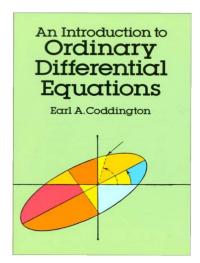
A Solution Manual For

An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961



Nasser M. Abbasi

October 12, 2023

Contents

1	Chapter 1.3 Introduction—Linear equations of First Order. Page 38	3
2	Chapter 1.6 Introduction—Linear equations of First Order. Page 41	15
3	Chapter 1. Introduction—Linear equations of First Order. Page 45	2 6
4	Chapter 2. Linear equations with constant coefficients. Page 52	38
5	Chapter 2. Linear equations with constant coefficients. Page 59	52
6	Chapter 2. Linear equations with constant coefficients. Page 69	57
7	Chapter 2. Linear equations with constant coefficients. Page 74	69
8	Chapter 2. Linear equations with constant coefficients. Page 79	7 8
9	Chapter 2. Linear equations with constant coefficients. Page 83	81
10	Chapter 2. Linear equations with constant coefficients. Page 89	91
11	Chapter 2. Linear equations with constant coefficients. Page 93	98
12	Chapter 3. Linear equations with variable coefficients. Page 108	108
13	Chapter 3. Linear equations with variable coefficients. Page 121	112
14	Chapter 3. Linear equations with variable coefficients. Page 124	12 0
15	Chapter 3. Linear equations with variable coefficients. Page 130	124
16	Chapter 4. Linear equations with Regular Singular Points. Page 149	137
17	Chapter 4. Linear equations with Regular Singular Points. Page 154	147
18	Chapter 4. Linear equations with Regular Singular Points. Page 159	161
19	Chapter 4. Linear equations with Regular Singular Points. Page 166	166
20	Chapter 4. Linear equations with Regular Singular Points. Page 182	17 6
21	Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190	178
22	Chapter 5. Existence and uniqueness of solutions to first order equations.	107

23	Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238	214
24	Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 250	226
25	Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 254	230

1	Chapter 1.3 Introduction—Linear equations of
	First Order. Page 38

1.1	problem 1 (a)	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
1.2	problem 1 (b)																													5
1.3	problem 1 (d)																													6
1.4	problem 2 (a)																													7
1.5	problem 2 (b)																													8
1.6	problem 2 (c)																													9
1.7	problem 2 (f)																													10
1.8	problem 2 (h)																													11
1.9	problem 3(a)																													12
1.10	problem 4(a)																													13
1 11	problem 5(a)																													14

1.1 problem 1 (a)

Internal problem ID [5158]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.3 Introduction—Linear equations of First Order. Page 38

Problem number: 1 (a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - e^{3x} - \sin(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x)=exp(3*x)+sin(x),y(x), singsol=all)

$$y(x) = \frac{e^{3x}}{3} - \cos(x) + c_1$$

Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 21

DSolve[y'[x] == Exp[3*x] + Sin[x], y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{3x}}{3} - \cos(x) + c_1$$

1.2 problem 1 (b)

Internal problem ID [5159]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.3 Introduction—Linear equations of First Order. Page 38

Problem number: 1 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' - 2 - x = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)=2+x,y(x), singsol=all)

$$y(x) = \frac{1}{6}x^3 + x^2 + c_1x + c_2$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[y''[x]==2+x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^3}{6} + x^2 + c_2 x + c_1$$

1.3 problem 1 (d)

Internal problem ID [5160]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.3 Introduction—Linear equations of First Order. Page 38

Problem number: 1 (d).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _quadrature]]

$$y''' - x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(x),x$3)=x^2,y(x), singsol=all)$

$$y(x) = \frac{1}{60}x^5 + \frac{1}{2}c_1x^2 + xc_2 + c_3$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 25

DSolve[y'''[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x^5}{60} + c_3 x^2 + c_2 x + c_1$$

1.4 problem 2 (a)

Internal problem ID [5161]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.3 Introduction—Linear equations of First Order. Page 38

Problem number: 2 (a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + y\cos\left(x\right) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

dsolve(diff(y(x),x)+cos(x)*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-\sin(x)}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 19

 $DSolve[y'[x]+Cos[x]*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-\sin(x)}$$

$$y(x) \to 0$$

1.5 problem 2 (b)

Internal problem ID [5162]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.3 Introduction—Linear equations of First Order. Page 38

Problem number: 2 (b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y\cos(x) - \cos(x)\sin(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x)+cos(x)*y(x)=sin(x)*cos(x),y(x), singsol=all)

$$y(x) = \sin(x) - 1 + c_1 e^{-\sin(x)}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 18

 $DSolve[y'[x]+Cos[x]*y[x]==Sin[x]*Cos[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \sin(x) + c_1 e^{-\sin(x)} - 1$$

1.6 problem 2 (c)

Internal problem ID [5163]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.3 Introduction—Linear equations of First Order. Page 38

Problem number: 2 (c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + e^x c_2$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 20

DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x}$$

1.7 problem 2 (f)

Internal problem ID [5164]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.3 Introduction—Linear equations of First Order. Page 38

Problem number: 2 (f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(2x) + c_2 \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 20

DSolve[y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \cos(2x) + c_2 \sin(2x)$$

1.8 problem 2 (h)

Internal problem ID [5165]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.3 Introduction—Linear equations of First Order. Page 38

Problem number: 2 (h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + k^2 y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $\label{local_diff} $$dsolve(diff(y(x),x$2)+k^2*y(x)=0,y(x), singsol=all)$$

$$y(x) = c_1 \sin(kx) + c_2 \cos(kx)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 20

 $DSolve[y''[x]+k^2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1 \cos(kx) + c_2 \sin(kx)$$

problem 3(a) 1.9

Internal problem ID [5166]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.3 Introduction—Linear equations of First Order. Page 38

Problem number: 3(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 5y - 2 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x)+5*y(x)=2,y(x), singsol=all)

$$y(x) = \frac{2}{5} + e^{-5x}c_1$$

Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 24

DSolve[y'[x]+5*y[x]==2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2}{5} + c_1 e^{-5x}$$

$$y(x) \to \frac{2}{5}$$

1.10 problem 4(a)

Internal problem ID [5167]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.3 Introduction—Linear equations of First Order. Page 38

Problem number: 4(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' - 1 - 3x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$2)=3*x+1,y(x), singsol=all)

$$y(x) = \frac{1}{2}x^3 + \frac{1}{2}x^2 + c_1x + c_2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 25

DSolve[y''[x]==3*x+1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} (x^3 + x^2 + 2c_2x + 2c_1)$$

1.11 problem 5(a)

Internal problem ID [5168]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.3 Introduction—Linear equations of First Order. Page 38

Problem number: 5(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - ky = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x)=k*y(x),y(x), singsol=all)

$$y(x) = c_1 e^{kx}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 18

DSolve[y'[x]==k*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{kx}$$
$$y(x) \to 0$$

2	Chapter 1.6 Introduction—Linear equations o	f
	First Order. Page 41	

2.1	problem 1(a)				•	•								•				•			16
2.2	problem 1(b)																				17
2.3	problem 1(c)																				18
2.4	problem 1(d)																				19
2.5	problem 1(e)																				20
2.6	problem 2																				21
2.7	problem 3		•															•			22
2.8	problem 4																				23
2.9	problem 5		•															•			24
2.10	problem 7																				25

2.1 problem 1(a)

Internal problem ID [5169]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.6 Introduction—Linear equations of First Order. Page 41

Problem number: 1(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'-2y-1=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x)-2*y(x)=1,y(x), singsol=all)

$$y(x) = -\frac{1}{2} + e^{2x}c_1$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 24

DSolve[y'[x]-2*y[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{2} + c_1 e^{2x}$$

$$y(x) \to -\frac{1}{2}$$

2.2 problem 1(b)

Internal problem ID [5170]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.6 Introduction—Linear equations of First Order. Page 41

Problem number: 1(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + y - e^x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x)+y(x)=exp(x),y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^x}{2} + \mathrm{e}^{-x}c_1$$

Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 21

DSolve[y'[x]+y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^x}{2} + c_1 e^{-x}$$

2.3 problem 1(c)

Internal problem ID [5171]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.6 Introduction—Linear equations of First Order. Page 41

Problem number: 1(c).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - 2y - x^2 - x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(x),x)-2*y(x)=x^2+x,y(x), singsol=all)$

$$y(x) = -\frac{x^2}{2} - x - \frac{1}{2} + e^{2x}c_1$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 23

DSolve[y'[x]-2*y[x]==x^2+x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{2}(x+1)^2 + c_1 e^{2x}$$

2.4 problem 1(d)

Internal problem ID [5172]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.6 Introduction—Linear equations of First Order. Page 41

Problem number: 1(d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y + 3y' - 2e^{-x} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(3*diff(y(x),x)+y(x)=2*exp(-x),y(x), singsol=all)

$$y(x) = -e^{-x} + e^{-\frac{x}{3}}c_1$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 23

DSolve[3*y'[x]+y[x]==2*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} (-1 + c_1 e^{2x/3})$$

2.5 problem 1(e)

Internal problem ID [5173]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.6 Introduction—Linear equations of First Order. Page 41

Problem number: 1(e).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + 3y - e^{ix} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x)+3*y(x)=exp(I*x),y(x), singsol=all)

$$y(x) = \left(\left(\frac{3}{10} - \frac{i}{10} \right) e^{(3+i)x} + c_1 \right) e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 29

DSolve[y'[x]+3*y[x]==Exp[I*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \left(\frac{3}{10} - \frac{i}{10}\right)e^{ix} + c_1e^{-3x}$$

2.6 problem 2

Internal problem ID [5174]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.6 Introduction—Linear equations of First Order. Page 41

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + iy - x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)+I*y(x)=x,y(x), singsol=all)

$$y(x) = -ix + 1 + e^{-ix}c_1$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 22

DSolve[y'[x]+I*y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -ix + c_1 e^{-ix} + 1$$

2.7 problem 3

Internal problem ID [5175]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.6 Introduction—Linear equations of First Order. Page 41

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$Ly' + Ry - E = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(L*diff(y(x),x)+R*y(x)=E,y(x), singsol=all)

$$y(x) = \frac{E}{R} + e^{-\frac{Rx}{L}}c_1$$

Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 23

DSolve[L*y'[x]+R*y[x]==E0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{E0 - E0e^{-\frac{Rx}{L}}}{R}$$

2.8 problem 4

Internal problem ID [5176]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.6 Introduction—Linear equations of First Order. Page 41

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$Ly' + Ry - E\sin(\omega x) = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 47

dsolve([L*diff(y(x),x)+R*y(x)=E*sin(omega*x),y(0) = 0],y(x), singsol=all)

$$y(x) = -\frac{E\left(L\cos(\omega x)\omega - e^{-\frac{Rx}{L}}L\omega - \sin(\omega x)R\right)}{\omega^2 L^2 + R^2}$$

✓ Solution by Mathematica

Time used: 0.11 (sec). Leaf size: 47

$$y(x) o rac{\mathrm{E}0\Big(L\omega e^{-rac{Rx}{L}} - L\omega\cos(x\omega) + R\sin(x\omega)\Big)}{L^2\omega^2 + R^2}$$

2.9 problem 5

Internal problem ID [5177]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.6 Introduction—Linear equations of First Order. Page 41

Problem number: 5.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$Ly' + Ry - E e^{i\omega x} = 0$$

With initial conditions

$$[y(0) = 0]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 38

dsolve([L*diff(y(x),x)+R*y(x)=E*exp(I*omega*x),y(0) = 0],y(x), singsol=all)

$$y(x) = rac{E\left(\mathrm{e}^{rac{x(iL\omega+R)}{L}}-1
ight)\mathrm{e}^{-rac{Rx}{L}}}{iL\omega+R}$$

✓ Solution by Mathematica

Time used: 0.095 (sec). Leaf size: 43

$$y(x) o rac{\mathrm{E}0e^{-rac{Rx}{L}}\left(-1 + e^{rac{x(R+iL\omega)}{L}}\right)}{R + iL\omega}$$

2.10 problem 7

Internal problem ID [5178]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1.6 Introduction—Linear equations of First Order. Page 41

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + ya - b(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(y(x),x)+a*y(x)=b(x),y(x), singsol=all)

$$y(x) = \left(\int b(x) e^{ax} dx + c_1\right) e^{-ax}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 32

DSolve[y'[x]+a*y[x]==b[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o e^{-ax} igg(\int_1^x e^{aK[1]} b(K[1]) dK[1] + c_1 igg)$$

3	Chapter	1	. •]	ľ	ıt	1	·C)(ď	u	C	ti	o	n	1 —	-	L	i	n	e	\mathbf{a}	r	ϵ	ec	μ	lä	at	i	O	n	S	}	o	f	I	<u>٦</u>	ir	\mathbf{st}
	Order. P	'n	g	e	; 4	4	5)																															
3.1	problem 1(a)													•																									27
3.2	problem 1(b)																																						28
3.3	problem 1(c)																																						29
3.4	problem 1(d)																																						30
3.5	problem 1(e)																																						31
3.6	problem 2																																						32
3.7	problem 3																																						33
3.8	problem 8																																						34

3.9

3.1 problem 1(a)

Internal problem ID [5179]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1. Introduction—Linear equations of First Order. Page 45

Problem number: 1(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + 2xy - x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)+2*x*y(x)=x,y(x), singsol=all)

$$y(x) = \frac{1}{2} + c_1 e^{-x^2}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 26

DSolve[y'[x]+2*x*y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} + c_1 e^{-x^2}$$

$$y(x) \to \frac{1}{2}$$

3.2 problem 1(b)

Internal problem ID [5180]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1. Introduction—Linear equations of First Order. Page 45

Problem number: 1(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + y - 3x^3 + 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x*diff(y(x),x)+y(x)=3*x^3-1,y(x), singsol=all)$

$$y(x) = \frac{\frac{3}{4}x^4 - x + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 20

DSolve $[x*y'[x]+y[x]==3*x^3-1,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{3x^3}{4} + \frac{c_1}{x} - 1$$

3.3 problem 1(c)

Internal problem ID [5181]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1. Introduction—Linear equations of First Order. Page 45

Problem number: 1(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + e^x y - 3e^x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

dsolve(diff(y(x),x)+exp(x)*y(x)=3*exp(x),y(x), singsol=all)

$$y(x) = 3 + e^{-e^x} c_1$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 22

DSolve[y'[x]+Exp[x]*y[x]==3*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 3 + c_1 e^{-e^x}$$

$$y(x) \to 3$$

3.4 problem 1(d)

Internal problem ID [5182]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1. Introduction—Linear equations of First Order. Page 45

Problem number: 1(d).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - y \tan(x) - e^{\sin(x)} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)-tan(x)*y(x)=exp(sin(x)),y(x), singsol=all)

$$y(x) = \frac{e^{\sin(x)} + c_1}{\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.155 (sec). Leaf size: 15

DSolve[y'[x]-Tan[x]*y[x] == Exp[Sin[x]], y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to \sec(x) \left(e^{\sin(x)} + c_1 \right)$$

3.5 problem 1(e)

Internal problem ID [5183]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1. Introduction—Linear equations of First Order. Page 45

Problem number: 1(e).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' + 2xy - x e^{-x^2} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

 $dsolve(diff(y(x),x)+2*x*y(x)=x*exp(-x^2),y(x), singsol=all)$

$$y(x) = \left(\frac{x^2}{2} + c_1\right) e^{-x^2}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 24

DSolve[y'[x]+2*x*y[x]==x*Exp[-x^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}e^{-x^2}(x^2 + 2c_1)$$

3.6 problem 2

Internal problem ID [5184]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1. Introduction—Linear equations of First Order. Page 45

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y \cos(x) - e^{-\sin(x)} = 0$$

With initial conditions

$$[y(\pi) = \pi]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

dsolve([diff(y(x),x)+cos(x)*y(x)=exp(-sin(x)),y(Pi) = Pi],y(x), singsol=all)

$$y(x) = e^{-\sin(x)}x$$

✓ Solution by Mathematica

Time used: 0.133 (sec). Leaf size: 13

DSolve[{y'[x]+Cos[x]*y[x]==Exp[-Sin[x]],{y[Pi]==Pi}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to xe^{-\sin(x)}$$

3.7 problem 3

Internal problem ID [5185]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1. Introduction—Linear equations of First Order. Page 45

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x^2y' + 2xy - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(x^2*diff(y(x),x)+2*x*y(x)=1,y(x), singsol=all)$

$$y(x) = \frac{x + c_1}{x^2}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 13

DSolve[x^2*y'[x]+2*x*y[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x + c_1}{x^2}$$

3.8 problem 8

Internal problem ID [5186]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1. Introduction—Linear equations of First Order. Page 45

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + 2y - b(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x)+2*y(x)=b(x),y(x), singsol=all)

$$y(x) = \left(\int b(x) e^{2x} dx + c_1\right) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 31

DSolve[y'[x]+2*y[x]==b[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o e^{-2x} igg(\int_1^x e^{2K[1]} b(K[1]) dK[1] + c_1 igg)$$

3.9 problem 14(a)

Internal problem ID [5187]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1. Introduction—Linear equations of First Order. Page 45

Problem number: 14(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 1 - y = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

dsolve([diff(y(x),x)=1+y(x),y(0)=0],y(x), singsol=all)

$$y(x) = e^x - 1$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 10

 $DSolve[\{y'[x]==1+y[x],\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^x - 1$$

3.10 problem 14(b)

Internal problem ID [5188]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1. Introduction—Linear equations of First Order. Page 45

Problem number: 14(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'-1-y^2=0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 6

 $dsolve([diff(y(x),x)=1+y(x)^2,y(0)=0],y(x), singsol=all)$

$$y(x) = \tan\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 7

 $DSolve[\{y'[x]==1+y[x]^2,\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \tan(x)$$

3.11 problem 14(b)

Internal problem ID [5189]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 1. Introduction—Linear equations of First Order. Page 45

Problem number: 14(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'-1-y^2=0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 6

 $dsolve([diff(y(x),x)=1+y(x)^2,y(0)=0],y(x), singsol=all)$

$$y(x) = \tan\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 7

 $DSolve[\{y'[x]==1+y[x]^2,\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \tan(x)$$

4 Chapter 2. Linear equations with constant coefficients. Page 52

4.1	problem 1(a)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	39
4.2	problem 1(b)																											40
4.3	problem 1(c)																											41
4.4	problem 1(d)																											42
4.5	problem 1(e)																											43
4.6	problem 1(f).																											44
4.7	problem 1(g)																											45
4.8	problem 2(a)																											46
4.9	problem 2(b)																		•							•		47
4.10	problem 3(a)																											48
4.11	problem 3(b)																											49
4.12	problem 3(c)																											50
4.13	problem 3(d)																											51

4.1 problem 1(a)

Internal problem ID [5190]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-4*y(x)=0,y(x), singsol=all)

$$y(x) = e^{2x}c_1 + c_2e^{-2x}$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[y''[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (c_1 e^{4x} + c_2)$$

4.2 problem 1(b)

Internal problem ID [5191]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$3y'' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(3*diff(y(x),x\$2)+2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin\left(\frac{\sqrt{6}x}{3}\right) + c_2 \cos\left(\frac{\sqrt{6}x}{3}\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 32

 $DSolve[3*y''[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \cos\left(\sqrt{\frac{2}{3}}x\right) + c_2 \sin\left(\sqrt{\frac{2}{3}}x\right)$$

4.3 problem 1(c)

Internal problem ID [5192]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 16y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+16*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(4x) + c_2 \cos(4x)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 20

DSolve[y''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cos(4x) + c_2 \sin(4x)$$

4.4 problem 1(d)

Internal problem ID [5193]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

 ${\bf Section} \colon {\bf Chapter} \ 2.$ Linear equations with constant coefficients. Page 52

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 9

dsolve(diff(y(x),x\$2)=0,y(x), singsol=all)

$$y(x) = c_1 x + c_2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 12

DSolve[y''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 x + c_1$$

4.5 problem 1(e)

Internal problem ID [5194]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2iy' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$2)+2*I*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-ix} \sin\left(\sqrt{2}x\right) + c_2 e^{-ix} \cos\left(\sqrt{2}x\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 38

DSolve[y''[x]+2*I*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{-i\left(1+\sqrt{2}\right)x} \left(c_2 e^{2i\sqrt{2}x} + c_1\right)$$

4.6 problem 1(f)

Internal problem ID [5195]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 1(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 5y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(x) e^{2x} + c_2 \cos(x) e^{2x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

 $DSolve[y''[x]-4*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{2x}(c_2 \cos(x) + c_1 \sin(x))$$

4.7 problem 1(g)

Internal problem ID [5196]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 1(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + (-1+3i)y' - 3iy = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)+(3*I-1)*diff(y(x),x)-3*I*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-3ix} + e^x c_2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

 $DSolve[y''[x]+(3*I-1)*y'[x]-3*I*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-3ix} + c_2 e^x$$

4.8 problem 2(a)

Internal problem ID [5197]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 2(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 6y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

dsolve([diff(y(x),x\$2)+diff(y(x),x)-6*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x), singsol=all)

$$y(x) = \frac{(3e^{5x} + 2)e^{-3x}}{5}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 23

DSolve[{y''[x]+y'[x]-6*y[x]==0,{y[0]==1,y'[0]==0}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{5}e^{-3x} (3e^{5x} + 2)$$

4.9 problem 2(b)

Internal problem ID [5198]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 2(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 6y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve([diff(y(x),x\$2)+diff(y(x),x)-6*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = \frac{(e^{5x} - 1)e^{-3x}}{5}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 21 $\,$

DSolve[{y''[x]+y'[x]-6*y[x]==0,{y[0]==0,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{5}e^{-3x}(e^{5x} - 1)$$

4.10 problem 3(a)

Internal problem ID [5199]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 3(a).

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With initial conditions

$$\left[y(0) = 1, y\left(\frac{\pi}{2}\right) = 2\right]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve([diff(y(x),x\$2)+y(x)=0,y(0) = 1, y(1/2*Pi) = 2],y(x), singsol=all)

$$y(x) = 2\sin(x) + \cos(x)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 12

 $DSolve[\{y''[x]+y[x]==0,\{y[0]==1,y[Pi/2]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 2\sin(x) + \cos(x)$$

4.11 problem 3(b)

Internal problem ID [5200]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 3(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With initial conditions

$$[y(0) = 0, y(\pi) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

dsolve([diff(y(x),x\$2)+y(x)=0,y(0) = 0, y(Pi) = 0],y(x), singsol=all)

$$y(x) = c_1 \sin\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 10

 $DSolve[\{y''[x]+y[x]==0,\{y[0]==0,y[Pi]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1 \sin(x)$$

4.12 problem 3(c)

Internal problem ID [5201]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 3(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With initial conditions

$$\left[y(0) = 0, y'\left(\frac{\pi}{2}\right) = 0\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 8

dsolve([diff(y(x),x\$2)+y(x)=0,y(0) = 0, D(y)(1/2*Pi) = 0],y(x), singsol=all)

$$y(x) = c_1 \sin\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 10

 $DSolve[\{y''[x]+y[x]==0,\{y[0]==0,y'[Pi/2]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \sin(x)$$

4.13 problem 3(d)

Internal problem ID [5202]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 3(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With initial conditions

$$\left[y(0) = 0, y\left(\frac{\pi}{2}\right) = 0\right]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(y(x),x\$2)+y(x)=0,y(0) = 0, y(1/2*Pi) = 0],y(x), singsol=all)

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 6

 $DSolve[\{y''[x]+y[x]==0,\{y[0]==0,y[Pi/2]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

5	Chapter 2. Linear equations with constant
	coefficients. Page 59
5.1	problem 1(a)

5.1	problem 1(a)					•		•									•		•			53
5.2	problem 1(b)																					54
5.3	problem 1(c)																					55
5.4	problem 1(d)																					56

5.1 problem 1(a)

Internal problem ID [5203]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 59

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' - 3y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)-3*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = \frac{e^{3x}}{4} - \frac{e^{-x}}{4}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 13

 $DSolve[\{y''[x]-2*y'[x]-3*y[x]==0,\{y[0]==0,y'[0]==1\}\},y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to e^x \sinh(x) \cosh(x)$$

5.2 problem 1(b)

Internal problem ID [5204]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 59

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + (1+4i)y' + y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 5

dsolve([diff(y(x),x\$2)+(4*I+1)*diff(y(x),x)+y(x)=0,y(0) = 0, D(y)(0) = 0],y(x), singsol=all)

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 6

 $DSolve[\{y''[x]+(4*I+1)*y'[x]+y[x]==0,\{y[0]==0,y'[0]==0\}\},y[x],x,IncludeSingularSolutions -> T(x)=0$

$$y(x) \to 0$$

5.3 problem 1(c)

Internal problem ID [5205]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 59

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + (-1 + 3i)y' - 3iy = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

/ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

$$y(x) = \left(\frac{1}{5} - \frac{3i}{5}\right) e^{-3ix} + \left(\frac{9}{5} + \frac{3i}{5}\right) e^{x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 31

 $DSolve[\{y''[x]+(3*I-1)*y'[x]-3*I*y[x]==0,\{y[0]==2,y'[0]==0\}\},y[x],x,IncludeSingularSolutions]$

$$y(x) \to \frac{1}{5}e^{-3ix}((9+3i)e^{(1+3i)x} + (1-3i))$$

5.4 problem 1(d)

Internal problem ID [5206]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 59

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 10y = 0$$

With initial conditions

$$[y(0) = \pi, y'(0) = \pi^2]$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 27

 $dsolve([diff(y(x),x$2)+10*y(x)=0,y(0) = Pi, D(y)(0) = Pi^2],y(x), singsol=all)$

$$y(x) = \frac{\pi(\pi\sqrt{10}\sin(\sqrt{10}x) + 10\cos(\sqrt{10}x))}{10}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 33

 $DSolve[\{y''[x]+10*y[x]==0,\{y[0]==Pi,y'[0]==Pi^2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o \frac{\pi^2 \sin\left(\sqrt{10}x\right)}{\sqrt{10}} + \pi \cos\left(\sqrt{10}x\right)$$

6	Chapter 2. Linear equations with constant
	coefficients. Page 69

6.1	problem 1(a)	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		58
6.2	problem 1(b)																										59
6.3	problem 1(c)																										60
6.4	problem 1(d)																										61
6.5	problem 1(e)																								•		62
6.6	problem 1(f).																										63
6.7	problem 1(g)																								•		64
6.8	problem 1(h)																										65
6.9	problem 1(i) .																										66
6.10	problem 1(j).																										67
6.11	problem 4(c)																										68

6.1 problem 1(a)

Internal problem ID [5207]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - \cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)+4*y(x)=cos(x),y(x), singsol=all)

$$y(x) = \sin(2x) c_2 + \cos(2x) c_1 + \frac{\cos(x)}{3}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 26

DSolve[y''[x]+4*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\cos(x)}{3} + c_1 \cos(2x) + c_2 \sin(2x)$$

6.2 problem 1(b)

Internal problem ID [5208]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y - \sin(3x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+9*y(x)=sin(3*x),y(x), singsol=all)

$$y(x) = \sin(3x) c_2 + \cos(3x) c_1 - \frac{\cos(3x) x}{6}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 33

DSolve[y''[x]+9*y[x]==Sin[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \left(-\frac{x}{6} + c_1\right)\cos(3x) + \frac{1}{36}(1 + 36c_2)\sin(3x)$$

6.3 problem 1(c)

Internal problem ID [5209]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - \tan(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+y(x)=tan(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + \cos(x) c_1 - \cos(x) \ln(\sec(x) + \tan(x))$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 22

DSolve[y''[x]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \cos(x)(-\arctan(\sin(x)) + c_1) + c_2\sin(x)$$

6.4 problem 1(d)

Internal problem ID [5210]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2iy' + y - x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

dsolve(diff(y(x),x\$2)+2*I*diff(y(x),x)+y(x)=x,y(x), singsol=all)

$$y(x) = e^{-ix} \sin(\sqrt{2}x) c_2 + e^{-ix} \cos(\sqrt{2}x) c_1 - 2i + x$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 43

DSolve[y''[x]+2*I*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + e^{-i(1+\sqrt{2})x} \left(c_2 e^{2i\sqrt{2}x} + c_1\right) - 2i$$

6.5 problem 1(e)

Internal problem ID [5211]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 5y - 3e^{-x} - 2x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

 $dsolve(diff(y(x),x$2)-4*diff(y(x),x)+5*y(x)=3*exp(-x)+2*x^2,y(x), singsol=all)$

$$y(x) = \sin(x) e^{2x} c_2 + \cos(x) e^{2x} c_1 + \frac{3 e^{-x}}{10} + \frac{2x^2}{5} + \frac{16x}{25} + \frac{44}{125}$$

✓ Solution by Mathematica

Time used: 0.151 (sec). Leaf size: 46

 $DSolve[y''[x]-4*y'[x]+5*y[x]==3*Exp[-x]+2*x^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{125}(5x(5x+8)+22) + \frac{3e^{-x}}{10} + e^{2x}(c_2\cos(x) + c_1\sin(x))$$

6.6 problem 1(f)

Internal problem ID [5212]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 7y' + 6y - \sin(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-7*diff(y(x),x)+6*y(x)=sin(x),y(x), singsol=all)

$$y(x) = c_2 e^{6x} + e^x c_1 + \frac{7\cos(x)}{74} + \frac{5\sin(x)}{74}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 32

 $DSolve[y''[x]-7*y'[x]+6*y[x]==Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o \frac{5\sin(x)}{74} + \frac{7\cos(x)}{74} + c_1e^x + c_2e^{6x}$$

6.7 problem 1(g)

Internal problem ID [5213]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - 2\sin(2x)\sin(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+y(x)=2*sin(x)*sin(2*x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + \cos(x) c_1 + \frac{\sin(x) (-\cos(x) \sin(x) + x)}{2}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 33

DSolve[y''[x]+y[x]==2*Sin[x]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{8}(\cos(3x) + (-1 + 8c_1)\cos(x) + 4(x + 2c_2)\sin(x))$$

6.8 problem 1(h)

Internal problem ID [5214]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - \sec(x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+y(x)=sec(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + \cos(x) c_1 - \ln(\sec(x)) \cos(x) + \sin(x) x$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 22

DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (x + c_2)\sin(x) + \cos(x)(\log(\cos(x)) + c_1)$$

6.9 problem 1(i)

Internal problem ID [5215]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4y'' - y - e^x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(4*diff(y(x),x\$2)-y(x)=exp(x),y(x), singsol=all)

$$y(x) = e^{-\frac{x}{2}}c_2 + e^{\frac{x}{2}}c_1 + \frac{e^x}{3}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 33

 $DSolve [4*y''[x]-y[x]== Exp[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{e^x}{3} + c_1 e^{x/2} + c_2 e^{-x/2}$$

6.10 problem 1(j)

Internal problem ID [5216]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(j).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$6y'' + 5y' - 6y - x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(6*diff(y(x),x\$2)+5*diff(y(x),x)-6*y(x)=x,y(x), singsol=all)

$$y(x) = e^{-\frac{3x}{2}}c_2 + e^{\frac{2x}{3}}c_1 - \frac{x}{6} - \frac{5}{36}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 34

 $DSolve[6*y''[x]+5*y'[x]-6*y[x]==x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{x}{6} + c_1 e^{2x/3} + c_2 e^{-3x/2} - \frac{5}{36}$$

6.11 problem 4(c)

Internal problem ID [5217]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 4(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \omega^2 y - A\cos(\omega x) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

 $dsolve([diff(y(x),x\$2)+omega^2*y(x)=A*cos(omega*x),y(0)=0,\ D(y)(0)=1],y(x),\ singsol=all)$

$$y(x) = \frac{\sin(\omega x)(Ax + 2)}{2\omega}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 21

 $DSolve[\{y''[x]+\[0mega]^2*y[x]==A*Cos[\[0mega]*x], \{y[0]==0,y'[0]==1\}\}, y[x], x, Include Singular S$

$$y(x) o \frac{(Ax+2)\sin(x\omega)}{2\omega}$$

7	Chapter 2. Linear equations with constant
	coefficients. Page 74

7.1	problem 4(a)									•											70
7.2	problem 4(b)																				71
7.3	problem 4(c)																				72
7.4	problem 4(d)																				73
7.5	problem $4(f)$.																				74
7.6	problem 4(g)																				75
7.7	problem 4(h)																				76
7.8	problem 4(i).																				77

7.1 problem 4(a)

Internal problem ID [5218]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(a).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$3)-8*y(x)=0,y(x), singsol=all)

$$y(x) = e^{2x}c_1 + c_2e^{-x}\sin\left(\sqrt{3}x\right) + c_3e^{-x}\cos\left(\sqrt{3}x\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 42

DSolve[y'''[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} \left(c_1 e^{3x} + c_2 \cos\left(\sqrt{3}x\right) + c_3 \sin\left(\sqrt{3}x\right) \right)$$

7.2 problem 4(b)

Internal problem ID [5219]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(b).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 16y = 0$$

/ 9

Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

dsolve(diff(y(x),x\$4)+16*y(x)=0,y(x), singsol=all)

$$y(x) = -c_1 e^{-\sqrt{2}x} \sin\left(\sqrt{2}x\right) - c_2 e^{\sqrt{2}x} \sin\left(\sqrt{2}x\right) + c_3 e^{-\sqrt{2}x} \cos\left(\sqrt{2}x\right) + c_4 e^{\sqrt{2}x} \cos\left(\sqrt{2}x\right)$$

1

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: $67\,$

DSolve[y'''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-\sqrt{2}x} \left(\left(c_1 e^{2\sqrt{2}x} + c_2 \right) \cos\left(\sqrt{2}x\right) + \left(c_4 e^{2\sqrt{2}x} + c_3 \right) \sin\left(\sqrt{2}x\right) \right)$$

7.3 problem 4(c)

Internal problem ID [5220]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(c).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 5y'' + 6y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$3)-5*diff(y(x),x\$2)+6*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + e^{2x}c_2 + c_3e^{3x}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 29

 $DSolve[y'''[x]-5*y''[x]+6*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{6}e^{2x}(2c_2e^x + 3c_1) + c_3$$

7.4 problem 4(d)

Internal problem ID [5221]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(d).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - iy'' + 4y' - 4iy = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$3)-I*diff(y(x),x\$2)+4*diff(y(x),x)-4*I*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2ix} + c_2 e^{ix} + c_3 e^{-2ix}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 36

DSolve[y'''[x]-I*y''[x]+4*y'[x]-4*I*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{-2ix} (c_2 e^{4ix} + c_3 e^{3ix} + c_1)$$

7.5 problem 4(f)

Internal problem ID [5222]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(f).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 5y'' + 4y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(diff(y(x),x\$4)+5*diff(y(x),x\$2)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(2x) + c_2 \cos(2x) + c_3 \sin(x) + c_4 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

DSolve[y'''[x]+5*y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \cos(2x) + c_4 \sin(x) + \cos(x)(2c_2 \sin(x) + c_3)$$

7.6 problem 4(g)

Internal problem ID [5223]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(g).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 16y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$4)-16*y(x)=0,y(x), singsol=all)

$$y(x) = e^{2x}c_1 + c_2e^{-2x} + c_3\sin(2x) + c_4\cos(2x)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 36

DSolve[y''''[x]-16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^{2x} + c_3 e^{-2x} + c_2 \cos(2x) + c_4 \sin(2x)$$

7.7 problem 4(h)

Internal problem ID [5224]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(h).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$3)-3*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = e^{2x}c_1 + c_2e^{-x} + c_3e^{-x}x$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 26

DSolve[y'''[x]-3*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} (c_2 x + c_3 e^{3x} + c_1)$$

7.8 problem 4(i)

Internal problem ID [5225]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(i).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3iy'' - 3y' + iy = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(x),x\$3)-3*I*diff(y(x),x\$2)-3*diff(y(x),x)+I*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{ix} + c_2 e^{ix} x + c_3 e^{ix} x^2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 25

 $DSolve[y'''[x]-3*I*y''[x]-3*y'[x]+I*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{ix}(x(c_3x + c_2) + c_1)$$

8	Chapter										-	u	at	t i	O :	n	S	V	vi	tl	1	c	O:	ns	st	a	n	ιt			
	coefficier	nt	ts	•	ŀ	2	ıg	e	7	7 9)																				
	problem 1(c) problem 2(c)																														

8.1 problem 1(c)

Internal problem ID [5226]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 79

Problem number: 1(c).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 4y' = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1, y''(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(x),x\$3)-4*diff(y(x),x)=0,y(0)=0,D(y)(0)=1,(D@@2)(y)(0)=0],y(x),singso(x)=0,y

$$y(x) = \frac{e^{2x}}{4} - \frac{e^{-2x}}{4}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 69

DSolve[{y'''[x]-4*y[x]==0,{y[0]==0,y'[0]==1,y''[0]==0}},y[x],x,IncludeSingularSolutions -> Tr

$$y(x) \to \frac{e^{-\frac{x}{\sqrt[3]{2}}} \left(e^{\frac{3x}{\sqrt[3]{2}}} + \sqrt{3} \sin\left(\frac{\sqrt{3}x}{\sqrt[3]{2}}\right) - \cos\left(\frac{\sqrt{3}x}{\sqrt[3]{2}}\right) \right)}{3 \ 2^{2/3}}$$

8.2 problem 2(c)

Internal problem ID [5227]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 79

Problem number: 2(c).

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(5)} - y'''' - y' + y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0, y''(0) = 0, y'''(0) = 0, y''''(0) = 0]$$

/ Solution by Maple

Time used: 0.047 (sec). Leaf size: 28

dsolve([diff(y(x),x\$5)-diff(y(x),x\$4)-diff(y(x),x)+y(x)=0,y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0)

$$y(x) = \frac{e^{-x}}{8} + \frac{(-2x+5)e^{x}}{8} + \frac{\cos(x)}{4} - \frac{\sin(x)}{4}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: $32\,$

$$y(x) \to \frac{1}{8} (e^x(5-2x) + e^{-x} - 2\sin(x) + 2\cos(x))$$

9	Chapter 2. Linear equations with constant
	coefficients. Page 83

9.1	problem 1(a)	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	82
9.2	problem 1(b)																												83
9.3	problem 1(c)																												84
9.4	problem 1(d)																												85
9.5	problem 1(e)																												86
9.6	problem 2																								•		•		87
9.7	problem 3(a)																												88
9.8	problem 3(b)																										•		89
9.9	problem 5(b)																												90

9.1 problem 1(a)

Internal problem ID [5228]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x\$2)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(x) + c_2 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 16

DSolve[y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \cos(x) + c_2 \sin(x)$$

9.2 problem 1(b)

Internal problem ID [5229]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + e^x c_2$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 20

DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x}$$

9.3 problem 1(c)

Internal problem ID [5230]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 1(c).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$4)-y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + e^x c_2 + c_3 \sin(x) + c_4 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 30

DSolve[y'''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^x + c_3 e^{-x} + c_2 \cos(x) + c_4 \sin(x)$$

9.4 problem 1(d)

Internal problem ID [5231]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 1(d).

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(5)} + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 369

dsolve(diff(y(x),x\$5)+2*y(x)=0,y(x), singsol=all)

$$y(x) = c_{1}e^{\left(\frac{2^{\frac{1}{5}}\cos\left(\frac{\pi}{5}\right)\sqrt{5}}{4} - \frac{\cos\left(\frac{\pi}{5}\right)2^{\frac{1}{5}}}{4} + \frac{2^{\frac{70}{5}}\sqrt{5+\sqrt{5}}\sin\left(\frac{\pi}{5}\right)}{4} - \frac{i2^{\frac{70}{5}}\sqrt{5+\sqrt{5}}\cos\left(\frac{\pi}{5}\right)}{4} + \frac{i2^{\frac{1}{5}}\sin\left(\frac{\pi}{5}\right)\sqrt{5}}{4} - \frac{i\sin\left(\frac{\pi}{5}\right)2^{\frac{1}{5}}}{4}\right)x}$$

$$+ c_{2}e^{\left(-\frac{2^{\frac{1}{5}}\cos\left(\frac{\pi}{5}\right)\sqrt{5}}{4} - \frac{\cos\left(\frac{\pi}{5}\right)2^{\frac{1}{5}}}{4} + \frac{2^{\frac{70}{5}}\sqrt{5-\sqrt{5}}\sin\left(\frac{\pi}{5}\right)}{4} - \frac{i2^{\frac{70}{5}}\sqrt{5-\sqrt{5}}\cos\left(\frac{\pi}{5}\right)}{4} - \frac{i2^{\frac{15}{5}}\sin\left(\frac{\pi}{5}\right)\sqrt{5}}{4} - \frac{i\sin\left(\frac{\pi}{5}\right)2^{\frac{1}{5}}}{4}\right)x}$$

$$+ c_{3}e^{\left(-\frac{2^{\frac{1}{5}}\cos\left(\frac{\pi}{5}\right)\sqrt{5}}{4} - \frac{\cos\left(\frac{\pi}{5}\right)2^{\frac{1}{5}}}{4} - \frac{2^{\frac{70}{5}}\sqrt{5-\sqrt{5}}\sin\left(\frac{\pi}{5}\right)}{4} + \frac{i2^{\frac{70}{5}}\sqrt{5-\sqrt{5}}\cos\left(\frac{\pi}{5}\right)}{4} - \frac{i2^{\frac{15}{5}}\sin\left(\frac{\pi}{5}\right)\sqrt{5}}{4} - \frac{i\sin\left(\frac{\pi}{5}\right)2^{\frac{1}{5}}}{4}\right)x}$$

$$+ c_{4}e^{\left(-\frac{2^{\frac{1}{5}}\cos\left(\frac{\pi}{5}\right)\sqrt{5}}{4} - \frac{\cos\left(\frac{\pi}{5}\right)2^{\frac{1}{5}}}{4} - \frac{2^{\frac{70}{10}}\sqrt{5+\sqrt{5}}\sin\left(\frac{\pi}{5}\right)}{4} + \frac{i2^{\frac{70}{10}}\sqrt{5+\sqrt{5}}\cos\left(\frac{\pi}{5}\right)}{4} + \frac{i2^{\frac{15}{5}}\sin\left(\frac{\pi}{5}\right)\sqrt{5}}{4} - \frac{i\sin\left(\frac{\pi}{5}\right)2^{\frac{1}{5}}}{4}\right)x}$$

$$+ c_{5}e^{\left(\cos\left(\frac{\pi}{5}\right)2^{\frac{1}{5}} + i\sin\left(\frac{\pi}{5}\right)2^{\frac{1}{5}}}\right)x}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 168

DSolve[y''''[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to e^{-\frac{\left(\sqrt{5}-1\right)x}{2\ 2^{4/5}}} \left(c_5 e^{\frac{\left(\sqrt{5}-5\right)x}{2\ 2^{4/5}}} \right. \\ &+ c_4 \cos \left(\frac{\sqrt{5}+\sqrt{5}x}{2\ 2^{3/10}} \right) + c_1 \sin \left(\frac{\sqrt{5}+\sqrt{5}x}{2\ 2^{3/10}} \right) + e^{\frac{\sqrt{5}x}{2^{4/5}}} \left(c_3 \cos \left(\frac{\sqrt{5}-\sqrt{5}x}{2\ 2^{3/10}} \right) + c_2 \sin \left(\frac{\sqrt{5}-\sqrt{5}x}{2\ 2^{3/10}} \right) \right) \end{split}$$

9.5 problem 1(e)

Internal problem ID [5232]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 1(e).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 5y'' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$4)-5*diff(y(x),x\$2)+4*y(x)=0,y(x), singsol=all)

$$y(x) = e^{2x}c_1 + c_2e^{-2x} + c_3e^{-x} + c_4e^x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 35

 $DSolve[y''''[x]-5*y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^{-2x} (c_2 e^x + e^{3x} (c_4 e^x + c_3) + c_1)$$

9.6 problem 2

Internal problem ID [5233]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 2.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1, y''(0) = 0]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 39

dsolve([diff(y(x),x\$3)+y(x)=0,y(0) = 0, D(y)(0) = 1, (D@@2)(y)(0) = 0],y(x), singsol=all)

$$y(x) = \frac{\left(\sqrt{3} e^{\frac{3x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right) + e^{\frac{3x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right) - 1\right) e^{-x}}{3}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 53

 $DSolve[\{y'''[x]+y[x]==0,\{y[0]==0,y'[0]==1,y''[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y'''[x]+y[x]==0,\{y[0]==0,y'[0]==1,y''[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y'''[x]+y[x]==0,\{y[0]==0,y'[0]==1,y''[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y'''[x]+y[x]==0,\{y[0]==0,y'[0]==1,y''[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y''''[x]+y[x]==0,\{y[0]==0,y''[0]==1,y''[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y''''[x]+y[x]=0,y''[0]==0,y''[0]==1,y'''[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y''''[x]+y[x]=0,y''[0]==0,y''[0]==1,y'''[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y''''[x]+y[x]=0,y'''[0]==0,y''[0]==0,y''[0]==0\}]$

$$y(x) \to \frac{1}{3}e^{-x} \left(e^{3x/2} \left(\sqrt{3} \sin \left(\frac{\sqrt{3}x}{2} \right) + \cos \left(\frac{\sqrt{3}x}{2} \right) \right) - 1 \right)$$

9.7 problem 3(a)

Internal problem ID [5234]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 3(a).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - iy'' + y' - iy = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

dsolve(diff(y(x),x\$3)-I*diff(y(x),x\$2)+diff(y(x),x)-I*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-ix}c_1 + c_2e^{ix} + c_3e^{ix}x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 31

 $DSolve[y'''[x]-I*y''[x]+y'[x]-I*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-ix} (e^{2ix}(c_3x + c_2) + c_1)$$

9.8 problem 3(b)

Internal problem ID [5235]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 3(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2iy' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)-2*I*diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{ix} + c_2 e^{ix} x$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 20

 $DSolve[y''[x]-2*I*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{ix}(c_2x + c_1)$$

9.9 problem 5(b)

Internal problem ID [5236]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 5(b).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - k^4 y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y(1) = 0, y'(1) = 0]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 5

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 6

 $DSolve[\{y''''[x]-k^4*y[x]==0,\{y[0]==0,y[1]==0,y'[0]==0,y'[1]==0\}\},y[x],x,IncludeSingularSolut]$

$$y(x) \to 0$$

10	Chapter 2. Linear equations with constant
	coefficients. Page 89

10.1	problem 1(a)					•															92
10.2	problem 1(b)																				93
10.3	problem 1(c)																				94
10.4	problem 1(d)																				95
10.5	problem 1(e)																				96
10.6	problem 1(f).																				97

10.1 problem 1(a)

Internal problem ID [5237]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 89

Problem number: 1(a).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - y - x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve(diff(y(x),x\$3)-y(x)=x,y(x), singsol=all)

$$y(x) = -x + e^x c_1 + c_2 e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{3} x}{2}\right) + c_3 e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{3} x}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 52

DSolve[y'''[x]-y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x + c_1 e^x + e^{-x/2} \left(c_2 \cos\left(\frac{\sqrt{3}x}{2}\right) + c_3 \sin\left(\frac{\sqrt{3}x}{2}\right) \right)$$

10.2 problem 1(b)

Internal problem ID [5238]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 89

Problem number: 1(b).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - 8y - e^{ix} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 44

dsolve(diff(y(x),x\$3)-8*y(x)=exp(I*x),y(x), singsol=all)

$$y(x) = \left(-\frac{8}{65} + \frac{i}{65}\right)e^{ix} + e^{2x}c_1 + c_2e^{-x}\cos\left(\sqrt{3}x\right) + c_3e^{-x}\sin\left(\sqrt{3}x\right)$$

✓ Solution by Mathematica

Time used: 0.359 (sec). Leaf size: 58

DSolve[y'''[x]-8*y[x]==Exp[I*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\left(\frac{8}{65} - \frac{i}{65}\right)e^{ix} + c_1e^{2x} + e^{-x}\left(c_2\cos\left(\sqrt{3}x\right) + c_3\sin\left(\sqrt{3}x\right)\right)$$

10.3 problem 1(c)

Internal problem ID [5239]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 89

Problem number: 1(c).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 16y - \cos\left(x\right) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 85

dsolve(diff(y(x),x\$4)+16*y(x)=cos(x),y(x), singsol=all)

$$y(x) = -\frac{\cos(x)}{(5 + 2\sqrt{2})(-5 + 2\sqrt{2})} + c_1 e^{\sqrt{2}x} \cos(\sqrt{2}x)$$
$$+ c_2 e^{\sqrt{2}x} \sin(\sqrt{2}x) + c_3 e^{-\sqrt{2}x} \cos(\sqrt{2}x) + c_4 e^{-\sqrt{2}x} \sin(\sqrt{2}x)$$

✓ Solution by Mathematica

Time used: 0.748 (sec). Leaf size: 74

DSolve[y'''[x]+16*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\cos(x)}{17} + e^{-\sqrt{2}x} \left(\left(c_1 e^{2\sqrt{2}x} + c_2 \right) \cos\left(\sqrt{2}x\right) + \left(c_4 e^{2\sqrt{2}x} + c_3 \right) \sin\left(\sqrt{2}x\right) \right)$$

10.4 problem 1(d)

Internal problem ID [5240]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 89

Problem number: 1(d).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$y'''' - 4y''' + 6y'' - 4y' + y - e^x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve(diff(y(x),x\$4)-4*diff(y(x),x\$3)+6*diff(y(x),x\$2)-4*diff(y(x),x)+y(x)=exp(x),y(x), sing(x),x

$$y(x) = \frac{e^x x^4}{24} + e^x c_1 + c_2 e^x x + c_3 e^x x^2 + c_4 e^x x^3$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: $39\,$

$$y(x) \rightarrow \frac{1}{24}e^{x}(x^{4} + 24c_{4}x^{3} + 24c_{3}x^{2} + 24c_{2}x + 24c_{1})$$

10.5 problem 1(e)

Internal problem ID [5241]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 89

Problem number: 1(e).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - y - \cos(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

dsolve(diff(y(x),x\$4)-y(x)=cos(x),y(x), singsol=all)

$$y(x) = -\frac{\cos(x)}{4} - \frac{\sin(x)x}{4} + \cos(x)c_1 + e^x c_2 + c_3\sin(x) + c_4 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 40

DSolve[y'''[x]-y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_3 e^{-x} + \left(-\frac{1}{2} + c_2\right) \cos(x) + \left(-\frac{x}{4} + c_4\right) \sin(x)$$

10.6 problem 1(f)

Internal problem ID [5242]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 89

Problem number: 1(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2iy' - y - e^{ix} + 2e^{-ix} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 44

dsolve(diff(y(x),x\$2)-2*I*diff(y(x),x)-y(x)=exp(I*x)-2*exp(-I*x),y(x), singsol=all)

$$y(x) = c_2 e^{ix} + e^{ix} c_1 x + \frac{(x^2 + 2ix + 2)\cos(x)}{2} + \frac{x(ix - 2)\sin(x)}{2}$$

✓ Solution by Mathematica

Time used: 0.084 (sec). Leaf size: 39

DSolve[y''[x]-2*I*y'[x]-y[x]==Exp[I*x]-2*Exp[-I*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}e^{-ix}(1 + e^{2ix}(x^2 + 2c_2x + 2c_1))$$

11 Chapter 2. Linear equations with constant coefficients. Page 93

11.1	problem 1(a)	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		99
11.2	problem 1(b)																											1	.00
11.3	problem 1(c)																											. 1	.01
11.4	problem 1(d)																											1	02
11.5	problem 1(e)																											1	.03
11.6	problem $1(f)$.																											. 1	04
11.7	problem 1(g)																											1	05
11.8	problem 1(h)																											1	06
11.9	problem 1(i).																											. 1	.07

11.1 problem 1(a)

Internal problem ID [5243]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - \cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)+4*y(x)=cos(x),y(x), singsol=all)

$$y(x) = \sin(2x) c_2 + \cos(2x) c_1 + \frac{\cos(x)}{3}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 26

DSolve[y''[x]+4*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\cos(x)}{3} + c_1 \cos(2x) + c_2 \sin(2x)$$

11.2 problem 1(b)

Internal problem ID [5244]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - \sin(2x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+4*y(x)=sin(2*x),y(x), singsol=all)

$$y(x) = \sin(2x) c_2 + \cos(2x) c_1 - \frac{x \cos(2x)}{4}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 33

DSolve[y''[x]+4*y[x]==Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \left(-\frac{x}{4} + c_1\right)\cos(2x) + \frac{1}{8}(1 + 16c_2)\sin(x)\cos(x)$$

11.3 problem 1(c)

Internal problem ID [5245]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y - 3e^{2x} - 4e^{-x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

dsolve(diff(y(x),x\$2)-4*y(x)=3*exp(2*x)+4*exp(-x),y(x), singsol=all)

$$y(x) = e^{2x}c_2 + e^{-2x}c_1 + \frac{3(-1+4x)e^{2x}}{16} - \frac{4e^{-x}}{3}$$

✓ Solution by Mathematica

Time used: 0.164 (sec). Leaf size: 81

DSolve[y''[x]-4*y[x]==3*exp[2*x]+4*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} \left(\int_1^x -\frac{1}{4} e^{K[2]} \left(3e^{K[2]} \exp(2K[2]) + 4 \right) dK[2] \right.$$
$$\left. + e^{4x} \left(\int_1^x \frac{1}{4} e^{-3K[1]} \left(3e^{K[1]} \exp(2K[1]) + 4 \right) dK[1] + c_1 \right) + c_2 \right)$$

11.4 problem 1(d)

Internal problem ID [5246]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y' - 2y - x^2 - \cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve(diff(y(x),x$2)-diff(y(x),x)-2*y(x)=x^2+cos(x),y(x), singsol=all)$

$$y(x) = e^{2x}c_2 + e^{-x}c_1 - \frac{x^2}{2} - \frac{3\cos(x)}{10} - \frac{\sin(x)}{10} + \frac{x}{2} - \frac{3}{4}$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 45

 $DSolve[y''[x]-y'[x]-2*y[x] == x^2 + Cos[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-x} + c_2 e^{2x} + \frac{1}{20} (-5(2(x-1)x+3) - 2\sin(x) - 6\cos(x))$$

11.5 problem 1(e)

Internal problem ID [5247]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y - x^2 e^{3x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(diff(y(x),x$2)+9*y(x)=x^2*exp(3*x),y(x), singsol=all)$

$$y(x) = \sin(3x) c_2 + \cos(3x) c_1 + \frac{(3x-1)^2 e^{3x}}{162}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 36

DSolve[y''[x]+9*y[x]==x^2*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{162}e^{3x}(1-3x)^2 + c_1\cos(3x) + c_2\sin(3x)$$

11.6 problem 1(f)

Internal problem ID [5248]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + y - x e^x \cos(2x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(x),x\$2)+y(x)=x*exp(x)*cos(2*x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + \cos(x) c_1 + \frac{(-5x + 11) e^x \cos(2x)}{50} + \frac{e^x \left(x - \frac{1}{5}\right) \sin(2x)}{5}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 45

DSolve[y''[x]+y[x]==x*Exp[x]*Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{50}e^x(2(5x-1)\sin(2x) + (11-5x)\cos(2x)) + c_1\cos(x) + c_2\sin(x)$$

11.7 problem 1(g)

Internal problem ID [5249]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + iy' + 2y - 2\cosh(2x) - e^{-2x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve(diff(y(x),x\$2)+I*diff(y(x),x)+2*y(x)=2*cosh(2*x)+exp(-2*x),y(x), singsol=all)

$$y(x) = c_2 e^{ix} + e^{-2ix}c_1 + \left(\frac{3}{10} + \frac{i}{10}\right)e^{-2x} + \left(\frac{3}{20} - \frac{i}{20}\right)e^{2x}$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 47

 $DSolve[y''[x]+I*y'[x]+2*y[x] == 2*Cosh[2*x]+Exp[-2*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-2ix} + c_2 e^{ix} + \frac{1}{20}((9+i)\cosh(2x) - (3+3i)\sinh(2x))$$

11.8 problem 1(h)

Internal problem ID [5250]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(h).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _quadrature]]

$$y''' - x^2 - e^{-x}\sin(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

 $dsolve(diff(y(x),x$3)=x^2+exp(-x)*sin(x),y(x), singsol=all)$

$$y(x) = \frac{x^5}{60} + \frac{c_1 x^2}{2} - \frac{\cos(x) e^{-x}}{4} + \frac{\sin(x) e^{-x}}{4} + xc_2 + c_3$$

✓ Solution by Mathematica

Time used: 0.11 (sec). Leaf size: 41

DSolve[y'''[x] == x^2 + Exp[-x] * Sin[x], y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^5}{60} + c_3 x^2 + c_2 x + \frac{1}{4} e^{-x} (\sin(x) - \cos(x)) + c_1$$

11.9 problem 1(i)

Internal problem ID [5251]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(i).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + 3y'' + 3y' + y - x^2 e^{-x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

 $dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=x^2*exp(-x),y(x), singsol=all)$

$$y(x) = \frac{x^5 e^{-x}}{60} + e^{-x} c_1 + c_2 e^{-x} x + c_3 e^{-x} x^2$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 34

 $DSolve[y'''[x]+3*y''[x]+3*y''[x]+y[x]==x^2*Exp[-x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{1}{60}e^{-x}(x^5 + 60c_3x^2 + 60c_2x + 60c_1)$$

12	Chapter 3. Linear equations with variable
	coefficients. Page 108

12.1	problem 1(c.1)												 						1	.09
12.2	problem 1(c.2)												 						1	.10
12.3	problem 2																		1	111

12.1 problem 1(c.1)

Internal problem ID [5252]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 108

Problem number: 1(c.1).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + \frac{y'}{x} - \frac{y}{x^2} = 0$$

With initial conditions

$$[y(1) = 1, y'(1) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

$$y(x) = \frac{1}{2x} + \frac{x}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 17

$$y(x) \to \frac{x^2 + 1}{2x}$$

12.2 problem 1(c.2)

Internal problem ID [5253]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 108

Problem number: 1(c.2).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + \frac{y'}{x} - \frac{y}{x^2} = 0$$

With initial conditions

$$[y(1) = 0, y'(1) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

$$y(x) = -\frac{1}{2x} + \frac{x}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 17

$$y(x) \to \frac{x^2 - 1}{2x}$$

12.3 problem 2

Internal problem ID [5254]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 108

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(3x-1)^2y'' + (9x-3)y' - 9y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve((3*x-1)^2*diff(y(x),x$2)+(9*x-3)*diff(y(x),x)-9*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x - \frac{1}{3}} + \left(x - \frac{1}{3}\right)c_2$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 39

 $DSolve[(3*x-1)^2*y''[x]+(9*x-3)*y'[x]-9*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1(-9x^2 + 6x - 2) - 3ic_2x(3x - 2)}{6x - 2}$$

13 Chapter 3. Linear equations with variable coefficients. Page 121

13.1	problem 1(a)											•		•							113
13.2	problem 1(b)																				114
13.3	problem 1(c)																				115
13.4	problem 1(d)																				116
13.5	problem 1(e)																				117
13.6	problem 1(f).																				118
13 7	problem 2																				119

13.1 problem 1(a)

Internal problem ID [5255]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$x^2y'' - 7y'x + 15y = 0$$

Given that one solution of the ode is

$$y_1 = x^3$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve([x^2*diff(y(x),x$2)-7*x*diff(y(x),x)+15*y(x)=0,x^3],y(x), singsol=all)$

$$y(x) = c_2 x^5 + c_1 x^3$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 18

 $DSolve[x^2*y''[x]-7*x*y'[x]+15*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^3 \left(c_2 x^2 + c_1 \right)$$

13.2 problem 1(b)

Internal problem ID [5256]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y'x + y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve([x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,x],y(x), singsol=all)$

$$y(x) = c_1 x + c_2 x \ln(x)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 15

 $DSolve[x^2*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x(c_2 \log(x) + c_1)$$

13.3 problem 1(c)

Internal problem ID [5257]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y'x + (4x^2 - 2)y = 0$$

Given that one solution of the ode is

$$y_1 = e^{x^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve([diff(y(x),x$2)-4*x*diff(y(x),x)+(4*x^2-2)*y(x)=0, exp(x^2)],y(x), singsol=all)$

$$y(x) = c_1 e^{x^2} + c_2 x e^{x^2}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 18

 $DSolve[y''[x]-4*x*y'[x]+(4*x^2-2)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{x^2}(c_2x + c_1)$$

13.4 problem 1(d)

Internal problem ID [5258]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Laguerre]

$$xy'' - y'(1+x) + y = 0$$

Given that one solution of the ode is

$$y_1 = e^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([x*diff(y(x),x\$2)-(x+1)*diff(y(x),x)+y(x)=0,exp(x)],y(x), singsol=all)

$$y(x) = c_1(x+1) + e^x c_2$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 19

 $DSolve[x*y''[x]-(x+1)*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^x - c_2(x+1)$$

13.5 problem 1(e)

Internal problem ID [5259]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Gegenbauer]

$$(-x^2 + 1) y'' - 2y'x + 2y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

 $dsolve([(1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,x],y(x), singsol=all)$

$$y(x) = c_1 x + c_2 \left(\frac{\ln(x-1)x}{2} - \frac{\ln(x+1)x}{2} + 1 \right)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 19

 $DSolve[(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_2(x\operatorname{arctanh}(x) - 1) + c_1 x$$

13.6 problem 1(f)

Internal problem ID [5260]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 1(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y'x + 2y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve([diff(y(x),x\$2)-2*x*diff(y(x),x)+2*y(x)=0,x],y(x), singsol=all)

$$y(x) = c_1 x + c_2 \left(\sqrt{\pi} \text{ erfi } (x) x - e^{x^2} \right)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 31

 $DSolve[y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{\pi}c_2 x \text{erfi}(x) + c_2 e^{x^2} + 2c_1 x$$

13.7 problem 2

Internal problem ID [5261]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 2.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

Solve

$$x^3y''' - 3x^2y'' + 6y'x - 6y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $dsolve([x^3*diff(y(x),x$3)-3*x^2*diff(y(x),x$2)+6*x*diff(y(x),x)-6*y(x)=0,x],y(x)], singsol=al(x,y) = (x,y) = (x,y)$

$$y(x) = c_2 x^3 + c_1 x^2 + c_3 x$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 19

 $DSolve[x^3*y'''[x]-3*x^2*y''[x]+6*x*y'[x]-6*y[x]==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x(x(c_3x + c_2) + c_1)$$

14	Chapter 3. Linear equations with variable
	coefficients. Page 124

14.1	problem ?	1	 																			121
14.2	problem 2	2	 									. .										122
14.3	problem 3	3	 																		-	123

14.1 problem 1

Internal problem ID [5262]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 124

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' - 2y = 0$$

Given that one solution of the ode is

$$y_1 = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve([x^2*diff(y(x),x$2)-2*y(x)=0,x^2],y(x), singsol=all)$

$$y(x) = c_1 x^2 + \frac{c_2}{x}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 18

DSolve[x^2*y''[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_2 x^3 + c_1}{x}$$

14.2 problem 2

Internal problem ID [5263]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 124

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y'x + y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve([x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,x],y(x), singsol=all)$

$$y(x) = c_1 x + c_2 x \ln(x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 15

 $DSolve[x^2*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x(c_2 \log(x) + c_1)$$

14.3 problem 3

Internal problem ID [5264]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 124

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + 4y'x + (x^{2} + 2)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $\label{local-control} \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x$\$2$}) + 4 * \mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x}) + (2 + \mbox{x^2}) * \mbox{y}(\mbox{x}) = 0, \\ \mbox{y}(\mbox{x}), \mbox{singsol=all}) \\$

$$y(x) = \frac{c_1 \sin(x)}{x^2} + \frac{c_2 \cos(x)}{x^2}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 37

 $DSolve[x^2*y''[x]+4*x*y'[x]+(2+x^2)*y[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) o rac{2c_1e^{-ix} - ic_2e^{ix}}{2x^2}$$

15 Chapter 3. Linear equations with variable coefficients. Page 130

15.1	problem	$1(\epsilon$	a)																		•		125
15.2	$\operatorname{problem}$	1(1	b)																				126
15.3	$\operatorname{problem}$	1(0	c)												 								127
15.4	$\operatorname{problem}$	1(0	d)																				128
15.5	$\operatorname{problem}$	$1(\epsilon$	e)																				129
15.6	$\operatorname{problem}$	2																					130
15.7	$\operatorname{problem}$	3																					131
15.8	$\operatorname{problem}$	4													 								132
15.9	$\operatorname{problem}$	5																					133
15.10)problem	6																					134
15.11	l problem	7																					135
15.12	2 problem	8													 								136

15.1 problem 1(a)

Internal problem ID [5265]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Hermite]

$$y'' - y'x + y = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 - \frac{1}{24}x^4\right)y(0) + D(y)(0)x + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 27

 $A symptotic D Solve Value [y''[x]-x*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(-\frac{x^4}{24} - \frac{x^2}{2} + 1 \right) + c_2 x$$

15.2 problem 1(b)

Internal problem ID [5266]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 3x^2y' - xy = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

Order:=6; $dsolve(diff(y(x),x$2)+3*x^2*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 + \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{6}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+3*x^2*y'[x]-x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{6} \right) + c_1 \left(\frac{x^3}{6} + 1 \right)$$

15.3 problem 1(c)

Internal problem ID [5267]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$y'' - x^2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)-x^2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^4}{12}\right)y(0) + \left(x + \frac{1}{20}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]-x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_2 \left(rac{x^5}{20} + x
ight) + c_1 \left(rac{x^4}{12} + 1
ight)$$

15.4 problem 1(d)

Internal problem ID [5268]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + x^3y' + x^2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; $dsolve(diff(y(x),x$2)+x^3*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{x^4}{12}\right)y(0) + \left(x - \frac{1}{10}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x^3*y'[x]+x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^5}{10} \right) + c_1 \left(1 - \frac{x^4}{12} \right)$$

15.5 problem 1(e)

Internal problem ID [5269]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{120} - \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{24} - \frac{x^2}{2} + 1\right)$$

15.6 problem 2

Internal problem ID [5270]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + (x-1)^2 y' - (x-1) y = 0$$

With initial conditions

$$[y(1) = 1, y'(1) = 0]$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

Order:=6; dsolve([diff(y(x),x\$2)+(x-1)^2*diff(y(x),x)-(x-1)*y(x)=0,y(1) = 1, D(y)(1) = 0],y(x),type='se

$$y(x) = 1 + \frac{1}{6}(x-1)^3 + O((x-1)^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 14

AsymptoticDSolveValue[$\{y''[x]+(x-1)^2*y'[x]-(x-1)*y[x]==0,\{y[1]==1,y'[1]==0\}\},y[x],\{x,1,5\}$]

$$y(x) \to \frac{1}{6}(x-1)^3 + 1$$

15.7 problem 3

Internal problem ID [5271]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$\left(x^2+1\right)y''+y=0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6; dsolve([(1+x^2)*diff(y(x),x\$2)+y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);

$$y(x) = x - \frac{1}{6}x^3 + \frac{7}{120}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

 $\label{eq:asymptoticDSolveValue} A symptotic DSolveValue [\{(1+x^2)*y''[x]+y[x]==0, \{y[0]==0,y'[0]==1\}\}, y[x], \{x,0,5\}]$

$$y(x) \to \frac{7x^5}{120} - \frac{x^3}{6} + x$$

15.8 problem 4

Internal problem ID [5272]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + e^x y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

Order:=6; dsolve([diff(y(x),x\$2)+exp(x)*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);

$$y(x) = 1 - \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{40}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[$\{y''[x]+Exp[x]*y[x]==0,\{\}\},y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_2igg(-rac{x^5}{60} - rac{x^4}{12} - rac{x^3}{6} + xigg) + c_1igg(rac{x^5}{40} - rac{x^3}{6} - rac{x^2}{2} + 1igg)$$

15.9 problem 5

Internal problem ID [5273]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 5.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - xy = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0, y''(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 14

dsolve([diff(y(x),x\$3)-x*y(x)=0,y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 0],y(x), singsol=all)

$$y(x) = \text{hypergeom}\left(\left[\right], \left[\frac{1}{2}, \frac{3}{4}\right], \frac{x^4}{64}\right)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 21

 $DSolve[\{y'''[x]-x*y[x]==0,\{y[0]==1,y'[0]==0,y''[0]==0\}\},y[x],x,IncludeSingularSolutions -> Trigonometric Trigono$

$$y(x)
ightarrow {}_{0}F_{2}igg(;rac{1}{2},rac{3}{4};rac{x^{4}}{64}igg)$$

15.10problem 6

Internal problem ID [5274]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Gegenbauer]

$$(-x^2 + 1) y'' - 2y'x + \alpha(\alpha + 1) y = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.0 (sec). Leaf size: 101

Order:=6; $dsolve((1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+alpha*(alpha+1)*y(x)=0,y(x),type='series',x=0)$

$$y(x) = \left(1 - \frac{\alpha(\alpha + 1)x^{2}}{2} + \frac{\alpha(\alpha^{3} + 2\alpha^{2} - 5\alpha - 6)x^{4}}{24}\right)y(0) + \left(x - \frac{(\alpha^{2} + \alpha - 2)x^{3}}{6} + \frac{(\alpha^{4} + 2\alpha^{3} - 13\alpha^{2} - 14\alpha + 24)x^{5}}{120}\right)D(y)(0) + O(x^{6})$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 127

$$y(x) \to c_2 \left(\frac{1}{60} \left(-\alpha^2 - \alpha \right) x^5 - \frac{1}{120} \left(-\alpha^2 - \alpha \right) \left(\alpha^2 + \alpha \right) x^5 - \frac{1}{10} \left(\alpha^2 + \alpha \right) x^5 + \frac{x^5}{5} - \frac{1}{6} \left(\alpha^2 + \alpha \right) x^3 + \frac{x^3}{3} + x \right) + c_1 \left(\frac{1}{24} \left(\alpha^2 + \alpha \right)^2 x^4 - \frac{1}{4} \left(\alpha^2 + \alpha \right) x^4 - \frac{1}{2} \left(\alpha^2 + \alpha \right) x^2 + 1 \right)$$

15.11 problem 7

Internal problem ID [5275]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer, [_2nd_order, _linear, '_with_symmetry_[0,F(x)]']]

$$(-x^{2}+1) y'' - y'x + \alpha^{2}y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve((1-x^2)*diff(y(x),x$2)-x*diff(y(x),x)+alpha^2*y(x)=0,y(x), singsol=all)$

$$y(x)=c_1\Big(x+\sqrt{x^2-1}\Big)^{-lpha}+c_2\Big(x+\sqrt{x^2-1}\Big)^{lpha}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 45

 $DSolve[(1-x^2)*y''[x]-x*y'[x]+\\[Alpha]^2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \cosh\left(\alpha \operatorname{arctanh}\left(\frac{x}{\sqrt{x^2 - 1}}\right)\right) + ic_2 \sinh\left(\alpha \operatorname{arctanh}\left(\frac{x}{\sqrt{x^2 - 1}}\right)\right)$$

15.12 problem 8

Internal problem ID [5276]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y'x + 2\alpha y = 0$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 31

dsolve(diff(y(x),x\$2)-2*x*diff(y(x),x)+2*alpha*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 x \text{ KummerM}\left(\frac{1}{2} - \frac{\alpha}{2}, \frac{3}{2}, x^2\right) + c_2 x \text{ KummerU}\left(\frac{1}{2} - \frac{\alpha}{2}, \frac{3}{2}, x^2\right)$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 45

 $DSolve[(1-x^2)*y''[x]-x*y'[x]+\\[Alpha]^2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \cosh\left(\alpha \operatorname{arctanh}\left(\frac{x}{\sqrt{x^2 - 1}}\right)\right) + ic_2 \sinh\left(\alpha \operatorname{arctanh}\left(\frac{x}{\sqrt{x^2 - 1}}\right)\right)$$

16 Chapter 4. Linear equations with Regular Singular Points. Page 149

16.1	problem 1(a)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	138
16.2	problem 1(b)																											139
16.3	problem 1(c)																											140
16.4	problem 1(d)																											141
16.5	problem 1(e)																											142
16.6	problem 2(a)																							•				143
16.7	problem 2(b)																											144
16.8	problem 2(c)																											145
16.9	problem 2(d)																											146

16.1 problem 1(a)

Internal problem ID [5277]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$x^2y'' + 2y'x - 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x\$2)+2*x*diff(y(x),x)-6*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^2 + \frac{c_2}{x^3}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 18

 $DSolve[x^2*y''[x]+2*x*y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_2 x^5 + c_1}{x^3}$$

16.2 problem 1(b)

Internal problem ID [5278]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$2x^2y'' + y'x - y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

 $dsolve(2*x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{\sqrt{x}} + xc_2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

 $DSolve[2*x^2*y''[x]+x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{c_1}{\sqrt{x}} + c_2 x$$

16.3 problem 1(c)

Internal problem ID [5279]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$x^2y'' + y'x - 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^2 + \frac{c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 18

DSolve $[x^2*y''[x]+x*y'[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{c_2 x^4 + c_1}{x^2}$$

16.4 problem 1(d)

Internal problem ID [5280]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - 5y'x + 9y - x^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

 $dsolve(x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+9*y(x)=x^2,y(x), singsol=all)$

$$y(x) = c_2 x^3 + x^3 \ln(x) c_1 + x^2$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 22

DSolve $[x^2*y''[x]-5*x*y'[x]+9*y[x]==x^2,y[x],x$, IncludeSingularSolutions -> True]

$$y(x) \to x^2(c_1x + 3c_2x\log(x) + 1)$$

16.5 problem 1(e)

Internal problem ID [5281]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 1(e).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _linear, _homogeneous]]

$$x^{3}y''' + 2x^{2}y'' - y'x + y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x^3*diff(y(x),x\$3)+2*x^2*diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + xc_2 + c_3x\ln(x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

 $DSolve[x^3*y'''[x]+2*x^2*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow rac{c_1}{x} + c_2 x + c_3 x \log(x)$$

16.6 problem 2(a)

Internal problem ID [5282]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 2(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + y'x + 4y - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+4*y(x)=1,y(x), singsol=all)$

$$y(x) = \sin(2\ln(x)) c_2 + \cos(2\ln(x)) c_1 + \frac{1}{4}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 25

 $DSolve[x^2*y''[x]+x*y'[x]+4*y[x]==1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \cos(2\log(x)) + c_2 \sin(2\log(x)) + \frac{1}{4}$$

16.7 problem 2(b)

Internal problem ID [5283]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 2(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - 3y'x + 5y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \sin(\ln(x)) x^2 + c_2 \cos(\ln(x)) x^2$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 22

 $DSolve[x^2*y''[x]-3*x*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow x^2(c_2 \cos(\log(x)) + c_1 \sin(\log(x)))$$

16.8 problem 2(c)

Internal problem ID [5284]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 2(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^{2}y'' + (-2 - i)xy' + 3iy = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $dsolve(x^2*diff(y(x),x$2)-(2+I)*x*diff(y(x),x)+3*I*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^3 + c_2 x^i$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 20

 $DSolve[x^2*y''[x]-(2+I)*x*y'[x]+3*I*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x^i + c_2 x^3$$

16.9 problem 2(d)

Internal problem ID [5285]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 2(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + y'x - 4\pi y - x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-4*Pi*y(x)=x,y(x), singsol=all)$

$$y(x) = x^{-2\sqrt{\pi}}c_2 + x^{2\sqrt{\pi}}c_1 - \frac{x}{4\pi - 1}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 39

DSolve[x^2*y''[x]+x*y'[x]-4*Pi*y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 x^{2\sqrt{\pi}} + c_1 x^{-2\sqrt{\pi}} + \frac{x}{1 - 4\pi}$$

17 Chapter 4. Linear equations with Regular Singular Points. Page 154

17.1	problem 1(a)											•								148
17.2	problem 1(b)																			149
17.3	problem 1(c)																			151
17.4	problem 1(d)																			152
17.5	problem 1(e)																			153
17.6	problem $1(f)$.																			154
17.7	problem 1(g)																			155
17.8	problem 2(b)																			157
17.9	problem 2(c)																			158
17.10	problem 2(d)																			159

17.1 problem 1(a)

Internal problem ID [5286]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + (x^{2} + x)y' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 53

Order:=8; $dsolve(x^2*diff(y(x),x$2)+(x+x^2)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x \left(1 - \frac{1}{3} x + \frac{1}{12} x^2 - \frac{1}{60} x^3 + \frac{1}{360} x^4 - \frac{1}{2520} x^5 + \frac{1}{20160} x^6 - \frac{1}{181440} x^7 + \mathcal{O}\left(x^8\right) \right) + \frac{c_2 \left(-2 + 2x - x^2 + \frac{1}{3} x^3 - \frac{1}{12} x^4 + \frac{1}{60} x^5 - \frac{1}{360} x^6 + \frac{1}{2520} x^7 + \mathcal{O}\left(x^8\right) \right)}{x}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 92

AsymptoticDSolveValue[$x^2*y''[x]+(x+x^2)*y'[x]-y[x]==0,y[x],\{x,0,7\}$]

$$y(x) \rightarrow c_1 \left(\frac{x^5}{720} - \frac{x^4}{120} + \frac{x^3}{24} - \frac{x^2}{6} + \frac{x}{2} + \frac{1}{x} - 1 \right) + c_2 \left(\frac{x^7}{20160} - \frac{x^6}{2520} + \frac{x^5}{360} - \frac{x^4}{60} + \frac{x^3}{12} - \frac{x^2}{3} + x \right)$$

17.2 problem 1(b)

Internal problem ID [5287]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3x^2y'' + y'x^6 + 2xy = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 70

Order:=8; dsolve(3*x^2*diff(y(x),x\$2)+x^6*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 - \frac{1}{3} x + \frac{1}{27} x^2 - \frac{1}{486} x^3 + \frac{1}{14580} x^4 - \frac{7291}{656100} x^5 + \frac{225991}{41334300} x^6 - \frac{2522341}{3472081200} x^7 + O\left(x^8\right) \right) + c_2 \left(\ln\left(x\right) \left(-\frac{2}{3} x + \frac{2}{9} x^2 - \frac{2}{81} x^3 + \frac{1}{729} x^4 - \frac{1}{21870} x^5 + \frac{7291}{984150} x^6 - \frac{225991}{62001450} x^7 + O\left(x^8\right) \right) + \left(1 - \frac{1}{3} x^2 + \frac{14}{243} x^3 - \frac{35}{8748} x^4 + \frac{101}{656100} x^5 + \frac{69199}{14762250} x^6 + \frac{19882543}{4340101500} x^7 + O\left(x^8\right) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 121

AsymptoticDSolveValue[$3*x^2*y''[x]+x^6*y'[x]+2*x*y[x]==0,y[x],\{x,0,7\}$]

$$y(x) \to c_1 \left(\frac{x(7291x^5 - 45x^4 + 1350x^3 - 24300x^2 + 218700x - 656100) \log(x)}{984150} + \frac{-80332x^6 + 5895x^5 - 158625x^4 + 2430000x^3 - 16402500x^2 + 19683000x + 29524500}{29524500} \right) + c_2 \left(\frac{225991x^7}{41334300} - \frac{7291x^6}{656100} + \frac{x^5}{14580} - \frac{x^4}{486} + \frac{x^3}{27} - \frac{x^2}{3} + x \right)$$

17.3 problem 1(c)

Internal problem ID [5288]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - 5y' + 3x^2y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=8; dsolve(x^2*diff(y(x),x\$2)-5*diff(y(x),x)+3*x^2*y(x)=0,y(x),type='series',x=0);

No solution found

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 106

AsymptoticDSolveValue[$x^2*y''[x]-5*y'[x]+3*x^2*y[x]==0,y[x],\{x,0,7\}$]

$$y(x) \to c_1 \left(\frac{339x^7}{8750} + \frac{49x^6}{1250} + \frac{18x^5}{625} + \frac{3x^4}{50} + \frac{x^3}{5} + 1 \right)$$
$$+ c_2 e^{-5/x} \left(-\frac{302083x^7}{218750} + \frac{5243x^6}{6250} - \frac{357x^5}{625} + \frac{113x^4}{250} - \frac{49x^3}{125} + \frac{6x^2}{25} - \frac{2x}{5} + 1 \right) x^2$$

17.4 problem 1(d)

Internal problem ID [5289]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$xy'' + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 70

Order:=8; dsolve(x*diff(y(x),x\$2)+4*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 - 2x + \frac{4}{3} x^2 - \frac{4}{9} x^3 + \frac{4}{45} x^4 - \frac{8}{675} x^5 + \frac{16}{14175} x^6 - \frac{8}{99225} x^7 + \mathcal{O}\left(x^8\right) \right)$$

$$+ c_2 \left(\ln\left(x\right) \left((-4) x + 8x^2 - \frac{16}{3} x^3 + \frac{16}{9} x^4 - \frac{16}{45} x^5 + \frac{32}{675} x^6 - \frac{64}{14175} x^7 + \mathcal{O}\left(x^8\right) \right)$$

$$+ \left(1 - 12x^2 + \frac{112}{9} x^3 - \frac{140}{27} x^4 + \frac{808}{675} x^5 - \frac{1792}{10125} x^6 + \frac{9056}{496125} x^7 + \mathcal{O}\left(x^8\right) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 119

AsymptoticDSolveValue $[x*y''[x]+4*y[x]==0,y[x],\{x,0,7\}]$

$$y(x) \to c_1 \left(\frac{4}{675} x \left(8x^5 - 60x^4 + 300x^3 - 900x^2 + 1350x - 675 \right) \log(x) + \frac{-2272x^6 + 15720x^5 - 70500x^4 + 180000x^3 - 202500x^2 + 40500x + 10125}{10125} \right) + c_2 \left(\frac{16x^7}{14175} - \frac{8x^6}{675} + \frac{4x^5}{45} - \frac{4x^4}{9} + \frac{4x^3}{3} - 2x^2 + x \right)$$

17.5 problem 1(e)

Internal problem ID [5290]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Gegenbauer]

$$(-x^2+1)y'' - 2y'x + 2y = 0$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 49

$$y(x) = \left(-\frac{5}{2}(x-1) - \frac{3}{8}(x-1)^2 + \frac{1}{12}(x-1)^3 - \frac{5}{192}(x-1)^4 + \frac{3}{320}(x-1)^5 - \frac{7}{1920}(x-1)^6 + \frac{1}{672}(x-1)^7 + \mathcal{O}\left((x-1)^8\right)\right)c_2 + \left(1 + (x-1) + \mathcal{O}\left((x-1)^8\right)\right)(\ln(x-1)c_2 + c_1)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 86

AsymptoticDSolveValue[$(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],\{x,1,7\}$]

$$y(x) \to c_1 x + c_2 \left(\frac{1}{672} (x-1)^7 - \frac{7(x-1)^6}{1920} + \frac{3}{320} (x-1)^5 - \frac{5}{192} (x-1)^4 + \frac{1}{12} (x-1)^3 - \frac{3}{8} (x-1)^2 - 2(x-1) + \frac{1-x}{2} + x \log(x-1) \right)$$

17.6 problem 1(f)

Internal problem ID [5291]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$(x^{2} + x - 2)^{2}y'' + 3(2 + x)y' + (x - 1)y = 0$$

With the expansion point for the power series method at x = -2.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 57

Order:=8; dsolve((x^2+x-2)^2*diff(y(x),x\$2)+3*(x+2)*diff(y(x),x)+(x-1)*y(x)=0,y(x),type='series',x=-2);

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 148

AsymptoticDSolveValue[$(x^2+x-2)^2*y''[x]+3*(x+2)*y'[x]+(x-1)*y[x]==0,y[x],\{x,-2,7\}$]

$$y(x) \rightarrow c_{1}(x+2) \left(-\frac{52991201(x+2)^{7}}{11727918720000} - \frac{5797423(x+2)^{6}}{290405606400} - \frac{709507(x+2)^{5}}{8066822400} - \frac{11093(x+2)^{4}}{28304640} - \frac{53(x+2)^{3}}{29484} - \frac{11(x+2)^{2}}{1260} + \frac{1}{21}(-x-2) + 1 \right) \\ + \frac{c_{2}\left(\frac{899971067(x+2)^{7}}{458981357990400} + \frac{16965493(x+2)^{6}}{942818849280} + \frac{778801(x+2)^{5}}{6235574400} + \frac{10517(x+2)^{4}}{12597120} + \frac{271(x+2)^{3}}{43740} + \frac{23}{324}(x+2)^{2} - \frac{5(x+2)}{9} + 1 \right)}{\sqrt[3]{x+2}}$$

17.7 problem 1(g)

Internal problem ID [5292]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'\sin(x) + y\cos(x) = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.14 (sec). Leaf size: 53

Order:=8; $dsolve(x^2*diff(y(x),x$2)+sin(x)*diff(y(x),x)+cos(x)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x^{-i} \left(1 + \left(\frac{1}{12} + \frac{i}{24} \right) x^2 + \left(\frac{29}{28800} + \frac{67i}{28800} \right) x^4 + \left(-\frac{893}{14515200} - \frac{17i}{4838400} \right) x^6 + O\left(x^8 \right) \right) + c_2 x^i \left(1 + \left(\frac{1}{12} - \frac{i}{24} \right) x^2 + \left(\frac{29}{28800} - \frac{67i}{28800} \right) x^4 + \left(-\frac{893}{14515200} + \frac{17i}{4838400} \right) x^6 + O\left(x^8 \right) \right)$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 112

 $\label{eq:loss_symptotic_solve} A symptotic_DSolveValue[x^2*y''[x]+Sin[x]*y'[x]+Cos[x]*y[x]==0,y[x],\{x,0,7\}]$

$$y(x) \to c_1 x^{-i} \left(\left(-\frac{26459}{59222016000} - \frac{12449i}{7402752000} \right) x^8 - \left(\frac{893}{14515200} + \frac{17i}{4838400} \right) x^6 \right.$$

$$\left. + \left(\frac{29}{28800} + \frac{67i}{28800} \right) x^4 + \left(\frac{1}{12} + \frac{i}{24} \right) x^2 + 1 \right)$$

$$+ c_2 x^i \left(\left(-\frac{26459}{59222016000} + \frac{12449i}{7402752000} \right) x^8 - \left(\frac{893}{14515200} - \frac{17i}{4838400} \right) x^6 \right.$$

$$\left. + \left(\frac{29}{28800} - \frac{67i}{28800} \right) x^4 + \left(\frac{1}{12} - \frac{i}{24} \right) x^2 + 1 \right)$$

17.8 problem 2(b)

Internal problem ID [5293]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 2(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$x^2y'' + y'x + \left(x^2 - \frac{1}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 39

Order:=8; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x \left(1 - \frac{1}{6}x^2 + \frac{1}{120}x^4 - \frac{1}{5040}x^6 + \mathcal{O}\left(x^8\right)\right) + c_2 \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 - \frac{1}{720}x^6 + \mathcal{O}\left(x^8\right)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 76

AsymptoticDSolveValue[$x^2*y''[x]+x*y'[x]+(x^2-1/4)*y[x]==0,y[x],\{x,0,7\}$]

$$y(x) \to c_1 \left(-\frac{x^{11/2}}{720} + \frac{x^{7/2}}{24} - \frac{x^{3/2}}{2} + \frac{1}{\sqrt{x}} \right) + c_2 \left(-\frac{x^{13/2}}{5040} + \frac{x^{9/2}}{120} - \frac{x^{5/2}}{6} + \sqrt{x} \right)$$

17.9 problem 2(c)

Internal problem ID [5294]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 2(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^{2}y'' + (4x^{4} - 5x)y' + (x^{2} + 2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 51

Order:=8; dsolve(4*x^2*diff(y(x),x\$2)+(4*x^4-5*x)*diff(y(x),x)+(x^2+2)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{1}{4}} \left(1 - \frac{1}{2} x^2 - \frac{1}{15} x^3 + \frac{1}{72} x^4 + \frac{137}{1950} x^5 + \frac{307}{36720} x^6 - \frac{7169}{3439800} x^7 + \mathcal{O}\left(x^8\right) \right) + c_2 x^2 \left(1 - \frac{1}{30} x^2 - \frac{8}{57} x^3 + \frac{1}{2760} x^4 + \frac{64}{12825} x^5 + \frac{147181}{9753840} x^6 - \frac{4037}{72268875} x^7 + \mathcal{O}\left(x^8\right) \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 106

$$y(x) \to c_1 \left(-\frac{4037x^7}{72268875} + \frac{147181x^6}{9753840} + \frac{64x^5}{12825} + \frac{x^4}{2760} - \frac{8x^3}{57} - \frac{x^2}{30} + 1 \right) x^2$$
$$+ c_2 \left(-\frac{7169x^7}{3439800} + \frac{307x^6}{36720} + \frac{137x^5}{1950} + \frac{x^4}{72} - \frac{x^3}{15} - \frac{x^2}{2} + 1 \right) \sqrt[4]{x}$$

17.10 problem 2(d)

Internal problem ID [5295]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 2(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$x^{2}y'' + (-3x^{2} + x)y' + e^{x}y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 85

Order:=8; $dsolve(x^2*diff(y(x),x$2)+(x-3*x^2)*diff(y(x),x)+exp(x)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x^{-i} \left(1 + (1-i) x + \left(\frac{7}{16} - \frac{13i}{16} \right) x^2 + \left(\frac{7}{39} - \frac{395i}{936} \right) x^3 + \left(\frac{2117}{29952} - \frac{5197i}{29952} \right) x^4 \right.$$

$$+ \left(\frac{5521}{217152} - \frac{642043i}{10857600} \right) x^5 + \left(\frac{782461}{97718400} - \frac{8813057i}{521164800} \right) x^6$$

$$+ \left(\frac{1238071931}{580056422400} - \frac{3271304833i}{812078991360} \right) x^7 + \mathcal{O}\left(x^8 \right) \right)$$

$$+ c_2 x^i \left(1 + (1+i) x + \left(\frac{7}{16} + \frac{13i}{16} \right) x^2 + \left(\frac{7}{39} + \frac{395i}{936} \right) x^3 + \left(\frac{2117}{29952} + \frac{5197i}{29952} \right) x^4$$

$$+ \left(\frac{5521}{217152} + \frac{642043i}{10857600} \right) x^5 + \left(\frac{782461}{97718400} + \frac{8813057i}{521164800} \right) x^6$$

$$+ \left(\frac{1238071931}{580056422400} + \frac{3271304833i}{812078991360} \right) x^7 + \mathcal{O}\left(x^8 \right) \right)$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 122

$$y(x) \rightarrow \left(\frac{1}{97718400} + \frac{11i}{1563494400}\right) c_1 x^i \left((1302761 + 756800i)x^6 + (4384656 + 2763936i)x^5 + (12605400 + 8289000i)x^4 + (31161600 + 19814400i)x^3 + (66096000 + 33955200i)x^2 + (111974400 + 20736000i)x + (66355200 - 45619200i)\right)$$

$$-\left(\frac{11}{1563494400} + \frac{i}{97718400}\right) c_2 x^{-i} \left((756800 + 1302761i)x^6 + (2763936 + 4384656i)x^5 + (8289000 + 12605400i)x^4 + (19814400 + 31161600i)x^3 + (33955200 + 66096000i)x^2 + (20736000 + 111974400i)x - (45619200 - 66355200i)\right)$$

18	Chapter 4. Linear equations with Regular
	Singular Points. Page 159

18.1	problem 1(a)	 							 									16	32
18.2	problem 1(b)	 							 									16	33
18.3	problem 2																	. 16	34

18.1 problem 1(a)

Internal problem ID [5296]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 159

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$3x^2y'' + 5y'x + 3xy = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 52

Order:=8; $dsolve(3*x^2*diff(y(x),x$2)+5*x*diff(y(x),x)+3*x*y(x)=0,y(x),type='series',x=0); \\$

$$y(x) = \frac{c_2 \left(1 - \frac{3}{5}x + \frac{9}{80}x^2 - \frac{9}{880}x^3 + \frac{27}{49280}x^4 - \frac{81}{4188800}x^5 + \frac{81}{167552000}x^6 - \frac{243}{26975872000}x^7 + \mathcal{O}\left(x^8\right)\right)x^{\frac{2}{3}} + c_1 \left(1 - 3x + \frac{27}{3}x^2 + \frac{1}{2}x^2\right)}{x^{\frac{2}{3}}}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 111

AsymptoticDSolveValue $[3*x^2*y''[x]+5*x*y'[x]+3*x*y[x]==0,y[x],\{x,0,7\}]$

$$y(x) \to c_1 \left(-\frac{243x^7}{26975872000} + \frac{81x^6}{167552000} - \frac{81x^5}{4188800} + \frac{27x^4}{49280} - \frac{9x^3}{880} + \frac{9x^2}{80} - \frac{3x}{5} + 1 \right) + \frac{c_2 \left(-\frac{243x^7}{619673600} + \frac{81x^6}{4659200} - \frac{81x^5}{145600} + \frac{27x^4}{2240} - \frac{9x^3}{56} + \frac{9x^2}{8} - 3x + 1 \right)}{x^{2/3}}$$

18.2 problem 1(b)

Internal problem ID [5297]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 159

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Lienard]

$$x^2y'' + y'x + x^2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

Order:=8; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);

$$y(x) = (\ln(x) c_2 + c_1) \left(1 - \frac{1}{4}x^2 + \frac{1}{64}x^4 - \frac{1}{2304}x^6 + O(x^8) \right) + \left(\frac{1}{4}x^2 - \frac{3}{128}x^4 + \frac{11}{13824}x^6 + O(x^8) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 81

AsymptoticDSolveValue $[x^2*y''[x]+x*y'[x]+x^2*y[x]==0,y[x],\{x,0,7\}]$

$$y(x) \to c_1 \left(-\frac{x^6}{2304} + \frac{x^4}{64} - \frac{x^2}{4} + 1 \right) + c_2 \left(\frac{11x^6}{13824} - \frac{3x^4}{128} + \frac{x^2}{4} + \left(-\frac{x^6}{2304} + \frac{x^4}{64} - \frac{x^2}{4} + 1 \right) \log(x) \right)$$

18.3 problem 2

Internal problem ID [5298]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 159

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$x^2y'' + y'e^x x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 85

Order:=8; $dsolve(x^2*diff(y(x),x$2)+x*exp(x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);$

$$\begin{split} y(x) &= c_1 x^{-i} \left(1 + \left(-\frac{2}{5} + \frac{i}{5} \right) x + \left(\frac{3}{80} + \frac{i}{80} \right) x^2 + \left(\frac{67}{9360} - \frac{9i}{1040} \right) x^3 \right. \\ &\quad + \left(-\frac{103}{149760} - \frac{229i}{149760} \right) x^4 + \left(-\frac{2831}{7238400} + \frac{607i}{4343040} \right) x^5 \\ &\quad + \left(-\frac{59077}{1563494400} + \frac{26063i}{260582400} \right) x^6 + \left(\frac{22952047}{2030197478400} + \frac{8634893i}{580056422400} \right) x^7 \\ &\quad + \mathcal{O} \left(x^8 \right) \right) + c_2 x^i \left(1 + \left(-\frac{2}{5} - \frac{i}{5} \right) x + \left(\frac{3}{80} - \frac{i}{80} \right) x^2 + \left(\frac{67}{9360} + \frac{9i}{1040} \right) x^3 \\ &\quad + \left(-\frac{103}{149760} + \frac{229i}{149760} \right) x^4 + \left(-\frac{2831}{7238400} - \frac{607i}{4343040} \right) x^5 \\ &\quad + \left(-\frac{59077}{1563494400} - \frac{26063i}{260582400} \right) x^6 + \left(\frac{22952047}{2030197478400} - \frac{8634893i}{580056422400} \right) x^7 \\ &\quad + \mathcal{O} \left(x^8 \right) \right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 122

 $A symptotic DSolve Value [x^2*y''[x]+x*Exp[x]*y'[x]+y[x]==0,y[x],\{x,0,7\}]$

$$y(x) \rightarrow \left(\frac{11}{1563494400} + \frac{i}{97718400}\right) c_2 x^{-i} \left((4913 + 7070i)x^6 - (8568 - 32328i)x^5 - (132840 + 24120i)x^4 - (247680 + 869760i)x^3 + (2540160 - 1918080i)x^2 - (4976640 - 35665920i)x + (45619200 - 66355200i)\right)$$

$$-\left(\frac{1}{97718400} + \frac{11i}{1563494400}\right) c_1 x^i \left((7070 + 4913i)x^6 + (32328 - 8568i)x^5 - (24120 + 132840i)x^4 - (869760 + 247680i)x^3 - (1918080 - 2540160i)x^2 + (35665920 - 4976640i)x - (66355200 - 45619200i)\right)$$

19 Chapter 4. Linear equations with Regular Singular Points. Page 166

19.1	problem 1(i) .		•	•		•	•		•	•		•			•				•	•	•		•		167
19.2	problem 1(i	i)																								168
19.3	problem 1(i	ii)																								169
19.4	problem 3(a	$\mathbf{a})$																	•	•						170
19.5	problem 3(b	o)																		•						17
19.6	problem 3(c	e)																	•	•						172
19.7	problem 3(d	(\mathbf{f})																		•						173
19.8	problem 3(e	e)																	•	•						174
19.9	problem 3(f	·) .																 								175

19.1 problem 1(i)

Internal problem ID [5299]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 1(i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2x^{2}y'' + (x^{2} + 5x)y' + (x^{2} - 2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 55

Order:=8; dsolve(2*x^2*diff(y(x),x\$2)+(5*x+x^2)*diff(y(x),x)+(x^2-2)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2 x^{\frac{5}{2}} \left(1 - \frac{1}{14} x - \frac{25}{504} x^2 + \frac{197}{33264} x^3 + \frac{1921}{3459456} x^4 - \frac{11653}{103783680} x^5 + \frac{12923}{21171870720} x^6 + \frac{917285}{1126343522304} x^7 + \mathcal{O}\left(x^8\right)\right) + c_1\left(\frac{1}{12} x^2 + \frac{1}{12} x^2 + \frac{1}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 116

$$y(x) \to c_1 \sqrt{x} \left(\frac{917285x^7}{1126343522304} + \frac{12923x^6}{21171870720} - \frac{11653x^5}{103783680} + \frac{1921x^4}{3459456} + \frac{197x^3}{33264} - \frac{25x^2}{504} - \frac{x}{14} + 1 \right) + \frac{c_2 \left(-\frac{4x^7}{35721} + \frac{101x^6}{45360} - \frac{x^5}{540} - \frac{19x^4}{216} + \frac{2x^3}{9} + \frac{5x^2}{6} - \frac{2x}{3} + 1 \right)}{x^2}$$

19.2 problem 1(ii)

Internal problem ID [5300]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 1(ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^{2}y'' - 4y'e^{x}x + 3y\cos(x) = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 81

Order:=8; dsolve(4*x^2*diff(y(x),x\$2)-4*x*exp(x)*diff(y(x),x)+3*cos(x)*y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= \sqrt{x} \left(x \left(1 + \frac{3}{4}x + \frac{1}{2}x^2 + \frac{103}{384}x^3 + \frac{669}{5120}x^4 + \frac{54731}{921600}x^5 + \frac{123443}{4838400}x^6 + \frac{30273113}{2890137600}x^7 \right. \\ &\qquad \qquad + \mathcal{O}\left(x^8 \right) \right) c_1 \\ &\qquad \qquad + c_2 \left(\ln\left(x \right) \left(\frac{1}{2}x + \frac{3}{8}x^2 + \frac{1}{4}x^3 + \frac{103}{768}x^4 + \frac{669}{10240}x^5 + \frac{54731}{1843200}x^6 + \frac{123443}{9676800}x^7 + \mathcal{O}\left(x^8 \right) \right) \\ &\qquad \qquad + \left(1 + x + \frac{3}{4}x^2 + \frac{59}{144}x^3 + \frac{5701}{27648}x^4 + \frac{17519}{184320}x^5 + \frac{6852157}{165888000}x^6 + \frac{417496453}{24385536000}x^7 + \mathcal{O}\left(x^8 \right) \right) \right) \end{split}$$

Solution by Mathematica

Time used: 0.139 (sec). Leaf size: 146

$$y(x) \to c_2 \left(\frac{123443x^{15/2}}{4838400} + \frac{54731x^{13/2}}{921600} + \frac{669x^{11/2}}{5120} + \frac{103x^{9/2}}{384} + \frac{x^{7/2}}{2} + \frac{3x^{5/2}}{4} + \frac{3x^{5/2}}{4} + \frac{x^{3/2}}{4} \right) + c_1 \left(\frac{(54731x^5 + 120420x^4 + 247200x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} + \frac{(1926367x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} \right) + c_1 \left(\frac{(54731x^5 + 120420x^4 + 247200x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} + \frac{(1926367x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} \right) + c_1 \left(\frac{(54731x^5 + 120420x^4 + 247200x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} + \frac{(1926367x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} \right) + c_1 \left(\frac{(54731x^5 + 120420x^4 + 247200x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} + \frac{(1926367x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} \right) + c_1 \left(\frac{(54731x^5 + 120420x^4 + 247200x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} + \frac{(1926367x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} \right) + c_1 \left(\frac{(54731x^5 + 120420x^4 + 247200x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} + \frac{(1926367x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} \right) + c_2 \left(\frac{(54731x^5 + 120420x^4 + 247200x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} + \frac{(1926367x^3 + 460800x^2 + 691200x + 921600)x^{3/2}\log(x)}{1843200} \right) + c_3 \left(\frac{(54731x^3 + 460800x^2 + 691200x + 921600)x^{3/2}}{1843200} + \frac{(54731x^3 + 460800x^2 + 691200x + 921600)x^{3/2}}{1843200} + \frac{(54731x^3 + 460800x^2 + 691200x + 921600)x^{3/2}}{18400} + \frac{(54731x^3 + 46080x^2 + 691200x + 921600)x^{3/2}}{184000} + \frac{(54731x^2 + 691200x + 921600)x^{3/2}}{184000} +$$

19.3 problem 1(iii)

Internal problem ID [5301]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 1(iii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(-x^2 + 1) x^2 y'' + 3(x^2 + x) y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 81

Order:=8; $dsolve((1-x^2)*x^2*diff(y(x),x$2)+3*(x+x^2)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{(\ln(x)c_2 + c_1)(1 + 3x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{16}x^4 - \frac{43}{1200}x^5 + \frac{161}{7200}x^6 - \frac{1837}{117600}x^7 + O(x^8)) + ((-9)x - \frac{7}{2}x^2 + \frac{7}{9}x^8 + \frac{1}{12}x^8 + \frac{1}{12$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 84

$$y(x) \to c_2 \left(\frac{53x^7}{630} + \frac{5x^6}{24} + \frac{2x^5}{15} - \frac{x^4}{4} - \frac{2x^3}{3} + x \right) + c_1 \left(-\frac{19x^7}{420} - \frac{x^6}{144} + \frac{3x^5}{20} + \frac{5x^4}{24} - \frac{x^2}{2} + 1 \right)$$

19.4 problem 3(a)

Internal problem ID [5302]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 3(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$x^{2}y'' + 3y'x + (1+x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 81

Order:=8; $dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0); \\$

$$y(x) = \frac{(\ln(x)c_2 + c_1)(1 - x + \frac{1}{4}x^2 - \frac{1}{36}x^3 + \frac{1}{576}x^4 - \frac{1}{14400}x^5 + \frac{1}{518400}x^6 - \frac{1}{25401600}x^7 + O(x^8)) + (2x - \frac{3}{4}x^2 + \frac{1}{16}x^4 - \frac{1}{14400}x^5 + \frac{1}{518400}x^6 - \frac{1}{25401600}x^7 + O(x^8))}{x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 164

AsymptoticDSolveValue $[x^2*y''[x]+3*x*y'[x]+(1+x)*y[x]==0,y[x],\{x,0,7\}]$

$$y(x) \rightarrow \frac{c_1 \left(-\frac{x^7}{25401600} + \frac{x^6}{518400} - \frac{x^5}{14400} + \frac{x^4}{576} - \frac{x^3}{36} + \frac{x^2}{4} - x + 1\right)}{x} + c_2 \left(\frac{\frac{121x^7}{592704000} - \frac{49x^6}{5184000} + \frac{137x^5}{432000} - \frac{25x^4}{3456} + \frac{11x^3}{108} - \frac{3x^2}{4} + 2x}{x} + \frac{\left(-\frac{x^7}{25401600} + \frac{x^6}{518400} - \frac{x^5}{14400} + \frac{x^4}{576} - \frac{x^3}{36} + \frac{x^2}{4} - x + 1\right) \log(x)}{x}\right)$$

19.5 problem 3(b)

Internal problem ID [5303]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 3(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + 2x^2y' - 2y = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.016 (sec). Leaf size: 53

Order:=8; $dsolve(x^2*diff(y(x),x$2)+2*x^2*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x^2 \left(1 - x + \frac{3}{5} x^2 - \frac{4}{15} x^3 + \frac{2}{21} x^4 - \frac{1}{35} x^5 + \frac{1}{135} x^6 - \frac{8}{4725} x^7 + \mathcal{O}\left(x^8\right) \right) + \frac{c_2 \left(12 - 12x + 8x^3 - 8x^4 + \frac{24}{5} x^5 - \frac{32}{15} x^6 + \frac{16}{21} x^7 + \mathcal{O}\left(x^8\right) \right)}{x}$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 87

AsymptoticDSolveValue[$x^2*y''[x]+2*x^2*y'[x]-2*y[x]==0,y[x],\{x,0,7\}$]

$$y(x) \rightarrow c_1 \left(-\frac{8x^5}{45} + \frac{2x^4}{5} - \frac{2x^3}{3} + \frac{2x^2}{3} + \frac{1}{x} - 1 \right) + c_2 \left(\frac{x^8}{135} - \frac{x^7}{35} + \frac{2x^6}{21} - \frac{4x^5}{15} + \frac{3x^4}{5} - x^3 + x^2 \right)$$

19.6 problem 3(c)

Internal problem ID [5304]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 3(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + 5y'x + (-x^{3} + 3)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=8; dsolve(x^2*diff(y(x),x\$2)+5*x*diff(y(x),x)+(3-x^3)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 \left(1 + \frac{1}{15}x^3 + \frac{1}{720}x^6 + \mathcal{O}\left(x^8\right)\right)}{x} + \frac{c_2 \left(-2 - \frac{2}{3}x^3 - \frac{1}{36}x^6 + \mathcal{O}\left(x^8\right)\right)}{x^3}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 40

AsymptoticDSolveValue $[x^2*y''[x]+5*x*y'[x]+(3-3*x^3)*y[x]==0,y[x],\{x,0,7\}]$

$$y(x) \to c_1 \left(\frac{x^3}{8} + \frac{1}{x^3} + 1\right) + c_2 \left(\frac{x^5}{80} + \frac{x^2}{5} + \frac{1}{x}\right)$$

19.7 problem 3(d)

Internal problem ID [5305]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 3(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - 2x(1+x)y' + 2(1+x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 53

Order:=8; dsolve(x^2*diff(y(x),x\$2)-2*x*(x+1)*diff(y(x),x)+2*(x+1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^2 \left(1 + x + \frac{2}{3} x^2 + \frac{1}{3} x^3 + \frac{2}{15} x^4 + \frac{2}{45} x^5 + \frac{4}{315} x^6 + \frac{1}{315} x^7 + \mathcal{O}\left(x^8\right) \right)$$
$$+ c_2 x \left(1 + 2x + 2x^2 + \frac{4}{3} x^3 + \frac{2}{3} x^4 + \frac{4}{15} x^5 + \frac{4}{45} x^6 + \frac{8}{315} x^7 + \mathcal{O}\left(x^8\right) \right)$$

✓ Solution by Mathematica

Time used: 0.08 (sec). Leaf size: 92

AsymptoticDSolveValue $[x^2*y''[x]-2*x*(x+1)*y'[x]+2*(1+x)*y[x]==0,y[x],\{x,0,7\}]$

$$y(x) \to c_1 \left(\frac{4x^7}{45} + \frac{4x^6}{15} + \frac{2x^5}{3} + \frac{4x^4}{3} + 2x^3 + 2x^2 + x \right)$$
$$+ c_2 \left(\frac{4x^8}{315} + \frac{2x^7}{45} + \frac{2x^6}{15} + \frac{x^5}{3} + \frac{2x^4}{3} + x^3 + x^2 \right)$$

19.8 problem 3(e)

Internal problem ID [5306]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 3(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Bessel]

$$x^{2}y'' + y'x + (x^{2} - 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 53

Order:=8; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{1}{8} x^2 + \frac{1}{192} x^4 - \frac{1}{9216} x^6 + \mathcal{O}\left(x^8\right)\right) + c_2 \left(\ln\left(x\right) \left(x^2 - \frac{1}{8} x^4 + \frac{1}{192} x^6 + \mathcal{O}\left(x^8\right)\right) + \left(-2 + \frac{3}{32} x^4 - \frac{7}{1152} x^6\right)}{x}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 75

AsymptoticDSolveValue $[x^2*y''[x]+x*y'[x]+(x^2-1)*y[x]==0,y[x],\{x,0,7\}]$

$$y(x) \to c_2 \left(-\frac{x^7}{9216} + \frac{x^5}{192} - \frac{x^3}{8} + x \right)$$

+ $c_1 \left(\frac{5x^6 - 90x^4 + 288x^2 + 1152}{1152x} - \frac{1}{384}x(x^4 - 24x^2 + 192)\log(x) \right)$

19.9 problem 3(f)

Internal problem ID [5307]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 3(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, '

$$x^{2}y'' - 2x^{2}y' + (4x - 2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 55

Order:=8; $dsolve(x^2*diff(y(x),x$2)-2*x^2*diff(y(x),x)+(4*x-2)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x^2 (1 + O(x^8)) + \frac{c_2 (\ln(x) ((-48) x^3 + O(x^8)) + (12 + 36x + 72x^2 + 88x^3 - 24x^4 - \frac{24}{5}x^5 - \frac{16}{15}x^6 - \frac{8}{35}x^7 + O(x^8)))}{x}$$

✓ Solution by Mathematica

Time used: 0.1 (sec). Leaf size: 58

AsymptoticDSolveValue[$x^2*y''[x]-2*x^2*y'[x]+(4*x-2)*y[x]==0,y[x],\{x,0,7\}$]

$$y(x) \to c_2 x^2 + c_1 \left(-4x^2 \log(x) - \frac{4x^6 + 18x^5 + 90x^4 - 390x^3 - 270x^2 - 135x - 45}{45x} \right)$$

20	Chapter 4. Linear equations with Regular	
	Singular Points. Page 182	
20.1	problem 4	177

20.1 problem 4

Internal problem ID [5308]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 182

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Gegenbauer]

$$(-x^2+1)y''-2y'x+2y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

$$y(x) = \left(1 - x^2 - \frac{1}{3}x^4 - \frac{1}{5}x^6\right)y(0) + D(y)(0)x + O(x^8)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 32

AsymptoticDSolveValue[$(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],\{x,0,7\}$]

$$y(x) \to c_1 \left(-\frac{x^6}{5} - \frac{x^4}{3} - x^2 + 1 \right) + c_2 x$$

21 Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

21.1 problem 1(a)		•			•	•	•				•					•	•	•	•	•	•	179
21.2 problem 1(b)																						180
21.3 problem 1(c)																						181
21.4 problem 1(d)																						184
21.5 problem 1(e)			 																			185
21.6 problem 2(a)																						186
21.7 problem 3(a)			 																			187
21.8 problem 3(b)																						188
21.9 problem 4(a)																						189
21.10problem 4(b)																						190
21.11 problem 4(c)																						191
21.12problem 4(d)																						192
21.13problem 5(a)																						193
21.14problem 5(b)			 																			194
21.15problem 5(c)																						195
21.16 problem 6(b)			 																			196

21.1 problem 1(a)

Internal problem ID [5309]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 1(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - x^2 y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(x),x)=x^2*y(x),y(x), singsol=all)$

$$y(x) = c_1 \mathrm{e}^{\frac{x^3}{3}}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 22

DSolve[y'[x]==x^2*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{\frac{x^3}{3}}$$
$$y(x) \to 0$$

21.2 problem 1(b)

Internal problem ID [5310]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 1(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$yy'-x=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(y(x)*diff(y(x),x)=x,y(x), singsol=all)

$$y(x) = \sqrt{x^2 + c_1}$$
$$y(x) = -\sqrt{x^2 + c_1}$$

✓ Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 35

DSolve[y[x]*y'[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\sqrt{x^2 + 2c_1}$$

 $y(x) \rightarrow \sqrt{x^2 + 2c_1}$

21.3 problem 1(c)

Internal problem ID [5311]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 1(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{x^2 + x}{y - y^2} = 0$$

✓ Solution by Maple

y(x)

Time used: 0.016 (sec). Leaf size: 720

 $dsolve(diff(y(x),x)=(x+x^2)/(y(x)-y(x)^2),y(x), singsol=all)$

$$= \frac{\left(1 - 4x^3 - 6x^2 - 12c_1 + 2\sqrt{4x^6 + 12x^5 + 24c_1x^3 + 9x^4 + 36c_1x^2 - 2x^3 + 36c_1^2 - 3x^2 - 6c_1}\right)^{\frac{1}{3}}}{2} \\ + \frac{1}{2\left(1 - 4x^3 - 6x^2 - 12c_1 + 2\sqrt{4x^6 + 12x^5 + 24c_1x^3 + 9x^4 + 36c_1x^2 - 2x^3 + 36c_1^2 - 3x^2 - 6c_1}\right)^{\frac{1}{3}}}{4} \\ + \frac{1}{2} \\ y(x) = \\ -\frac{\left(1 - 4x^3 - 6x^2 - 12c_1 + 2\sqrt{4x^6 + 12x^5 + 24c_1x^3 + 9x^4 + 36c_1x^2 - 2x^3 + 36c_1^2 - 3x^2 - 6c_1}\right)^{\frac{1}{3}}}{4} \\ + \frac{1}{2} \\ -\frac{i\sqrt{3}\left(\frac{\left(1 - 4x^3 - 6x^2 - 12c_1 + 2\sqrt{4x^6 + 12x^5 + 24c_1x^3 + 9x^4 + 36c_1x^2 - 2x^3 + 36c_1^2 - 3x^2 - 6c_1}\right)^{\frac{1}{3}}}}{2} \\ -\frac{1}{2} \\ -\frac{\left(1 - 4x^3 - 6x^2 - 12c_1 + 2\sqrt{4x^6 + 12x^5 + 24c_1x^3 + 9x^4 + 36c_1x^2 - 2x^3 + 36c_1^2 - 3x^2 - 6c_1}\right)^{\frac{1}{3}}}}{4} \\ -\frac{1}{4} \\$$

✓ Solution by Mathematica

Time used: 4.069 (sec). Leaf size: 346

 $DSolve[y'[x] == (x+x^2)/(y[x]-y[x]^2), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2} \left(\sqrt[3]{-4x^3 - 6x^2 + \sqrt{-1 + (-4x^3 - 6x^2 + 1 + 12c_1)^2} + 1 + 12c_1} \right.$$

$$+ \frac{1}{\sqrt[3]{-4x^3 - 6x^2 + \sqrt{-1 + (-4x^3 - 6x^2 + 1 + 12c_1)^2} + 1 + 12c_1}} + 1 \right)$$

$$y(x) \to \frac{1}{8} \left(2i \left(\sqrt{3} + i \right) \sqrt[3]{-4x^3 - 6x^2 + \sqrt{-1 + (-4x^3 - 6x^2 + 1 + 12c_1)^2} + 1 + 12c_1} \right.$$

$$+ \frac{-2 - 2i\sqrt{3}}{\sqrt[3]{-4x^3 - 6x^2 + \sqrt{-1 + (-4x^3 - 6x^2 + 1 + 12c_1)^2} + 1 + 12c_1}} + 4 \right)$$

$$y(x) \to \frac{1}{8} \left(-2 \left(1 + i\sqrt{3} \right) \sqrt[3]{-4x^3 - 6x^2 + \sqrt{-1 + (-4x^3 - 6x^2 + 1 + 12c_1)^2} + 1 + 12c_1} \right.$$

$$+ \frac{2i(\sqrt{3} + i)}{\sqrt[3]{-4x^3 - 6x^2 + \sqrt{-1 + (-4x^3 - 6x^2 + 1 + 12c_1)^2} + 1 + 12c_1}} + 4 \right)$$

21.4 problem 1(d)

Internal problem ID [5312]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 1(d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - \frac{\mathrm{e}^{-y+x}}{\mathrm{e}^x + 1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x)=exp(x-y(x))/(1+exp(x)),y(x), singsol=all)

$$y(x) = \ln(\ln(e^x + 1) + c_1)$$

✓ Solution by Mathematica

Time used: 0.465 (sec). Leaf size: 15

 $DSolve[y'[x] == Exp[x-y[x]]/(1+Exp[x]), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \log(\log(e^x + 1) + c_1)$$

21.5 problem 1(e)

Internal problem ID [5313]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

 ${f Section}$: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 1(e).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - x^2y^2 + 4x^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

 $dsolve(diff(y(x),x)=x^2*y(x)^2-4*x^2,y(x), singsol=all)$

$$y(x) = -\frac{2\left(e^{\frac{4x^3}{3}}c_1 + 1\right)}{-1 + e^{\frac{4x^3}{3}}c_1}$$

✓ Solution by Mathematica

Time used: 0.247 (sec). Leaf size: 30

DSolve[y'[x]==x^2*y[x]^2-4*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o -2 anh\left(rac{2}{3}(x^3 + 3c_1)
ight)$$
 $y(x) o -2$
 $y(x) o 2$

21.6 problem 2(a)

Internal problem ID [5314]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 2(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 = 0$$

With initial conditions

$$[y(x_0) = y_0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

 $dsolve([diff(y(x),x)=y(x)^2,y(x_0) = y_0],y(x), singsol=all)$

$$y(x) = -\frac{y_0}{-1 + (x - x_0) y_0}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 16

 $DSolve[\{y'[x]==x2*y[x],\{y[x0]==y0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to y0e^{x2(x-x0)}$$

21.7 problem 3(a)

Internal problem ID [5315]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 3(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2\sqrt{y} = 0$$

With initial conditions

$$[y(x_0) = y_0]$$

Solution by Maple

Time used: 0.094 (sec). Leaf size: 28

 $dsolve([diff(y(x),x)=2*sqrt(y(x)),y(x_0) = y_0],y(x), singsol=all)$

$$y(x) = (2x - 2x_0)\sqrt{y_0} + x^2 - 2xx_0 + x_0^2 + y_0$$

✓ Solution by Mathematica

Time used: 0.104 (sec). Leaf size: 33

 $\label{eq:DSolve} DSolve[\{y'[x]==2*Sqrt[y[x]],\{y[x0]==y0\}\},y[x],x,IncludeSingularSolutions \ -> \ True]$

$$y(x) \to \left(x - x0 + \sqrt{y0}\right)^2$$

$$y(x) \to \left(-x + x0 + \sqrt{y0}\right)^2$$

21.8 problem 3(b)

Internal problem ID [5316]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 3(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2\sqrt{y} = 0$$

With initial conditions

$$[y(x_0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=2*sqrt(y(x)),y(x_{0})=0],y(x), singsol=all)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 6

 $DSolve[\{y'[x]==2*Sqrt[y[x]],\{y[x0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

21.9 problem 4(a)

Internal problem ID [5317]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 4(a).

ODE order: 1.
ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `2nd\ type$

$$y' - \frac{y+x}{-y+x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve(diff(y(x),x)=(x+y(x))/(x-y(x)),y(x), singsol=all)

$$y(x) = \tan \left(\operatorname{RootOf} \left(-2\underline{Z} + \ln \left(\frac{1}{\cos \left(-Z \right)^2} \right) + 2\ln \left(x \right) + 2c_1 \right) \right) x$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 36

DSolve[y'[x] == (x+y[x])/(x-y[x]),y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\frac{1}{2}\log\left(\frac{y(x)^2}{x^2}+1\right) - \arctan\left(\frac{y(x)}{x}\right) = -\log(x) + c_1, y(x)\right]$$

21.10 problem 4(b)

Internal problem ID [5318]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 4(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$y' - \frac{y^2}{xy + x^2} = 0$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 20

 $dsolve(diff(y(x),x)=y(x)^2/(x*y(x)+x^2),y(x), singsol=all)$

$$y(x) = \mathrm{e}^{-\mathrm{LambertW}\left(rac{\mathrm{e}^{-c_1}}{x}
ight) - c_1}$$

Solution by Mathematica

Time used: 2.271 (sec). Leaf size: 21

 $DSolve[y'[x]==y[x]^2/(x*y[x]+x^2),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to xW\left(\frac{e^{c_1}}{x}\right)$$

$$y(x) \to 0$$

21.11 problem 4(c)

Internal problem ID [5319]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 4(c).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$y' - \frac{x^2 + xy + y^2}{x^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

 $dsolve(diff(y(x),x)=(x^2+x*y(x)+y(x)^2)/x^2,y(x), singsol=all)$

$$y(x) = \tan\left(\ln\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.184 (sec). Leaf size: 13

 $DSolve[y'[x] == (x^2 + x * y[x] + y[x]^2) / x^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \tan(\log(x) + c_1)$$

21.12 problem 4(d)

Internal problem ID [5320]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 4(d).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' - \frac{y + x e^{-\frac{2y}{x}}}{x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve(diff(y(x),x)=(y(x)+x*exp(-2*y(x)/x))/x,y(x), singsol=all)

$$y(x) = \frac{\ln(2\ln(x) + 2c_1)x}{2}$$

✓ Solution by Mathematica

Time used: 0.404 (sec). Leaf size: 18

 $DSolve[y'[x] == (y[x] + x*Exp[-2*y[x]/x])/x, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{1}{2}x \log(2(\log(x) + c_1))$$

21.13 problem 5(a)

Internal problem ID [5321]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 5(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$y' - \frac{x-y+2}{y+x-1} = 0$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 35

dsolve(diff(y(x),x)=(x-y(x)+2)/(x+y(x)-1),y(x), singsol=all)

$$y(x) = \frac{3}{2} - \frac{(2x+1)c_1 + \sqrt{2(2x+1)^2c_1^2 + 1}}{2c_1}$$

✓ Solution by Mathematica

Time used: 0.146 (sec). Leaf size: 49

DSolve[y'[x] == (x-y[x]+2)/(x+y[x]-1), y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to -x - \sqrt{2x(x+1) + 1 + c_1} + 1$$

 $y(x) \to -x + \sqrt{2x(x+1) + 1 + c_1} + 1$

21.14 problem 5(b)

Internal problem ID [5322]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 5(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$y' - \frac{2x + 3y + 1}{x - 2y - 1} = 0$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 59

dsolve(diff(y(x),x)=(2*x+3*y(x)+1)/(x-2*y(x)-1),y(x), singsol=all)

$$y(x) = -\frac{5}{14} - \frac{x}{2} + \frac{\sqrt{3}(7x - 1)\tan\left(\text{RootOf}\left(\sqrt{3}\ln\left(\frac{3(7x - 1)^2}{4} + \frac{3(7x - 1)^2\tan(\underline{Z})^2}{4}\right) + 2\sqrt{3}c_1 - 4\underline{Z}\right)\right)}{14}$$

✓ Solution by Mathematica

Time used: 0.116 (sec). Leaf size: 85

 $DSolve[y'[x] == (2*x+3*y[x]+1)/(x-2*y[x]-1), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$Solve \left[32\sqrt{3}\arctan\left(\frac{4y(x) + 5x + 1}{\sqrt{3}(-2y(x) + x - 1)}\right) = 3\left(8\log\left(\frac{4(7x^2 + 7y(x)^2 + (7x + 5)y(x) + x + 1)}{(1 - 7x)^2}\right) + 16\log(7x - 1) + 7c_1\right), y(x) \right]$$

21.15 problem 5(c)

Internal problem ID [5323]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

Problem number: 5(c).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$y' - \frac{y+x+1}{2x+2y-1} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve(diff(y(x),x)=(x+y(x)+1)/(2*x+2*y(x)-1),y(x), singsol=all)

$$y(x) = e^{-\text{LambertW}(-2e^{-3x}e^{3c_1}) - 3x + 3c_1} - x$$

✓ Solution by Mathematica

Time used: 4.024 (sec). Leaf size: 32

 $DSolve[y'[x] == (x+y[x]+1)/(2*x+2*y[x]-1), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -x - \frac{1}{2}W(-e^{-3x-1+c_1})$$

 $y(x) \rightarrow -x$

21.16 problem 6(b)

Internal problem ID [5324]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190 **Problem number**: 6(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, _Riccati]

$$y' - \frac{(y+x-1)^2}{2(2+x)^2} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)=1/2*((x+y(x)-1)/(x+2))^2,y(x), singsol=all)$

$$y(x) = 3 + \tan\left(\frac{\ln(x+2)}{2} + \frac{c_1}{2}\right)(x+2)$$

✓ Solution by Mathematica

Time used: 0.353 (sec). Leaf size: 57

 $DSolve[y'[x]==1/2*((x+y[x]-1)/(x+2))^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -i(x + (2+3i)) - \frac{4c_1(x+2)}{2^i(x+2)^i + 2ic_1}$$

 $y(x) \to ix + (3+2i)$

22 Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

22.1	problem 1((\mathbf{a}) .				•								 		•						198
22.2	problem 1((b)																			5	200
22.3	problem 1((\mathbf{c})																				201
22.4	problem 1((d)																			4	202
22.5	problem 1((e)																			. :	204
22.6	problem 1((f) .																			4	205
22.7	problem 1((\mathbf{g})																			4	206
22.8	problem 1((h)																			. :	207
22.9	problem 2((\mathbf{a})																			4	208
22.10	problem 2((b)																			4	210
22.11	problem 2((\mathbf{c})																				211
22.12	2 problem 20	(b)																			•	213

22.1 problem 1(a)

Internal problem ID [5325]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

Problem number: 1(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$2xy + \left(x^2 + 3y^2\right)y' = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 257

 $dsolve(2*x*y(x)+(x^2+3*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\frac{\left(108+12\sqrt{12c_1^3x^6+81}\right)^{\frac{1}{3}}}{\left(108+12\sqrt{12c_1^3x^6+81}\right)^{\frac{1}{3}}}}{\sqrt{c_1}}$$

$$y(x)$$

$$= \frac{\frac{\left(108+12\sqrt{12c_1^3x^6+81}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{x^2c_1}{\left(108+12\sqrt{12c_1^3x^6+81}\right)^{\frac{1}{3}}} - \frac{i\sqrt{3}\left(\frac{\left(108+12\sqrt{12c_1^3x^6+81}\right)^{\frac{1}{3}}}{6} + \frac{2x^2c_1}{\left(108+12\sqrt{12c_1^3x^6+81}\right)^{\frac{1}{3}}}\right)}{\sqrt{c_1}}$$

$$y(x)$$

$$y(x)$$

$$i\sqrt{3}\left(\frac{\left(108+12\sqrt{12c_1^3x^6+81}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{2x^2c_1}{\left(108+12\sqrt{12c_1^3x^6+81}\right)^{\frac{1}{3}}} + \frac{2x^2c_1}{\sqrt{c_1}}\right)}{\sqrt{c_1}}$$

$$=\frac{-\frac{\left(108+12\sqrt{12}c_{1}^{3}x^{6}+81\right)^{\frac{1}{3}}}{12}+\frac{x^{2}c_{1}}{\left(108+12\sqrt{12}c_{1}^{3}x^{6}+81\right)^{\frac{1}{3}}}+\frac{i\sqrt{3}\left(\frac{\left(108+12\sqrt{12}c_{1}^{3}x^{6}+81\right)^{3}}{6}+\frac{2x^{2}c_{1}}{\left(108+12\sqrt{12}c_{1}^{3}x^{6}+81\right)^{\frac{1}{3}}}\right)}{\sqrt{c_{1}}}$$

✓ Solution by Mathematica

Time used: 27.301 (sec). Leaf size: 396

 $DSolve[2*x*y[x]+(x^2+3*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{-2\sqrt[3]{3}x^2 + \sqrt[3]{2}(\sqrt{12x^6 + 81e^{2c_1}} + 9e^{c_1})^{2/3}}{6^{2/3}\sqrt[3]{\sqrt{12x^6 + 81e^{2c_1}} + 9e^{c_1}}}$$

$$y(x) \to \frac{\sqrt[3]{-1}\left(2\sqrt[3]{3}x^2 + \sqrt[3]{-2}(\sqrt{12x^6 + 81e^{2c_1}} + 9e^{c_1})^{2/3}\right)}{6^{2/3}\sqrt[3]{\sqrt{12x^6 + 81e^{2c_1}} + 9e^{c_1}}}$$

$$y(x) \to -\frac{\sqrt[3]{-1}\left(2\sqrt[3]{-3}x^2 + \sqrt[3]{2}(\sqrt{12x^6 + 81e^{2c_1}} + 9e^{c_1})^{2/3}\right)}{6^{2/3}\sqrt[3]{\sqrt{12x^6 + 81e^{2c_1}} + 9e^{c_1}}}$$

$$y(x) \to 0$$

$$y(x) \to 0$$

$$y(x) \to \frac{\sqrt[3]{x^6 - x^2}}{\sqrt[3]{\sqrt[3]{x^6}}}$$

$$y(x) \to \frac{(\sqrt{3} - 3i)x^2 - (\sqrt{3} + 3i)\sqrt[3]{x^6}}{6\sqrt[6]{x^6}}$$

$$y(x) \to \frac{(\sqrt{3} + 3i)x^2 - (\sqrt{3} - 3i)\sqrt[3]{x^6}}{6\sqrt[6]{x^6}}$$

22.2 problem 1(b)

Internal problem ID [5326]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

Problem number: 1(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$x^{2} + xy + (y + x)y' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve((x^2+x*y(x))+(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -x$$
$$y(x) = -\frac{x^2}{2} + c_1$$

✓ Solution by Mathematica

Time used: 0.127 (sec). Leaf size: 53

 $DSolve[(x^2+y[x])+(x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x - \sqrt{-\frac{2x^3}{3} + x^2 + c_1}$$

$$y(x) \to -x + \sqrt{-\frac{2x^3}{3} + x^2 + c_1}$$

22.3 problem 1(c)

Internal problem ID [5327]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

Problem number: 1(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$e^x + e^y (1+y) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

dsolve(exp(x)+(exp(y(x))*(y(x)+1))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \text{LambertW} (-c_1 - e^x)$$

✓ Solution by Mathematica

Time used: 60.16 (sec). Leaf size: 14

 $DSolve[Exp[x]+(Exp[y[x]]*(y[x]+1))*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow W(-e^x + c_1)$$

22.4 problem 1(d)

Internal problem ID [5328]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

Problem number: 1(d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$\cos(x)\cos(y)^2 - \sin(x)\sin(2y)y' = 0$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 25

 $dsolve(cos(x)*cos(y(x))^2-sin(x)*sin(2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \arccos\left(\frac{1}{\sqrt{c_1 \sin(x)}}\right)$$

$$y(x) = \pi - \arccos\left(\frac{1}{\sqrt{c_1 \sin(x)}}\right)$$

✓ Solution by Mathematica

Time used: 8.954 (sec). Leaf size: 89

DSolve[Cos[x]*Cos[y[x]]^2-Sin[x]*Sin[2*y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{\pi}{2}$$

$$y(x) \to -\arccos\left(-\frac{1}{4}c_1\sqrt{\cos(x)}\sqrt{\tan(x)}\csc(x)\right)$$

$$y(x) \to \arccos\left(-\frac{1}{4}c_1\sqrt{\cos(x)}\sqrt{\tan(x)}\csc(x)\right)$$

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{\pi}{2}$$

22.5 problem 1(e)

Internal problem ID [5329]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

Problem number: 1(e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y^3 x^2 - x^3 y^2 y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(x^2*y(x)^3-x^3*y(x)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = c_1 x$$

Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 19

DSolve $[x^2*y[x]^3-x^3*y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to 0$$

$$y(x) \to c_1 x$$

$$y(x) \to 0$$

22.6 problem 1(f)

Internal problem ID [5330]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

Problem number: 1(f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd type

$$x + y + (-y + x)y' = 0$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 49

dsolve((x+y(x))+(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{c_1 x - \sqrt{2c_1^2 x^2 + 1}}{c_1}$$

$$y(x) = \frac{c_1 x - \sqrt{2c_1^2 x^2 + 1}}{c_1}$$
$$y(x) = \frac{c_1 x + \sqrt{2c_1^2 x^2 + 1}}{c_1}$$

Solution by Mathematica

Time used: 0.429 (sec). Leaf size: 86

 $DSolve[(x+y[x])+(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x - \sqrt{2x^2 + e^{2c_1}}$$

$$y(x) \to x + \sqrt{2x^2 + e^{2c_1}}$$

$$y(x) \to x - \sqrt{2}\sqrt{x^2}$$

$$y(x) \rightarrow \sqrt{2}\sqrt{x^2} + x$$

22.7 problem 1(g)

Internal problem ID [5331]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

Problem number: 1(g).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [exact]

$$2e^{2x}y + 2x\cos(y) + (e^{2x} - x^2\sin(y))y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

$$\cos(y(x)) x^2 + y(x) e^{2x} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.416 (sec). Leaf size: 30

 $DSolve[(2*y[x]*Exp[2*x]+2*x*Cos[y[x]])+(Exp[2*x]-x^2*Sin[y[x]])*y'[x]==0,y[x],x,IncludeSingularity[x]=0,y[x]=0,y[x$

Solve
$$\left[2\left(\frac{1}{2}x^{2}\cos(y(x)) + \frac{1}{2}e^{2x}y(x)\right) = c_{1}, y(x)\right]$$

22.8 problem 1(h)

Internal problem ID [5332]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

Problem number: 1(h).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [linear]

$$3\ln(x) x^2 + x^2 + y + y'x = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

 $dsolve((3*x^2*ln(x)+x^2+y(x))+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-x^3 \ln(x) + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 19

 $DSolve[(3*x^2*Log[x]+x^2+y[x])+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{-x^3 \log(x) + c_1}{x}$$

22.9 problem 2(a)

Internal problem ID [5333]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

Problem number: 2(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2y^3 + 2 + 3xy^2y' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 99

 $dsolve((2*y(x)^3+2)+(3*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\left(\left(-x^2 + c_1\right)x\right)^{\frac{1}{3}}}{x}$$

$$y(x) = -\frac{\left(\left(-x^2 + c_1\right)x\right)^{\frac{1}{3}}}{2x} - \frac{i\sqrt{3}\left(\left(-x^2 + c_1\right)x\right)^{\frac{1}{3}}}{2x}$$

$$y(x) = -\frac{\left(\left(-x^2 + c_1\right)x\right)^{\frac{1}{3}}}{2x} + \frac{i\sqrt{3}\left(\left(-x^2 + c_1\right)x\right)^{\frac{1}{3}}}{2x}$$

Solution by Mathematica

Time used: 0.279 (sec). Leaf size: 215

 $DSolve[(3*y[x]^3+2)+(3*x*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{\sqrt[3]{-\frac{1}{3}}\sqrt[3]{-2x^3 + e^{9c_1}}}{x}$$

$$y(x) \to \frac{\sqrt[3]{-2x^3 + e^{9c_1}}}{\sqrt[3]{3}x}$$

$$y(x) \to \frac{(-1)^{2/3}\sqrt[3]{-2x^3 + e^{9c_1}}}{\sqrt[3]{3}x}$$

$$y(x) \to \sqrt[3]{-\frac{2}{3}}$$

$$y(x) \to -\sqrt[3]{\frac{2}{3}}$$

$$y(x) \to -(-1)^{2/3}\sqrt[3]{\frac{2}{3}}$$

$$y(x) \to \frac{\sqrt[3]{-\frac{2}{3}}x^2}{(-x^3)^{2/3}}$$

$$y(x) \to \frac{\sqrt[3]{\frac{2}{3}}\sqrt[3]{-x^3}}{x}$$

$$y(x) \to \frac{(-1)^{2/3}\sqrt[3]{\frac{2}{3}}\sqrt[3]{-x^3}}{x}$$

22.10 problem 2(b)

Internal problem ID [5334]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

Problem number: 2(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$-2y'\sin(y)\sin(x) + \cos(x)\cos(y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(cos(x)*cos(y(x))-2*sin(x)*sin(y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \arccos\left(\frac{1}{\sqrt{c_1 \sin(x)}}\right)$$
$$y(x) = \pi - \arccos\left(\frac{1}{\sqrt{c_1 \sin(x)}}\right)$$

✓ Solution by Mathematica

Time used: 0.505 (sec). Leaf size: 47

DSolve[Cos[x]*cos[y[x]]-(2*Sin[x]*Sin[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{\sin(K[1])}{\cos(K[1])} dK[1] \& \right] \left[\frac{1}{2} (\log(\tan(x)) + \log(\cos(x))) + c_1 \right]$$
$$y(x) \to \cos^{(-1)}(0)$$

22.11 problem 2(c)

Internal problem ID [5335]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

Problem number: 2(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'class G'],

$$5y^2x^3 + 2y + (3yx^4 + 2x)y' = 0$$

✓ Solution by Maple

Time used: 0.328 (sec). Leaf size: 347

 $\label{eq:dsolve} \\ \text{dsolve}((5*x^3*y(x)^2+2*y(x))+(3*x^4*y(x)+2*x)*diff(y(x),x)=0,y(x), \text{ singsol=all}) \\$

$$y(x) = \frac{\frac{\left(\frac{6\left(\left(108x^2 + 12\sqrt{-12c_1^4 + 81x^4}}\right)c_1\right)^{\frac{1}{3}}}{c_1} + \frac{72c_1}{\left(\left(108x^2 + 12\sqrt{-12c_1^4 + 81x^4}\right)c_1\right)^{\frac{1}{3}}}\right)^2}{1296} - 1}{x^3}$$

$$y(x) = \frac{\left(-\frac{3\left(\left(108x^2+12\sqrt{-12c_1^4+81x^4}\right)c_1\right)^{\frac{1}{3}}}{c_1} - \frac{36c_1}{\left(\left(108x^2+12\sqrt{-12c_1^4+81x^4}\right)c_1\right)^{\frac{1}{3}}} - 18i\sqrt{3}\left(\frac{\left(\left(108x^2+12\sqrt{-12c_1^4+81x^4}\right)c_1\right)^{\frac{1}{3}}}{6c_1} - \frac{2c_1}{\left(\left(108x^2+12\sqrt{-12c_1^4+81x^4}\right)c_1\right)^{\frac{1}{3}}} - \frac{2c_1}{\left(\left(108x^2+12\sqrt{-12c_1^4+81x^4}\right)c_1\right)^{\frac{1}{3}}}\right)} = \frac{1296}{x^3}$$

$$y(x) = \frac{\left(-\frac{3\left(\left(108x^2+12\sqrt{-12c_1^4+81x^4}\right)c_1\right)^{\frac{1}{3}}}{c_1} - \frac{36c_1}{\left(\left(108x^2+12\sqrt{-12c_1^4+81x^4}\right)c_1\right)^{\frac{1}{3}}} + 18i\sqrt{3}\left(\frac{\left(\left(108x^2+12\sqrt{-12c_1^4+81x^4}\right)c_1\right)^{\frac{1}{3}}}{6c_1} - \frac{2c_1}{\left(\left(108x^2+12\sqrt{-12c_1^4+81x^4}\right)c_1\right)^{\frac{1}{3}}} - \frac{2c_1}{\left(\left(108x$$

✓ Solution by Mathematica

Time used: 36.242 (sec). Leaf size: 400

$$y(x) = -2x^{2} + \frac{2x^{4}}{\sqrt[3]{\frac{27c_{1}x^{10}}{2} - x^{6} + \frac{3}{2}\sqrt{3}\sqrt{c_{1}x^{16}\left(-4 + 27c_{1}x^{4}\right)}}}} + 2^{2/3}\sqrt[3]{27c_{1}x^{10} - 2x^{6} + 3\sqrt{3}\sqrt{c_{1}x^{16}\left(-4 + 27c_{1}x^{4}\right)}}}$$

$$\rightarrow \frac{6x^{5}}{y(x)}$$

$$-4x^{2} - \frac{2\left(1+i\sqrt{3}\right)x^{4}}{\sqrt[3]{\frac{27c_{1}x^{10}}{2} - x^{6} + \frac{3}{2}\sqrt{3}\sqrt{c_{1}x^{16}\left(-4 + 27c_{1}x^{4}\right)}}}} + i2^{2/3}\left(\sqrt{3} + i\right)\sqrt[3]{27c_{1}x^{10} - 2x^{6} + 3\sqrt{3}\sqrt{c_{1}x^{16}\left(-4 + 27c_{1}x^{4}\right)}}}$$

$$\rightarrow \frac{12x^{5}}{\sqrt[3]{\frac{27c_{1}x^{10}}{2} - x^{6} + \frac{3}{2}\sqrt{3}\sqrt{c_{1}x^{16}\left(-4 + 27c_{1}x^{4}\right)}}}} + 2^{2/3}\left(1 + i\sqrt{3}\right)\sqrt[3]{27c_{1}x^{10} - 2x^{6} + 3\sqrt{3}\sqrt{c_{1}x^{16}\left(-4 + 27c_{1}x^{4}\right)}}} + 2^{2/3}\left(1 + i\sqrt{3}\right)\sqrt[3]{27c_{1}x^{10} - 2x^{6} + 3\sqrt{3}\sqrt{c_{1}x^{16}\left(-4 + 27c_{1}x^{4}\right)}}}$$

 $12x^{5}$

22.12 problem 2(d)

Internal problem ID [5336]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

Problem number: 2(d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$e^y + x e^y + x e^y y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $\label{eq:decomposition} \\ \mbox{dsolve}((\exp(y(x))) + x * \exp(y(x))) + (x * \exp(y(x))) * \mbox{diff}(y(x), x) = 0, y(x), \ \mbox{singsol=all}) \\$

$$y(x) = -x - \ln(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 15

DSolve[(Exp[y[x]]+x*Exp[y[x]])+(x*Exp[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow -x - \log(x) + c_1$$

23 Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238

23.1	problem	1(a)		•	•	•		•	•						•				•				215
23.2	$\operatorname{problem}$	1(b)												 									216
23.3	$\operatorname{problem}$	1(c)												 									217
23.4	$\operatorname{problem}$	1(d)											•										219
23.5	$\operatorname{problem}$	1(e)											•										220
23.6	$\operatorname{problem}$	1(f).												 									221
23.7	$\operatorname{problem}$	2																			•		222
23.8	$\operatorname{problem}$	3																					223
23.9	$\operatorname{problem}$	5(b)											•										224
23.10	problem	5(c)												 									225

23.1 problem 1(a)

Internal problem ID [5337]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 238

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x\$2)+diff(y(x),x)=1,y(x), singsol=all)

$$y(x) = -e^{-x}c_1 + x + c_2$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 18

DSolve[y''[x]+y'[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x - c_1 e^{-x} + c_2$$

23.2 problem 1(b)

Internal problem ID [5338]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 238

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + e^x y' - e^x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x\$2)+exp(x)*diff(y(x),x)=exp(x),y(x), singsol=all)

$$y(x) = -c_1 \operatorname{Ei}_1(e^x) + x + c_2$$

✓ Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 18

 $DSolve[y''[x] + Exp[x] * y'[x] == Exp[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1$$
 ExpIntegralEi $(-e^x) + x + c_2$

23.3 problem 1(c)

Internal problem ID [5339]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 238

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,

$$yy'' + 4y'^2 = 0$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 158

 $dsolve(y(x)*diff(y(x),x$2)+4*diff(y(x),x)^2=0,y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = (5c_1x + 5c_2)^{\frac{1}{5}}$$

$$y(x) = \left(-\frac{\sqrt{5}}{4} - \frac{1}{4} - \frac{i\sqrt{2}\sqrt{5 - \sqrt{5}}}{4}\right) (5c_1x + 5c_2)^{\frac{1}{5}}$$

$$y(x) = \left(-\frac{\sqrt{5}}{4} - \frac{1}{4} + \frac{i\sqrt{2}\sqrt{5 - \sqrt{5}}}{4}\right) (5c_1x + 5c_2)^{\frac{1}{5}}$$

$$y(x) = \left(\frac{\sqrt{5}}{4} - \frac{1}{4} - \frac{i\sqrt{2}\sqrt{5 + \sqrt{5}}}{4}\right) (5c_1x + 5c_2)^{\frac{1}{5}}$$

$$y(x) = \left(\frac{\sqrt{5}}{4} - \frac{1}{4} + \frac{i\sqrt{2}\sqrt{5 + \sqrt{5}}}{4}\right) (5c_1x + 5c_2)^{\frac{1}{5}}$$

Time used: 0.065 (sec). Leaf size: 20

DSolve[y[x]*y''[x]+4*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 \sqrt[5]{5x - c_1}$$

23.4 problem 1(d)

Internal problem ID [5340]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 238

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + k^2 y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(x),x$2)+k^2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \sin(kx) + c_2 \cos(kx)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 20

 $DSolve[y''[x]+k^2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1 \cos(kx) + c_2 \sin(kx)$$

23.5 problem 1(e)

Internal problem ID [5341]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 238

Problem number: 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _L

$$y'' - yy' = 0$$

Solution by Maple

Time used: 0.062 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)=y(x)*diff(y(x),x),y(x), singsol=all)

$$y(x) = \frac{\tan\left(\frac{(c_2 + x)\sqrt{2}}{2c_1}\right)\sqrt{2}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 34

DSolve[y''[x]==y[x]*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sqrt{2}\sqrt{c_1} \tan\left(\frac{\sqrt{c_1}(x+c_2)}{\sqrt{2}}\right)$$

23.6 problem 1(f)

Internal problem ID [5342]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 238

Problem number: 1(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' - 2y' - x^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x*diff(y(x),x$2)-2*diff(y(x),x)=x^3,y(x), singsol=all)$

$$y(x) = \frac{1}{4}x^4 + \frac{1}{3}c_1x^3 + c_2$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 24

DSolve[$x*y''[x]-2*y'[x]==x^3,y[x],x$,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^4}{4} + \frac{c_1 x^3}{3} + c_2$$

23.7 problem 2

Internal problem ID [5343]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 238

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

$$y'' - 1 - y'^2 = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 7

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(y(x),x\$2)=1+\mbox{diff}(y(x),x)^2,y(0) = 0, \ D(y)(0) = 0], \\ y(x), \ \mbox{singsol=all}) \\$

$$y(x) = \ln\left(\sec\left(x\right)\right)$$

✓ Solution by Mathematica

Time used: 1.809 (sec). Leaf size: 27

 $DSolve[\{y''[x]==1+(y'[x])^2,\{y[0]==0,y'[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\log(-\cos(x)) + i\pi$$

$$y(x) \to -\log(\cos(x))$$

23.8 problem 3

Internal problem ID [5344]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 238

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn

$$y'' + \frac{1}{2y'^2} = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.438 (sec). Leaf size: 26

 $dsolve([diff(y(x),x$2)=-1/(2*diff(y(x),x)^2),y(0) = 1, D(y)(0) = -1],y(x), singsol=all)$

$$y(x) = \frac{3(x + \frac{2}{3})(-12x - 8)^{\frac{1}{3}}(-1 + i\sqrt{3})}{16} + \frac{3}{2}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 27

DSolve[{y''[x]==-1/(2*(y'[x])^2),{y[0]==1,y'[0]==-1}},y[x],x,IncludeSingularSolutions -> True

$$y(x) \to \frac{1}{8} (12 - (-2)^{2/3} (-3x - 2)^{4/3})$$

23.9 problem 5(b)

Internal problem ID [5345]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 238

Problem number: 5(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$y'' + \sin\left(y\right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = \beta]$$

✓ Solution by Maple

Time used: 0.812 (sec). Leaf size: 53

dsolve([diff(y(x),x\$2)+sin(y(x))=0,y(0) = 0, D(y)(0) = beta],y(x), singsol=all)

$$y(x) = \text{RootOf}\left(-\left(\int_0^{-Z} \frac{1}{\sqrt{2\cos(\underline{a}) + \beta^2 - 2}} d\underline{a}\right) + x\right)$$
$$y(x) = \text{RootOf}\left(\int_0^{-Z} \frac{1}{\sqrt{2\cos(\underline{a}) + \beta^2 - 2}} d\underline{a} + x\right)$$

✓ Solution by Mathematica

Time used: 0.315 (sec). Leaf size: 19

 $DSolve[\{y''[x]+Sin[y[x]]==0,\{y[0]==0,y'[0]==\backslash [Beta]\}\},y[x],x,IncludeSingularSolutions \rightarrow True$

$$y(x) o 2$$
 Jacobi
Amplitude $\left(\frac{x\beta}{2}, \frac{4}{\beta^2}\right)$

23.10 problem 5(c)

Internal problem ID [5346]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 238

Problem number: 5(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$y'' + \sin(y) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 23

dsolve([diff(y(x),x\$2)+sin(y(x))=0,y(0) = 0, D(y)(0) = 2],y(x), singsol=all)

$$y(x) = \text{RootOf}\left(-\left(\int_0^{-Z} \frac{1}{\sqrt{2\cos\left(\underline{a}\right) + 2}} d\underline{a}\right) + x\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y''[x]+Sin[y[x]]==0,\{y[0]==0,y'[0]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

{}

24	Chapter 6. Existence and uniqueness of solution	ns
	to systems and nth order equations. Page 250	
041	11 0	00

24.1	problem 3		•							•				•								22'	7
24.2	$problem\ 4$																					228	3
24.3	problem 5																					229	9

24.1 problem 3

Internal problem ID [5347]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 250

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = y_1(x)$$

 $y'_2(x) = y_1(x) + y_2(x)$

With initial conditions

$$[y_1(0) = 1, y_2(0) = 2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 16

$$y_1(x) = e^x$$

$$y_2(x) = e^x(x+2)$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 18

$$y1(x) \rightarrow e^x$$

 $y2(x) \rightarrow e^x(x+2)$

24.2 problem 4

Internal problem ID [5348]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 250

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = y_2(x)$$

 $y'_2(x) = 6y_1(x) + y_2(x)$

With initial conditions

$$[y_1(0) = 1, y_2(0) = -1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 34

$$dsolve([diff(y_1(x),x) = y_2(x), diff(y_2(x),x) = 6*y_1(x)+y_2(x), y_1(0) = 1, y_2(0))$$

$$y_1(x) = \frac{e^{3x}}{5} + \frac{4e^{-2x}}{5}$$

$$y_2(x) = \frac{3e^{3x}}{5} - \frac{8e^{-2x}}{5}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 42

$$y1(x) \to \frac{1}{5}e^{-2x}(e^{5x} + 4)$$

$$y2(x) \to \frac{1}{5}e^{-2x}(3e^{5x} - 8)$$

24.3 problem 5

Internal problem ID [5349]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 250

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = y_1(x) + y_2(x)$$

 $y'_2(x) = y_1(x) + y_2(x) + e^{3x}$

With initial conditions

$$[y_1(0) = 0, y_2(0) = 0]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 36

 $dsolve([diff(y_1(x),x) = y_1(x)+y_2(x), diff(y_2(x),x) = y_1(x)+y_2(x)+exp(3*x), y_1(x)+y_2(x)+exp(3*x), y_1(x)+exp(3*x), y$

$$y_1(x) = -\frac{e^{2x}}{2} + \frac{e^{3x}}{3} + \frac{1}{6}$$

$$y_2(x) = -\frac{e^{2x}}{2} + \frac{2e^{3x}}{3} - \frac{1}{6}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 45

 $DSolve[\{y1'[x]==y1[x]+y2[x],y2'[x]==y1[x]+y2[x]+Exp[3*x]\},\{y1[0]==0,y2[0]==0\},\{y1[x],y2[x]\},x=y1[x]+y2[x]+$

$$y1(x) \to \frac{1}{6}(e^x - 1)^2 (2e^x + 1)$$

$$y2(x) \to \frac{1}{6} (e^{2x}(4e^x - 3) - 1)$$

25	Chapter 6. Existence and uniqueness of solutions
	to systems and nth order equations. Page 254
25.1	problem 2

25.1 problem 2

Internal problem ID [5350]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961 **Section**: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations.

Page 254

Problem number: 2.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = 3y_1(x) + xy_3(x)$$

$$y'_2(x) = y_2(x) + x^3y_3(x)$$

$$y'_3(x) = 2xy_2(x) - y_2(x) + e^x y_3(x)$$

X Solution by Maple

 $dsolve([diff(y_1(x),x)=3*y_1(x)+x*y_3(x),diff(y_2(x),x)=y_2(x)+x^3*y_3(x),diff(y_3(x),x)=y_2(x)+x^3*y_3(x),diff(y_3(x),x)=y_3(x),diff(x)=y_3(x),di$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[{y1'[x] == 3*y1[x] + x*y3[x], y2'[x] == y2[x] + x^3*y3[x], y3'[x] == 2*x*y1[x] - y2[x] + Exp[x] *y3[x]}$

Not solved