A Solution Manual For

Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Nasser M. Abbasi

October 12, 2023

Contents

1	Exercis 5, page 21	2
2	Exercis 6, page 25	34

1 Exercis 5, page 21

1.1	problem 1.					•					•	 •				 					3
1.2	problem 2 .															 					4
1.3	problem 3 .															 					5
1.4	problem 4 .															 					6
1.5	problem 5 .															 					7
1.6	problem 6 .															 					8
1.7	problem 7 .															 					10
1.8	problem 8 .															 					11
1.9	problem 9 .															 					12
1.10	problem 10																				13
1.11	problem 11			•										•							14
1.12	problem 12			•												 					15
1.13	problem 13			•												 					16
1.14	problem 14															 					17
1.15	problem 15															 					18
1.16	problem 16			•										•							19
1.17	problem 17			•												 					20
1.18	problem 18			•										•							21
1.19	problem 19			•										•							22
1.20	problem 20			•										•							23
1.21	problem 21												•			 					24
1.22	problem 22												•			 					25
1.23	problem 23			•										•							26
1.24	problem 24												•			 					27
1.25	problem 25												•			 					28
1.26	problem 26																				29
1.27	problem 27															 					30
1.28	problem 28																				31
1.29	problem 29															 					32
1.30	problem 30															 					33

1.1 problem 1

Internal problem ID [1870]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$yx + \left(x^2 + 1\right)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(x*y(x)+(x^2+1)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{\sqrt{x^2 + 1}}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 22

 $DSolve[x*y[x]+(x^2+1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1}{\sqrt{x^2 + 1}}$$

$$y(x) \to 0$$

1.2 problem 2

Internal problem ID [1871]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 2.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$xy^2 + x + \left(y - x^2y\right)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

 $dsolve((x*y(x)^2+x)+(y(x)-x^2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{c_1 x^2 - c_1 - 1}$$

$$y(x) = -\sqrt{c_1 x^2 - c_1 - 1}$$

✓ Solution by Mathematica

Time used: 1.226 (sec). Leaf size: 61

 $DSolve[(x*y[x]^2+x)+(y[x]-x^2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{-1 + e^{2c_1}(x^2 - 1)}$$

$$y(x) \to \sqrt{-1 + e^{2c_1}(x^2 - 1)}$$

$$y(x) \to -i$$

$$y(x) \to i$$

1.3 problem 3

Internal problem ID [1872]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$1 + y^2 + (x^2 + 1)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

 $dsolve((1+y(x)^2)+(1+x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\tan(\arctan(x) + c_1)$$

✓ Solution by Mathematica

Time used: 0.234 (sec). Leaf size: 29

 $DSolve[(1+y[x]^2)+(1+x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\tan(\arctan(x) - c_1)$$

$$y(x) \rightarrow -i$$

$$y(x) \to i$$

1.4 problem 4

Internal problem ID [1873]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y + y'x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 9

dsolve(y(x)+x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{c_1}{x}$$

Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 16

DSolve[y[x]+x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1}{x}$$

$$y(x) \to 0$$

1.5 problem 5

Internal problem ID [1874]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2yx = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

dsolve(diff(y(x),x)=2*x*y(x),y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{x^2}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 18

DSolve[y'[x]==2*x*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{x^2}$$

$$y(x) \to 0$$

1.6 problem 6

Internal problem ID [1875]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xy^{2} + x + (x^{2}y - y)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 54

 $dsolve((x*y(x)^2+x)+(x^2*y(x)-y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{(x^2 - 1)(-x^2 + c_1)}}{x^2 - 1}$$

$$y(x) = -\frac{\sqrt{(x^2 - 1)(-x^2 + c_1)}}{x^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.35 (sec). Leaf size: 133

 $DSolve[(x*y[x]^2+x)+(x^2*y[x]-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{-x^2 + 1 - e^{2c_1}}}{\sqrt{x^2 - 1}}$$

$$y(x) \to \frac{\sqrt{-x^2 + 1 - e^{2c_1}}}{\sqrt{x^2 - 1}}$$

$$y(x) \to -i$$

$$y(x) \to i$$

$$y(x) \to -\frac{\sqrt{1 - x^2}}{\sqrt{x^2 - 1}}$$

$$y(x) \to \frac{\sqrt{1 - x^2}}{\sqrt{x^2 - 1}}$$

1.7 problem 7

Internal problem ID [1876]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 7.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$\sqrt{1 - x^2} + \sqrt{1 - y^2} \, y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve(sqrt(1-x^2)+sqrt(1-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$c_1 + x\sqrt{-x^2 + 1} + \arcsin(x) + y(x)\sqrt{1 - y(x)^2} + \arcsin(y(x)) = 0$$

✓ Solution by Mathematica

Time used: 0.597 (sec). Leaf size: 83

DSolve[Sqrt[1-x^2]+Sqrt[1-y[x]^2]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \text{InverseFunction} \left[\frac{1}{2} \# 1 \sqrt{1 - \# 1^2} - \arctan\left(\frac{\sqrt{1 - \# 1^2}}{\# 1 + 1}\right) \& \right] \left[-\frac{1}{2} \sqrt{1 - x^2} x + \cot^{-1}\left(\frac{x + 1}{\sqrt{1 - x^2}}\right) + c_1 \right]$$

1.8 problem 8

Internal problem ID [1877]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x+1)y' - 1 + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve((1+x)*diff(y(x),x)-(1-y(x))=0,y(x), singsol=all)

$$y(x) = \frac{c_1 + x}{x + 1}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 20

DSolve[(1+x)*y'[x]-(1-y[x])==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x + c_1}{x + 1}$$

$$y(x) \to 1$$

1.9 problem 9

Internal problem ID [1878]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\tan(x)y' - y - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x)*tan(x)-y(x)=1,y(x), singsol=all)

$$y(x) = (-\csc(x) + c_1)\sin(x)$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 17

DSolve[y'[x]*Tan[x]-y[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -1 + c_1 \sin(x)$$

$$y(x) \rightarrow -1$$

1.10 problem 10

Internal problem ID [1879]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y + 3 + \cot(x) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve((y(x)+3)+cot(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (-3\sec(x) + c_1)\cos(x)$$

✓ Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 17

DSolve[(y[x]+3)+Cot[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -3 + c_1 \cos(x)$$

$$y(x) \rightarrow -3$$

1.11 problem 11

Internal problem ID [1880]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{x}{y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x)=x/y(x),y(x), singsol=all)

$$y(x) = \sqrt{x^2 + c_1}$$

$$y(x) = -\sqrt{x^2 + c_1}$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 35

$$y(x) \to -\sqrt{x^2 + 2c_1}$$

$$y(x) o \sqrt{x^2 + 2c_1}$$

1.12 problem 12

Internal problem ID [1881]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - 1 + \sin\left(2t\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(x(t),t)=1-sin(2*t),x(t), singsol=all)

$$x(t) = \frac{\cos(2t)}{2} + t + c_1$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 17

DSolve[x'[t]==1-Sin[2*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to t + \frac{1}{2}\cos(2t) + c_1$$

1.13 problem 13

Internal problem ID [1882]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 13.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y + y'x - y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(x*diff(y(x),x)+y(x)=y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{1}{c_1 x + 1}$$

✓ Solution by Mathematica

Time used: 0.243 (sec). Leaf size: 25

DSolve[x*y'[x]+y[x]==y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{1 + e^{c_1}x}$$

$$y(x) \to 0$$

$$y(x) \to 1$$

1.14 problem 14

Internal problem ID [1883]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\sin(x)\cos(y)^2 + \cos(x)^2y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

 $dsolve(sin(x)*cos(y(x))^2+cos(x)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\arctan\left(\sec\left(x\right) + c_1\right)$$

✓ Solution by Mathematica

Time used: 1.557 (sec). Leaf size: 31

 $DSolve[Sin[x]*Cos[y[x]]^2+Cos[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \arctan(-\sec(x) + c_1)$$

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{\pi}{2}$$

1.15 problem 15

Internal problem ID [1884]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 15.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$\sec(x)\cos(y)^2 - \cos(x)\sin(y)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

 $dsolve(sec(x)*cos(y(x))^2=cos(x)*sin(y(x))*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \arccos\left(\frac{1}{\tan(x) + c_1}\right)$$

✓ Solution by Mathematica

Time used: 0.788 (sec). Leaf size: 45

DSolve[Sec[x]*Cos[y[x]]^2==Cos[x]*Sin[y[x]]*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sec^{-1}(\tan(x) + 2c_1)$$

$$y(x) \to \sec^{-1}(\tan(x) + 2c_1)$$

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{\pi}{2}$$

1.16 problem 16

Internal problem ID [1885]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y + y'x - xy(y' - 1) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve(y(x)+x*diff(y(x),x)=x*y(x)*(diff(y(x),x)-1),y(x), singsol=all)

$$y(x) = -\text{LambertW}\left(-\frac{e^{-x}}{c_1 x}\right)$$

✓ Solution by Mathematica

Time used: 3.033 (sec). Leaf size: 28

DSolve[y[x]+x*y'[x]==x*y[x]*(y'[x]-1),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -W\left(-\frac{e^{-x-c_1}}{x}\right)$$

 $y(x) \to 0$

1.17 problem 17

Internal problem ID [1886]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$yx + \sqrt{x^2 + 1}y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(x*y(x)+sqrt(1+x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_1 \mathrm{e}^{-\sqrt{x^2 + 1}}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 26

DSolve[x*y[x]+Sqrt[1+x^2]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-\sqrt{x^2+1}}$$

$$y(x) \to 0$$

1.18 problem 18

Internal problem ID [1887]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y - yx - y'x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(y(x)=x*y(x)+x^2*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \frac{c_1 \mathrm{e}^{-\frac{1}{x}}}{x}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 23

DSolve[y[x] == x*y[x] + x^2*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1 e^{-1/x}}{x}$$
$$y(x) \to 0$$

1.19 problem 19

Internal problem ID [1888]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 19.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$\tan (x) \sin (x)^{2} + \cos (x)^{2} \cot (y) y' = 0$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 40

 $dsolve(tan(x)*sin(x)^2+cos(x)^2*cot(y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = rcsin\left(rac{\sqrt{2}\,\sqrt{rac{1}{1+\cos(2x)}}\,\mathrm{e}^{rac{-1+\cos(2x)}{2\cos(2x)+2}}}{c_1}
ight)$$

✓ Solution by Mathematica

Time used: 16.527 (sec). Leaf size: 24

DSolve[Tan[x]*Sin[x]^2+Cos[x]^2*Cot[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \arcsin\left(\frac{1}{8}c_1e^{-\frac{1}{2}\sec^2(x)}\sec(x)\right)$$

1.20 problem 20

Internal problem ID [1889]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y^2 + yy' + y'x^2y - 1 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

 $dsolve(y(x)^2+y(x)*diff(y(x),x)+x^2*y(x)*diff(y(x),x)-1=0,y(x), singsol=all)$

$$y(x) = \sqrt{e^{-2\arctan(x)}c_1 + 1}$$

$$y(x) = -\sqrt{e^{-2\arctan(x)}c_1 + 1}$$

✓ Solution by Mathematica

Time used: 0.845 (sec). Leaf size: 55

 $DSolve[y[x]^2+y[x]*y'[x]+x^2*y[x]*y'[x]-1==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{1 + e^{-2\arctan(x) + 2c_1}}$$

$$y(x) \rightarrow \sqrt{1 + e^{-2 \arctan(x) + 2c_1}}$$

$$y(x) \rightarrow -1$$

$$y(x) \to 1$$

1.21 problem 21

Internal problem ID [1890]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{x} = 0$$

With initial conditions

$$[y(1) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 7

dsolve([diff(y(x),x)=y(x)/x,y(1) = 3],y(x), singsol=all)

$$y(x) = 3x$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 8

DSolve[{y'[x]==y[x]/x,y[1]==3},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow 3x$$

1.22 problem 22

Internal problem ID [1891]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x + 2y = 0$$

With initial conditions

$$[y(2) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 9

dsolve([x*diff(y(x),x)+2*y(x)=0,y(2) = 1],y(x), singsol=all)

$$y(x) = \frac{4}{x^2}$$

Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 10

DSolve[{x*y'[x]+2*y[x]==0,y[2]==1},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{4}{x^2}$$

1.23 problem 23

Internal problem ID [1892]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\sin(x)\cos(y) + \cos(x)\sin(y)y' = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.297 (sec). Leaf size: 13

$$dsolve([sin(x)*cos(y(x))+cos(x)*sin(y(x))*diff(y(x),x)=0,y(0) = 0],y(x), singsol=all)$$

$$y(x) = (1 - 2_B5)\arccos\left(\sec\left(x\right)\right)$$

✓ Solution by Mathematica

Time used: 6.057 (sec). Leaf size: 17

 $DSolve[\{Sin[x]*Cos[y[x]]+Cos[x]*Sin[y[x]]*y'[x]==0,y[0]==0\},y[x],x,IncludeSingular Solutions = 0,y[0]==0\},y[x],x,IncludeSingular Solutions = 0,y[0]=0\},y[x],x,IncludeSingular Solutions = 0,y[0]=0,y[0]=0\},y[x],x,IncludeSingular Solutions = 0,y[0]=0,y[0$

$$y(x) \to -\arccos(\sec(x))$$

$$y(x) \to \arccos(\sec(x))$$

1.24 problem 24

Internal problem ID [1893]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x^2 + y^2 = 0$$

With initial conditions

$$[y(3) = 1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 14

 $dsolve([x^2*diff(y(x),x)+y(x)^2=0,y(3) = 1],y(x), singsol=all)$

$$y(x) = \frac{3x}{4x - 3}$$

✓ Solution by Mathematica

Time used: 0.128 (sec). Leaf size: 15

 $DSolve[\{x^2*y'[x]+y[x]^2==0,y[3]==1\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{3x}{4x - 3}$$

1.25 problem 25

Internal problem ID [1894]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - e^y = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 12

dsolve([diff(y(x),x)=exp(y(x)),y(0) = 0],y(x), singsol=all)

$$y(x) = -\ln\left(1 - x\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 13

 $DSolve[\{y'[x] == Exp[y[x]], y[0] == 0\}, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\log(1-x)$$

1.26 problem 26

Internal problem ID [1895]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$e^y(y'+1) - 1 = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.438 (sec). Leaf size: 32

dsolve([exp(y(x))*(diff(y(x),x)+1)=1,y(0) = 1],y(x), singsol=all)

$$y(x) = -x + \ln(-e^x - e + 1) - i\pi$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 17

 $DSolve[\{Exp[y[x]]*(y'[x]+1)==1,y[0]==1\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \log\left((e-1)e^{-x} + 1\right)$$

1.27 problem 27

Internal problem ID [1896]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$1 + y^2 - \frac{y'}{x^3(x-1)} = 0$$

With initial conditions

$$[y(2) = 0]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 17

 $dsolve([(1+y(x)^2)=diff(y(x),x)/(x^3*(x-1)),y(2) = 0],y(x), singsol=all)$

$$y(x) = \tan\left(\frac{1}{5}x^5 - \frac{1}{4}x^4 - \frac{12}{5}\right)$$

✓ Solution by Mathematica

Time used: 0.33 (sec). Leaf size: 21

 $DSolve[{(1+y[x]^2)==y'[x]/(x^3*(x-1)),y[2]==0},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \tan\left(\frac{1}{20}(x^4(4x-5)-48)\right)$$

1.28 problem 28

Internal problem ID [1897]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, _Abel]

$$x^2 + 3y'x - y^3 - 2y = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 7

 $dsolve([x^2+3*x*diff(y(x),x)=y(x)^3+2*y(x),y(1) = 1],y(x), singsol=all)$

$$y(x) = x^{\frac{2}{3}}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{x^2+3*x*y'[x]==y[x]^3+2*y[x],y[1]==1\},y[x],x,IncludeSingularSolutions \rightarrow True]$

{}

1.29 problem 29

Internal problem ID [1898]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x^2 + x + 1) y' - y^2 - 2y - 5 = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 35

 $dsolve([(x^2+x+1)*diff(y(x),x)=y(x)^2+2*y(x)+5,y(1) = 1],y(x), singsol=all)$

$$y(x) = -1 + 2 \cot \left(\frac{4\sqrt{3}\pi}{9} - \frac{4\sqrt{3}\arctan\left(\frac{(1+2x)\sqrt{3}}{3}\right)}{3} + \frac{\pi}{4} \right)$$

✓ Solution by Mathematica

Time used: 0.816 (sec). Leaf size: 44

 $DSolve[\{(x^2+x+1)*y'[x]==y[x]^2+2*y[x]+5,y[1]==1\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 2 \tan \left(\frac{4 \arctan\left(\frac{2x+1}{\sqrt{3}}\right)}{\sqrt{3}} + \frac{1}{36} \left(9 - 16\sqrt{3}\right) \pi \right) - 1$$

1.30 problem 30

Internal problem ID [1899]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 5, page 21 Problem number: 30.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$(x^2 - 2x - 8) y' - y^2 - y + 2 = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.328 (sec). Leaf size: 31

 $dsolve([(x^2-2*x-8)*diff(y(x),x)=y(x)^2+y(x)-2,y(0)=0],y(x), singsol=all)$

$$y(x) = \frac{2x + 8 - 2\sqrt{-2x^2 + 4x + 16}}{4 + 3x}$$

✓ Solution by Mathematica

Time used: 3.81 (sec). Leaf size: 34

 $DSolve[\{(x^2-2*x-8)*y'[x]==y[x]^2+y[x]-2,y[0]==0\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{-2\sqrt{-2x^2 + 4x + 16} + 2x + 8}{3x + 4}$$

Exercis 0, page 25		
problem 1		35
problem 2		36
		37
problem 4		38
problem 5		39
problem 6		40
problem 7		41
problem 8		42
problem 9		43
problem 10		44
problem 11		45
		46
problem 13		47
		48
problem 15		49
		50
problem 17		52
problem 18		53
problem 19		54
		55
		56
•		57
		58
	problem 1 problem 2 problem 3 problem 4 problem 5 problem 6 problem 7 problem 8 problem 9 problem 11 problem 12 problem 13 problem 14 problem 15 problem 15 problem 15 problem 16 problem 17 problem 18 problem 19 problem 18 problem 19 problem 19 problem 20 problem 21 problem 21 problem 21 problem 21 problem 21 problem 21 problem 22	problem 1 problem 2 problem 3 problem 4 problem 5 problem 6 problem 7 problem 8 problem 9 problem 10 problem 11 problem 12 problem 13 problem 14 problem 15 problem 16 problem 17 problem 18 problem 17 problem 18 problem 19 problem 19 problem 19 problem 19 problem 20 problem 21 problem 22 problem 23

2.1 problem 1

Internal problem ID [1900]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x + y - y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(x+y(x)=x*diff(y(x),x),y(x), singsol=all)

$$y(x) = (\ln(x) + c_1) x$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 12

DSolve[x+y[x]==x*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(\log(x) + c_1)$$

2.2 problem 2

Internal problem ID [1901]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 2.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `2nd\ type$

$$(x+y)y' + x - y = 0$$

Time used: 0.031 (sec). Leaf size: 24

dsolve((x+y(x))*diff(y(x),x)+x=y(x),y(x), singsol=all)

$$y(x) = \tan \left(\operatorname{RootOf} \left(2 Z + \ln \left(\frac{1}{\cos (Z)^2} \right) + 2 \ln (x) + 2c_1 \right) \right) x$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 34

DSolve[(x+y[x])*y'[x]+x==y[x],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\arctan\left(\frac{y(x)}{x}\right) + \frac{1}{2}\log\left(\frac{y(x)^2}{x^2} + 1\right) = -\log(x) + c_1, y(x)\right]$$

2.3 problem 3

Internal problem ID [1902]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 3.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y'x - y - \sqrt{yx} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve(x*diff(y(x),x)-y(x)=sqrt(x*y(x)),y(x), singsol=all)

$$-\frac{y(x)}{\sqrt{xy(x)}} + \frac{\ln(x)}{2} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.158 (sec). Leaf size: 17

DSolve[x*y'[x]-y[x]==Sqrt[x*y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{4}x(\log(x) + c_1)^2$$

2.4 problem 4

Internal problem ID [1903]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 4.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$y' - \frac{2x - y}{x + 4y} = 0$$

Time used: 0.062 (sec). Leaf size: 53

dsolve(diff(y(x),x)=(2*x-y(x))/(x+4*y(x)),y(x), singsol=all)

$$y(x) = rac{-rac{c_1 x}{4} - rac{\sqrt{9c_1^2 x^2 + 8}}{4}}{c_1}$$

$$y(x) = \frac{-\frac{c_1 x}{4} + \frac{\sqrt{9c_1^2 x^2 + 8}}{4}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.418 (sec). Leaf size: 101

 $DSolve[y'[x] == (2*x-y[x])/(x+4*y[x]), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{4} \left(-x - \sqrt{9x^2 + 8e^{c_1}} \right)$$
$$y(x) \to \frac{1}{4} \left(-x + \sqrt{9x^2 + 8e^{c_1}} \right)$$
$$y(x) \to \frac{1}{4} \left(-3\sqrt{x^2} - x \right)$$
$$y(x) \to \frac{1}{4} \left(3\sqrt{x^2} - x \right)$$

2.5 problem 5

Internal problem ID [1904]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 5.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y'x - y - \sqrt{x^2 - y^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve(x*diff(y(x),x)-y(x)=sqrt(x^2-y(x)^2),y(x), singsol=all)$

$$-\arctan\left(\frac{y(x)}{\sqrt{x^2-y\left(x\right)^2}}\right)+\ln\left(x\right)-c_1=0$$

✓ Solution by Mathematica

Time used: 0.261 (sec). Leaf size: 18

 $DSolve[x*y'[x]-y[x]==Sqrt[x^2-y[x]^2],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x \cosh(i \log(x) + c_1)$$

2.6 problem 6

Internal problem ID [1905]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 6.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `2nd\ type$

$$x + yy' - 2y = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

dsolve(x+y(x)*diff(y(x),x)=2*y(x),y(x), singsol=all)

$$y(x) = \frac{x(\text{LambertW}(c_1x) + 1)}{\text{LambertW}(c_1x)}$$

✓ Solution by Mathematica

Time used: 0.113 (sec). Leaf size: 33

DSolve[x+y[x]*y'[x]==2*y[x],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\log\left(\frac{y(x)}{x}-1\right)-\frac{1}{\frac{y(x)}{x}-1}=-\log(x)+c_1,y(x)
ight]$$

2.7 problem 7

Internal problem ID [1906]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 7.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'x - y + \sqrt{y^2 - x^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(x*diff(y(x),x)-y(x)+sqrt(y(x)^2-x^2)=0,y(x), singsol=all)$

$$y(x) + \sqrt{y(x)^2 - x^2} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.345 (sec). Leaf size: 16

 $DSolve[x*y'[x]-y[x]+Sqrt[y[x]^2-x^2] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x \cosh(-\log(x) + c_1)$$

2.8 problem 8

Internal problem ID [1907]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$x^2 + y^2 - xyy' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $dsolve((x^2+y(x)^2)=x*y(x)*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \sqrt{2 \ln(x) + c_1} x$$
$$y(x) = -\sqrt{2 \ln(x) + c_1} x$$

✓ Solution by Mathematica

Time used: 0.162 (sec). Leaf size: 36

 $DSolve[(x^2+y[x]^2)==x*y[x]*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x\sqrt{2\log(x) + c_1}$$

 $y(x) \to x\sqrt{2\log(x) + c_1}$

2.9 problem 9

Internal problem ID [1908]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 9.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$(yx - x^2) y' - y^2 = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 21

 $dsolve((x*y(x)-x^2)*diff(y(x),x)-y(x)^2=0,y(x), singsol=all)$

$$y(x) = e^{-LambertW\left(-\frac{e^{-c_1}}{x}\right) - c_1}$$

✓ Solution by Mathematica

Time used: 2.153 (sec). Leaf size: 25

 $DSolve[(x*y[x]-x^2)*y'[x]-y[x]^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -xW\left(-\frac{e^{-c_1}}{x}\right)$$

 $y(x) \to 0$

2.10 problem 10

Internal problem ID [1909]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 10.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y + y'x - 2\sqrt{yx} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 58

dsolve(x*diff(y(x),x)+y(x)=2*sqrt(x*y(x)),y(x), singsol=all)

$$\frac{\sqrt{xy\left(x\right)}}{\left(-x+y\left(x\right)\right)\left(-x+\sqrt{xy\left(x\right)}\right)x} + \frac{1}{\left(-x+y\left(x\right)\right)\left(-x+\sqrt{xy\left(x\right)}\right)} - c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.187 (sec). Leaf size: 26

DSolve[x*y'[x]+y[x]==2*Sqrt[x*y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{\left(x + e^{rac{c_1}{2}}\right)^2}{x}$$
 $y(x) o x$

2.11 problem 11

Internal problem ID [1910]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd type

$$x + y + (x - y)y' = 0$$

Solution by Maple

Time used: 0.063 (sec). Leaf size: 49

dsolve((x+y(x))+(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{c_1 x - \sqrt{2c_1^2 x^2 + 1}}{c_1}$$

$$y(x) = \frac{c_1 x - \sqrt{2c_1^2 x^2 + 1}}{c_1}$$
$$y(x) = \frac{c_1 x + \sqrt{2c_1^2 x^2 + 1}}{c_1}$$

Solution by Mathematica

Time used: 0.435 (sec). Leaf size: 86

 $DSolve[(x+y[x])+(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x - \sqrt{2x^2 + e^{2c_1}}$$

$$y(x) \to x + \sqrt{2x^2 + e^{2c_1}}$$

$$y(x) \to x - \sqrt{2}\sqrt{x^2}$$

$$y(x) \rightarrow \sqrt{2}\sqrt{x^2} + x$$

2.12 problem 12

Internal problem ID [1911]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y(x^{2} - yx + y^{2}) + xy'(x^{2} + yx + y^{2}) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve(y(x)*(x^2-x*y(x)+y(x)^2)+x*diff(y(x),x)*(x^2+x*y(x)+y(x)^2)=0,y(x), singsol=all)$

$$y(x) = \tan \left(\operatorname{RootOf} \left(\ln \left(\tan \left(\underline{Z} \right) \right) + \underline{Z} + 2 \ln \left(x \right) + 2 c_1 \right) \right) x$$

✓ Solution by Mathematica

Time used: 0.115 (sec). Leaf size: 26

 $DSolve[y[x]*(x^2-x*y[x]+y[x]^2)+x*y'[x]*(x^2+x*y[x]+y[x]^2)==0,y[x],x,IncludeSingularSolution]$

Solve
$$\left[\arctan\left(\frac{y(x)}{x}\right) + \log\left(\frac{y(x)}{x}\right) = -2\log(x) + c_1, y(x)\right]$$

2.13 problem 13

Internal problem ID [1912]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'x - y - x\sin\left(\frac{y}{x}\right) = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 44

dsolve(diff(y(x),x)*x-y(x)-x*sin(y(x)/x)=0,y(x), singsol=all)

$$y(x) = \arctan\left(\frac{2c_1x}{c_1^2x^2 + 1}, -\frac{c_1^2x^2 - 1}{c_1^2x^2 + 1}\right)x$$

✓ Solution by Mathematica

Time used: 2.781 (sec). Leaf size: 33

 $DSolve[y'[x]*x-y[x]-x*Sin[y[x]/x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 2x \arctan(e^{c_1}x)$$

$$y(x) \to 0$$

$$y(x) \to \pi \sqrt{x^2}$$

2.14 problem 14

Internal problem ID [1913]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 14.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' - \frac{y}{x} - \cosh\left(\frac{y}{x}\right) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve(diff(y(x),x)=y(x)/x+cosh(y(x)/x),y(x), singsol=all)

$$y(x) = \ln\left(\tan\left(\frac{\ln(x)}{2} + \frac{c_1}{2}\right)\right)x$$

✓ Solution by Mathematica

Time used: 2.085 (sec). Leaf size: 14

 $DSolve[y'[x] == y[x]/x + Cosh[y[x]/x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x \operatorname{arcsinh}(\tan(\log(x) + c_1))$$

2.15 problem 15

Internal problem ID [1914]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$x^2 + y^2 - 2xyy' = 0$$

With initial conditions

$$[y(-1) = 0]$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 23

$$y(x) = \sqrt{(x+1)x}$$
$$y(x) = -\sqrt{(x+1)x}$$

✓ Solution by Mathematica

Time used: 0.186 (sec). Leaf size: 36

 $DSolve[\{(x^2+y[x]^2)==2*x*y[x]*y'[x],y[-1]==0\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{x}\sqrt{x+1}$$

 $y(x) \to \sqrt{x}\sqrt{x+1}$

2.16 problem 16

Internal problem ID [1915]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 16.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$\left(\frac{x}{y} + \frac{y}{x}\right)y' + 1 = 0$$

✓ Solution by Maple

Time used: 0.703 (sec). Leaf size: 223

dsolve((x/y(x)+y(x)/x)*diff(y(x),x)+1=0,y(x), singsol=all)

$$y(x) = \frac{\sqrt{x^2c_1\left(c_1x^2 + \sqrt{c_1^2x^4 + 1}\right)}}{x\left(c_1x^2 + \sqrt{c_1^2x^4 + 1}\right)c_1}$$

$$y(x) = \frac{\sqrt{-x^2c_1\left(-c_1x^2 + \sqrt{c_1^2x^4 + 1}\right)}}{x\left(c_1x^2 - \sqrt{c_1^2x^4 + 1}\right)c_1}$$

$$y(x) = -\frac{\sqrt{x^2c_1\left(c_1x^2 + \sqrt{c_1^2x^4 + 1}\right)}}{x\left(c_1x^2 + \sqrt{c_1^2x^4 + 1}\right)c_1}$$

$$y(x) = -\frac{\sqrt{-x^2c_1\left(-c_1x^2 + \sqrt{c_1^2x^4 + 1}\right)}}{x\left(c_1x^2 - \sqrt{c_1^2x^4 + 1}\right)c_1}$$

✓ Solution by Mathematica

Time used: 0.093 (sec). Leaf size: 121

 $DSolve[(x/y[x]+y[x]/x)*y'[x]+1==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o -\sqrt{-x^2 - \sqrt{x^4 + e^{4c_1}}}$$
 $y(x) o \sqrt{-x^2 - \sqrt{x^4 + e^{4c_1}}}$
 $y(x) o -\sqrt{-x^2 + \sqrt{x^4 + e^{4c_1}}}$
 $y(x) o \sqrt{-x^2 + \sqrt{x^4 + e^{4c_1}}}$

2.17 problem 17

Internal problem ID [1916]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 17.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$e^{\frac{y}{x}}x + y - y'x = 0$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 15

dsolve([x*exp(y(x)/x)+y(x)=x*diff(y(x),x),y(1) = 0],y(x), singsol=all)

$$y(x) = \ln\left(-\frac{1}{-1 + \ln(x)}\right)x$$

✓ Solution by Mathematica

Time used: 0.311 (sec). Leaf size: 15

 $DSolve[\{x*Exp[y[x]/x]+y[x]==x*y'[x],y[1]==0\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -x \log(1 - \log(x))$$

2.18 problem 18

Internal problem ID [1917]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 18.

ODE order: 1.
ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `2nd\ type$

$$y' - \frac{x+y}{x-y} = 0$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 23

dsolve([diff(y(x),x)=(x+y(x))/(x-y(x)),y(1) = 0],y(x), singsol=all)

$$y(x) = \tan \left(\operatorname{RootOf} \left(2 Z - \ln \left(\operatorname{sec} \left(Z \right)^{2} \right) - 2 \ln \left(x \right) \right) \right) x$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 33

 $DSolve[\{y'[x]==(x+y[x])/(x-y[x]),y[1]==0\},y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{1}{2}\log\left(\frac{y(x)^2}{x^2}+1\right) - \arctan\left(\frac{y(x)}{x}\right) = -\log(x), y(x)\right]$$

2.19 problem 19

Internal problem ID [1918]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 19.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' - \frac{y}{x} - \tan\left(\frac{y}{x}\right) = 0$$

With initial conditions

$$[y(6) = \pi]$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 10

dsolve([diff(y(x),x)=y(x)/x+tan(y(x)/x),y(6) = Pi],y(x), singsol=all)

$$y(x) = \arcsin\left(\frac{x}{12}\right)x$$

✓ Solution by Mathematica

Time used: 4.616 (sec). Leaf size: 13

 $DSolve[\{y'[x]==y[x]/x+Tan[y[x]/x],y[6]==Pi\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \arcsin\left(\frac{x}{12}\right)$$

2.20 problem 20

Internal problem ID [1919]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 20.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$(3yx - 2x^2)y' - 2y^2 + yx = 0$$

With initial conditions

$$[y(1) = -1]$$

✓ Solution by Maple

Time used: 0.672 (sec). Leaf size: 114

$$dsolve([(3*x*y(x)-2*x^2)*diff(y(x),x)=2*y(x)^2-x*y(x),y(1) = -1],y(x), singsol=all)$$

$$=\frac{i \left(\left(-27 x^2+x^3+3 \sqrt{3} \sqrt{-2 x^5+27 x^4}\right)^{\frac{2}{3}}-x^2\right) \sqrt{3}-\left(\left(-27 x^2+x^3+3 \sqrt{3} \sqrt{-2 x^5+27 x^4}\right)^{\frac{1}{3}}-x\right)^2}{6 \left(-27 x^2+x^3+3 \sqrt{3} \sqrt{-2 x^5+27 x^4}\right)^{\frac{1}{3}}}$$

✓ Solution by Mathematica

Time used: 60.351 (sec). Leaf size: 134

$$\frac{\left(\sqrt[3]{3\sqrt{3}\sqrt{(27-2x)x^4} + (x-27)x^2} - x\right)\left(i(\sqrt{3}+i)\sqrt[3]{3\sqrt{3}\sqrt{(27-2x)x^4} + (x-27)x^2} + i\sqrt{3}x + x\right)}{6\sqrt[3]{3\sqrt{3}\sqrt{(27-2x)x^4} + (x-27)x^2}}$$

2.21 problem 21

Internal problem ID [1920]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' - \frac{y}{x - k\sqrt{x^2 + y^2}} = 0$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 32

 $dsolve(diff(y(x),x)=y(x)/(x-k*sqrt(x^2+y(x)^2)),y(x), singsol=all)$

$$-c_1 + y(x)^{k-1} \sqrt{x^2 + y(x)^2} + y(x)^{k-1} x = 0$$

✓ Solution by Mathematica

Time used: 0.235 (sec). Leaf size: 59

 $DSolve[y'[x]==y[x]/(x-k*Sqrt[x^2+y[x]^2]),y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{1}{2}\left((k-1)\log\left(\sqrt{\frac{y(x)^2}{x^2}+1}-1\right)+(k+1)\log\left(\sqrt{\frac{y(x)^2}{x^2}+1}+1\right)\right) = -k\log(x)+c_1,y(x)\right]$$

2.22 problem 22

Internal problem ID [1921]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 22.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y^2(yy'-x) + x^3 = 0$$

/

Solution by Maple

Time used: 0.328 (sec). Leaf size: 50

 $dsolve(y(x)^2*(y(x)*diff(y(x),x)-x)+x^3=0,y(x), singsol=all)$

$$\begin{split} y(x) &= \operatorname{RootOf}\left(2_Z^2 \right. \\ &+ \sqrt{3}\,\tan\left(\operatorname{RootOf}\left(\sqrt{3}\,\ln\left(\frac{3\tan\left(_Z\right)^2x^4}{4} + \frac{3x^4}{4}\right) + 4\sqrt{3}\,c_1 - 2_Z\right)\right) - 1\right)x \end{split}$$

Solution by Mathematica

Time used: 0.117 (sec). Leaf size: 63

DSolve[$y[x]^2*(y[x]*y'[x]-x)+x^3==0,y[x],x,IncludeSingularSolutions -> True$]

Solve
$$\frac{\arctan\left(\frac{2y(x)^2}{x^2} - 1\right)}{2\sqrt{3}} + \frac{1}{4}\log\left(\frac{y(x)^4}{x^4} - \frac{y(x)^2}{x^2} + 1\right) = -\log(x) + c_1, y(x)$$

2.23 problem 23

Internal problem ID [1922]

Book: Differential Equations, Nelson, Folley, Coral, 3rd ed, 1964

Section: Exercis 6, page 25 Problem number: 23.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' - \frac{y}{x} - \tanh\left(\frac{y}{x}\right) = 0$$

Time used: 0.578 (sec). Leaf size: 113

dsolve(diff(y(x),x)=y(x)/x+tanh(y(x)/x),y(x), singsol=all)

$$y(x) = \operatorname{arctanh}\left(\frac{c_1 x^2 - \sqrt{c_1^2 x^4 - c_1 x^2}}{c_1 x^2 - 1 - \sqrt{c_1^2 x^4 - c_1 x^2}}\right) x$$

$$y(x) = \operatorname{arctanh}\left(\frac{c_1 x^2 + \sqrt{c_1^2 x^4 - c_1 x^2}}{c_1 x^2 - 1 + \sqrt{c_1^2 x^4 - c_1 x^2}}\right) x$$

✓ Solution by Mathematica

Time used: 2.01 (sec). Leaf size: 19

 $DSolve[y'[x] == y[x]/x + Tanh[y[x]/x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \operatorname{arcsinh}(e^{c_1}x)$$

$$y(x) \to 0$$