\(\int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [182]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 131 \[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {4 a^3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {20 a^3 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \] Output:

4*a^3*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^(1 
/2)/d+20/3*a^3*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec 
(d*x+c)^(1/2)/d+2/3*a^3*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2*a^3*sec(d*x+c)^(1/ 
2)*sin(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.14 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.29 \[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a^3 \left (\cos \left (\frac {c}{2}\right )-i \sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}\right )+i \sin \left (\frac {c}{2}\right )\right ) \left (\frac {24 i \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}+2 \left (-6 i-10 i \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right ) \sec (c+d x)+\sin (c+d x)+3 \tan (c+d x)\right )\right )}{3 d \sqrt {\sec (c+d x)}} \] Input:

Integrate[(a + a*Sec[c + d*x])^3/Sec[c + d*x]^(3/2),x]
 

Output:

(a^3*(Cos[c/2] - I*Sin[c/2])*(Cos[c/2] + I*Sin[c/2])*(((24*I)*Hypergeometr 
ic2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))])/Sqrt[1 + E^((2*I)*(c + d*x))] 
 + 2*(-6*I - (10*I)*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1 
/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d*x] + Sin[c + d*x] + 3*Tan[c + d*x 
])))/(3*d*Sqrt[Sec[c + d*x]])
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 4278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4278

\(\displaystyle \int \left (a^3 \sec ^{\frac {3}{2}}(c+d x)+\frac {a^3}{\sec ^{\frac {3}{2}}(c+d x)}+3 a^3 \sqrt {\sec (c+d x)}+\frac {3 a^3}{\sqrt {\sec (c+d x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 a^3 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}+\frac {2 a^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {20 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {4 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

Input:

Int[(a + a*Sec[c + d*x])^3/Sec[c + d*x]^(3/2),x]
 

Output:

(4*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d 
+ (20*a^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]]) 
/(3*d) + (2*a^3*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + (2*a^3*Sqrt[Sec[c 
 + d*x]]*Sin[c + d*x])/d
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4278
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_), x_Symbol] :> Int[ExpandTrig[(a + b*csc[e + f*x])^m*(d*csc[e + f 
*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && I 
GtQ[m, 0] && RationalQ[n]
 
Maple [A] (verified)

Time = 3.45 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.31

method result size
default \(-\frac {4 a^{3} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(172\)
parts \(-\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{3} \left (-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {6 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {6 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(637\)

Input:

int((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-4/3*a^3*(2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-4*cos(1/2*d*x+1/2*c)*s 
in(1/2*d*x+1/2*c)^2+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2 
-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2 
))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.13 \[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (a^{3} \cos \left (d x + c\right ) + 3 \, a^{3}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{3 \, d} \] Input:

integrate((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

-2/3*(5*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
+ c)) - 5*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d* 
x + c)) - 3*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0 
, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, 
 weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (a^3*cos(d*x 
 + c) + 3*a^3)*sin(d*x + c)/sqrt(cos(d*x + c)))/d
 

Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=a^{3} \left (\int \frac {1}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {3}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int 3 \sqrt {\sec {\left (c + d x \right )}}\, dx + \int \sec ^{\frac {3}{2}}{\left (c + d x \right )}\, dx\right ) \] Input:

integrate((a+a*sec(d*x+c))**3/sec(d*x+c)**(3/2),x)
 

Output:

a**3*(Integral(sec(c + d*x)**(-3/2), x) + Integral(3/sqrt(sec(c + d*x)), x 
) + Integral(3*sqrt(sec(c + d*x)), x) + Integral(sec(c + d*x)**(3/2), x))
 

Maxima [F]

\[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate((a*sec(d*x + c) + a)^3/sec(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

integrate((a*sec(d*x + c) + a)^3/sec(d*x + c)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^3}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((a + a/cos(c + d*x))^3/(1/cos(c + d*x))^(3/2),x)
 

Output:

int((a + a/cos(c + d*x))^3/(1/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=a^{3} \left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}}d x +3 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )}d x \right )+3 \left (\int \sqrt {\sec \left (d x +c \right )}d x \right )+\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )d x \right ) \] Input:

int((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x)
                                                                                    
                                                                                    
 

Output:

a**3*(int(sqrt(sec(c + d*x))/sec(c + d*x)**2,x) + 3*int(sqrt(sec(c + d*x)) 
/sec(c + d*x),x) + 3*int(sqrt(sec(c + d*x)),x) + int(sqrt(sec(c + d*x))*se 
c(c + d*x),x))