Hypergeometric2F1}\left (1+p,-q,2+p,-\frac {d \left (b+a x^2\right )}{(b c-a d) x^2}\right )}{b^2 d (1+p) (2+p+q)}\right )}{2 b d (3+p+q)} \] Input:

Integrate[((a + b/x^2)^p*(c + d/x^2)^q)/x^7,x]
 

Output:

((a + b/x^2)^(1 + p)*(c + d/x^2)^q*(-((d + c*x^2)/x^4) + ((b*c*(2 + p) + a 
*d*(2 + q))*(d + c*x^2))/(b*d*(2 + p + q)*x^2) - ((b^2*c^2*(2 + 3*p + p^2) 
 + 2*a*b*c*d*(1 + p)*(1 + q) + a^2*d^2*(2 + 3*q + q^2))*Hypergeometric2F1[ 
1 + p, -q, 2 + p, -((d*(b + a*x^2))/((b*c - a*d)*x^2))])/(b^2*d*(1 + p)*(2 
 + p + q)*((b*(d + c*x^2))/((b*c - a*d)*x^2))^q)))/(2*b*d*(3 + p + q))
 

Rubi [A] (warning: unable to verify)

Time = 0.63 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.01, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {948, 101, 25, 90, 80, 79}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q}{x^7} \, dx\)

\(\Big \downarrow \) 948

\(\displaystyle -\frac {1}{2} \int \frac {\left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q}{x^4}d\frac {1}{x^2}\)

\(\Big \downarrow \) 101

\(\displaystyle \frac {1}{2} \left (-\frac {\int -\left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q \left (a c+\frac {b c (p+2)+a d (q+2)}{x^2}\right )d\frac {1}{x^2}}{b d (p+q+3)}-\frac {\left (a+\frac {b}{x^2}\right )^{p+1} \left (c+\frac {d}{x^2}\right )^{q+1}}{b d x^2 (p+q+3)}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\frac {\int \left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q \left (a c+\frac {b c (p+2)+a d (q+2)}{x^2}\right )d\frac {1}{x^2}}{b d (p+q+3)}-\frac {\left (a+\frac {b}{x^2}\right )^{p+1} \left (c+\frac {d}{x^2}\right )^{q+1}}{b d x^2 (p+q+3)}\right )\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {1}{2} \left (\frac {\left (a c-\frac {(a d (q+1)+b c (p+1)) (a d (q+2)+b c (p+2))}{b d (p+q+2)}\right ) \int \left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^qd\frac {1}{x^2}+\frac {\left (a+\frac {b}{x^2}\right )^{p+1} \left (c+\frac {d}{x^2}\right )^{q+1} (a d (q+2)+b c (p+2))}{b d (p+q+2)}}{b d (p+q+3)}-\frac {\left (a+\frac {b}{x^2}\right )^{p+1} \left (c+\frac {d}{x^2}\right )^{q+1}}{b d x^2 (p+q+3)}\right )\)

\(\Big \downarrow \) 80

\(\displaystyle \frac {1}{2} \left (\frac {\left (c+\frac {d}{x^2}\right )^q \left (a c-\frac {(a d (q+1)+b c (p+1)) (a d (q+2)+b c (p+2))}{b d (p+q+2)}\right ) \left (\frac {b \left (c+\frac {d}{x^2}\right )}{b c-a d}\right )^{-q} \int \left (a+\frac {b}{x^2}\right )^p \left (\frac {b c}{b c-a d}+\frac {b d}{(b c-a d) x^2}\right )^qd\frac {1}{x^2}+\frac {\left (a+\frac {b}{x^2}\right )^{p+1} \left (c+\frac {d}{x^2}\right )^{q+1} (a d (q+2)+b c (p+2))}{b d (p+q+2)}}{b d (p+q+3)}-\frac {\left (a+\frac {b}{x^2}\right )^{p+1} \left (c+\frac {d}{x^2}\right )^{q+1}}{b d x^2 (p+q+3)}\right )\)

\(\Big \downarrow \) 79

\(\displaystyle \frac {1}{2} \left (\frac {\frac {\left (a+\frac {b}{x^2}\right )^{p+1} \left (c+\frac {d}{x^2}\right )^q \left (a c-\frac {(a d (q+1)+b c (p+1)) (a d (q+2)+b c (p+2))}{b d (p+q+2)}\right ) \left (\frac {b \left (c+\frac {d}{x^2}\right )}{b c-a d}\right )^{-q} \operatorname {Hypergeometric2F1}\left (p+1,-q,p+2,-\frac {d \left (a+\frac {b}{x^2}\right )}{b c-a d}\right )}{b (p+1)}+\frac {\left (a+\frac {b}{x^2}\right )^{p+1} \left (c+\frac {d}{x^2}\right )^{q+1} (a d (q+2)+b c (p+2))}{b d (p+q+2)}}{b d (p+q+3)}-\frac {\left (a+\frac {b}{x^2}\right )^{p+1} \left (c+\frac {d}{x^2}\right )^{q+1}}{b d x^2 (p+q+3)}\right )\)

Input:

Int[((a + b/x^2)^p*(c + d/x^2)^q)/x^7,x]
 

Output:

(-(((a + b/x^2)^(1 + p)*(c + d/x^2)^(1 + q))/(b*d*(3 + p + q)*x^2)) + (((b 
*c*(2 + p) + a*d*(2 + q))*(a + b/x^2)^(1 + p)*(c + d/x^2)^(1 + q))/(b*d*(2 
 + p + q)) + ((a*c - ((b*c*(1 + p) + a*d*(1 + q))*(b*c*(2 + p) + a*d*(2 + 
q)))/(b*d*(2 + p + q)))*(a + b/x^2)^(1 + p)*(c + d/x^2)^q*Hypergeometric2F 
1[1 + p, -q, 2 + p, -((d*(a + b/x^2))/(b*c - a*d))])/(b*(1 + p)*((b*(c + d 
/x^2))/(b*c - a*d))^q))/(b*d*(3 + p + q)))/2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 79
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(( 
a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c - a*d))^n))*Hypergeometric2F1[-n, m + 1 
, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}, x] 
&&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] 
 ||  !(RationalQ[n] && GtQ[-d/(b*c - a*d), 0]))
 

rule 80
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(c 
 + d*x)^FracPart[n]/((b/(b*c - a*d))^IntPart[n]*(b*((c + d*x)/(b*c - a*d))) 
^FracPart[n])   Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d) 
), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] &&  !IntegerQ[m] &&  !Integ 
erQ[n] && (RationalQ[m] ||  !SimplerQ[n + 1, m + 1])
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 101
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^( 
p_), x_] :> Simp[b*(a + b*x)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + 
 p + 3))), x] + Simp[1/(d*f*(n + p + 3))   Int[(c + d*x)^n*(e + f*x)^p*Simp 
[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f 
*(n + p + 4) - b*(d*e*(n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, 
 c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]
 

rule 948
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_. 
), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^ 
p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ 
[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]
 
Maple [F]

\[\int \frac {\left (a +\frac {b}{x^{2}}\right )^{p} \left (c +\frac {d}{x^{2}}\right )^{q}}{x^{7}}d x\]

Input:

int((a+b/x^2)^p*(c+d/x^2)^q/x^7,x)
 

Output:

int((a+b/x^2)^p*(c+d/x^2)^q/x^7,x)
 

Fricas [F]

\[ \int \frac {\left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q}{x^7} \, dx=\int { \frac {{\left (a + \frac {b}{x^{2}}\right )}^{p} {\left (c + \frac {d}{x^{2}}\right )}^{q}}{x^{7}} \,d x } \] Input:

integrate((a+b/x^2)^p*(c+d/x^2)^q/x^7,x, algorithm="fricas")
 

Output:

integral(((a*x^2 + b)/x^2)^p*((c*x^2 + d)/x^2)^q/x^7, x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q}{x^7} \, dx=\text {Timed out} \] Input:

integrate((a+b/x**2)**p*(c+d/x**2)**q/x**7,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q}{x^7} \, dx=\int { \frac {{\left (a + \frac {b}{x^{2}}\right )}^{p} {\left (c + \frac {d}{x^{2}}\right )}^{q}}{x^{7}} \,d x } \] Input:

integrate((a+b/x^2)^p*(c+d/x^2)^q/x^7,x, algorithm="maxima")
 

Output:

integrate((a + b/x^2)^p*(c + d/x^2)^q/x^7, x)
 

Giac [F]

\[ \int \frac {\left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q}{x^7} \, dx=\int { \frac {{\left (a + \frac {b}{x^{2}}\right )}^{p} {\left (c + \frac {d}{x^{2}}\right )}^{q}}{x^{7}} \,d x } \] Input:

integrate((a+b/x^2)^p*(c+d/x^2)^q/x^7,x, algorithm="giac")
 

Output:

integrate((a + b/x^2)^p*(c + d/x^2)^q/x^7, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q}{x^7} \, dx=\int \frac {{\left (a+\frac {b}{x^2}\right )}^p\,{\left (c+\frac {d}{x^2}\right )}^q}{x^7} \,d x \] Input:

int(((a + b/x^2)^p*(c + d/x^2)^q)/x^7,x)
 

Output:

int(((a + b/x^2)^p*(c + d/x^2)^q)/x^7, x)
 

Reduce [F]

\[ \int \frac {\left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q}{x^7} \, dx=\int \frac {\left (a +\frac {b}{x^{2}}\right )^{p} \left (c +\frac {d}{x^{2}}\right )^{q}}{x^{7}}d x \] Input:

int((a+b/x^2)^p*(c+d/x^2)^q/x^7,x)
                                                                                    
                                                                                    
 

Output:

int((a+b/x^2)^p*(c+d/x^2)^q/x^7,x)