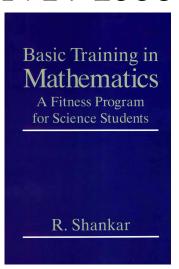
A Solution Manual For

Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995



Nasser M. Abbasi

October 12, 2023

Contents

1	Chapter 10, Differential equations. Section 10.2, ODEs with constant	
	Coefficients. page 307	2
2	Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients. First order. page 315	13
3	Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Second order and Homogeneous, page 318	24

1	Chapter 10, Differential equations. Section 10.2,							
	ODEs with constant Coefficients. page 307							
1.1	problem 10.2.4							
1.2	problem 10.2.5							
1.3	problem 10.2.8 part(1)							
1.4	problem 10.2.8 part(2)							
1.5	problem 10.2.8 part(3)							
1.6	problem 10.2.10							
1.7	problem 10.2.11 (i)							
1.8	problem 10.2.11 (ii)							
1.9	problem 10.2.11 (iii)							

1.1 problem 10.2.4

Internal problem ID [4536]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.2,\ {\bf ODEs}\ {\bf with}\ {\bf constant}\ {\bf Coefficients.}\ {\bf page}$

307

Problem number: 10.2.4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - \omega^2 x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

 $dsolve(diff(x(t),t$2)-omega^2*x(t)=0,x(t), singsol=all)$

$$x(t) = c_1 e^{-\omega t} + c_2 e^{\omega t}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 23

 $DSolve[x''[t]-\[0mega]^2*x[t]==0,x[t],t,IncludeSingularSolutions -> True]$

$$x(t) \to c_1 e^{t\omega} + c_2 e^{-t\omega}$$

1.2 problem 10.2.5

Internal problem ID [4537]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.2,\ {\bf ODEs}\ {\bf with}\ {\bf constant}\ {\bf Coefficients.}\ {\bf page}$

307

Problem number: 10.2.5.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$x''' - x'' + x' - x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(x(t),t\$3)-diff(x(t),t\$2)+diff(x(t),t)-x(t)=0,x(t), singsol=all)

$$x(t) = c_1 e^t + c_2 \sin(t) + c_3 \cos(t)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

DSolve[x'''[t]-x''[t]+x'[t]-x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_3 e^t + c_1 \cos(t) + c_2 \sin(t)$$

1.3 problem 10.2.8 part(1)

Internal problem ID [4538]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.2,\ {\bf ODEs}\ {\bf with}\ {\bf constant}\ {\bf Coefficients.}\ {\bf page}$

307

Problem number: 10.2.8 part(1).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + 42x' + x = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 43

dsolve([diff(x(t),t\$2)+42*diff(x(t),t)+x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = \frac{\left(220 + 21\sqrt{110}\right)e^{\left(-21 + 2\sqrt{110}\right)t}}{440} + \frac{\left(220 - 21\sqrt{110}\right)e^{\left(-21 - 2\sqrt{110}\right)t}}{440}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 53

 $DSolve[\{x''[t]+42*x'[t]+x[t]==0,\{x[0]==1,x'[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) o rac{e^{-\left(\left(21+2\sqrt{110}\right)t\right)}\left(\left(881+84\sqrt{110}\right)e^{4\sqrt{110}t}-1\right)}{880+84\sqrt{110}}$$

1.4 problem 10.2.8 part(2)

Internal problem ID [4539]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.2,\ {\bf ODEs}\ {\bf with}\ {\bf constant}\ {\bf Coefficients.}\ {\bf page}$

307

Problem number: 10.2.8 part(2).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$x'''' + x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 71

dsolve(diff(x(t),t\$4)+x(t)=0,x(t), singsol=all)

$$x(t) = -c_1 e^{-\frac{\sqrt{2}t}{2}} \sin\left(\frac{\sqrt{2}t}{2}\right) - c_2 e^{\frac{\sqrt{2}t}{2}} \sin\left(\frac{\sqrt{2}t}{2}\right)$$
$$+ c_3 e^{-\frac{\sqrt{2}t}{2}} \cos\left(\frac{\sqrt{2}t}{2}\right) + c_4 e^{\frac{\sqrt{2}t}{2}} \cos\left(\frac{\sqrt{2}t}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 65

DSolve[x''''[t]+x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-\frac{t}{\sqrt{2}}} \left(\left(c_1 e^{\sqrt{2}t} + c_2 \right) \cos \left(\frac{t}{\sqrt{2}} \right) + \left(c_4 e^{\sqrt{2}t} + c_3 \right) \sin \left(\frac{t}{\sqrt{2}} \right) \right)$$

1.5 problem 10.2.8 part(3)

Internal problem ID [4540]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.2,\ {\bf ODEs}\ {\bf with}\ {\bf constant}\ {\bf Coefficients.}\ {\bf page}$

307

Problem number: 10.2.8 part(3).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$x''' - 3x'' - 9x' - 5x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(x(t),t\$3)-3*diff(x(t),t\$2)-9*diff(x(t),t)-5*x(t)=0,x(t), singsol=all)

$$x(t) = c_1 e^{5t} + c_2 e^{-t} + c_3 e^{-t}t$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

DSolve[x'''[t]-3*x''[t]-9*x'[t]-5*x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-t} (c_2 t + c_3 e^{6t} + c_1)$$

1.6 problem 10.2.10

Internal problem ID [4541]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.2,\ {\bf ODEs}\ {\bf with}\ {\bf constant}\ {\bf Coefficients.}\ {\bf page}$

307

Problem number: 10.2.10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 2\gamma x' + \omega_0 x - F\cos(\omega t) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 89

 $dsolve(diff(x(t),t\$2)+2*gamma*diff(x(t),t)+omega_0*x(t)=F*cos(omega*t),x(t), singsol=all)$

$$x(t) = e^{\left(-\gamma + \sqrt{\gamma^2 - \omega_0}\right)t} c_2 + e^{\left(-\gamma - \sqrt{\gamma^2 - \omega_0}\right)t} c_1 + \frac{F(\left(-\omega^2 + \omega_0\right)\cos\left(\omega t\right) + 2\sin\left(\omega t\right)\gamma\omega)}{\omega^4 + 2\left(2\gamma^2 - \omega_0\right)\omega^2 + \omega_0^2}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 106

 $DSolve[x''[t]+2*\\[Gamma]*x'[t]+Subscript[\\[Omega],0]*x[t]==F*Cos[\\[Omega]*t],x[t],t,IncludeSi]$

$$x(t) \to \frac{2\gamma F\omega \sin(t\omega) + F(\omega_0 - \omega^2)\cos(t\omega)}{4\gamma^2\omega^2 + \omega^4 - 2\omega_0\omega^2 + \omega_0^2} + c_1 e^{-t\left(\sqrt{\gamma^2 - \omega_0} + \gamma\right)} + c_2 e^{t\left(\sqrt{\gamma^2 - \omega_0} - \gamma\right)}$$

1.7 problem 10.2.11 (i)

Internal problem ID [4542]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.2,\ {\bf ODEs}\ {\bf with}\ {\bf constant}\ {\bf Coefficients.}\ {\bf page}$

307

Problem number: 10.2.11 (i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y - e^{2x} = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve([diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=exp(2*x),y(0) = 1, D(y)(0) = 0],y(x), singsol=all)

$$y(x) = \frac{(3x+2)e^{2x}}{9} + \frac{7e^{-x}}{9}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 27

$$y(x) \to \frac{1}{9}e^{-x}(e^{3x}(3x+2)+7)$$

1.8 problem 10.2.11 (ii)

Internal problem ID [4543]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.2,\ {\bf ODEs}\ {\bf with}\ {\bf constant}\ {\bf Coefficients.}\ {\bf page}$

307

Problem number: 10.2.11 (ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y - 2\cos(x) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=2*cos(x),y(0) = 1, D(y)(0) = 0],y(x), singsol=all)

$$y(x) = e^x - \sin(x)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 13

DSolve[{y''[x]-2*y'[x]+y[x]==2*Cos[x],{y[0]==1,y'[0]==0}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to e^x - \sin(x)$$

1.9 problem 10.2.11 (iii)

Internal problem ID [4544]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.2,\ {\bf ODEs}\ {\bf with}\ {\bf constant}\ {\bf Coefficients.}\ {\bf page}$

307

Problem number: 10.2.11 (iii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 16y - 16\cos(4x) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve([diff(y(x),x\$2)+16*y(x)=16*cos(4*x),y(0) = 1, D(y)(0) = 0],y(x), singsol=all)

$$y(x) = \cos(4x) + 2\sin(4x) x$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 17

$$y(x) \to 2x\sin(4x) + \cos(4x)$$

1.10 problem 10.2.11 (iv)

Internal problem ID [4545]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.2,\ {\bf ODEs}\ {\bf with}\ {\bf constant}\ {\bf Coefficients.}\ {\bf page}$

307

Problem number: 10.2.11 (iv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y - \cosh(x) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve([diff(y(x),x\$2)-y(x)=cosh(x),y(0) = 1, D(y)(0) = 0],y(x), singsol=all)

$$y(x) = \frac{(-x+2)e^{-x}}{4} + \frac{e^x(x+2)}{4}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 15

 $DSolve[\{y''[x]-y[x]==Cosh[x],\{y[0]==1,y'[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}x \sinh(x) + \cosh(x)$$

2	Chapter 10, Differential equations. Section 10.3,
	ODEs with variable Coefficients. First order. page
	315

2.1	problem 10.3.2																				14
2.2	problem $10.3.3$																				15
2.3	problem $10.3.4$											•									16
2.4	problem $10.3.5$																				17
2.5	problem $10.3.6$																				18
2.6	problem $10.3.7$											•									19
2.7	problem 10.3.8																				20
2.8	problem $10.3.9$	(a)																		•	21
2.9	problem 10.3.9	(b)																			22

2.1 problem 10.3.2

Internal problem ID [4546]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.3,\ {\bf ODEs}\ {\bf with}\ {\bf variable}\ {\bf Coefficients.}\ {\bf First}$

order. page 315

Problem number: 10.3.2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y - e^{2x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

dsolve(diff(y(x),x)-y(x)=exp(2*x),y(x), singsol=all)

$$y(x) = (e^x + c_1) e^x$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 15

DSolve[y'[x]-y[x]==Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^x(e^x + c_1)$$

2.2 problem 10.3.3

Internal problem ID [4547]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.3,\ {\bf ODEs}\ {\bf with}\ {\bf variable}\ {\bf Coefficients.}\ {\bf First}$

order. page 315

Problem number: 10.3.3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x^2y' + 2xy - x + 1 = 0$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve([x^2*diff(y(x),x)+2*x*y(x)-x+1=0,y(1) = 0],y(x), singsol=all)$

$$y(x) = \frac{(x-1)^2}{2x^2}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 17

 $DSolve[\{x^2*y'[x]+2*x*y[x]-x+1==0,\{y[1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{(x-1)^2}{2x^2}$$

2.3 problem 10.3.4

Internal problem ID [4548]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.3,\ {\bf ODEs}\ {\bf with}\ {\bf variable}\ {\bf Coefficients.}\ {\bf First}$

order. page 315

Problem number: 10.3.4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y - (x+1)^2 = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve([diff(y(x),x)+y(x)=(x+1)^2,y(0) = 0],y(x), singsol=all)$

$$y(x) = x^2 + 1 - e^{-x}$$

✓ Solution by Mathematica

Time used: 0.103 (sec). Leaf size: 16

 $DSolve[\{y'[x]+y[x]==(x+1)^2,\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x^2 + \sinh(x) - \cosh(x) + 1$$

2.4 problem 10.3.5

Internal problem ID [4549]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.3,\ {\bf ODEs}\ {\bf with}\ {\bf variable}\ {\bf Coefficients.}\ {\bf First}$

order. page 315

Problem number: 10.3.5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x^2y' + 2xy - \sinh\left(x\right) = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $\label{eq:decomposition} \\ \mbox{dsolve}(\mbox{[x^2*diff}(y(x),x)+2*x*y(x)=\sinh(x),y(1) = 2],y(x), \ \mbox{singsol=all}) \\$

$$y(x) = \frac{\cosh(x) + 2 - \cosh(1)}{x^2}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 17

 $DSolve[\{x^2*y'[x]+2*x*y[x]==Sinh[x],\{y[1]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{\cosh(x) + 2 - \cosh(1)}{x^2}$$

2.5 problem 10.3.6

Internal problem ID [4550]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.3,\ {\bf ODEs}\ {\bf with}\ {\bf variable}\ {\bf Coefficients.}\ {\bf First}$

order. page 315

Problem number: 10.3.6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{1-x} + 2x - x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x)+y(x)/(1-x)+2*x-x^2=0,y(x), singsol=all)$

$$y(x) = \left(\frac{x^2}{2} - x - \ln(x - 1) + c_1\right)(x - 1)$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 27

 $DSolve[y'[x]+y[x]/(1-x)+2*x-x^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to (x-1)\left(\frac{1}{2}(x-1)^2 - \log(x-1) + c_1\right)$$

2.6 problem 10.3.7

Internal problem ID [4551]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.3,\ {\bf ODEs}\ {\bf with}\ {\bf variable}\ {\bf Coefficients.}\ {\bf First}$

order. page 315

Problem number: 10.3.7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{1-x} + x - x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)+y(x)/(1-x)+x-x^2=0,y(x), singsol=all)$

$$y(x) = \left(\frac{x^2}{2} + c_1\right)(x - 1)$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 20

DSolve[$y'[x]+y[x]/(1-x)+x-x^2==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to \frac{1}{2}(x-1)(x^2+2c_1)$$

2.7 problem 10.3.8

Internal problem ID [4552]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.3,\ {\bf ODEs}\ {\bf with}\ {\bf variable}\ {\bf Coefficients.}\ {\bf First}$

order. page 315

Problem number: 10.3.8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x^2+1) y' - xy - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((1+x^2)*diff(y(x),x)=1+x*y(x),y(x), singsol=all)$

$$y(x) = c_1 \sqrt{x^2 + 1} + x$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 19

 $DSolve[(1+x^2)*y'[x]==1+x*y[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x + c_1 \sqrt{x^2 + 1}$$

2.8 problem 10.3.9 (a)

Internal problem ID [4553]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

 ${\bf Section:}\ {\bf Chapter}\ 10,\ {\bf Differential}\ {\bf equations.}\ {\bf Section}\ 10.3,\ {\bf ODEs}\ {\bf with}\ {\bf variable}\ {\bf Coefficients.}\ {\bf First}$

order. page 315

Problem number: 10.3.9 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xy + y' - xy^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(x),x)+x*y(x)=x*y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{1}{1 + e^{\frac{x^2}{2}} c_1}$$

Solution by Mathematica

Time used: 0.259 (sec). Leaf size: 31

DSolve[y'[x]+x*y[x]==x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{1 + e^{\frac{x^2}{2} + c_1}}$$

$$y(x) \to 0$$

$$y(x) \to 1$$

2.9 problem 10.3.9 (b)

Internal problem ID [4554]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients. First order. page 315

Problem number: 10.3.9 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$3y'x + y + x^2y^4 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 124

 $dsolve(3*x*diff(y(x),x)+y(x)+x^2*y(x)^4=0,y(x), singsol=all)$

$$y(x) = \frac{\left((x+c_1)^2 x^2\right)^{\frac{1}{3}}}{(x+c_1) x}$$

$$y(x) = -\frac{\left((x+c_1)^2 x^2\right)^{\frac{1}{3}}}{2 (x+c_1) x} - \frac{i\sqrt{3} \left((x+c_1)^2 x^2\right)^{\frac{1}{3}}}{2 (x+c_1) x}$$

$$y(x) = -\frac{\left((x+c_1)^2 x^2\right)^{\frac{1}{3}}}{2 (x+c_1) x} + \frac{i\sqrt{3} \left((x+c_1)^2 x^2\right)^{\frac{1}{3}}}{2 (x+c_1) x}$$

✓ Solution by Mathematica

Time used: 0.307 (sec). Leaf size: 61

DSolve[3*x*y'[x]+y[x]+x^2*y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{\sqrt[3]{x(x+c_1)}}$$
$$y(x) \to -\frac{\sqrt[3]{-1}}{\sqrt[3]{x(x+c_1)}}$$
$$y(x) \to \frac{(-1)^{2/3}}{\sqrt[3]{x(x+c_1)}}$$
$$y(x) \to 0$$

3	Chapter 10, Differential equation ODEs with variable Coefficients.	,
	Homogeneous. page 318	
3.1	problem 10.4.8 (a)	
3.2	problem 10.4.8 (b)	
3.3	problem 10.4.8 (c)	27
3.4	problem 10.4.8 (d)	
3.5	problem 10.4.8 (e)	29
3.6	problem 10.4.8 (f)	30
3.7	problem 10.4.8 (g)	
3.8	problem 10.4.8 (h)	
3.9	problem 10.4.9 (i)	
3.10	problem 10.4.9 (ii)	34

3.1 problem 10.4.8 (a)

Internal problem ID [4555]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Sec-

ond order and Homogeneous. page 318

Problem number: 10.4.8 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x(x+1)^{2}y'' + (-x^{2}+1)y' + (x-1)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x*(x+1)^2*diff(y(x),x$2)+(1-x^2)*diff(y(x),x)+(x-1)*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1(x+1) + c_2(x+1)\ln(x)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 17

 $DSolve[x*(x+1)^2*y''[x]+(1-x^2)*y'[x]+(x-1)*y[x]==0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to (x+1)(c_2 \log(x) + c_1)$$

3.2 problem 10.4.8 (b)

Internal problem ID [4556]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Sec-

ond order and Homogeneous. page 318

Problem number: 10.4.8 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x(1-x)y'' + 2(-2x+1)y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(x*(1-x)*diff(y(x),x\$2)+2*(1-2*x)*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = \frac{c_1 x + c_2}{x(x-1)}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 22

 $DSolve[x*(1-x)*y''[x]+2*(1-2*x)*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_2 x + c_1}{x - x^2}$$

3.3 problem 10.4.8 (c)

Internal problem ID [4557]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Sec-

ond order and Homogeneous. page 318

Problem number: 10.4.8 (c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$x^2y'' + y'x - 9y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-9*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^3 + \frac{c_2}{x^3}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

DSolve $[x^2*y''[x]+x*y'[x]-9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{c_2 x^6 + c_1}{x^3}$$

3.4 problem 10.4.8 (d)

Internal problem ID [4558]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Sec-

ond order and Homogeneous. page 318

Problem number: 10.4.8 (d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$xy'' + \frac{y'}{2} + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(x*diff(y(x),x\$2)+1/2*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin \left(2\sqrt{x}\sqrt{2}\right) + c_2 \cos \left(2\sqrt{x}\sqrt{2}\right)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 38

DSolve [x*y''[x]+1/2*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cos\left(2\sqrt{2}\sqrt{x}\right) + c_2 \sin\left(2\sqrt{2}\sqrt{x}\right)$$

3.5 problem 10.4.8 (e)

Internal problem ID [4559]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Sec-

ond order and Homogeneous. page 318

Problem number: 10.4.8 (e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y'x + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x + c_2 x \ln(x)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 15

 $DSolve[x^2*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x(c_2 \log(x) + c_1)$$

3.6 problem 10.4.8 (f)

Internal problem ID [4560]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Sec-

ond order and Homogeneous. page 318

Problem number: 10.4.8 (f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$2xy'' - y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

dsolve(2*x*diff(y(x),x\$2)-diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \left(2\cos\left(2\sqrt{x}\right)\sqrt{x} - \sin\left(2\sqrt{x}\right)\right) + c_2 \left(2\sin\left(2\sqrt{x}\right)\sqrt{x} + \cos\left(2\sqrt{x}\right)\right)$$

✓ Solution by Mathematica

Time used: 0.092 (sec). Leaf size: 59

 $DSolve [2*x*y''[x]-y'[x]+2*y[x] == 0, y[x], x, Include Singular Solutions \ -> \ True]$

$$y(x) \to c_1 e^{2i\sqrt{x}} (2\sqrt{x} + i) + \frac{1}{8} c_2 e^{-2i\sqrt{x}} (1 + 2i\sqrt{x})$$

3.7 problem 10.4.8 (g)

Internal problem ID [4561]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Sec-

ond order and Homogeneous. page 318

Problem number: 10.4.8 (g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' + y'x - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(x*diff(y(x),x\$2)+x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1(x^2 + 2x) + c_2\left(\frac{(-x-1)e^{-x}}{2} + \frac{\text{Ei}_1(x)x(x+2)}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 39

DSolve [x*y''[x]+x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x(x+2) - \frac{1}{2} c_2 e^{-x} (e^x(x+2)x \text{ ExpIntegralEi}(-x) + x + 1)$$

3.8 problem 10.4.8 (h)

Internal problem ID [4562]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Sec-

ond order and Homogeneous. page 318

Problem number: 10.4.8 (h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x(x-1)^2 y'' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

 $dsolve(x*(x-1)^2*diff(y(x),x$2)-2*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1 x}{x - 1} + \frac{c_2(2\ln(x)x - x^2 + 1)}{x - 1}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 31

 $DSolve[x*(x-1)^2*y''[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{-x(c_2x + c_1) + 2c_2x\log(x) + c_2}{x - 1}$$

3.9 problem 10.4.9 (i)

Internal problem ID [4563]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Sec-

ond order and Homogeneous. page 318

Problem number: 10.4.9 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{2y}{x} - x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(diff(y(x),x)-2*y(x)/x-x^2=0,y(x), singsol=all)$

$$y(x) = (x + c_1) x^2$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 13

DSolve[y'[x]-2*y[x]/x-x^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$y(x) \rightarrow x^2(x+c_1)$$

3.10 problem 10.4.9 (ii)

Internal problem ID [4564]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Sec-

ond order and Homogeneous. page 318

Problem number: 10.4.9 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{2y}{x} - x^3 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)+2*y(x)/x-x^3=0,y(x), singsol=all)$

$$y(x)=rac{rac{x^6}{6}+c_1}{x^2}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 13

 $DSolve[y'[x]-2*y[x]/x-x^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x^2(x+c_1)$$

3.11 problem 10.4.10

Internal problem ID [4565]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Sec-

ond order and Homogeneous. page 318

Problem number: 10.4.10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Laguerre]

$$xy'' + (1 - x)y' + my = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

dsolve(x*diff(y(x),x\$2)+(1-x)*diff(y(x),x)+m*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \operatorname{KummerM}(-m, 1, x) + c_2 \operatorname{KummerU}(-m, 1, x)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 21

 $DSolve[x*y''[x]+(1-x)*y'[x]+m*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1$$
 Hypergeometric $U(-m, 1, x) + c_2$ Laguerre $L(m, x)$