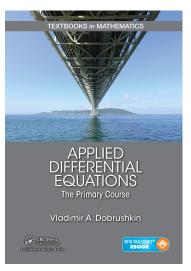
A Solution Manual For

APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015



Nasser M. Abbasi

October 12, 2023

Contents

1	Chapter 2, First Order Equations. Problems page 149	2
2	Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221	13
3	Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357	79
4	Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368	106
5	Chapter 6. Introduction to Systems of ODEs. Problems page 408	152
6	Chapter 6.4 Reduction to a single ODE. Problems page 415	175
7	Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Problems page 514	183
8	Chapter 8.4 Systems of Linear Differential Equations (Method of Undetermined Coefficients). Problems page 520	207

1	Chapter	2, Firs	t Order	Equations.	Problems	page
	149					

1.1	problem Problem 1(a)																	3
1.2	problem Problem 1(b)																	4
1.3	problem Problem 1(c)																	5
1.4	problem Problem 1(d)																	6
1.5	problem Problem 1(e)																	7
1.6	problem Problem 1(f)																	8
1.7	problem Problem 1(g)																	9
1.8	problem Problem 1(h)																	10
1.9	problem Problem 1(i).																	11
1.10	problem Problem 2(a)								_									12

1.1 problem Problem 1(a)

Internal problem ID [10864]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - y e^{x+y} (x^2 + 1) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(x),x)=y(x)*exp(x+y(x))*(x^2+1),y(x), singsol=all)$

$$(x^2 - 2x + 3) e^x + \text{Ei}_1(y(x)) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.568 (sec). Leaf size: 31

 $DSolve[y'[x] == y[x] * Exp[x+y[x]] * (x^2+1), y[x], x, IncludeSingularSolutions \rightarrow True]$

 $y(x) \to \text{InverseFunction}[\text{ExpIntegralEi}(-\#1)\&] [e^x((x-2)x+3)+c_1]$ $y(x) \to 0$

1.2 problem Problem 1(b)

Internal problem ID [10865]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^2y' - y^2 - 1 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve(x^2*diff(y(x),x)=1+y(x)^2,y(x), singsol=all)$

$$y(x) = \tan\left(\frac{c_1 x - 1}{x}\right)$$

✓ Solution by Mathematica

Time used: 0.247 (sec). Leaf size: 30

DSolve[x^2*y'[x]==1+y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \tan\left(\frac{-1+c_1x}{x}\right)$$

$$y(x) \to -i$$

$$y(x) \to i$$

1.3 problem Problem 1(c)

Internal problem ID [10866]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$y' - \sin\left(xy\right) = 0$$

X Solution by Maple

dsolve(diff(y(x),x)=sin(x*y(x)),y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]==Sin[x*y[x]],y[x],x,IncludeSingularSolutions -> True]

Not solved

1.4 problem Problem 1(d)

Internal problem ID [10867]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x(e^y + 4) - e^{x+y}y' = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 24

dsolve(x*(exp(y(x))+4)=exp(x+y(x))*diff(y(x),x),y(x), singsol=all)

$$y(x) = \ln\left(-4 + c_1 e^{-x e^{-x} - e^{-x}}\right)$$

✓ Solution by Mathematica

Time used: 4.201 (sec). Leaf size: 47

DSolve[x*(Exp[y[x]]+4)==Exp[x+y[x]]*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \log\left(-4 + e^{-e^{-x}(x+1) + c_1}\right)$$

$$y(x) \to \log(4) + i\pi$$

$$y(x) \to \log(4) + i\pi$$

1.5 problem Problem 1(e)

Internal problem ID [10868]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(e).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \cos(x + y) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve(diff(y(x),x)=cos(x+y(x)),y(x), singsol=all)

$$y(x) = -x - 2\arctan\left(-x + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.971 (sec). Leaf size: 59

DSolve[y'[x] == Cos[x+y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x + 2 \arctan\left(x + \frac{c_1}{2}\right)$$

$$y(x) \to -x + 2\arctan\left(x + \frac{c_1}{2}\right)$$

$$y(x) \to -x - \pi$$

$$y(x) \to \pi - x$$

1.6 problem Problem 1(f)

Internal problem ID [10869]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y'x + y - y^2x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x*diff(y(x),x)+y(x)=x*y(x)^2,y(x), singsol=all)$

$$y(x) = -\frac{1}{(\ln(x) - c_1)x}$$

✓ Solution by Mathematica

Time used: 0.14 (sec). Leaf size: 22

DSolve[x*y'[x]+y[x]==x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{-x \log(x) + c_1 x}$$

$$y(x) \to 0$$

1.7 problem Problem 1(g)

Internal problem ID [10870]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(g).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$y' - t \ln\left(y^{2t}\right) - t^2 = 0$$

X Solution by Maple

 $dsolve(diff(y(t),t)=t*ln(y(t)^(2*t))+t^2,y(t), singsol=all)$

No solution found

✓ Solution by Mathematica

Time used: 0.3 (sec). Leaf size: 43

 $DSolve[y'[t] == t*Log[y[t]^(2*t)] + t^2, y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \text{InverseFunction}\left[\frac{\text{ExpIntegralEi}\left(\log(\#1) + \frac{1}{2}\right)}{2\sqrt{e}}\&\right]\left[\frac{t^3}{3} + c_1\right]$$

$$y(t) o rac{1}{\sqrt{e}}$$

1.8 problem Problem 1(h)

Internal problem ID [10871]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(h).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - x e^{-x+y^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $dsolve(diff(y(x),x)=x*exp(y(x)^2-x),y(x), singsol=all)$

$$-(x+1)e^{-x} - \frac{\sqrt{\pi} \operatorname{erf}(y(x))}{2} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.8 (sec). Leaf size: 28

DSolve[y'[x] == x*Exp[y[x]^2-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \text{erf}^{-1} \left(-\frac{2e^{-x}(x - c_1 e^x + 1)}{\sqrt{\pi}} \right)$$

1.9 problem Problem 1(i)

Internal problem ID [10872]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$y' - \ln\left(xy\right) = 0$$

X Solution by Maple

dsolve(diff(y(x),x)=ln(x*y(x)),y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x] == Log[x*y[x]],y[x],x,IncludeSingularSolutions -> True]

Not solved

1.10 problem Problem 2(a)

Internal problem ID [10873]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 2(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x(y+1)^{2} - (x^{2}+1) y e^{y} y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(x*(y(x)+1)^2=(x^2+1)*y(x)*exp(y(x))*diff(y(x),x),y(x), singsol=all)$

$$y(x) = -\operatorname{LambertW}\left(-\frac{\mathrm{e}^{-1}}{\frac{\ln(x^2+1)}{2} + c_1}\right) - 1$$

✓ Solution by Mathematica

Time used: 0.639 (sec). Leaf size: 33

 $DSolve[x*(y[x]+1)^2==(x^2+1)*y[x]*Exp[y[x]]*y'[x],y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to -1 - W\left(-\frac{2}{e\log(x^2 + 1) + 2ec_1}\right)$$
$$y(x) \to -1$$

2 Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

2.1	problem Problem	1(a)							•				•		 •		15
2.2	problem Problem	1(b)															16
2.3	problem Problem	1(c)															17
2.4	problem Problem	1(d)															18
2.5	problem Problem	1(e)															19
2.6	problem Problem	1(f)															20
2.7	problem Problem	1(g)															21
2.8	problem Problem	1(h)															22
2.9	problem Problem	1(i) .															23
2.10	problem Problem	1(j)															24
2.11	problem Problem	1(k)															27
2.12	problem Problem	1(L)															28
2.13	problem Problem	1(m)															29
2.14	problem Problem	1(n)															31
2.15	problem Problem	1(o)															32
2.16	problem Problem 2	2(a)															33
2.17	problem Problem 2	2(b)															34
2.18	problem Problem 2	2(c)															35
2.19	problem Problem 2	2(d)															36
2.20	problem Problem 2	2(e)															37
2.21	problem Problem 2	2(f)															38
2.22	problem Problem 2	2(h)															39
2.23	problem Problem 3	3(a)															40
2.24	problem Problem	3(b)															41
2.25	problem Problem	3(c)															42
2.26	problem Problem	3(d)															43
2.27	problem Problem	5(a)															44
2.28	problem Problem	5(b)															45
2.29	problem Problem	5(c)															46
	problem Problem																47
2.31	problem Problem	5(e)															48
2.32	problem Problem	5(f)															49
2.33	problem Problem	10 .															50
2.34	problem Problem	13 .															51
2.35	problem Problem	15 .															52
2.36	problem Problem	18(a)															53
2.37	problem Problem	18(b)															54
	problem Problem	` '															55

2.39	problem Problem	18(d)																	56
2.40	problem Problem	18(e)																	57
2.41	problem Problem	18(f)																	58
2.42	problem Problem	18(g)																	59
2.43	problem Problem	18(h)																	60
2.44	problem Problem	18(i)																	61
2.45	problem Problem	18(j)																	62
2.46	problem Problem	18(k)																	63
2.47	problem Problem	18(L))																64
2.48	problem Problem	19(a)																	65
2.49	problem Problem	19(b)																	66
2.50	problem Problem	19(c)																	67
2.51	problem Problem	19(d)																	68
2.52	problem Problem	19(e)																	69
2.53	problem Problem	19(f)																	70
2.54	problem Problem	20(a)																	71
2.55	problem Problem	20(b)																	72
2.56	problem Problem	20(c)																	73
2.57	problem Problem	20(d)																	74
2.58	problem Problem	20(e)																	75
2.59	problem Problem	20(f)																	76
2.60	problem Problem	20(g)																	77
2.61	problem Problem	20(h)																	78

2.1 problem Problem 1(a)

Internal problem ID [10874]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + x^2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(diff(y(x),x$2)+x^2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \sqrt{x} \text{ BesselJ}\left(\frac{1}{4}, \frac{x^2}{2}\right) + c_2 \sqrt{x} \text{ BesselY}\left(\frac{1}{4}, \frac{x^2}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 30

DSolve[$y''[x]+x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to c_2$$
 Parabolic Cylinder D $\left(-\frac{1}{2}, (-1+i)x\right) + c_1$ Parabolic Cylinder D $\left(-\frac{1}{2}, (1+i)x\right)$

2.2 problem Problem 1(b)

Internal problem ID [10875]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(b).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + xy - \sin(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 2002

dsolve(diff(y(x),x\$3)+x*y(x)=sin(x),y(x), singsol=all)

Expression too large to display

✓ Solution by Mathematica

Time used: 156.109 (sec). Leaf size: 2213

DSolve[y'''[x]+x*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

Too large to display

2.3 problem Problem 1(c)

Internal problem ID [10876]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_

$$y'' + y'y - 1 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 60

dsolve(diff(y(x),x\$2)+y(x)*diff(y(x),x)=1,y(x), singsol=all)

$$\int_{-\frac{2^{\frac{2}{3}}}{2^{\frac{2}{3}}} a^{2} - 4 \operatorname{RootOf}\left(2^{\frac{1}{3}} \operatorname{AiryBi}\left(\underline{Z}\right) c_{1}\underline{a} + 2^{\frac{1}{3}}\underline{a} \operatorname{AiryAi}\left(\underline{Z}\right) - 2 \operatorname{AiryBi}\left(1,\underline{Z}\right) c_{1} - 2 \operatorname{AiryAi}\left(1,\underline{Z}\right)\right) c_{1} - x - c_{2} = 0$$

✓ Solution by Mathematica

Time used: 0.209 (sec). Leaf size: 73

DSolve[y''[x]+y[x]*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2^{2/3} \left(c_2 \operatorname{AiryAiPrime}\left(\frac{x - c_1}{\sqrt[3]{2}}\right) + \operatorname{AiryBiPrime}\left(\frac{x - c_1}{\sqrt[3]{2}}\right) \right)}{c_2 \operatorname{AiryAi}\left(\frac{x - c_1}{\sqrt[3]{2}}\right) + \operatorname{AiryBi}\left(\frac{x - c_1}{\sqrt[3]{2}}\right)}$$

2.4 problem Problem 1(d)

Internal problem ID [10877]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(d).

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[high order, missing y]]

$$y^{(5)} - y'''' + y' - 2x^2 - 3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 154

 $dsolve(diff(y(x),x$5)-diff(y(x),x$4) + diff(y(x),x)=2*x^2+3,y(x), singsol=all)$

$$\begin{split} y(x) &= \frac{c_1 \mathrm{e}^{\mathrm{RootOf}(_Z^4 - _Z^3 + 1, \mathrm{index} = 1)x}}{\mathrm{RootOf}\left(_Z^4 - _Z^3 + 1, \mathrm{index} = 1\right)} + \frac{c_2 \mathrm{e}^{\mathrm{RootOf}(_Z^4 - _Z^3 + 1, \mathrm{index} = 2)x}}{\mathrm{RootOf}\left(_Z^4 - _Z^3 + 1, \mathrm{index} = 2\right)} \\ &+ \frac{c_3 \mathrm{e}^{\mathrm{RootOf}(_Z^4 - _Z^3 + 1, \mathrm{index} = 3)x}}{\mathrm{RootOf}\left(_Z^4 - _Z^3 + 1, \mathrm{index} = 3\right)} \\ &+ \frac{c_4 \mathrm{e}^{\mathrm{RootOf}(_Z^4 - _Z^3 + 1, \mathrm{index} = 4)x}}{\mathrm{RootOf}\left(_Z^4 - _Z^3 + 1, \mathrm{index} = 4\right)} + \frac{2x^3}{3} + 3x + c_5 \end{split}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 182

 $DSolve[y''''[x]-y''''[x] + y'[x] == 2*x^2+3, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_2 \exp\left(x \operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 2\right]\right)}{\operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 2\right]} + \frac{c_1 \exp\left(x \operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 1\right]\right)}{\operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 4\right]} + \frac{c_4 \exp\left(x \operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 4\right]\right)}{\operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 4\right]} + \frac{c_3 \exp\left(x \operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 4\right]\right)}{\operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 3\right]} + \frac{2x^3}{3} + 3x + c_5$$

2.5 problem Problem 1(e)

Internal problem ID [10878]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x], [_high_order, _with_linear_symmetri

X Solution by Maple

dsolve(diff(y(x),x\$2)+y(x)*diff(y(x),x\$4)=1,y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y''[x]+y[x]*y''''[x]==1,y[x],x,IncludeSingularSolutions -> True]

Not solved

2.6 problem Problem 1(f)

Internal problem ID [10879]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(f).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + xy - \cosh(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 2003

dsolve(diff(y(x),x\$3)+x*y(x)=cosh(x),y(x), singsol=all)

Expression too large to display

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'''[x]+x*y[x]==Cosh[x],y[x],x,IncludeSingularSolutions -> True]

Timed out

2.7 problem Problem 1(g)

Internal problem ID [10880]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(g).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$\cos(x) y' + y e^{x^2} - \sinh(x) = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $dsolve(cos(x)*diff(y(x),x)+y(x)*exp(x^2)=sinh(x),y(x), singsol=all)$

$$y(x) = \left(\int \mathrm{e}^{\int \mathrm{e}^{x^2} \sec(x) dx} \sinh\left(x
ight) \sec\left(x
ight) dx + c_1
ight) \mathrm{e}^{\int -\mathrm{e}^{x^2} \sec(x) dx}$$

✓ Solution by Mathematica

Time used: 0.975 (sec). Leaf size: 66

 $DSolve[Cos[x]*y'[x]+y[x]*Exp[x^2] == Sinh[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) \to \exp\left(\int_{1}^{x} -e^{K[1]^{2}} \sec(K[1]) dK[1]\right) \left(\int_{1}^{x} \exp\left(-\int_{1}^{K[2]} -e^{K[1]^{2}} \sec(K[1]) dK[1]\right) \sec(K[2]) \sinh(K[2]) dK[2] + c_{1}\right) \end{split}$$

2.8 problem Problem 1(h)

Internal problem ID [10881]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(h).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + xy - \cosh(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 2003

dsolve(diff(y(x),x\$3)+x*y(x)=cosh(x),y(x), singsol=all)

Expression too large to display

✓ Solution by Mathematica

Time used: 17.758 (sec). Leaf size: 2213

DSolve[y'''[x]+x*y[x]==Cosh[x],y[x],x,IncludeSingularSolutions -> True]

Too large to display

2.9 problem Problem 1(i)

Internal problem ID [10882]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(i).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'y - 1 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(y(x)*diff(y(x),x)=1,y(x), singsol=all)

$$y(x) = \sqrt{2x + c_1}$$

$$y(x) = -\sqrt{2x + c_1}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 38

 $DSolve[y[x]*y'[x] == 1, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{2}\sqrt{x+c_1}$$

$$y(x) \to \sqrt{2}\sqrt{x+c_1}$$

2.10 problem Problem 1(j)

Internal problem ID [10883]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(j).

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type ['y=_G(x,y')']

$$\sinh\left(x\right){y'}^2 + 3y = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 799

$dsolve(sinh(x)*diff(y(x),x)^2+3*y(x)=0,y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) =$$

$$= \frac{e^{-x} \text{RootOf}\left(-\text{JacobiSN}\left(\frac{\left(-\frac{3 e^{3x} c_1}{\sqrt{-6 e^{3x} + 6 e^x}} + \frac{3 e^x c_1}{\sqrt{-6 e^{3x} + 6 e^x}} - \underline{Z}\right)\sqrt{-e^x + 1} \text{ RootOf}\left(\underline{Z}^2 - 2 e^x - 2, \text{index} = 1\right) \text{RootOf}\left(\underline{Z}^2 - e^x - 2, \text{index} = 1\right)}{6(e^{2x} - 1)} \right)}{6(e^{2x} - 1)}$$

$$y(x) =$$

$$\mathrm{e}^{-x} \mathrm{RootOf}\left(-\operatorname{JacobiSN}\left(\frac{\left(\frac{3\,\mathrm{e}^{3x}c_{1}}{\sqrt{-6}\,\mathrm{e}^{3x}+6\,\mathrm{e}^{x}}-\frac{3\,\mathrm{e}^{x}c_{1}}{\sqrt{-6}\,\mathrm{e}^{3x}+6\,\mathrm{e}^{x}}-\underline{Z}\right)\sqrt{-\mathrm{e}^{x}+1}\,\operatorname{RootOf}\left(\underline{Z}^{2}-2\,\mathrm{e}^{x}-2,\operatorname{index}=1\right)\operatorname{RootOf}\left(\underline{Z}^{2}-\mathrm{e}^{x}-2,\operatorname{Index}=1\right)}\right)\right)$$

$$6(e^{2x}-1)$$

$$y(x) =$$

$$-\frac{\mathrm{e}^{-x} \mathrm{RootOf}\left(-\operatorname{JacobiSN}\left(\frac{\left(3\,\mathrm{e}^{3x}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-3\,\mathrm{e}^{x}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)\sqrt{-\mathrm{e}^{x}+1}\,\mathrm{RootOf}\left((6\,\mathrm{e}^{3x}-6\,\mathrm{e}^{x})_Z^{2}+1\right)c_{1}-Z\right)$$

$$6(e^{2x}-1)$$

$$y(x) =$$

$$e^{-x} RootOf \left(JacobiSN \left(\frac{\left(-\frac{3 \, \mathrm{e}^{3x} c_1}{\sqrt{-6 \, \mathrm{e}^{3x} + 6 \, \mathrm{e}^x}} + \frac{3 \, \mathrm{e}^x c_1}{\sqrt{-6 \, \mathrm{e}^{3x} + 6 \, \mathrm{e}^x}} - \underline{Z} \right) \sqrt{-\mathrm{e}^x + 1} \, RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - \mathrm{e}^x, \mathrm{index} \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) RootOf \left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \mathrm{index} = 1 \right) Ro$$

$$6(e^{2x}-1)$$

$$y(x) =$$

$$e^{-x} \text{RootOf}\left(\text{JacobiSN}\left(\frac{\left(\frac{3 \, \mathrm{e}^{3x} \, c_1}{\sqrt{-6 \, \mathrm{e}^{3x} + 6 \, \mathrm{e}^x}} - \frac{3 \, \mathrm{e}^x \, c_1}{\sqrt{-6 \, \mathrm{e}^{3x} + 6 \, \mathrm{e}^x}} - \underline{Z}\right) \sqrt{-\mathrm{e}^x + 1} \, \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - \mathrm{e}^x, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right) \operatorname{RootOf}\left(\underline{Z}^2 - 2 \, \mathrm{e}^x - 2, \operatorname{index} = 1\right)$$

$$6(e^{2x}-1)$$

$$y(x) =$$

$$6(e^{2x}-1)$$

✓ Solution by Mathematica

Time used: 0.367 (sec). Leaf size: 145

DSolve[Sinh[x]*y'[x]^2+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 3i \text{ EllipticF} \left(\frac{1}{4}(\pi - 2ix), 2\right)^{2}$$

$$-\sqrt{3}c_{1}\sqrt{i \sinh(x)}\sqrt{\operatorname{csch}(x)} \text{ EllipticF} \left(\frac{1}{4}(\pi - 2ix), 2\right) + \frac{c_{1}^{2}}{4}$$

$$y(x) \to 3i \text{ EllipticF} \left(\frac{1}{4}(\pi - 2ix), 2\right)^{2}$$

$$+\sqrt{3}c_{1}\sqrt{i \sinh(x)}\sqrt{\operatorname{csch}(x)} \text{ EllipticF} \left(\frac{1}{4}(\pi - 2ix), 2\right) + \frac{c_{1}^{2}}{4}$$

$$y(x) \to 0$$

2.11 problem Problem 1(k)

Internal problem ID [10884]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(k).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$5y' - xy = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(5*diff(y(x),x)-x*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{\frac{x^2}{10}}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 22

DSolve[5*y'[x]-x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{\frac{x^2}{10}}$$

$$y(x) \to 0$$

2.12 problem Problem 1(L)

Internal problem ID [10885]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(L).

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$y'^2\sqrt{y} - \sin\left(x\right) = 0$$

/

Solution by Maple

Time used: 0.094 (sec). Leaf size: 58

 $dsolve(diff(y(x),x)^2*sqrt(y(x))=sin(x),y(x), singsol=all)$

$$\frac{4y(x)^{\frac{5}{4}}}{5} + \int^{x} -\frac{\sqrt{\sqrt{y(x)} \sin(\underline{a})}}{y(x)^{\frac{1}{4}}} d\underline{a} + c_{1} = 0$$

$$\frac{4y(x)^{\frac{5}{4}}}{5} + \int^{x} \frac{\sqrt{\sqrt{y(x)} \sin(_a)}}{y(x)^{\frac{1}{4}}} d_a + c_{1} = 0$$

/

Solution by Mathematica

Time used: 0.269 (sec). Leaf size: 77

DSolve[y'[x]^2*Sqrt[y[x]]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{5^{4/5} \left(-2E\left(\frac{1}{4}(\pi - 2x)|2\right) + c_1\right)^{4/5}}{2 \ 2^{3/5}}$$

$$y(x) o rac{5^{4/5} \left(2E\left(\frac{1}{4}(\pi - 2x)|2\right) + c_1\right){}^{4/5}}{2\ 2^{3/5}}$$

2.13 problem Problem 1(m)

Internal problem ID [10886]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(m).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$2y'' + 3y' + 4x^2y - 1 = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 385

 $dsolve(2*diff(y(x),x$2)+3*diff(y(x),x)+4*x^2*y(x)=1,y(x), singsol=all)$

$$\begin{split} y(x) &= x \operatorname{KummerM} \left(\frac{3}{4} - \frac{9i\sqrt{2}}{128}, \frac{3}{2}, i\sqrt{2} \, x^2 \right) \operatorname{e}^{-\frac{x\left(i\sqrt{2}\,x + \frac{3}{2}\right)}{2}} c_2 \\ &+ x \operatorname{KummerU} \left(\frac{3}{4} - \frac{9i\sqrt{2}}{128}, \frac{3}{2}, i\sqrt{2} \, x^2 \right) \operatorname{e}^{-\frac{x\left(i\sqrt{2}\,x + \frac{3}{2}\right)}{2}} c_1 - 32x \left(\operatorname{KummerU} \left(\frac{3}{4} - \frac{9i\sqrt{2}\,x^2}{2} + \frac{3x}{4} \operatorname{KummerM} \right) \right) \\ &- \frac{9i\sqrt{2}}{128}, \frac{3}{2}, i\sqrt{2} \, x^2 + \frac{3x}{4} \operatorname{KummerM} \left(\frac{9i\sqrt{2}}{128} - \frac{1}{4}, \frac{3}{2}, i\sqrt{2} \, x \right) \\ &- \left(\int \frac{\operatorname{e}^{\frac{i\sqrt{2}\,x^2}{2} + \frac{3x}{4}} \operatorname{KummerU} \left(\frac{3}{4} - \frac{9i\sqrt{2}}{128}, \frac{3}{2}, i\sqrt{2} \, x^2 \right) \operatorname{KummerM} \left(- \frac{9i\sqrt{2}}{128} - \frac{1}{4}, \frac{3}{2}, i\sqrt{2} \, x^2 \right) + 128 \operatorname{KummerM} \left(- \frac{9i\sqrt{2}}{128}, \frac{3}{2}, i\sqrt{2} \, x^2 \right) \right) \operatorname{e}^{-\frac{x\left(i\sqrt{2}\,x + \frac{3}{2}\right)}{2}} \\ &- \frac{9i\sqrt{2}}{128}, \frac{3}{2}, i\sqrt{2} \, x^2 \right) \operatorname{e}^{-\frac{x\left(i\sqrt{2}\,x + \frac{3}{2}\right)}{2}} \\ &- \frac{9i\sqrt{2}}{128}, \frac{3}{2}, i\sqrt{2} \, x^2 \right) \operatorname{e}^{-\frac{x\left(i\sqrt{2}\,x + \frac{3}{2}\right)}{2}} \\ \end{array}$$

✓ Solution by Mathematica

Time used: 3.699 (sec). Leaf size: 547

DSolve[2*y''[x]+3*y'[x]+4*x^2*y[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\rightarrow e^{\frac{1}{4}x\left(-3-2i\sqrt{2}x\right)} \left(\text{Hypergeometric1F1}\left(\frac{1}{4}\right) \\ &-\frac{9i}{64\sqrt{2}}, \frac{1}{2}, i\sqrt{2}x^2 \right) \int_{1}^{x} \frac{(8-8i)e^{\frac{1}{4}K}}{\left(-9i+16\sqrt{2}\right)\left(\sqrt[4]{2}\,\text{HermiteH}\left(-\frac{3}{2}+\frac{9i}{32\sqrt{2}},\sqrt[4]{-2}K[2]\right)\,\text{Hypergeometric1F1}\left(\frac{1}{4}-\frac{9i}{32\sqrt{2}},\sqrt[4]{-2}x\right) \int_{1}^{x} \frac{16e^{\frac{1}{4}K[1]\left(2i\sqrt{2}+\sqrt{2}x\right)}}{\sqrt[4]{-2}\left(-32+9i\sqrt{2}\right)\,\text{HermiteH}\left(-\frac{3}{2}+\frac{9i}{32\sqrt{2}},\sqrt[4]{-2}K[1]\right)\,\text{Hypergeometric1F1}\left(\frac{1}{4}-\frac{9i}{64\sqrt{2}},\frac{1}{2},i\sqrt{2}x^2\right) \right) \\ &+c_1\,\text{HermiteH}\left(-\frac{1}{2}+\frac{9i}{32\sqrt{2}},\sqrt[4]{-2x}\right) + c_2\,\text{Hypergeometric1F1}\left(\frac{1}{4}-\frac{9i}{64\sqrt{2}},\frac{1}{2},i\sqrt{2}x^2\right) \right) \end{split}$$

2.14 problem Problem 1(n)

Internal problem ID [10887]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(n).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _quadrature]]

$$y''' - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$3)=1,y(x), singsol=all)

$$y(x) = \frac{1}{6}x^3 + \frac{1}{2}c_1x^2 + xc_2 + c_3$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 25

DSolve[y'''[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^3}{6} + c_3 x^2 + c_2 x + c_1$$

2.15 problem Problem 1(o)

Internal problem ID [10888]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 1(o).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - y - \sin(x)^{2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 147

 $dsolve(x^2*diff(y(x),x$2)-y(x)=sin(x)^2,y(x), singsol=all)$

$$y(x) = c_2 x^{\frac{\sqrt{5}}{2} + \frac{1}{2}} + c_1 x^{-\frac{\sqrt{5}}{2} + \frac{1}{2}} + \frac{x^2 \left(3 \text{ hypergeom} \left(\left[1, -\frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} - \frac{\sqrt{5}}{4}\right], -x^2\right) \sqrt{5} - 3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right] + \frac{x^2 \left(3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right]\right) \right)}{1 + x^2 \left(3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right]\right)\right)}$$

✓ Solution by Mathematica

Time used: 0.539 (sec). Leaf size: 129

 $DSolve[x^2*y''[x]-y[x] == Sin[x]^2, y[x], x, Include Singular Solutions \rightarrow True]$

$$\begin{array}{l} y(x) \\ \rightarrow \frac{-\operatorname{ExpIntegralE}\left(\frac{3}{2}-\frac{\sqrt{5}}{2},-2ix\right)-\operatorname{ExpIntegralE}\left(\frac{3}{2}-\frac{\sqrt{5}}{2},2ix\right)+\operatorname{ExpIntegralE}\left(\frac{1}{2}\left(3+\sqrt{5}\right),-2ix\right)+1}{4\sqrt{5}} \\ + c_2x^{\frac{1}{2}\left(1+\sqrt{5}\right)}+c_1x^{\frac{1}{2}-\frac{\sqrt{5}}{2}}-\frac{1}{2} \end{array}$$

2.16 problem Problem 2(a)

Internal problem ID [10889]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 2(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - x^2 - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x$2)=x^2+y(x),y(x), singsol=all)$

$$y(x) = c_2 e^x + c_1 e^{-x} - x^2 - 2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

DSolve[y''[x]==x^2+y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x^2 + c_1 e^x + c_2 e^{-x} - 2$$

2.17 problem Problem 2(b)

Internal problem ID [10890]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 2(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [NONE]

X Solution by Maple

 $dsolve(diff(y(x),x\$3)+x*diff(y(x),x\$2)-y(x)^2=sin(x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y'''[x]+x*y''[x]-y[x]^2==Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

Not solved

2.18 problem Problem 2(c)

Internal problem ID [10891]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 2(c).

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type ['y=G(x,y')']

$$y'^{2} + yy'^{2}x - \ln(x) = 0$$

X Solution by Maple

 $dsolve(diff(y(x),x)^2+y(x)*diff(y(x),x)^2*x=ln(x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y'[x]^2+y[x]*y'[x]^2*x == Log[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

Not solved

2.19 problem Problem 2(d)

Internal problem ID [10892]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 2(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x], [_high_order, _with_linear_symmetri

X Solution by Maple

dsolve(sin(diff(y(x),x\$2))+y(x)*diff(y(x),x\$4)=1,y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[Sin[y''[x]] + y[x] * y''''[x] == 1, y[x], x, IncludeSingularSolutions \ -> \ True]$

2.20 problem Problem 2(e)

Internal problem ID [10893]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 2(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [NONE]

$$\sinh\left(x\right){y'}^2 + y'' - xy = 0$$

X Solution by Maple

 $dsolve(sinh(x)*diff(y(x),x)^2+diff(y(x),x$2)=x*y(x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[Sinh[x]*y'[x]^2+y''[x]==x*y[x],y[x],x,IncludeSingularSolutions -> True]

2.21 problem Problem 2(f)

Internal problem ID [10894]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 2(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$yy'' - 1 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 51

dsolve(y(x)*diff(y(x),x\$2)=1,y(x), singsol=all)

$$\int^{y(x)} \frac{1}{\sqrt{2\ln(a) - c_1}} d_a - x - c_2 = 0$$

$$\int^{y(x)} -\frac{1}{\sqrt{2\ln(a) - c_1}} d_a - x - c_2 = 0$$

Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 93

DSolve[y[x]*y''[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \exp\left(-\text{erf}^{-1}\left(-i\sqrt{\frac{2}{\pi}}\sqrt{e^{c_1}(x+c_2)^2}\right)^2 - \frac{c_1}{2}\right)$$

 $y(x) \to \exp\left(-\text{erf}^{-1}\left(i\sqrt{\frac{2}{\pi}}\sqrt{e^{c_1}(x+c_2)^2}\right)^2 - \frac{c_1}{2}\right)$

2.22 problem Problem 2(h)

Internal problem ID [10895]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 2(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [NONE]

X Solution by Maple

 $dsolve(diff(y(x),x$3)^2+sqrt(y(x))=sin(x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'''[x]^2+Sqrt[y[x]]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

2.23 problem Problem 3(a)

Internal problem ID [10896]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 3(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y' + y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{\left(-2 + \sqrt{3}\right)x} + c_2 e^{-\left(2 + \sqrt{3}\right)x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 34

DSolve[y''[x]+4*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{-\left(\left(2+\sqrt{3}\right)x\right)}\left(c_2 e^{2\sqrt{3}x} + c_1\right)$$

2.24 problem Problem 3(b)

Internal problem ID [10897]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 3(b).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 5y'' + y' - y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 181

dsolve(diff(y(x),x\$3)-5*diff(y(x),x\$2)+diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y(x) = c_{1}e^{\frac{\left(\left(116+6\sqrt{78}\right)^{\frac{2}{3}}+5\left(116+6\sqrt{78}\right)^{\frac{1}{3}}+22\right)x}{3\left(116+6\sqrt{78}\right)^{\frac{1}{3}}}}$$

$$-c_{2}e^{-\frac{\left(22+\left(116+6\sqrt{78}\right)^{\frac{2}{3}}-10\left(116+6\sqrt{78}\right)^{\frac{1}{3}}\right)x}{6\left(116+6\sqrt{78}\right)^{\frac{1}{3}}}}\sin\left(\frac{\left(\sqrt{3}\left(116+6\sqrt{78}\right)^{\frac{2}{3}}-22\sqrt{3}\right)x}{6\left(116+6\sqrt{78}\right)^{\frac{2}{3}}}-22\sqrt{3}\right)x}{6\left(116+6\sqrt{78}\right)^{\frac{2}{3}}-10\left(116+6\sqrt{78}\right)^{\frac{1}{3}}}\right)}$$

$$+c_{3}e^{-\frac{\left(22+\left(116+6\sqrt{78}\right)^{\frac{2}{3}}-10\left(116+6\sqrt{78}\right)^{\frac{1}{3}}\right)x}{6\left(116+6\sqrt{78}\right)^{\frac{1}{3}}}}\cos\left(\frac{\left(\sqrt{3}\left(116+6\sqrt{78}\right)^{\frac{2}{3}}-22\sqrt{3}\right)x}{6\left(116+6\sqrt{78}\right)^{\frac{1}{3}}}\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 81

 $DSolve[y'''[x]-5*y''[x]+y'[x]-y[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \rightarrow c_2 \exp \left(x \operatorname{Root}\left[\#1^3 - 5\#1^2 + \#1 - 1\&, 2\right]\right) + c_3 \exp \left(x \operatorname{Root}\left[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\right]\right) + c_1 \exp \left(x \operatorname{Root}\left[\#1^3 - 5\#1^2 + \#1 - 1\&, 1\right]\right)$$

2.25 problem Problem 3(c)

Internal problem ID [10898]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 3(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$2y'' - 3y' - 2y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(2*diff(y(x),x\$2)-3*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-\frac{x}{2}}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 24

DSolve [2*y''[x]-3*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-x/2} + c_2 e^{2x}$$

2.26 problem Problem 3(d)

Internal problem ID [10899]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 3(d).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$3y'''' - 2y'' + y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve(3*diff(y(x),x\$4)-2*diff(y(x),x\$2)+diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{-x} + c_3 e^{\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{6}\right) + c_4 e^{\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{6}\right)$$

✓ Solution by Mathematica

Time used: 0.612 (sec). Leaf size: 80

 $DSolve [3*y'''[x]-2*y''[x]+y'[x]==0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to c_3(-e^{-x}) + \frac{1}{2}e^{x/2}\left(\left(3c_2 - \sqrt{3}c_1\right)\cos\left(\frac{x}{2\sqrt{3}}\right) + \left(3c_1 + \sqrt{3}c_2\right)\sin\left(\frac{x}{2\sqrt{3}}\right)\right) + c_4$$

2.27 problem Problem 5(a)

Internal problem ID [10900]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 5(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$(x-3)y'' + \ln(x)y - x^2 = 0$$

With initial conditions

$$[y(1) = 1, y'(1) = 2]$$

X Solution by Maple

$$dsolve([(x-3)*diff(y(x),x$2)+ln(x)*y(x)=x^2,y(1) = 1, D(y)(1) = 2],y(x), singsol=all)$$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

$$DSolve[\{(x-3)*y''[x]+log[x]*y[x]==x^2,\{y[1]==1,y'[1]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow \{x,y''[x]+log[x],y''[x]\}$$

2.28 problem Problem 5(b)

Internal problem ID [10901]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 5(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' \tan(x) + \cot(x) y = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{4}\right) = 1, y'\left(\frac{\pi}{4}\right) = 0\right]$$

✓ Solution by Maple

Time used: 3.828 (sec). Leaf size: 46436

dsolve([diff(y(x),x\$2)+tan(x)*diff(y(x),x)+cot(x)*y(x)=0,y(1/4*Pi) = 1, D(y)(1/4*Pi) = 0],y(x)

Expression too large to display

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y''[x]+Tan[x]*y'[x]+Cot[x]*y[x]==0,{y[Pi/4]==1,y'[Pi/4]==0}},y[x],x,IncludeSingularSo

2.29 problem Problem 5(c)

Internal problem ID [10902]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 5(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 1) y'' + y'(x - 1) + y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.375 (sec). Leaf size: 157

$$dsolve([(x^2+1)*diff(y(x),x$2)+(x-1)*diff(y(x),x)+y(x)=0,y(0) = 0, D(y)(0) = 1],y(x), singsolve([(x^2+1)*diff(y(x),x$2)+(x-1)*diff(y(x),x)+y(x)=0,y(0) = 0, D(y)(0) = 1],y(x), singsolve([(x^2+1)*diff(y(x),x$2)+(x-1)*diff(y(x),x)+y(x)=0,y(0) = 0, D(y)(0) = 1],y(x), singsolve([(x^2+1)*diff(y(x),x)+y(x)=0,y(0) = 0, D(y)(0) = 1],y(x), singsolve([(x^2+1)*diff(x),x)+y(x)=0, Singsolve([(x^2+1)*diff(x),x)+y(x)=0,$$

y(x)

$$=\frac{-20\,\mathrm{e}^{(\frac{1}{4}-\frac{i}{4})\pi}\,\mathrm{hypergeom}\left(\left[i,-i\right],\left[\frac{1}{2}-\frac{i}{2}\right],\frac{1}{2}\right)\left(i+x\right)^{\frac{1}{2}+\frac{i}{2}}\,\mathrm{hypergeom}\left(\left[\frac{1}{2}-\frac{i}{2},\frac{1}{2}+\frac{3i}{2}\right],\left[\frac{3}{2}+\frac{i}{2}\right]}{\left(10-10i\right)\left(\mathrm{hypergeom}\left(\left[1-i,1+i\right],\left[\frac{3}{2}-\frac{i}{2}\right],\frac{1}{2}\right)-\mathrm{hypergeom}\left(\left[i,-i\right],\left[\frac{1}{2}-\frac{i}{2}\right],\frac{1}{2}\right)\right)\,\mathrm{hypergeom}\left(\left[\frac{1}{2}-\frac{i}{2}\right],\frac{1}{2}\right)}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

2.30 problem Problem 5(d)

Internal problem ID [10903]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 5(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$xy'' + 2x^2y' + \sin(x)y - \sinh(x) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

X Solution by Maple

$$dsolve([x*diff(y(x),x$2)+2*x^2*diff(y(x),x)+y(x)*sin(x)=sinh(x),y(0) = 1, D(y)(0) = 1],y(x),$$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

$$DSolve[\{x^2*y''[x]+2*x^2*y'[x]+y[x]*Sin[x]==Sinh[x],\{y[0]==1,y'[0]==1\}\},y[x],x,IncludeSingula]$$

2.31 problem Problem 5(e)

Internal problem ID [10904]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 5(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\sin(x)y'' + y'x + 7y - 1 = 0$$

With initial conditions

$$[y(1) = 1, y'(1) = 0]$$

X Solution by Maple

dsolve([sin(x)*diff(y(x),x\$2)+x*diff(y(x),x)+7*y(x)=1,y(1) = 1, D(y)(1) = 0],y(x), singsol=al(x)+al(

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{Sin[x]*y''[x]+x*y'[x]+7*y[x]==1,{y[1]==1,y'[1]==0}},y[x],x,IncludeSingularSolutions -

2.32 problem Problem 5(f)

Internal problem ID [10905]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 5(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y'(x - 1) + x^2y - \tan(x) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.328 (sec). Leaf size: 528

$$dsolve([diff(y(x),x$2)-(x-1)*diff(y(x),x)+x^2*y(x)=tan(x),y(0) = 0, D(y)(0) = 0],y(x), singso(x)=tan(x),y(x)=tan$$

Expression too large to display

✓ Solution by Mathematica

Time used: 29.378 (sec). Leaf size: 4228

$$DSolve[\{y''[x]-(x-1)*y'[x]+x^2*y[x]==Tan[x],\{y[0]==0,y'[0]==1\}\},y[x],x,IncludeSingularSolution[]$$

Too large to display

2.33 problem Problem 10

Internal problem ID [10906]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x-1)y'' - y'x + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve((x-1)*diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 x + c_2 e^x$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 17

DSolve[(x-1)*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^x - c_2 x$$

2.34 problem Problem 13

Internal problem ID [10907]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - 4x^{2}y' + (x^{2} + 1)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

 $dsolve(x^2*diff(y(x),x$2)-4*x^2*diff(y(x),x)+(x^2+1)*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 e^{2x} \sqrt{x} \text{ BesselI}\left(\frac{i\sqrt{3}}{2}, \sqrt{3}x\right) + c_2 e^{2x} \sqrt{x} \text{ BesselK}\left(\frac{i\sqrt{3}}{2}, \sqrt{3}x\right)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 67

 $DSolve[x^2*y''[x]-4*x^2*y'[x]+(x^2+1)*y[x] ==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) o e^{2x} \sqrt{x} \left(c_1 \operatorname{BesselJ}\left(\frac{i\sqrt{3}}{2}, -i\sqrt{3}x \right) + c_2 Y_{\frac{i\sqrt{3}}{2}} \left(-i\sqrt{3}x \right) \right)$$

2.35 problem Problem 15

Internal problem ID [10908]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{kx}{y^4} = 0$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 91

 $dsolve(diff(y(x),x$2)+k*x/(y(x)^4)=0,y(x), singsol=all)$

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y''[x]+k*x/(y[x]^4)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

2.36 problem Problem 18(a)

Internal problem ID [10909]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 18(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + 2y'x + 2y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+2*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = \text{erfi}(x) e^{-x^2} c_1 + c_2 e^{-x^2}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 21

DSolve[y''[x]+2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \text{ DawsonF}(x) + c_2 e^{-x^2}$$

2.37 problem Problem 18(b)

Internal problem ID [10910]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 18(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$xy'' + \sin(x)y' + y\cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(x*diff(y(x),x\$2)+sin(x)*diff(y(x),x)+cos(x)*y(x)=0,y(x), singsol=all)

$$y(x) = \left(c_1 \left(\int rac{\mathrm{e}^{\mathrm{Si}(x)}}{x^2} dx
ight) + c_2
ight) x \, \mathrm{e}^{-\mathrm{Si}(x)}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[x*y''[x]+Sin[x]*y'[x]+Cos[x]*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

2.38 problem Problem 18(c)

Internal problem ID [10911]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 18(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$y'' + 2x^2y' + 4xy - 2x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 63

 $dsolve(diff(y(x),x$2)+2*x^2*diff(y(x),x)+4*x*y(x)=2*x,y(x), singsol=all)$

$$y(x) = \frac{e^{-\frac{2x^3}{3}}x\left(2\sqrt{3}\pi - 3\Gamma\left(\frac{1}{3}, -\frac{2x^3}{3}\right)\Gamma\left(\frac{2}{3}\right)\right)c_1}{\left(-x^3\right)^{\frac{1}{3}}} + e^{-\frac{2x^3}{3}}c_2 + \frac{\left(-1 + e^{\frac{2x^3}{3}}\right)e^{-\frac{2x^3}{3}}}{2}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 43

DSolve[$y''[x]+2*x^2*y'[x]+4*x*y[x]==2*x,y[x],x$,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{1}{2} + rac{1}{3}e^{-rac{2x^3}{3}}igg(3c_2 - c_1x ext{ ExpIntegralE}\left(rac{2}{3}, -rac{2x^3}{3}
ight)igg)$$

2.39 problem Problem 18(d)

Internal problem ID [10912]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 18(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$(-x^{2}+1)y'' + (1-x)y' + y + 2x - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 54

 $dsolve((1-x^2)*diff(y(x),x$2)+(1-x)*diff(y(x),x)+y(x)=1-2*x,y(x), singsol=all)$

$$y(x) = \left(-\frac{\ln(x+1)x}{4} + \frac{\ln(x+1)}{4} + \frac{1}{2} + \frac{\ln(x-1)x}{4} - \frac{\ln(x-1)}{4}\right)c_1 + (x-1)c_2 + \frac{\left(\ln(x+1) + \ln(x-1)\right)(x-1)}{2}$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 56

 $DSolve[(1-x^2)*y''[x]+(1-x)*y'[x]+y[x]==1-2*x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{4}((x-1)\log(1-x) - 4c_1(x-1) + (1+c_2)(x-1)\log(x-1) - (-2+c_2)(x-1)\log(x+1) + 2c_2)$$

2.40 problem Problem 18(e)

Internal problem ID [10913]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 18(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y'x + (4x^2 + 2)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(diff(y(x),x$2)+4*x*diff(y(x),x)+(2+4*x^2)*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 e^{-x^2} + c_2 x e^{-x^2}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 20

 $DSolve[y''[x]+4*x*y'[x]+(2+4*x^2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to e^{-x^2}(c_2x + c_1)$$

2.41 problem Problem 18(f)

Internal problem ID [10914]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 18(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x^{2}y' + 2(1-x)y = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 123

 $dsolve(x^2*diff(y(x),x$2)+x^2*diff(y(x),x)+2*(1-x)*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \sqrt{x} e^{-\frac{x}{2}} \left(\left(x^2 + 2x \right) \text{BesselI} \left(\frac{i\sqrt{7}}{2} + 1, \frac{x}{2} \right) \right.$$

$$\left. + \left(-2 + i(x+2)\sqrt{7} + x^2 + 3x \right) \text{BesselI} \left(\frac{i\sqrt{7}}{2}, \frac{x}{2} \right) \right)$$

$$\left. + c_2 \left(\left(-x^2 - 2x \right) \text{BesselK} \left(\frac{i\sqrt{7}}{2} + 1, \frac{x}{2} \right) \right.$$

$$\left. + \left(-2 + i(x+2)\sqrt{7} + x^2 + 3x \right) \text{BesselK} \left(\frac{i\sqrt{7}}{2}, \frac{x}{2} \right) \right) \sqrt{x} e^{-\frac{x}{2}}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 89

 $DSolve[x^2*y''[x]+x^2*y'[x]+2*(1-x)*y[x] ==0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to e^{-x} x^{\frac{1}{2} + \frac{i\sqrt{7}}{2}} \left(c_1 \text{ Hypergeometric U}\left(\frac{5}{2} + \frac{i\sqrt{7}}{2}, 1 + i\sqrt{7}, x\right) + c_2 L_{-\frac{1}{2}i\left(-5i + \sqrt{7}\right)}^{i\sqrt{7}}(x) \right)$$

2.42 problem Problem 18(g)

Internal problem ID [10915]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 18(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$y'' + x^2y' + 2xy - 2x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 62

 $dsolve(diff(y(x),x$2)+x^2*diff(y(x),x)+2*x*y(x)=2*x,y(x), singsol=all)$

$$y(x) = \frac{x\left(2\sqrt{3}\pi - 3\Gamma\left(\frac{1}{3}, -\frac{x^3}{3}\right)\Gamma\left(\frac{2}{3}\right)\right)e^{-\frac{x^3}{3}}c_1}{\left(-x^3\right)^{\frac{1}{3}}} + e^{-\frac{x^3}{3}}c_2 + \left(-1 + e^{\frac{x^3}{3}}\right)e^{-\frac{x^3}{3}}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 41

DSolve[$y''[x]+x^2*y'[x]+2*x*y[x]==2*x,y[x],x$,IncludeSingularSolutions -> True]

$$y(x) \rightarrow 1 + \frac{1}{3}e^{-\frac{x^3}{3}} \left(3c_2 - c_1x \operatorname{ExpIntegralE}\left(\frac{2}{3}, -\frac{x^3}{3}\right)\right)$$

2.43 problem Problem 18(h)

Internal problem ID [10916]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 18(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\ln(x^2+1)y'' + \frac{4xy'}{x^2+1} + \frac{(-x^2+1)y}{(x^2+1)^2} = 0$$

X Solution by Maple

 $\frac{dsolve(ln(1+x^2)*diff(y(x),x$2)+4*x/(1+x^2)*diff(y(x),x)+(1-x^2)/(1+x^2)^2*y(x)=0}{},y(x), sings(x)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve [Log[1+x^2]*y''[x]+4*x/(1+x^2)*y'[x]+(1-x^2)/(1+x^2)^2*y[x] == 0, y[x], x, Include Singular Solve [Log[1+x^2]*y''[x]+4*x/(1+x^2)*y'[x]+(1-x^2)/(1+x^2)^2*y[x] == 0, y[x], x, Include Singular Solve [Log[1+x^2]*y''[x]+4*x/(1+x^2)*y''[x]+(1-x^2)/(1+x^2)^2*y[x] == 0, y[x], x, Include Singular Solve [Log[1+x^2]*y''] = 0, y[x], y[x$

2.44 problem Problem 18(i)

Internal problem ID [10917]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 18(i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$xy'' + x^2y' + 2xy = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 42

 $dsolve(x*diff(y(x),x$2)+x^2*diff(y(x),x)+2*x*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x e^{-\frac{x^2}{2}} + c_2 \left(i e^{-\frac{x^2}{2}} \operatorname{erf} \left(\frac{i\sqrt{2} x}{2} \right) \sqrt{2} \sqrt{\pi} x + 2 \right)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 44

DSolve $[x*y''[x]+x^2*y'[x]+2*x*y[x]==0,y[x],x$, IncludeSingularSolutions -> True]

$$y(x) \to -\sqrt{2}c_2x \text{ DawsonF}\left(\frac{x}{\sqrt{2}}\right) + \sqrt{2}c_1e^{-\frac{x^2}{2}}x + c_2$$

2.45 problem Problem 18(j)

Internal problem ID [10918]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 18(j).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$y'' + \sin(x)y' + y\cos(x) - \cos(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+sin(x)*diff(y(x),x)+cos(x)*y(x)=cos(x),y(x), singsol=all)

$$y(x) = \left(c_2 + \int \left(c_1 + \sin\left(x\right)\right) e^{-\cos(x)} dx\right) e^{\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.732 (sec). Leaf size: 34

DSolve[y''[x]+Sin[x]*y'[x]+Cos[x]*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{\cos(x)} \left(\int_1^x e^{-\cos(K[1])} (c_1 + \sin(K[1])) dK[1] + c_2 \right)$$

2.46 problem Problem 18(k)

Internal problem ID [10919]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 18(k).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \cot(x) y' - \csc(x)^2 y - \cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $\label{eq:diff} dsolve(diff(y(x),x\$2)+cot(x)*diff(y(x),x)-csc(x)^2*y(x)=cos(x),y(x), singsol=all)$

$$y(x) = (\cot(x) + \csc(x)) c_2 + \frac{c_1}{\cot(x) + \csc(x)} - \frac{\cos(x)}{2} + \frac{\csc(x) x}{2}$$

✓ Solution by Mathematica

Time used: 0.076 (sec). Leaf size: 32

DSolve[y''[x]+Cot[x]*y'[x]-Csc[x]^2*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}(-\cos(x) + x\csc(x) - 2ic_2\cot(x) + 2c_1\csc(x))$$

2.47 problem Problem 18(L)

Internal problem ID [10920]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 18(L).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x \ln(x) y'' + 2y' - \frac{y}{x} - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(x*ln(x)*diff(y(x),x\$2)+2*diff(y(x),x)-y(x)/x=1,y(x), singsol=all)

$$y(x) = \frac{c_1}{\ln(x)} + x + \frac{c_2 x}{\ln(x)}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 21

 $DSolve[x*Log[x]*y''[x]+2*y'[x]-y[x]/x==1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x + \frac{(-1+c_2)x + c_1}{\log(x)}$$

2.48 problem Problem 19(a)

Internal problem ID [10921]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 19(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu

$$xy'' + (6y^2x + 1)y' + 2y^3 + 1 = 0$$

X Solution by Maple

 $dsolve(x*diff(y(x),x$2)+(6*x*y(x)^2+1)*diff(y(x),x)+2*y(x)^3+1=0,y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[x*y''[x]+(6*x*y[x]^2+1)*y'[x]+2*y[x]^3+1==0,y[x],x,IncludeSingularSolutions -> True]

2.49 problem Problem 19(b)

Internal problem ID [10922]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 19(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_sy

$$\frac{xy''}{y+1} + \frac{y'y - xy'^2 + y'}{(y+1)^2} - \sin(x) x = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 27

 $dsolve(x*diff(y(x),x$2)/(1+y(x))+(y(x)*diff(y(x),x)-x*diff(y(x),x)^2+diff(y(x),x))/(1+y(x))$

$$y(x) = e^{-\frac{\pi \operatorname{csgn}(x)}{2}} x^{-c_2} e^{-\sin(x)} e^{\operatorname{Si}(x)} c_1 - 1$$

✓ Solution by Mathematica

Time used: 0.438 (sec). Leaf size: 23

DSolve[x*y''[x]/(1+y[x])+(y[x]*y'[x]-x* y'[x]^2+y'[x])/(1+y[x])^2==x*Sin[x],y[x],x,IncludeS

$$y(x) \to -1 + x^{c_2} e^{\text{Si}(x) - \sin(x) + c_1}$$

2.50 problem Problem 19(c)

Internal problem ID [10923]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 19(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu

$$(x\cos(y) + \sin(x))y'' - xy'^{2}\sin(y) + 2(\cos(y) + \cos(x))y' - \sin(x)y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

 $dsolve((x*cos(y(x))+sin(x))*diff(y(x),x$2)-x*diff(y(x),x)^2*sin(y(x))+2*(cos(y(x))+cos(x))$

$$-y(x)\sin(x) - x\sin(y(x)) - c_1x + c_2 = 0$$

✓ Solution by Mathematica

Time used: 0.187 (sec). Leaf size: 25

 $DSolve[(x*Cos[y[x]]+Sin[x])*y''[x]-x*y'[x]^2*Sin[y[x]]+2*(Cos[y[x]]+Cos[x])*y'][x]==y[x]*Sin[y[x]]+Cos[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x])*y''[x]==y[x]*Sin[y[x]]+Cos[x]*Sin[x]+Cos[x]*Sin[x]+Cos[x]*Sin[x]+Cos[x]+Cos[x]*Sin[x]+Cos[x]+$

Solve
$$\left[\sin(y(x)) + \frac{y(x)\sin(x)}{x} - \frac{c_1}{x} = c_2, y(x)\right]$$

2.51problem Problem 19(d)

Internal problem ID [10924]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 19(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu

$$yy'' \sin(x) + (y\cos(x) + \sin(x)y')y' - \cos(x) = 0$$

Solution by Maple

Time used: 0.094 (sec). Leaf size: 119

dsolve(y(x)*diff(y(x),x\$2)*sin(x)+ (diff(y(x),x)*sin(x)+y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*diff(y(x),x)=cos(x),y(x)*diff(y(x),x)*diff(y(x),x)=cos(x),y(x)*diff(y(x),x)*diff(y(x),x)*diff(y(x),x)=cos(x),y(x)*diff(y(x),x)*diff(y(x),x)*diff(y(x),x)=cos(x),y(x)*diff(y(x),x)*diff(y(x),x)=cos(x),y(x)*diff(y(x),x)*dif

$$y(x) = \sqrt{\sqrt{2} \operatorname{csgn} (\sin (x)) \operatorname{arctanh} (\cos (x)) c_2 - \sqrt{2} \operatorname{csgn} (\sin (x)) \operatorname{csgn} (\cos (x)) c_1 + 2 \operatorname{csgn} (\sin (x)) \left(\int \operatorname{csgn} (\sin (x)) c_1 + 2 \operatorname{csgn} (\sin (x)) \left(\int \operatorname{csgn} (\sin (x)) c_1 + 2 \operatorname{csgn} (\sin (x)) c_2 + 2 \operatorname{csgn} (\sin (x)) c_1 + 2 \operatorname{csgn} (\sin (x)) c_2 + 2 \operatorname{csgn} (\cos (x)) c_2 + 2 \operatorname{csgn$$

$$x) = -\sqrt{\sqrt{2} \operatorname{csgn} \left(\sin \left(x\right)\right) \operatorname{arctanh} \left(\cos \left(x\right)\right) c_2 - \sqrt{2} \operatorname{csgn} \left(\sin \left(x\right)\right) \operatorname{csgn} \left(\cos \left(x\right)\right) c_1 + 2 \operatorname{csgn} \left(\sin \left(x\right)\right) \left(\int \operatorname{csgn} \left(\sin \left(x\right)\right) \left(\cos \left(x\right)\right) \left$$

✓ Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 78

DSolve[y[x]*y''[x]*Sin[x]+ (y'[x]*Sin[x]+y[x]*Cos[x])*y'[x] == Cos[x], y[x], x, IncludeSingularSin[x]+y[x]*Cos[x])*y'[x] == Cos[x], y[x], x, IncludeSin[x]+y[x]*Cos[x])*y'[x]*Cos[x]*y'[x]*Cos[x]*y'[x]*Cos[x]*y'[x]*Cos[x]*y'[x]*y'[x]*Cos[x]*y'[x]*y'[x]*Cos[x]*y'[x]*y

$$y(x) \to -\sqrt{2}\sqrt{x + c_1\left(\log\left(\cos\left(\frac{x}{2}\right)\right) - \log\left(\sin\left(\frac{x}{2}\right)\right)\right) + c_2}$$

$$y(x) \to \sqrt{2}\sqrt{x + c_1\left(\log\left(\cos\left(\frac{x}{2}\right)\right) - \log\left(\sin\left(\frac{x}{2}\right)\right)\right) + c_2}$$

$$y(x) \to \sqrt{2}\sqrt{x + c_1\left(\log\left(\cos\left(\frac{x}{2}\right)\right) - \log\left(\sin\left(\frac{x}{2}\right)\right)\right) + c_2}$$

2.52 problem Problem 19(e)

Internal problem ID [10925]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 19(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _L

$$(1 - y)y'' - {y'}^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

 $dsolve((1-y(x))*diff(y(x),x$2)-diff(y(x),x)^2=0,y(x), singsol=all)$

$$y(x) = 1$$

$$y(x) = 1 - \sqrt{2c_1x + 2c_2 + 1}$$

$$y(x) = 1 + \sqrt{2c_1x + 2c_2 + 1}$$

✓ Solution by Mathematica

Time used: 0.12 (sec). Leaf size: 43

 $DSolve[(1-y[x])*y''[x]-y'[x]^2==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to 1 - \sqrt{1 - 2c_1(x + c_2)}$$

$$y(x) \to 1 + \sqrt{1 - 2c_1(x + c_2)}$$

2.53 problem Problem 19(f)

Internal problem ID [10926]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 19(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu

$$(\cos(y) - y\sin(y))y'' - y'^{2}(2\sin(y) + y\cos(y)) - \sin(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve((cos(y(x))-y(x)*sin(y(x)))*diff(y(x),x$2)- diff(y(x),x)^2* (2*sin(y(x))+y(x)*cos(y(x))$

$$-y(x)\cos(y(x)) - c_1x - \sin(x) + c_2 = 0$$

✓ Solution by Mathematica

Time used: 0.337 (sec). Leaf size: 28

 $DSolve[(Cos[y[x]]-y[x]*Sin[y[x]])*y''[x]-y'[x]^2*(2*Sin[y[x]]+y[x]*Cos[y[x]])==Sin[x],y[x],$

Solve
$$\left[\frac{y(x)\cos(y(x))}{x} + \frac{\sin(x)}{x} + \frac{c_1}{x} = c_2, y(x)\right]$$

2.54 problem Problem 20(a)

Internal problem ID [10927]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 20(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{2xy'}{2x - 1} - \frac{4xy}{(2x - 1)^2} = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 43

 $dsolve(diff(y(x),x\$2) + (2*x)/(2*x-1)*diff(y(x),x) - 4*x/((2*x-1)^2)*y(x) = 0,y(x), singsol = all)$

$$y(x) = \frac{c_1 \operatorname{WhittakerM} \left(-\frac{5}{4}, -\frac{3}{4}, x - \frac{1}{2} \right) e^{-\frac{x}{2}}}{\left(2x - 1 \right)^{\frac{1}{4}}} + \frac{c_2 \operatorname{WhittakerW} \left(-\frac{5}{4}, -\frac{3}{4}, x - \frac{1}{2} \right) e^{-\frac{x}{2}}}{\left(2x - 1 \right)^{\frac{1}{4}}}$$

✓ Solution by Mathematica

Time used: 0.131 (sec). Leaf size: 62

$$y(x) o rac{c_2 \left(4e^{rac{1}{2}-x}(x-1)-(1-2x)^2 \operatorname{ExpIntegralE}\left(rac{1}{2},x-rac{1}{2}
ight)
ight)}{6\sqrt{2x-1}} + c_1(2x-1)$$

2.55 problem Problem 20(b)

Internal problem ID [10928]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 20(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2} + 2x) y'' + (x^{2} + x + 10) y' - (25 - 6x) y = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 113

$$dsolve((2*x+x^2)*diff(y(x),x\$2)+ (10+x+x^2)*diff(y(x),x)=(25-6*x)*y(x),y(x), singsol=all)$$

$$y(x) = c_1(x+2)^7 e^{-x} + \frac{c_2(88447(x+2)^7 x^4 e^{-x-2} Ei_1(-x-2) - 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 970261 x^9 + 5171}{2} + \frac{c_2(88447(x+2)^7 x^4 e^{-x-2} Ei_1(-x-2) - 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 970261 x^9 + 5171}{2} + \frac{c_2(88447(x+2)^7 x^4 e^{-x-2} Ei_1(-x-2) - 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 970261 x^9 + 5171}{2} + \frac{c_2(88447(x+2)^7 x^4 e^{-x-2} Ei_1(-x-2) - 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 970261 x^9 + 5171}{2} + \frac{c_2(88447(x+2)^7 x^4 e^{-x-2} Ei_1(-x-2) - 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 970261 x^9 + 5171}{2} + \frac{c_2(88447(x+2)^7 x^4 e^{-x-2} Ei_1(-x-2) - 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 970261 x^9 + 5171}{2} + \frac{c_2(88447(x+2)^7 x^4 e^{-x-2} Ei_1(-x) - 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 970261 x^9 + 5171}{2} + \frac{c_2(88447(x+2)^7 x^4 e^{-x-2} Ei_1(-x) - 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 970261 x^9 + 5171}{2} + \frac{c_2(88447(x+2)^7 x^4 e^{-x-2} Ei_1(-x) - 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 970261 x^9 + 5171}{2} + \frac{c_2(88447(x+2)^7 x^4 e^{-x-2} Ei_1(-x) - 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 970261 x^9 + 5171}{2} + \frac{c_2(88447(x+2)^7 x^4 e^{-x-2} Ei_1(-x) - 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 970261 x^9 + 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 970261 x^9 + 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 76477 x^{10} + 11970 e^{-x} x^4 (x+2)^7 Ei_1(-x) + 11970 e^{-x} x^4 (x+2)^7 Ei$$

✓ Solution by Mathematica

Time used: 0.332 (sec). Leaf size: 109

$$y(x) \to \frac{e^{-x-2}(c_2x^4(x+2)^7 (11970e^2 \text{ExpIntegralEi}(x) - 88447 \text{ExpIntegralEi}(x+2)) + e^2(322560c_1x^4(x+2)^7)}{e^{-x-2}(c_2x^4(x+2)^7 (11970e^2 \text{ExpIntegralEi}(x) - 88447 \text{ExpIntegralEi}(x+2)) + e^2(322560c_1x^4(x+2)^7)}$$

2.56 problem Problem 20(c)

Internal problem ID [10929]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 20(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{y'}{x+1} - \frac{(x+2)y}{x^2(x+1)} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x\$2)+diff(y(x),x)/(1+x)-(2+x)/(x^2*(1+x))*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + \frac{c_2(x^2 + 2\ln(x+1) - 2x)}{x}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 34

 $DSolve[y''[x]+y'[x]/(1+x)-(2+x)/(x^2*(1+x))*y[x]==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_2(x-3)(x+1) + 2c_2\log(x+1) + 2c_1}{2x}$$

2.57 problem Problem 20(d)

Internal problem ID [10930]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 20(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2}-x)y'' + (2x^{2}+4x-3)y' + 8xy = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve((x^2-x)*diff(y(x),x$2)+(2*x^2+4*x-3)*diff(y(x),x)+8*x*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x^2 (x-1)^2} + \frac{c_2 e^{-2x}}{(x-1)^2}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 30

$$y(x) o rac{rac{2c_1}{x^2} + c_2 e^{-2x}}{2(x-1)^2}$$

2.58 problem Problem 20(e)

Internal problem ID [10931]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 20(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$\frac{(x^2 - x)y''}{x} + \frac{(3x + 1)y'}{x} + \frac{y}{x} - 3x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 52

 $dsolve((x^2-x)/x*diff(y(x),x$2)+(3*x+1)/x*diff(y(x),x)+y(x)/x=3*x,y(x), singsol=all)$

$$y(x) = \frac{c_2(2\ln(x) x^2 + 4x - 1)}{(x - 1)^3} + \frac{c_1x^2}{(x - 1)^3} + \frac{x^3(x^2 - 3x + 3)}{3(x - 1)^3}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 52

 $DSolve[(x^2-x)/x*y''[x]+(3*x+1)/x*y'[x]+y[x]/x=-3*x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2x^2(x((x-3)x+3) - 3c_1) - 6c_2x^2\log(x) + 3c_2(1-4x)}{6(x-1)^3}$$

2.59 problem Problem 20(f)

Internal problem ID [10932]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 20(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(2\sin(x) - \cos(x))y'' + (7\sin(x) + 4\cos(x))y' + 10y\cos(x) = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 100

dsolve((2*sin(x)-cos(x))*diff(y(x),x\$2)+(7*sin(x)+4*cos(x))*diff(y(x),x)+10*y(x)*cos(x)=0,y(x)+10*y(x)=0,y(x)+10*y(x)=0,

$$y(x) = c_1 e^{-\left(\int \frac{5\cos(x)\cot(x) - 6\csc(x)}{-2\sin(x) + \cos(x)} dx\right)} + c_2 e^{-\left(\int \frac{5\cos(x)\cot(x) - 6\csc(x)}{-2\sin(x) + \cos(x)} dx\right)} \left(\int -\frac{\csc(x) e^{\int \frac{5\cos(x)\cot(x) - 6\csc(x)}{-2\sin(x) + \cos(x)} dx}}{-2\sin(x) + \cos(x)} dx\right)$$

✓ Solution by Mathematica

Time used: 0.997 (sec). Leaf size: 95

DSolve[(2*Sin[x]-Cos[x])*y''[x]+(7*Sin[x]+4*Cos[x])*y'[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x]*Cos[x]

$$y(x) \rightarrow \frac{c_2 \int_1^{e^{ix}} \frac{e^{-3i\arctan\left(2 - \frac{4}{K[1]^2 + 1}\right)} K[1]^{-2 + 2i} \left((1 + 2i)K[1]^2 + (1 - 2i)\right)^4}{(5K[1]^4 - 6K[1]^2 + 5)^{3/2}} dK[1] + c_1}{4(\cos(x) - 2\sin(x))^2}$$

2.60 problem Problem 20(g)

Internal problem ID [10933]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 20(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \frac{(x-1)y'}{x} + \frac{y}{x^3} - \frac{e^{-\frac{1}{x}}}{x^3} = 0$$

X Solution by Maple

 $dsolve(diff(y(x),x$2)+(x-1)/x*diff(y(x),x)+y(x)/x^3=1/x^3*exp(-1/x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y''[x]+(x-1)/x*y'[x]+y[x]/x^3==1/x^3*Exp[-1/x], y[x], x, IncludeSingularSolut ions -> True for the content of the co$

Not solved

2.61 problem Problem 20(h)

Internal problem ID [10934]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

Problem number: Problem 20(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + (2x+5)y' + (4x+8)y - e^{-2x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(x),x\$2)+(2*x+5)*diff(y(x),x)+(4*x+8)*y(x)=exp(-2*x),y(x), singsol=all)

$$y(x) = e^{-x(x+3)}c_2 + e^{-x(x+3)} \operatorname{erf}\left(ix + \frac{1}{2}i\right)c_1 + \frac{e^{-2x}}{2}$$

✓ Solution by Mathematica

Time used: 0.103 (sec). Leaf size: 45

$$y(x) \to \frac{1}{2}e^{-x(x+3)} \left(e^{x^2+x} \left(1 + (-1 + 2c_2) \text{ DawsonF}\left(x + \frac{1}{2}\right) \right) + 2c_1 \right)$$

3 Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

3.1	problem Problem 2 .		 																	80
3.2	problem Problem 3 .		 																	. 81
3.3	problem Problem 4 .		 																	82
3.4	problem Problem 5 .		 																	83
3.5	problem Problem 6 .		 	•																. 84
3.6	problem Problem 7 .		 																	85
3.7	problem Problem 8 .		 																	86
3.8	problem Problem 9 $.$		 				 •								•					. 87
3.9	problem Problem 10		 				 •								•					88
3.10	problem Problem 11		 				 •								•					89
3.11	problem Problem 12	•	 	•																90
	problem Problem 13																			. 91
3.13	problem Problem 14	•	 	•																92
	problem Problem 15																			93
3.15	problem Problem 16	•	 	•															• •	. 94
	problem Problem 17																			95
3.17	problem Problem 18				•		 •				•									96
	problem Problem 19																			. 97
3.19	problem Problem 20				•		 •				•									98
3.20	problem Problem 21				•		 •				•									99
3.21	problem Problem 22				•		 •		 •		•				•					100
3.22	problem Problem 23			•	•	•	 •		 •	•	•				•	•			• •	. 101
	problem Problem 24																			102
3.24	problem Problem 25				•		 •		 •		•				•					103
	=																			. 104
3.26	problem Problem 27		 																	105

3.1 problem Problem 2

Internal problem ID [10935]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 9y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

dsolve([diff(y(t),t\$2)+9*y(t)=0,y(0) = 2, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = 2\cos\left(3t\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 11

 $DSolve[\{y''[t]+9*y[t]==0,\{y[0]==2,y'[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow 2\cos(3t)$$

3.2 problem Problem 3

Internal problem ID [10936]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' - 4y' + 5y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve([4*diff(y(t),t\$2)-4*diff(y(t),t)+5*y(t)=0,y(0) = 2, D(y)(0) = 3],y(t), singsol=all)

$$y(t) = 2e^{\frac{t}{2}}(\cos(t) + \sin(t))$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 19

DSolve[{4*y''[t]-4*y'[t]+5*y[t]==0,{y[0]==2,y'[0]==3}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to 2e^{t/2}(\sin(t) + \cos(t))$$

3.3 problem Problem 4

Internal problem ID [10937]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + y = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=0,y(0) = -1, D(y)(0) = 2],y(t), singsol=all)

$$y(t) = e^{-t}(t-1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 14

DSolve[{y''[t]+2*y'[t]+y[t]==0,{y[0]==-1,y'[0]==2}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow e^{-t}(t-1)$$

3.4 problem Problem 5

Internal problem ID [10938]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 5y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve([diff(y(t),t\$2)-4*diff(y(t),t)+5*y(t)=0,y(0) = 0, D(y)(0) = 3],y(t), singsol=all)

$$y(t) = 3e^{2t}\sin(t)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 14

 $DSolve[\{y''[t]-4*y'[t]+5*y[t]==0,\{y[0]==0,y'[0]==3\}\},y[t],t,IncludeSingularSolutions -> True]$

$$y(t) \to 3e^{2t}\sin(t)$$

3.5 problem Problem 6

Internal problem ID [10939]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 6y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

dsolve([diff(y(t),t\$2)-diff(y(t),t)-6*y(t)=0,y(0) = 2, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = \left(e^{5t} + 1\right)e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 16

 $DSolve[\{y''[t]-y'[t]-6*y[t]==0,\{y[0]==2,y'[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to e^{-2t} + e^{3t}$$

3.6 problem Problem 7

Internal problem ID [10940]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' - 4y' + 37y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = -3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([4*diff(y(t),t\$2)-4*diff(y(t),t)+37*y(t)=0,y(0) = 2, D(y)(0) = -3],y(t), singsol=all)

$$y(t) = -\frac{2e^{\frac{t}{2}}(2\sin(3t) - 3\cos(3t))}{3}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 29

DSolve[{4*y''[t]-4*y'[t]+37*y[t]==0,{y[0]==2,y'[0]==-3}},y[t],t,IncludeSingularSolutions -> T

$$y(t) \to \frac{2}{3}e^{t/2}(3\cos(3t) - 2\sin(3t))$$

3.7 problem Problem 8

Internal problem ID [10941]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 3y' + 2y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=0,y(0) = 2, D(y)(0) = 3],y(t), singsol=all)

$$y(t) = -5 e^{-2t} + 7 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

DSolve[{y''[t]+3*y'[t]+2*y[t]==0,{y[0]==2,y'[0]==3}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-2t} \left(7e^t - 5 \right)$$

3.8 problem Problem 9

Internal problem ID [10942]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + 5y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+5*y(t)=0,y(0) = 1, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = \cos(2t) e^{-t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 15

DSolve[{y''[t]+2*y'[t]+5*y[t]==0,{y[0]==1,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to e^{-t} \cos(2t)$$

3.9 problem Problem 10

Internal problem ID [10943]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' - 12y' + 13y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([4*diff(y(t),t\$2)-12*diff(y(t),t)+13*y(t)=0,y(0) = 2, D(y)(0) = 3],y(t), singsol=all)

$$y(t) = 2e^{\frac{3t}{2}}\cos(t)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 16

DSolve[{4*y''[t]-12*y'[t]+13*y[t]==0,{y[0]==2,y'[0]==3}},y[t],t,IncludeSingularSolutions -> T

$$y(t) \to 2e^{3t/2}\cos(t)$$

3.10 problem Problem 11

Internal problem ID [10944]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y' + 13y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -6]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+13*y(t)=0,y(0) = 1, D(y)(0) = -6],y(t), singsol=all)

$$y(t) = -\frac{e^{-2t}(4\sin(3t) - 3\cos(3t))}{3}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 27

DSolve[{y''[t]+4*y'[t]+13*y[t]==0,{y[0]==1,y'[0]==-6}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to \frac{1}{3}e^{-2t}(3\cos(3t) - 4\sin(3t))$$

3.11 problem Problem 12

Internal problem ID [10945]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 6y' + 9y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

dsolve([diff(y(t),t\$2)+6*diff(y(t),t)+9*y(t)=0,y(0) = 1, D(y)(0) = -3],y(t), singsol=all)

$$y(t) = e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 10

 $DSolve[{y''[t]+6*y'[t]+9*y[t]==0,{y[0]==1,y'[0]==-3}},y[t],t,IncludeSingularSolutions -> True$

$$y(t) \to e^{-3t}$$

3.12 problem Problem 13

Internal problem ID [10946]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 13.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + y = 0$$

With initial conditions

$$y(0) = 1, y'(0) = 0, y''(0) = 0, y'''(0) = \frac{\sqrt{2}}{2}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 55

 $dsolve([diff(y(t),t\$4)+y(t)=0,y(0)=1,D(y)(0)=0,(D@@2)(y)(0)=0,(D@@3)(y)(0)=1/2*2^($

$$y(t) = \frac{\left(3e^{-\frac{\sqrt{2}t}{2}} + e^{\frac{\sqrt{2}t}{2}}\right)\cos\left(\frac{\sqrt{2}t}{2}\right)}{4} + \frac{\sin\left(\frac{\sqrt{2}t}{2}\right)\left(e^{-\frac{\sqrt{2}t}{2}} + e^{\frac{\sqrt{2}t}{2}}\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 32

DSolve[{y'''[t]+y[t]==0,{y[0]==0,y'[0]==0,y''[0]==0,y'''[0]==1/Sqrt[2]}},y[t],t,IncludeSingu

$$y(t) \rightarrow \left(\frac{1}{4} + \frac{i}{4}\right) \left(\sin\left(\sqrt[4]{-1}t\right) - \sinh\left(\sqrt[4]{-1}t\right)\right)$$

3.13 problem Problem 14

Internal problem ID [10947]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 5y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve([diff(y(t),t\$2)-2*diff(y(t),t)+5*y(t)=0,y(0) = 0, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = -\frac{e^t \sin(2t)}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 14

$$y(t) \to -e^t \sin(t) \cos(t)$$

3.14 problem Problem 15

Internal problem ID [10948]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 20y' + 51y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = -14]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(y(t),t\$2)-20*diff(y(t),t)+51*y(t)=0,y(0) = 0, D(y)(0) = -14],y(t), singsol=all)

$$y(t) = e^{3t} - e^{17t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

DSolve[{y''[t]-20*y'[t]+51*+y[t]==0,{y[0]==0,y'[0]==-14}},y[t],t,IncludeSingularSolutions ->

$$y(t) \to e^{3t} - e^{17t}$$

3.15 problem Problem 16

Internal problem ID [10949]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$2y'' + 3y' + y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve([2*diff(y(t),t\$2)+3*diff(y(t),t)+y(t)=0,y(0) = 3, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = 4 e^{-\frac{t}{2}} - e^{-t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

DSolve[{2*y''[t]+3*y'[t]+y[t]==0,{y[0]==3,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to e^{-t} (4e^{t/2} - 1)$$

3.16 problem Problem 17

Internal problem ID [10950]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$3y'' + 8y' - 3y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = -4]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve([3*diff(y(t),t\$2)+8*diff(y(t),t)-3*y(t)=0,y(0) = 3, D(y)(0) = -4],y(t), singsol=all)

$$y(t) = \frac{3\left(e^{\frac{10t}{3}} + 1\right)e^{-3t}}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 23

DSolve[{3*y''[t]+8*y'[t]-3*y[t]==0,{y[0]==3,y'[0]==-4}},y[t],t,IncludeSingularSolutions -> Tr

$$y(t) \to \frac{3}{2}e^{-3t} (e^{10t/3} + 1)$$

3.17 problem Problem 18

Internal problem ID [10951]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$2y'' + 20y' + 51y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -5]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([2*diff(y(t),t\$2)+20*diff(y(t),t)+51*y(t)=0,y(0) = 1, D(y)(0) = -5],y(t), singsol=all)

$$y(t) = e^{-5t} \cos\left(\frac{\sqrt{2}t}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 19

$$y(t) \to e^{-5t} \cos\left(\frac{t}{\sqrt{2}}\right)$$

3.18 problem Problem 19

Internal problem ID [10952]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' + 40y' + 101y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -5]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $\boxed{ \text{dsolve}([4*\text{diff}(y(t),t$^2)+40*\text{diff}(y(t),t)+101*y(t)=0,y(0) = 1, D(y)(0) = -5],y(t), \text{ singsol=all } }$

$$y(t) = e^{-5t} \cos\left(\frac{t}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 17

DSolve[{4*y''[t]+40*y'[t]+101*y[t]==0,{y[0]==1,y'[0]==-5}},y[t],t,IncludeSingularSolutions ->

$$y(t) \to e^{-5t} \cos\left(\frac{t}{2}\right)$$

3.19 problem Problem 20

Internal problem ID [10953]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 6y' + 34y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve([diff(y(t),t\$2)+6*diff(y(t),t)+34*y(t)=0,y(0) = 3, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = e^{-3t} (3\cos(5t) + 2\sin(5t))$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 24

 $DSolve[{y''[t]+6*y'[t]+34*y[t]==0,{y[0]==3,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True$

$$y(t) \to e^{-3t} (2\sin(5t) + 3\cos(5t))$$

3.20 problem Problem 21

Internal problem ID [10954]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 21.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 8y'' + 16y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1, y''(0) = -8]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve([diff(y(t),t\$3)+8*diff(y(t),t\$2)+16*diff(y(t),t)=0,y(0) = 1, D(y)(0) = 1, (D@@2)(y)(0)

$$y(t) = t e^{-4t} + 1$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 14

DSolve[{y'''[t]+8*y''[t]+16*y'[t]==0,{y[0]==1,y'[0]==1,y''[0]==-8}},y[t],t,IncludeSingularSol

$$y(t) \rightarrow e^{-4t}t + 1$$

3.21 problem Problem 22

Internal problem ID [10955]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 22.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 6y'' + 13y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1, y''(0) = -6]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve([diff(y(t),t\$3)+6*diff(y(t),t\$2)+13*diff(y(t),t)=0,y(0) = 1, D(y)(0) = 1, (D@@2)(y)(0)

$$y(t) = \frac{e^{-3t}\sin(2t)}{2} + 1$$

✓ Solution by Mathematica

Time used: 0.136 (sec). Leaf size: 17

DSolve[{y'''[t]+6*y''[t]+13*y'[t]==0,{y[0]==1,y'[0]==1,y''[0]==-6}},y[t],t,IncludeSingularSol

$$y(t) \rightarrow e^{-3t} \sin(t) \cos(t) + 1$$

3.22 problem Problem 23

Internal problem ID [10956]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 23.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 6y'' + 13y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1, y''(0) = 6]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([diff(y(t),t\$3)-6*diff(y(t),t\$2)+13*diff(y(t),t)=0,y(0) = 1, D(y)(0) = 1, (D@@2)(y)(0)

$$y(t) = \frac{e^{3t}\sin(2t)}{2} + 1$$

✓ Solution by Mathematica

Time used: 0.121 (sec). Leaf size: 17

DSolve[{y'''[t]-6*y''[t]+13*y'[t]==0,{y[0]==1,y'[0]==1,y''[0]==6}},y[t],t,IncludeSingularSolu

$$y(t) \to e^{3t} \sin(t) \cos(t) + 1$$

3.23 problem Problem 24

Internal problem ID [10957]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 24.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 4y'' + 29y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 5, y''(0) = -20]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

$$y(t) = e^{-2t}\sin(5t) + 1$$

✓ Solution by Mathematica

Time used: 0.158 (sec). Leaf size: 30

DSolve[{y'''[t]+4*y''[t]-20*y'[t]==0,{y[0]==1,y'[0]==5,y''[0]==-20}},y[t],t,IncludeSingularSo

$$y(t) o rac{5e^{-2t}\sinh\left(2\sqrt{6}t\right)}{2\sqrt{6}} + 1$$

3.24 problem Problem 25

Internal problem ID [10958]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 25.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 6y'' + 25y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 4, y''(0) = -24]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

$$y(t) = e^{-3t}\sin(4t) + 1$$

✓ Solution by Mathematica

Time used: 0.139 (sec). Leaf size: 17

DSolve[{y'''[t]+6*y''[t]+25*y'[t]==0,{y[0]==1,y'[0]==4,y''[0]==-24}},y[t],t,IncludeSingularSo

$$y(t) \to e^{-3t} \sin(4t) + 1$$

3.25 problem Problem 26

Internal problem ID [10959]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 26.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 6y'' + 10y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 3, y''(0) = 8]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

$$y(t) = e^{3t} \cos(t)$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 13

DSolve[{y'''[t]-6*y''[t]+10*y'[t]==0,{y[0]==1,y'[0]==3,y''[0]==8}},y[t],t,IncludeSingularSolu

$$y(t) \to e^{3t} \cos(t)$$

3.26 problem Problem 27

Internal problem ID [10960]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 27.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 13y'' + 36y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = -1, y''(0) = 5, y'''(0) = 19]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

$$dsolve([diff(y(t),t\$4)+13*diff(y(t),t\$2)+36*y(t)=0,y(0) = 0, D(y)(0) = -1, (D@@2)(y)(0) = 5,$$

$$y(t) = \cos(2t) + \sin(2t) - \cos(3t) - \sin(3t)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

$$y(t) \rightarrow \sin(2t) - \sin(3t) + \cos(2t) - \cos(3t)$$

4 Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

4.1	problem Problem	2(a)														• (108
4.2	problem Problem	2(b)														• .		109
4.3	problem Problem	2(c)														• .		110
4.4	problem Problem	2(d)															. .	111
4.5	problem Problem	2(e)																112
4.6	problem Problem	2(f)																113
4.7	problem Problem	2(g)													• .		. .	114
4.8	problem Problem	2(h)																115
4.9	problem Problem	2(i).													• .			116
4.10	problem Problem	2(i)[j]													• .		. .	117
4.11	problem Problem	2(j)[k]	.												• .			118
4.12	problem Problem	2(k)[l]													• .			119
4.13	problem Problem	2(m)																120
4.14	problem Problem	2(1)[n]	.														. .	121
4.15	problem Problem	3(a)																122
4.16	problem Problem	3(b)													• .			123
4.17	problem Problem	3(c)															. .	124
4.18	problem Problem	3(d)													• .			125
4.19	problem Problem	3(e)																126
4.20	problem Problem	3(f)															. .	127
4.21	problem Problem	3(g)													• .			128
4.22	problem Problem	3(h)														• .		130
4.23	problem Problem	3(i).														• .		131
4.24	problem Problem	3(j)														• (132
4.25	problem Problem	4(a)														• .		133
4.26	problem Problem	4(b)														• .		134
4.27	problem Problem	4(c)														• .		136
4.28	problem Problem	4(d)														• .		137
4.29	problem Problem	4(e)																138
4.30	problem Problem	5(a)																139
4.31	problem Problem	5(b)														• .		140
4.32	problem Problem	5(c)														• .		141
4.33	problem Problem	5(d)														• (142
4.34	problem Problem	5(e)														• (143
4.35	problem Problem	5(f)																144
4.36	problem Problem	6(a)																145
4.37	problem Problem	13(a)														• •		146
4.38	problem Problem	13(b)													• .		. .	147

4.39	problem Problem	13(c)								 								1	48
4.40	problem Problem	13(d)								 								1	49
4.41	problem Problem	14(a)							•	 								1	.50
4.42	problem Problem	14(b)								 								. 1	151

4.1 problem Problem 2(a)

Internal problem ID [10961]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + 3y - 9t = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+3*y(t)=9*t,y(0) = 0, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = 3t + 2e^{-t}\cos\left(\sqrt{2}t\right) - 2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 13

DSolve[{y''[t]+2*y''[t]+3*y[t]==9*t,{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions -> Tr

$$y(t) \rightarrow 3t - 2\sin(t)$$

4.2 problem Problem 2(b)

Internal problem ID [10962]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4y'' + 16y' + 17y - 17t + 1 = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve([4*diff(y(t),t\$2)+16*diff(y(t),t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = 2],y(t), singsolve([4*diff(y(t),t\$2)+16*diff(y(t),t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = 2],y(t), singsolve([4*diff(y(t),t\$2]+16*diff(y(t),t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = 2],y(t), singsolve([4*diff(y(t),t)+16*diff(y(t),t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = 2],y(t), singsolve([4*diff(y(t),t]+16*diff(y(t),t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = 2],y(t), singsolve([4*diff(y(t),t]+16*diff(y(t),t)+17*t-1,y(0) = -1, D(y)(0) = -1, D(y)(

$$y(t) = t + 2e^{-2t}\sin\left(\frac{t}{2}\right) - 1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 21

$$y(t) \to t + 2e^{-2t} \sin\left(\frac{t}{2}\right) - 1$$

4.3 problem Problem 2(c)

Internal problem ID [10963]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4y'' + 5y' + 4y - 3e^{-t} = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

dsolve([4*diff(y(t),t\$2)+5*diff(y(t),t)+4*y(t)=3*exp(-t),y(0) = -1, D(y)(0) = 1],y(t), singso

$$y(t) = \frac{2e^{-\frac{5t}{8}}\sqrt{39}\sin\left(\frac{\sqrt{39}t}{8}\right)}{13} - 2e^{-\frac{5t}{8}}\cos\left(\frac{\sqrt{39}t}{8}\right) + e^{-t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 53

DSolve[{4*y''[t]+5*y'[t]+4*y[t]==3*Exp[-t],{y[0]==-1,y'[0]==1}},y[t],t,IncludeSingularSolutio

$$y(t) \to e^{-t} + \frac{2}{13}e^{-5t/8} \left(\sqrt{39} \sin \left(\frac{\sqrt{39}t}{8} \right) - 13\cos \left(\frac{\sqrt{39}t}{8} \right) \right)$$

4.4 problem Problem 2(d)

Internal problem ID [10964]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 4y - e^{2t}t^2 = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

$$y(t) = e^{2t} \left(1 + \frac{t^4}{12} \right)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 19

$$y(t) \to \frac{1}{12}e^{2t}(t^4 + 12)$$

4.5 problem Problem 2(e)

Internal problem ID [10965]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 9y - e^{-2t} = 0$$

With initial conditions

$$\left[y(0) = -\frac{2}{13}, y'(0) = \frac{1}{13}\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)+9*y(t)=exp(-2*t),y(0) = -2/13, D(y)(0) = 1/13],y(t), singsol=all)

$$y(t) = \frac{\sin(3t)}{13} - \frac{3\cos(3t)}{13} + \frac{e^{-2t}}{13}$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 25

DSolve[{y''[t]+9*y[t]==Exp[-2*t],{y[0]==-2/13,y'[0]==1/13}},y[t],t,IncludeSingularSolutions -

$$y(t) \to \frac{1}{13} (e^{-2t} + \sin(3t) - 3\cos(3t))$$

4.6 problem Problem 2(f)

Internal problem ID [10966]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2y'' - 3y' + 17y - 17t + 1 = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

dsolve([2*diff(y(t),t\$2)-3*diff(y(t),t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = 2],y(t), singsol=1, D(y)(0) = 2,y(t), S(y)(0) = 2,y(t), S(y)(t), S(y)(t), S(y)

$$y(t) = \frac{125 e^{\frac{3t}{4}} \sin\left(\frac{\sqrt{127}t}{4}\right) \sqrt{127}}{2159} - \frac{19 e^{\frac{3t}{4}} \cos\left(\frac{\sqrt{127}t}{4}\right)}{17} + t + \frac{2}{17}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 53

DSolve[{2*y''[t]-3*y'[t]+17*y[t]==17*t-1,{y[0]==-1,y'[0]==2}},y[t],t,IncludeSingularSolutions

$$y(t) \to t + \frac{e^{3t/4} \left(125\sqrt{127}\sin\left(\frac{\sqrt{127}t}{4}\right) - 2413\cos\left(\frac{\sqrt{127}t}{4}\right)\right)}{2159} + \frac{2}{17}$$

4.7 problem Problem 2(g)

Internal problem ID [10967]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + y - e^{-t} = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=exp(-t),y(0) = 1, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = e^{-t} \left(1 + \frac{t^2}{2} \right)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 19

$$y(t) \to \frac{1}{2}e^{-t}\big(t^2+2\big)$$

4.8 problem Problem 2(h)

Internal problem ID [10968]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + 5y - t - 2 = 0$$

With initial conditions

$$[y(0) = 4, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve([diff(y(t),t\$2)-2*diff(y(t),t)+5*y(t)=2+t,y(0) = 4, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = -\frac{34 e^{t} \sin(2t)}{25} + \frac{88 e^{t} \cos(2t)}{25} + \frac{t}{5} + \frac{12}{25}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 32

DSolve[{y''[t]-2*y'[t]+5*y[t]==2+t,{y[0]==4,y'[0]==1}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to \frac{1}{25} (5t - 34e^t \sin(2t) + 88e^t \cos(2t) + 12)$$

4.9 problem Problem 2(i)

Internal problem ID [10969]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$2y' + y - e^{-\frac{t}{2}} = 0$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve([2*diff(y(t),t)+y(t)=exp(-t/2),y(0) = -1],y(t), singsol=all)

$$y(t) = \frac{(t-2)e^{-\frac{t}{2}}}{2}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 19

 $DSolve \[\{2*y'[t]+y[t]== Exp[-t/2], \{y[0]==-1\}\}, y[t], t, Include Singular Solutions \rightarrow True] \]$

$$y(t) o rac{1}{2} e^{-t/2} (t-2)$$

4.10 problem Problem 2(i)[j]

Internal problem ID [10970]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(i)[j].

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 8y' + 20y - \sin(2t) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

$$y(t) = \frac{(33e^{-4t} - 1)\cos(2t)}{32} + \frac{\sin(2t)(e^{-4t} + 1)}{32}$$

✓ Solution by Mathematica

Time used: 0.089 (sec). Leaf size: 40

DSolve[{y''[t]+8*y'[t]+20*y[t]==Sin[2*t],{y[0]==1,y'[0]==-4}},y[t],t,IncludeSingularSolutions

$$y(t) \to \frac{1}{32}e^{-4t}((e^{4t}+1)\sin(2t)-(e^{4t}-33)\cos(2t))$$

4.11 problem Problem 2(j)[k]

Internal problem ID [10971]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(j)[k].

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4y'' - 4y' + y - t^2 = 0$$

With initial conditions

$$[y(0) = -12, y'(0) = 7]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $dsolve([4*diff(y(t),t$2)-4*diff(y(t),t)+y(t)=t^2,y(0) = -12, D(y)(0) = 7],y(t), singsol=all)$

$$y(t) = (17t - 36) e^{\frac{t}{2}} + t^2 + 8t + 24$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 25

DSolve[{4*y''[t]-4*y'[t]+y[t]==t^2,{y[0]==-12,y'[0]==7}},y[t],t,IncludeSingularSolutions -> T

$$y(t) \to t(t+8) + e^{t/2}(17t - 36) + 24$$

4.12 problem Problem 2(k)[l]

Internal problem ID [10972]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(k)[l].

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$2y'' + y' - y - 4\sin(t) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = -4]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 25

dsolve([2*diff(y(t),t\$2)+diff(y(t),t)-y(t)=4*sin(t),y(0) = 0, D(y)(0) = -4],y(t), singsol=all(x,y,y,y,y,z) = 0

$$y(t) = -\frac{2e^{-t}\left(4e^{\frac{3t}{2}} - 5 + (\cos(t) + 3\sin(t))e^{t}\right)}{5}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 34

$$y(t) \to \frac{2}{5} (5e^{-t} - 4e^{t/2} - 3\sin(t) - \cos(t))$$

4.13 problem Problem 2(m)

Internal problem ID [10973]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(m).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y - e^{2t} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

 $\label{eq:decomposition} dsolve([diff(y(t),t)-y(t)=exp(2*t),y(0) = 1],y(t), \ singsol=all)$

$$y(t) = e^{2t}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 10

 $DSolve[\{y'[t]-y[t]==Exp[2*t],\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to e^{2t}$$

4.14 problem Problem 2(l)[n]

Internal problem ID [10974]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(l)[n].

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3y'' + 5y' - 2y - 7e^{-2t} = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

$$y(t) = -\left(-3e^{\frac{7t}{3}} + t\right)e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 23

 $DSolve[{3*y''[t]+5*y'[t]-2*y[t]==7*Exp[-2*t], {y[0]==3,y'[0]==0}}, y[t], t, IncludeSingularSoluti]$

$$y(t) \to 3e^{t/3} - e^{-2t}t$$

4.15 problem Problem 3(a)

Internal problem ID [10975]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + y - \text{Heaviside}(t) + \text{Heaviside}(t-2) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

dsolve([diff(y(t),t)+y(t)=Heaviside(t)-Heaviside(t-2),y(0) = 1],y(t), singsol=all)

 $y(t) = \text{Heaviside}(t) - \text{Heaviside}(t-2) + \text{Heaviside}(t-2) e^{-t+2} - e^{-t} \text{Heaviside}(t) + e^{-t}$

✓ Solution by Mathematica

Time used: 0.066 (sec). Leaf size: 31

DSolve[{y'[t]+y[t]==UnitStep[t]-UnitStep[t-2],{y[0]==1}},y[t],t,IncludeSingularSolutions -> T

$$y(t) \rightarrow \begin{array}{ccc} 1 & 0 \leq t \leq 2 \\ & & t > 2 \end{array}$$

$$e^{-t} & \text{True}$$

4.16 problem Problem 3(b)

Internal problem ID [10976]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y - 4t(\text{Heaviside}(t) - \text{Heaviside}(t-2)) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 48

dsolve([diff(y(t),t)-2*y(t)=4*t*(Heaviside(t)-Heaviside(t-2)),y(0) = 1],y(t), singsol=all)

$$y(t) = 2t$$
 Heaviside $(t - 2) - 2t$ Heaviside $(t) +$ Heaviside $(t - 2)$
- Heaviside $(t) - 5$ Heaviside $(t - 2)$ e^{-4+2t} + Heaviside (t) e^{2t} + e^{2t}

✓ Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 47

DSolve[{y'[t]-2*y[t]==4*t*(UnitStep[t]-UnitStep[t-2]),{y[0]==1}},y[t],t,IncludeSingularSoluti

$$e^{2t}$$
 $t < 0$ $y(t) \rightarrow \{ e^{2t-4}(-5+2e^4) \ t > 2$ $-2t + 2e^{2t} - 1$ True

4.17 problem Problem 3(c)

Internal problem ID [10977]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y - 24\sin(t)$$
 (Heaviside (t) + Heaviside $(t - \pi)$) = 0

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

$$dsolve([diff(y(t),t$2)+9*y(t)=24*sin(t)*(Heaviside(t)+Heaviside(t-Pi)),y(0)=0, D(y)(0)=0]$$

$$y(t) = 4 \sin(t)^3 (\text{Heaviside}(t) + \text{Heaviside}(t - \pi))$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 24

$$y(t) \to 4(\theta(\pi - t)(\theta(t) - 2) + 2)\sin^3(t)$$

4.18 problem Problem 3(d)

Internal problem ID [10978]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y$$
 – Heaviside (t) + Heaviside $(-1 + t) = 0$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

$$dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=Heaviside(t)-Heaviside(t-1),y(0)=1, p(y)(0)=-1)$$

$$y(t) = t \operatorname{Heaviside}(t-1) e^{-t+1} + (1 + \operatorname{Heaviside}(t)(-t-1)) e^{-t} + \operatorname{Heaviside}(t) - \operatorname{Heaviside}(t-1)$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 43

$$DSolve[\{y''[t]+2*y'[t]+y[t]==UnitStep[t]-UnitStep[t-1], \{y[0]==1,y'[0]==-1\}\}, y[t], t, IncludeSing[t-1], \{y[0]==-1,y'[0]==-1\}\}, y[t], t, IncludeSing[t-1], \{y[0]==-1,y'[0]==-1$$

$$y(t) \rightarrow \begin{array}{ccc} e^{-t} & t < 0 \\ & 1 - e^{-t}t & 0 \leq t \leq 1 \\ & (-1 + e)e^{-t}t & \text{True} \end{array}$$

4.19 problem Problem 3(e)

Internal problem ID [10979]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y - 5\cos(t)$$
 (Heaviside (t) – Heaviside $(t - \frac{\pi}{2})$) = 0

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 76

$$dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=5*cos(t)*(Heaviside(t)-Heaviside(t-Pi/2)),y(0)=0$$

$$\begin{split} y(t) &= -\operatorname{Heaviside}\left(t - \frac{\pi}{2}\right)\left(\cos\left(t\right) - 2\sin\left(t\right)\right) \operatorname{e}^{\frac{\pi}{2} - t} + \left(-\cos\left(t\right) - 2\sin\left(t\right)\right) \operatorname{Heaviside}\left(t - \frac{\pi}{2}\right) \\ &+ \left(\left(1 - \operatorname{Heaviside}\left(t\right)\right)\cos\left(t\right) - 3\sin\left(t\right) \operatorname{Heaviside}\left(t\right)\right) \operatorname{e}^{-t} \\ &+ \operatorname{Heaviside}\left(t\right)\left(\cos\left(t\right) + 2\sin\left(t\right)\right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 67

$$e^{-t}\cos(t) \qquad \qquad t<0$$

$$y(t) \rightarrow \left\{ e^{-t}\left(-e^{\pi/2}(\cos(t)-2\sin(t))-3\sin(t)\right) \quad 2t>\pi \right.$$

$$\cos(t)+(2-3e^{-t})\sin(t) \qquad \text{True}$$

4.20 problem Problem 3(f)

Internal problem ID [10980]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 5y' + 6y - 36t(\text{Heaviside}(t) - \text{Heaviside}(-1+t)) = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = -2]$$

Solution by Maple

Time used: 0.032 (sec). Leaf size: 67

dsolve([diff(y(t),t\$2)+5*diff(y(t),t)+6*y(t)=36*t*(Heaviside(t)-Heaviside(t-1)),y(0)=-1,D(t)

$$\begin{split} y(t) &= 6 \bigg(\bigg(\bigg(-t + \frac{5}{6} \bigg) \operatorname{e}^{3t} - \frac{4 \operatorname{e}^3}{3} + \frac{3 \operatorname{e}^{t+2}}{2} \bigg) \operatorname{Heaviside} \left(t - 1 \right) + \operatorname{Heaviside} \left(t \right) \left(t - \frac{5}{6} \right) \operatorname{e}^{3t} \\ &+ \left(\frac{3 \operatorname{e}^t}{2} - \frac{2}{3} \right) \operatorname{Heaviside} \left(t \right) - \frac{5 \operatorname{e}^t}{6} + \frac{2}{3} \bigg) \operatorname{e}^{-3t} \end{split}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 63

DSolve[{y''[t]+5*y'[t]+6*y[t]==36*t*(UnitStep[t]-UnitStep[t-1]),{y[0]==-1,y'[0]==-2}},y[t],t,

$$e^{-3t}(4-5e^t)$$
 $t<0$ $y(t) o \{ e^{-3t}(-8e^3+e^t(4+9e^2)) \ t>1$ $6t+4e^{-2t}-5$ True

4.21 problem Problem 3(g)

Internal problem ID [10981]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 13y - 39$$
 Heaviside $(t) + 507(t-2)$ Heaviside $(t-2) = 0$

With initial conditions

$$[y(0) = 3, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 84

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+13*y(t)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0)=39*Heaviside(t-2),y(

$$y(t) = -12 \operatorname{Heaviside}(t-2) \left(\left(\cos(6) + \frac{5\sin(6)}{12} \right) \cos(3t) - \frac{5\sin(3t) \left(\cos(6) - \frac{12\sin(6)}{5} \right)}{12} \right) e^{-2t+4} + 3(30 - 13t) \operatorname{Heaviside}(t-2) - 3 e^{-2t} (\operatorname{Heaviside}(t) - 1) \cos(3t) + \frac{(-6 \operatorname{Heaviside}(t) + 7)\sin(3t) e^{-2t}}{3} + 3 \operatorname{Heaviside}(t)$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 103

$$\begin{split} \frac{1}{3}e^{-2t}\sin(3t) + 3 & 0 \leq t \leq 2 \\ y(t) \to & \{ & \frac{1}{3}e^{-2t}(9\cos(3t) + 7\sin(3t)) & t < 0 \\ & \frac{1}{3}e^{-2t}(-9e^{2t}(13t - 31) - 3e^4(12\cos(6 - 3t) + 5\sin(6 - 3t)) + \sin(3t)) & \text{True} \end{split}$$

4.22 problem Problem 3(h)

Internal problem ID [10982]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - 3$$
 Heaviside $(t) + 3$ Heaviside $(t - 4) - (2t - 5)$ Heaviside $(t - 4) = 0$

With initial conditions

$$\left[y(0) = \frac{3}{4}, y'(0) = 2 \right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 48

$$\frac{dsolve([diff(y(t),t$2)+4*y(t)=3*(Heaviside(t)-Heaviside(t-4))+(2*t-5)*Heaviside(t-4),y(0) = 3}{dsolve([diff(y(t),t$2)+4*y(t)=3*(Heaviside(t)-Heaviside(t-4))+(2*t-5)*Heaviside(t-4),y(0) = 3}$$

$$y(t) = \sin{(2t)} + \frac{3\cos{(2t)}}{4} - \frac{\text{Heaviside}\left(t-4\right)\sin{(2t-8)}}{4} + \frac{\text{Heaviside}\left(t-4\right)t}{2} \\ - 2\,\text{Heaviside}\left(t-4\right) - \frac{3\,\text{Heaviside}\left(t\right)\cos{(2t)}}{4} + \frac{3\,\text{Heaviside}\left(t\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 59

$$DSolve[{y''[t]+4*y[t]==3*(UnitStep[t]-UnitStep[t-4])+(2*t-5)*UnitStep[t-4],{y[0]==3/4,y'[0]==3/4,y'[0]==3/4,y'[0]==3/4,y'[0]$$

$$\sin(2t) + \frac{3}{4}$$
 $0 \le t \le 4$
 $y(t) \to \{ \frac{\frac{3}{4}\cos(2t) + \sin(2t)}{\frac{1}{4}(2t + \sin(8 - 2t) - 5) + \sin(2t)}$ True

4.23 problem Problem 3(i)

Internal problem ID [10983]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$4y'' + 4y' + 5y - 25t \left(\text{Heaviside}\left(t\right) - \text{Heaviside}\left(t - \frac{\pi}{2}\right) \right) = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 85

dsolve([4*diff(y(t),t\$2)+4*diff(y(t),t)+5*y(t)=25*t*(Heaviside(t)-Heaviside(t-Pi/2)),y(0)=25*t*(Heaviside(t)-Heaviside(t-Pi/2)),y(0)=25*t*(Heaviside(t)-Heaviside(t-Pi/2)),y(0)=25*t*(Heaviside(t)-Heaviside(t-Pi/2)),y(0)=25*t*(Heaviside(t)-Heaviside(t-Pi/2)),y(0)=25*t*(Heaviside(t)-Heaviside(t-Pi/2)),y(0)=25*t*(Heaviside(t)-Heaviside(t)-Heaviside(t-Pi/2)),y(0)=25*t*(Heaviside(t)-Heaviside(t-Pi/2)),y(0)=25*t*(Heaviside(t)-Heaviside(t)-Heaviside(t-Pi/2)),y(0)=25*t*(Heaviside(t)-Heavi

$$y(t) = -\frac{5\left(\left(\pi + \frac{12}{5}\right)\cos\left(t\right) - 2\left(\pi - \frac{8}{5}\right)\sin\left(t\right)\right)\operatorname{Heaviside}\left(t - \frac{\pi}{2}\right)e^{-\frac{t}{2} + \frac{\pi}{4}}}{4} \\ + \left(4 - 5t\right)\operatorname{Heaviside}\left(t - \frac{\pi}{2}\right) \\ + \left(\left(4\cos\left(t\right) - 3\sin\left(t\right)\right)\operatorname{Heaviside}\left(t\right) + 2\cos\left(t\right) + 3\sin\left(t\right)\right)e^{-\frac{t}{2}} + \operatorname{Heaviside}\left(t\right)\left(-4 + 5t\right)$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 97

DSolve[{4*y''[t]+4*y'[t]+5*y[t]==25*t*(UnitStep[t]-UnitStep[t-Pi/2]),{y[0]==2,y'[0]==2}},y[t]

4.24 problem Problem 3(j)

Internal problem ID [10984]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(j).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 4y' + 3y$$
 – Heaviside (t) + Heaviside $(-1 + t)$ – Heaviside $(t - 2)$ + Heaviside $(t - 3)$ = 0

With initial conditions

$$y(0) = -\frac{2}{3}, y'(0) = 1$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 117

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+3*y(t)=Heaviside(t)-Heaviside(t-1)+Heaviside(t-2)-Heaviside(t-2)+Heaviside(t-2)-Heaviside(t-2)+Heavis

$$y(t) = \frac{\left(-\frac{1}{3} - e^{2+2t} \operatorname{Heaviside}(t-2) + e^{3+2t} \operatorname{Heaviside}(t-3) + e^{2t+1} \operatorname{Heaviside}(t-1) + \frac{2(\operatorname{Heaviside}(t) - \operatorname{Heaviside}(t-1) + e^{2t+1} \operatorname{Heaviside}(t-1) + e^{2t+1}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 153

$$y(t) \to \frac{1}{6}e^{-3t} \Big(2e^{3t}(\theta(1-t,t)+\theta(3-t)) \\ -3e^{2t} \Big(2\theta(1-t,t)+e^{3}\theta(3-t)-\theta(t)+e\big(-1+e-e^{2}\big)+3 \Big) \\ -\Big(\Big(2e^{t}+e^{2}\big) \left(e^{2}-e^{t} \right)^{2}\theta(2-t) \Big) + \Big(e^{3}-3(e-2)e^{2t} \Big) \theta(1-t)+e^{9}\theta(3-t)+\theta(t) \\ -e^{9}+e^{6}-e^{3}-1 \Big)$$

4.25 problem Problem 4(a)

Internal problem ID [10985]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 4(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing y]]

$$y'' - 2y' - \left(\left\{ \begin{array}{cc} 4 & 0 \le t < 1 \\ 6 & 1 \le t \end{array} \right) = 0$$

With initial conditions

$$[y(0) = -6, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 50

dsolve([diff(y(t),t\$2)-2*diff(y(t),t)=piecewise(0<=t and t<1,4,t>=1,6),y(0) = -6, D(y)(0) = 1

$$y(t) = \frac{\left(\begin{cases} -13 + e^{2t} & t < 0\\ 3e^{2t} - 15 - 4t & t < 1\\ 3e^{2t} - 14 + e^{2t-2} - 6t & 1 \le t \end{cases}\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 68

 $DSolve[\{y''[t]-2*y'[t]==Piecewise[\{\{4,0<=t<1\},\{6,t>=1\}\}],\{y[0]==-6,y'[0]==1\}\},y[t],t,IncludeS(x)=0$

4.26 problem Problem 4(b)

Internal problem ID [10986]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 4(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3y' + 2y - \left(\begin{cases} 0 & 0 \le t < 1 \\ 1 & 1 \le t < 2 \\ -1 & 2 \le t \end{cases} \right) = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = -1]$$

Solution by Maple

Time used: 0.094 (sec). Leaf size: 74

 $dsolve([diff(y(t),t\$2)-3*diff(y(t),t)+2*y(t)=piecewise(0<=t \ and \ t<1,0,t>=1 \ and \ t<2,1,t>=2,-1)$

$$y(t) = -4e^{2t} + 7e^{t} - \frac{\begin{pmatrix} 0 & t < 1 \\ -1 + 2e^{t-1} - e^{2t-2} & t < 2 \\ 1 + 2e^{t-1} - e^{2t-2} - 4e^{t-2} + 2e^{-4+2t} & 2 \le t \end{pmatrix}}{2}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 100

4.27 problem Problem 4(c)

Internal problem ID [10987]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 4(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y - \left(\begin{cases} 1 & 0 \le t < 2 \\ -1 & 2 \le t \end{cases} \right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 61

dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=piecewise(0<=t and t<2,1,t>=2,-1),y(0) = 0, D(y)

$$y(t) = -\frac{\begin{pmatrix} 0 & t < 0 \\ -1 + 2e^{-t} - e^{-2t} & t < 2 \\ 1 + 2e^{-t} - e^{-2t} - 4e^{-t+2} + 2e^{-2t+4} & 2 \le t \end{pmatrix}}{2}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 59

DSolve[{y''[t]+3*y'[t]+2*y[t]==Piecewise[{{1,0<=t<2},{-1,t>=2}}],{y[0]==0,y'[0]==0}},y[t],t,I

$$y(t) \to \ \{ \qquad \qquad \frac{1}{2}e^{-2t}(-1+e^t)^2 \qquad \qquad 0 < t \leq 2$$

$$(\sinh(t) + e^{4-t} - 2e^2 + 1) \left(\sinh(t) - \cosh(t) \right) \qquad \text{True}$$

4.28 problem Problem 4(d)

Internal problem ID [10988]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 4(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$\begin{vmatrix} y'' + y - \begin{pmatrix} t & 0 \le t < \pi \\ -t & \pi \le t \end{vmatrix} = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 34

$$y(t) = \begin{cases} 0 & t < 0 \\ t - \sin(t) & t < \pi \\ -2\cos(t)\pi - 3\sin(t) - t & \pi \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 38

 $DSolve[\{y''[t]+y[t]==Piecewise[\{\{t,0<=t<Pi\},\{-t,t>=Pi\}\}],\{y[0]==0,y'[0]==0\}\},y[t],t,IncludeSi=0$

$$y(t) \rightarrow \begin{cases} 0 & t \leq 0 \\ t - \sin(t) & 0 < t \leq \pi \\ -t - 2\pi \cos(t) - 3\sin(t) & \text{True} \end{cases}$$

4.29 problem Problem 4(e)

Internal problem ID [10989]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 4(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - \left(\begin{cases} 8t & 0 \le t < \frac{\pi}{2} \\ 8\pi & \frac{\pi}{2} \le t \end{cases} \right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 45

dsolve([diff(y(t),t\$2)+4*y(t)=piecewise(0<=t and t<Pi/2,8*t,t>=Pi/2,8*Pi),y(0) = 0, D(y)(0) =

$$y(t) = \begin{cases} 0 & t < 0 \\ -\sin(2t) + 2t & t < \frac{\pi}{2} \\ \cos(2t)\pi - 2\sin(2t) + 2\pi & \frac{\pi}{2} \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 47

DSolve[{y''[t]+4*y[t]==Piecewise[{{8*t,0<=t<Pi/2},{8*Pi,t>=Pi/2}}],{y[0]==0,y'[0]==0}},y[t],t

$$y(t) \to \begin{cases} 0 & t \le 0 \\ 2t - \sin(2t) & t > 0 \land 2t \le \pi \end{cases}$$

$$\pi(\cos(2t) + 2) - 2\sin(2t) \quad \text{True}$$

4.30 problem Problem 5(a)

Internal problem ID [10990]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 5(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4\pi^2 y - 3\left(\delta\left(t - \frac{1}{3}\right)\right) + \delta(-1 + t) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

$$y(t) = \frac{\left(-3\sqrt{3}\cos\left(2\pi t\right) - 3\sin\left(2\pi t\right)\right) \text{ Heaviside } \left(t - \frac{1}{3}\right) - 2\sin\left(2\pi t\right) \text{ Heaviside } (t - 1)}{4\pi}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 49

$$y(t) \to -\frac{2\theta(t-1)\sin(2\pi t) + 3\theta(3t-1)\left(\sin(2\pi t) + \sqrt{3}\cos(2\pi t)\right)}{4\pi}$$

4.31 problem Problem 5(b)

Internal problem ID [10991]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 5(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y - 3(\delta(-1+t)) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=3*Dirac(t-1),y(0) = 0, D(y)(0) = 0], y(t), singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=3*Dirac(t-1),y(0) = 0, D(y)(0) = 0], y(t), singsolve([diff(y(t),t)+2*y(t)+2*diff(y(t),t)+2*y(t)=3*Dirac(t-1),y(0) = 0, D(y)(0) = 0], y(t), singsolve([diff(y(t),t)+2*y(t)+2*diff(y(t),t)+2*y(t)=3*Dirac(t-1),y(0) = 0, D(y)(0) = 0], y(t), singsolve([diff(y(t),t)+2*y(

$$y(t) = 3 e^{-t+1}$$
 Heaviside $(t-1)\sin(t-1)$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 24

DSolve[{y''[t]+2*y'[t]+2*y[t]==3*DiracDelta[t-1],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSo

$$y(t) \to -3e^{1-t}\theta(t-1)\sin(1-t)$$

4.32 problem Problem 5(c)

Internal problem ID [10992]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 5(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 29y - 5(\delta(t - \pi)) + 5(\delta(-2\pi + t)) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

 $\left(dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+29*y(t)=5*Dirac(t-Pi)-5*Dirac(t-2*Pi),y(0) \right) = 0, D(y)(0)$

$$y(t) = -e^{-2t+2\pi} \sin(5t) \left(e^{2\pi} \text{ Heaviside} (t-2\pi) + \text{Heaviside} (t-\pi)\right)$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 39

 $DSolve[\{y''[t]+4*y'[t]+29*y[t]==5*DiracDelta[t-Pi]-5*DiracDelta[t-2*Pi], \{y[0]==0,y'[0]==0\}\}, y'[0]==0\}$

$$y(t) \to -e^{2\pi - 2t} \left(e^{2\pi} \theta(t - 2\pi) + \theta(t - \pi) \right) \sin(5t)$$

4.33 problem Problem 5(d)

Internal problem ID [10993]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 5(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y - 1 + \delta(-1 + t) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=1-Dirac(t-1),y(0) = 0, D(y)(0) = 0], y(t), singsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=1-Dirac(t-1),y(0) = 0, D(y)(0) = 0], y(t), singsolve([diff(y(t),t)+2*y(t)+

$$y(t) = \frac{e^{-2t}}{2} + \text{Heaviside}(t-1)e^{-2t+2} - e^{-t+1} + \text{Heaviside}(t-1) + \frac{1}{2} - e^{-t}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 36

DSolve[{y''[t]+3*y'[t]+2*y[t]==1-DiracDelta[t-1],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSo

$$y(t) \to \frac{1}{2}e^{-2t} \Big((e^t - 1)^2 - 2e(e^t - e) \theta(t - 1) \Big)$$

4.34 problem Problem 5(e)

Internal problem ID [10994]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 5(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$4y'' + 4y' + y - e^{-\frac{t}{2}}(\delta(-1+t)) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

$$y(t) = \frac{\text{Heaviside}(t-1)(t-1)e^{-\frac{t}{2}}}{4}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 23

DSolve[{4*y''[t]+4*y'[t]+y[t]==Exp[-t/2]*DiracDelta[t-1],{y[0]==0,y'[0]==0}},y[t],t,IncludeSi

$$y(t) \to \frac{1}{4}e^{-t/2}(t-1)\theta(t-1)$$

4.35 problem Problem 5(f)

Internal problem ID [10995]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 5(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 7y' + 6y - (\delta(-1+t)) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)-7*diff(y(t),t)+6*y(t)=Dirac(t-1),y(0) = 0, D(y)(0) = 0],y(t), singsol=0

$$y(t) = \frac{\text{Heaviside}(t-1)(e^{-6+6t} - e^{t-1})}{5}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 29

$$y(t) \to \frac{1}{5}e^{t-6}(e^{5t} - e^5) \theta(t-1)$$

4.36 problem Problem 6(a)

Internal problem ID [10996]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 6(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$10Q' + 100Q - \text{Heaviside}(-1+t) + \text{Heaviside}(t-2) = 0$$

With initial conditions

$$[Q(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

dsolve([10*diff(Q(t),t)+100*Q(t)=Heaviside(t-1)-Heaviside(t-2),Q(0)=0],Q(t), singsol=all)

$$\begin{split} Q(t) &= -\frac{\text{Heaviside}\left(t-2\right)}{100} + \frac{\text{Heaviside}\left(t-2\right) \mathrm{e}^{-10t+20}}{100} \\ &+ \frac{\text{Heaviside}\left(t-1\right)}{100} - \frac{\text{Heaviside}\left(t-1\right) \mathrm{e}^{-10t+10}}{100} \end{split}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 19

$$q(t) \rightarrow \frac{1}{100} (1 - e^{-10t}) \text{ UnitStep}$$

4.37 problem Problem 13(a)

Internal problem ID [10997]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 13(a).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' + 4y' + 4y - 8 = 0$$

With initial conditions

$$[y(0) = 4, y'(0) = -3, y''(0) = -3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

$$y(t) = 2 + \cos(2t) + e^{-t} - \sin(2t)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

DSolve[{y'''[t]+y''[t]+4*y'[t]+4*y[t]==8,{y[0]==4,y'[0]==-3,y''[0]==-3}},y[t],t,IncludeSingul

$$y(t) \to e^{-t} - \sin(2t) + \cos(2t) + 2$$

4.38 problem Problem 13(b)

Internal problem ID [10998]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 13(b).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - 2y'' - y' + 2y - 4t = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = -2, y''(0) = 4]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve([diff(y(t),t\$3)-2*diff(y(t),t\$2)-diff(y(t),t)+2*y(t)=4*t,y(0) = 2, D(y)(0) = -2, (D@@2)

$$y(t) = 2t + 1 - 3e^{t} + 3e^{-t} + e^{2t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

DSolve[{y'''[t]-2*y''[t]-y'[t]+2*y[t]==4*t,{y[0]==2,y'[0]==-2,y''[0]==4}},y[t],t,IncludeSingu

$$y(t) \to 2t - 6\sinh(t) + \sinh(2t) + \cosh(2t) + 1$$

4.39 problem Problem 13(c)

Internal problem ID [10999]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 13(c).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - y'' + 4y' - 4y - 8e^{2t} + 5e^{t} = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 0, y''(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

$$y(t) = e^{2t} - e^{t}t + e^{t} - \sin(2t)$$

✓ Solution by Mathematica

Time used: 0.353 (sec). Leaf size: 24

DSolve[{y'''[t]-y''[t]+4*y'[t]-4*y[t]==8*Exp[2*t]-5*Exp[t],{y[0]==2,y'[0]==0,y''[0]==3}},y[t]

$$y(t) \to e^t \bigl(-t + e^t + 1 \bigr) - \sin(2t)$$

4.40 problem Problem 13(d)

Internal problem ID [11000]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 13(d).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - 5y'' + y' - y + t^2 - 2t + 10 = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 0, y''(0) = 0]$$

✓ Solution by Maple

Time used: 0.453 (sec). Leaf size: 369

$$dsolve([diff(y(t),t$3)-5*diff(y(t),t$2)+diff(y(t),t)-y(t)=2*t-10-t^2,y(0) = 2, D(y)(0) = 0, (0)$$

y(t)

$$154 \left(\left(116 + 6\sqrt{3}\sqrt{26}\right)^{\frac{1}{3}}\sqrt{3}\sqrt{26} + \frac{58\left(116 + 6\sqrt{3}\sqrt{26}\right)^{\frac{2}{3}}\sqrt{26}\sqrt{3}}{77} + \frac{55\sqrt{3}\sqrt{26}}{14} - \frac{69\left(116 + 6\sqrt{3}\sqrt{26}\right)^{\frac{1}{3}}}{14} - \frac{234\left(116 + 6\sqrt{3}\sqrt{26}\right)^{\frac{1}{3}}}{77} + \frac{234\left(116 + 6\sqrt{3}\sqrt{26}\right)^{\frac{1}{3}}}{77} + \frac{154\sqrt{3}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}\sqrt{26}\sqrt{26}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{26}\sqrt{26}\sqrt{26}\sqrt{26}\sqrt{26}\sqrt{26}}{14} + \frac{154\sqrt{3}\sqrt{$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 1009

$$y(t) \longrightarrow \frac{-\text{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 2\big] \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 2\big] \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 2\big] \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 2\#1^2 + \#1 - 1\&, 3\big]^2 t^2 + \operatorname{Root}\big[\#1^3 - 2\#1^2 + \#1 - 1\&,$$

4.41 problem Problem 14(a)

Internal problem ID [11001]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 14(a).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - 5y'' + 4y - 12$$
 Heaviside $(t) + 12$ Heaviside $(-1 + t) = 0$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 0, y'''(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 91

 $dsolve([diff(y(t),t\$4)-5*diff(y(t),t\$2)+4*y(t)=12*(Heaviside(t)-Heaviside(t-1)),y(0)=0,\ D(y(t),t\$2)+4*y(t)=12*(Heaviside(t)-Heaviside(t-1)),y(0)=0,\ D(y(t),t\$2)+4*y(t)=12*(Heaviside(t)-Heaviside(t)-Heaviside(t-1)),y(0)=0,\ D(y(t),t\$2)+4*y(t)=12*(Heaviside(t)-Heavisid$

$$\begin{split} y(t) &= 2 \operatorname{e}^{-2t} \left(\operatorname{e}^{3t-1} \operatorname{Heaviside} \left(t - 1 \right) - \frac{\operatorname{e}^{4t-2} \operatorname{Heaviside} \left(t - 1 \right)}{4} \right. \\ &\quad + \left(-\frac{\operatorname{e}^2}{4} - \frac{3 \operatorname{e}^{2t}}{2} + \operatorname{e}^{1+t} \right) \operatorname{Heaviside} \left(t - 1 \right) - \left(\operatorname{e}^t - \frac{3 \operatorname{e}^{2t}}{2} + \operatorname{e}^{3t} - \frac{\operatorname{e}^{4t}}{4} - \frac{1}{4} \right) \operatorname{Heaviside} \left(t \right) \right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 54

DSolve[{y''''[t]-5*y''[t]+4*y[t]==12*(UnitStep[t]-UnitStep[t-1]),{y[0]==0,y'[0]==0,y''[0]==0,

$$y(t) \rightarrow \begin{cases} -\cosh(2-2t) + 4\cosh(1-t) - 4\cosh(t) + \cosh(2t) & t > 1 \\ 8\sinh^4\left(\frac{t}{2}\right) & 0 \le t \le 1 \end{cases}$$

4.42 problem Problem 14(b)

Internal problem ID [11002]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 14(b).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - 16y - 32$$
 Heaviside $(t) + 32$ Heaviside $(t - \pi) = 0$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 0, y'''(0) = 0]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 119

dsolve([diff(y(t),t\$4)-16*y(t)=32*(Heaviside(t)-Heaviside(t-Pi)),y(0)=0,D(y)(0)=0,(D@02)

$$y(t) = -\frac{\text{Heaviside}\left(t - \pi\right) \mathrm{e}^{-2t + 2\pi}}{2} - \frac{\text{Heaviside}\left(t - \pi\right) \mathrm{e}^{2t - 2\pi}}{2} + \left(2 - \cos\left(2t\right)\right) \text{Heaviside}\left(t - \pi\right) + \left(\cos\left(2t\right) + \frac{\mathrm{e}^{-2t}}{2} + \frac{\mathrm{e}^{2t}}{2} - 2\right) \text{Heaviside}\left(t\right)$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 39

$$y(t) \rightarrow \{ cos(2t) + cosh(2t) - 2 \quad 0 \le t \le \pi$$

 $-2 \sinh(\pi) \sinh(\pi - 2t) \quad t > \pi$

5	Chapter 6. Introduction to Systems of ODEs.
	Problems page 408

0.1	problem Problem 1(a)	٠	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	 	 •	•	•	٠	•	•	•	•	٠	•	199
5.2	problem Problem 1(b)																			 											154
5.3	problem Problem 1(c)																			 											155
5.4	problem Problem 1(d)																			 											157
5.5	problem Problem 1(e)																			 											158
5.6	problem Problem 2(a)																			 											160
5.7	problem Problem 2(b)																			 											161
5.8	problem Problem 2(c)																			 											162
5.9	problem Problem 2(d)																			 											163
5.10	problem Problem 2(e)																			 											164
5.11	problem Problem 2(f)																			 											165
5.12	problem Problem 3(a)																			 											166
5.13	problem Problem 3(b)																			 											167
5.14	problem Problem 3(c)																			 											168
5.15	problem Problem 3(d)																			 											169
5.16	problem Problem 3(e)																			 											17 0
5.17	problem Problem 3(f)																			 											171
5.18	problem Problem 3(g)																			 											173

5.1 problem Problem 1(a)

Internal problem ID [11003]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$t^2y'' + 3y't + y - t^7 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(t^2*diff(y(t),t\$2)+3*t*diff(y(t),t)+y(t)=t^7,y(t), singsol=all)$

$$y(t) = \frac{c_2}{t} + \frac{t^7}{64} + \frac{c_1 \ln(t)}{t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 26

DSolve[t^2*y''[t]+3*t*y'[t]+y[t]==t^7,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{t^8 + 64c_2 \log(t) + 64c_1}{64t}$$

5.2 problem Problem 1(b)

Internal problem ID [11004]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$t^{2}y'' - 6y't + \sin(2t)y - \ln(t) = 0$$

X Solution by Maple

 $\label{eq:decomposition} \\ \mbox{dsolve(t^2*diff(y(t),t$^2)-6*t*diff(y(t),t)+sin(2*t)*y(t)=ln(t),y(t), singsol=all)} \\ \mbox{dsolve(t^2*diff(y(t),t$^2)-6*t*diff(y(t),t)+sin(2*t)*y(t)=ln(t),y(t), singsol=all)} \\ \mbox{dsolve(t^2*diff(y(t),t$^2)-6*t*diff(y(t),t)+sin(2*t)*y(t)=ln(t),y(t), singsol=all)} \\ \mbox{dsolve(t^2*diff(y(t),t)$^2)-6*t*diff(y(t),t)+sin(2*t)*y(t)=ln(t),y(t), singsol=all)} \\ \mbox{dsolve(t^2*diff(y(t),t))-sin(2*t)+sin(2*$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[t^2*y''[t]-6*t*y'[t]+Sin[2*t]*y[t]==Log[t],y[t],t,IncludeSingularSolutions -> True]

Not solved

5.3 problem Problem 1(c)

Internal problem ID [11005]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + \frac{y}{t} - t = 0$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 39

dsolve(diff(y(t),t\$2)+3*diff(y(t),t)+y(t)/t=t,y(t), singsol=all)

$$y(t) = e^{-3t}t \text{ KummerM}\left(\frac{2}{3}, 2, 3t\right)c_2 + e^{-3t}t \text{ KummerU}\left(\frac{2}{3}, 2, 3t\right)c_1 + \frac{t^2}{7} - \frac{t}{14}$$

Solution by Mathematica

Time used: 11.124 (sec). Leaf size: 253

DSolve[y''[t]+3*y'[t]+y[t]/t==t,y[t],t,IncludeSingularSolutions -> True]

$$y(t)
ightarrow G_{1,2}^{2,0} \Biggl(3t \Biggl| egin{array}{c} rac{2}{3} \\ 0,1 \end{array} \Biggr) \Biggl(\int_{1}^{t}$$

$$\frac{3\,\mathrm{Hypergeometric1F1}\left(\frac{4}{3},2,-3K[2]\right)}{3\,\mathrm{Hypergeometric1F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric1F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)\right)}$$

$$+ \, c_2 \Bigg) - 3t \, ext{Hypergeometric1F1} \left(rac{4}{3}, 2,
ight.$$

$$-3t \bigg) \left(\int_{1}^{t} \frac{G_{1,2}^{2,0} \left(3K[1] - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(3K[1] \middle| \begin{array}{c} \frac{2}{3} \\ 0, 1 \end{array} \right) - 9 \text{ Hypergeometric1F1} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(\frac{4}{3}, 2, -3K[1] \right) G_{1,2}^{2,0} \left(\frac{4}{3}, 2, -3K[1$$

$$+ c_1$$

5.4 problem Problem 1(d)

Internal problem ID [11006]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y't - y \ln(t) - \cos(2t) = 0$$

X Solution by Maple

dsolve(diff(y(t),t\$2)+t*diff(y(t),t)-y(t)*ln(t)=cos(2*t),y(t), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y''[t]+t*y'[t]-y[t]*Log[t] == Cos[2*t], y[t], t, Include Singular Solutions \rightarrow True]$

Not solved

5.5 problem Problem 1(e)

Internal problem ID [11007]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$t^3y'' - 2y't + y - t^4 = 0$$

/

Solution by Maple

Time used: 0.015 (sec). Leaf size: 120

 $dsolve(t^3*diff(y(t),t\$2)-2*t*diff(y(t),t)+y(t)=t^4,y(t), singsol=all)$

$$\begin{split} y(t) &= \mathrm{e}^{-\frac{1}{t}} \bigg(\operatorname{BesselI} \left(0, \frac{1}{t} \right) + \operatorname{BesselI} \left(1, \frac{1}{t} \right) \bigg) \, c_2 \\ &+ \mathrm{e}^{-\frac{1}{t}} \bigg(- \operatorname{BesselK} \left(0, \frac{1}{t} \right) + \operatorname{BesselK} \left(1, \frac{1}{t} \right) \bigg) \, c_1 - \left(\left(\operatorname{BesselI} \left(0, \frac{1}{t} \right) \right. \\ &+ \left. \operatorname{BesselI} \left(1, \frac{1}{t} \right) \right) \left(\int t \left(- \operatorname{BesselK} \left(0, \frac{1}{t} \right) + \operatorname{BesselK} \left(1, \frac{1}{t} \right) \right) \mathrm{e}^{\frac{1}{t}} dt \right) \\ &+ \left(\int t \left(\operatorname{BesselI} \left(0, \frac{1}{t} \right) + \operatorname{BesselI} \left(1, \frac{1}{t} \right) \right) \mathrm{e}^{\frac{1}{t}} dt \right) \left(\operatorname{BesselK} \left(0, \frac{1}{t} \right) \\ &- \operatorname{BesselK} \left(1, \frac{1}{t} \right) \right) \right) \mathrm{e}^{-\frac{1}{t}} \end{split}$$

✓ Solution by Mathematica

Time used: 12.134 (sec). Leaf size: 272

DSolve[t^3*y''[t]-2*t*y'[t]+y[t]==t^4,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-1/t} \left(\text{BesselI} \left(0, \frac{1}{t} \right) + \text{BesselI} \left(1, \frac{1}{t} \right) \right) \left(\int_{1}^{t} \frac{2e^{\frac{2}{K[1]}} \sqrt{\pi} K[1]^{3} G_{1,2}^{2,0} \left(\frac{2}{K[1]} \right| \frac{1}{2}}{e^{\frac{1}{K[1]}} \sqrt{\pi} \left(\text{BesselI} \left(0, \frac{1}{K[1]} \right) - \text{BesselI} \left(2, \frac{1}{K[1]} \right) \right) G_{1,2}^{2,0} \left(\frac{2}{K[1]} \right| \frac{1}{2} - 1, 0 \right) - 2 \left(\text{BesselI} \left(0, \frac{1}{K[1]} \right) - 2 \left(\frac{1}{K[1]} \right) \right) G_{1,2}^{2,0} \left(\frac{2}{K[1]} \right) \left(\frac{1}{2} \right) - 2 \left(\frac{1}{K[1]} \right) \left(\frac{1}{2} \right) \left($$

5.6 problem Problem 2(a)

Internal problem ID [11008]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 2(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + y - 1 = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve(diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=1,y(t), singsol=all)

$$y(t) = e^{-t}c_2 + e^{-t}tc_1 + 1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 20

DSolve[y''[t]+2*y'[t]+y[t]==1,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 1 + e^{-t}(c_2t + c_1)$$

5.7 problem Problem 2(b)

Internal problem ID [11009]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 2(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + 5y - e^t = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $dsolve(diff(y(t),t)^2)-2*diff(y(t),t)+5*y(t)=exp(t),y(t), singsol=all)$

$$y(t) = e^{t} \sin(2t) c_{2} + e^{t} \cos(2t) c_{1} + \frac{e^{t}}{4}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 33

DSolve[y''[t]-2*y'[t]+5*y[t]==Exp[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{4}e^t((1+4c_2)\cos(2t)+4c_1\sin(2t)+1)$$

5.8 problem Problem 2(c)

Internal problem ID [11010]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 2(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 3y' - 7y - 4 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(t),t\$2)-3*diff(y(t),t)-7*y(t)=4,y(t), singsol=all)

$$y(t) = e^{\frac{\left(3+\sqrt{37}\right)t}{2}}c_2 + e^{-\frac{\left(-3+\sqrt{37}\right)t}{2}}c_1 - \frac{4}{7}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 39

DSolve[y''[t]-3*y'[t]-7*y[t]==4,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{4}{7} + e^{-\frac{1}{2}(\sqrt{37}-3)t} \left(c_2 e^{\sqrt{37}t} + c_1\right)$$

5.9 problem Problem 2(d)

Internal problem ID [11011]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 2(d).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 3y'' + 3y' + y - 5 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(t),t\$3)+3*diff(y(t),t\$2)+3*diff(y(t),t)+y(t)=5,y(t), singsol=all)

$$y(t) = 5 + c_1 e^{-t} + c_2 t^2 e^{-t} + c_3 e^{-t}t$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 25

 $DSolve[y'''[t]+3*y''[t]+3*y'[t]+y[t]==5,y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow 5 + e^{-t}(t(c_3t + c_2) + c_1)$$

5.10 problem Problem 2(e)

Internal problem ID [11012]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 2(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3y'' + 5y' - 2y - 3t^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(3*diff(y(t),t$2)+5*diff(y(t),t)-2*y(t)=3*t^2,y(t), singsol=all)$

$$y(t) = c_2 e^{-2t} + e^{\frac{t}{3}} c_1 - \frac{3t^2}{2} - \frac{15t}{2} - \frac{93}{4}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 36

DSolve[3*y''[t]+5*y'[t]-2*y[t]==3*t^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{3}{4}(2t(t+5)+31) + c_1e^{t/3} + c_2e^{-2t}$$

5.11 problem Problem 2(f)

Internal problem ID [11013]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 2(f).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 2y'' + 4y' - \sin(t) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 64

dsolve(diff(y(t),t\$3)=2*diff(y(t),t\$2)-4*diff(y(t),t)+sin(t),y(t), singsol=all)

$$y(t) = \frac{e^t \cos(\sqrt{3}t) c_1}{4} + \frac{c_1 \sqrt{3} e^t \sin(\sqrt{3}t)}{4} - \frac{c_2 \sqrt{3} e^t \cos(\sqrt{3}t)}{4} + \frac{e^t \sin(\sqrt{3}t) c_2}{4} + \frac{2\sin(t)}{13} - \frac{3\cos(t)}{13} + c_3$$

✓ Solution by Mathematica

Time used: 0.485 (sec). Leaf size: 69

DSolve[y'''[t]==2*y''[t]-4*y'[t]+Sin[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{2\sin(t)}{13} - \frac{3\cos(t)}{13} + \frac{1}{4}e^{t}\left(\left(c_{2} - \sqrt{3}c_{1}\right)\cos\left(\sqrt{3}t\right) + \left(c_{1} + \sqrt{3}c_{2}\right)\sin\left(\sqrt{3}t\right)\right) + c_{3}$$

5.12 problem Problem 3(a)

Internal problem ID [11014]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) - 2y(t)$$
$$y'(t) = 3x(t) - 4y(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 35

dsolve([diff(x(t),t)=x(t)-2*y(t),diff(y(t),t)=3*x(t)-4*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{2c_1 e^{-2t}}{3} + e^{-t} c_2$$

$$y(t) = c_1 e^{-2t} + e^{-t} c_2$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 60

 $DSolve[\{x'[t]==x[t]-2*y[t],y'[t]==3*x[t]-4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow Tr(x,y[t])\}$

$$x(t) \to e^{-2t} (c_1(3e^t - 2) - 2c_2(e^t - 1))$$

$$y(t) \to e^{-2t} (3c_1(e^t - 1) + c_2(3 - 2e^t))$$

5.13 problem Problem 3(b)

Internal problem ID [11015]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{5x(t)}{4} + \frac{3y(t)}{4}$$
$$y'(t) = \frac{x(t)}{2} - \frac{3y(t)}{2}$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 86

dsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)],[x(t),y(t)], singsol=1/2*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)],[x(t),y(t)], singsol=1/2*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)],[x(t),y(t)], singsol=1/2*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)],[x(t),y(t),y(t)]

$$x(t) = \frac{c_1 e^{\frac{\left(-1+\sqrt{145}\right)t}{8}\sqrt{145}}}{4} - \frac{c_2 e^{-\frac{\left(1+\sqrt{145}\right)t}{8}\sqrt{145}}}{4} + \frac{11c_1 e^{\frac{\left(-1+\sqrt{145}\right)t}{8}}}{4} + \frac{11c_2 e^{-\frac{\left(1+\sqrt{145}\right)t}{8}}}{4}$$

$$y(t) = c_1 e^{\frac{(-1+\sqrt{145})t}{8}} + c_2 e^{-\frac{(1+\sqrt{145})t}{8}}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 114

$$x(t) \to \frac{1}{145}e^{-t/8} \left(145c_1 \cosh\left(\frac{\sqrt{145}t}{8}\right) + \sqrt{145}(11c_1 + 6c_2) \sinh\left(\frac{\sqrt{145}t}{8}\right) \right)$$

$$y(t) \to \frac{1}{145} e^{-t/8} \left(145c_2 \cosh\left(\frac{\sqrt{145}t}{8}\right) + \sqrt{145}(4c_1 - 11c_2) \sinh\left(\frac{\sqrt{145}t}{8}\right) \right)$$

5.14 problem Problem 3(c)

Internal problem ID [11016]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) - 2y(t)$$

$$y'(t) = -y(t) + x(t)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve([diff(x(t),t)-x(t)+2*y(t)=0,diff(y(t),t)+y(t)-x(t)=0],[x(t), y(t)], singsol=all)

$$x(t) = c_1 \cos(t) - c_2 \sin(t) + c_1 \sin(t) + c_2 \cos(t)$$

$$y(t) = c_1 \sin(t) + c_2 \cos(t)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 39

 $DSolve[\{x'[t]-x[t]+2*y[t]==0,y'[t]+y[t]-x[t]==0\}, \{x[t],y[t]\},t, IncludeSingularSolutions \rightarrow Track T$

$$x(t) \to c_1(\sin(t) + \cos(t)) - 2c_2\sin(t)$$

$$y(t) \to c_2 \cos(t) + (c_1 - c_2) \sin(t)$$

5.15 problem Problem 3(d)

Internal problem ID [11017]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

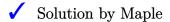
Problem number: Problem 3(d).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -5x(t) + 2y(t)$$

$$y'(t) = -2x(t) + y(t)$$



Time used: 0.031 (sec). Leaf size: 83

dsolve([diff(x(t),t)+5*x(t)-2*y(t)=0,diff(y(t),t)+2*x(t)-y(t)=0],[x(t), y(t)], singsol=all)

$$x(t) = -\frac{c_1 e^{\left(-2+\sqrt{5}\right)t} \sqrt{5}}{2} + \frac{c_2 e^{-\left(2+\sqrt{5}\right)t} \sqrt{5}}{2} + \frac{3c_1 e^{\left(-2+\sqrt{5}\right)t}}{2} + \frac{3c_2 e^{-\left(2+\sqrt{5}\right)t}}{2}$$

$$y(t) = c_1 e^{\left(-2 + \sqrt{5}\right)t} + c_2 e^{-\left(2 + \sqrt{5}\right)t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 98

$$x(t) \rightarrow \frac{1}{5}e^{-2t} \Big(5c_1\cosh\left(\sqrt{5}t\right) + \sqrt{5}(2c_2 - 3c_1)\sinh\left(\sqrt{5}t\right)\Big)$$

$$y(t) \rightarrow \frac{1}{5}e^{-2t} \left(5c_2 \cosh\left(\sqrt{5}t\right) + \sqrt{5}(3c_2 - 2c_1)\sinh\left(\sqrt{5}t\right)\right)$$

5.16 problem Problem 3(e)

Internal problem ID [11018]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(e).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) - 2y(t)$$
$$y'(t) = x(t) - 3y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 70

dsolve([diff(x(t),t)-3*x(t)+2*y(t)=0,diff(y(t),t)-x(t)+3*y(t)=0],[x(t), y(t)], singsol=all)

$$x(t) = c_1 \sqrt{7} e^{\sqrt{7}t} - c_2 \sqrt{7} e^{-\sqrt{7}t} + 3c_1 e^{\sqrt{7}t} + 3c_2 e^{-\sqrt{7}t}$$

$$y(t) = c_1 e^{\sqrt{7}t} + c_2 e^{-\sqrt{7}t}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 76

 $DSolve[\{x'[t]-3*x[t]+2*y[t]==0,y'[t]-x[t]+3*y[t]==0\}, \{x[t],y[t]\},t, Include Singular Solutions -1, the sum of the property of the property$

$$x(t) \to c_1 \cosh\left(\sqrt{7}t\right) + \frac{(3c_1 - 2c_2)\sinh\left(\sqrt{7}t\right)}{\sqrt{7}}$$

$$y(t) \rightarrow c_2 \cosh\left(\sqrt{7}t\right) + \frac{(c_1 - 3c_2)\sinh\left(\sqrt{7}t\right)}{\sqrt{7}}$$

5.17 problem Problem 3(f)

Internal problem ID [11019]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(f).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + z(t)$$

$$y'(t) = y(t) - x(t)$$

$$z'(t) = -x(t) - 2y(t) + 3z(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 49

dsolve([diff(x(t),t)+x(t)-z(t)=0,diff(y(t),t)-y(t)+x(t)=0,diff(z(t),t)+x(t)+2*y(t)-3*z(t)=0],

$$x(t) = \frac{c_3 e^{3t}}{4} - c_2 + c_1 + c_2 t$$

$$y(t) = -\frac{c_3 e^{3t}}{8} + c_1 + c_2 t$$

$$z(t) = c_1 + c_2 t + c_3 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 126

DSolve[{x'[t]+x[t]-z[t]==0,y'[t]-y[t]+x[t]==0,z'[t]+x[t]+2*y[t]-3*z[t]==0},{x[t],y[t],z[t]},t

$$x(t) \to \frac{1}{9} \left(-9c_1(t-1) - 2(c_2 - c_3) \left(e^{3t} - 1 \right) + 3(2c_2 + c_3)t \right)$$

$$y(t) \to \frac{1}{9} \left((c_2 - c_3)e^{3t} + 3(-3c_1 + 2c_2 + c_3)t + 8c_2 + c_3 \right)$$

$$z(t) \to \frac{1}{9} \left(-8(c_2 - c_3)e^{3t} + 3(-3c_1 + 2c_2 + c_3)t + 8c_2 + c_3 \right)$$

5.18 problem Problem 3(g)

Internal problem ID [11020]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(g).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -\frac{x(t)}{2} + 2y(t) - 3z(t)$$
$$y'(t) = y(t) - \frac{z(t)}{2}$$
$$z'(t) = -2x(t) + z(t)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 164

dsolve([diff(x(t),t)=-1/2*x(t)+2*y(t)-3*z(t),diff(y(t),t)=y(t)-1/2*z(t),diff(z(t),t)=-2*x(t)+2*y(t)-3*z(t),diff(y(t),t)=y(t)-1/2*z(t),diff(z(t),t)=-2*x(t)+2*y(t)-3*z(t),diff(y(t),t)=y(t)-1/2*z(t),diff(z(t),t)=-2*x(t)+2*y(t)-3*z(t),diff(y(t),t)=y(t)-1/2*z(t),diff(z(t),t)=-2*x(t)+2*y(t)-3*z(t),diff(y(t),t)=y(t)-1/2*z(t),diff(z(t),t)=y(t)-1/2*z

$$x(t) = -\frac{c_2 e^{\frac{\left(-3+\sqrt{33}\right)t}{4}}\sqrt{33}}{8} + \frac{c_3 e^{-\frac{\left(3+\sqrt{33}\right)t}{4}}\sqrt{33}}{8} + \frac{7c_2 e^{\frac{\left(-3+\sqrt{33}\right)t}{4}}}{8} + \frac{7c_3 e^{-\frac{\left(3+\sqrt{33}\right)t}{4}}}{8} - c_1 e^{3t}$$

$$y(t) = \frac{c_2 \mathrm{e}^{\frac{\left(-3+\sqrt{33}\right)t}{4}\sqrt{33}}}{8} - \frac{c_3 \mathrm{e}^{-\frac{\left(3+\sqrt{33}\right)t}{4}\sqrt{33}}}{8} + \frac{7c_2 \mathrm{e}^{\frac{\left(-3+\sqrt{33}\right)t}{4}}}{8} + \frac{7c_3 \mathrm{e}^{-\frac{\left(3+\sqrt{33}\right)t}{4}}}{8} - \frac{c_1 \mathrm{e}^{3t}}{4}$$

$$z(t) = c_1 e^{3t} + c_2 e^{\frac{\left(-3+\sqrt{33}\right)t}{4}} + c_3 e^{-\frac{\left(3+\sqrt{33}\right)t}{4}}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 483

$$x(t) \to \frac{1}{264} e^{-\frac{1}{4} \left(3 + \sqrt{33}\right)t} \left(c_1 \left(\left(88 - 16\sqrt{33}\right) e^{\frac{\sqrt{33}t}{2}} + 88e^{\frac{1}{4} \left(15 + \sqrt{33}\right)t} + 88 + 16\sqrt{33} \right) + 22(4c_2 - 7c_3)e^{\frac{1}{4} \left(15 + \sqrt{33}\right)t} + \left(4\left(3\sqrt{33} - 11\right)c_2 + \left(77 - 13\sqrt{33}\right)c_3\right)e^{\frac{\sqrt{33}t}{2}} - 4\left(11 + 3\sqrt{33}\right)c_2 + \left(77 + 13\sqrt{33}\right)c_3\right)$$

$$y(t) \rightarrow \frac{e^{-\frac{1}{4}\left(3+\sqrt{33}\right)t}\left(-4c_1\left(\left(11+5\sqrt{33}\right)e^{\frac{\sqrt{33}t}{2}}-22e^{\frac{1}{4}\left(15+\sqrt{33}\right)t}+11-5\sqrt{33}\right)+22(4c_2-7c_3)e^{\frac{1}{4}\left(15+\sqrt{33}\right)t}+\left(\left(44-\frac{1}{2}\right)e^{\frac{1}{4}\left(15+\sqrt{33}\right)t}+11-\frac{1}{2}\right)e^{\frac{1}{4}\left(15+\sqrt{33}\right)t}+11-\frac{1}{2}e^{\frac{1}{4}\left(15+\sqrt{33}\right)$$

$$z(t) \to \frac{1}{264} e^{-\frac{1}{4} \left(3 + \sqrt{33}\right)t} \left(c_1 \left(\left(44 - 12\sqrt{33}\right) e^{\frac{\sqrt{33}t}{2}} - 88e^{\frac{1}{4} \left(15 + \sqrt{33}\right)t} + 44 + 12\sqrt{33} \right) - 22(4c_2 - 7c_3)e^{\frac{1}{4} \left(15 + \sqrt{33}\right)t} + \left(4\left(11 + 5\sqrt{33}\right)c_2 + \left(55 - 7\sqrt{33}\right)c_3\right)e^{\frac{\sqrt{33}t}{2}} + \left(44 - 20\sqrt{33}\right)c_2 + \left(55 + 7\sqrt{33}\right)c_3\right)$$

6	Chapter 6.4 Reduction to a single ODE. Problem	lS
	page 415	

6.1	problem Problem 4(a)																-	176
6.2	problem Problem 4(b)																	177
6.3	problem Problem 4(c)																	178
6.4	problem Problem 4(d)																	179
6.5	problem Problem 4(e)																	180
6.6	problem Problem 4(f)																•	181
6.7	problem Problem 4(g)																-	182

6.1 problem Problem 4(a)

Internal problem ID [11021]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{y(t)}{2} + \frac{x(t)}{2}$$
$$y'(t) = \frac{y(t)}{2} - \frac{x(t)}{2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 46

dsolve([diff(x(t),t)+diff(y(t),t)=y(t),diff(x(t),t)-diff(y(t),t)=x(t)],[x(t),y(t)], singsol=x(t), f(x(t),t)+diff(y(t),t)=y(t), f(x(t),t)-diff(y(t),t)=x(t)], f(x(t),y(t),t)=x(t), f(x(t),y(t),t)=x(t

$$x(t) = -e^{rac{t}{2}} \left(\cos \left(rac{t}{2}
ight) c_1 - \sin \left(rac{t}{2}
ight) c_2
ight)$$

$$y(t) = \mathrm{e}^{rac{t}{2}}igg(c_2\cos\left(rac{t}{2}
ight) + c_1\sin\left(rac{t}{2}
ight)igg)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 63

DSolve[{x'[t]+y'[t]==y[t],x'[t]-y'[t]==x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t)
ightarrow e^{t/2} igg(c_1 \cos \left(rac{t}{2}
ight) + c_2 \sin \left(rac{t}{2}
ight) igg)$$

$$y(t) o e^{t/2} igg(c_2 \cos \left(rac{t}{2}
ight) - c_1 \sin \left(rac{t}{2}
ight) igg)$$

6.2 problem Problem 4(b)

Internal problem ID [11022]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{t}{3} + \frac{2x(t)}{3} + \frac{2y(t)}{3}$$
$$y'(t) = \frac{t}{3} - \frac{x(t)}{3} - \frac{y(t)}{3}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 45

$$x(t) = -4t - 6e^{\frac{t}{3}}c_1 - 6 - \frac{t^2}{2} - c_2$$

$$y(t) = \frac{t^2}{2} + 3e^{\frac{t}{3}}c_1 + 2t + c_2$$

✓ Solution by Mathematica

Time used: 0.117 (sec). Leaf size: 71

 $DSolve[\{x'[t]+2*y'[t]==t,x'[t]-y'[t]==x[t]+y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow Tr(x,y)=x(x,y)=$

$$x(t) \to -\frac{1}{2}t(t+8) + 2(c_1+c_2)e^{t/3} - c_1 - 2(6+c_2)$$

$$y(t) \to \frac{1}{2}t(t+4) - (c_1 + c_2)e^{t/3} + 6 + c_1 + 2c_2$$

6.3 problem Problem 4(c)

Internal problem ID [11023]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{6}{5} + \frac{3y(t)}{5} - \frac{3t}{5} + x(t)$$
$$y'(t) = \frac{6}{5} - \frac{2y(t)}{5} + \frac{2t}{5}$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 30

dsolve([diff(x(t),t)-diff(y(t),t)=x(t)+y(t)-t,2*diff(x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+6],[x

$$x(t) = -\frac{3}{2} - \frac{3e^{-\frac{2t}{5}}c_2}{7} + c_1e^t$$

$$y(t) = t + \frac{1}{2} + e^{-\frac{2t}{5}}c_2$$

✓ Solution by Mathematica

Time used: 0.324 (sec). Leaf size: 53

 $DSolve[\{x'[t]-y'[t]==x[t]+y[t]-t,2*x'[t]+3*y'[t]==2*x[t]+6\}, \{x[t],y[t]\},t,IncludeSingularSoludeSi$

$$x(t) \to \left(c_1 + \frac{3c_2}{7}\right)e^t - \frac{3}{7}c_2e^{-2t/5} - \frac{3}{2}$$

$$y(t) \to t + c_2 e^{-2t/5} + \frac{1}{2}$$

6.4 problem Problem 4(d)

Internal problem ID [11024]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(d).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{2t}{7} + \frac{y(t)}{7}$$
$$y'(t) = -\frac{3t}{7} + \frac{2y(t)}{7}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

$$x(t) = \frac{t^2}{4} + \frac{3t}{4} + \frac{e^{\frac{2t}{7}}c_2}{2} + c_1$$

$$y(t) = \frac{3t}{2} + \frac{21}{4} + e^{\frac{2t}{7}}c_2$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 56

DSolve[{2*x'[t]-y'[t]==t,3*x'[t]+2*y'[t]==y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> Tru

$$x(t) \to \frac{1}{8} (2t(t+3) + 4c_2(e^{2t/7} - 1) + 21 + 8c_1)$$

 $y(t) \to \frac{3t}{2} + c_2e^{2t/7} + \frac{21}{4}$

6.5 problem Problem 4(e)

Internal problem ID [11025]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(e).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{3t}{4} - \frac{x(t)}{4} - \frac{y(t)}{4}$$
$$y'(t) = \frac{5t}{4} - \frac{3x(t)}{4} - \frac{3y(t)}{4}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 45

dsolve([5*diff(x(t),t)-3*diff(y(t),t)=x(t)+y(t),3*diff(x(t),t)-diff(y(t),t)=t],[x(t),y(t)],

$$x(t) = \frac{t}{2} - \frac{e^{-t}c_1}{3} - 2 + \frac{t^2}{8} - c_2$$

$$y(t) = -\frac{t^2}{8} - e^{-t}c_1 + \frac{3t}{2} + c_2$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 72

DSolve[{5*x'[t]-3*y'[t]==x[t]+y[t],3*x'[t]-y'[t]==t},{x[t],y[t]},t,IncludeSingularSolutions -

$$x(t) \to \frac{1}{8} (t(t+4) + 2(c_1 + c_2)e^{-t} - 4 + 6c_1 - 2c_2)$$
$$y(t) \to \frac{1}{8} (-(t-12)t + 2(3(c_1 + c_2)e^{-t} - 6 - 3c_1 + c_2))$$

6.6 problem Problem 4(f)

Internal problem ID [11026]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(f).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{4y(t)}{5} + \frac{4t}{5}$$
$$y'(t) = \frac{y(t)}{5} + \frac{t}{5}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve([diff(x(t),t)-4*diff(y(t),t)=0,2*diff(x(t),t)-3*diff(y(t),t)=y(t)+t],[x(t), y(t)], sin(x,t)=0

$$x(t) = -4t + 4e^{\frac{t}{5}}c_2 + c_1$$

$$y(t) = -t - 5 + e^{\frac{t}{5}}c_2$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 43

 $DSolve[\{x'[t]-4*y'[t]==0,2*x'[t]-3*y'[t]==y[t]+t\}, \{x[t],y[t]\}, t, IncludeSingularSo] utions \rightarrow T (x,y[t]-4*y'[t]==0,2*x'[t]-3*y'[t]==y[t]+t\}, \{x[t],y[t]\}, \{x[$

$$x(t) \to -4t + 4c_2(e^{t/5} - 1) - 20 + c_1$$

$$y(t) \to -t + c_2 e^{t/5} - 5$$

6.7 problem Problem 4(g)

Internal problem ID [11027]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(g).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{\sin(t)}{4} + \frac{x(t)}{4} + \frac{y(t)}{4} + \frac{t}{4}$$
$$y'(t) = \frac{\sin(t)}{8} - \frac{3x(t)}{8} - \frac{3y(t)}{8} - \frac{3t}{8}$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 51

dsolve([3*diff(x(t),t)+2*diff(y(t),t)=sin(t),diff(x(t),t)-2*diff(y(t),t)=x(t)+y(t)+t],[x(t),t]

$$x(t) = \frac{16e^{-\frac{t}{8}}c_1}{3} - \frac{17\cos(t)}{65} - \frac{6\sin(t)}{65} + 8 + 2t - c_2$$

$$y(t) = -8e^{-\frac{t}{8}}c_1 + \frac{9\sin(t)}{65} - \frac{7\cos(t)}{65} - 3t + c_2$$

✓ Solution by Mathematica

Time used: 0.232 (sec). Leaf size: 82

$$x(t) \to -2t - \frac{6\sin(t)}{17} - \frac{7\cos(t)}{17} + 2(c_1 + c_2)e^{t/4} - 8 - c_1 - 2c_2$$

$$y(t) \to t + \frac{3\sin(t)}{17} - \frac{5\cos(t)}{17} - (c_1 + c_2)e^{t/4} + 4 + c_1 + 2c_2$$

7	Chapter 8.3 Systems of Linear Differential
	Equations (Variation of Parameters). Problems
	page 514

7.1	problem Problem	3(a)													•			•	184
7.2	problem Problem	3(b)																	185
7.3	problem Problem	3(c)																	186
7.4	problem Problem	3(d)																•	187
7.5	problem Problem	4(a)																	188
7.6	problem Problem	4(b)																-	190
7.7	problem Problem	4 (c)											•					-	192
7.8	problem Problem	4(d)																•	194
7.9	problem Problem	5(a)											•					-	196
7.10	problem Problem	5(b)																	197
7.11	problem Problem	5(c)																-	198
7.12	problem Problem	5(d)																-	199
7.13	problem Problem	6(a)																2	200
7.14	problem Problem	6(b)																. :	201
7.15	problem Problem	6(c)																2	203
7.16	problem Problem	6(d)																6	205

7.1 problem Problem 3(a)

Internal problem ID [11028]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

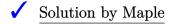
lems page 514

Problem number: Problem 3(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -4x(t) + 9y(t) + 12 e^{-t}$$
$$y'(t) = -5x(t) + 2y(t)$$



Time used: 0.078 (sec). Leaf size: 66

$$dsolve([diff(x(t),t)=-4*x(t)+9*y(t)+12*exp(-t),diff(y(t),t)=-5*x(t)+2*y(t)],[x(t),y(t)], sin(x,t)=-2*x(t)+2*y(t)+12*x(t)+12*$$

$$x(t) = \frac{e^{-t}(6\sin(6t)c_1 + 3\sin(6t)c_2 + 3\cos(6t)c_1 - 6\cos(6t)c_2 - 5)}{5}$$

$$y(t) = \frac{e^{-t}(3\sin(6t)c_2 + 3\cos(6t)c_1 - 5)}{3}$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 73

 $DSolve[\{x'[t]==-4*x[t]+9*y[t]+12*Exp[-t],y'[t]==-5*x[t]+2*y[t]\},\{x[t],y[t]\},t,Inc]udeSingular$

$$x(t) \to \frac{1}{2}e^{-t}(2c_1\cos(6t) - (c_1 - 3c_2)\sin(6t) - 2)$$

$$y(t) \to \frac{1}{6}e^{-t}(6c_2\cos(6t) + (3c_2 - 5c_1)\sin(6t) - 10)$$

7.2 problem Problem 3(b)

Internal problem ID [11029]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 3(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -7x(t) + 6y(t) + 6e^{-t}$$

$$y'(t) = -12x(t) + 5y(t) + 37$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 82

$$dsolve([diff(x(t),t)=-7*x(t)+6*y(t)+6*exp(-t),diff(y(t),t)=-12*x(t)+5*y(t)+37],[x(t),y(t)],\\$$

$$x(t) = 6 + \frac{e^{-t}(\sin(6t)c_1 + \sin(6t)c_2 + \cos(6t)c_1 - \cos(6t)c_2 - 2\sin(6t) - 2\cos(6t) - 2)}{2}$$

$$y(t) = 7 + e^{-t}(\sin(6t) c_2 + \cos(6t) c_1 - 2\cos(6t) - 2)$$

✓ Solution by Mathematica

Time used: 0.243 (sec). Leaf size: 72

$$DSolve[\{x'[t]==-7*x[t]+6*y[t]+6*Exp[-t],y'[t]==-12*x[t]+5*y[t]+37\},\{x[t],y[t]\},t,IncludeSingularing and the standard properties of the standard properties$$

$$x(t) \to e^{-t} (6e^t + c_1 \cos(6t) + (c_2 - c_1) \sin(6t) - 1)$$

$$y(t) \to e^{-t} (7e^t + c_2 \cos(6t) + (c_2 - 2c_1)\sin(6t) - 2)$$

7.3 problem Problem 3(c)

Internal problem ID [11030]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 3(c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -7x(t) + 10y(t) + 18 e^{t}$$
$$y'(t) = -10x(t) + 9y(t) + 37$$

Time used: 0.047 (sec). Leaf size: 81

$$dsolve([diff(x(t),t)=-7*x(t)+10*y(t)+18*exp(t),diff(y(t),t)=-10*x(t)+9*y(t)+37],[x(t),y(t)],$$

$$x(t) = 10 + \frac{e^{t}(3\sin(6t)c_{1} + 4\sin(6t)c_{2} + 4\cos(6t)c_{1} - 3\cos(6t)c_{2} - 15\sin(6t) - 20\cos(6t) - 20)}{5}$$

$$y(t) = 7 + e^{t}(\sin(6t) c_2 + \cos(6t) c_1 - 5\cos(6t) - 5)$$

✓ Solution by Mathematica

Time used: 0.407 (sec). Leaf size: 74

$$DSolve[\{x'[t]==-7*x[t]+10*y[t]+18*Exp[t],y'[t]==-10*x[t]+9*y[t]+37\},\{x[t],y[t]\},t], IncludeSing[x,y]=-10*x[t]+10*y[t]+10*y[t]+10*y[t]+10*x[t$$

$$x(t) \to 10 + \frac{1}{3}e^{t}(3c_1\cos(6t) + (5c_2 - 4c_1)\sin(6t) - 12)$$

$$y(t) \to 7 + \frac{1}{3}e^t(3c_2\cos(6t) + (4c_2 - 5c_1)\sin(6t) - 15)$$

7.4 problem Problem 3(d)

Internal problem ID [11031]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 3(d).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -14x(t) + 39y(t) + 78\sinh(t)$$

$$y'(t) = -6x(t) + 16y(t) + 6\cosh(t)$$

✓ Solution by Maple

Time used: 0.329 (sec). Leaf size: 84

dsolve([diff(x(t),t)=-14*x(t)+39*y(t)+78*sinh(t),diff(y(t),t)=-6*x(t)+16*y(t)+6*cosh(t)],[x(t)+16*y(

$$x(t) = \frac{5 e^{t} \sin(3t) c_{2}}{2} - \frac{e^{t} \cos(3t) c_{2}}{2} + \frac{5 e^{t} \cos(3t) c_{1}}{2} + \frac{e^{t} \sin(3t) c_{1}}{2} + \frac{119 e^{-t}}{2} - \frac{105 e^{t}}{2} + \cosh(t)$$

$$y(t) = e^{t} \sin(3t) c_{2} + e^{t} \cos(3t) c_{1} + 21 e^{-t} - 21 e^{t}$$

✓ Solution by Mathematica

Time used: 0.415 (sec). Leaf size: 74

 $DSolve[{x'[t]==-14*x[t]+39*y[t]+78*Sinh[t],y'[t]==-6*x[t]+16*y[t]+6*Cosh[t]},{x[t],y[t]},t,In[t]==-6*x[t]+16*y[t]+6*Cosh[t]},{x[t],y[t]},t,In[t]==-6*x[t]+16*y[t]+6*Cosh[t]},{x[t],y[t]},t,In[t]==-6*x[t]+16*y[t]+6*Cosh[t]},{x[t],y[t]},t,In[t]==-6*x[t]+16*y[t]+6*Cosh[t]},{x[t],y[t]},t,In[t]==-6*x[t]+16*y[t]+6*Cosh[t]},{x[t],y[t]},t,In[t]==-6*x[t]+16*y[t]+6*Cosh[t]},{x[t],y[t]},t,In[t]==-6*x[t]+16*y[t]+6*Cosh[t]},{x[t],y[t]},t,In[t]==-6*x[t]+16*y[t]+6*Cosh[t]},{x[t],y[t]},t,In[t]==-6*x[t]+16*y[t]+16$

$$x(t) \to -112\sinh(t) + 8\cosh(t) + e^t(c_1\cos(3t) + (13c_2 - 5c_1)\sin(3t))$$

$$y(t) \to -42\sinh(t) + e^t(c_2\cos(3t) + (5c_2 - 2c_1)\sin(3t))$$

7.5 problem Problem 4(a)

Internal problem ID [11032]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 4(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 4y(t) - 2z(t) - 2\sinh(t)$$

$$y'(t) = 4x(t) + 2y(t) - 2z(t) + 10\cosh(t)$$

$$z'(t) = -x(t) + 3y(t) + z(t) + 5$$

Time used: 0.203 (sec). Leaf size: 429

dsolve([diff(x(t),t)=2*x(t)+4*y(t)-2*z(t)-2*sinh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cosh(t)

$$x(t) = -1 - \frac{3\sinh(4t)e^{5t}}{14} - \frac{275\sinh(6t)e^{5t}}{1008} + \frac{3\cosh(4t)e^{5t}}{14} + \frac{275\cosh(6t)e^{5t}}{1008} - \frac{3\sinh(t)}{16} - \frac{45\cosh(t)}{16} - \frac{275e^{-2t}\sinh(t)}{224} + \frac{9c_1e^{-2t}}{8} + \frac{c_2e^{2t}}{2} + 2c_3e^{5t} - \frac{275e^{-2t}\cosh(t)}{224} + \frac{3e^{2t}\sinh(t)}{2} - \frac{3e^{2t}\cosh(t)}{2} + \frac{275e^{2t}\sinh(3t)}{288} - \frac{3e^{-2t}\sinh(3t)}{14} - \frac{275e^{2t}\cosh(3t)}{288} - \frac{3e^{-2t}\cosh(3t)}{14}$$

$$y(t) = -1 - \frac{\sinh{(4t)} e^{5t}}{14} + \frac{25\sinh{(6t)} e^{5t}}{144} + \frac{\cosh{(4t)} e^{5t}}{14} - \frac{25\cosh{(6t)} e^{5t}}{144} - \frac{\sinh{(t)}}{16} - \frac{15\cosh{(t)}}{16} + \frac{25e^{-2t}\sinh{(t)}}{32} - \frac{5c_1e^{-2t}}{8} + \frac{c_2e^{2t}}{2} + 2c_3e^{5t} + \frac{25e^{-2t}\cosh{(t)}}{32} + \frac{e^{2t}\sinh{(t)}}{2} - \frac{e^{2t}\cosh{(t)}}{2} - \frac{175e^{2t}\sinh{(3t)}}{288} - \frac{e^{-2t}\sinh{(3t)}}{14} + \frac{175e^{2t}\cosh{(3t)}}{288} - \frac{e^{-2t}\cosh{(3t)}}{14}$$

$$z(t) = -\frac{25 e^{-2t} \sinh(t)}{14} - 3 - \frac{4 e^{-2t} \sinh(3t)}{7} - \frac{25 e^{-2t} \cosh(t)}{14} - \frac{4 e^{-2t} \cosh(3t)}{7} + 4 e^{2t} \sinh(t) + \frac{25 e^{2t} \sinh(3t)}{18} - 4 e^{2t} \cosh(t) - \frac{25 e^{2t} \cosh(3t)}{18} - \frac{4 \sinh(4t) e^{5t}}{7} - \frac{25 \sinh(6t) e^{5t}}{63} + \frac{4 \cosh(4t) e^{5t}}{7} + \frac{25 \cosh(6t) e^{5t}}{63} + c_1 e^{-2t} + c_2 e^{2t} + c_3 e^{5t}$$

✓ Solution by Mathematica

Time used: 0.175 (sec). Leaf size: 233

$$x(t) \to -\frac{29e^{-t}}{9} - 3e^{t} + \frac{9}{14}(c_{1} - c_{2})e^{-2t} + \frac{2}{21}(9c_{1} + 5c_{2} - 7c_{3})e^{5t} + \frac{1}{6}(-3c_{1} + c_{2} + 4c_{3})e^{2t} - 1$$

$$y(t) \to \frac{7e^{-t}}{9} - e^{t} + \frac{5}{14}(c_{2} - c_{1})e^{-2t} + \frac{2}{21}(9c_{1} + 5c_{2} - 7c_{3})e^{5t} + \frac{1}{6}(-3c_{1} + c_{2} + 4c_{3})e^{2t} - 1$$

$$z(t) \to -\frac{25e^{-t}}{9} - 4e^{t} + \frac{4}{7}(c_{1} - c_{2})e^{-2t} + \frac{1}{21}(9c_{1} + 5c_{2} - 7c_{3})e^{5t} + \frac{1}{3}(-3c_{1} + c_{2} + 4c_{3})e^{2t} - 3$$

7.6 problem Problem 4(b)

Internal problem ID [11033]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 4(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 6y(t) - 2z(t) + 50 e^{t}$$

$$y'(t) = 6x(t) + 2y(t) - 2z(t) + 21 e^{-t}$$

$$z'(t) = -x(t) + 6y(t) + z(t) + 9$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 102

dsolve([diff(x(t),t)=2*x(t)+6*y(t)-2*z(t)+50*exp(t),diff(y(t),t)=6*x(t)+2*y(t)-2*z(t)+21*exp(t

$$x(t) = 12e^{t} - 1 - 6e^{-t} + c_{3}e^{6t} + c_{1}e^{-4t} + \frac{2c_{2}e^{3t}}{5}$$

$$y(t) = 2e^{t} - 1 + e^{-t} + c_3e^{6t} - \frac{2c_1e^{-4t}}{3} + \frac{2c_2e^{3t}}{5}$$

$$z(t) = 37 e^{t} - 4 - 6 e^{-t} + c_3 e^{6t} + c_2 e^{3t} + c_1 e^{-4t}$$

Time used: 0.114 (sec). Leaf size: 213

DSolve[{x'[t]==2*x[t]+6*y[t]-2*z[t]+50*Exp[t],y'[t]==6*x[t]+2*y[t]-2*z[t]+21*Exp[-t],z'[t]==-

$$x(t) \to -6e^{-t} + 12e^{t} + \frac{3}{5}(c_{1} - c_{2})e^{-4t} + \frac{1}{15}(16c_{1} + 9c_{2} - 10c_{3})e^{6t} - \frac{2}{3}(c_{1} - c_{3})e^{3t} - 1$$

$$y(t) \to e^{-t} + 2e^{t} - \frac{2}{5}(c_{1} - c_{2})e^{-4t} + \frac{1}{15}(16c_{1} + 9c_{2} - 10c_{3})e^{6t} - \frac{2}{3}(c_{1} - c_{3})e^{3t} - 1$$

$$z(t) \to -6e^{-t} + 37e^{t} + \frac{3}{5}(c_{1} - c_{2})e^{-4t} + \frac{1}{15}(16c_{1} + 9c_{2} - 10c_{3})e^{6t} - \frac{5}{3}(c_{1} - c_{3})e^{3t} - 4$$

problem Problem 4(c)

Internal problem ID [11034]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 4(c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) - 2y(t) + 4z(t)$$

$$y'(t) = -2x(t) + y(t) + 2z(t)$$

$$z'(t) = -4x(t) - 2y(t) + 6z(t) + e^{2t}$$

Solution by Maple

Time used: 0.062 (sec). Leaf size: 89

dsolve([diff(x(t),t)=-2*x(t)-2*y(t)+4*z(t),diff(y(t),t)=-2*x(t)+1*y(t)+2*z(t),diff(z(t),t)=-4*z(t),diff(z(t),t)=-4*z(t)+2*z(t)

$$x(t) = \frac{3c_2e^{2t}}{4} + 4e^{2t}t - \frac{19e^{2t}}{4} + e^tc_3 - \frac{e^{2t}c_1}{2}$$

$$y(t) = \frac{c_2 e^{2t}}{2} + 2 e^{2t} t - \frac{5 e^{2t}}{2} + \frac{e^t c_3}{2} + e^{2t} c_1$$

$$z(t) = (e^{t}(5t + c_2 - 5) + c_3)e^{t}$$

/ So

Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 119

DSolve[{x'[t]==-2*x[t]-2*y[t]+4*z[t],y'[t]==-2*x[t]+y[t]+2*z[t],z'[t]==-4*x[t]-2*y[t]+6*z[t]+

$$x(t) \to e^t (e^t (4t - 4 - 3c_1 - 2c_2 + 4c_3) + 2(2c_1 + c_2 - 2c_3))$$

$$y(t) \to e^t (2e^t(t-1-c_1+c_3) + 2c_1 + c_2 - 2c_3)$$

$$z(t) \rightarrow e^{t} (e^{t} (5t - 2(2 + 2c_1 + c_2) + 5c_3) + 2(2c_1 + c_2 - 2c_3))$$

7.8 problem Problem 4(d)

Internal problem ID [11035]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 4(d).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) - 2y(t) + 3z(t)$$

$$y'(t) = x(t) - y(t) + 2z(t) + 2e^{-t}$$

$$z'(t) = -2x(t) + 2y(t) - 2z(t)$$

√ §

Solution by Maple

Time used: 0.032 (sec). Leaf size: 91

dsolve([diff(x(t),t)=3*x(t)-2*y(t)+3*z(t),diff(y(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-x(t)-x(t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t)+2*exp(-t)+2*z(t

$$x(t) = -e^{t}c_{1} - c_{2}e^{-2t} - c_{3}e^{t}t - \frac{3e^{t}c_{3}}{2} + 2e^{-t}$$

$$y(t) = e^{-t} + \frac{e^t c_1}{2} - c_2 e^{-2t} + \frac{c_3 e^t t}{2} - e^t c_3$$

$$z(t) = -2e^{-t} + e^{t}c_1 + c_2e^{-2t} + c_3e^{t}t$$

Time used: 0.06 (sec). Leaf size: 174

DSolve[{x'[t]==3*x[t]-2*y[t]+3*z[t],y'[t]==x[t]-y[t]+2*z[t]+2*Exp[-t],z'[t]==-2*x[t]+2*y[t]-2

$$x(t) \to \frac{1}{9}e^{-2t} \left(18e^t + e^{3t} (c_1(6t+13) + c_3(6t+7) - 6c_2) - 4c_1 + 6c_2 - 7c_3 \right)$$

$$y(t) \to \frac{1}{9}e^{-2t} \left(9e^t + e^{3t} (c_1(4-3t) + c_3(7-3t) + 3c_2) - 4c_1 + 6c_2 - 7c_3 \right)$$

$$z(t) \to \frac{1}{9}e^{-2t} \left(-18e^t + 2e^{3t} (-(c_1(3t+2)) - 3c_3t + 3c_2 + c_3) + 4c_1 - 6c_2 + 7c_3 \right)$$

7.9 problem Problem 5(a)

Internal problem ID [11036]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 5(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 7x(t) + y(t) - 1 - 6e^{t}$$
$$y'(t) = -4x(t) + 3y(t) + 4e^{t} - 3$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 30

dsolve([diff(x(t),t) = 7*x(t)+y(t)-1-6*exp(t), diff(y(t),t) = -4*x(t)+3*y(t)+4*exp(t)-3, x(0))

$$x(t) = -2t e^{5t} + e^t$$

$$y(t) = 1 + (4t - 2) e^{5t}$$

✓ Solution by Mathematica

Time used: 0.18 (sec). Leaf size: 51

 $DSolve[\{x'[t]==7*x[t]+y[t]-1-Exp[t],y'[t]==-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==1,y[0]==-1\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==1,y[0]==-1\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==1,y[0]==-1\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==1,y[0]==-1\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==1,y[0]==-1\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==1,y[0]==-1\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==1,y[0]==-1\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==1,y[0]==-1\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==1,y[0]==-1\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==1,y[0]==-1\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==1,y[0]==-1\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==-1,y[0]==-1\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[t]=-4*x[t]+3*y[t]+4*Exp[t]-3*y[t]+4*Ex$

$$x(t) \to \frac{1}{8}e^t (e^{4t}(4t+5)+3)$$

$$y(t) \to \frac{1}{4} \left(-e^{5t}(4t+3) - 5e^t + 4 \right)$$

7.10 problem Problem 5(b)

Internal problem ID [11037]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 5(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) - 2y(t) + 24\sin(t)$$

$$y'(t) = 9x(t) - 3y(t) + 12\cos(t)$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

Time used: 0.172 (sec). Leaf size: 44

dsolve([diff(x(t),t) = 3*x(t)-2*y(t)+24*sin(t), diff(y(t),t) = 9*x(t)-3*y(t)+12*cos(t), x(0))

$$x(t) = \cos(3t) - \frac{4\sin(3t)}{3} + 9\sin(t)$$

$$y(t) = \frac{7\cos(3t)}{2} - \frac{\sin(3t)}{2} - \frac{9\cos(t)}{2} + \frac{51\sin(t)}{2}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 50

DSolve[{x'[t]==3*x[t]-2*y[t]+24*Sin[t],y'[t]==9*x[t]-3*y[t]+12*Cos[t]},{x[0]==1,y[0]==-1},{x[

$$x(t) \to 9\sin(t) - \frac{4}{3}\sin(3t) + \cos(3t)$$

$$y(t) \to \frac{1}{2}(51\sin(t) - \sin(3t) - 9\cos(t) + 7\cos(3t))$$

problem Problem 5(c) 7.11

Internal problem ID [11038]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 5(c).

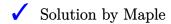
ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 7x(t) - 4y(t) + 10 e^{t}$$
$$y'(t) = 3x(t) + 14y(t) + 6 e^{2t}$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$



Time used: 0.047 (sec). Leaf size: 54

dsolve([diff(x(t),t) = 7*x(t)-4*y(t)+10*exp(t), diff(y(t),t) = 3*x(t)+14*y(t)+6*exp(2*t), x(0)+14*y(t)+10*exp(t), x(0)+14*y(t)+10*exp(

$$x(t) = \frac{67 e^{10t}}{9} - \frac{14 e^{11t}}{3} - \frac{e^{2t}}{3} - \frac{13 e^t}{9}$$

$$y(t) = -\frac{67 e^{10t}}{12} + \frac{14 e^{11t}}{3} - \frac{5 e^{2t}}{12} + \frac{e^t}{3}$$

Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 54

DSolve[{x'[t]==7*x[t]-4*y[t]+10*Exp[t],y'[t]==3*x[t]+14*y[t]+6*Exp[2*t]},{x[0]==1,y[0]==-1},{

$$x(t) \to -\frac{1}{9}e^t (2e^{9t}(9e^t - 20) + 13)$$

$$y(t) \to \frac{1}{3}e^t (2e^{9t}(3e^t - 5) + 1)$$

7.12 problem Problem 5(d)

Internal problem ID [11039]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 5(d).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -7x(t) + 4y(t) + 6 e^{3t}$$

$$y'(t) = -5x(t) + 2y(t) + 6 e^{2t}$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

Time used: 0.047 (sec). Leaf size: 58

dsolve([diff(x(t),t) = -7*x(t)+4*y(t)+6*exp(3*t), diff(y(t),t) = -5*x(t)+2*y(t)+6*exp(2*t), x

$$x(t) = \frac{6e^{2t}}{5} + \frac{44e^{-3t}}{5} - \frac{46e^{-2t}}{5} + \frac{e^{3t}}{5}$$

$$y(t) = \frac{44 e^{-3t}}{5} - \frac{23 e^{-2t}}{2} + \frac{27 e^{2t}}{10} - e^{3t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 48

DSolve[$\{x'[t]=-7*x[t]+4*y[t]+6*Exp[3*t],y'[t]=-5*x[t]+2*y[t]+6*Exp[2*t]\},\{x[0]=-1,y[0]=-1\}$

$$x(t) \to \frac{1}{5}e^{-3t} \left(-16e^t + e^{6t} + 20\right)$$

$$y(t) \to -e^{-3t} (4e^t + e^{6t} - 4)$$

7.13 problem Problem 6(a)

Internal problem ID [11040]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 6(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - 3y(t) + z(t)$$

$$y'(t) = 2y(t) + 2z(t) + 29e^{-t}$$

$$z'(t) = 5x(t) + y(t) + z(t) + 39e^{t}$$

With initial conditions

$$[x(0) = 1, y(0) = 2, z(0) = 3]$$

✓ Solution by Maple

Time used: 7.391 (sec). Leaf size: 949416

dsolve([diff(x(t),t) = -3*x(t)-3*y(t)+z(t), diff(y(t),t) = 2*y(t)+2*z(t)+29*exp(-t), diff(z(t),t) = -3*x(t)-3*y(t)+z(t), diff(y(t),t) = 2*y(t)+2*z(t)+29*exp(-t), diff(z(t),t) = -3*x(t)-3*y(t)+z(t), diff(y(t),t) = -3*x(t)-3*y(t)+z(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(t)+z(t)-2*y(

Expression too large to display

Expression too large to display

Expression too large to display

✓ Solution by Mathematica

Time used: 0.125 (sec). Leaf size: 3462

 $DSolve[{x'[t] == -3*x[t] - 3*y[t] + z[t], y'[t] == 2*y[t] + 2*z[t] + 29*Exp[-t], z'[t] == 5*x[t] + y[t] + z[t] + 39*Exp[-t], z'[t] == 5*x[t] + y[t] + z[t] + 39*Exp[-t], z'[t] == 5*x[t] + y[t] + z[t] + z[t] + y[t] + z[t] + z[$

Too large to display

7.14 problem Problem 6(b)

Internal problem ID [11041]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 6(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y(t) - z(t) + 5\sin(t)$$

$$y'(t) = y(t) + z(t) - 10\cos(t)$$

$$z'(t) = x(t) + z(t) + 2$$

With initial conditions

$$[x(0) = 1, y(0) = 2, z(0) = 3]$$

✓ Solution by Maple

Time used: 0.25 (sec). Leaf size: 71

$$x(t) = -3e^{t} \sin(t) + 4e^{t} \cos(t) - 1 - 2\cos(t)$$

$$y(t) = -4\sin(t) + 5\cos(t) + 1 + 3e^{t}\sin(t) - 4e^{t}\cos(t)$$

$$z(t) = 3e^{t}\cos(t) + 4e^{t}\sin(t) - 1 + \cos(t) - \sin(t)$$

Time used: 2.413 (sec). Leaf size: 73

DSolve[{x'[t]==2*x[t]+y[t]-z[t]+5*Sin[t],y'[t]==y[t]+z[t]-10*Cos[t],z'[t]==x[t]+z[t]+2},{x[0]

$$x(t) \to -3e^{t} \sin(t) + (4e^{t} - 2) \cos(t) - 1$$

$$y(t) \to (3e^{t} - 4) \sin(t) + (5 - 4e^{t}) \cos(t) + 1$$

$$z(t) \to -\sin(t) + \cos(t) + e^{t} (4\sin(t) + 3\cos(t)) - 1$$

7.15 problem Problem 6(c)

Internal problem ID [11042]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015

 ${\bf Section} \colon$ Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Problems page 514

Problem number: Problem 6(c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) + 3y(t) + z(t) + 10\sin(t)\cos(t)$$

$$y'(t) = x(t) - 5y(t) - 3z(t) + 10\cos(t)^{2} - 5$$

$$z'(t) = -3x(t) + 7y(t) + 3z(t) + 23e^{t}$$

With initial conditions

$$[x(0) = 1, y(0) = 2, z(0) = 3]$$

✓ Solution by Maple

Time used: 0.828 (sec). Leaf size: 132

$$dsolve([diff(x(t),t) = -3*x(t)+3*y(t)+z(t)+5*sin(2*t), diff(y(t),t) = x(t)-5*y(t)-3*z(t)+5*co)$$

$$x(t) = -\frac{69 e^{t}}{26} + \sin(2t) + \frac{\cos(2t)}{2} + \frac{21 e^{-t}}{2} - \frac{191 e^{-2t} \cos(2t)}{26} + \frac{16 e^{-2t} \sin(2t)}{13}$$

$$y(t) = -\frac{253 e^{t}}{26} - \frac{5 \sin(2t)}{2} + \frac{21 e^{-t}}{2} + \frac{16 e^{-2t} \cos(2t)}{13} + \frac{191 e^{-2t} \sin(2t)}{26}$$

$$z(t) = \frac{483 e^{t}}{26} + \frac{7\cos(2t)}{2} + \frac{9\sin(2t)}{2} - \frac{21 e^{-t}}{2} - \frac{223 e^{-2t}\cos(2t)}{26} - \frac{159 e^{-2t}\sin(2t)}{26}$$

Time used: 12.582 (sec). Leaf size: 190

DSolve[{x'[t]==-3*x[t]+3*y[t]+z[t]+5*Sin[3*t],y'[t]==x[t]-5*y[t]-3*z[t]+5*Cos[2*t],z'[t]==-3*

$$\begin{split} x(t) &\to \left(\frac{3}{2} - \frac{5409e^{-2t}}{754}\right) \cos(2t) \\ &\quad + \frac{1}{754} \left(\left(603e^{-2t} + 377\right) \sin(2t) + 429 \sin(3t) - 507 \cos(3t) - 9541 \sinh(t) + 5539 \cosh(t)\right) \\ y(t) &\to \frac{1}{754} \left(-14877 \sinh(t) + 203 \cosh(t) + 9e^{-2t} (601 \sin(2t) + 67 \cos(2t)) \right. \\ &\qquad \qquad \left. - 13(116 \sin(2t) + 39 \sin(3t) - 87 \cos(2t) + 33 \cos(3t))\right) \\ z(t) &\to \frac{43}{58} \sin(3t) + \cos(2t) + \frac{81}{58} \cos(3t) + \frac{743 \sinh(t)}{26} + \frac{223 \cosh(t)}{26} \\ &\quad + 9 \sin(t) \cos(t) - \frac{9}{377} e^{-2t} (267 \sin(2t) + 334 \cos(2t)) \end{split}$$

7.16 problem Problem 6(d)

Internal problem ID [11043]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Prob-

lems page 514

Problem number: Problem 6(d).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) + y(t) - 3z(t) + 2e^{t}$$

$$y'(t) = 4x(t) - y(t) + 2z(t) + 4e^{t}$$

$$z'(t) = 4x(t) - 2y(t) + 3z(t) + 4e^{t}$$

With initial conditions

$$[x(0) = 1, y(0) = 2, z(0) = 3]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 86

dsolve([diff(x(t),t) = -3*x(t)+y(t)-3*z(t)+2*exp(t), diff(y(t),t) = 4*x(t)-y(t)+2*z(t)+4*exp(t), diff(y(t),t) = 4*x(t)-y(t)+2*z(t)+4*exp(t)+2*z(t)+4*

$$x(t) = -\frac{3e^{t}}{2} - 2e^{-t}\sin(2t) + \frac{5e^{-t}\cos(2t)}{2}$$

$$y(t) = \frac{5 e^{t}}{2} + \frac{9 e^{-t} \sin(2t)}{2} - \frac{e^{-t} \cos(2t)}{2}$$

$$z(t) = \frac{7e^{t}}{2} + \frac{9e^{-t}\sin(2t)}{2} - \frac{e^{-t}\cos(2t)}{2}$$

Time used: 0.024 (sec). Leaf size: 98

DSolve[{x'[t]==-3*x[t]+y[t]-3*z[t]+2*Exp[t],y'[t]==4*x[t]-y[t]+2*z[t]+4*Exp[t],z' [t]==4*x[t]-

$$x(t) \to -\frac{1}{2}e^{-t}(3e^{2t} + 4\sin(2t) - 5\cos(2t))$$
$$y(t) \to \frac{1}{2}e^{-t}(5e^{2t} + 9\sin(2t) - \cos(2t))$$
$$z(t) \to \frac{1}{2}e^{-t}(7e^{2t} + 9\sin(2t) - \cos(2t))$$

8	Chapter 8.4 Systems of Linear Differential
	Equations (Method of Undetermined Coefficients).
	Problems page 520
8.1	problem Problem 1(a)
8.2	problem Problem 1(b)

8.1 problem Problem 1(a)

Internal problem ID [11044]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.4 Systems of Linear Differential Equations (Method of Undetermined Coeffi-

cients). Problems page 520

Problem number: Problem 1(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + 5y(t) + 10\sinh(t)$$

$$y'(t) = 19x(t) - 13y(t) + 24\sinh(t)$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 176

dsolve([diff(x(t),t)=x(t)+5*y(t)+10*sinh(t),diff(y(t),t)=19*x(t)-13*y(t)+24*sinh(t)],[x(t),y(t),t)=19*x(t)-13*y(t)+24*sinh(t)-13*y(t)-

$$x(t) = -\frac{71\sinh{(7t)}e^{6t}}{266} - \frac{7\cosh{(5t)}e^{6t}}{12} + \frac{71\cosh{(7t)}e^{6t}}{266} + \frac{7\sinh{(5t)}e^{6t}}{12} + \frac{71e^{-18t}\cosh{(17t)}}{646} - \frac{35e^{-18t}\cosh{(19t)}}{228} + \frac{71e^{-18t}\sinh{(17t)}}{646} - \frac{35e^{-18t}\sinh{(19t)}}{228} + c_2e^{6t} - \frac{5c_1e^{-18t}}{19} - \frac{24\sinh{(t)}}{19}$$

$$y(t) = c_2 e^{6t} + c_1 e^{-18t}$$

$$+ \frac{71\left(\left(-\frac{323\cosh(5t)}{71} + \frac{17\cosh(7t)}{7} + \frac{323\sinh(5t)}{71} - \frac{17\sinh(7t)}{7}\right)e^{24t} + \sinh\left(17t\right) - \frac{85\sinh(19t)}{71} + \cosh\left(17t\right) - \frac{85\cosh}{71}}{408}$$

Time used: 0.046 (sec). Leaf size: 108

DSolve[{x'[t]==x[t]+5*y[t]+10*Sinh[t],y'[t]==19*x[t]-13*y[t]+24*Sinh[t]},{x[t],y[t]},t,Includ

$$x(t) \to \frac{120e^{-t}}{119} - \frac{26e^{t}}{19} + \frac{5}{24}(c_1 - c_2)e^{-18t} + \frac{1}{24}(19c_1 + 5c_2)e^{6t}$$
$$y(t) \to \frac{71e^{-t}}{119} - e^{t} + \frac{19}{24}(c_2 - c_1)e^{-18t} + \frac{1}{24}(19c_1 + 5c_2)e^{6t}$$

8.2 problem Problem 1(b)

Internal problem ID [11045]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.4 Systems of Linear Differential Equations (Method of Undetermined Coeffi-

cients). Problems page 520

Problem number: Problem 1(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 9x(t) - 3y(t) - 6t$$
$$y'(t) = -x(t) + 11y(t) + 10t$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 44

dsolve([diff(x(t),t)=9*x(t)-3*y(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)], singsolve([diff(x(t),t)=9*x(t)-3*y(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)], singsolve([diff(x(t),t)=9*x(t)-3*y(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)], singsolve([diff(x(t),t)=9*x(t)-3*y(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)], singsolve([diff(x(t),t)=9*x(t)-3*y(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)], singsolve([diff(x(t),t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)], singsolve([diff(x(t),t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)], singsolve([diff(x(t),t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)], singsolve([diff(x(t),t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)+10*t],[x(t), y(t)=9*x(t)-6*t,diff(y(t),t)=-x(t)-6*t,diff(y(t),t)=

$$x(t) = 3e^{8t}c_2 - e^{12t}c_1 + \frac{1}{64} + \frac{3t}{8}$$

$$y(t) = e^{8t}c_2 + e^{12t}c_1 - \frac{7t}{8} - \frac{5}{64}$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 78

 $DSolve[\{x'[t] == 9*x[t] - 3*y[t] - 6*t, y'[t] == -x[t] + 11*y[t] + 10*t\}, \{x[t], y[t]\}, t, Include Singular Solution for the context of th$

$$x(t) \to \frac{1}{64} (24t + 16(c_1 - 3c_2)e^{12t} + 48(c_1 + c_2)e^{8t} + 1)$$

$$y(t) \to \frac{1}{64} \left(-56t + 16e^{8t} \left(-(c_1 - 3c_2)e^{4t} + c_1 + c_2 \right) - 5 \right)$$