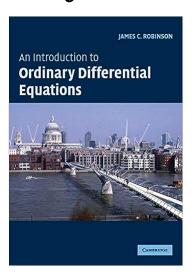
A Solution Manual For

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004



Nasser M. Abbasi

October 12, 2023

Contents

1	Chapter 5, Trivial differential equations. Exercises page 33	2
2	Chapter 7, Scalar autonomous ODEs. Exercises page 56	13
3	Chapter 8, Separable equations. Exercises page 72	19
4	Chapter 9, First order linear equations and the integrating factor. Exercises page 86	32
5	Chapter 10, Two tricks for nonlinear equations. Exercises page 97	42
6	Chapter 12, Homogeneous second order linear equations. Exercises page 118	53
7	Chapter 14, Inhomogeneous second order linear equations. Exercises page 140	69
8	Chapter 15, Resonance. Exercises page 148	83
9	Chapter 16, Higher order linear equations with constant coefficients. Exercises page 153	86
10	Chapter 17, Reduction of order. Exercises page 162	91
11	Chapter 18, The variation of constants formula. Exercises page 168	98
12	Chapter 19, CauchyEuler equations. Exercises page 174	105
13	Chapter 20, Series solutions of second order linear equations. Exercises page 195	117
14	Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257	128
15	Chapter 28, Distinct real eigenvalues. Exercises page 282	136
16	Chapter 29, Complex eigenvalues. Exercises page 292	142
17	Chapter 30, A repeated real eigenvalue. Exercises page 299	147

1	Chapter	5 ,	Trivial	${\bf differential}$	equations.	Exercises
	page 33					

1.1	problem	5.1	(i)																			3
1.2	problem	5.1	(ii)																			4
1.3	problem	5.1	(iii)																			5
1.4	problem	5.1	(iv)																			6
1.5	problem	5.1	(v)																			7
1.6	problem	5.4	(i)																			8
1.7	problem	5.4	(ii)																	•		9
1.8	problem	5.4	(iii)																			10
1.9	problem	5.4	(iv)																			11
1.10	problem	5.4	(v)																			12

1.1 problem 5.1 (i)

Internal problem ID [10620]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.1 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - \cos(t) - \sin(t) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve(diff(x(t),t)=sin(t)+cos(t),x(t), singsol=all)

$$x(t) = -\cos(t) + \sin(t) + c_1$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 14

DSolve[x'[t]==Sin[t]+Cos[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \sin(t) - \cos(t) + c_1$$

1.2 problem 5.1 (ii)

Internal problem ID [10621]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.1 (ii).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{1}{x^2 - 1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $dsolve(diff(y(x),x)=1/(x^2-1),y(x), singsol=all)$

$$y(x) = -\operatorname{arctanh}(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 12

DSolve[$y'[x]==1/(x^2-1),y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to -\operatorname{arctanh}(x) + c_1$$

1.3 problem 5.1 (iii)

Internal problem ID [10622]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.1 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$u' - 4t \ln (t) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(u(t),t)=4*t*ln(t),u(t), singsol=all)

$$u(t) = 2t^2 \ln(t) - t^2 + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 20

DSolve[u'[t]==4*t*Log[t],u[t],t,IncludeSingularSolutions -> True]

$$u(t) \to -t^2 + 2t^2 \log(t) + c_1$$

1.4 problem 5.1 (iv)

Internal problem ID [10623]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.1 (iv).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$z' - x e^{-2x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(z(x),x)=x*exp(-2*x),z(x), singsol=all)

$$z(x) = -\frac{(2x+1)e^{-2x}}{4} + c_1$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 22

DSolve[z'[x] == x*Exp[-2*x],z[x],x,IncludeSingularSolutions -> True]

$$z(x) \to -\frac{1}{4}e^{-2x}(2x+1) + c_1$$

1.5 problem 5.1 (v)

Internal problem ID [10624]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.1 (v).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$T' - e^{-t}\sin(2t) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(T(t),t)=exp(-t)*sin(2*t),T(t), singsol=all)

$$T(t) = -\frac{2e^{-t}\cos(2t)}{5} - \frac{e^{-t}\sin(2t)}{5} + c_1$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 28

DSolve[T'[t] == Exp[-t] * Sin[2*t], T[t], t, Include Singular Solutions -> True]

$$T(t) \to -\frac{1}{5}e^{-t}(\sin(2t) + 2\cos(2t)) + c_1$$

1.6 problem 5.4 (i)

Internal problem ID [10625]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.4 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - \sec(t)^2 = 0$$

With initial conditions

$$\left[x\left(\frac{\pi}{4}\right) = 0\right]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 8

 $dsolve([diff(x(t),t)=sec(t)^2,x(1/4*Pi)=0],x(t), singsol=all)$

$$x(t) = \tan(t) - 1$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 9

 $DSolve[\{x'[t] == Sec[t]^2, \{x[Pi/4] == 0\}\}, x[t], t, Include Singular Solutions \rightarrow True]$

$$x(t) \to \tan(t) - 1$$

1.7 problem 5.4 (ii)

Internal problem ID [10626]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.4 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - x + \frac{x^3}{3} = 0$$

With initial conditions

$$[y(-1) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve([diff(y(x),x)=x-1/3*x^3,y(-1) = 1],y(x), singsol=all)$

$$y(x) = -\frac{(x^2 - 3)^2}{12} + \frac{4}{3}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 21

 $DSolve[\{y'[x]==x-1/3*x^3,\{y[-1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{12} (-x^4 + 6x^2 + 7)$$

1.8 problem 5.4 (iii)

Internal problem ID [10627]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.4 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - 2\sin\left(t\right)^2 = 0$$

With initial conditions

$$\left[x\left(\frac{\pi}{4}\right) = \frac{\pi}{4}\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve([diff(x(t),t)=2*sin(t)^2,x(1/4*Pi) = 1/4*Pi],x(t), singsol=all)$

$$x(t) = t + \frac{1}{2} - \frac{\sin\left(2t\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 16

DSolve[{x'[t]==2*Sin[t]^2,{x[Pi/4]==Pi/4}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to t - \sin(t)\cos(t) + \frac{1}{2}$$

1.9 problem 5.4 (iv)

Internal problem ID [10628]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.4 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$xV' - x^2 - 1 = 0$$

With initial conditions

$$[V(1) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve([x*diff(V(x),x)=1+x^2,V(1) = 1],V(x), singsol=all)$

$$V(x) = \frac{x^2}{2} + \ln(x) + \frac{1}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 17

DSolve $[\{x*V'[x]==1+x^2,\{V[1]==1\}\},V[x],x,IncludeSingularSolutions -> True]$

$$V(x) \to \frac{1}{2} \left(x^2 + 1 \right) + \log(x)$$

1.10 problem 5.4 (v)

Internal problem ID [10629]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.4 (v).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x'e^{3t} + 3xe^{3t} - e^{-t} = 0$$

With initial conditions

$$[x(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([diff(x(t)*exp(3*t),t)=exp(-t),x(0) = 3],x(t), singsol=all)

$$x(t) = -(e^{-t} - 4) e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 18

DSolve[{D[x[t]*Exp[3*t],t]==Exp[-t],{x[0]==3}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-4t} \left(4e^t - 1 \right)$$

2	Chapter 7, Scalar autonomous ODEs. Exercises	
	page 56	
2.1	problem 7.1 (i)	1
2.2	problem 7.1 (ii)	5
2.3	problem 7.1 (iii)	3
2.4	problem 7.1 (iv)	7
2.5	problem 7.1 (v)	3

2.1 problem 7.1 (i)

Internal problem ID [10630]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 7, Scalar autonomous ODEs. Exercises page 56

Problem number: 7.1 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' + x - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(x(t),t)=-x(t)+1,x(t), singsol=all)

$$x(t) = 1 + e^{-t}c_1$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 20

DSolve[x'[t]==-x[t]+1,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to 1 + c_1 e^{-t}$$

$$x(t) \to 1$$

2.2 problem 7.1 (ii)

Internal problem ID [10631]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 7, Scalar autonomous ODEs. Exercises page 56

Problem number: 7.1 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - x(2 - x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(x(t),t)=x(t)*(2-x(t)),x(t), singsol=all)

$$x(t) = \frac{2}{1 + 2e^{-2t}c_1}$$

✓ Solution by Mathematica

Time used: 0.32 (sec). Leaf size: 24

DSolve[x'[t]==x[t]*(2-x[t]),x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow 1 + \tanh(t - c_1)$$

$$x(t) \to 0$$

$$x(t) \to 2$$

2.3 problem 7.1 (iii)

Internal problem ID [10632]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 7, Scalar autonomous ODEs. Exercises page 56

Problem number: 7.1 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - (1+x)(2-x)\sin(x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

dsolve(diff(x(t),t)=(1+x(t))*(2-x(t))*sin(x(t)),x(t), singsol=all)

$$t + \int^{x(t)} \frac{1}{(\underline{a+1})(\underline{a-2})\sin(\underline{a})} d\underline{a} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 9.49 (sec). Leaf size: 52

 $DSolve[x'[t] == (1+x[t])*(2-x[t])*Sin[x[t]],x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \rightarrow \text{InverseFunction} \left[\int_1^{\#1} \frac{\csc(K[1])}{(K[1]-2)(K[1]+1)} dK[1] \& \right] [-t+c_1]$$

$$x(t) \rightarrow -1$$

$$x(t) \to 0$$

$$x(t) \to 2$$

2.4 problem 7.1 (iv)

Internal problem ID [10633]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 7, Scalar autonomous ODEs. Exercises page 56

Problem number: 7.1 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$x' + x(-x + 1)(2 - x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve(diff(x(t),t)=-x(t)*(1-x(t))*(2-x(t)),x(t), singsol=all)

$$x(t) = \frac{e^t c_1}{\sqrt{-1 + e^{2t} c_1^2}} + 1$$

✓ Solution by Mathematica

Time used: 29.045 (sec). Leaf size: 120

DSolve[x'[t]==-x[t]*(1-x[t])*(2-x[t]),x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to 1 - \frac{e^{2t}}{\sqrt{e^{4t} + e^{2(t+c_1)}}}$$
 $x(t) \to 1 + \frac{e^{2t}}{\sqrt{e^{4t} + e^{2(t+c_1)}}}$
 $x(t) \to 0$
 $x(t) \to 1$
 $x(t) \to 2$
 $x(t) \to 1 - e^{-2t}\sqrt{e^{4t}}$
 $x(t) \to e^{-2t}\sqrt{e^{4t}} + 1$

2.5 problem 7.1 (v)

Internal problem ID [10634]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 7, Scalar autonomous ODEs. Exercises page 56

Problem number: 7.1 (v).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - x^2 + x^4 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 47

 $dsolve(diff(x(t),t)=x(t)^2-x(t)^4,x(t), singsol=all)$

$$x(t) = e^{\text{RootOf}(\ln(e-Z-2)e-Z+2c_1e-Z-2e-Z+2t\,e-Z-\ln(e-Z-2)-2c_1+2e-Z-2t+2)} - 1$$

✓ Solution by Mathematica

Time used: 0.262 (sec). Leaf size: 53

 $DSolve[x'[t] == x[t]^2 - x[t]^4, x[t], t, IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \text{InverseFunction}\left[\frac{1}{\#1} + \frac{1}{2}\log(1 - \#1) - \frac{1}{2}\log(\#1 + 1)\&\right][-t + c_1]$$

$$x(t) \rightarrow -1$$

$$x(t) \to 0$$

$$x(t) \to 1$$

3	Chapter	8,	Se	ep	aı	a	b.	le	e	\mathbf{q}	ua	at	io	n	s.	.]	E	X€	er	ci	S	es	3	p	a	\mathbf{g}	\mathbf{e}	7	2
3.1	problem 8.1 (i)																												20
3.2	problem 8.1 (ii)																											21
3.3	problem 8.1 (ii	i)																											22
3.4	problem 8.1 (iv	7).																											23
3.5	problem 8.1 (v)																											24
3.6	problem 8.2 .																												25
3.7	problem 8.3 .																												26
3.8	problem 8.4 .																												27
3.9	problem 8.5 .																												28
3.10	problem 8.6 .																												29
3.11	problem 8.7 .																												30
3.12	problem 8.8 .																												31

3.1 problem 8.1 (i)

Internal problem ID [10635]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.1 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - t^3(-x+1) = 0$$

With initial conditions

$$[x(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve([diff(x(t),t)=t^3*(1-x(t)),x(0) = 3],x(t), singsol=all)$

$$x(t) = 1 + 2e^{-\frac{t^4}{4}}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 18

 $DSolve[\{x'[t]==t^3*(1-x[t]),\{x[0]==3\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to 2e^{-\frac{t^4}{4}} + 1$$

3.2 problem 8.1 (ii)

Internal problem ID [10636]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.1 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - (y^2 + 1)\tan(x) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.14 (sec). Leaf size: 12

 $dsolve([diff(y(x),x)=(1+y(x)^2)*tan(x),y(0) = 1],y(x), singsol=all)$

$$y(x) = \cot\left(\frac{\pi}{4} + \ln\left(\cos\left(x\right)\right)\right)$$

✓ Solution by Mathematica

Time used: 0.291 (sec). Leaf size: 15

 $DSolve[\{y'[x]==(1+y[x]^2)*Tan[x],\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \cot\left(\log(\cos(x)) + \frac{\pi}{4}\right)$$

3.3 problem 8.1 (iii)

Internal problem ID [10637]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.1 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - t^2 x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

 $dsolve(diff(x(t),t)=t^2*x(t),x(t), singsol=all)$

$$x(t) = c_1 \mathrm{e}^{\frac{t^3}{3}}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 22

DSolve[x'[t]==t^2*x[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^{\frac{t^3}{3}}$$
$$x(t) \to 0$$

3.4 problem 8.1 (iv)

Internal problem ID [10638]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.1 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' + x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve(diff(x(t),t)=-x(t)^2,x(t), singsol=all)$

$$x(t) = \frac{1}{t + c_1}$$

✓ Solution by Mathematica

Time used: 0.107 (sec). Leaf size: 18

DSolve[x'[t]==-x[t]^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{t - c_1}$$

$$x(t) \to 0$$

3.5 problem 8.1 (v)

Internal problem ID [10639]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.1 (v).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - y^2 e^{-t^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(t),t)=exp(-t^2)*y(t)^2,y(t), singsol=all)$

$$y(t) = -\frac{2}{\sqrt{\pi} \operatorname{erf}(t) - 2c_1}$$

✓ Solution by Mathematica

Time used: 0.223 (sec). Leaf size: 27

DSolve[y'[t]==Exp[-t^2]*y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\frac{2}{\sqrt{\pi} \text{erf}(t) + 2c_1}$$

 $y(t) \rightarrow 0$

3.6 problem 8.2

Internal problem ID [10640]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' + px - q = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(x(t),t)+p*x(t)=q,x(t), singsol=all)

$$x(t) = \frac{q}{p} + e^{-pt}c_1$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 29

DSolve[x'[t]+p*x[t]==q,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{q}{p} + c_1 e^{-pt}$$

$$x(t) o rac{q}{p}$$

3.7 problem 8.3

Internal problem ID [10641]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x - ky = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(x*diff(y(x),x)=k*y(x),y(x), singsol=all)

$$y(x) = c_1 x^k$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 16

DSolve[x*y'[x]==k*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x^k$$

$$y(x) \to 0$$

3.8 problem 8.4

Internal problem ID [10642]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$i' - p(t) i = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(i(t),t)=p(t)*i(t),i(t), singsol=all)

$$i(t) = c_1 e^{\int p(t)dt}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 25

DSolve[i'[t]==p[t]*i[t],i[t],t,IncludeSingularSolutions -> True]

$$i(t) \to c_1 \exp\left(\int_1^t p(K[1])dK[1]\right)$$

 $i(t) \to 0$

3.9 problem 8.5

Internal problem ID [10643]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - \lambda x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(x(t),t)=lambda*x(t),x(t), singsol=all)

$$x(t) = c_1 e^{\lambda t}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 18

 $DSolve[x'[t] == \\ [Lambda] *x[t], x[t], t, IncludeSingularSolutions \rightarrow True]$

$$x(t) \to c_1 e^{\lambda t}$$

$$x(t) \to 0$$

3.10 problem 8.6

Internal problem ID [10644]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$mv' + mg - kv^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

 $dsolve(m*diff(v(t),t)=-m*g+k*v(t)^2,v(t), singsol=all)$

$$v(t) = -rac{ anh\left(rac{\sqrt{mgk}\,(t+c_1)}{m}
ight)\sqrt{mgk}}{k}$$

✓ Solution by Mathematica

Time used: 8.753 (sec). Leaf size: 87

DSolve[m*v'[t]==-m*g+k*v[t]^2,v[t],t,IncludeSingularSolutions -> True]

$$v(t)
ightarrow rac{\sqrt{g}\sqrt{m} \tanh\left(rac{\sqrt{g}\sqrt{k}(-t+c_1m)}{\sqrt{m}}
ight)}{\sqrt{k}}$$
 $v(t)
ightarrow -rac{\sqrt{g}\sqrt{m}}{\sqrt{k}}$ $v(t)
ightarrow rac{\sqrt{g}\sqrt{m}}{\sqrt{k}}$

3.11 problem 8.7

Internal problem ID [10645]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - kx + x^2 = 0$$

With initial conditions

$$[x(0) = x_0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 22

 $dsolve([diff(x(t),t)=k*x(t)-x(t)^2,x(0) = x_0],x(t), singsol=all)$

$$x(t) = \frac{kx_0}{(-x_0 + k)e^{-kt} + x_0}$$

✓ Solution by Mathematica

Time used: 0.658 (sec). Leaf size: 26

 $DSolve[\{x'[t]==k*x[t]-x[t]^2,\{x[0]==x0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{k \times 0e^{kt}}{\times 0(e^{kt} - 1) + k}$$

3.12 problem 8.8

Internal problem ID [10646]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' + x(k^2 + x^2) = 0$$

With initial conditions

$$[x(0) = x_0]$$

Solution by Maple

 $dsolve([diff(x(t),t)=-x(t)*(k^2+x(t)^2),x(0) = x_0],x(t), singsol=all)$

No solution found

Solution by Mathematica

Time used: 1.105 (sec). Leaf size: 62

 $DSolve[\{x'[t]==-x[t]*(k^2+x[t]^2),\{x[0]==x0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to -\frac{k}{\sqrt{e^{2k^2t} \left(\frac{k^2}{x0^2} + 1\right) - 1}}$$
$$x(t) \to \frac{k}{\sqrt{e^{2k^2t} \left(\frac{k^2}{x0^2} + 1\right) - 1}}$$

$$x(t)
ightarrow rac{k}{\sqrt{e^{2k^2t} \left(rac{k^2}{\mathbf{x}0^2} + 1
ight) - 1}}$$

4	Chapter 9, First order linear equations and the	
	integrating factor. Exercises page 86	
4.1	problem 9.1 (i)	3
4.2	problem 9.1 (ii)	4
4.3	problem 9.1 (iii)	5
4.4	problem 9.1 (iv)	6
4.5	problem 9.1 (v)	7
4.6	problem 9.1 (vi)	8
4.7	problem 9.1 (vii)	9
4.8	problem 9.1 (viii)	0

4.9

4.1 problem 9.1 (i)

Internal problem ID [10647]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (i).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{x} - x^2 = 0$$

With initial conditions

$$[y(0) = y_0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 9

 $\label{eq:dsolve} $$ dsolve([diff(y(x),x)+y(x)/x=x^2,y(0) = y_0],y(x), singsol=all)$$

$$y(x) = \frac{x^3}{4}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y'[x]+y[x]/x==x^2,\{y[0]==y0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

Not solved

4.2 problem 9.1 (ii)

Internal problem ID [10648]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xt + x' - 4t = 0$$

With initial conditions

$$[x(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([diff(x(t),t)+t*x(t)=4*t,x(0) = 2],x(t), singsol=all)

$$x(t) = 4 - 2e^{-\frac{t^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 18

 $DSolve[\{x'[t]+t*x[t]==4*t,\{x[0]==2\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to 4 - 2e^{-\frac{t^2}{2}}$$

4.3 problem 9.1 (iii)

Internal problem ID [10649]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$z' - z \tan(y) - \sin(y) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(diff(z(y),y)=z(y)*tan(y)+sin(y),z(y), singsol=all)

$$z(y) = \frac{-\frac{\cos(2y)}{4} + c_1}{\cos(y)}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 17

DSolve[z'[y]==z[y]*Tan[y]+Sin[y],z[y],y,IncludeSingularSolutions -> True]

$$z(y) \to -\frac{\cos(y)}{2} + c_1 \sec(y)$$

4.4 problem 9.1 (iv)

Internal problem ID [10650]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + e^{-x}y - 1 = 0$$

With initial conditions

$$[y(0) = e]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 23

dsolve([diff(y(x),x)+exp(-x)*y(x)=1,y(0) = exp(1)],y(x), singsol=all)

$$y(x) = -(-\operatorname{Ei}_{1}(e^{-x}) - 1 + \operatorname{Ei}_{1}(1))e^{e^{-x}}$$

✓ Solution by Mathematica

Time used: 0.063 (sec). Leaf size: 27

 $DSolve[\{y'[x]+Exp[-x]*y[x]==1,\{y[0]==Exp[1]\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{e^{-x}}(-\text{ExpIntegralEi}(\sinh(x) - \cosh(x)) + \text{ExpIntegralEi}(-1) + 1)$$

4.5 problem 9.1 (v)

Internal problem ID [10651]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (v).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' + x \tanh(t) - 3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(x(t),t)+x(t)*tanh(t)=3,x(t), singsol=all)

$$x(t) = \frac{3\sinh(t) + c_1}{\cosh(t)}$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 15

DSolve[x'[t]+x[t]*Tanh[t]==3,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \operatorname{sech}(t)(3\sinh(t) + c_1)$$

4.6 problem 9.1 (vi)

Internal problem ID [10652]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (vi).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2\cot(x)y - 5 = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right) = 1\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve([diff(y(x),x)+2*y(x)*cot(x)=5,y(1/2*Pi) = 1],y(x), singsol=all)

$$y(x) = \frac{-10x + 5\sin(2x) - 4 + 5\pi}{-2 + 2\cos(2x)}$$

✓ Solution by Mathematica

Time used: 0.145 (sec). Leaf size: 27

 $DSolve[\{y'[x]+2*y[x]*Cot[x]==5,\{y[Pi/2]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{4}(10x - 5\sin(2x) - 5\pi + 4)\csc^2(x)$$

4.7 problem 9.1 (vii)

Internal problem ID [10653]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (vii).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x' + 5x - t = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(x(t),t)+5*x(t)=t,x(t), singsol=all)

$$x(t) = \frac{t}{5} - \frac{1}{25} + e^{-5t}c_1$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 22

DSolve[x'[t]+5*x[t]==t,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{t}{5} + c_1 e^{-5t} - \frac{1}{25}$$

4.8 problem 9.1 (viii)

Internal problem ID [10654]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (viii).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' + \left(a + \frac{1}{t}\right)x - b = 0$$

With initial conditions

$$[x(1) = x_0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 38

 $dsolve([diff(x(t),t)+(a+1/t)*x(t)=b,x(1) = x_0],x(t), singsol=all)$

$$x(t) = \frac{(x_0a^2 - ba + b)e^{-a(t-1)} + b(at - 1)}{a^2t}$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 46

 $DSolve[\{x'[t]+(a+1/t)*x[t]==b,\{x[1]==x0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{e^{-at}(e^a(a^2 \times 0 - ab + b) + be^{at}(at - 1))}{a^2t}$$

4.9 problem 9.4

Internal problem ID [10655]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.4.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$T' + k(T - \mu - a\cos(\omega(t - \phi))) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 62

dsolve(diff(T(t),t)=-k*(T(t)-(mu+a*cos(omega*(t-phi)))),T(t), singsol=all)

$$T(t) = e^{-kt}c_1 - \frac{\sin(\omega(-t+\phi)) ak\omega - \cos(\omega(-t+\phi)) ak^2 - k^2\mu - \mu\omega^2}{k^2 + \omega^2}$$

✓ Solution by Mathematica

Time used: 0.326 (sec). Leaf size: 50

DSolve[T'[t]==-k*(T[t]- (mu+a*Cos[omega*(t-phi)])),T[t],t,IncludeSingularSolutions -> True]

$$T(t) \rightarrow \frac{ak(k\cos(\omega(\phi-t)) - \omega\sin(\omega(\phi-t)))}{k^2 + \omega^2} + c_1e^{-kt} + \mu$$

5	Chapter 10, Two tricks for nonlinear equations
	Exercises page 97

5.1	problem 1	10.1 ((i) .	•		•	•					 				•					43
5.2	problem 1	0.1 ((ii)																		44
5.3	problem 1	0.1 ((iii)																		45
5.4	problem 1	0.1 ((iv)									 									46
5.5	problem 1	0.2																			47
5.6	problem 1	0.3 ((i) .																		48
5.7	problem 1	0.3 ((ii)																		49
5.8	problem 1	0.4 ((i) .																		50
5.9	problem 1	0.4 ((ii)																		51
5 10	problem 1	0.5																			52

5.1 problem 10.1 (i)

Internal problem ID [10656]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.1 (i).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x),G(x)]'], [_Abel, '2

$$2xy - \sec(x)^{2} + (x^{2} + 2y)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

 $dsolve((2*x*y(x)-sec(x)^2)+(x^2+2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{x^2}{2} - \frac{\sqrt{x^4 + 4\tan(x) - 4c_1}}{2}$$

$$y(x) = -\frac{x^2}{2} + \frac{\sqrt{x^4 + 4\tan(x) - 4c_1}}{2}$$

✓ Solution by Mathematica

Time used: 22.22 (sec). Leaf size: 90

 $DSolve[(2*x*y[x] - Sec[x]^2) + (x^2+2*y[x])*y'[x] == 0, y[x], x, IncludeSingularSolutions \\ -> True]$

$$y(x) \to \frac{1}{2} \left(-x^2 - \sqrt{\sec^2(x)} \sqrt{\cos^2(x) (x^4 + 4\tan(x) + 4c_1)} \right)$$

$$y(x) \to \frac{1}{2} \left(-x^2 + \sqrt{\sec^2(x)} \sqrt{\cos^2(x) (x^4 + 4\tan(x) + 4c_1)} \right)$$

5.2 problem 10.1 (ii)

Internal problem ID [10657]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.1 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$1 + e^{x}y + x e^{x}y + (x e^{x} + 2) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve((1+exp(x)*y(x)+x*exp(x)*y(x))+(x*exp(x)+2)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{-x + c_1}{x e^x + 2}$$

✓ Solution by Mathematica

Time used: 0.089 (sec). Leaf size: 21

DSolve[(1+Exp[x]*y[x]+x*Exp[x]*y[x])+(x*Exp[x]+2)*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) o \frac{-x + c_1}{e^x x + 2}$$

5.3 problem 10.1 (iii)

Internal problem ID [10658]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.1 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$(x\cos(y) + \cos(x))y' + \sin(y) - \sin(x)y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve((x*cos(y(x))+cos(x))*diff(y(x),x)+sin(y(x))-y(x)*sin(x)=0,y(x), singsol=all)

$$\cos(x) y(x) + x \sin(y(x)) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.164 (sec). Leaf size: 17

DSolve[(x*Cos[y[x]]+Cos[x])*y'[x]+Sin[y[x]]-y[x]*Sin[x]==0,y[x],x,IncludeSingularSolutions ->

$$Solve[x \sin(y(x)) + y(x) \cos(x) = c_1, y(x)]$$

5.4 problem 10.1 (iv)

Internal problem ID [10659]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.1 (iv).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$e^{x} \sin(y) + y + (e^{x} \cos(y) + x + e^{y}) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve(exp(x)*sin(y(x))+y(x)+(exp(x)*cos(y(x))+x+exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all(x)+x+exp(y(x))+x+exp(x)+x+exp(y(x))+x+exp(x)+x

$$y(x) x + e^x \sin(y(x)) + e^{y(x)} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.427 (sec). Leaf size: 22

$$Solve[e^{y(x)} + xy(x) + e^x \sin(y(x)) = c_1, y(x)]$$

5.5 problem 10.2

Internal problem ID [10660]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.2.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)]']]

$$e^{-y} \sec(x) + 2\cos(x) - e^{-y}y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 88

 $\label{eq:decomp} \\ \mbox{dsolve}(\exp(-y(x)) * \sec(x) + 2 * \cos(x) - \exp(-y(x)) * \mbox{diff}(y(x), x) = 0, \\ y(x), \ \mbox{singsol=all}) \\$

$$y(x) = \ln \left(\frac{\tan\left(\frac{x}{2}\right)^3 + \tan\left(\frac{x}{2}\right)^2 + \tan\left(\frac{x}{2}\right) + 1}{\tan\left(\frac{x}{2}\right)^3 c_1 + 2\tan\left(\frac{x}{2}\right)^3 x - \tan\left(\frac{x}{2}\right)^2 c_1 - 2\tan\left(\frac{x}{2}\right)^2 x + \tan\left(\frac{x}{2}\right) c_1 + 2\tan\left(\frac{x}{2}\right) x - c_1 - 2x - 4\tan\left(\frac{x}{2}\right) c_1 + 2\tan\left(\frac{x}{2}\right) c_1 + 2\tan\left(\frac{x}$$

Solution by Mathematica

Time used: 1.612 (sec). Leaf size: 33

DSolve[Exp[-y[x]]*Sec[x]+2*Cos[x]-Exp[-y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \to \log \left(\frac{e^{2\operatorname{arctanh}(\tan(\frac{x}{2}))}}{2(-x + \cos(x) - 2c_1)} \right)$$

5.6 problem 10.3 (i)

Internal problem ID [10661]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.3 (i).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$V'(x) + 2y'y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $\label{eq:diff} $$ $ dsolve(diff(V(x),x)+2*y(x)*diff(y(x),x)=0,y(x), singsol=all) $$ $ $ dsolve(diff(V(x),x)+2*y(x)*diff(y(x),x)=0,y(x), singsol=all) $$ $ dsolve(diff(X(x),x)+2*y(x)*diff(Y(x),x)=0,y(x), singsol=all) $$ $ dsolve(diff(X(x),x)+2*y(x)*diff(Y(x),x)=0,y(x), singsol=all) $$ $ dsolve(diff(X(x),x)+2*y(x)*diff(Y(x),x)=0,y(x), singsol=all) $$ $ dsolve(diff(X(x),x)+2*y(x)*diff(Y(x),x)=0,y(x), singsol=all) $$ $ dsolve(X(x),x)=0, singsol=all$

$$y(x) = \sqrt{-V(x) + c_1}$$
$$y(x) = -\sqrt{-V(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.077 (sec). Leaf size: 37

DSolve[V'[x]+2*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sqrt{-V(x) + 2c_1}$$
$$y(x) \to \sqrt{-V(x) + 2c_1}$$

5.7 problem 10.3 (ii)

Internal problem ID [10662]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.3 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left| \left(\frac{1}{y} - a \right) y' + \frac{2}{x} - b = 0 \right|$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve((1/y(x)-a)*diff(y(x),x)+2/x-b=0,y(x), singsol=all)

$$y(x) = -rac{ ext{LambertW}\left(-rac{a\,\mathrm{e}^{bx}c_1}{x^2}
ight)}{a}$$

✓ Solution by Mathematica

Time used: 4.223 (sec). Leaf size: 32

 $DSolve[(1/y[x]-a)*y'[x]+2/x-b==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o -rac{W\left(-rac{ae^{bx-c_1}}{x^2}
ight)}{a}$$
 $y(x) o 0$

5.8 problem 10.4 (i)

Internal problem ID [10663]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.4 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$xy + y^2 + x^2 - x^2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(x*y(x)+y(x)^2+x^2-x^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \tan\left(\ln\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.208 (sec). Leaf size: 13

 $DSolve[x*y[x]+y[x]^2+x^2-x^2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \tan(\log(x) + c_1)$$

5.9 problem 10.4 (ii)

Internal problem ID [10664]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.4 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x' - \frac{x^2 + t\sqrt{x^2 + t^2}}{xt} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

 $dsolve(diff(x(t),t)=(x(t)^2+t*sqrt(t^2+x(t)^2))/(t*x(t)),x(t), singsol=all)$

$$-\frac{\sqrt{t^{2}+x\left(t\right) ^{2}}}{t}+\ln \left(t\right) -c_{1}=0$$

✓ Solution by Mathematica

Time used: 0.321 (sec). Leaf size: 48

DSolve[x'[t]==(x[t]^2+t*Sqrt[t^2+x[t]^2])/(t*x[t]),x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -t\sqrt{(\log(t) - 1 + c_1)(\log(t) + 1 + c_1)}$$

$$x(t) \to t\sqrt{(\log(t) - 1 + c_1)(\log(t) + 1 + c_1)}$$

5.10 problem 10.5

Internal problem ID [10665]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - kx + x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(x(t),t)=k*x(t)-x(t)^2,x(t), singsol=all)$

$$x(t) = \frac{k}{1 + \mathrm{e}^{-kt} c_1 k}$$

✓ Solution by Mathematica

Time used: 0.598 (sec). Leaf size: 31

DSolve[x'[t]==k*x[t]-x[t]^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to k \left(1 + \frac{1}{-1 + e^{k(t+c_1)}} \right)$$

$$x(t) \to 0$$

$$x(t) \to k$$

6	Chapter 12, Homogeneous second order linear
	equations. Exercises page 118

6.1	$\operatorname{problem}$	12.1	(i) .				•	•							•		•			•			54
6.2	$\operatorname{problem}$	12.1	(ii)																				55
6.3	problem	12.1	(iii)														•						56
6.4	problem	12.1	(iv)														•						57
6.5	$\operatorname{problem}$	12.1	(v)																				58
6.6	$\operatorname{problem}$	12.1	(vi)																				59
6.7	$\operatorname{problem}$	12.1	(vii)																				60
6.8	$\operatorname{problem}$	12.1	(viii))																			61
6.9	$\operatorname{problem}$	12.1	(ix)																				62
6.10	$\operatorname{problem}$	12.1	(x)														•				•		63
6.11	$\operatorname{problem}$	12.1	(xi)																				64
6.12	$\operatorname{problem}$	12.1	(xii)																				65
6.13	$\operatorname{problem}$	12.1	(xiii))																			66
6.14	$\operatorname{problem}$	12.1	(xiv))																			67
6.15	problem	12.1	(xv)																				68

6.1 problem 12.1 (i)

Internal problem ID [10666]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 3x' + 2x = 0$$

With initial conditions

$$[x(0) = 2, x'(0) = 6]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve([diff(x(t),t\$2)-3*diff(x(t),t)+2*x(t)=0,x(0) = 2, D(x)(0) = 6],x(t), singsol=all)

$$x(t) = -2e^t + 4e^{2t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 17

 $DSolve[\{x''[t]-3*x'[t]+2*x[t]==0,\{x[0]==2,x'[0]==6\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \rightarrow 2e^t(2e^t - 1)$$

6.2 problem 12.1 (ii)

Internal problem ID [10667]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 4y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

dsolve([diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=0,y(0) = 0, D(y)(0) = 3],y(x), singsol=all)

$$y(x) = 3e^{2x}x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 13

 $DSolve[\{y''[x]-4*y'[x]+4*y[x]==0,\{y[0]==0,y'[0]==3\}\},y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to 3e^{2x}x$$

6.3 problem 12.1 (iii)

Internal problem ID [10668]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (iii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$z'' - 4z' + 13z = 0$$

With initial conditions

$$[z(0) = 7, z'(0) = 42]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([diff(z(t),t\$2)-4*diff(z(t),t)+13*z(t)=0,z(0) = 7, D(z)(0) = 42],z(t), singsol=all)

$$z(t) = \frac{7e^{2t}(4\sin(3t) + 3\cos(3t))}{3}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 27

$$z(t) \to \frac{7}{3}e^{2t}(4\sin(3t) + 3\cos(3t))$$

6.4 problem 12.1 (iv)

Internal problem ID [10669]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (iv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 6y = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 8]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve([diff(y(t),t\$2)+diff(y(t),t)-6*y(t)=0,y(0) = -1, D(y)(0) = 8],y(t), singsol=all)

$$y(t) = \left(e^{5t} - 2\right)e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

DSolve[{y''[t]+y'[t]-6*y[t]==0,{y[0]==-1,y'[0]==8}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-3t} (e^{5t} - 2)$$

6.5 problem 12.1 (v)

Internal problem ID [10670]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (v).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' = 0$$

With initial conditions

$$[y(0) = 13, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

dsolve([diff(y(t),t\$2)-4*diff(y(t),t)=0,y(0) = 13, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = 13$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 6

DSolve[{y''[t]-4*y'[t]==0,{y[0]==13,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 13$$

6.6 problem 12.1 (vi)

Internal problem ID [10671]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (vi).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$\theta'' + 4\theta = 0$$

With initial conditions

$$[\theta(0) = 0, \theta'(0) = 10]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve([diff(theta(t),t\$2)+4*theta(t)=0,theta(0) = 0, D(theta)(0) = 10],theta(t), singsol=all

$$\theta(t) = 5\sin\left(2t\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 11

DSolve[{\[Theta]''[t]+4*\[Theta][t]==0,{\[Theta][0]==0,\[Theta]'[0]==10}},\[Theta][t],t,Inclu

$$\theta(t) \to 5\sin(2t)$$

6.7 problem 12.1 (vii)

Internal problem ID [10672]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (vii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + 10y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+10*y(t)=0,y(0) = 3, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = e^{-t}(3\cos(3t) + \sin(3t))$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

 $DSolve[{y''[t]+2*y'[t]+10*y[t]==0,{y[0]==3,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True$

$$y(t) \to e^{-t}(\sin(3t) + 3\cos(3t))$$

6.8 problem 12.1 (viii)

Internal problem ID [10673]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (viii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$2z'' + 7z' - 4z = 0$$

With initial conditions

$$[z(0) = 0, z'(0) = 9]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve([2*diff(z(t),t\$2)+7*diff(z(t),t)-4*z(t)=0,z(0) = 0, D(z)(0) = 9],z(t), singsol=all)

$$z(t) = 2\left(e^{\frac{9t}{2}} - 1\right)e^{-4t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 49

 $DSolve[\{z''[t]+7*z'[t]-4*z[t]==0,\{z[0]==3,z'[0]==9\}\},z[t],t,IncludeSingularSolutions -> True]$

$$z(t) \to \frac{3}{10} e^{-\frac{1}{2}(7+\sqrt{65})t} \left(\left(5+\sqrt{65}\right) e^{\sqrt{65}t} + 5 - \sqrt{65} \right)$$

6.9 problem 12.1 (ix)

Internal problem ID [10674]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (ix).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=0,y(0) = 0, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = -t e^{-t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 13

DSolve[{y''[t]+2*y'[t]+y[t]==0,{y[0]==0,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -e^{-t}t$$

6.10 problem 12.1 (x)

Internal problem ID [10675]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (x).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + 6x' + 10x = 0$$

With initial conditions

$$[x(0) = 3, x'(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve([diff(x(t),t\$2)+6*diff(x(t),t)+10*x(t)=0,x(0) = 3, D(x)(0) = 1],x(t), singsol=all)

$$x(t) = e^{-3t} (3\cos(t) + 10\sin(t))$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: $20\,$

$$x(t) \to e^{-3t} (10\sin(t) + 3\cos(t))$$

6.11 problem 12.1 (xi)

Internal problem ID [10676]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (xi).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4x'' - 20x' + 21x = 0$$

With initial conditions

$$[x(0) = -4, x'(0) = -12]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve([4*diff(x(t),t\$2)-20*diff(x(t),t)+21*x(t)=0,x(0) = -4, D(x)(0) = -12],x(t), singsol=al(x,t)

$$x(t) = -3e^{\frac{7t}{2}} - e^{\frac{3t}{2}}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 23

DSolve[{4*x''[t]-20*x'[t]+21*x[t]==0,{x[0]==-4,x'[0]==-12}},x[t],t,IncludeSingularSolutions -

$$x(t) \to -e^{3t/2} (3e^{2t} + 1)$$

6.12 problem 12.1 (xii)

Internal problem ID [10677]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (xii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 2y = 0$$

With initial conditions

$$[y(0) = 4, y'(0) = -4]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve([diff(y(t),t\$2)+diff(y(t),t)-2*y(t)=0,y(0) = 4, D(y)(0) = -4],y(t), singsol=all)

$$y(t) = \frac{4(e^{3t} + 2)e^{-2t}}{3}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 21

DSolve[{y''[t]+y'[t]-2*y[t]==0,{y[0]==4,y'[0]==-4}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{4}{3}e^{-2t}(e^{3t} + 2)$$

6.13 problem 12.1 (xiii)

Internal problem ID [10678]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (xiii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y = 0$$

With initial conditions

$$[y(0) = 10, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve([diff(y(t),t\$2)-4*y(t)=0,y(0) = 10, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = 5e^{-2t} + 5e^{2t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 11

 $DSolve[\{y''[t]-4*y[t]==0,\{y[0]==10,y'[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 10 \cosh(2t)$$

6.14 problem 12.1 (xiv)

Internal problem ID [10679]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (xiv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y' + 4y = 0$$

With initial conditions

$$[y(0) = 27, y'(0) = -54]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+4*y(t)=0,y(0) = 27, D(y)(0) = -54],y(t), singsol=all)

$$y(t) = 27 \,\mathrm{e}^{-2t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 12

 $DSolve[\{y''[t]+4*y'[t]+4*y[t]==0,\{y[0]==27,y'[0]==-54\}\},y[t],t,IncludeSingularSolutions -> Tr(x) + (x) + ($

$$y(t) \rightarrow 27e^{-2t}$$

6.15 problem 12.1 (xv)

Internal problem ID [10680]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (xv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + \omega^2 y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve([diff(y(t),t$2)+omega^2*y(t)=0,y(0) = 0, D(y)(0) = 1],y(t), singsol=all)$

$$y(t) = \frac{\sin(t\omega)}{\omega}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 13

 $DSolve[\{y''[t]+w^2*y[t]==0,\{y[0]==0,y'[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) o rac{\sin(tw)}{w}$$

7	Chapter 14, Inhomogeneous second order linear	
	equations. Exercises page 140	
7.1	problem 14.1 (i)	70
7.2	problem 14.1 (ii)	71
7.3	problem 14.1 (iii)	72
7.4	problem 14.1 (iv)	73
7.5	problem 14.1 (v)	74
7.6	problem 14.1 (vi)	75
7.7	problem 14.1 (vii)	76
7.8	problem 14.1 (viii)	77
7.9	problem 14.1 (ix)	78
7.10	problem 14.1 (x)	79
7.11	problem 14.1 (xi)	80

7.1 problem 14.1 (i)

Internal problem ID [10681]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' - 4x - t^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(x(t),t$2)-4*x(t)=t^2,x(t), singsol=all)$

$$x(t) = c_1 e^{2t} + c_2 e^{-2t} - \frac{t^2}{4} - \frac{1}{8}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 32

DSolve[x''[t]-4*x[t]==t^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow -\frac{t^2}{4} + c_1 e^{2t} + c_2 e^{-2t} - \frac{1}{8}$$

7.2 problem 14.1 (ii)

Internal problem ID [10682]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x'' - 4x' - t^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(x(t),t$2)-4*diff(x(t),t)=t^2,x(t), singsol=all)$

$$x(t) = -\frac{t^2}{16} - \frac{t^3}{12} + \frac{c_1 e^{4t}}{4} - \frac{t}{32} + c_2$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 34

DSolve[x''[t]-4*x'[t]==t^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow -\frac{1}{96}t(8t^2 + 6t + 3) + \frac{1}{4}c_1e^{4t} + c_2$$

7.3 problem 14.1 (iii)

Internal problem ID [10683]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (iii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + x' - 2x - 3e^{-t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(x(t),t)+diff(x(t),t)-2*x(t)=3*exp(-t),x(t), singsol=all)

$$x(t) = c_1 e^t + c_2 e^{-2t} - \frac{3 e^{-t}}{2}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 29

DSolve[x''[t]+x'[t]-2*x[t]==3*Exp[-t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow -\frac{3e^{-t}}{2} + c_1 e^{-2t} + c_2 e^t$$

7.4 problem 14.1 (iv)

Internal problem ID [10684]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (iv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + x' - 2x - e^t = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(x(t),t)^2)+diff(x(t),t)^2*x(t)=exp(t),x(t), singsol=all)$

$$x(t) = c_1 e^t + c_2 e^{-2t} + \frac{t e^t}{3}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 29

DSolve[x''[t]+x'[t]-2*x[t]==Exp[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^{-2t} + e^t \left(\frac{t}{3} - \frac{1}{9} + c_2\right)$$

7.5 problem 14.1 (v)

Internal problem ID [10685]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (v).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + 2x' + x - e^{-t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(diff(x(t),t)^2)+2*diff(x(t),t)+x(t)=exp(-t),x(t), singsol=all)$

$$x(t) = c_1 t e^{-t} + \frac{e^{-t}t^2}{2} + c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 27

DSolve[x''[t]+2*x'[t]+x[t]==Exp[-t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{2}e^{-t}(t^2 + 2c_2t + 2c_1)$$

7.6 problem 14.1 (vi)

Internal problem ID [10686]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (vi).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + \omega^2 x - \sin\left(\alpha t\right) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

 $dsolve(diff(x(t),t$2)+omega^2*x(t)=sin(alpha*t),x(t), singsol=all)$

$$x(t) = \sin(t\omega) c_2 + \cos(t\omega) c_1 - \frac{\sin(\alpha t)}{\alpha^2 - \omega^2}$$

Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 37

DSolve[x''[t]+w^2*x[t]==Sin[a*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -\frac{\sin(at)}{a^2 - w^2} + c_1 \cos(tw) + c_2 \sin(tw)$$

7.7 problem 14.1 (vii)

Internal problem ID [10687]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (vii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + \omega^2 x - \sin(\omega t) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

 $dsolve(diff(x(t),t$2)+omega^2*x(t)=sin(omega*t),x(t), singsol=all)$

$$x(t) = \sin(t\omega) c_2 + \cos(t\omega) c_1 + \frac{\sin(t\omega) - \cos(t\omega) \omega t}{2\omega^2}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 29

DSolve[x''[t]+w^2*x[t]==Sin[w*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \left(-\frac{t}{2w} + c_1\right)\cos(tw) + c_2\sin(tw)$$

7.8 problem 14.1 (viii)

Internal problem ID [10688]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (viii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + 2x' + 10x - e^{-t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(x(t),t\$2)+2*diff(x(t),t)+10*x(t)=exp(-t),x(t), singsol=all)

$$x(t) = e^{-t} \sin(3t) c_2 + e^{-t} \cos(3t) c_1 + \frac{e^{-t}}{9}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 32

DSolve[x''[t]+2*x'[t]+10*x[t]==Exp[-t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{9}e^{-t}(9c_2\cos(3t) + 9c_1\sin(3t) + 1)$$

7.9 problem 14.1 (ix)

Internal problem ID [10689]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (ix).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 2x' + 10x - e^{-t}\cos(3t) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

dsolve(diff(x(t),t\$2)+2*diff(x(t),t)+10*x(t)=exp(-t)*cos(3*t),x(t), singsol=all)

$$x(t) = e^{-t} \sin(3t) c_2 + e^{-t} \cos(3t) c_1 + \frac{e^{-t} (\cos(3t) + 3t \sin(3t))}{18}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 38

DSolve[x''[t]+2*x'[t]+10*x[t]==Exp[-t]*Cos[3*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{36}e^{-t}((1+36c_2)\cos(3t)+6(t+6c_1)\sin(3t))$$

7.10 problem 14.1 (x)

Internal problem ID [10690]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (x).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 6x' + 10x - e^{-2t}\cos(t) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

dsolve(diff(x(t),t\$2)+6*diff(x(t),t)+10*x(t)=exp(-2*t)*cos(t),x(t), singsol=all)

$$x(t) = \sin(t) e^{-3t} c_2 + \cos(t) e^{-3t} c_1 + \frac{e^{-2t} (\cos(t) + 2\sin(t))}{5}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 33

DSolve[x''[t]+6*x'[t]+10*x[t]==Exp[-3*t]*Cos[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{2}e^{-3t}((1+2c_2)\cos(t) + (t+2c_1)\sin(t))$$

7.11 problem 14.1 (xi)

Internal problem ID [10691]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (xi).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + 4x' + 4x - e^{2t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(x(t),t\$2)+4*diff(x(t),t)+4*x(t)=exp(2*t),x(t), singsol=all)

$$x(t) = \frac{e^{2t}}{16} + c_1 t e^{-2t} + c_2 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 28

DSolve[x''[t]+4*x'[t]+4*x[t]==Exp[2*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \frac{e^{2t}}{16} + e^{-2t}(c_2t + c_1)$$

7.12 problem 14.2

Internal problem ID [10692]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x' - 2x - 12e^{-t} + 6e^{t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(diff(x(t),t)^2)+diff(x(t),t)^2*x(t)=12*exp(-t)^6*exp(t),x(t), singsol=all)$

$$x(t) = c_2 e^{-2t} + c_1 e^t - 6 e^{-t} - 2t e^t + \frac{2 e^t}{3}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 34

DSolve[x''[t]+x'[t]-2*x[t]==12*Exp[-t]-6*Exp[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-2t} \left(-6e^t + e^{3t} \left(-2t + \frac{2}{3} + c_2 \right) + c_1 \right)$$

7.13 problem 14.3

Internal problem ID [10693]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 4x - 289t e^t \sin(2t) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 48

dsolve(diff(x(t),t\$2)+4*x(t)=289*t*exp(t)*sin(2*t),x(t), singsol=all)

$$x(t) = c_2 \sin(2t) + c_1 \cos(2t) - e^t (68 \cos(2t) t - 17t \sin(2t) - 76 \cos(2t) + 2 \sin(2t))$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 40

DSolve[x''[t]+4*x[t]==289*t*Exp[t]*Sin[2*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to (e^t(76 - 68t) + c_1)\cos(2t) + (e^t(17t - 2) + c_2)\sin(2t)$$

8	Chapter	15, Resonance. Exercises page 148	
8.1	problem 15.1		34
8.2	problem 15.3		35

8.1 problem 15.1

Internal problem ID [10694]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 15, Resonance. Exercises page 148

Problem number: 15.1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + \omega^2 x - \cos\left(\alpha t\right) = 0$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve([diff(x(t),t\$2)+omega^2*x(t)=cos(alpha*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)$

$$x(t) = \frac{\cos(t\omega) - \cos(\alpha t)}{\alpha^2 - \omega^2}$$

✓ Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 28

 $DSolve[\{x''[t]+w^2*x[t]==Cos[a*t],\{x[0]==0,x'[0]==0\}\},x[t],t,IncludeSingularSolut] ions \rightarrow True$

$$x(t) o rac{\cos(tw) - \cos(at)}{a^2 - w^2}$$

8.2 problem 15.3

Internal problem ID [10695]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 15, Resonance. Exercises page 148

Problem number: 15.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + \omega^2 x - \cos(\omega t) = 0$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve([diff(x(t),t\$2)+omega^2*x(t)=cos(omega*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)$

$$x(t) = \frac{\sin(t\omega)\,t}{2\omega}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 17

 $DSolve[\{x''[t]+w^2*x[t]==Cos[w*t],\{x[0]==0,x'[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow True \}$

$$x(t) o rac{t\sin(tw)}{2w}$$

9	Chapter 16, Higher order linear equations with														
	constant coefficients. Exercises page 153														
9.1	problem 16.1 (i)														
9.2	problem 16.1 (ii)														
9.3	problem 16.1 (iii)														

9.1 problem 16.1 (i)

Internal problem ID [10696]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 16, Higher order linear equations with constant coefficients. Exercises page 153

Problem number: 16.1 (i).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$x''' - 6x'' + 11x' - 6x - e^{-t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(x(t),t\$3)-6*diff(x(t),t\$2)+11*diff(x(t),t)-6*x(t)=exp(-t),x(t), singsol=all)

$$x(t) = c_1 e^t + e^{2t} c_2 + c_3 e^{3t} - \frac{e^{-t}}{24}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 37

DSolve[x'''[t]-6*x''[t]+11*x'[t]-6*x[t]==Exp[-t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow -\frac{e^{-t}}{24} + c_1 e^t + c_2 e^{2t} + c_3 e^{3t}$$

9.2 problem 16.1 (ii)

Internal problem ID [10697]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 16, Higher order linear equations with constant coefficients. Exercises page 153

Problem number: 16.1 (ii).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 3y'' + 2y - \sin(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 59

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)+2*y(x)=sin(x),y(x), singsol=all)

$$y(x) = \frac{-15\sin(x) - 3\cos(x)}{6(5 + 2\sqrt{3})(-5 + 2\sqrt{3})} + e^x c_1 + e^{(1+\sqrt{3})x} c_2 + e^{-(\sqrt{3}-1)x} c_3$$

✓ Solution by Mathematica

Time used: 0.129 (sec). Leaf size: 49

 $DSolve[y'''[x]-3*y''[x]+2*y[x]==Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{26} \Big(5\sin(x) + \cos(x) + 26e^x \Big(c_1 e^{-\sqrt{3}x} + c_2 e^{\sqrt{3}x} + c_3 \Big) \Big)$$

9.3 problem 16.1 (iii)

Internal problem ID [10698]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 16, Higher order linear equations with constant coefficients. Exercises page 153

Problem number: 16.1 (iii).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$x'''' - 4x''' + 8x'' - 8x' + 4x - \sin(t) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

$$x(t) = -\frac{3\sin(t)}{25} + \frac{4\cos(t)}{25} + c_1e^t\cos(t) + c_2e^t\sin(t) + c_3e^t\cos(t) + c_4e^t\sin(t) + c_5e^t\cos(t) + c_4e^t\sin(t) + c_5e^t\cos(t) + c_5e$$

✓ Solution by Mathematica

Time used: 0.181 (sec). Leaf size: 42

DSolve[x''''[t]-4*x'''[t]+8*x''[t]-8*x'[t]+4*x[t]==Sin[t],x[t],t,IncludeSingularSolutions ->

$$x(t) o \left(\frac{4}{25} + e^t(c_4t + c_3)\right)\cos(t) + \left(-\frac{3}{25} + e^t(c_2t + c_1)\right)\sin(t)$$

9.4 problem 16.1 (iv)

Internal problem ID [10699]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 16, Higher order linear equations with constant coefficients. Exercises page 153

Problem number: 16.1 (iv).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$x'''' - 5x'' + 4x - e^t = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

dsolve(diff(x(t),t\$4)-5*diff(x(t),t\$2)+4*x(t)=exp(t),x(t), singsol=all)

$$x(t) = -\frac{t e^{t}}{6} + c_{1}e^{t} + c_{2}e^{-2t} + c_{3}e^{-t} + e^{2t}c_{4}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 45

DSolve[x''''[t]-5*x''[t]+4*x[t]==Exp[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-2t} \left(c_2 e^t + e^{3t} \left(-\frac{t}{6} - \frac{1}{36} + c_3 \right) + c_4 e^{4t} + c_1 \right)$$

10	Chapter 17,	Reduction	of order.	Exercises	page
	162				

10.1	problem 17.1								•												92
10.2	problem 17.2																				93
10.3	problem 17.3																				94
10.4	problem 17.4																				95
10.5	problem 17.5																				96
10.6	problem 17.6																				97

10.1 problem 17.1

Internal problem ID [10700]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 17, Reduction of order. Exercises page 162

Problem number: 17.1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$t^{2}y'' - (t^{2} + 2t)y' + (t+2)y = 0$$

Given that one solution of the ode is

$$y_1 = t$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

 $dsolve([t^2*diff(y(t),t$2)-(t^2+2*t)*diff(y(t),t)+(t+2)*y(t)=0,t],y(t), singsol=all)$

$$y(t) = c_1 t + c_2 t e^t$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 16

 $DSolve[t^2*y''[t]-(t^2+2*t)*y'[t]+(t+2)*y[t]==0,y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to t \left(c_2 e^t + c_1 \right)$$

10.2 problem 17.2

Internal problem ID [10701]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 17, Reduction of order. Exercises page 162

Problem number: 17.2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x-1)y'' - y'x + y = 0$$

Given that one solution of the ode is

$$y_1 = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([(x-1)*diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,exp(x)],y(x), singsol=all)

$$y(x) = c_1 x + c_2 e^x$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 17

 $DSolve[(x-1)*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^x - c_2 x$$

10.3 problem 17.3

Internal problem ID [10702]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 17, Reduction of order. Exercises page 162

Problem number: 17.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\left(\cos\left(t\right)t - \sin\left(t\right)\right)x'' - x't\sin\left(t\right) - x\sin\left(t\right) = 0$$

Given that one solution of the ode is

$$x_1 = t$$

X Solution by Maple

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $\textbf{DSolve}[(t*\textbf{Cos}[t]-\textbf{Sin}[t])*x''[t]-x'[t]*t*\textbf{Sin}[t]-x[t]*\textbf{Sin}[t]==0,x[t],t, \textbf{IncludeSingu} \\ \textbf{larSolutions} \\ \textbf{larsolutions$

Not solved

10.4 problem 17.4

Internal problem ID [10703]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 17, Reduction of order. Exercises page 162

Problem number: 17.4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(-t^{2} + t) x'' + (-t^{2} + 2) x' + (-t + 2) x = 0$$

Given that one solution of the ode is

$$x_1 = e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve([(t-t^2)*diff(x(t),t$2)+(2-t^2)*diff(x(t),t)+(2-t)*x(t)=0,exp(-t)],x(t), singsol=all)$

$$x(t) = \frac{c_1}{t} + c_2 \mathrm{e}^{-t}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 42

 $DSolve[(t-t^2)*x''[t]+(2-t^2)*x'[t]+(2-t)*x[t]==0,x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{e^{-t}\sqrt{1-t}(c_1e^t - c_2t)}{\sqrt{t-1}t}$$

10.5 problem 17.5

Internal problem ID [10704]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 17, Reduction of order. Exercises page 162

Problem number: 17.5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Hermite]

$$y'' - y'x + y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve([diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,x],y(x), singsol=all)

$$y(x) = c_1 x + c_2 \left(i\sqrt{2}\sqrt{\pi} e^{\frac{x^2}{2}} - \pi \operatorname{erf}\left(\frac{i\sqrt{2}x}{2}\right) x \right)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 47

DSolve[y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{x\left(2c_1 - \sqrt{\pi}c_2 \operatorname{erfi}\left(\frac{x}{\sqrt{2}}\right)\right)}{\sqrt{2}} + c_2 e^{\frac{x^2}{2}}$$

10.6 problem 17.6

Internal problem ID [10705]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 17, Reduction of order. Exercises page 162

Problem number: 17.6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\tan(t) x'' - 3x' + (\tan(t) + 3\cot(t)) x = 0$$

Given that one solution of the ode is

$$x_1 = \sin(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 15

dsolve([tan(t)*diff(x(t),t\$2)-3*diff(x(t),t)+(tan(t)+3*cot(t))*x(t)=0,sin(t)],x(t), singsol=a

$$x(t) = c_1 \sin(t) + c_2 \sin(t) \cos(t)$$

✓ Solution by Mathematica

Time used: 0.113 (sec). Leaf size: 24

DSolve[Tan[t]*x''[t]-3*x'[t]+(Tan[t]+3*Cot[t])*x[t]==0,x[t],t,IncludeSingularSolutions -> Tru

$$x(t) \to \sqrt{-\sin^2(t)}(c_2\cos(t) + c_1)$$

11 Chapter 18, The variation of constants formula. Exercises page 168

11.1	problem 1	18.1 ((i) .																	9	9
11.2	problem 1	18.1 ((ii)																	10	0
11.3	problem 1	18.1 ((iii)																	. 10)]
11.4	problem 1	18.1 ((iv)																	10	2
11.5	problem 1	18.1 ((v)																	10	3
11 6	problem 1	18 1 ((vi)																	10	Δ

11.1 problem 18.1 (i)

Internal problem ID [10706]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 18, The variation of constants formula. Exercises page 168

Problem number: 18.1 (i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 6y - e^x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-diff(y(x),x)-6*y(x)=exp(x),y(x), singsol=all)

$$y(x) = c_1 e^{3x} + c_2 e^{-2x} - \frac{e^x}{6}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 29

DSolve[y''[x]-y'[x]-6*y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{e^x}{6} + c_1 e^{-2x} + c_2 e^{3x}$$

11.2 problem 18.1 (ii)

Internal problem ID [10707]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 18, The variation of constants formula. Exercises page 168

Problem number: 18.1 (ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' - x - \frac{1}{t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(x(t),t\$2)-x(t)=1/t,x(t), singsol=all)

$$x(t) = c_1 e^t + c_2 e^{-t} - \frac{\operatorname{Ei}_1(t) e^t}{2} + \frac{\operatorname{Ei}_1(-t) e^{-t}}{2}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 38

DSolve[x''[t]-x[t]==1/t,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{2}e^{-t}\left(-\text{ExpIntegralEi}(t) + e^{2t}(\text{ExpIntegralEi}(-t) + 2c_1) + 2c_2\right)$$

11.3 problem 18.1 (iii)

Internal problem ID [10708]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 18, The variation of constants formula. Exercises page 168

Problem number: 18.1 (iii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - \cot(2x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$2)+4*y(x)=cot(2*x),y(x), singsol=all)

$$y(x) = c_1 \cos(2x) + c_2 \sin(2x) + \frac{\sin(2x)\ln(\csc(2x) - \cot(2x))}{4}$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 34

DSolve[y''[x]+4*y[x]==Cot[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cos(2x) + \frac{1}{4} \sin(2x)(\log(\sin(x)) - \log(\cos(x)) + 4c_2)$$

11.4 problem 18.1 (iv)

Internal problem ID [10709]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 18, The variation of constants formula. Exercises page 168

Problem number: 18.1 (iv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$t^2x'' - 2x - t^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(t^2*diff(x(t),t^2)-2*x(t)=t^3,x(t), singsol=all)$

$$x(t) = \frac{t^3}{4} + \frac{c_1}{t} + c_2 t^2$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 25

DSolve[t^2*x''[t]-2*x[t]==t^3,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{t^3}{4} + c_2 t^2 + \frac{c_1}{t}$$

11.5 problem 18.1 (v)

Internal problem ID [10710]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 18, The variation of constants formula. Exercises page 168

Problem number: 18.1 (v).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x'' - 4x' - \tan(t) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(x(t),t)^2)-4*diff(x(t),t)=tan(t),x(t), singsol=all)$

$$x(t) = \int \left(\int \tan(t) e^{-4t} dt + c_1\right) e^{4t} dt + c_2$$

✓ Solution by Mathematica

Time used: 60.141 (sec). Leaf size: 82

DSolve[x''[t]-4*x'[t]==Tan[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \int_{1}^{t} \left(e^{4K[1]} c_{1} + \frac{1}{20} \left(-5i \text{ Hypergeometric 2F1} \left(2i, 1, 1 + 2i, -e^{2iK[1]} \right) - (2 - 4i)e^{2iK[1]} \text{ Hypergeometric 2F1} \left(1, 1 + 2i, 2 + 2i, -e^{2iK[1]} \right) \right) dK[1] + c_{2}$$

11.6 problem 18.1 (vi)

Internal problem ID [10711]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 18, The variation of constants formula. Exercises page 168

Problem number: 18.1 (vi).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$(\tan(x)^{2} - 1)y'' - 4\tan(x)^{3}y' + 2y\sec(x)^{4} - (\tan(x)^{2} - 1)(1 - 2\sin(x)^{2}) = 0$$

Given that one solution of the ode is

$$y_1 = \sec(x)^2$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 29

 $dsolve([(tan(x)^2-1)*diff(y(x),x$2)-4*tan(x)^3*diff(y(x),x)+2*y(x)*sec(x)^4=(tan(x)^2-1)*(1-2)*diff(y(x),x$2)-4*tan(x)^3*diff(y(x),x$2)+2*y(x)*sec(x)^4=(tan(x)^2-1)*(1-2)*diff(y(x),x$2)-4*tan(x)^3*diff(y(x),x$2)+2*y(x)*sec(x)^4=(tan(x)^2-1)*(1-2)*diff(y(x),x$2)-4*tan(x)^3*diff(y(x),x$2)+2*y(x)*sec(x)^4=(tan(x)^2-1)*(1-2)*diff(y(x),x$2)+2*y(x)*sec(x)^4=(tan(x)^2-1)*(1-2)*diff(x)^4=(tan(x)^2-1)*(1-2)*diff(x)^4=(tan(x)^2-1)*(1-2)*diff(x)^4=(tan(x)^2-1)*(1-2)*diff(x)^4=(tan(x)^2-1)*(1-2)*diff(x)^4=(tan(x)^2-1)*(1-2)*diff(x)^4=(tan(x)^2-1)*(1-2)*diff(x)^4=(tan(x)^2-1)*(1-2)*diff(x)^4=(tan(x)^2-1)*(1-2)*diff(x)^4=(tan(x)^2-1)*(1-2)*(1-2)*diff(x)^4=(tan(x)^2-1)*(1-2)*($

$$y(x) = \sec(x)^{2} c_{2} + \sec(x) \sin(x) c_{1} - \frac{\cos(x)^{2}}{4} + \frac{x \tan(x)}{2} + \frac{1}{2}$$

✓ Solution by Mathematica

Time used: 0.228 (sec). Leaf size: 54

 $DSolve[(Tan[x]^2-1)*y''[x]-4*Tan[x]^3*y'[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^2),y[x]+2*y[x]^2=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^2=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^2=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^2=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^2=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^2=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^2=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^2=(Tan[x]^2-1)*(1-2*x[x]^2),y[x]+2*y[x]^2=(Tan[x]^2-1)*(1-2*x[x]^2),y[x]+2*y[x]^2=(Tan[x]^2-1)*(1-2*x[x]^2),y[x]+2*y[x]^2=(Tan[x$

$$y(x) \to -\frac{1}{4}\cos^{2}(x) + c_{1}\sec^{2}(x) + \sqrt{\sin^{2}(x)}\sec(x)\left(\cot^{-1}\left(\sec(x) - \sqrt{\sin^{2}(x)}\sec(x)\right) + c_{2}\right) + \frac{1}{2}$$

12 Chapter 19, CauchyEuler equations. Exercises page 174

12.1	problem	19.1	(i) .		•		•	•	•					 			•			•	•	•]	.06
12.2	${\bf problem}$	19.1	(ii)											 									.]	107
12.3	${\bf problem}$	19.1	(iii)											 									1	.08
12.4	${\bf problem}$	19.1	(iv)											 									1	.09
12.5	${\rm problem}$	19.1	(v)											 									1	.10
12.6	${\bf problem}$	19.1	(vi)											 									•	111
12.7	${\rm problem}$	19.1	(vii)											 									1	.12
12.8	${\bf problem}$	19.1	(viii))										 									1	13
12.9	${\bf problem}$	19.1	(ix)											 									.]	14
12.10)problem	19.1	(x)											 									1	.15
12.11	problem	19.2							_					 							_		1	16

12.1 problem 19.1 (i)

Internal problem ID [10712]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$x^2y'' - 4y'x + 6y = 0$$

With initial conditions

$$[y(1) = 0, y'(1) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

$$y(x) = x^2(x-1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 12

DSolve[{x^2*y''[x]-4*x*y'[x]+6*y[x]==0,{y[1]==0,y'[1]==1}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to (x-1)x^2$$

12.2 problem 19.1 (ii)

Internal problem ID [10713]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$4x^2y'' + y = 0$$

With initial conditions

$$[y(1) = 1, y'(1) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 13

 $dsolve([4*x^2*diff(y(x),x$2)+y(x)=0,y(1) = 1, D(y)(1) = 0],y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{x}\left(-2 + \ln\left(x\right)\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 47

 $DSolve[\{x^2*y''[x]+y[x]==0,\{y[1]==1,y'[1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{3}\sqrt{x} \left(\sqrt{3}\sin\left(\frac{1}{2}\sqrt{3}\log(x)\right) - 3\cos\left(\frac{1}{2}\sqrt{3}\log(x)\right)\right)$$

12.3 problem 19.1 (iii)

Internal problem ID [10714]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (iii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$t^2x'' - 5x't + 10x = 0$$

With initial conditions

$$[x(1) = 2, x'(1) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

$$x(t) = t^{3}(-5\sin(\ln(t)) + 2\cos(\ln(t)))$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 194

DSolve[{t^2*x''[t]-5*t*x[t]+10*x[t]==0,{x[1]==2,x'[1]==1}},x[t],t,IncludeSingularSolutions ->

$$\rightarrow \frac{t^{\frac{1}{2} - \frac{i\sqrt{39}}{2}} \left(\left(2\,_{0}F_{1} \left(; -i\sqrt{39}; 5 \right) - {}_{0}F_{1} \left(; 1 - i\sqrt{39}; 5 \right) \right) t^{i\sqrt{39}}\,_{0}F_{1} \left(; 1 + i\sqrt{39}; 5 t \right) + \left(2\,_{0}F_{1} \left(; i\sqrt{39}; 5 \right) - {}_{0}F_{1} \left(; 1 - i\sqrt{39}; 5 \right) \right) e^{-i\sqrt{39}}\,_{0}F_{1} \left(; 1 + i\sqrt{39}; 5 \right) e^{-i\sqrt{39}}\,_{0}F_{1} \left(; 1 - i\sqrt{39}; 5 \right) e^{-i\sqrt{39}}\,_$$

12.4 problem 19.1 (iv)

Internal problem ID [10715]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (iv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$t^2x'' + x't - x = 0$$

With initial conditions

$$[x(1) = 1, x'(1) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

 $dsolve([t^2*diff(x(t),t^2)+t*diff(x(t),t)-x(t)=0,x(1) = 1, D(x)(1) = 1],x(t), singsol=all)$

$$x(t) = t$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 151

$$\rightarrow \frac{x(t)}{\sqrt{t}(((1+\sqrt{5})\operatorname{BesselJ}(\sqrt{5},2)-2_0\tilde{F}_1(;\sqrt{5};-1))\operatorname{BesselJ}(-\sqrt{5},2\sqrt{t})+(2_0\tilde{F}_1(;-\sqrt{5};-1)+(\sqrt{5}-1))}{2_0\tilde{F}_1(;-\sqrt{5};-1)\operatorname{BesselJ}(\sqrt{5},2)+\operatorname{BesselJ}(-\sqrt{5},2)\left(2\sqrt{5}\operatorname{BesselJ}(\sqrt{5},2)-2\right)}$$

12.5 problem 19.1 (v)

Internal problem ID [10716]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (v).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2z'' + 3z'x + 4z = 0$$

With initial conditions

$$[z(1) = 0, z'(1) = 5]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

 $dsolve([x^2*diff(z(x),x$2)+3*x*diff(z(x),x)+4*z(x)=0,z(1)=0,\ D(z)(1)=5],z(x),\ singsol=all(x)=0,\ D(z)(x)=0,\ D$

$$z(x) = \frac{5\sqrt{3}\,\sin\left(\sqrt{3}\,\ln\left(x\right)\right)}{3x}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 171

DSolve[{x^2*z''[x]+3*x*z[x]+4*z[x]==0,{z[1]==0,z'[1]==5}},z[x],x,IncludeSingularSolutions ->

 $\rightarrow \frac{5\sqrt{x}\left(\text{BesselJ}\left(-i\sqrt{15},2\sqrt{3}\right) \text{ BesselJ}\left(i\sqrt{15},2\sqrt{3}\sqrt{x}\right) - \text{BesselJ}\left(i\sqrt{15},2\sqrt{3}\right) \text{ BesselJ}\left(-i\sqrt{15},2\sqrt{3}\sqrt{x}\right) - \frac{5\sqrt{x}\left(\text{BesselJ}\left(-i\sqrt{15},2\sqrt{3}\sqrt{x}\right) - \text{BesselJ}\left(i\sqrt{15},2\sqrt{3}\right) \text{ BesselJ}\left(-i\sqrt{15},2\sqrt{3}\sqrt{x}\right) - \frac{5\sqrt{x}\left(\frac{1}{2}\right)}{0\tilde{F}_{1}\left(\frac{1}{2}\right)} + \frac{1}{2\sqrt{15}} + \frac{1}$

12.6 problem 19.1 (vi)

Internal problem ID [10717]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (vi).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' - y'x - 3y = 0$$

With initial conditions

$$[y(1) = 1, y'(1) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

 $dsolve([x^2*diff(y(x),x$2)-x*diff(y(x),x)-3*y(x)=0,y(1) = 1, D(y)(1) = -1],y(x), singsol=all)$

$$y(x) = \frac{1}{x}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 151

DSolve[{x^2*y''[x]-x*y[x]-3*y[x]==0,{y[1]==1,y'[1]==-1}},y[x],x,IncludeSingularSolutions -> T

$$\rightarrow \frac{\sqrt{x} \left(\left(\left(\sqrt{13} - 3 \right) \text{ BesselI } \left(\sqrt{13}, 2 \right) - 2 {_0} \tilde{F}_1 \left(; \sqrt{13}; 1 \right) \right) \text{ BesselI } \left(-\sqrt{13}, 2 \sqrt{x} \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) + \left(3 + \sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde{F}_1 \left(; -\sqrt{13}; 1 \right) \right) + \left(2 {_0} \tilde$$

12.7 problem 19.1 (vii)

Internal problem ID [10718]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (vii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$4t^2x'' + 8x't + 5x = 0$$

With initial conditions

$$[x(1) = 2, x'(1) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

$$x(t) = \frac{\sin(\ln(t)) + 2\cos(\ln(t))}{\sqrt{t}}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 79

DSolve[{4*t^2*x''[t]+8*t*x[t]+5*x[t]==0,{x[1]==2,x'[1]==0}},x[t],t,IncludeSingularSolutions -

$$x(t) \to \frac{1}{2} i \pi t^{\frac{1}{2} - i} \operatorname{csch}(\pi) \operatorname{sech}(\pi) \left((2 {_0} \tilde{F}_1(; -2i; -2) + (1+2i) {_0} \tilde{F}_1(; 1-2i; -2)) t^{2i} {_0} \tilde{F}_1(; 1+2i; -2i) + (-2 {_0} \tilde{F}_1(; 2i; -2) - (1-2i) {_0} \tilde{F}_1(; 1+2i; -2)) {_0} \tilde{F}_1(; 1-2i; -2t) \right)$$

12.8 problem 19.1 (viii)

Internal problem ID [10719]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (viii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - 5y'x + 5y = 0$$

With initial conditions

$$[y(1) = -2, y'(1) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve([x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+5*y(x)=0,y(1) = -2, D(y)(1) = 1],y(x), singsol=al(x)=0$

$$y(x) = \frac{3}{4}x^5 - \frac{11}{4}x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 17

DSolve[{x^2*y''[x]-5*x*y'[x]+5*y[x]==0,{y[1]==-2,y'[1]==1}},y[x],x,IncludeSingularSolutions -

$$y(x) \to \frac{1}{4}x \left(3x^4 - 11\right)$$

12.9 problem 19.1 (ix)

Internal problem ID [10720]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (ix).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$3x^2z'' + 5z'x - z = 0$$

With initial conditions

$$[z(1) = 2, z'(1) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

$$z(x) = \frac{3x^{\frac{4}{3}} + 5}{4x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 21

DSolve[{3*x^2*z''[x]+5*x*z'[x]-z[x]==0,{z[1]==2,z'[1]==-1}},z[x],x,IncludeSingularSolutions -

$$z(x) \to \frac{3x^{4/3} + 5}{4x}$$

12.10 problem 19.1 (x)

Internal problem ID [10721]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (x).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$t^2x'' + 3x't + 13x = 0$$

With initial conditions

$$[x(1) = -1, x'(1) = 2]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 32

$$x(t) = \frac{\sqrt{3} \sin \left(2\sqrt{3} \ln (t)\right) - 6 \cos \left(2\sqrt{3} \ln (t)\right)}{6t}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 41

$$x(t) \rightarrow \frac{\sqrt{3}\sin\left(2\sqrt{3}\log(t)\right) - 6\cos\left(2\sqrt{3}\log(t)\right)}{6t}$$

12.11 problem 19.2

Internal problem ID [10722]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$ay'' + (-a + b)y' + cy = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 67

dsolve(a*diff(y(z),z\$2)+(b-a)*diff(y(z),z)+c*y(z)=0,y(z), singsol=all)

$$y(z) = c_1 e^{rac{\left(-b + a + \sqrt{a^2 - 2ba - 4ca + b^2}
ight)z}{2a}} + c_2 e^{-rac{\left(b - a + \sqrt{a^2 - 2ba - 4ca + b^2}
ight)z}{2a}}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 66

DSolve[a*y''[z]+(b-a)*y'[z]+c*y[z]==0,y[z],z,IncludeSingularSolutions -> True]

$$y(z)
ightarrow e^{-rac{z\left(\sqrt{(a-b)^2-4ac}-a+b
ight)}{2a}\left(c_2e^{rac{z\sqrt{(a-b)^2-4ac}}{a}}+c_1
ight)}$$

13	Chapter 20, Series solutions of second order linear
	equations. Exercises page 195

13.1	problem	20.1																					118
13.2	problem	20.2	(i) .																				119
13.3	problem	20.2	(ii)																				120
13.4	problem	20.2	(iii)																				121
13.5	problem	20.2	(iv)	(1	=	-2) .																122
13.6	problem	20.2	(iv)	(1	=	2)																	123
13.7	problem	20.3																				•	124
13.8	problem	20.4																					125
13.9	problem	20.5																					126
13.10	problem	20.7							 														127

13.1 problem 20.1

Internal problem ID [10723]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Gegenbauer]

$$(-x^2+1)y''-2y'x+n(1+n)y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 101

Order:=6; $dsolve((1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+n*(n+1)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{n(n+1)x^2}{2} + \frac{n(n^3 + 2n^2 - 5n - 6)x^4}{24}\right)y(0) + \left(x - \frac{(n^2 + n - 2)x^3}{6} + \frac{(n^4 + 2n^3 - 13n^2 - 14n + 24)x^5}{120}\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 120

AsymptoticDSolveValue $[(1-x^2)*y''[x]-2*x*y'[x]+n*(n+1)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\frac{1}{120} (n^2 + n)^2 x^5 + \frac{7}{60} (-n^2 - n) x^5 + \frac{1}{6} (-n^2 - n) x^3 + \frac{x^5}{5} + \frac{x^3}{3} + x \right)$$
$$+ c_1 \left(\frac{1}{24} (n^2 + n)^2 x^4 + \frac{1}{4} (-n^2 - n) x^4 + \frac{1}{2} (-n^2 - n) x^2 + 1 \right)$$

13.2 problem 20.2 (i)

Internal problem ID [10724]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.2 (i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Hermite]

$$y'' - y'x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 - \frac{1}{24}x^4\right)y(0) + xD(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 27

AsymptoticDSolveValue[$y''[x]-x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(-\frac{x^4}{24} - \frac{x^2}{2} + 1 \right) + c_2 x$$

13.3 problem 20.2 (ii)

Internal problem ID [10725]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.2 (ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$(x^2+1)y''+y=0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

Order:=6; dsolve((1+x^2)*diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{8}x^4\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{7}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$(1+x^2)*y''[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{7x^5}{120} - \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{8} - \frac{x^2}{2} + 1\right)$$

13.4 problem 20.2 (iii)

Internal problem ID [10726]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.2 (iii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$2xy'' + y' - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

Order:=6; dsolve(2*x*diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \sqrt{x} \left(1 + \frac{2}{3}x + \frac{2}{15}x^2 + \frac{4}{315}x^3 + \frac{2}{2835}x^4 + \frac{4}{155925}x^5 + O(x^6) \right)$$
$$+ c_2 \left(1 + 2x + \frac{2}{3}x^2 + \frac{4}{45}x^3 + \frac{2}{315}x^4 + \frac{4}{14175}x^5 + O(x^6) \right)$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 83

$$y(x) \rightarrow c_1 \sqrt{x} \left(\frac{4x^5}{155925} + \frac{2x^4}{2835} + \frac{4x^3}{315} + \frac{2x^2}{15} + \frac{2x}{3} + 1 \right) + c_2 \left(\frac{4x^5}{14175} + \frac{2x^4}{315} + \frac{4x^3}{45} + \frac{2x^2}{3} + 2x + 1 \right)$$

13.5 problem 20.2 (iv) (k=-2)

Internal problem ID [10727]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.2 (iv) (k=-2).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y'x - 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

Order:=6; dsolve(diff(y(x),x\$2)-2*x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + 2x^2 + \frac{4}{3}x^4\right)y(0) + \left(x + x^3 + \frac{1}{2}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 36

AsymptoticDSolveValue[$y''[x]-2*x*y'[x]-4*y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_2 \left(rac{x^5}{2} + x^3 + x
ight) + c_1 \left(rac{4x^4}{3} + 2x^2 + 1
ight)$$

13.6 problem 20.2 (iv) (k=2)

Internal problem ID [10728]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.2 (iv) (k=2).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y'x + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

Order:=6; dsolve(diff(y(x),x\$2)-2*x*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(-2x^2 + 1\right)y(0) + \left(x - \frac{1}{3}x^3 - \frac{1}{30}x^5\right)D(y)(0) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 33

AsymptoticDSolveValue[$y''[x]-2*x*y'[x]+4*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1(1-2x^2) + c_2\left(-\frac{x^5}{30} - \frac{x^3}{3} + x\right)$$

13.7 problem 20.3

Internal problem ID [10729]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x(1-x)y'' - 3y'x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 60

Order:=6; dsolve(x*(1-x)*diff(y(x),x\$2)-3*x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x (1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + O(x^6))$$

+ $(x + 2x^2 + 3x^3 + 4x^4 + 5x^5 + O(x^6)) \ln(x) c_2$
+ $(1 + 3x + 5x^2 + 7x^3 + 9x^4 + 11x^5 + O(x^6)) c_2$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 63

 $AsymptoticDSolveValue[x*(1-x)*y''[x]-3*x*y'[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_1(x^4 + x^3 + x^2 + (4x^3 + 3x^2 + 2x + 1) x \log(x) + x + 1) + c_2(5x^5 + 4x^4 + 3x^3 + 2x^2 + x)$$

13.8 problem 20.4

Internal problem ID [10730]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + y'x - x^2y = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 41

 $\label{local-control} \\ {\tt dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-x^2*y(x)=0,y(x),type='series',x=0);} \\$

$$y(x) = (c_2 \ln(x) + c_1) \left(1 + \frac{1}{4}x^2 + \frac{1}{64}x^4 + O(x^6) \right) + \left(-\frac{1}{4}x^2 - \frac{3}{128}x^4 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 60

AsymptoticDSolveValue[$x^2*y''[x]+x*y'[x]-x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^4}{64} + \frac{x^2}{4} + 1\right) + c_2 \left(-\frac{3x^4}{128} - \frac{x^2}{4} + \left(\frac{x^4}{64} + \frac{x^2}{4} + 1\right)\log(x)\right)$$

13.9 problem 20.5

Internal problem ID [10731]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Bessel]

$$x^{2}y'' + y'x + (x^{2} - 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{1}{8} x^2 + \frac{1}{192} x^4 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right) \left(x^2 - \frac{1}{8} x^4 + \mathcal{O}\left(x^6\right)\right) + \left(-2 + \frac{3}{32} x^4 + \mathcal{O}\left(x^6\right)\right)\right)}{x}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 58

AsymptoticDSolveValue $[x^2*y''[x]+x*y'[x]+(x^2-1)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\frac{x^5}{192} - \frac{x^3}{8} + x\right) + c_1 \left(\frac{1}{16}x(x^2 - 8)\log(x) - \frac{5x^4 - 16x^2 - 64}{64x}\right)$$

13.10 problem 20.7

Internal problem ID [10732]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Bessel]

$$x^{2}y'' + y'x + (-n^{2} + x^{2})y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 77

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-n^2)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{-n} \left(1 + \frac{1}{4n - 4} x^2 + \frac{1}{32} \frac{1}{(n - 2)(n - 1)} x^4 + \mathcal{O}\left(x^6\right) \right)$$
$$+ c_2 x^n \left(1 - \frac{1}{4n + 4} x^2 + \frac{1}{32} \frac{1}{(n + 2)(n + 1)} x^4 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 160

AsymptoticDSolveValue[$x^2*y''[x]+x*y'[x]+(x^2-n^2)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^4}{(-n^2 - n + (1-n)(2-n) + 2)(-n^2 - n + (3-n)(4-n) + 4)} - \frac{x^2}{-n^2 - n + (1-n)(2-n) + 2} + 1 \right) x^{-n} + c_1 \left(\frac{x^4}{(-n^2 + n + (n+1)(n+2) + 2)(-n^2 + n + (n+3)(n+4) + 4)} - \frac{x^2}{-n^2 + n + (n+1)(n+2) + 2} + 1 \right) x^n$$

14 Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

14.1	problem	26.1	(i) .																	129
14.2	$\operatorname{problem}$	26.1	(ii)																	130
14.3	$\operatorname{problem}$	26.1	(iii)					 												131
14.4	$\operatorname{problem}$	26.1	(iv)																	132
14.5	$\operatorname{problem}$	26.1	(v)																	133
14.6	$\operatorname{problem}$	26.1	(vi)																	134
147	problem	26.1	(vii)																	135

14.1 problem 26.1 (i)

Internal problem ID [10733]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (i).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 4x(t) - y(t)$$

$$y'(t) = 2x(t) + y(t) + t2$$

With initial conditions

$$[x(0) = 0, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 52

 $dsolve([diff(x(t),t) = 4*x(t)-y(t), diff(y(t),t) = 2*x(t)+y(t)+t^2, x(0) = 0, y(0) = 1],[x(t),t]$

$$x(t) = -\frac{t^2}{6} + \frac{5e^{2t}}{4} - \frac{29e^{3t}}{27} - \frac{5t}{18} - \frac{19}{108}$$

$$y(t) = \frac{5e^{2t}}{2} - \frac{29e^{3t}}{27} - \frac{2t^2}{3} - \frac{7t}{9} - \frac{23}{54}$$

✓ Solution by Mathematica

Time used: 0.08 (sec). Leaf size: 62

 $DSolve[\{x'[t]==4*x[t]-y[t],y'[t]==2*x[t]+y[t]+t^2\},\{x[0]==0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0,y[t]$

$$x(t) \to \frac{1}{108} \left(e^{2t} \left(135 - 116e^t \right) - 6t(3t+5) - 19 \right)$$

$$y(t) \to \frac{1}{54} (e^{2t} (135 - 58e^t) - 6t(6t + 7) - 23)$$

14.2 problem 26.1 (ii)

Internal problem ID [10734]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (ii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) - 4y(t) + 2\cos(t)^{2} - 1$$

$$y'(t) = x(t) + y(t)$$

With initial conditions

$$[x(0) = 1, y(0) = 1]$$

Time used: 0.078 (sec). Leaf size: 66

$$dsolve([diff(x(t),t) = x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = 1],[x(t)-4*y(t)+cos(2*t), x(0) = x(t)+cos(2*t), x(0) = x(t)+cos(2*t),$$

$$x(t) = \frac{26 e^{t} \cos(2t)}{17} - \frac{32 e^{t} \sin(2t)}{17} - \frac{9 \cos(2t)}{17} + \frac{2 \sin(2t)}{17}$$

$$y(t) = \frac{13 e^{t} \sin(2t)}{17} + \frac{16 e^{t} \cos(2t)}{17} - \frac{4 \sin(2t)}{17} + \frac{\cos(2t)}{17}$$

✓ Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 85

$$x(t) \to \frac{1}{25} (2(3-5t)\cos + e^t ((25-6\cos)\cos(2t) + 2(4\cos-25)\sin(2t)))$$
$$y(t) \to \frac{1}{50} (4(5t+2)\cos + e^t ((50-8\cos)\cos(2t) + (25-6\cos)\sin(2t)))$$

14.3 problem 26.1 (iii)

Internal problem ID [10735]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 2y(t)$$

 $y'(t) = 6x(t) + 3y(t) + e^{t}$

With initial conditions

$$[x(0) = 0, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 42

dsolve([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = 6*x(t)+3*y(t)+exp(t), x(0) = 0, y(0) = 1

$$x(t) = \frac{12e^{6t}}{35} - \frac{e^{-t}}{7} - \frac{e^t}{5}$$

$$y(t) = \frac{24 e^{6t}}{35} + \frac{3 e^{-t}}{14} + \frac{e^t}{10}$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 58

DSolve[{x'[t]==2*x[t]+2*y[t],y'[t]==6*x[t]+3*y[t]+Exp[t]},{x[0]==0,y[0]==1},{x[t],y[t]},t,Inc

$$x(t) \to \frac{1}{35}e^{-t}(-7e^{2t} + 12e^{7t} - 5)$$

$$y(t) \rightarrow \frac{1}{70}e^{-t}(7e^{2t} + 48e^{7t} + 15)$$

14.4 problem 26.1 (iv)

Internal problem ID [10736]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (iv).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 5x(t) - 4y(t) + e^{3t}$$

 $y'(t) = x(t) + y(t)$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve([diff(x(t),t) = 5*x(t)-4*y(t)+exp(3*t), diff(y(t),t) = x(t)+y(t), x(0) = 1], y(0) = -1]

$$x(t) = e^{3t} (t^2 + 7t + 1)$$

$$y(t) = \frac{e^{3t}(t^2 + 6t - 2)}{2}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 37

DSolve[{x'[t]==5*x[t]-4*y[t]+Exp[3*t],y'[t]==x[t]+y[t]},{x[0]==1,y[0]==-1},{x[t],y[t]},t,Incl

$$x(t) \to e^{3t}(t(t+7)+1)$$

$$y(t) \to \frac{1}{2}e^{3t}(t(t+6)-2)$$

14.5 problem 26.1 (v)

Internal problem ID [10737]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (v).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 5y(t)$$

$$y'(t) = -2x(t) + 4\cos(t)^{3} - 3\cos(t)$$

With initial conditions

$$[x(0) = 2, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.093 (sec). Leaf size: 66

$$x(t) = -\frac{16 e^{t} \sin(3t)}{111} + \frac{69 e^{t} \cos(3t)}{37} - \frac{30 \sin(3t)}{37} + \frac{5 \cos(3t)}{37}$$

$$y(t) = -\frac{121 e^{t} \sin(3t)}{111} - \frac{17 e^{t} \cos(3t)}{37} - \frac{20 \cos(3t)}{37} + \frac{9 \sin(3t)}{37}$$

✓ Solution by Mathematica

Time used: 0.236 (sec). Leaf size: 70

$$x(t) \to \frac{1}{111} \left(3\left(69e^t + 5\right)\cos(3t) - 2\left(8e^t + 45\right)\sin(3t) \right)$$
$$y(t) \to \frac{1}{111} \left(-\left(121e^t - 27\right)\sin(3t) - 3\left(17e^t + 20\right)\cos(3t) \right)$$

14.6 problem 26.1 (vi)

Internal problem ID [10738]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (vi).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + y(t) + e^{-t}$$

 $y'(t) = 4x(t) - 2y(t) + e^{2t}$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 60

dsolve([diff(x(t),t) = x(t)+y(t)+exp(-t), diff(y(t),t) = 4*x(t)-2*y(t)+exp(2*t), x(0) = 1, y(t)+exp(-t), x(0) = 1, y(t)+exp(-t)+exp(-t), x(t)+exp(-t

$$x(t) = \frac{62e^{2t}}{75} + \frac{e^{2t}t}{5} + \frac{17e^{-3t}}{50} - \frac{e^{-t}}{6}$$

$$y(t) = \frac{77 e^{2t}}{75} - \frac{34 e^{-3t}}{25} + \frac{e^{2t}t}{5} - \frac{2 e^{-t}}{3}$$

✓ Solution by Mathematica

Time used: 0.621 (sec). Leaf size: 67

 $DSolve[\{x'[t]==x[t]+y[t]+Exp[-t],y'[t]==4*x[t]-2*y[t]+Exp[2*t]\},\{x[0]==1,y[0]==-1\},\{x[t],y[t]=$

$$x(t) \to \frac{1}{150}e^{-3t} (2e^{5t}(15t+62) - 25e^{2t} + 51)$$

$$y(t) \to \frac{1}{75}e^{-3t} \left(e^{5t}(15t + 77) - 50e^{2t} - 102\right)$$

14.7 problem 26.1 (vii)

Internal problem ID [10739]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (vii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 8x(t) + 14y(t)$$

$$y'(t) = 7x(t) + y(t)$$

With initial conditions

$$[x(0) = 1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

dsolve([diff(x(t),t) = 8*x(t)+14*y(t), diff(y(t),t) = 7*x(t)+y(t), x(0) = 1, y(0)] = 1],[x(t),x(t),x(t),x(t)] = 1, x(t), x(t

$$x(t) = \frac{4e^{15t}}{3} - \frac{e^{-6t}}{3}$$

$$y(t) = \frac{2e^{15t}}{3} + \frac{e^{-6t}}{3}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 44

$$x(t) \to \frac{1}{3}e^{-6t} (4e^{21t} - 1)$$

$$y(t) \to \frac{1}{3}e^{-6t}(2e^{21t}+1)$$

15	Chapter 28, Distinct real eigenvalues. Exercis	es
	page 282	

15.1	problem	28.2	(i) .																		137
15.2	problem	28.2	(ii)																	-	138
15.3	problem	28.2	(iii)																		139
15.4	problem	28.2	(iv)																		140
15.5	problem	28.6	(iii)																		141

15.1 problem 28.2 (i)

Internal problem ID [10749]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 28, Distinct real eigenvalues. Exercises page 282

Problem number: 28.2 (i).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 8x(t) + 14y(t)$$

$$y'(t) = 7x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 36

dsolve([diff(x(t),t)=8*x(t)+14*y(t),diff(y(t),t)=7*x(t)+y(t)],[x(t), y(t)], singsol=all)

$$x(t) = 2c_1 e^{15t} - c_2 e^{-6t}$$

$$y(t) = c_1 e^{15t} + c_2 e^{-6t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 65

 $DSolve[\{x'[t]==8*x[t]+14*y[t],y'[t]==7*x[t]+y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow T(x,y[t]),t,IncludeSingularSolutions \rightarrow T(x$

$$x(t) \to \frac{1}{3}e^{-6t} (2(c_1 + c_2)e^{21t} + c_1 - 2c_2)$$

$$y(t) \to \frac{1}{3}e^{-6t} ((c_1 + c_2)e^{21t} - c_1 + 2c_2)$$

15.2 problem 28.2 (ii)

Internal problem ID [10750]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 28, Distinct real eigenvalues. Exercises page 282

Problem number: 28.2 (ii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t)$$

$$y'(t) = -5x(t) - 3y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve([diff(x(t),t)=2*x(t),diff(y(t),t)=-5*x(t)-3*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -c_2 e^{2t}$$

$$y(t) = c_1 e^{-3t} + c_2 e^{2t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 36

 $DSolve[\{x'[t]==2*x[t],y'[t]==-5*x[t]-3*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to c_1 e^{2t}$$

 $y(t) \to e^{-3t} (c_1 (-e^{5t}) + c_1 + c_2)$

15.3 problem 28.2 (iii)

Internal problem ID [10751]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 28, Distinct real eigenvalues. Exercises page 282

Problem number: 28.2 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 11x(t) - 2y(t)$$

$$y'(t) = 3x(t) + 4y(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

dsolve([diff(x(t),t)=11*x(t)-2*y(t),diff(y(t),t)=3*x(t)+4*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = 2c_1 e^{10t} + \frac{c_2 e^{5t}}{3}$$

$$y(t) = c_1 e^{10t} + c_2 e^{5t}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 95

 $DSolve[\{x'[t]==2*x[t]-2*y[t],y'[t]==3*x[t]+4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==2*x[t]-2*y[t],y''[t]==3*x[t]+4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==2*x[t]-2*y[t],y''[t]==3*x[t]+4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==2*x[t]-2*y[t],y''[t]==3*x[t]+4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==2*x[t]-2*y[t],y''[t]==3*x[t]+4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==2*x[t]-2*y[t],y''[t]==3*x[t]+4*y[t]],\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==2*x[t]-2*y[t],y''[t]==3*x[t]+4*y[t]],\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==2*x[t]-2*y[t]),IncludeSingularSolutions \rightarrow \\ (x''[t]=2*x[t]-2*y[t]),IncludeSingularSolutions \rightarrow \\ (x''[t]=2*x[t]-2*y[t]),IncludeSingularSolutions \rightarrow \\ (x''[t]=2*x[t]-2*y[t]),IncludeSingularSolutions \rightarrow \\ (x''[t]=2*x[t]-2*y[t]-2*y[t]),IncludeSingularSolutions \rightarrow \\ (x''[t]=2*x[t]-2*y[t]-2*y[t]),IncludeSingularSolutions \rightarrow \\ (x''[t]=2*x[t]-2*y[t]-2*y[t]),IncludeSingularSolutions \rightarrow \\ (x''[t]=2*x[t]-2*y[t]$

$$x(t) \to \frac{1}{5}e^{3t} \left(5c_1 \cos\left(\sqrt{5}t\right) - \sqrt{5}(c_1 + 2c_2)\sin\left(\sqrt{5}t\right)\right)$$

$$y(t) \rightarrow \frac{1}{5}e^{3t} \left(5c_2 \cos\left(\sqrt{5}t\right) + \sqrt{5}(3c_1 + c_2)\sin\left(\sqrt{5}t\right)\right)$$

15.4 problem 28.2 (iv)

Internal problem ID [10752]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 28, Distinct real eigenvalues. Exercises page 282

Problem number: 28.2 (iv).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + 20y(t)$$

 $y'(t) = 40x(t) - 19y(t)$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

dsolve([diff(x(t),t)=x(t)+20*y(t),diff(y(t),t)=40*x(t)-19*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = c_1 e^{21t} - \frac{c_2 e^{-39t}}{2}$$

$$y(t) = c_1 e^{21t} + c_2 e^{-39t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 68

$$x(t) \to \frac{1}{3}e^{-39t} ((2c_1 + c_2)e^{60t} + c_1 - c_2)$$

$$y(t) \to \frac{1}{3}e^{-39t} ((2c_1 + c_2)e^{60t} - 2c_1 + 2c_2)$$

15.5 problem 28.6 (iii)

Internal problem ID [10753]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 28, Distinct real eigenvalues. Exercises page 282

Problem number: 28.6 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + 2y(t)$$

$$y'(t) = x(t) - y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve([diff(x(t),t)=-2*x(t)+2*y(t),diff(y(t),t)=x(t)-y(t)],[x(t),y(t)],singsol=all)

$$x(t) = -2c_2 e^{-3t} + c_1$$

$$y(t) = c_1 + c_2 e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 62

 $DSolve[\{x'[t]==-2*x[t]+2*y[t],y'[t]==x[t]-y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True (a) = (a) + (b) +$

$$x(t) \to \frac{1}{3} (2(c_1 - c_2)e^{-3t} + c_1 + 2c_2)$$

$$y(t) \to \frac{1}{3}e^{-3t}((c_1 + 2c_2)e^{3t} - c_1 + c_2)$$

16	Chapter	29 ,	Complex	${\bf eigenvalues.}$	Exercises	page
	292					

16.1	problem	29.3	(i) .									 									143
16.2	problem	29.3	(ii)									 								•	144
16.3	problem	29.3	(iii)									 									145
16.4	problem	29.3	(iv)									 									146

16.1 problem 29.3 (i)

Internal problem ID [10754]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 29, Complex eigenvalues. Exercises page 292

Problem number: 29.3 (i).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -y(t)$$

$$y'(t) = x(t) - y(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 84

dsolve([diff(x(t),t)=-y(t),diff(y(t),t)=x(t)-y(t)],[x(t),y(t)], singsol=all)

$$x(t) = -\frac{e^{-\frac{t}{2}} \left(\sin\left(\frac{\sqrt{3}t}{2}\right) \sqrt{3} c_2 - \cos\left(\frac{\sqrt{3}t}{2}\right) \sqrt{3} c_1 - \sin\left(\frac{\sqrt{3}t}{2}\right) c_1 - \cos\left(\frac{\sqrt{3}t}{2}\right) c_2 \right)}{2}$$

$$y(t) = \mathrm{e}^{-rac{t}{2}} \Biggl(\sin \left(rac{\sqrt{3}\,t}{2}
ight) c_1 + \cos \left(rac{\sqrt{3}\,t}{2}
ight) c_2 \Biggr)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 112

 $DSolve[\{x'[t] == -y[t], y'[t] == x[t] - y[t]\}, \{x[t], y[t]\}, t, Include Singular Solutions \rightarrow True]$

$$x(t) \to \frac{1}{3}e^{-t/2} \left(3c_1 \cos\left(\frac{\sqrt{3}t}{2}\right) + \sqrt{3}(c_1 - 2c_2) \sin\left(\frac{\sqrt{3}t}{2}\right) \right)$$

$$y(t) o rac{1}{3}e^{-t/2} \Biggl(3c_2 \cos \left(rac{\sqrt{3}t}{2}
ight) + \sqrt{3}(2c_1 - c_2) \sin \left(rac{\sqrt{3}t}{2}
ight) \Biggr)$$

16.2 problem 29.3 (ii)

Internal problem ID [10755]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 29, Complex eigenvalues. Exercises page 292

Problem number: 29.3 (ii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + 3y(t)$$

$$y'(t) = -6x(t) + 4y(t)$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 54

dsolve([diff(x(t),t)=-2*x(t)+3*y(t),diff(y(t),t)=-6*x(t)+4*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{e^t(\sin(3t) c_1 + \sin(3t) c_2 - \cos(3t) c_1 + \cos(3t) c_2)}{2}$$

$$y(t) = e^{t}(\sin(3t) c_1 + \cos(3t) c_2)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 56

DSolve[{x'[t]==-2*x[t]+3*y[t],y'[t]==-6*x[t]+4*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -

$$x(t) \to e^t(c_1 \cos(3t) + (c_2 - c_1)\sin(3t))$$

$$y(t) \to e^t(c_2\cos(3t) + (c_2 - 2c_1)\sin(3t))$$

16.3 problem 29.3 (iii)

Internal problem ID [10756]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 29, Complex eigenvalues. Exercises page 292

Problem number: 29.3 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -11x(t) - 2y(t)$$

$$y'(t) = 13x(t) - 9y(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 59

dsolve([diff(x(t),t)=-11*x(t)-2*y(t),diff(y(t),t)=13*x(t)-9*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -\frac{e^{-10t}(\sin(5t)c_1 + 5\sin(5t)c_2 - 5\cos(5t)c_1 + \cos(5t)c_2)}{13}$$

$$y(t) = e^{-10t} (\sin(5t) c_1 + \cos(5t) c_2)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 69

 $DSolve[\{x'[t] == -11*x[t] - 2*y[t], y'[t] == 13*x[t] - 9*y[t]\}, \{x[t], y[t]\}, t, IncludeSingular Solutions]$

$$x(t) \to \frac{1}{5}e^{-10t}(5c_1\cos(5t) - (c_1 + 2c_2)\sin(5t))$$

$$y(t) \to \frac{1}{5}e^{-10t}(5c_2\cos(5t) + (13c_1 + c_2)\sin(5t))$$

16.4 problem 29.3 (iv)

Internal problem ID [10757]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 29, Complex eigenvalues. Exercises page 292

Problem number: 29.3 (iv).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 7x(t) - 5y(t)$$

$$y'(t) = 10x(t) - 3y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 58

dsolve([diff(x(t),t)=7*x(t)-5*y(t),diff(y(t),t)=10*x(t)-3*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{e^{2t}(\sin(5t) c_1 - \sin(5t) c_2 + \cos(5t) c_1 + \cos(5t) c_2)}{2}$$

$$y(t) = e^{2t} (\sin(5t) c_1 + \cos(5t) c_2)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 62

$$x(t) \to e^{2t}(c_1 \cos(5t) + (c_1 - c_2)\sin(5t))$$

 $y(t) \to e^{2t}(c_2 \cos(5t) + (2c_1 - c_2)\sin(5t))$

17	Chapter 30, A	repeated	\mathbf{real}	${\bf eigenvalue.}$	Exercises
	page 299				

17.1	problem	30.1	(i) .																			148
17.2	problem	30.1	(ii)																			149
17.3	problem	30.1	(iii)																			150
17.4	problem	30.1	(iv)																			151
17.5	problem	30.1	(v)																			153
17.6	problem	30.5	(iii)							_		 				_				_		154

17.1 problem 30.1 (i)

Internal problem ID [10758]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 30, A repeated real eigenvalue. Exercises page 299

Problem number: 30.1 (i).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 5x(t) - 4y(t)$$
$$y'(t) = x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

dsolve([diff(x(t),t)=5*x(t)-4*y(t),diff(y(t),t)=x(t)+y(t)],[x(t), y(t)], singsol=all)

$$x(t) = e^{3t}(2c_2t + 2c_1 + c_2)$$

$$y(t) = e^{3t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 45

 $DSolve[\{x'[t]==5*x[t]-4*y[t],y'[t]==x[t]+y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True[\{x'[t]==5*x[t]-4*y[t],y'[t]==x[t]+y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True[\{x'[t]==5*x[t]-4*y[t],y'[t]==x[t]+y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True[\{x'[t]==5*x[t]-4*y[t],y'[t]==x[t]+y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True[\{x'[t]==5*x[t]-4*y[t],y'[t]==x[t]+y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True[\{x'[t]==x[t]+y[t],y'[t]\},t,IncludeSingularSolutions \rightarrow True[\{x'[t]==x[t]+y[t],y'[t]\},t,IncludeSingularSolutions \rightarrow True[\{x'[t]==x[t]+y[t],y'[t]\},t,IncludeSingularSolutions \rightarrow True[\{x'[t]==x[t]+y[t]\},t,IncludeSingularSolutions \rightarrow True$

$$x(t) \to e^{3t}(2c_1t - 4c_2t + c_1)$$

$$y(t) \to e^{3t}((c_1 - 2c_2)t + c_2)$$

17.2 problem 30.1 (ii)

Internal problem ID [10759]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 30, A repeated real eigenvalue. Exercises page 299

Problem number: 30.1 (ii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -6x(t) + 2y(t)$$

$$y'(t) = -2x(t) - 2y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve([diff(x(t),t)=-6*x(t)+2*y(t),diff(y(t),t)=-2*x(t)-2*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{e^{-4t}(2c_2t + 2c_1 - c_2)}{2}$$

$$y(t) = e^{-4t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 46

DSolve[{x'[t]==-6*x[t]+2*y[t],y'[t]==-2*x[t]-2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -

$$x(t) \to e^{-4t}(-2c_1t + 2c_2t + c_1)$$

$$y(t) \to e^{-4t}(2(c_2 - c_1)t + c_2)$$

17.3 problem 30.1 (iii)

Internal problem ID [10760]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 30, A repeated real eigenvalue. Exercises page 299

Problem number: 30.1 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - y(t)$$

$$y'(t) = x(t) - 5y(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

dsolve([diff(x(t),t)=-3*x(t)-y(t),diff(y(t),t)=x(t)-5*y(t)],[x(t),y(t)], singsol=all)

$$x(t) = e^{-4t}(c_2t + c_1 + c_2)$$

$$y(t) = e^{-4t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 44

$$x(t) \to e^{-4t}(c_1(t+1) - c_2t)$$

$$y(t) \to e^{-4t}((c_1 - c_2)t + c_2)$$

17.4 problem 30.1 (iv)

Internal problem ID [10761]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 30, A repeated real eigenvalue. Exercises page 299

Problem number: 30.1 (iv).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 13x(t)$$

$$y'(t) = 13y(t)$$

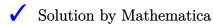
✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve([diff(x(t),t)=13*x(t),diff(y(t),t)=13*y(t)],[x(t),y(t)], singsol=all)

$$x(t) = c_1 e^{13t}$$

$$y(t) = c_2 e^{13t}$$



Time used: 0.043 (sec). Leaf size: 65

DSolve[{x'[t]==13*x[t],y'[t]==13*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^{13t}$$

$$y(t) \to c_2 e^{13t}$$

$$x(t) \to c_1 e^{13t}$$

$$y(t) \to 0$$

$$x(t) \to 0$$

$$y(t) \rightarrow c_2 e^{13t}$$

$$x(t) \to 0$$

$$y(t) \to 0$$

17.5 problem 30.1 (v)

Internal problem ID [10762]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 30, A repeated real eigenvalue. Exercises page 299

Problem number: 30.1 (v).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 7x(t) - 4y(t)$$

$$y'(t) = x(t) + 3y(t)$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

dsolve([diff(x(t),t)=7*x(t)-4*y(t),diff(y(t),t)=x(t)+3*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = e^{5t}(2c_2t + 2c_1 + c_2)$$

$$y(t) = e^{5t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 45

 $DSolve[\{x'[t]==7*x[t]-4*y[t],y'[t]==x[t]+3*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow Tr(x,y[t]),IncludeSingularSolutions \rightarrow Tr(x,y[t])$

$$x(t) \to e^{5t}(2c_1t - 4c_2t + c_1)$$

$$y(t) \to e^{5t}((c_1 - 2c_2)t + c_2)$$

17.6 problem 30.5 (iii)

Internal problem ID [10763]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C.

ROBINSON. Cambridge University Press 2004

Section: Chapter 30, A repeated real eigenvalue. Exercises page 299

Problem number: 30.5 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + y(t)$$

$$y'(t) = -x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve([diff(x(t),t)=-x(t)+y(t),diff(y(t),t)=-x(t)+y(t)],[x(t),y(t)], singsol=all)

$$x(t) = c_1 t - c_1 + c_2$$

$$y(t) = c_1 t + c_2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 32

DSolve[{x'[t]==-x[t]+y[t],y'[t]==-x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1(-t) + c_2t + c_1$$

$$y(t) \to (c_2 - c_1)t + c_2$$