\(\int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} (A+C \sec ^2(c+d x)) \, dx\) [1136]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 219 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {4 a^2 (136 A+189 C) \sin (c+d x)}{315 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 (136 A+189 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{315 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 (52 A+63 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{315 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a A \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{21 d}+\frac {2 A \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{9 d} \] Output:

4/315*a^2*(136*A+189*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/ 
2)+2/315*a^2*(136*A+189*C)*cos(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^ 
(1/2)+2/315*a^2*(52*A+63*C)*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c)) 
^(1/2)+2/21*a*A*cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d+2/9*A 
*cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 6.85 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.47 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a \sqrt {\cos (c+d x)} (2689 A+3276 C+2 (799 A+756 C) \cos (c+d x)+4 (137 A+63 C) \cos (2 (c+d x))+170 A \cos (3 (c+d x))+35 A \cos (4 (c+d x))) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{1260 d} \] Input:

Integrate[Cos[c + d*x]^(9/2)*(a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x 
]^2),x]
 

Output:

(a*Sqrt[Cos[c + d*x]]*(2689*A + 3276*C + 2*(799*A + 756*C)*Cos[c + d*x] + 
4*(137*A + 63*C)*Cos[2*(c + d*x)] + 170*A*Cos[3*(c + d*x)] + 35*A*Cos[4*(c 
 + d*x)])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(1260*d)
 

Rubi [A] (verified)

Time = 1.44 (sec) , antiderivative size = 252, normalized size of antiderivative = 1.15, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.378, Rules used = {3042, 4753, 3042, 4575, 27, 3042, 4505, 27, 3042, 4503, 3042, 4292, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {9}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (c+d x)^{9/2} (a \sec (c+d x)+a)^{3/2} \left (A+C \sec (c+d x)^2\right )dx\)

\(\Big \downarrow \) 4753

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\sec (c+d x) a+a)^{3/2} \left (C \sec ^2(c+d x)+A\right )}{\sec ^{\frac {9}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 4575

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \int \frac {(\sec (c+d x) a+a)^{3/2} (3 a A+a (4 A+9 C) \sec (c+d x))}{2 \sec ^{\frac {7}{2}}(c+d x)}dx}{9 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {(\sec (c+d x) a+a)^{3/2} (3 a A+a (4 A+9 C) \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)}dx}{9 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (3 a A+a (4 A+9 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx}{9 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4505

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2}{7} \int \frac {\sqrt {\sec (c+d x) a+a} \left ((52 A+63 C) a^2+(40 A+63 C) \sec (c+d x) a^2\right )}{2 \sec ^{\frac {5}{2}}(c+d x)}dx+\frac {6 a^2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}}{9 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{7} \int \frac {\sqrt {\sec (c+d x) a+a} \left ((52 A+63 C) a^2+(40 A+63 C) \sec (c+d x) a^2\right )}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {6 a^2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}}{9 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{7} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left ((52 A+63 C) a^2+(40 A+63 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {6 a^2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}}{9 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4503

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{7} \left (\frac {3}{5} a^2 (136 A+189 C) \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a^3 (52 A+63 C) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {6 a^2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}}{9 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{7} \left (\frac {3}{5} a^2 (136 A+189 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a^3 (52 A+63 C) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {6 a^2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}}{9 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4292

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{7} \left (\frac {3}{5} a^2 (136 A+189 C) \left (\frac {2}{3} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^3 (52 A+63 C) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {6 a^2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}}{9 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{7} \left (\frac {3}{5} a^2 (136 A+189 C) \left (\frac {2}{3} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^3 (52 A+63 C) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {6 a^2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}}{9 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4291

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {6 a^2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{7} \left (\frac {2 a^3 (52 A+63 C) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {3}{5} a^2 (136 A+189 C) \left (\frac {4 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )\right )}{9 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\right )\)

Input:

Int[Cos[c + d*x]^(9/2)*(a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2),x 
]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*A*(a + a*Sec[c + d*x])^(3/2)*Sin 
[c + d*x])/(9*d*Sec[c + d*x]^(7/2)) + ((6*a^2*A*Sqrt[a + a*Sec[c + d*x]]*S 
in[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + ((2*a^3*(52*A + 63*C)*Sin[c + d*x] 
)/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) + (3*a^2*(136*A + 189* 
C)*((2*a*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + 
 (4*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]])))/5) 
/7)/(9*a))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4505
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot 
[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x] - Sim 
p[b/(a*d*n)   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Sim 
p[a*A*(m - n - 1) - b*B*n - (a*B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] 
/; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0 
] && GtQ[m, 1/2] && LtQ[n, -1]
 

rule 4575
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Co 
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/( 
b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b 
*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, 
 C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || 
 EqQ[m + n + 1, 0])
 

rule 4753
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a 
+ b*x])^m*(c*Sec[a + b*x])^m   Int[ActivateTrig[u]/(c*Sec[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [A] (verified)

Time = 2.36 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.49

method result size
default \(\frac {2 \sin \left (d x +c \right ) \left (\left (35 \cos \left (d x +c \right )^{4}+85 \cos \left (d x +c \right )^{3}+102 \cos \left (d x +c \right )^{2}+136 \cos \left (d x +c \right )+272\right ) A +\left (63 \cos \left (d x +c \right )^{2}+189 \cos \left (d x +c \right )+378\right ) C \right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, a}{315 d \left (\cos \left (d x +c \right )+1\right )}\) \(108\)

Input:

int(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x,method=_R 
ETURNVERBOSE)
 

Output:

2/315/d*sin(d*x+c)*((35*cos(d*x+c)^4+85*cos(d*x+c)^3+102*cos(d*x+c)^2+136* 
cos(d*x+c)+272)*A+(63*cos(d*x+c)^2+189*cos(d*x+c)+378)*C)*cos(d*x+c)^(1/2) 
*(a*(1+sec(d*x+c)))^(1/2)*a/(cos(d*x+c)+1)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.53 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \, {\left (35 \, A a \cos \left (d x + c\right )^{4} + 85 \, A a \cos \left (d x + c\right )^{3} + 3 \, {\left (34 \, A + 21 \, C\right )} a \cos \left (d x + c\right )^{2} + {\left (136 \, A + 189 \, C\right )} a \cos \left (d x + c\right ) + 2 \, {\left (136 \, A + 189 \, C\right )} a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{315 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \] Input:

integrate(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="fricas")
 

Output:

2/315*(35*A*a*cos(d*x + c)^4 + 85*A*a*cos(d*x + c)^3 + 3*(34*A + 21*C)*a*c 
os(d*x + c)^2 + (136*A + 189*C)*a*cos(d*x + c) + 2*(136*A + 189*C)*a)*sqrt 
((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(d*cos 
(d*x + c) + d)
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(9/2)*(a+a*sec(d*x+c))**(3/2)*(A+C*sec(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 544 vs. \(2 (189) = 378\).

Time = 0.25 (sec) , antiderivative size = 544, normalized size of antiderivative = 2.48 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="maxima")
 

Output:

1/5040*(sqrt(2)*(3780*a*cos(8/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x 
+ 9/2*c)))*sin(9/2*d*x + 9/2*c) + 1050*a*cos(2/3*arctan2(sin(9/2*d*x + 9/2 
*c), cos(9/2*d*x + 9/2*c)))*sin(9/2*d*x + 9/2*c) + 378*a*cos(4/9*arctan2(s 
in(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c)))*sin(9/2*d*x + 9/2*c) + 135*a*c 
os(2/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c)))*sin(9/2*d*x + 
9/2*c) - 3780*a*cos(9/2*d*x + 9/2*c)*sin(8/9*arctan2(sin(9/2*d*x + 9/2*c), 
 cos(9/2*d*x + 9/2*c))) - 1050*a*cos(9/2*d*x + 9/2*c)*sin(2/3*arctan2(sin( 
9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c))) - 378*a*cos(9/2*d*x + 9/2*c)*sin( 
4/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c))) - 135*a*cos(9/2*d 
*x + 9/2*c)*sin(2/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c))) + 
 70*a*sin(9/2*d*x + 9/2*c) + 135*a*sin(7/9*arctan2(sin(9/2*d*x + 9/2*c), c 
os(9/2*d*x + 9/2*c))) + 378*a*sin(5/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/ 
2*d*x + 9/2*c))) + 1050*a*sin(1/3*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d* 
x + 9/2*c))) + 3780*a*sin(1/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 
9/2*c))))*A*sqrt(a) - 504*(10*sqrt(2)*a*cos(5/4*arctan2(sin(2*d*x + 2*c), 
cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) - 5*sqrt(2)*a*sin(3/4*arctan2(sin(2*d* 
x + 2*c), cos(2*d*x + 2*c))) - 10*sqrt(2)*a*sin(1/4*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c))) - (10*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*sin(5 
/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*C*sqrt(a))/d
 

Giac [A] (verification not implemented)

Time = 0.48 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.12 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {4 \, {\left (315 \, \sqrt {2} A a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 315 \, \sqrt {2} C a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + {\left (525 \, \sqrt {2} A a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 945 \, \sqrt {2} C a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + {\left (819 \, \sqrt {2} A a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 1071 \, \sqrt {2} C a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + {\left (423 \, \sqrt {2} A a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 567 \, \sqrt {2} C a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 2 \, {\left (47 \, \sqrt {2} A a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 63 \, \sqrt {2} C a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{315 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {9}{2}} d} \] Input:

integrate(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="giac")
 

Output:

4/315*(315*sqrt(2)*A*a^6*sgn(cos(d*x + c)) + 315*sqrt(2)*C*a^6*sgn(cos(d*x 
 + c)) + (525*sqrt(2)*A*a^6*sgn(cos(d*x + c)) + 945*sqrt(2)*C*a^6*sgn(cos( 
d*x + c)) + (819*sqrt(2)*A*a^6*sgn(cos(d*x + c)) + 1071*sqrt(2)*C*a^6*sgn( 
cos(d*x + c)) + (423*sqrt(2)*A*a^6*sgn(cos(d*x + c)) + 567*sqrt(2)*C*a^6*s 
gn(cos(d*x + c)) + 2*(47*sqrt(2)*A*a^6*sgn(cos(d*x + c)) + 63*sqrt(2)*C*a^ 
6*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)^2)*tan(1 
/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)/((a*tan(1/ 
2*d*x + 1/2*c)^2 + a)^(9/2)*d)
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^{9/2}\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \] Input:

int(cos(c + d*x)^(9/2)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2),x 
)
 

Output:

int(cos(c + d*x)^(9/2)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2), 
x)
 

Reduce [F]

\[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\sqrt {a}\, a \left (\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{4} \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{4} \sec \left (d x +c \right )^{2}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{4} \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{4}d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x)
 

Output:

sqrt(a)*a*(int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x)**4*s 
ec(c + d*x)**3,x)*c + int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c 
+ d*x)**4*sec(c + d*x)**2,x)*c + int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d 
*x))*cos(c + d*x)**4*sec(c + d*x),x)*a + int(sqrt(sec(c + d*x) + 1)*sqrt(c 
os(c + d*x))*cos(c + d*x)**4,x)*a)