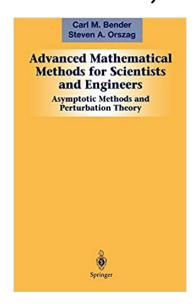
A Solution Manual For

Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer October 29, 1999



Nasser M. Abbasi

October 12, 2023

Contents

1 Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS. page 136

1 Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS. page 136

1.1	problem 3.5	3
1.2	problem 3.6 (a)	 4
1.3	problem 3.6 (b)	5
1.4	problem 3.6 (c)	6
1.5	problem 3.6 (d)	 7
1.6	problem 3.24 (a)	8
1.7	problem 3.24 (b)	9
1.8	problem 3.24 (c)	10
1.9	problem 3.24 (d)	 11
1.10	problem 3.24 (e)	12
1.11	problem 3.24 (f)	13
1.12	problem 3.24 (g)	 14
1.13	problem 3.24 (h)	15
1.14	problem 3.24 (i)	16
1.15	problem 3.25 v=1/2	 17
1.16	problem 3.25 v=3/2	18
1.17	problem 3.25 v=5/2	19
1.18	problem 3.26	20
1.19	problem 3.48 (a)	 21
1.20	problem 3.48 (b)	22
1.21	problem 3.48 (c)	23
1.22	problem 3.48 (d)	 24
1.23	problem 3.50	26

1.1 problem 3.5

Internal problem ID [4726]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x-1)(x-2)y'' + (4x-6)y' + 2y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

Order:=6; dsolve([(x-1)*(x-2)*diff(y(x),x\$2)+(4*x-6)*diff(y(x),x)+2*y(x)=0,y(0) = 2, D(y)(0) = 1],y(x),

$$y(x) = 2 + x + \frac{1}{2}x^2 + \frac{1}{4}x^3 + \frac{1}{8}x^4 + \frac{1}{16}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 34

AsymptoticDSolveValue[$\{(x-1)*(x-2)*y''[x]+(4*x-6)*y'[x]+2*y[x]==0,\{y[0]==2,y'[0]==1\}\},y[x],\{x=0,x=0\}$

$$y(x) \rightarrow \frac{x^5}{16} + \frac{x^4}{8} + \frac{x^3}{4} + \frac{x^2}{2} + x + 2$$

1.2 problem 3.6 (a)

Internal problem ID [4727]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.6 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y'x + 8y = 0$$

With initial conditions

$$[y(0) = 4, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 14

Time about 0.0 (bee). Door size. IT

$$y(x) = 4 - 16x^2 + \frac{16}{3}x^4 + \mathrm{O}\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 17

AsymptoticDSolveValue[$\{y''[x]-2*x*y'[x]+8*y[x]==0,\{y[0]==4,y'[0]==0\}\},y[x],\{x,0,5\}\}$

dsolve([diff(y(x),x\$2)-2*x*diff(y(x),x)+8*y(x)=0,y(0) = 4, D(y)(0) = 0],y(x),type='series',x=0

$$y(x) \to \frac{16x^4}{3} - 16x^2 + 4$$

1.3 problem 3.6 (b)

Internal problem ID [4728]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.6 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y'x + 8y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 4]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6; dsolve([diff(y(x),x\$2)-2*x*diff(y(x),x)+8*y(x)=0,y(0) = 0, D(y)(0) = 4],y(x),type='series',x=

$$y(x) = 4x - 4x^3 + \frac{2}{5}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

AsymptoticDSolveValue[$\{y''[x]-2*x*y'[x]+8*y[x]==0,\{y[0]==0,y'[0]==4\}\},y[x],\{x,0,5\}\}$

$$y(x) \to \frac{2x^5}{5} - 4x^3 + 4x$$

1.4 problem 3.6 (c)

Internal problem ID [4729]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.6 (c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(-x^2 + 1) y'' - 2y'x + 12y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 3]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Order:=6;

Time used: 0.015 (sec). Leaf size: 13

111110 tabea. 0.010 (bee). Loai bizo. 10

$$y(x) = -5x^3 + 3x$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 12

AsymptoticDSolveValue[
$$\{(1-x^2)*y''[x]-2*x*y'[x]+12*y[x]==0,\{y[0]==0,y'[0]==3\}\},y[x],\{x,0,5\}$$
]

 $dsolve([(1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+12*y(x)=0,y(0) = 0, D(y)(0) = 3],y(x),type='s(x)+12*y(x)=0,y(0) = 0, D(y)(0) = 3],y(x),type='s(x)+12*y(x)=0,y(0) = 0,D(y)(0) = 0,D(y)(0)$

$$y(x) \to 3x - 5x^3$$

1.5 problem 3.6 (d)

Internal problem ID [4730]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.6 (d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - (x-1)y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

Time used. 0.0 (see). Dear size. 10

Order:=6; dsolve([diff(y(x),x\$2)=(x-1)*y(x),y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);

$$y(x) = 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 - \frac{1}{30}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 33

$$y(x) \rightarrow -\frac{x^5}{30} + \frac{x^4}{24} + \frac{x^3}{6} - \frac{x^2}{2} + 1$$

1.6 problem 3.24 (a)

Internal problem ID [4731]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.24 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x(2+x)y'' + 2y'(x+1) - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

Order:=6; dsolve(x*(x+2)*diff(y(x),x\$2)+2*(x+1)*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = (\ln(x) c_2 + c_1) (1 + x + O(x^6)) + \left(-\frac{5}{2}x - \frac{3}{8}x^2 + \frac{1}{12}x^3 - \frac{5}{192}x^4 + \frac{3}{320}x^5 + O(x^6)\right) c_2$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 53

AsymptoticDSolveValue $[x*(x+2)*y''[x]+2*(x+1)*y'[x]-2*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\frac{3x^5}{320} - \frac{5x^4}{192} + \frac{x^3}{12} - \frac{3x^2}{8} - \frac{5x}{2} + (x+1)\log(x) \right) + c_1(x+1)$$

1.7 problem 3.24 (b)

Internal problem ID [4732]

Book : Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.24 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 58

Order:=6; dsolve(x*diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 - \frac{1}{2} x + \frac{1}{12} x^2 - \frac{1}{144} x^3 + \frac{1}{2880} x^4 - \frac{1}{86400} x^5 + \mathcal{O}\left(x^6\right) \right)$$

$$+ c_2 \left(\ln\left(x\right) \left(-x + \frac{1}{2} x^2 - \frac{1}{12} x^3 + \frac{1}{144} x^4 - \frac{1}{2880} x^5 + \mathcal{O}\left(x^6\right) \right)$$

$$+ \left(1 - \frac{3}{4} x^2 + \frac{7}{36} x^3 - \frac{35}{1728} x^4 + \frac{101}{86400} x^5 + \mathcal{O}\left(x^6\right) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 85

 $\label{eq:asymptoticDSolveValue} AsymptoticDSolveValue[x*y''[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{1}{144} x \left(x^3 - 12x^2 + 72x - 144 \right) \log(x) + \frac{-47x^4 + 480x^3 - 2160x^2 + 1728x + 1728}{1728} \right) + c_2 \left(\frac{x^5}{2880} - \frac{x^4}{144} + \frac{x^3}{12} - \frac{x^2}{2} + x \right)$$

1.8 problem 3.24 (c)

Internal problem ID [4733]

Book : Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.24 (c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + (e^x - 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 39

Order:=6; dsolve(diff(y(x),x\$2)+(exp(x)-1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{6}x^3 - \frac{1}{24}x^4 - \frac{1}{120}x^5\right)y(0) + \left(x - \frac{1}{12}x^4 - \frac{1}{40}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 49

AsymptoticDSolveValue[$y''[x]+(Exp[x]-1)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_2 igg(-rac{x^5}{40} - rac{x^4}{12} + x igg) + c_1 igg(-rac{x^5}{120} - rac{x^4}{24} - rac{x^3}{6} + 1 igg)$$

1.9 problem 3.24 (d)

Internal problem ID [4734]

 $\textbf{Book} \hbox{:} \ \textbf{Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer}$

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.24 (d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x(1-x)y'' - 3y'x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 60

Order:=6; dsolve(x*(1-x)*diff(y(x),x\$2)-3*x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x (1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + O(x^6))$$

+ $(x + 2x^2 + 3x^3 + 4x^4 + 5x^5 + O(x^6)) \ln(x) c_2$
+ $(1 + 3x + 5x^2 + 7x^3 + 9x^4 + 11x^5 + O(x^6)) c_2$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 63

$$y(x) \rightarrow c_1(x^4 + x^3 + x^2 + (4x^3 + 3x^2 + 2x + 1) x \log(x) + x + 1) + c_2(5x^5 + 4x^4 + 3x^3 + 2x^2 + x)$$

1.10 problem 3.24 (e)

Internal problem ID [4735]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.24 (e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$2xy'' - y' + x^2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

Order:=6; $dsolve(2*x*diff(y(x),x$2)-diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x^{\frac{3}{2}} \left(1 - \frac{1}{27} x^3 + \mathrm{O}\left(x^6\right) \right) + c_2 \left(1 - \frac{1}{9} x^3 + \mathrm{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 33

AsymptoticDSolveValue[$2*x*y''[x]-y'[x]+x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(1 - \frac{x^3}{9}\right) + c_1 \left(1 - \frac{x^3}{27}\right) x^{3/2}$$

1.11 problem 3.24 (f)

Internal problem ID [4736]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.24 (f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\sin(x)y'' - 2y'\cos(x) - y\sin(x) = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 32

Order:=6; dsolve(sin(x)*diff(y(x),x\$2)-2*cos(x)*diff(y(x),x)-sin(x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^3 \left(1 - \frac{1}{10} x^2 + \frac{1}{280} x^4 + O(x^6) \right) + c_2 \left(12 - 6x^2 + \frac{1}{2} x^4 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 44

 $A symptotic DSolve Value [Sin[x]*y''[x]-2*Cos[x]*y'[x]-Sin[x]*y[x] ==0,y[x],\{x,0,5\}]$

$$y(x)
ightarrow c_1 \left(rac{x^4}{24} - rac{x^2}{2} + 1
ight) + c_2 \left(rac{x^7}{280} - rac{x^5}{10} + x^3
ight)$$

1.12 problem 3.24 (g)

Internal problem ID [4737]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.24 (g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' - x^2 y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)-x^2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^4}{12}\right)y(0) + \left(x + \frac{1}{20}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]-x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_2 \left(\frac{x^5}{20} + x \right) + c_1 \left(\frac{x^4}{12} + 1 \right)$$

1.13 problem 3.24 (h)

Internal problem ID [4738]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.24 (h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, '

$$x(2+x)y'' + y'(x+1) - 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

Order:=6; dsolve(x*(x+2)*diff(y(x),x\$2)+(x+1)*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \sqrt{x} \left(1 + \frac{5}{4}x + \frac{7}{32}x^2 - \frac{3}{128}x^3 + \frac{11}{2048}x^4 - \frac{13}{8192}x^5 + O\left(x^6\right) \right) + c_2 \left(1 + 4x + 2x^2 + O\left(x^6\right) \right)$$

$$+ O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 60

$$y(x) \rightarrow c_2(2x^2 + 4x + 1) + c_1\sqrt{x}\left(-\frac{13x^5}{8192} + \frac{11x^4}{2048} - \frac{3x^3}{128} + \frac{7x^2}{32} + \frac{5x}{4} + 1\right)$$

1.14 problem 3.24 (i)

Internal problem ID [4739]

Book : Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.24 (i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$xy'' + \left(\frac{1}{2} - x\right)y' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 44

(-----

dsolve(x*diff(y(x),x\$2)+(1/2-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \sqrt{x} \left(1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5 + O(x^6) \right)$$
$$+ c_2 \left(1 + 2x + \frac{4}{3}x^2 + \frac{8}{15}x^3 + \frac{16}{105}x^4 + \frac{32}{945}x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 79

AsymptoticDSolveValue[$x*y''[x]+(1/2-x)*y'[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \sqrt{x} \left(\frac{x^5}{120} + \frac{x^4}{24} + \frac{x^3}{6} + \frac{x^2}{2} + x + 1 \right) + c_2 \left(\frac{32x^5}{945} + \frac{16x^4}{105} + \frac{8x^3}{15} + \frac{4x^2}{3} + 2x + 1 \right)$$

1.15 problem 3.25 v=1/2

Internal problem ID [4740]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.25 v=1/2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(x^{2} + \frac{1}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2+(1/2)^2)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{-\frac{i}{2}} \left(1 + \left(-\frac{1}{5} - \frac{i}{10} \right) x^2 + \left(\frac{7}{680} + \frac{3i}{340} \right) x^4 + \mathcal{O}\left(x^6\right) \right)$$
$$+ c_2 x^{\frac{i}{2}} \left(1 + \left(-\frac{1}{5} + \frac{i}{10} \right) x^2 + \left(\frac{7}{680} - \frac{3i}{340} \right) x^4 + \mathcal{O}\left(x^6\right) \right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

AsymptoticDSolveValue[$x^2*y''+x*y'[x]+(x^2+(1/2)^2)*y[x]==0,y[x],\{x,0,5\}$]

Timed out

1.16 problem 3.25 v = 3/2

Internal problem ID [4741]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

 $page\ 136$

Problem number: 3.25 v=3/2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(x^{2} + \frac{9}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2+(3/2)^2)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x^{-\frac{3i}{2}} \left(1 + \left(-\frac{1}{13} - \frac{3i}{26} \right) x^2 + \left(-\frac{1}{2600} + \frac{9i}{1300} \right) x^4 + \mathcal{O}\left(x^6\right) \right)$$
$$+ c_2 x^{\frac{3i}{2}} \left(1 + \left(-\frac{1}{13} + \frac{3i}{26} \right) x^2 + \left(-\frac{1}{2600} - \frac{9i}{1300} \right) x^4 + \mathcal{O}\left(x^6\right) \right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

AsymptoticDSolveValue $[x^2*y''+x*y'[x]+(x^2+(3/2)^2)*y[x]==0,y[x],\{x,0,5\}]$

Timed out

1.17 problem 3.25 v=5/2

Internal problem ID [4742]

Book : Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.25 v=5/2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(x^{2} + \frac{25}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 45

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2+(5/2)^2)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{-\frac{5i}{2}} \left(1 + \left(-\frac{1}{29} - \frac{5i}{58} \right) x^2 + \left(-\frac{17}{9512} + \frac{15i}{4756} \right) x^4 + \mathcal{O}\left(x^6\right) \right)$$
$$+ c_2 x^{\frac{5i}{2}} \left(1 + \left(-\frac{1}{29} + \frac{5i}{58} \right) x^2 + \left(-\frac{17}{9512} - \frac{15i}{4756} \right) x^4 + \mathcal{O}\left(x^6\right) \right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

AsymptoticDSolveValue[$x^2*y''+x*y'[x]+(x^2+(5/2)^2)*y[x]==0,y[x],\{x,0,5\}$]

Timed out

1.18 problem 3.26

Internal problem ID [4743]

Book : Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x-1)y''-y'x+y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve((x-1)*diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5\right)y(0) + D(y)(0)x + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 41

AsymptoticDSolveValue[$(x-1)*y''[x]-x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 \left(\frac{x^5}{120} + \frac{x^4}{24} + \frac{x^3}{6} + \frac{x^2}{2} + 1 \right) + c_2 x$$

1.19 problem 3.48 (a)

Internal problem ID [4744]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.48 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + xy - \cos(x) = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

Order:=6; dsolve(diff(y(x),x)+x*y(x)=cos(x),y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{8}x^4\right)y(0) + x - \frac{x^3}{2} + \frac{13x^5}{120} + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 38

AsymptoticDSolveValue[$y'[x]+x*y[x]==Cos[x],y[x],\{x,0,5\}$]

$$y(x) o \frac{13x^5}{120} - \frac{x^3}{2} + c_1 \left(\frac{x^4}{8} - \frac{x^2}{2} + 1\right) + x$$

1.20 problem 3.48 (b)

Internal problem ID [4745]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.48 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + xy - \frac{1}{x^3} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $dsolve(diff(y(x),x)+x*y(x)=1/x^3,y(x), singsol=all)$

$$y(x)=\left(-rac{\mathrm{e}^{rac{x^2}{2}}}{2x^2}-rac{\mathrm{Ei}_1\left(-rac{x^2}{2}
ight)}{4}+c_1
ight)\mathrm{e}^{-rac{x^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 38

DSolve[y'[x]+x*y[x]== $1/x^3$,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{1}{4} \left(-rac{2}{x^2} + e^{-rac{x^2}{2}} \left(ext{ExpIntegralEi} \left(rac{x^2}{2}
ight) + 4c_1
ight)
ight)$$

1.21 problem 3.48 (c)

Internal problem ID [4746]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.48 (c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^3y'' + y - \frac{1}{x^4} = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6; dsolve(x^3*diff(y(x),x\$2)+y(x)=1/x^4,y(x),type='series',x=0);

No solution found

✓ Solution by Mathematica

Time used: 0.361 (sec). Leaf size: 800

AsymptoticDSolveValue[$x^3*y''[x]+y[x]==1/x^4,y[x],\{x,0,5\}$]

$$y(x) \rightarrow e^{-\frac{2i}{\sqrt{x}}}x^{3/4} \left(\frac{33424574007825x^5}{281474976710656} - \frac{468131288625ix^{9/2}}{8796093022208} - \frac{14783093325x^4}{549755813888} + \frac{66891825ix^{7/2}}{4294967296} + \frac{2837835x^3}{268435456} - \frac{72765ix^{5/2}}{8388608} - \frac{4725x^2}{524288} + \frac{105ix^{3/2}}{8192} + \frac{15x}{512} - \frac{3i\sqrt{x}}{16} \right)$$

1.22 problem 3.48 (d)

Internal problem ID [4747]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

page 136

Problem number: 3.48 (d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$xy'' - 2y' + y - \cos\left(x\right) = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

```
Order:=6;
dsolve(x*diff(y(x),x$2)-2*diff(y(x),x)+y(x)=cos(x),y(x),type='series',x=0);
```

No solution found

✓ Solution by Mathematica

Time used: 0.144 (sec). Leaf size: 312

AsymptoticDSolveValue[$x*y''[x]-2*y'[x]+y[x]==Cos[x],y[x],\{x,0,5\}$]

$$\begin{split} y(x) & \to c_1 \bigg(x^4 \bigg(\frac{\log(x)}{48} - \frac{5}{192} \bigg) - \frac{1}{12} x^3 \log(x) + \frac{x^2}{4} + \frac{x}{2} + 1 \bigg) \\ & + c_2 \bigg(-\frac{x^5}{806400} + \frac{x^4}{20160} - \frac{x^3}{720} + \frac{x^2}{40} - \frac{x}{4} + 1 \bigg) \, x^3 + \bigg(-\frac{x^5}{806400} + \frac{x^4}{20160} - \frac{x^3}{720} \\ & + \frac{x^2}{40} - \frac{x}{4} + 1 \bigg) \, x^3 \bigg(\frac{x^6 \left(-20160 \log^2(x) + 141222 \log(x) - 201569 \right)}{3135283200} \\ & + \frac{x^5 \left(22277 - 114360 \log(x) \right)}{435456000} + \frac{x^4 \left(69541 - 29064 \log(x) \right)}{34836480} + \frac{x^3 \left(1860 \log(x) + 193 \right)}{388800} \\ & - \frac{1}{6x^2} + \frac{x^2 \left(4 \log(x) - 23 \right)}{1152} - \frac{1}{6x} + \frac{1}{36} x \left(-\log(x) - 2 \right) - \frac{\log(x)}{12} \bigg) \\ & + \bigg(\frac{x^6 \left(5791 - 672 \log(x) \right)}{8709120} - \frac{589x^5}{302400} - \frac{89x^4}{8640} + \frac{19x^3}{360} + \frac{x^2}{24} - \frac{x}{3} \bigg) \left(x^4 \left(\frac{\log(x)}{48} - \frac{5}{192} \right) - \frac{1}{12} x^3 \log(x) + \frac{x^2}{4} + \frac{x}{2} + 1 \right) \end{split}$$

1.23 problem 3.50

Internal problem ID [4748]

Book: Advanced Mathemtical Methods for Scientists and Engineers, Bender and Orszag. Springer

October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS.

 $page\ 136$

Problem number: 3.50.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{x} - \cos(x) = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6;
dsolve(diff(y(x),x)-y(x)/x=cos(x),y(x),type='series',x=0);

No solution found

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 34

 $\label{eq:asymptoticDSolveValue} A symptoticDSolveValue[y'[x]-y[x]/x==Cos[x],y[x],\{x,0,5\}]$

$$y(x) \to x \left(-\frac{x^6}{4320} + \frac{x^4}{96} - \frac{x^2}{4} + \log(x) \right) + c_1 x$$