A Solution Manual For

Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Nasser M. Abbasi

October 12, 2023

Contents

1	Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21	3
2	Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43	39
3	Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59	57
4	Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79	84
5	Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91	138
6	Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502	151
7	Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525	172
8	Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529	191
9	Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556	203
10	Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567	233
11	Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572	244
12	Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575	257
13	Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689	273
14	Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704	302

15	Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710	320
16	Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739	334
17	Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758	355
18	Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771	381
19	Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.6. page 783	417
20	Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788	420

1	Chapter 1, First-Order Differential Equations.							
	Section 1.2,	Basic	Ideas	and	Termin	nology.	page 21	
1.1	problem Problem 7 .						4	l
1.2	problem Problem 8 .							Ó
1.3	problem Problem 9 .						6	;
1.4	problem Problem 10						7	7
1.5	problem Problem 11						8	3
1.6	problem Problem 12)
1.7	problem Problem 13						10)
1.8	problem Problem 14						11	L
1.9	problem Problem 15						12	2
1.10	problem Problem 16						13	3
1.11	problem Problem 17						14	l
1.12	problem Problem 18						15	į
1.13	problem Problem 19							;
1.14	problem Problem 20						17	7
1.15	problem Problem 21						18	3
1.16	problem Problem 22						19)
1.17	problem Problem 23						20)
1.18	problem Problem 24						21	L
1.19	problem Problem 25						22	2
1.20	problem Problem 28						23	3
1.21	problem Problem 29						24	l
1.22	problem Problem 30						25	ó
1.23	problem Problem 31						26	;
1.24	problem Problem 32						27	7
1.25	problem Problem 33						28	3
1.26	problem Problem 34						29)
1.27	problem Problem 35						30)
1.28	problem Problem 36						31	L
1.29	problem Problem 37						32	2
1.30	problem Problem 38						33	3
1.31	problem Problem 39						34	l
1.32	problem Problem 40						35	ó
	problem Problem 45						36	;
	problem Problem 46						37	7
	problem Problem 47						38	

1.1 problem Problem 7

Internal problem ID [2078]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology.

page 21

Problem number: Problem 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 25y = 0$$

/

Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-25*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{5x} + c_2 e^{-5x}$$

/

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[y''[x]-25*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{5x} + c_2 e^{-5x}$$

1.2 problem Problem 8

Internal problem ID [2079]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(2x) + c_2 \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 20

DSolve[y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \cos(2x) + c_2 \sin(2x)$$

1.3 problem Problem 9

Internal problem ID [2080]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology.

page 21

Problem number: Problem 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x + c_2 e^{-2x}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 20

DSolve[y''[x]+y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-2x} + c_2 e^x$$

1.4 problem Problem 10

Internal problem ID [2081]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology.

page 21

Problem number: Problem 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 9

 $dsolve(diff(y(x),x)=-y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{1}{c_1 + x}$$

✓ Solution by Mathematica

Time used: 0.089 (sec). Leaf size: 18

DSolve[y'[x]==-y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{x - c_1}$$

$$y(x) \to 0$$

1.5 problem Problem 11

Internal problem ID [2082]

Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology.

page 21

Problem number: Problem 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{2x} = 0$$

/

Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(diff(y(x),x)=y(x)/(2*x),y(x), singsol=all)

$$y(x) = c_1 \sqrt{x}$$

/

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 18

 $DSolve[y'[x] == y[x]/(2*x), y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to c_1 \sqrt{x}$$

$$y(x) \to 0$$

1.6 problem Problem 12

Internal problem ID [2083]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + 5y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-x} \sin(2x) + c_2 \cos(2x) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

DSolve[y''[x]+2*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x}(c_2\cos(2x) + c_1\sin(2x))$$

1.7 problem Problem 13

Internal problem ID [2084]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 9y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-9*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{3x} + c_2 e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[y''[x]-9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x} (c_1 e^{6x} + c_2)$$

1.8 problem Problem 14

Internal problem ID [2085]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' + 5y'x + 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)+5*x*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + \frac{c_2}{x^3}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

DSolve $[x^2*y''[x]+5*x*y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{c_2 x^2 + c_1}{x^3}$$

1.9 problem Problem 15

Internal problem ID [2086]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

 ${\bf Section:}\ {\bf Chapter}\ 1,\ {\bf First-Order}\ {\bf Differential}\ {\bf Equations.}\ {\bf Section}\ 1.2,\ {\bf Basic}\ {\bf Ideas}\ {\bf and}\ {\bf Terminology.}$

page 21

Problem number: Problem 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$x^2y'' - 3y'x + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^2 + c_2 x^2 \ln(x)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 18

 $DSolve[x^2*y''[x]-3*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2(2c_2\log(x) + c_1)$$

1.10 problem Problem 16

Internal problem ID [2087]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - 3y'x + 13y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+13*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^2 \sin(3\ln(x)) + c_2 x^2 \cos(3\ln(x))$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 26

 $DSolve[x^2*y''[x]-3*x*y'[x]+13*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2(c_2\cos(3\log(x)) + c_1\sin(3\log(x)))$$

1.11 problem Problem 17

Internal problem ID [2088]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2x^2y'' - y'x + y - 9x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(2*x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=9*x^2,y(x), singsol=all)$

$$y(x) = \sqrt{x} \, c_2 + c_1 x + 3x^2$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 23

 $DSolve [2*x^2*y''[x]-x*y'[x]+y[x]==9*x^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 3x^2 + c_2 x + c_1 \sqrt{x}$$

1.12 problem Problem 18

Internal problem ID [2089]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - 4y'x + 6y - \sin(x) x^{4} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=x^4*sin(x),y(x), singsol=all)$

$$y(x) = x^{2}c_{2} + c_{1}x^{3} - \sin(x) x^{2}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 20

 $DSolve[x^2*y''[x]-4*x*y'[x]+6*y[x]==x^4*Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2(-\sin(x) + c_2x + c_1)$$

1.13 problem Problem 19

Internal problem ID [2090]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - (a+b)y' + aby = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-(a+b)*diff(y(x),x)+a*b*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{ax} + c_2 e^{bx}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

 $DSolve[y''[x]-(a+b)*y'[x]+a*b*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_2 e^{ax} + c_1 e^{bx}$$

1.14 problem Problem 20

Internal problem ID [2091]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2ay' + ya^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x$2)-2*a*diff(y(x),x)+a^2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 e^{ax} + c_2 e^{ax} x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

 $DSolve[y''[x]-2*a*y'[x]+a^2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^{ax}(c_2x + c_1)$$

1.15 problem Problem 21

Internal problem ID [2092]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2ay' + (a^2 + b^2)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(diff(y(x),x\$2)-2*a*diff(y(x),x)+(a^2+b^2)*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 e^{ax} \sin(bx) + c_2 e^{ax} \cos(bx)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 31

 $DSolve[y''[x]-2*a*y'[x]+(a^2+b^2)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^{x(a-ib)} (c_2 e^{2ibx} + c_1)$$

1.16 problem Problem 22

Internal problem ID [2093]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-diff(y(x),x)-6*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{3x} + c_2 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[y''[x]-y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (c_2 e^{5x} + c_1)$$

1.17 problem Problem 23

Internal problem ID [2094]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 6y' + 9y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-3x} + c_2 e^{-3x} x$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

DSolve[y''[x]+6*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x}(c_2x + c_1)$$

1.18 problem Problem 24

Internal problem ID [2095]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' + y'x - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + c_2 x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 16

 $DSolve[x^2*y''[x]+x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{c_1}{x} + c_2 x$$

1.19 problem Problem 25

Internal problem ID [2096]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' + 5y'x + 4y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x$2)+5*x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x^2} + \frac{c_2 \ln(x)}{x^2}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 18

 $DSolve[x^2*y''[x]+5*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2c_2 \log(x) + c_1}{x^2}$$

1.20 problem Problem 28

Internal problem ID [2097]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$y' - \frac{e^x - \sin(y)}{x\cos(y)} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $\label{eq:diff} dsolve(diff(y(x),x)=(exp(x)-sin(y(x)))/(x*cos(y(x))),y(x), singsol=all)$

$$y(x) = \arcsin\left(\frac{-c_1 + e^x}{x}\right)$$

✓ Solution by Mathematica

Time used: 11.343 (sec). Leaf size: 16

 $DSolve[y'[x] == (Exp[x] - Sin[y[x]]) / (x*Cos[y[x]]), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \arcsin\left(\frac{e^x + c_1}{x}\right)$$

1.21 problem Problem 29

Internal problem ID [2098]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]'], [_Abe

$$y' - \frac{1 - y^2}{2 + 2yx} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)=(1-y(x)^2)/(2*(1+x*y(x))),y(x), singsol=all)$

$$c_1 + \frac{1}{(y(x) - 1)(xy(x) + x + 2)} = 0$$

✓ Solution by Mathematica

Time used: 0.375 (sec). Leaf size: 56

 $DSolve[y'[x] == (1-y[x]^2)/(2*(1+x*y[x])), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) o -rac{1+\sqrt{1+x(x+c_1)}}{x}$$
 $y(x) o rac{-1+\sqrt{1+x(x+c_1)}}{x}$
 $y(x) o -1$
 $y(x) o 1$

1.22 problem Problem 30

Internal problem ID [2099]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(y)]']]

$$y' - \frac{(1 - e^{yx}y)e^{-yx}}{x} = 0$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 10

dsolve([diff(y(x),x)=(1-y(x)*exp(x*y(x)))/(x*exp(x*y(x))),y(1) = 0],y(x), singsol=all)

$$y(x) = \frac{\ln(x)}{x}$$

✓ Solution by Mathematica

Time used: 0.377 (sec). Leaf size: 11

$$y(x) o \frac{\log(x)}{x}$$

1.23 problem Problem 31

Internal problem ID [2100]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$y' - \frac{x^2(1 - y^2) + e^{\frac{y}{x}}y}{x(e^{\frac{y}{x}} + 2x^2y)} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

$$y(x) = \text{RootOf} (e^{-Z} + x^3 Z^2 + c_1 - x) x$$

✓ Solution by Mathematica

Time used: 0.293 (sec). Leaf size: 24

DSolve[y'[x] == $(x^2*(1-y[x]^2)+y[x]*Exp[y[x]/x])/(x*(Exp[y[x]/x]+2*x^2*y[x])),y[x],x,IncludeSi$

Solve
$$\left[xy(x)^2 + e^{\frac{y(x)}{x}} - x = c_1, y(x) \right]$$

1.24 problem Problem 32

Internal problem ID [2101]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

 ${\bf Section:}\ {\bf Chapter}\ 1,\ {\bf First-Order}\ {\bf Differential}\ {\bf Equations.}\ {\bf Section}\ 1.2,\ {\bf Basic}\ {\bf Ideas}\ {\bf and}\ {\bf Terminology.}$

page 21

Problem number: Problem 32.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' - \frac{\cos(x) - 2xy^2}{2x^2y} = 0$$

With initial conditions

$$\left[y(\pi) = \frac{1}{\pi}\right]$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 14

 $dsolve([diff(y(x),x)=(cos(x)-2*x*y(x)^2)/(2*x^2*y(x)),y(Pi) = 1/Pi],y(x), singsol=all)$

$$y(x) = \frac{\sqrt{\sin(x) + 1}}{x}$$

✓ Solution by Mathematica

Time used: 0.301 (sec). Leaf size: 17

 $DSolve[\{y'[x] == (Cos[x] - 2*x*y[x]^2)/(2*x^2*y[x]), \{y[Pi] == 1/Pi\}\}, y[x], x, IncludeSingularSolution]$

$$y(x) o \frac{\sqrt{\sin(x) + 1}}{x}$$

1.25 problem Problem 33

Internal problem ID [2102]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology.

page 21

Problem number: Problem 33.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \sin\left(x\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x)=sin(x),y(x), singsol=all)

$$y(x) = -\cos(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 12

DSolve[y'[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\cos(x) + c_1$$

1.26 problem Problem 34

Internal problem ID [2103]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 34.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{1}{x^{\frac{2}{3}}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(diff(y(x),x)=x^{-2/3},y(x), singsol=all)$

$$y(x) = 3x^{\frac{1}{3}} + c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 15

 $DSolve[y'[x]==x^(-2/3),y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow 3\sqrt[3]{x} + c_1$$

1.27 problem Problem 35

Internal problem ID [2104]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' - e^x x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)=x*exp(x),y(x), singsol=all)

$$y(x) = (-2 + x) e^x + c_1 x + c_2$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 19

DSolve[y''[x] == x*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(x-2) + c_2x + c_1$$

1.28 problem Problem 36

Internal problem ID [2105]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 36.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' - x^n = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(diff(y(x),x$2)=x^n,y(x), singsol=all)$

$$y(x) = \frac{x^{2+n}}{(2+n)(n+1)} + c_1 x + c_2$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 28

DSolve[y''[x] == x^n,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^{n+2}}{n^2 + 3n + 2} + c_2 x + c_1$$

1.29 problem Problem 37

Internal problem ID [2106]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 37.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \ln(x) x^2 = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $dsolve([diff(y(x),x)=x^2*ln(x),y(1) = 2],y(x), singsol=all)$

$$y(x) = \frac{x^3 \ln(x)}{3} - \frac{x^3}{9} + \frac{19}{9}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 23

 $DSolve[\{y'[x] == x^2 * Log[x], \{y[1] == 2\}\}, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{9} (-x^3 + 3x^3 \log(x) + 19)$$

1.30 problem Problem 38

Internal problem ID [2107]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' - \cos\left(x\right) = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

dsolve([diff(y(x),x\$2)=cos(x),y(0) = 2, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = -\cos(x) + x + 3$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 12

 $DSolve[\{y''[x] == Cos[x], \{y[0] == 2, y'[0] == 1\}\}, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x - \cos(x) + 3$$

1.31 problem Problem 39

Internal problem ID [2108]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 39.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _quadrature]]

$$y''' - 6x = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1, y''(0) = -4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

dsolve([diff(y(x),x\$3)=6*x,y(0) = 1, D(y)(0) = -1, (D@@2)(y)(0) = -4],y(x), singsol=all)

$$y(x) = \frac{1}{4}x^4 - 2x^2 + 1 - x$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 20

DSolve[{y'''[x]==6*x,{y[0]==2,y'[0]==-1,y''[0]==-4}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}x(x^3 - 8x - 4) + 2$$

1.32 problem Problem 40

Internal problem ID [2109]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 40.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' - e^x x = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(y(x),x\$2)=x*exp(x),y(0) = 3, D(y)(0) = 4],y(x), singsol=all)

$$y(x) = (-2+x)e^x + 5x + 5$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 18

 $DSolve[\{y''[x]==x*Exp[x],\{y[0]==3,y'[0]==4\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^x(x-2) + 5(x+1)$$

1.33 problem Problem 45

Internal problem ID [2110]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 45.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+diff(y(x),x)-6*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-3x}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 19

DSolve[y''[x]==x*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(x-2) + c_2x + c_1$$

1.34 problem Problem 46

Internal problem ID [2111]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 46.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y'x - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)$

$$y(x) = x^4 c_1 + \frac{c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 18

 $DSolve[x^2*y''[x]-x*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_2 x^6 + c_1}{x^2}$$

1.35 problem Problem 47

Internal problem ID [2112]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

Problem number: Problem 47.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - 3y'x + 4y - \ln(x) x^{2} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

 $\label{local-control} $$ dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*y(x)=x^2*ln(x),y(x), singsol=all)$$

$$y(x) = x^{2}c_{2} + \ln(x) c_{1}x^{2} + \frac{\ln(x)^{3} x^{2}}{6}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 27

 $DSolve[x^2*y''[x]-3*x*y'[x]+4*y[x] == x^2*Log[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{6}x^2 (\log^3(x) + 12c_2 \log(x) + 6c_1)$$

2	Chapter 1, First-Order Differential Equations.
	Section 1.4, Separable Differential Equations. page
	43
2.1	problem Problem 1
2.2	problem Problem 2
2.3	problem Problem 3
2.4	problem Problem 4
2.5	problem Problem 5
2.6	problem 6
2.7	problem 7
2.8	problem Problem 8
2.9	problem 9
2.10	problem Problem 10
2.11	problem Problem 11
2.12	problem Problem 12
2.13	problem Problem 13
2.14	problem Problem 14
2.15	problem Problem 15
2.16	problem Problem 16
2.17	problem Problem 17

2.1 problem Problem 1

Internal problem ID [2113]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equa-

tions. page 43

Problem number: Problem 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x)=2*x*y(x),y(x), singsol=all)

$$y(x) = c_1 e^{x^2}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 18

DSolve[y'[x]==2*x*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{x^2}$$

$$y(x) \to 0$$

2.2 problem Problem 2

Internal problem ID [2114]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y^2}{x^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)=y(x)^2/(x^2+1),y(x), singsol=all)$

$$y(x) = -\frac{1}{\arctan(x) - c_1}$$

✓ Solution by Mathematica

Time used: 0.153 (sec). Leaf size: 19

DSolve[y'[x]==y[x]^2/(x^2+1),y[x],x,IncludeSingularSolutions \rightarrow True]

$$y(x) \to -\frac{1}{\arctan(x) + c_1}$$

 $y(x) \to 0$

2.3 problem Problem 3

Internal problem ID [2115]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$e^{x+y}y' - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(exp(x+y(x))*diff(y(x),x)-1=0,y(x), singsol=all)

$$y(x) = \ln\left(c_1 e^x - 1\right) - x$$

Solution by Mathematica

Time used: 0.084 (sec). Leaf size: 15

DSolve[Exp[x+y[x]]*y'[x]-1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \log(\sinh(x) - \cosh(x) + c_1)$$

2.4 problem Problem 4

Internal problem ID [2116]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equa-

tions. page 43

Problem number: Problem 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{x \ln(x)} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

dsolve(diff(y(x),x)=y(x)/(x*ln(x)),y(x), singsol=all)

$$y(x) = \ln(x) c_1$$

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 15

DSolve[y'[x]==y[x]/(x*Log[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \log(x)$$

$$y(x) \to 0$$

2.5 problem Problem 5

Internal problem ID [2117]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y - (x - 1)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 9

dsolve(y(x)-(x-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1(x-1)$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 16

DSolve[y[x]-(x-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1(x-1)$$

$$y(x) \to 0$$

2.6 problem Problem 6

Internal problem ID [2118]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2x(y-1)}{x^2 + 3} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

 $dsolve(diff(y(x),x)=(2*x*(y(x)-1))/(x^2+3),y(x), singsol=all)$

$$y(x) = 1 + (x^2 + 3) c_1$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 20

 $DSolve[y'[x] == (2*x*(y[x]-1))/(x^2+3), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 1 + c_1(x^2 + 3)$$
$$y(x) \to 1$$

2.7 problem Problem 7

Internal problem ID [2119]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y - y'x - 3 + 2y'x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(y(x)-x*diff(y(x),x)=3-2*x^2*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \frac{\left(-\frac{3}{x} + c_1\right)x}{2x - 1}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 24

DSolve[y[x]-x*y'[x]==3-2*x^2*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{3 + c_1 x}{1 - 2x}$$

$$y(x) \to 3$$

2.8 problem Problem 8

Internal problem ID [2120]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{\cos(x-y)}{\sin(x)\sin(y)} + 1 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

dsolve(diff(y(x),x)=cos(x-y(x))/(sin(x)*sin(y(x)))-1,y(x), singsol=all)

$$y(x) = \arccos\left(\frac{1}{\sin(x)c_1}\right)$$

✓ Solution by Mathematica

Time used: 5.69 (sec). Leaf size: 47

 $DSolve[y'[x] == Cos[x-y[x]]/(Sin[x]*Sin[y[x]])-1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\arccos\left(-\frac{1}{2}c_1\csc(x)\right)$$
$$y(x) \to \arccos\left(-\frac{1}{2}c_1\csc(x)\right)$$
$$y(x) \to -\frac{\pi}{2}$$
$$y(x) \to \frac{\pi}{2}$$

2.9 problem Problem 9

Internal problem ID [2121]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{x(-1+y^2)}{2(-2+x)(x-1)} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)=x*(y(x)^2-1)/(2*(x-2)*(x-1)),y(x), singsol=all)$

$$y(x) = -\tanh\left(\ln\left(-2 + x\right) - \frac{\ln\left(x - 1\right)}{2} + \frac{c_1}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.742 (sec). Leaf size: 51

 $DSolve[y'[x] == x*(y[x]^2-1)/(2*(x-2)*(x-1)), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{x + e^{2c_1}(x-2)^2 - 1}{-x + e^{2c_1}(x-2)^2 + 1}$$

$$y(x) \rightarrow -1$$

$$y(x) \to 1$$

2.10 problem Problem 10

Internal problem ID [2122]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{x^2y - 32}{-x^2 + 16} - 2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

 $dsolve(diff(y(x),x)=(x^2*y(x)-32)/(16-x^2)+2,y(x), singsol=all)$

$$y(x) = \frac{e^{-x}(x^2 + 8x + 16) c_1}{(x - 4)^2} + 2e^{-x}e^x$$

✓ Solution by Mathematica

Time used: 0.143 (sec). Leaf size: 30

 $DSolve[y'[x] == (x^2*y[x]-32)/(16-x^2)+2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 2 + \frac{c_1 e^{-x} (x+4)^2}{(x-4)^2}$$

 $y(x) \to 2$

2.11 problem Problem 11

Internal problem ID [2123]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x-a)(x-b)y'-y+c=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve((x-a)*(x-b)*diff(y(x),x)-(y(x)-c)=0,y(x), singsol=all)

$$y(x) = c + (x - b)^{-\frac{1}{a-b}} (x - a)^{\frac{1}{a-b}} c_1$$

✓ Solution by Mathematica

Time used: 0.094 (sec). Leaf size: 41

 $DSolve[(x-a)*(x-b)*y'[x]-(y[x]-c)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c + c_1(x-b)^{\frac{1}{b-a}}(x-a)^{\frac{1}{a-b}}$$

 $y(x) \to c$

2.12 problem Problem 12

Internal problem ID [2124]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x^2 + 1) y' + y^2 + 1 = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

 $dsolve((x^2+1)*diff(y(x),x)+y(x)^2=-1,y(0) = 1),y(x), singsol=all)$

$$y(x) = \cot\left(\arctan\left(x\right) + \frac{\pi}{4}\right)$$

✓ Solution by Mathematica

Time used: 0.226 (sec). Leaf size: 14

 $DSolve[\{(x^2+1)*y'[x]+y[x]^2=-1,\{y[0]=-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \cot\left(\arctan(x) + \frac{\pi}{4}\right)$$

2.13 problem Problem 13

Internal problem ID [2125]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 13.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(1-x^2)y' + yx - ax = 0$$

With initial conditions

$$[y(0) = 2a]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve([(1-x^2)*diff(y(x),x)+x*y(x)=a*x,y(0) = 2*a],y(x), singsol=all)$

$$y(x) = a\left(1 - i\sqrt{x - 1}\sqrt{x + 1}\right)$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 21

 $DSolve[\{(1-x^2)*y'[x]+x*y[x]==a*x,\{y[0]==2*a\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to a - ia\sqrt{x^2 - 1}$$

2.14 problem Problem 14

Internal problem ID [2126]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 1 + \frac{\sin(x+y)}{\cos(x)\sin(y)} = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{4}\right) = \frac{\pi}{4}\right]$$

Solution by Maple

Time used: 0.032 (sec). Leaf size: 11

dsolve([diff(y(x),x)=1-(sin(x+y(x)))/(sin(y(x))*cos(x)),y(1/4*Pi) = 1/4*Pi],y(x), singsol=all(x,y)

$$y(x) = \arccos\left(\frac{\sec(x)}{2}\right)$$

✓ Solution by Mathematica

Time used: 6.063 (sec). Leaf size: 10

 $DSolve[\{y'[x]==1-(Sin[x+y[x]])/(Sin[y[x]]*Cos[x]),\{y[Pi/4]==Pi/4\}\},y[x],x,IncludeSingularSolue]$

$$y(x) \to \sec^{-1}(2\cos(x))$$

2.15 problem Problem 15

Internal problem ID [2127]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - y^3 \sin\left(x\right) = 0$$

With initial conditions

$$[y(0) = 0]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=y(x)^3*sin(x),y(0) = 0],y(x), singsol=all)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 6

 $DSolve[\{y'[x]==y[x]^3*Sin[x],\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

2.16 problem Problem 16

Internal problem ID [2128]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{2\sqrt{y-1}}{3} = 0$$

With initial conditions

$$[y(1) = 1]$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=2/3*(y(x)-1)^(1/2),y(1) = 1],y(x), singsol=all)$

$$y(x) = 1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 16

 $DSolve[\{y'[x]==1/3*(y[x]-1)^(1/2),\{y[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{36}((x-2)x+37)$$

2.17 problem Problem 17

Internal problem ID [2129]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

Problem number: Problem 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$mv' - mg + kv^2 = 0$$

With initial conditions

$$[v(0) = 0]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 26

 $dsolve([m*diff(v(t),t)=m*g-k*v(t)^2,v(0) = 0],v(t), singsol=all)$

$$v(t) = \frac{\tanh\left(\frac{t\sqrt{mgk}}{m}\right)\sqrt{mgk}}{k}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 39

 $\label{eq:DSolve} DSolve[\{m*v'[t]==m*g-k*v[t]^2, \{v[0]==0\}\}, v[t], t, IncludeSingularSolutions \ -> \ True]$

$$v(t)
ightarrow rac{\sqrt{g}\sqrt{m} anh\left(rac{\sqrt{g}\sqrt{k}t}{\sqrt{m}}
ight)}{\sqrt{k}}$$

3 Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

3.1	problem Problem 1	58
3.2	problem Problem $2\ldots\ldots\ldots\ldots\ldots$	59
3.3	problem Problem 3	60
3.4	$ problem \ Problem \ 4 \ \dots \dots$	61
3.5	problem Problem 5	62
3.6	problem Problem 6	63
3.7	problem Problem 7	64
3.8	problem Problem 8	65
3.9	problem Problem 9	66
3.10	problem Problem 10	67
3.11	problem Problem 11	68
	problem Problem 12	69
	problem Problem 13	70
3.14	problem Problem 14	71
	problem Problem 15	72
3.16	problem Problem 16	73
	problem Problem 17	74
3.18	problem Problem 18	75
3.19	problem Problem 19	76
3.20	problem Problem 20	77
3.21	problem Problem 21	78
3.22	problem Problem 22	79
3.23	problem Problem 30	80
3.24	problem Problem 31	81
3.25	problem Problem 32	82
3.26	problem Problem 33	83

3.1 problem Problem 1

Internal problem ID [2130]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differen-

tial Equations. page 59

Problem number: Problem 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y - 4e^x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x)+y(x)=4*exp(x),y(x), singsol=all)

$$y(x) = 2e^x + e^{-x}c_1$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 19

DSolve[y'[x]+y[x]==4*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2e^x + c_1 e^{-x}$$

3.2 problem Problem 2

Internal problem ID [2131]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{2y}{x} - 5x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(diff(y(x),x)+2/x*y(x)=5*x^2,y(x), singsol=all)$

$$y(x) = \frac{x^5 + c_1}{x^2}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 15

DSolve[y'[x]+2/x*y[x]==5*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^5 + c_1}{x^2}$$

3.3 problem Problem 3

Internal problem ID [2132]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differen-

tial Equations. page 59

Problem number: Problem 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x^2 - 4yx - x^7\sin\left(x\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x)-4*x*y(x)=x^7*sin(x),y(x), singsol=all)$

$$y(x) = (\sin(x) - \cos(x) x + c_1) x^4$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 19

DSolve $[x^2*y'[x]-4*x*y[x]==x^7*Sin[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow x^4(\sin(x) - x\cos(x) + c_1)$$

3.4 problem Problem 4

Internal problem ID [2133]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differen-

tial Equations. page 59

Problem number: Problem 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2yx - 2x^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(x),x)+2*x*y(x)=2*x^3,y(x), singsol=all)$

$$y(x) = x^2 - 1 + e^{-x^2} c_1$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 20

DSolve[y'[x]+2*x*y[x]==2*x^3,y[x],x,IncludeSingularSolutions \rightarrow True]

$$y(x) \to x^2 + c_1 e^{-x^2} - 1$$

3.5 problem Problem 5

Internal problem ID [2134]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{2xy}{1 - x^2} - 4x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x)+2*x/(1-x^2)*y(x)=4*x,y(x), singsol=all)$

$$y(x) = (2\ln(x-1) + 2\ln(x+1) + c_1)(x^2 - 1)$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 22

 $DSolve[y'[x]+2*x/(1-x^2)*y[x]==4*x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to (x^2 - 1) (2 \log (x^2 - 1) + c_1)$$

3.6 problem Problem 6

Internal problem ID [2135]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{2xy}{x^2 + 1} - \frac{4}{(x^2 + 1)^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x)+2*x/(1+x^2)*y(x)=4/(1+x^2)^2,y(x), singsol=all)$

$$y(x) = \frac{4\arctan(x) + c_1}{x^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 20

 $DSolve[y'[x]+2*x/(1+x^2)*y[x]==4/(1+x^2)^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{4\arctan(x) + c_1}{x^2 + 1}$$

3.7 problem Problem 7

Internal problem ID [2136]

Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differen-

tial Equations. page 59

Problem number: Problem 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$2\cos(x)^{2}y' + y\sin(2x) - 4\cos(x)^{4} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(2*(cos(x)^2)*diff(y(x),x)+y(x)*sin(2*x)=4*cos(x)^4,y(x), singsol=all)$

$$y(x) = (2\sin(x) + c_1)\cos(x)$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 15

DSolve[2*(Cos[x]^2)*y'[x]+y[x]*Sin[2*x]==4*Cos[x]^4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \cos(x)(2\sin(x) + c_1)$$

3.8 problem Problem 8

Internal problem ID [2137]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{x\ln(x)} - 9x^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)+1/(x*ln(x))*y(x)=9*x^2,y(x), singsol=all)$

$$y(x) = \frac{3x^3 \ln(x) - x^3 + c_1}{\ln(x)}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 24

 $DSolve[y'[x]+1/(x*Log[x])*y[x]==9*x^2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to 3x^3 + \frac{-x^3 + c_1}{\log(x)}$$

3.9 problem Problem 9

Internal problem ID [2138]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential

tial Equations. page 59

Problem number: Problem 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - y \tan(x) - 8\sin(x)^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)-y(x)*tan(x)=8*sin(x)^3,y(x), singsol=all)$

$$y(x) = \frac{-\cos(2x) + \frac{\cos(4x)}{4} + c_1}{\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 19

DSolve[y'[x]-y[x]*Tan[x]==8*Sin[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow 2\sin^3(x)\tan(x) + c_1\sec(x)$$

3.10 problem Problem 10

Internal problem ID [2139]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$tx' + 2x - 4e^t = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(t*diff(x(t),t)+2*x(t)=4*exp(t),x(t), singsol=all)

$$x(t) = \frac{4(t-1)e^t + c_1}{t^2}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 20

DSolve[t*x'[t]+2*x[t]==4*Exp[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{4e^t(t-1) + c_1}{t^2}$$

3.11 problem Problem 11

Internal problem ID [2140]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \sin(x) \left(y \sec(x) - 2 \right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)=sin(x)*(y(x)*sec(x)-2),y(x), singsol=all)

$$y(x) = \frac{\frac{\cos(2x)}{2} + c_1}{\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 20

DSolve[y'[x] == Sin[x]*(y[x]*Sec[x]-2),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} \sec(x)(\cos(2x) + 2c_1)$$

3.12 problem Problem 12

Internal problem ID [2141]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$1 - \sin(x) y - y' \cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve((1-y(x)*sin(x))-cos(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (\tan(x) + c_1)\cos(x)$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 13

DSolve[(1-y[x]*Sin[x])-Cos[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \sin(x) + c_1 \cos(x)$$

3.13 problem Problem 13

Internal problem ID [2142]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{x} - 2\ln(x) x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)-1/x*y(x)=2*x^2*ln(x),y(x), singsol=all)$

$$y(x) = \left(\ln\left(x\right)x^2 - \frac{x^2}{2} + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 23

 $DSolve[y'[x]-1/x*y[x] == 2*x^2*Log[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{x^3}{2} + x^3 \log(x) + c_1 x$$

3.14 problem Problem 14

Internal problem ID [2143]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + \alpha y - e^{\beta x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve(diff(y(x),x)+alpha*y(x)=exp(beta*x),y(x), singsol=all)

$$y(x) = \left(\frac{e^{x(\alpha+\beta)}}{\alpha+\beta} + c_1\right)e^{-\alpha x}$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 31

 $DSolve[y'[x]+\[Alpha]*y[x]==Exp[\[Beta]*x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) o rac{e^{\alpha(-x)} \left(e^{x(\alpha+\beta)} + c_1(\alpha+\beta)\right)}{\alpha+\beta}$$

3.15 problem Problem 15

Internal problem ID [2144]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{my}{x} - \ln(x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

dsolve(diff(y(x),x)+m/x*y(x)=ln(x),y(x), singsol=all)

$$y(x) = \frac{\ln(x) x}{m+1} - \frac{x}{m^2 + 2m + 1} + x^{-m} c_1$$

Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 29

DSolve[y'[x]+m/x*y[x]==Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x((m+1)\log(x)-1)}{(m+1)^2} + c_1 x^{-m}$$

3.16 problem Problem 16

Internal problem ID [2145]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{2y}{x} - 4x = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 13

dsolve([diff(y(x),x)+2/x*y(x)=4*x,y(1) = 2],y(x), singsol=all)

$$y(x) = \frac{x^4 + 1}{x^2}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: $12\,$

 $DSolve[\{y'[x]+2/x*y[x]==4*x,\{y[1]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2 + \frac{1}{x^2}$$

3.17 problem Problem 17

Internal problem ID [2146]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 17.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$\sin(x) y' - \cos(x) y - \sin(2x) = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right) = 2\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

$$y(x) = (2\ln(\sin(x)) + 2)\sin(x)$$

✓ Solution by Mathematica

Time used: 0.503 (sec). Leaf size: 22

 $DSolve[\{Sin[x]*y'[x]-y[x]*Cos[x]=Sin[2*x],\{y[Pi/2]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow Table (Sin[x]*y'[x]-y[x]*Cos[x]=Sin[2*x],\{y[Pi/2]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow Table (Sin[x]*y'[x]-y[x]*Cos[x]=Sin[2*x],\{y[Pi/2]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow Table (Sin[x]*y'[x]-y[x]*Cos[x]=Sin[2*x],\{y[Pi/2]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow Table (Sin[x]*y'[x]-y[x])$

$$y(x) \rightarrow 2\sin(x)(\log(\tan(x)) + \log(\cos(x)) - 2i\pi + 1)$$

3.18 problem Problem 18

Internal problem ID [2147]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' + \frac{2x}{4-t} - 5 = 0$$

With initial conditions

$$[x(0) = 4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(x(t),t)+2/(4-t)*x(t)=5,x(0) = 4],x(t), singsol=all)

$$x(t) = -t^2 + 3t + 4$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 13

 $DSolve[\{x'[t]+2/(4-t)*x[t]==5,\{x[0]==4\}\},x[t],t,IncludeSingularSolutions \rightarrow True] \\$

$$x(t) \to -((t-4)(t+1))$$

3.19 problem Problem 19

Internal problem ID [2148]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y + y' - e^x = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([y(x)-exp(x)+diff(y(x),x)=0,y(0) = 1],y(x), singsol=all)

$$y(x) = \frac{e^x}{2} + \frac{e^{-x}}{2}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 7

 $DSolve[\{y[x]-Exp[x]+y'[x]==0,\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \cosh(x)$$

3.20 problem Problem 20

Internal problem ID [2149]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - 2y - \left(\left\{ \begin{array}{cc} 1 & x \le 1 \\ 0 & 1 < x \end{array} \right) = 0$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 27

dsolve([diff(y(x),x)-2*y(x)=piecewise(x<=1,1,x>1,0),y(0) = 3],y(x), singsol=all)

$$y(x) = \frac{7 e^{2x}}{2} - \frac{\left(\begin{cases} 1 & x < 1 \\ e^{2x-2} & 1 \le x \end{cases} \right)}{2}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 42

DSolve[{ode = $y'[x] - 2*y[x] == Piecewise[{{1, x <= 1}, {0, x > 1}}],{y[0]==3}},y[x],x,Include = y'[x] - 2*y[x] == Piecewise[{{1, x <= 1}, {0, x > 1}}],{y[0]==3}},y[x],x,Include = y'[x] - 2*y[x] == Piecewise[{{1, x <= 1}, {0, x > 1}}],{y[0]==3}},y[x],x,Include = y'[x] - 2*y[x] == Piecewise[{{1, x <= 1}, {0, x > 1}}],{y[0]==3}},y[x],x,Include = y'[x] - 2*y[x] == Piecewise[{{1, x <= 1}, {0, x > 1}}],{y[0]==3}},y[x],x,Include = y'[x] - 2*y[x] == Piecewise[{{1, x <= 1}, {0, x > 1}}],{y[0]==3}},y[x],x,Include = y'[x] - 2*y[x] == Piecewise[{{1, x <= 1}, {0, x > 1}}],{y[0]==3}},y[x],x,Include = y'[x] - 2*y[x] == Piecewise[{{1, x <= 1}, {0, x > 1}}],{y[0]==3}},y[x],x,Include = y'[x],x,Include = y'[x],x,Include$

$$y(x) \rightarrow \begin{cases} \frac{1}{2}(-1+7e^{2x}) & x \le 1\\ \frac{1}{2}e^{2x-2}(-1+7e^2) & \text{True} \end{cases}$$

3.21 problem Problem 21

Internal problem ID [2150]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y - \left(\left\{ \begin{array}{cc} 1 - x & x < 1 \\ 0 & 1 \le x \end{array} \right) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 31

dsolve([diff(y(x),x)-2*y(x)=piecewise(x<1,1-x,x>=1,0),y(0) = 1],y(x), singsol=all)

$$y(x) = \frac{5e^{2x}}{4} + \frac{\left(\begin{cases} 2x - 1 & x < 1\\ e^{2x - 2} & 1 \le x \end{cases}\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.085 (sec). Leaf size: 45

 $DSolve[\{y'[x] - 2*y[x] == Piecewise[\{\{1-x, x < 1\}, \{0, x >= 1\}\}], \{y[0] == 1\}\}, y[x], x, IncludeSing(x) = (x, y) = (x,$

$$y(x) \rightarrow \begin{cases} \frac{1}{4}(2x + 5e^{2x} - 1) & x \le 1\\ \frac{1}{4}e^{2x-2}(1 + 5e^2) & \text{True} \end{cases}$$

3.22 problem Problem 22

Internal problem ID [2151]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + \frac{y'}{x} - 9x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x\$2)+1/x*diff(y(x),x)=9*x,y(x), singsol=all)

$$y(x) = x^3 + \ln(x) c_1 + c_2$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 16

DSolve[y''[x]+1/x*y'[x]==9*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^3 + c_1 \log(x) + c_2$$

3.23 problem Problem 30

Internal problem ID [2152]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{x} - \cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x)+1/x*y(x)=cos(x),y(x), singsol=all)

$$y(x) = \frac{\sin(x) x + \cos(x) + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 17

DSolve[y'[x]+1/x*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x) + \frac{\cos(x) + c_1}{x}$$

3.24 problem Problem 31

Internal problem ID [2153]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 31.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y - e^{-2x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)+y(x)=exp(-2*x),y(x), singsol=all)

$$y(x) = \left(-e^{-x} + c_1\right)e^{-x}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 19

DSolve[y'[x]+y[x]==Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x}(-1 + c_1 e^x)$$

3.25 problem Problem 32

Internal problem ID [2154]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 32.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \cot(x) y - 2\cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)+y(x)*cot(x)=2*cos(x),y(x), singsol=all)

$$y(x) = \frac{-\frac{\cos(2x)}{2} + c_1}{\sin(x)}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 17

DSolve[y'[x]+y[x]*Cot[x]==2*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x) + \left(-\frac{1}{2} + c_1\right) \csc(x)$$

3.26 problem Problem 33

Internal problem ID [2155]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59

Problem number: Problem 33.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x - y - \ln(x) x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x*diff(y(x),x)-y(x)=x^2*ln(x),y(x), singsol=all)$

$$y(x) = (x \ln(x) - x + c_1) x$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 17

DSolve[x*y'[x]-y[x]==x^2*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x(-x + x \log(x) + c_1)$$

4 Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

4.1	problem Problem	9 .															•		86
4.2	problem Problem	10																	87
4.3	problem Problem	11																	88
4.4	problem Problem	12																	89
4.5	problem Problem	13																	90
4.6	problem Problem	14																	91
4.7	problem Problem	15																	92
4.8	problem Problem	16																	93
4.9	problem Problem	17																	94
4.10	problem Problem	18																	96
4.11	problem Problem	19																	97
4.12	problem Problem	20																	98
4.13	problem Problem	21																	99
4.14	problem Problem	22																1	100
4.15	problem Problem	23																•	101
4.16	problem Problem	25																1	102
4.17	problem Problem	26																• -	104
4.18	problem Problem	27																1	105
4.19	problem Problem	28																1	106
4.20	problem Problem	29(a	ι)															• .	107
4.21	problem Problem	29(b)															1	108
4.22	problem Problem	38																1	109
4.23	problem Problem	39																1	110
4.24	problem Problem	40																1	112
4.25	problem Problem	41																1	113
4.26	problem Problem	42																• -	114
4.27	problem Problem	43																1	115
4.28	problem Problem	44																1	116
4.29	problem Problem	45																• -	117
4.30	problem Problem	46																	118
4.31	problem Problem	47																1	119
4.32	problem Problem	48																1	120
4.33	problem Problem	49																•	121
4.34	problem Problem	50																1	122
4.35	problem Problem	51																1	123
4.36	problem Problem	52																• .	124
4.37	problem Problem	54																7	125
4 38	problem Problem	55																-	126

4.39	problem Problem 56		•		•		•		•		•	•	•			•					127
4.40	problem Problem 58											•									128
4.41	problem Problem 59											•									129
4.42	problem Problem 60											•									130
4.43	problem Problem 61											•									131
4.44	problem Problem 62											•									132
4.45	problem Problem 63											•			•	•		•			133
4.46	problem Problem 64											•									134
4.47	problem Problem 65											•									135
4.48	problem Problem 67																				136

4.1 problem Problem 9

Internal problem ID [2156]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$y' - \frac{x^2 + yx + y^2}{x^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(diff(y(x),x)=(y(x)^2+x*y(x)+x^2)/x^2,y(x), singsol=all)$

$$y(x) = \tan\left(\ln\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.184 (sec). Leaf size: 13

 $DSolve[y'[x] == (y[x]^2 + x*y[x] + x^2)/x^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \tan(\log(x) + c_1)$$

4.2 problem Problem 10

Internal problem ID [2157]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page

79

Problem number: Problem 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A']

$$\left(-y+3x\right)y'-3y=0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve((3*x-y(x))*diff(y(x),x)=3*y(x),y(x), singsol=all)

$$y(x) = e^{\text{LambertW}(-3x e^{-3c_1}) + 3c_1}$$

✓ Solution by Mathematica

Time used: 5.805 (sec). Leaf size: 25

DSolve[(3*x-y[x])*y'[x]==3*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{W(-3e^{-c_1}x) + c_1}$$
$$y(x) \to 0$$

4.3 problem Problem 11

Internal problem ID [2158]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$y' - \frac{(x+y)^2}{2x^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)=(x+y(x))^2/(2*x^2),y(x), singsol=all)$

$$y(x) = \tan\left(\frac{\ln(x)}{2} + \frac{c_1}{2}\right)x$$

✓ Solution by Mathematica

Time used: 0.203 (sec). Leaf size: 17

 $DSolve[y'[x] == (x+y[x])^2/(2*x^2), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) o x an\left(rac{\log(x)}{2} + c_1
ight)$$

4.4 problem Problem 12

Internal problem ID [2159]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$\sin\left(\frac{y}{x}\right)(y'x - y) - x\cos\left(\frac{y}{x}\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $\label{eq:decomposition} \\ \mbox{dsolve}(\sin(y(x)/x)*(x*\mbox{diff}(y(x),x)-y(x))=x*\cos(y(x)/x),y(x), \ \mbox{singsol=all}) \\$

$$y(x) = x \arccos\left(\frac{1}{c_1 x}\right)$$

Solution by Mathematica

Time used: 24.469 (sec). Leaf size: 48

 $DSolve[Sin[y[x]/x]*(x*y'[x]-y[x]) == x*Cos[y[x]/x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x \sec^{-1}(e^{c_1}x)$$
$$y(x) \to x \sec^{-1}(e^{c_1}x)$$
$$y(x) \to -\frac{\pi x}{2}$$
$$y(x) \to \frac{\pi x}{2}$$

4.5 problem Problem 13

Internal problem ID [2160]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 13.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y'x - \sqrt{16x^2 - y^2} - y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

 $dsolve(x*diff(y(x),x)=sqrt(16*x^2-y(x)^2)+y(x),y(x), singsol=all)$

$$-\arctan\left(\frac{y(x)}{\sqrt{16x^2 - y(x)^2}}\right) + \ln(x) - c_1 = 0$$

Solution by Mathematica

Time used: 0.349 (sec). Leaf size: 18

 $DSolve[x*y'[x] == Sqrt[16*x^2-y[x]^2] + y[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -4x \cosh(i\log(x) + c_1)$$

4.6 problem Problem 14

Internal problem ID [2161]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y'x - y - \sqrt{9x^2 + y^2} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

 $dsolve(x*diff(y(x),x)-y(x)=sqrt(9*x^2+y(x)^2),y(x), singsol=all)$

$$\frac{y(x)}{x^2} + \frac{\sqrt{9x^2 + y(x)^2}}{x^2} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.325 (sec). Leaf size: 27

 $DSolve[x*y'[x]-y[x]==Sqrt[9*x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) o rac{9e^{c_1}x^2}{2} - rac{e^{-c_1}}{2}$$

4.7 problem Problem 15

Internal problem ID [2162]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y(x^2 - y^2) - x(x^2 - y^2) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(y(x)*(x^2-y(x)^2)-x*(x^2-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -x$$

$$y(x) = x$$

$$y(x) = c_1 x$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 33

 $DSolve[y[x]*(x^2-y[x]^2)-x*(x^2-y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x$$

$$y(x) \to x$$

$$y(x) \to c_1 x$$

$$y(x) \to -x$$

$$y(x) \to x$$

4.8 problem Problem 16

Internal problem ID [2163]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'x + \ln(x)y - y\ln(y) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve(x*diff(y(x),x)+y(x)*ln(x)=y(x)*ln(y(x)),y(x), singsol=all)

$$y(x) = x e^{-c_1 x} e$$

✓ Solution by Mathematica

Time used: 0.222 (sec). Leaf size: 24

DSolve[x*y'[x]+y[x]*Log[x]==y[x]*Log[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to xe^{1+e^{c_1}x}$$

$$y(x) \to ex$$

4.9 problem Problem 17

Internal problem ID [2164]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y' - \frac{y^2 + 2yx - 2x^2}{x^2 - yx + y^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 79

 $dsolve(diff(y(x),x)=(y(x)^2+2*x*y(x)-2*x^2)/(x^2-x*y(x)+y(x)^2),y(x), singsol=all)$

$$y(x) = -\frac{x\left(\text{RootOf}\left(2_Z^6 + (9c_1x^2 - 1)_Z^4 - 6x^2c_1_Z^2 + c_1x^2\right)^2 - 1\right)}{\text{RootOf}\left(2_Z^6 + (9c_1x^2 - 1)_Z^4 - 6x^2c_1_Z^2 + c_1x^2\right)^2}$$

✓ Solution by Mathematica

Time used: 60.191 (sec). Leaf size: 372

$$\begin{split} y(x) & \to \frac{\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}}{\sqrt[3]{2}} \\ & - \frac{\sqrt[3]{2}(-3x^2 + e^{2c_1})}{\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}} + x \\ y(x) & \to \frac{\left(1 + i\sqrt{3}\right)\left(-3x^2 + e^{2c_1}\right)}{2^{2/3}\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}} \\ & + \left(-\frac{1}{3}\right)^{2/3}\sqrt[3]{-9x^3 + \sqrt{3}\sqrt{27e^{2c_1}x^4 - 9e^{4c_1}x^2 + e^{6c_1}}} + x \\ y(x) & \to -\frac{\left(1 + i\sqrt{3}\right)\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}}{6\sqrt[3]{2}} \\ & + \frac{\left(1 - i\sqrt{3}\right)\left(-3x^2 + e^{2c_1}\right)}{2^{2/3}\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}} + x \end{split}$$

4.10 problem Problem 18

Internal problem ID [2165]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A']]

$$2xyy' - 2y^2 - x^2 e^{-\frac{y^2}{x^2}} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(2*x*y(x)*diff(y(x),x)-(x^2*exp(-y(x)^2/x^2)+2*y(x)^2)=0,y(x), singsol=all)$

$$y(x) = \sqrt{\ln(\ln(x) + c_1)} x$$
$$y(x) = -\sqrt{\ln(\ln(x) + c_1)} x$$

✓ Solution by Mathematica

Time used: 2.141 (sec). Leaf size: 38

 $DSolve[2*x*y[x]*y'[x]-(x^2*Exp[-y[x]^2/x^2]+2*y[x]^2)==0,y[x],x,IncludeSingularSolutions -> T$

$$y(x) \to -x\sqrt{\log(\log(x) + 2c_1)}$$

 $y(x) \to x\sqrt{\log(\log(x) + 2c_1)}$

4.11 problem Problem 19

Internal problem ID [2166]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 19.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$y'x^2 - y^2 - 3yx - x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x^2*diff(y(x),x)=y(x)^2+3*x*y(x)+x^2,y(x), singsol=all)$

$$y(x) = -\frac{x(\ln(x) + c_1 + 1)}{\ln(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.147 (sec). Leaf size: 25

 $DSolve[x^2*y'[x] == y[x]^2 + 3*x*y[x] + x^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \left(-1 - \frac{1}{\log(x) + c_1}\right)$$

 $y(x) \to -x$

4.12 problem Problem 20

Internal problem ID [2167]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$yy' + x - \sqrt{x^2 + y^2} = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 28

 $dsolve(y(x)*diff(y(x),x)=sqrt(x^2+y(x)^2)-x,y(x), singsol=all)$

$$-c_1 + \frac{\sqrt{x^2 + y(x)^2}}{y(x)^2} + \frac{x}{y(x)^2} = 0$$

✓ Solution by Mathematica

Time used: 0.375 (sec). Leaf size: $57\,$

 $DSolve[y[x]*y'[x] == Sqrt[x^2+y[x]^2]-x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -e^{\frac{c_1}{2}} \sqrt{2x + e^{c_1}}$$

$$y(x) \to e^{\frac{c_1}{2}} \sqrt{2x + e^{c_1}}$$

$$y(x) \to 0$$

4.13 problem Problem 21

Internal problem ID [2168]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A']

$$2x(2x + y)y' - y(4x - y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(2*x*(y(x)+2*x)*diff(y(x),x)=y(x)*(4*x-y(x)),y(x), singsol=all)

$$y(x) = e^{\operatorname{LambertW}\left(2 \operatorname{e}^{\frac{3c_1}{2}} x^{\frac{3}{2}}\right) - \frac{3c_1}{2} - \frac{3\ln(x)}{2}} x$$

✓ Solution by Mathematica

Time used: 5.204 (sec). Leaf size: 29

 $DSolve[2*x*(y[x]+2*x)*y'[x]==y[x]*(4*x-y[x]),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2x}{W(2e^{-c_1}x^{3/2})}$$
$$y(x) \to 0$$

4.14 problem Problem 22

Internal problem ID [2169]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'x - \tan\left(\frac{y}{x}\right)x - y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

dsolve(x*diff(y(x),x)=x*tan(y(x)/x)+y(x),y(x), singsol=all)

$$y(x) = \arcsin(c_1 x) x$$

✓ Solution by Mathematica

Time used: 8.362 (sec). Leaf size: 19

 $DSolve[x*y'[x] == x*Tan[y[x]/x] + y[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \arcsin\left(e^{c_1}x\right)$$

$$y(x) \to 0$$

4.15 problem Problem 23

Internal problem ID [2170]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' - \frac{\sqrt{x^2 + y^2} \, x + y^2}{yx} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x)=(x*sqrt(y(x)^2+x^2)+y(x)^2)/(x*y(x)),y(x), singsol=all)$

$$-\frac{\sqrt{x^{2}+y(x)^{2}}}{x}+\ln(x)-c_{1}=0$$

✓ Solution by Mathematica

Time used: 0.283 (sec). Leaf size: 48

DSolve[y'[x]==(x*Sqrt[y[x]^2+x^2]+y[x]^2)/(x*y[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x\sqrt{(\log(x) - 1 + c_1)(\log(x) + 1 + c_1)}$$

 $y(x) \to x\sqrt{(\log(x) - 1 + c_1)(\log(x) + 1 + c_1)}$

4.16 problem Problem 25

Internal problem ID [2171]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A']

$$y' - \frac{2(-x+2y)}{x+y} = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.859 (sec). Leaf size: 273

dsolve([diff(y(x),x)=2*(2*y(x)-x)/(x+y(x)),y(0)=2],y(x), singsol=all)

$$y(x) = \frac{\left(3\sqrt{3}x\sqrt{x(27x+8)} + 27x^2 + 36x + 8\right)^{\frac{1}{3}}}{3} + \frac{4x + \frac{4}{3}}{\left(3\sqrt{3}x\sqrt{x(27x+8)} + 27x^2 + 36x + 8\right)^{\frac{1}{3}}} + 2x + \frac{2}{3}$$

/ So

Solution by Mathematica

Time used: 60.261 (sec). Leaf size: 122

 $DSolve[\{y'[x]==2*(2*y[x]-x)/(x+y[x]),\{y[0]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{3} \left(6x \left(\frac{2}{\sqrt[3]{3\sqrt{3}\sqrt{x^3(27x+8)} + 9x(3x+4) + 8}} + 1 \right) + \sqrt[3]{3\sqrt{3}\sqrt{x^3(27x+8)} + 9x(3x+4) + 8} + \frac{4}{\sqrt[3]{3\sqrt{3}\sqrt{x^3(27x+8)} + 9x(3x+4) + 8}} + 2 \right) + 2 \right)$$

4.17 problem Problem 26

Internal problem ID [2172]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A']

$$y' - \frac{2x - y}{x + 4y} = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 19

dsolve([diff(y(x),x)=(2*x-y(x))/(x+4*y(x)),y(1) = 1],y(x), singsol=all)

$$y(x) = -\frac{x}{4} + \frac{\sqrt{9x^2 + 16}}{4}$$

✓ Solution by Mathematica

Time used: 0.422 (sec). Leaf size: 24

 $DSolve[\{y'[x]==(2*x-y[x])/(x+4*y[x]),\{y[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{1}{4} \Big(\sqrt{9x^2 + 16} - x \Big)$$

4.18 problem Problem 27

Internal problem ID [2173]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' - \frac{y - \sqrt{x^2 + y^2}}{x} = 0$$

With initial conditions

$$[y(3) = 4]$$

✓ Solution by Maple

Time used: 0.422 (sec). Leaf size: 21

 $dsolve([diff(y(x),x)=(y(x)-sqrt(x^2+y(x)^2))/x,y(3) = 4],y(x), singsol=all)$

$$y(x) = \frac{x^2}{2} - \frac{1}{2}$$

$$y(x) = -\frac{x^2}{18} + \frac{9}{2}$$

✓ Solution by Mathematica

Time used: 0.234 (sec). Leaf size: 28

 $DSolve[\{y'[x]==(y[x]-Sqrt[x^2+y[x]^2])/x,\{y[3]==4\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{18}(x-9)(x+9)$$

$$y(x) \to \frac{1}{2} \left(x^2 - 1 \right)$$

4.19 problem Problem 28

Internal problem ID [2174]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y'x - y - \sqrt{4x^2 - y^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

 $dsolve(x*diff(y(x),x)-y(x)=sqrt(4*x^2-y(x)^2),y(x), singsol=all)$

$$-\arctan\left(\frac{y(x)}{\sqrt{4x^2-y\left(x\right)^2}}\right)+\ln\left(x\right)-c_1=0$$

✓ Solution by Mathematica

Time used: 0.376 (sec). Leaf size: 18

 $DSolve[x*y'[x]-y[x] == Sqrt[4*x^2-y[x]^2], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -2x \cosh(i \log(x) + c_1)$$

4.20 problem Problem 29(a)

Internal problem ID [2175]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page

Problem number: Problem 29(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$y' - \frac{x + ay}{ax - y} = 0$$

✓ Solution by Maple

Time used: 0.296 (sec). Leaf size: 25

dsolve(diff(y(x),x)=(x+a*y(x))/(a*x-y(x)),y(x), singsol=all)

$$y(x) = \tan \left(\operatorname{RootOf} \left(-2a_Z + \ln \left(\frac{x^2}{\cos (_Z)^2} \right) + 2c_1 \right) \right) x$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 34

 $DSolve[y'[x] == (x+a*y[x])/(a*x-y[x]), y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[a \arctan\left(\frac{y(x)}{x}\right) - \frac{1}{2}\log\left(\frac{y(x)^2}{x^2} + 1\right) = \log(x) + c_1, y(x)\right]$$

4.21 problem Problem 29(b)

Internal problem ID [2176]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 29(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$y' - \frac{x + \frac{y}{2}}{\frac{x}{2} - y} = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 30

dsolve([diff(y(x),x)=(x+1/2*y(x))/(1/2*x-y(x)),y(1) = 1],y(x), singsol=all)

$$y(x) = \tan\left(\mathrm{RootOf}\left(4_Z - 4\ln\left(\sec\left(_Z\right)^2\right) - 8\ln\left(x\right) + 4\ln\left(2\right) - \pi\right)\right)x$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 42

$$Solve \left[\log \left(\frac{y(x)^2}{x^2} + 1 \right) - \arctan \left(\frac{y(x)}{x} \right) = \frac{1}{4} (4 \log(2) - \pi) - 2 \log(x), y(x) \right]$$

4.22 problem Problem 38

Internal problem ID [2177]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 38.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _Bernoulli]

$$y' - \frac{y}{x} - \frac{4x^2 \cos(x)}{y} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $dsolve(diff(y(x),x)-1/x*y(x)=4*x^2/y(x)*cos(x),y(x), singsol=all)$

$$y(x) = \sqrt{8\sin(x) + c_1} x$$
$$y(x) = -\sqrt{8\sin(x) + c_1} x$$

✓ Solution by Mathematica

Time used: 0.27 (sec). Leaf size: $36\,$

 $DSolve[y'[x]-1/x*y[x] == 4*x^2/y[x]*Cos[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x\sqrt{8\sin(x) + c_1}$$

 $y(x) \to x\sqrt{8\sin(x) + c_1}$

4.23 problem Problem 39

Internal problem ID [2178]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 39.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + \frac{y \tan(x)}{2} - 2y^3 \sin(x) = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 66

 $dsolve(diff(y(x),x)+1/2*tan(x)*y(x)=2*y(x)^3*sin(x),y(x), singsol=all)$

$$y(x) = \frac{\sqrt{-(2\sin(x)^2 - c_1)\cos(x)}}{2\sin(x)^2 - c_1}$$
$$y(x) = -\frac{\sqrt{-(2\sin(x)^2 - c_1)\cos(x)}}{2\sin(x)^2 - c_1}$$

✓ Solution by Mathematica

Time used: 5.026 (sec). Leaf size: 215

DSolve[y'[x]+1/2*Tan(x)*y[x]==2*y[x]^3*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to -\frac{e^{\frac{1}{4}/\mathrm{Tan}}\sqrt[4]{\mathrm{Tan}}}{\sqrt{e^{\frac{\mathrm{Tan}x^2}{2}}\left(\sqrt{2\pi}\left(\mathrm{erfi}\left(\frac{1+i\mathrm{Tan}x}{\sqrt{2}\sqrt{\mathrm{Tan}}}\right) - i\mathrm{erf}\left(\frac{\mathrm{Tan}x+i}{\sqrt{2}\sqrt{\mathrm{Tan}}}\right)\right) + c_1e^{\frac{1}{2}/\mathrm{Tan}}\sqrt{\mathrm{Tan}}\right)}}\\ y(x) &\to \frac{e^{\frac{1}{4}/\mathrm{Tan}}\sqrt[4]{\mathrm{Tan}}}{\sqrt{e^{\frac{\mathrm{Tan}x^2}{2}}\left(\sqrt{2\pi}\left(\mathrm{erfi}\left(\frac{1+i\mathrm{Tan}x}{\sqrt{2}\sqrt{\mathrm{Tan}}}\right) - i\mathrm{erf}\left(\frac{\mathrm{Tan}x+i}{\sqrt{2}\sqrt{\mathrm{Tan}}}\right)\right) + c_1e^{\frac{1}{2}/\mathrm{Tan}}\sqrt{\mathrm{Tan}}\right)}}\\ y(x) &\to 0 \end{split}$$

4.24 problem Problem 40

Internal problem ID [2179]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 40.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' - \frac{3y}{2x} - 6y^{\frac{1}{3}}x^{2}\ln(x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

 $dsolve(diff(y(x),x)-3/(2*x)*y(x)=6*y(x)^(1/3)*x^2*ln(x),y(x), singsol=all)$

$$-2x^{3} \ln(x) + x^{3} + y(x)^{\frac{2}{3}} - c_{1}x = 0$$

✓ Solution by Mathematica

Time used: 0.727 (sec). Leaf size: 26

 $DSolve[y'[x]-3/(2*x)*y[x] == 6*y[x]^(1/3)*x^2*Log[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to (x(-x^2 + 2x^2 \log(x) + c_1))^{3/2}$$

4.25 problem Problem 41

Internal problem ID [2180]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 41.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + \frac{2y}{x} - 6\sqrt{x^2 + 1}\sqrt{y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(diff(y(x),x)+2/x*y(x)=6*sqrt(1+x^2)*sqrt(y(x)),y(x), singsol=all)$

$$\sqrt{y(x)} - \frac{(x^2+1)^{\frac{3}{2}} + c_1}{x} = 0$$

✓ Solution by Mathematica

Time used: 0.217 (sec). Leaf size: 55

DSolve[y'[x]+2/x*y[x]==6*Sqrt[1+x^2]*Sqrt[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^6 + 3x^4 + x^2(3 + 2c_1\sqrt{x^2 + 1}) + 2c_1\sqrt{x^2 + 1} + 1 + c_1^2}{x^2}$$

4.26 problem Problem 42

Internal problem ID [2181]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 42.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y' + \frac{2y}{x} - 6y^2x^4 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(x),x)+2/x*y(x)=6*y(x)^2*x^4,y(x), singsol=all)$

$$y(x) = \frac{1}{(-2x^3 + c_1) x^2}$$

Solution by Mathematica

Time used: 0.136 (sec). Leaf size: 24

 $DSolve[y'[x]+2/x*y[x]==6*y[x]^2*x^4,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{-2x^5 + c_1 x^2}$$
$$y(x) \to 0$$

4.27 problem Problem 43

Internal problem ID [2182]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 43.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$2x(y' + x^2y^3) + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(2*x*(diff(y(x),x)+y(x)^3*x^2)+y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{x^3 + c_1 x}}$$
$$y(x) = -\frac{1}{\sqrt{x^3 + c_1 x}}$$

✓ Solution by Mathematica

Time used: 0.277 (sec). Leaf size: 40

 $DSolve[2*x*(y'[x]+y[x]^3*x^2)+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{\sqrt{x(x^2 + c_1)}}$$
$$y(x) \to \frac{1}{\sqrt{x(x^2 + c_1)}}$$
$$y(x) \to 0$$

4.28 problem Problem 44

Internal problem ID [2183]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 44.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

$$(x-a)(x-b)(y'-\sqrt{y}) - 2(-a+b)y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 80

dsolve((x-a)*(x-b)*(diff(y(x),x)-sqrt(y(x)))=2*(b-a)*y(x),y(x), singsol=all)

$$\sqrt{y(x)} - \frac{x(x-b)}{2(x-a)} + \frac{a\ln(x-b)(x-b)}{2x-2a} - \frac{b\ln(x-b)(x-b)}{2(x-a)} - \frac{c_1(x-b)}{x-a} = 0$$

✓ Solution by Mathematica

Time used: 0.457 (sec). Leaf size: 43

DSolve[(x-a)*(x-b)*(y'[x]-Sqrt[y[x]])==2*(b-a)*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{(b-x)^2((b-a)\log(x-b) + x + 2c_1)^2}{4(a-x)^2}$$

4.29 problem Problem 45

Internal problem ID [2184]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 45.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + \frac{6y}{x} - \frac{3y^{\frac{2}{3}}\cos(x)}{x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)+6/x*y(x)=3/x*y(x)^(2/3)*cos(x),y(x), singsol=all)$

$$y(x)^{\frac{1}{3}} - \frac{\sin(x)x + \cos(x) + c_1}{x^2} = 0$$

✓ Solution by Mathematica

Time used: 0.193 (sec). Leaf size: 20

 $DSolve[y'[x]+6/x*y[x]==3/x*y[x]^{(2/3)*Cos[x],y[x],x,IncludeSingularSolutions} \rightarrow True]$

$$y(x) \to \frac{(x\sin(x) + \cos(x) + c_1)^3}{x^6}$$

4.30 problem Problem 46

Internal problem ID [2185]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 46.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + 4yx - 4x^3\sqrt{y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)+4*x*y(x)=4*x^3*sqrt(y(x)),y(x), singsol=all)$

$$-x^{2} + 1 - e^{-x^{2}}c_{1} + \sqrt{y(x)} = 0$$

✓ Solution by Mathematica

Time used: 0.152 (sec). Leaf size: 29

DSolve[y'[x]+4*x*y[x]==4*x^3*Sqrt[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x^2} \Big(e^{x^2} (x^2 - 1) + c_1 \Big)^2$$

4.31 problem Problem 47

Internal problem ID [2186]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 47.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' - \frac{y}{2x\ln(x)} - 2xy^3 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 90

 $dsolve(diff(y(x),x)-1/(2*x*ln(x))*y(x)=2*x*y(x)^3,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{-(2\ln(x) x^2 - x^2 - c_1)\ln(x)}}{2\ln(x) x^2 - x^2 - c_1}$$
$$y(x) = -\frac{\sqrt{-(2\ln(x) x^2 - x^2 - c_1)\ln(x)}}{2\ln(x) x^2 - x^2 - c_1}$$

✓ Solution by Mathematica

Time used: 0.249 (sec). Leaf size: 63

 $DSolve[y'[x]-1/(2*x*Log[x])*y[x] == 2*x*y[x]^3, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{\log(x)}}{\sqrt{x^2 - 2x^2 \log(x) + c_1}}$$
$$y(x) \to \frac{\sqrt{\log(x)}}{\sqrt{x^2 - 2x^2 \log(x) + c_1}}$$
$$y(x) \to 0$$

4.32 problem Problem 48

Internal problem ID [2187]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 48.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y' - \frac{y}{(\pi - 1)x} - \frac{3xy^{\pi}}{1 - \pi} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)-1/((Pi-1)*x)*y(x)=3/(1-Pi)*x*y(x)^Pi,y(x), singsol=all)$

$$y(x) = \left(\frac{x^3 + c_1}{x}\right)^{-\frac{1}{\pi - 1}}$$

✓ Solution by Mathematica

Time used: 0.913 (sec). Leaf size: 28

 $DSolve[y'[x]-1/((Pi-1)*x)*y[x]==3/(1-Pi)*x*y[x]^Pi,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \left(\frac{x^3 + c_1}{x}\right)^{\frac{1}{1-\pi}}$$

 $y(x) \to 0$

4.33 problem Problem 49

Internal problem ID [2188]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 49.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$2y' + \cot(x) y - \frac{8\cos(x)^3}{y} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 64

 $dsolve(2*diff(y(x),x)+y(x)*cot(x)=8/y(x)*cos(x)^3,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{-\sin(x) (2\sin(x)^4 - 4\sin(x)^2 - c_1 + 2)}}{\sin(x)}$$
$$y(x) = -\frac{\sqrt{-\sin(x) (2\sin(x)^4 - 4\sin(x)^2 - c_1 + 2)}}{\sin(x)}$$

✓ Solution by Mathematica

Time used: 3.926 (sec). Leaf size: 47

 $DSolve[2*y'[x]+y[x]*Cot[x]==8/y[x]*Cos[x]^3,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\sqrt{-2\cos^3(x)\cot(x) + c_1\csc(x)}$$
$$y(x) \to \sqrt{-2\cos^3(x)\cot(x) + c_1\csc(x)}$$

4.34 problem Problem 50

Internal problem ID [2189]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 50.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(1 - \sqrt{3})y' + y \sec(x) - y^{\sqrt{3}} \sec(x) = 0$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 54

 $dsolve((1-sqrt(3))*diff(y(x),x)+y(x)*sec(x)=y(x)^sqrt(3)*sec(x),y(x), singsol=all)$

$$y(x) = \frac{\left(\frac{c_1 \cos(x) + \sin(x) + 1}{\sin(x) + 1}\right)^{-\frac{\sqrt{3}}{2}}}{\sqrt{\frac{\cos(x)c_1}{\sin(x) + 1} + \frac{\sin(x)}{\sin(x) + 1} + \frac{1}{\sin(x) + 1}}}$$

✓ Solution by Mathematica

Time used: 0.573 (sec). Leaf size: 74

DSolve[(1-Sqrt[3])*y'[x]+y[x]*Sec[x]==y[x]^Sqrt[3]*Sec[x],y[x],x,IncludeSingularSolutions ->

$$y(x) \to \text{InverseFunction} \left[\frac{\log\left(1-\#1^{\sqrt{3}-1}\right)-\left(\sqrt{3}-1\right)\log(\#1)}{\sqrt{3}-1} \& \right] \left[-\left(1+\sqrt{3}\right) \arctan\left(\tan\left(\frac{x}{2}\right)\right) + c_1 \right]$$

$$+\sqrt{3} \arctan\left(\tan\left(\frac{x}{2}\right)\right) + c_1 \right]$$

$$y(x) \to 0$$

$$y(x) \to 1$$

4.35 problem Problem 51

Internal problem ID [2190]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 51.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

$$y' + \frac{2xy}{x^2 + 1} - xy^2 = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 23

 $dsolve([diff(y(x),x)+2*x/(1+x^2)*y(x)=x*y(x)^2,y(0) = 1],y(x), singsol=all)$

$$y(x) = -\frac{2}{(x^2+1)(\ln(x^2+1)-2)}$$

✓ Solution by Mathematica

Time used: 0.198 (sec). Leaf size: 24

 $DSolve[\{y'[x]+2*x/(1+x^2)*y[x]==x*y[x]^2,\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{2}{(x^2+1)(\log(x^2+1)-2)}$$

4.36 problem Problem 52

Internal problem ID [2191]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 52.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + \cot(x) y - y^3 \sin(x)^3 = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right) = 1\right]$$

✓ Solution by Maple

Time used: 1.89 (sec). Leaf size: 34

 $dsolve([diff(y(x),x)+y(x)*cot(x)=y(x)^3*sin(x)^3,y(1/2*Pi) = 1],y(x), singsol=all)$

$$y(x) = -\frac{\csc(x)\sqrt{(2\cos(x) - 1)^2(1 + 2\cos(x))}}{4\cos(x)^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.853 (sec). Leaf size: $20\,$

$$y(x) \to \frac{1}{\sqrt{\sin^2(x)(2\cos(x)+1)}}$$

4.37 problem Problem 54

Internal problem ID [2192]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 54.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$y' - (9x - y)^2 = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.157 (sec). Leaf size: 28

 $dsolve([diff(y(x),x)=(9*x-y(x))^2,y(0) = 0],y(x), singsol=all)$

$$y(x) = \frac{(9x-3)e^{6x} + 9x + 3}{1 + e^{6x}}$$

✓ Solution by Mathematica

Time used: 0.142 (sec). Leaf size: 15

 $DSolve[\{y'[x]==(9*x-y[x])^2,\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow 9x - 3\tanh(3x)$$

4.38 problem Problem 55

Internal problem ID [2193]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 55.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$y' - (4x + y + 2)^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)=(4*x+y(x)+2)^2,y(x), singsol=all)$

$$y(x) = -4x - 2 - 2\tan(-2x + 2c_1)$$

Solution by Mathematica

Time used: 0.156 (sec). Leaf size: 41

 $DSolve[y'[x]==(4*x+y[x]+2)^2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -4x + \frac{1}{c_1 e^{4ix} - \frac{i}{4}} - (2+2i)$$

 $y(x) \to -4x - (2+2i)$

4.39 problem Problem 56

Internal problem ID [2194]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 56.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \sin(3x - 3y + 1)^2 = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 17

 $dsolve(diff(y(x),x)=(sin(3*x-3*y(x)+1))^2,y(x), singsol=all)$

$$y(x) = x + \frac{1}{3} + \frac{\arctan(-3x + 3c_1)}{3}$$

✓ Solution by Mathematica

Time used: 0.58 (sec). Leaf size: 43

 $DSolve[y'[x] == (Sin[3*x-3*y[x]+1])^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[2y(x) - 2\left(\frac{1}{3}\tan(-3y(x) + 3x + 1) - \frac{1}{3}\arctan(\tan(-3y(x) + 3x + 1))\right) = c_1, y(x)\right]$$

4.40 problem Problem 58

Internal problem ID [2195]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 58.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$y' - \frac{y(\ln(yx) - 1)}{x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve(diff(y(x),x)=y(x)/x*(ln(x*y(x))-1),y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^{\frac{x}{c_1}}}{x}$$

✓ Solution by Mathematica

Time used: 0.207 (sec). Leaf size: $24\,$

 $DSolve[y'[x] == y[x]/x*(Log[x*y[x]]-1),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{e^{e^{c_1}x}}{x}$$

$$y(x) \to \frac{1}{x}$$

4.41 problem Problem 59

Internal problem ID [2196]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 59.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Riccati]

$$y' - 2x(x+y)^2 + 1 = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.234 (sec). Leaf size: 20

 $dsolve([diff(y(x),x)=2*x*(x+y(x))^2-1,y(0) = 1],y(x), singsol=all)$

$$y(x) = \frac{-x^3 + x - 1}{x^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.134 (sec). Leaf size: 21

 $DSolve[\{y'[x]==2*x*(x+y[x])^2-1,\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{-x^3 + x - 1}{x^2 - 1}$$

4.42 problem Problem 60

Internal problem ID [2197]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 60.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$y' - \frac{x + 2y - 1}{2x - y + 3} = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 31

dsolve(diff(y(x),x)=(x+2*y(x)-1)/(2*x-y(x)+3),y(x), singsol=all)

$$y(x) = 1 - \tan\left(\text{RootOf}\left(4_Z + \ln\left(\frac{1}{\cos\left(_Z\right)^2}\right) + 2\ln(x+1) + 2c_1\right)\right)(x+1)$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 68

 $DSolve[y'[x] == (x+2*y[x]-1)/(2*x-y[x]+3), y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[32 \arctan \left(\frac{-2y(x) - x + 1}{-y(x) + 2x + 3} \right) + 8 \log \left(\frac{x^2 + y(x)^2 - 2y(x) + 2x + 2}{5(x+1)^2} \right) + 16 \log(x+1) + 5c_1 = 0, y(x) \right]$$

4.43 problem Problem 61

Internal problem ID [2198]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page

79

Problem number: Problem 61.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Riccati]

$$y' + p(x) y + q(x) y^{2} - r(x) = 0$$

X Solution by Maple

 $dsolve(diff(y(x),x)+p(x)*y(x)+q(x)*y(x)^2=r(x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y'[x]+p[x]*y[x]+q[x]*y[x]^2==r[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

Not solved

4.44 problem Problem 62

Internal problem ID [2199]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 62.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Riccati]

$$y' + \frac{2y}{x} - y^2 + \frac{2}{x^2} = 0$$

✓ Solution by Maple

Time used: 0.469 (sec). Leaf size: 24

 $dsolve(diff(y(x),x)+2/x*y(x)-y(x)^2=-2/x^2,y(x), singsol=all)$

$$y(x) = \frac{x^3 + 2c_1}{(-x^3 + c_1)x}$$

✓ Solution by Mathematica

Time used: 0.173 (sec). Leaf size: 35

DSolve[y'[x]+2/x*y[x]-y[x]^2==-2/x^2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$y(x) \to \frac{2 + 3c_1x^3}{x - 3c_1x^4}$$

$$y(x) \to -\frac{1}{x}$$

4.45 problem Problem 63

Internal problem ID [2200]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 63.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Riccati]

$$y' + \frac{7y}{x} - 3y^2 - \frac{3}{x^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(x),x)+7/x*y(x)-3*y(x)^2=3/x^2,y(x), singsol=all)$

$$y(x) = \frac{3\ln(x) - 3c_1 - 1}{3x(\ln(x) - c_1)}$$

✓ Solution by Mathematica

Time used: 0.146 (sec). Leaf size: 15

 $DSolve[y'[x]+7/x*y[x]-3*y[x]^2=3/x^2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{1}{x}$$

$$y(x) \to \frac{1}{x}$$

4.46 problem Problem 64

Internal problem ID [2201]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 64.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$\frac{y'}{y} + p(x)\ln(y) - q(x) = 0$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 36

dsolve(diff(y(x),x)/y(x)+p(x)*ln(y(x))=q(x),y(x), singsol=all)

$$y(x) = e^{e^{\int -p(x)dx} \left(\int q(x)e^{\int p(x)dx}dx\right)} e^{-e^{\int -p(x)dx}c_1}$$

✓ Solution by Mathematica

Time used: 0.189 (sec). Leaf size: 109

DSolve[y'[x]/y[x]+p[x]*Log[y[x]]==q[x],y[x],x,IncludeSingularSolutions -> True]

$$\begin{aligned} & \text{Solve} \left[\int_{1}^{x} \exp \left(- \int_{1}^{K[2]} - p(K[1]) dK[1] \right) (\log(y(x)) p(K[2]) - q(K[2])) dK[2] \right. \\ & + \int_{1}^{y(x)} \left(\frac{\exp \left(- \int_{1}^{x} - p(K[1]) dK[1] \right)}{K[3]} \right. \\ & - \int_{1}^{x} \frac{\exp \left(- \int_{1}^{K[2]} - p(K[1]) dK[1] \right) p(K[2])}{K[3]} dK[2] \right) dK[3] = c_{1}, y(x) \end{aligned}$$

4.47 problem Problem 65

Internal problem ID [2202]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

Problem number: Problem 65.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$\frac{y'}{y} - \frac{2\ln(y)}{x} - \frac{1 - 2\ln(x)}{x} = 0$$

With initial conditions

$$[y(1) = e]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 10

dsolve([diff(y(x),x)/y(x)-2/x*ln(y(x))=1/x*(1-2*ln(x)),y(1) = exp(1)],y(x), singsol=all)

$$y(x) = x e^{x^2}$$

✓ Solution by Mathematica

Time used: 0.205 (sec). Leaf size: 12

 $DSolve[\{y'[x]/y[x]-2/x*Log[y[x]]==1/x*(1-2*Log[x]), \{y[1]==Exp[1]\}\}, y[x], x, Include Singular Solution (a) = (1-2) + (1-2)$

$$y(x) \to e^{x^2} x$$

4.48 problem Problem 67

Internal problem ID [2203]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

 ${\bf Section:}\ {\bf Chapter}\ 1,\ {\bf First-Order}\ {\bf Differential}\ {\bf Equations.}\ {\bf Section}\ 1.8,\ {\bf Change}\ {\bf of}\ {\bf Variables.}\ {\bf page}$

79

Problem number: Problem 67.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\sec(y)^{2}y' + \frac{\tan(y)}{2\sqrt{x+1}} - \frac{1}{2\sqrt{x+1}} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

 $dsolve(sec(y(x))^2*diff(y(x),x)+1/(2*sqrt(1+x))*tan(y(x))=1/(2*sqrt(1+x)),y(x), singsol=all)$

$$y(x) = \arctan\left(e^{-\sqrt{x+1}}c_1 + 1\right)$$

/

Solution by Mathematica

Time used: 60.276 (sec). Leaf size: 239

 $DSolve[Sec[y[x]]^2*y'[x]+1/(2*Sqrt[1+x])*Tan[y[x]]==1/(2*Sqrt[1+x]),y[x],x,IncludeSingularSolve[Sec[y[x]]^2*y'[x]+1/(2*Sqrt[1+x])*Tan[y[x]]==1/(2*Sqrt[1+x]),y[x],x,IncludeSingularSolve[Sec[y[x]]^2*y'[x]+1/(2*Sqrt[1+x])*Tan[y[x]]==1/(2*Sqrt[1+x]),y[x],x,IncludeSingularSolve[Sec[y[x]]^2*y'[x]+1/(2*Sqrt[1+x])*Tan[y[x]]==1/(2*Sqrt[1+x]),y[x],x,IncludeSingularSolve[Sec[y[x]]^2*y'[x]+1/(2*Sqrt[1+x])*Tan[y[x]]==1/(2*Sqrt[1+x]),y[x],x,IncludeSingularSolve[Sec[y[x]]^2*y'[x]+1/(2*Sqrt[1+x]),y[x],x,IncludeSingularSolve[Sec[y[x]]^2*y'[x]+1/(2*Sqrt[1+x]),y[x],x,IncludeSingularSolve[Sec[y[x]]^2*y'[x]+1/(2*Sqrt[1+x]),y[x],x,IncludeSingularSolve[Sec[y[x]]^2*y'[x],x,IncludeSingularSolve[Sec[y[x]]^2*$

$$y(x) \to -\arccos\left(-\frac{e^{\sqrt{x+1}+2c_1}}{\sqrt{1+2e^{\sqrt{x+1}+2c_1}\left(-1+e^{\sqrt{x+1}+2c_1}\right)}}\right)$$

$$y(x) \to \arccos\left(-\frac{e^{\sqrt{x+1}+2c_1}}{\sqrt{1+2e^{\sqrt{x+1}+2c_1}\left(-1+e^{\sqrt{x+1}+2c_1}\right)}}\right)$$

$$y(x) \to -\arccos\left(\frac{e^{\sqrt{x+1}+2c_1}}{\sqrt{1+2e^{\sqrt{x+1}+2c_1}\left(-1+e^{\sqrt{x+1}+2c_1}\right)}}\right)$$

$$y(x) \to \arccos\left(\frac{e^{\sqrt{x+1}+2c_1}}{\sqrt{1+2e^{\sqrt{x+1}+2c_1}\left(-1+e^{\sqrt{x+1}+2c_1}\right)}}\right)$$

5	Chapter 1, First-Order Differential Equations.														•																
	Section 1.9,	\mathbf{E}	\mathbf{x}	a	ct]	D	if	fe	er	e	n	ti	a	1	E	ģ	u	a	ti	ic	r	18	3.]	p	\mathbf{a}_{i}	g	e	9	1
5.1	problem Problem 1																														139
5.2	problem Problem 2																														140
5.3	problem Problem 3																														. 141
5.4	problem Problem 4																														142
5.5	problem Problem 5																														143
5.6	problem Problem 6																														. 144
5.7	problem Problem 7																														145
5.8	problem Problem 8																														146
5.9	problem Problem 9																														. 147
5.10	problem Problem 10) .																													148
5.11	problem Problem 11	l.																													149
5 19	problem Problem 19)																													150

5.1 problem Problem 1

Internal problem ID [2204]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations.

page 91

Problem number: Problem 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['x=G(y,y')']

$$e^{yx}y + (2y - e^{yx}x)y' = 0$$

X Solution by Maple

 $\label{eq:dsolve} \\ \text{dsolve}(y(x)*\exp(x*y(x))) + (2*y(x)-x*\exp(x*y(x)))* \\ \text{diff}(y(x),x) = 0, \\ y(x), \text{ singsol=all}) \\$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y[x]*Exp[x*y[x]]+(2*y[x]-x*Exp[x*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> Tr

Not solved

5.2 problem Problem 2

Internal problem ID [2205]

 $\textbf{Book} \text{: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth$

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations.

page 91

Problem number: Problem 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact]

$$\cos(yx) - xy\sin(yx) - x^2\sin(yx)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve((cos(x*y(x))-x*y(x)*sin(x*y(x)))-x^2*sin(x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\arccos\left(\frac{c_1}{x}\right)}{x}$$

✓ Solution by Mathematica

Time used: 5.515 (sec). Leaf size: 34

 $DSolve[(Cos[x*y[x]]-x*y[x]*Sin[x*y[x]])-x^2*Sin[x*y[x]]*y'[x] == 0, y[x], x, IncludeSingularSolution and the sum of th$

$$y(x) o -rac{\arccos\left(-rac{c_1}{x}
ight)}{x}$$

$$y(x) o rac{rccos\left(-rac{c_1}{x}
ight)}{x}$$

5.3 problem Problem 3

Internal problem ID [2206]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations.

page 91

Problem number: Problem 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y + 3x^2 + y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((y(x)+3*x^2)+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-x^3 + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 17

 $DSolve[(y[x]+3*x^2)+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{-x^3 + c_1}{x}$$

5.4 problem Problem 4

Internal problem ID [2207]

 $\mathbf{Book} \text{: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth$

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations.

page 91

Problem number: Problem 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$2e^{y}x + (3y^{2} + x^{2}e^{y})y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve(2*x*exp(y(x))+(3*y(x)^2+x^2*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$x^2 e^{y(x)} + y(x)^3 + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.241 (sec). Leaf size: 19

Solve
$$[x^2 e^{y(x)} + y(x)^3 = c_1, y(x)]$$

5.5 problem Problem 5

Internal problem ID [2208]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations.

page 91

Problem number: Problem 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2yx + \left(x^2 + 1\right)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(2*x*y(x)+(x^2+1)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 20

DSolve $[2*x*y[x]+(x^2+1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{c_1}{x^2 + 1}$$

$$y(x) \to 0$$

5.6 problem Problem 6

Internal problem ID [2209]

Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations.

page 91

Problem number: Problem 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact, _rational, _Bernoulli]

$$y^2 - 2x + 2xyy' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve((y(x)^2-2*x)+2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{x(x^2 + c_1)}}{x}$$

$$y(x) = -\frac{\sqrt{x(x^2 + c_1)}}{x}$$

✓ Solution by Mathematica

Time used: 0.198 (sec). Leaf size: 42

 $DSolve[(y[x]^2-2*x)+2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{x^2 + c_1}}{\sqrt{x}}$$

$$y(x) o rac{\sqrt{x^2 + c_1}}{\sqrt{x}}$$

5.7 problem Problem 7

Internal problem ID [2210]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

Problem number: Problem 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x),G(x)]']]

$$4e^{2x} + 2yx - y^2 + (x - y)^2y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 117

$$y(x) = \left(-x^3 - 6e^{2x} - 3c_1\right)^{\frac{1}{3}} + x$$

$$y(x) = -\frac{\left(-x^3 - 6e^{2x} - 3c_1\right)^{\frac{1}{3}}}{2} - \frac{i\sqrt{3}\left(-x^3 - 6e^{2x} - 3c_1\right)^{\frac{1}{3}}}{2} + x$$

$$y(x) = -\frac{\left(-x^3 - 6e^{2x} - 3c_1\right)^{\frac{1}{3}}}{2} + \frac{i\sqrt{3}\left(-x^3 - 6e^{2x} - 3c_1\right)^{\frac{1}{3}}}{2} + x$$

✓ Solution by Mathematica

Time used: 1.43 (sec). Leaf size: 112

$$y(x) \to x + \sqrt[3]{-x^3 - 6e^{2x} + 3c_1}$$

$$y(x) \to x + \frac{1}{2}i\left(\sqrt{3} + i\right)\sqrt[3]{-x^3 - 6e^{2x} + 3c_1}$$

$$y(x) \to x - \frac{1}{2}\left(1 + i\sqrt{3}\right)\sqrt[3]{-x^3 - 6e^{2x} + 3c_1}$$

5.8 problem Problem 8

Internal problem ID [2211]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

 ${\bf Section:}\ {\bf Chapter}\ 1,\ {\bf First-Order}\ {\bf Differential}\ {\bf Equations.}\ {\bf Section}\ 1.9,\ {\bf Exact}\ {\bf Differential}\ {\bf Equations.}$

page 91

Problem number: Problem 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _Riccati]

$$\frac{1}{x} - \frac{y}{x^2 + y^2} + \frac{xy'}{x^2 + y^2} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

 $dsolve((1/x-y(x)/(x^2+y(x)^2))+x/(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\tan\left(\ln\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.2 (sec). Leaf size: 15

$$y(x) \to x \tan(-\log(x) + c_1)$$

5.9 problem Problem 9

Internal problem ID [2212]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations.

page 91

Problem number: Problem 9.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$y\cos(yx) - \sin(x) + x\cos(yx)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve((y(x)*cos(x*y(x))-sin(x))+x*cos(x*y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\frac{\arcsin(\cos(x) + c_1)}{x}$$

✓ Solution by Mathematica

Time used: 0.576 (sec). Leaf size: 17

DSolve[(y[x]*Cos[x*y[x]]-Sin[x])+x*Cos[x*y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> Tr

$$y(x) \to \frac{\arcsin(-\cos(x) + c_1)}{x}$$

5.10 problem Problem 10

Internal problem ID [2213]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

Problem number: Problem 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _Bernoulli]

$$2y^2e^{2x} + 3x^2 + 2ye^{2x}y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 50

 $dsolve((2*y(x)^2*exp(2*x)+3*x^2)+2*y(x)*exp(2*x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = e^{-2x} \sqrt{e^{2x} (-x^3 + c_1)}$$
$$y(x) = -e^{-2x} \sqrt{e^{2x} (-x^3 + c_1)}$$

✓ Solution by Mathematica

Time used: 7.475 (sec). Leaf size: 47

 $DSolve[(2*y[x]^2*Exp[2*x]+3*x^2)+2*y[x]*Exp[2*x]*y'[x] ==0, y[x], x, IncludeSingularSolutions \rightarrow 0$

$$y(x) \to -\sqrt{e^{-2x}(-x^3 + c_1)}$$

 $y(x) \to \sqrt{e^{-2x}(-x^3 + c_1)}$

5.11 problem Problem 11

Internal problem ID [2214]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations.

page 91

Problem number: Problem 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$y^{2} + \cos(x) + (2yx + \sin(y))y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

 $dsolve((y(x)^2+cos(x))+(2*x*y(x)+sin(y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$xy(x)^{2} + \sin(x) - \cos(y(x)) + c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.214 (sec). Leaf size: 20

 $DSolve[(y[x]^2+Cos[x])+(2*x*y[x]+Sin[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$Solve[xy(x)^2 - \cos(y(x)) + \sin(x) = c_1, y(x)]$$

5.12 problem Problem 12

Internal problem ID [2215]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations.

page 91

Problem number: Problem 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$\sin(y) + \cos(x) y + (x \cos(y) + \sin(x)) y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 15

dsolve((sin(y(x))+y(x)*cos(x))+(x*cos(y(x))+sin(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x)\sin(x) + x\sin(y(x)) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.138 (sec). Leaf size: 17

DSolve[(Sin[y[x]]+y[x]*Cos[x])+(x*Cos[y[x]]+Sin[x])*y'[x]==0,y[x],x,IncludeSingularSolutions]

$$Solve[x\sin(y(x)) + y(x)\sin(x) = c_1, y(x)]$$

6	Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential
	Equations. page 502
	problem Problem 23

J	Problem resolution 20	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	
6.2	problem Problem 24																															153
6.3	problem Problem 25																					•			•							154
6.4	problem Problem 26																															155
6.5	problem Problem 27																															156
6.6	problem Problem 28																					•			•							157
6.7	problem Problem 29																															158
6.8	problem Problem 30																															159
6.9	problem Problem 31																															160
6.10	problem Problem 32																															161
6.11	problem Problem 33	•																								•						162
6.12	problem Problem 34																															163
6.13	problem Problem 35	•																														164
6.14	problem Problem 36																															165
6.15	problem Problem 37	•																														166
6.16	problem Problem 38	•																								•						167
6.17	problem Problem 39	•																								•						168
6.18	problem Problem 40	•																								•						169
6.19	problem Problem 41																									•						170
6.20	problem Problem 42																															171

6.1 problem Problem 23

Internal problem ID [2216]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' - 3y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + c_2 e^{3x}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

DSolve[y''[x]-2*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} \left(c_2 e^{4x} + c_1 \right)$$

6.2 problem Problem 24

Internal problem ID [2217]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 7y' + 10y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+7*diff(y(x),x)+10*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-5x} + c_2 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[y''[x]+7*y'[x]+10*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-5x} \left(c_2 e^{3x} + c_1 \right)$$

6.3 problem Problem 25

Internal problem ID [2218]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 36y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-36*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-6x} + c_2 e^{6x}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[y''[x]-36*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{6x} + c_2 e^{-6x}$$

6.4 problem Problem 26

Internal problem ID [2219]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{-4x}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 19

DSolve[y''[x]+4*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 - \frac{1}{4}c_1e^{-4x}$$

6.5 problem Problem 27

Internal problem ID [2220]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 27.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3y'' - y' + 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)-diff(y(x),x)+3*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + c_2e^{3x} + c_3e^x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

 $DSolve[y'''[x]-3*y''[x]-y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-x} + c_2 e^x + c_3 e^{3x}$$

6.6 problem Problem 28

Internal problem ID [2221]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 28.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 3y'' - 4y' - 12y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)-4*diff(y(x),x)-12*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-3x} + c_3 e^{-2x}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

 $DSolve[y'''[x]+3*y''[x]-4*y'[x]-12*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-3x} (c_2 e^x + c_3 e^{5x} + c_1)$$

6.7 problem Problem 29

Internal problem ID [2222]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for

Linear Differential Equations. page 502 **Problem number**: Problem 29.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 3y'' - 18y' - 40y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)-18*diff(y(x),x)-40*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{4x} + c_2 e^{-5x} + c_3 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

DSolve[y'''[x]+3*y''[x]-18*y'[x]-40*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-5x} (c_2 e^{3x} + c_3 e^{9x} + c_1)$$

6.8 problem Problem 30

Internal problem ID [2223]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 30.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y'' - 2y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)-2*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{2x} + c_3 e^{-x}$$

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 28

 $DSolve[y'''[x]-y''[x]-2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1(-e^{-x}) + \frac{1}{2}c_2e^{2x} + c_3$$

6.9 problem Problem 31

Internal problem ID [2224]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 31.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' - 10y' + 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)-10*diff(y(x),x)+8*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-4x} + c_3 e^x$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

 $DSolve[y'''[x]+y''[x]-10*y'[x]+8*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-4x} + c_2 e^x + c_3 e^{2x}$$

6.10 problem Problem 32

Internal problem ID [2225]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for

Linear Differential Equations. page 502

Problem number: Problem 32.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 2y''' - y'' + 2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$4)-2*diff(y(x),x\$3)-diff(y(x),x\$2)+2*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{2x} + c_3 e^{-x} + c_4 e^x$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 34

 $DSolve[y''''[x]-2*y'''[x]-y''[x]+2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1(-e^{-x}) + c_2e^x + \frac{1}{2}c_3e^{2x} + c_4$$

6.11 problem Problem 33

Internal problem ID [2226]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 33.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 13y'' + 36y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$4)-13*diff(y(x),x\$2)+36*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{3x} + c_3 e^{-3x} + c_4 e^{-2x}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 35

DSolve[y''''[x]-13*y''[x]+36*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x} (c_2 e^x + e^{5x} (c_4 e^x + c_3) + c_1)$$

6.12 problem Problem 34

Internal problem ID [2227]

 ${f Book}$: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for

Linear Differential Equations. page 502 **Problem number**: Problem 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$x^2y'' + 3y'x - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^2 + \frac{c_2}{x^4}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 18

DSolve $[x^2*y''[x]+3*x*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{c_2 x^6 + c_1}{x^4}$$

6.13 problem Problem 35

Internal problem ID [2228]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$2x^2y'' + 5y'x + y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve(2*x^2*diff(y(x),x$2)+5*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + \frac{c_2}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 20

DSolve $[2*x^2*y''[x]+5*x*y'[x]+y[x]==0,y[x],x$, Include Singular Solutions -> True

$$y(x) o rac{c_2\sqrt{x} + c_1}{x}$$

6.14 problem Problem 36

Internal problem ID [2229]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for

Linear Differential Equations. page 502 **Problem number**: Problem 36.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _linear, _homogeneous]]

$$x^3y''' + x^2y'' - 2y'x + 2y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

 $dsolve(x^3*diff(y(x),x^3)+x^2*diff(y(x),x^2)-2*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^2 + \frac{c_2}{x} + c_3 x$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

 $DSolve[x^3*y'''[x]+x^2*y''[x]-2*x*y'[x]+2*y[x]==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_3 x^2 + c_2 x + \frac{c_1}{x}$$

6.15 problem Problem 37

Internal problem ID [2230]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for

Linear Differential Equations. page 502

Problem number: Problem 37.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^3y''' + 3x^2y'' - 6y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(x^3*diff(y(x),x$3)+3*x^2*diff(y(x),x$2)-6*x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_1 + c_2 x^{\sqrt{7}} + c_3 x^{-\sqrt{7}}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 40

 $DSolve[x^3*y'''[x]+3*x^2*y''[x]-6*x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^{-\sqrt{7}} \left(c_2 x^{2\sqrt{7}} - c_1\right)}{\sqrt{7}} + c_3$$

6.16 problem Problem 38

Internal problem ID [2231]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' - 6y - 18e^{5x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+diff(y(x),x)-6*y(x)=18*exp(5*x),y(x), singsol=all)

$$y(x) = c_2 e^{2x} + c_1 e^{-3x} + \frac{3 e^{5x}}{4}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 31

 $DSolve[y''[x]+y'[x]-6*y[x]==18*Exp[5*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{3e^{5x}}{4} + c_1e^{-3x} + c_2e^{2x}$$

6.17 problem Problem 39

Internal problem ID [2232]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 39.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' - 2y - 4x^2 - 5 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve(diff(y(x),x$2)+diff(y(x),x)-2*y(x)=4*x^2+5,y(x), singsol=all)$

$$y(x) = e^x c_2 + e^{-2x} c_1 - 2x^2 - 2x - \frac{11}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 29

 $DSolve[y''[x]+y'[x]-2*y[x]==4*x^2+5,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -2x(x+1) + c_1 e^{-2x} + c_2 e^x - \frac{11}{2}$$

6.18 problem Problem 40

Internal problem ID [2233]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 40.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' + 2y'' - y' - 2y - 4e^{2x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$3)+2*diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=4*exp(2*x),y(x), singsol=all)

$$y(x) = \frac{e^{2x}}{3} + c_1 e^x + c_2 e^{-2x} + c_3 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 37

 $DSolve[y'''[x]+2*y''[x]-y'[x]-2*y[x] == 4*Exp[2*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{e^{2x}}{3} + c_1 e^{-2x} + c_2 e^{-x} + c_3 e^x$$

6.19 problem Problem 41

Internal problem ID [2234]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for

Linear Differential Equations. page 502

Problem number: Problem 41.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' + y'' - 10y' + 8y - 24e^{-3x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)-10*diff(y(x),x)+8*y(x)=24*exp(-3*x),y(x), singsol=all)

$$y(x) = \frac{6e^{-3x}}{5} + c_1e^x + c_2e^{-4x} + c_3e^{2x}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 37

$$y(x) \to \frac{6e^{-3x}}{5} + c_1e^{-4x} + c_2e^x + c_3e^{2x}$$

6.20 problem Problem 42

Internal problem ID [2235]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

Problem number: Problem 42.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' + 5y'' + 6y' - 6e^{-x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$3)+5*diff(y(x),x\$2)+6*diff(y(x),x)=6*exp(-x),y(x), singsol=all)

$$y(x) = -\frac{c_1 e^{-3x}}{3} - \frac{c_2 e^{-2x}}{2} - 3 e^{-x} + c_3$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 35

DSolve[y'''[x]+5*y''[x]+6*y'[x]==6*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{6}e^{-3x}(-3e^x(6e^x + c_2) - 2c_1) + c_3$$

7 Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

7.1	problem Problem 25	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	173
7.2	problem Problem 26																									174
7.3	problem Problem 27																									175
7.4	problem Problem 28																									176
7.5	problem Problem 29																									177
7.6	problem Problem 30																									178
7.7	problem Problem 31																					•				179
7.8	problem Problem 32	•																								180
7.9	problem Problem 33																					•				181
7.10	problem Problem 34	•																								182
7.11	problem Problem 35																					•				183
7.12	problem Problem 36	•																								184
7.13	problem Problem 38	•																								185
7.14	problem Problem 39																					•				186
7.15	problem Problem 40	•																								187
7.16	problem Problem 41	•																								188
7.17	problem Problem 46																					•				189
7.18	problem Problem 47																									190

7.1 problem Problem 25

Internal problem ID [2236]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y - 6e^x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+y(x)=6*exp(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) + 3 e^x$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 21

DSolve[y''[x]+y[x]==6*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow 3e^x + c_1 \cos(x) + c_2 \sin(x)$$

7.2 problem Problem 26

Internal problem ID [2237]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 4y - 5e^{-2x}x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=5*x*exp(-2*x),y(x), singsol=all)

$$y(x) = c_2 e^{-2x} + e^{-2x} x c_1 + \frac{5 e^{-2x} x^3}{6}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 29

 $DSolve[y''[x]+4*y'[x]+4*y[x] == 5*x*Exp[-2*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{6}e^{-2x}(5x^3 + 6c_2x + 6c_1)$$

7.3 problem Problem 27

Internal problem ID [2238]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Unde-

termined Coefficients. page 525

Problem number: Problem 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - 8\sin\left(2x\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+4*y(x)=8*sin(2*x),y(x), singsol=all)

$$y(x) = \sin(2x) c_2 + \cos(2x) c_1 - 2x \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 29

DSolve[y''[x]+4*y[x]==8*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x)\cos(x) + (-2x + c_1)\cos(2x) + c_2\sin(2x)$$

7.4 problem Problem 28

Internal problem ID [2239]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y - 5e^{2x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $\label{eq:diff} $$ $dsolve(diff(y(x),x$2)-diff(y(x),x)-2*y(x)=5*exp(2*x),y(x), singsol=all)$$

$$y(x) = c_2 e^{2x} + e^{-x} c_1 + \frac{5 e^{2x} x}{3}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 31

DSolve[y''[x]-y'[x]-2*y[x]==5*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-x} + e^{2x} \left(\frac{5x}{3} - \frac{5}{9} + c_2 \right)$$

7.5 problem Problem 29

Internal problem ID [2240]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y - 3\sin(2x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 37

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=3*sin(2*x),y(x), singsol=all)

$$y(x) = e^{-x} \sin(2x) c_2 + \cos(2x) e^{-x} c_1 + \frac{3\sin(2x)}{17} - \frac{12\cos(2x)}{17}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 44

 $DSolve[y''[x]+2*y'[x]+5*y[x]==3*Sin[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{3}{17}(4\cos(2x) - \sin(2x)) + e^{-x}(c_2\cos(2x) + c_1\sin(2x))$$

7.6 problem Problem 30

Internal problem ID [2241]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 30.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' + 2y'' - 5y' - 6y - 4x^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

 $dsolve(diff(y(x),x$3)+2*diff(y(x),x$2)-5*diff(y(x),x)-6*y(x)=4*x^2,y(x), singsol=all)$

$$y(x) = -\frac{2x^2}{3} + \frac{10x}{9} - \frac{37}{27} + c_1 e^{-3x} + e^{-x} c_2 + c_3 e^{2x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 43

 $DSolve[y'''[x]+2*y''[x]-5*y'[x]-6*y[x]==4*x^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{9}(5-3x)x + c_1e^{-3x} + c_2e^{-x} + c_3e^{2x} - \frac{37}{27}$$

7.7 problem Problem 31

Internal problem ID [2242]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 31.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - y'' + y' - y - 9e^{-x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)+diff(y(x),x)-y(x)=9*exp(-x),y(x), singsol=all)

$$y(x) = -\frac{9e^{-x}}{4} + c_1 \cos(x) + e^x c_2 + c_3 \sin(x)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 31

DSolve[y'''[x]-y''[x]+y'[x]-y[x]==9*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{9e^{-x}}{4} + c_3e^x + c_1\cos(x) + c_2\sin(x)$$

7.8 problem Problem 32

Internal problem ID [2243]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 32.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + 3y'' + 3y' + y - 2e^{-x} - 3e^{2x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

 $\frac{1}{dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=2*exp(-x)+3*exp(2*x),y}{dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=2*exp(-x)+3*exp(2*x),y}{dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=2*exp(-x)+3*exp(2*x),y}{dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=2*exp(-x)+3*exp(2*x),y}{dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=2*exp(-x)+3*exp(2*x),y}{dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=2*exp(-x)+3*exp(2*x),y}{dsolve(x),x\$2}{dsolve(x),x$

$$y(x) = \frac{e^{-x}x^3}{3} + \frac{e^{2x}}{9} + e^{-x}c_1 + c_2e^{-x}x + c_3x^2e^{-x}$$

✓ Solution by Mathematica

Time used: 0.062 (sec). Leaf size: 41

DSolve[y'''[x]+3*y''[x]+3*y'[x]+y[x]==2*Exp[-x]+3*Exp[2*x],y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{1}{9}e^{-x}(3x^3 + 9c_3x^2 + e^{3x} + 9c_2x + 9c_1)$$

7.9 problem Problem 33

Internal problem ID [2244]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y - 5\cos(2x) = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 17

dsolve([diff(y(x),x\$2)+9*y(x)=5*cos(2*x),y(0) = 2, D(y)(0) = 3],y(x), singsol=all)

$$y(x) = \sin(3x) + \cos(3x) + \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 18

$$y(x) \to \sin(3x) + \cos(2x) + \cos(3x)$$

7.10 problem Problem 34

Internal problem ID [2245]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y - 9x e^{2x} = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 7]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 25

dsolve([diff(y(x),x\$2)-y(x)=9*x*exp(2*x),y(0) = 0, D(y)(0) = 7],y(x), singsol=all)

$$y(x) = -4e^{-x} + 8e^{x} + (3x - 4)e^{2x}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 29

$$y(x) \to e^{2x}(3x-4) - 4e^{-x} + 8e^x$$

7.11 problem Problem 35

Internal problem ID [2246]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 2y + 10\sin(x) = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 15

dsolve([diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=-10*sin(x),y(0) = 2, D(y)(0) = 1],y(x), singsol=al(x)-2*y(x)=-10*sin(x),y(0) = 2, D(y)(0) = 1],y(x), singsol=al(x)-2*y(x)=-10*sin(x

$$y(x) = e^{-2x} + \cos(x) + 3\sin(x)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 17

$$y(x) \to e^{-2x} + 3\sin(x) + \cos(x)$$

7.12 problem Problem 36

Internal problem ID [2247]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 36.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 2y - 4\cos(x) + 2\sin(x) = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 4]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 19

dsolve([diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=4*cos(x)-2*sin(x),y(0) = -1, D(y)(0) = 4],y(x), sin(x),y(x) = -1, D(y)(x) = -1, D(y

$$y(x) = -((\cos(x) - \sin(x)) e^{2x} - e^{3x} + 1) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 22

 $DSolve[\{y''[x]+y'[x]-2*y[x]==4*Cos[x]-2*Sin[x],\{y[0]==-1,y'[0]==4\}\},y[x],x,IncludeSingularSolve[\{y''[x]+y'[x]-2*y[x]==4*Cos[x]-2*Sin[x],\{y[0]==-1,y'[0]==4\}\},y[x],x,IncludeSingularSolve[\{y''[x]+y'[x]-2*y[x]==4*Cos[x]-2*Sin[x],\{y[0]==-1,y'[0]==4\}\},y[x],x,IncludeSingularSolve[\{y''[x]+y'[x]-2*y[x]==4*Cos[x]-2*Sin[x],\{y[0]==-1,y'[0]==4\}\},y[x],x,IncludeSingularSolve[\{y''[x]+y''[x]-2*y[x]==4*Cos[x]-2*Sin[x],\{y[0]==-1,y''[0]==4\}\},y[x],x,IncludeSingularSolve[\{y'''[x]+y''[x]-2*y[x]==4*Cos[x]-2*Sin[x],\{y[0]==-1,y''[0]==4\}\},y[x],x,IncludeSingularSolve[\{y'''[x]-2*y[x]==4*Cos[x]-2*Sin[x],\{y[0]==-1,y''[0]==4\}\},y[x],x,IncludeSingularSolve[\{y'''[x]-2*y[x]=-4*Cos[x]-2*Sin[x],x,IncludeSingularSolve[\{y'''[x]-2*y[x]=-4*Cos[x]-2*Sin[x],x,IncludeSingularSolve[[y''']=-4*Cos[x]-2*Sin[x],x,IncludeSingularSolve[[y''']=-4*Cos[x]-2*Sin[x],x,IncludeSingularSolve[[y''']=-4*Cos[x]-2*Sin[x],x,IncludeSingularSolve[[y''']=-4*Cos[x]-2*Sin[x],x,IncludeSingularSolve[[y'']=-4*Cos[x]-2*Sin$

$$y(x) \to -e^{-2x} + e^x + \sin(x) - \cos(x)$$

7.13 problem Problem 38

Internal problem ID [2248]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \omega^2 y - \frac{F_0 \cos(\omega t)}{m} = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

 $dsolve([diff(y(t),t$2)+omega^2*y(t)=F_0/m*cos(omega*t),y(0) = 1, D(y)(0) = 0],y(t), singsol=0$

$$y(t) = \cos(\omega t) + \frac{F_0 \sin(\omega t) t}{2\omega m}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 26

$$y(t) \to \frac{\text{F0}t\sin(t\omega)}{2m\omega} + \cos(t\omega)$$

7.14 problem Problem 39

Internal problem ID [2249]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 39.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y' + 6y - 7e^{2x} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+6*y(x)=7*exp(2*x),y(x), singsol=all)

$$y(x) = e^{2x} \sin(\sqrt{2}x) c_2 + e^{2x} \cos(\sqrt{2}x) c_1 + \frac{7e^{2x}}{2}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 40

 $DSolve[y''[x]-4*y'[x]+6*y[x] == 7*Exp[2*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{1}{2}e^{2x} \left(2c_2 \cos\left(\sqrt{2}x\right) + 2c_1 \sin\left(\sqrt{2}x\right) + 7\right)$$

7.15 problem Problem 40

Internal problem ID [2250]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 40.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + y'' + y' + y - 4e^{x}x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)+diff(y(x),x)+y(x)=4*x*exp(x),y(x), singsol=all)

$$y(x) = \frac{(2x-3)e^x}{2} + c_1 \cos(x) + \sin(x) c_2 + c_3 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 33

 $DSolve[y'''[x]+y''[x]+y'[x]+y[x]==4*x*Exp[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^x \left(x - \frac{3}{2}\right) + c_3 e^{-x} + c_1 \cos(x) + c_2 \sin(x)$$

7.16 problem Problem 41

Internal problem ID [2251]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 41.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' + 104y''' + 2740y'' - 5e^{-2x}\cos(3x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 73

$$y(x) = \frac{667 e^{-52x} \cos (6x) c_1}{1876900} - \frac{39c_1 e^{-52x} \sin (6x)}{469225} + \frac{39c_2 e^{-52x} \cos (6x)}{469225} + \frac{667 e^{-52x} \sin (6x) c_2}{1876900} - \frac{3475 e^{-2x} \cos (3x)}{84184477} - \frac{12240 e^{-2x} \sin (3x)}{84184477} + c_3 x + c_4$$

✓ Solution by Mathematica

Time used: 2.322 (sec). Leaf size: 72

$$y(x) \to c_4 x - \frac{5e^{-2x}(2448\sin(3x) + 695\cos(3x))}{84184477} + \frac{e^{-52x}((156c_1 + 667c_2)\cos(6x) + (667c_1 - 156c_2)\sin(6x))}{1876900} + c_3$$

7.17 problem Problem 46

Internal problem ID [2252]

 ${f Book}$: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 46.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' - 3y - \sin(x)^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x\$2)+2*diff(y(x),x)-3*y(x)=sin(x)^2,y(x), singsol=all)$

$$y(x) = e^x c_2 + c_1 e^{-3x} - \frac{1}{6} - \frac{2\sin(2x)}{65} + \frac{7\cos(2x)}{130}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 39

 $DSolve[y''[x]+2*y'[x]-3*y[x] == Sin[x]^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{2}{65}\sin(2x) + \frac{7}{130}\cos(2x) + c_1e^{-3x} + c_2e^x - \frac{1}{6}$$

7.18 problem Problem 47

Internal problem ID [2253]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

Problem number: Problem 47.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y - \cos(x)^{2} \sin(x)^{2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x$2)+6*y(x)=sin(x)^2*cos(x)^2,y(x), singsol=all)$

$$y(x) = \sin(\sqrt{6}x) c_2 + \cos(\sqrt{6}x) c_1 + \frac{\cos(4x)}{80} + \frac{1}{48}$$

✓ Solution by Mathematica

Time used: 0.375 (sec). Leaf size: 39

 $DSolve[y''[x]+6*y[x]==Sin[x]^2*Cos[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{80}\cos(4x) + c_1\cos(\sqrt{6}x) + c_2\sin(\sqrt{6}x) + \frac{1}{48}$$

8	Chapter 8, Linear differential equations of order n.
	Section 8.4, Complex-Valued Trial Solutions. page
	529

8.1	problem Problem	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	192
8.2	problem Problem	2																																		193
8.3	problem Problem	3																																		194
8.4	problem Problem	4																																		195
8.5	problem Problem	5																																		196
8.6	problem Problem	6																																		197
8.7	problem Problem	7																																		198
8.8	problem Problem	8																			•	•														199
8.9	problem Problem	9																																		200
8.10	problem Problem	10)																																	201
8.11	problem Problem	11	L																																	202

8.1 problem Problem 1

Internal problem ID [2254]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 16y - 20\cos(4x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-16*y(x)=20*cos(4*x),y(x), singsol=all)

$$y(x) = e^{4x}c_2 + c_1e^{-4x} - \frac{5\cos(4x)}{8}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 30

DSolve[y''[x]-16*y[x]==20*Cos[4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{5}{8}\cos(4x) + c_1e^{4x} + c_2e^{-4x}$$

8.2 problem Problem 2

Internal problem ID [2255]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y - 50\sin(3x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=50*sin(3*x),y(x), singsol=all)

$$y(x) = e^{-x}c_2 + x e^{-x}c_1 - 3\cos(3x) - 4\sin(3x)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 31

 $DSolve[y''[x]+2*y'[x]+y[x]==50*Sin[3*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -4\sin(3x) - 3\cos(3x) + e^{-x}(c_2x + c_1)$$

8.3 problem Problem 3

Internal problem ID [2256]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y - 10e^{2x}\cos(x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)-y(x)=10*exp(2*x)*cos(x),y(x), singsol=all)

$$y(x) = e^{-x}c_2 + c_1e^x + e^{2x}(2\sin(x) + \cos(x))$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 33

DSolve[y''[x]-y[x]==10*Exp[2*x]*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x} + e^{2x} (2\sin(x) + \cos(x))$$

8.4 problem Problem 4

Internal problem ID [2257]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 4y - 169\sin(3x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=169*sin(3*x),y(x), singsol=all)

$$y(x) = c_2 e^{-2x} + e^{-2x} x c_1 - 12 \cos(3x) - 5 \sin(3x)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 31

DSolve[y''[x]+4*y'[x]+4*y[x]==169*Sin[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -5\sin(3x) - 12\cos(3x) + e^{-2x}(c_2x + c_1)$$

8.5 problem Problem 5

Internal problem ID [2258]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y' - 2y - 40\sin(x)^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=40*sin(x)^2,y(x), singsol=all)$

$$y(x) = c_2 e^{2x} + e^{-x} c_1 - 10 + \sin(2x) + 3\cos(2x)$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 33

 $DSolve[y''[x]-y'[x]-2*y[x] == 40*Sin[x]^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \sin(2x) + 3\cos(2x) + c_1e^{-x} + c_2e^{2x} - 10$$

8.6 problem Problem 6

Internal problem ID [2259]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - 3e^x \cos(2x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)+y(x)=3*exp(x)*cos(2*x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) - \frac{3 e^x (\cos(2x) - 2\sin(2x))}{10}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 34

DSolve[y''[x]+y[x]==3*Exp[x]*Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{3}{10}e^x(\cos(2x) - 2\sin(2x)) + c_1\cos(x) + c_2\sin(x)$$

8.7 problem Problem 7

Internal problem ID [2260]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y - 2e^{-x}\sin(x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+2*y(x)=2*exp(-x)*sin(x),y(x), singsol=all)

$$y(x) = \sin(x) e^{-x} c_2 + e^{-x} \cos(x) c_1 - e^{-x} (\cos(x) x - \sin(x))$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 34

 $DSolve[y''[x]+2*y'[x]+2*y[x]==2*Exp[-x]*Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}e^{-x}(2(-x+c_2)\cos(x)+(1+2c_1)\sin(x))$$

8.8 problem Problem 8

Internal problem ID [2261]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y - 100 e^x \sin(x) x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 40

dsolve(diff(y(x),x\$2)-4*y(x)=100*x*exp(x)*sin(x),y(x), singsol=all)

$$y(x) = c_2 e^{2x} + e^{-2x} c_1 - 2 e^x (5 \cos(x) x + 10 \sin(x) x + 7 \cos(x) - \sin(x))$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 44

DSolve[y''[x]-4*y[x]==100*x*Exp[x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{2x} + c_2 e^{-2x} - 2e^x ((10x - 1)\sin(x) + (5x + 7)\cos(x))$$

8.9 problem Problem 9

Internal problem ID [2262]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y - 4\cos(2x)e^{-x} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 43

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=4*exp(-x)*cos(2*x),y(x), singsol=all)

$$y(x) = e^{-x} \sin(2x) c_2 + \cos(2x) e^{-x} c_1 + \frac{e^{-x} (2 \sin(2x) x + \cos(2x))}{2}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 36

$$y(x) \to \frac{1}{4}e^{-x}((1+4c_2)\cos(2x)+4(x+c_1)\sin(2x))$$

8.10 problem Problem 10

Internal problem ID [2263]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 10y - 24e^x \cos(3x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 37

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+10*y(x)=24*exp(x)*cos(3*x),y(x), singsol=all)

$$y(x) = \sin(3x) e^x c_2 + \cos(3x) e^x c_1 + \frac{4 e^x (3 \sin(3x) x + \cos(3x))}{3}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 36

DSolve[y''[x]-2*y'[x]+10*y[x]==24*Exp[x]*Cos[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{3}e^x((2+3c_2)\cos(3x) + 3(4x+c_1)\sin(3x))$$

8.11 problem Problem 11

Internal problem ID [2264]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

Problem number: Problem 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 16y - 34e^x - 16\cos(4x) + 8\sin(4x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 40

 $\label{eq:diff} $$ $$ dsolve(diff(y(x),x$2)+16*y(x)=34*exp(x)+16*cos(4*x)-8*sin(4*x),y(x), singsol=all)$$

$$y(x) = \sin(4x) c_2 + \cos(4x) c_1 - \frac{\sin(4x)}{4} + \cos(4x) x + 2\sin(4x) x + 2e^x$$

✓ Solution by Mathematica

Time used: 0.308 (sec). Leaf size: 37

$$y(x) o 2e^x + \left(x + \frac{1}{4} + c_1\right)\cos(4x) + \left(2x - \frac{1}{8} + c_2\right)\sin(4x)$$

9 Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

9.1	problem Problem 1.		•	•										•				20°	4
9.2	problem Problem 2 .		•	•					 •							• .		20	5
9.3	problem Problem 3 .		•	•				•						•	 			20	6
9.4	problem Problem 4 .		•	•					 •							• .		. 20	7
9.5	problem Problem 5 .		•	•					 •							• .		20	8
9.6	problem Problem 6 .		•	•					 •							• .		209	9
9.7	problem Problem 7 .		•	•											 	• .		21	0
9.8	problem Problem 8 .		•	•				•						•	 			. 21	1
9.9	problem Problem 9 .		•	•				•						•	 			213	2
9.10	problem Problem 10							•	 •									21	3
9.11	problem Problem 11		•	•										•		• •		. 21	4
9.12	problem Problem 12															•		21	5
9.13	problem Problem 13															•		21	6
9.14	problem Problem 13															•		. 21	7
9.15	problem Problem 15	•	•	•		•			 •			•		•	 . ,	• .		21	8
9.16	problem Problem 16	•	•	•		•			 •			•		•	 . ,	• .		21	9
9.17	problem Problem 17		•	•										•		• •		22	0
9.18	problem Problem 18		•	•										•		• •		. 22	1
9.19	problem Problem 19	•	•	•		•			 •			•		•	 . ,	• .		22	2
9.20	problem Problem 20		•	•										•		• •		. 22	4
9.21	problem Problem 21		•	•										•		• •		22	5
9.22	problem Problem 22															•		22	6
9.23	problem Problem 23		•	•										•		• •		. 22	7
9.24	problem Problem 24		•	•										•		• •		22	8
9.25	problem Problem 25															•		22	9
9.26	problem Problem 26							•						•		• .		23	0
9.27	problem Problem 27							•						•		• .		. 23	1
9.28	problem Problem 28										 							23	2

9.1 problem Problem 1

Internal problem ID [2265]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 6y' + 9y - 4e^{3x}\ln(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

dsolve(diff(y(x),x\$2)-6*diff(y(x),x)+9*y(x)=4*exp(3*x)*ln(x),y(x), singsol=all)

$$y(x) = c_2 e^{3x} + x e^{3x} c_1 + x^2 e^{3x} (2 \ln(x) - 3)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 29

DSolve[y''[x]-6*y'[x]+9*y[x]==4*Exp[3*x]*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{3x} (2x^2 \log(x) + x(-3x + c_2) + c_1)$$

9.2 problem Problem 2

Internal problem ID [2266]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 4y - \frac{e^{-2x}}{x^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$2)+4*\text{diff}(y(x),x)+4*y(x)=x^{(-2)}*\exp(-2*x),\\ y(x), \text{ singsol=all})$

$$y(x) = c_2 e^{-2x} + e^{-2x} x c_1 - (\ln(x) + 1) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 23

 $DSolve[y''[x]+4*y'[x]+4*y[x]==x^{(-2)}*Exp[-2*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-2x}(-\log(x) + c_2x - 1 + c_1)$$

9.3 problem Problem 3

Internal problem ID [2267]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y - 18\sec(3x)^3 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve(diff(y(x),x$2)+9*y(x)=18*sec(3*x)^3,y(x), singsol=all)$

$$y(x) = \sin(3x) c_2 + \cos(3x) c_1 - 2\cos(3x) + \sec(3x)$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 32

 $DSolve[y''[x]+9*y[x]==18*Sec[3*x]^3,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{1}{2}\sec(3x)((-2+c_1)\cos(6x) + c_2\sin(6x) + c_1)$$

9.4 problem Problem 4

Internal problem ID [2268]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 9y - \frac{2e^{-3x}}{x^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 37

 $dsolve(diff(y(x),x$2)+6*diff(y(x),x)+9*y(x)=2*exp(-3*x)/(x^2+1),y(x), singsol=all)$

$$y(x) = c_2 e^{-3x} + x e^{-3x} c_1 + (2x \arctan(x) - \ln(x^2 + 1)) e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 31

 $DSolve[y''[x]+6*y'[x]+9*y[x]==2*Exp[-3*x]/(x^2+1),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-3x} (2x \arctan(x) - \log(x^2 + 1) + c_2 x + c_1)$$

9.5 problem Problem 5

Internal problem ID [2269]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y - \frac{8}{e^{2x} + 1} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 46

dsolve(diff(y(x),x\$2)-4*y(x)=8/(exp(2*x)+1),y(x), singsol=all)

$$y(x) = c_2 e^{2x} + e^{-2x} c_1 + (-e^{-2x} + e^{2x}) \ln(e^{2x} + 1) - 2 \ln(e^x) e^{2x} - 1$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 47

DSolve[y''[x]-4*y[x]==8/(Exp[2*x]+1),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x} (2\operatorname{arctanh}(2e^{2x} + 1) + c_1) + e^{-2x} (-\log(e^{2x} + 1) + c_2) - 1$$

9.6 problem Problem 6

Internal problem ID [2270]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 5y - e^{2x} \tan(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+5*y(x)=exp(2*x)*tan(x),y(x), singsol=all)

$$y(x) = e^{2x} \sin(x) c_2 + e^{2x} \cos(x) c_1 - e^{2x} \cos(x) \ln(\sec(x) + \tan(x))$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 28

 $DSolve[y''[x]-4*y'[x]+5*y[x] == Exp[2*x]*Tan[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^{2x}(\cos(x)(-\arctan(\sin(x)) + c_2) + c_1\sin(x))$$

9.7 problem Problem 7

Internal problem ID [2271]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y - \frac{36}{4 - \cos(3x)^2} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 59

 $dsolve(diff(y(x),x$2)+9*y(x)=36/(4-cos(3*x)^2),y(x), singsol=all)$

$$y(x) = \sin(3x) c_2 + \cos(3x) c_1 + \frac{4\sqrt{3} \arctan\left(\frac{\sqrt{3} \sin(3x)}{3}\right) \sin(3x)}{3} - (-\ln(\cos(3x) + 2) + \ln(\cos(3x) - 2))\cos(3x)$$

✓ Solution by Mathematica

Time used: 0.104 (sec). Leaf size: 52

 $DSolve[y''[x]+9*y[x]==36/(4-Cos[3*x]^2),y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to c_2 \sin(3x) + \frac{4\sin(3x)\cot^{-1}\left(\sqrt{3}\csc(3x)\right)}{\sqrt{3}} + \cos(3x)\left(2\coth^{-1}(2\sec(3x)) + c_1\right)$$

9.8 problem Problem 8

Internal problem ID [2272]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 10y' + 25y - \frac{2e^{5x}}{x^2 + 4} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 38

 $dsolve(diff(y(x),x$2)-10*diff(y(x),x)+25*y(x)=2*exp(5*x)/(4+x^2),y(x), singsol=all)$

$$y(x) = e^{5x}c_2 + e^{5x}xc_1 + e^{5x}\left(-\ln(x^2+4) + x\arctan(\frac{x}{2})\right)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 33

$$y(x) \to e^{5x} \left(x \left(\arctan\left(\frac{x}{2}\right) + c_2 \right) - \log\left(x^2 + 4\right) + c_1 \right)$$

9.9 problem Problem 9

Internal problem ID [2273]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 6y' + 13y - 4e^{3x}\sec(2x)^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

 $\label{eq:decomposition} $$ $ dsolve(diff(y(x),x$2)-6*diff(y(x),x)+13*y(x)=4*exp(3*x)*sec(2*x)^2,y(x), singsol=all) $$ $ dsolve(diff(y(x),x$2)-6*diff(y(x),x)+13*y(x)=4*exp(3*x)*sec(2*x)^2,y(x), singsol=all) $$ $ dsolve(diff(y(x),x$2)-6*diff(y(x),x)+13*y(x)=4*exp(3*x)*sec(2*x)^2,y(x), singsol=all) $$ $ dsolve(diff(y(x),x)+13*y(x)=4*exp(3*x)*sec(2*x)^2,y(x), singsol=all) $$ $ dsolve(diff(x),x) $$ $ dsolve(x),x) $$ $ dsolve(x),x)$

$$y(x) = e^{3x} \sin(2x) c_2 + e^{3x} \cos(2x) c_1 + e^{3x} (\sin(2x) \ln(\sec(2x) + \tan(2x)) - 1)$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 33

$$y(x) \to e^{3x}(\sin(2x)(\arctan(\sin(2x)) + c_1) + c_2\cos(2x) - 1)$$

9.10 problem Problem 10

Internal problem ID [2274]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - \sec(x) - 4e^x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)+y(x)=sec(x)+4*exp(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) + \cos(x) \ln(\cos(x)) + \sin(x) x + 2e^x$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 90

DSolve[y''[x]+y[x]==4*Exp[x]*Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -4ie^x \text{ Hypergeometric2F1}\left(-\frac{i}{2}, 1, 1 - \frac{i}{2}, -e^{2ix}\right) \cos(x)$$

$$+ \left(\frac{8}{5} + \frac{4i}{5}\right) e^{(1+2i)x} \text{ Hypergeometric2F1}\left(1, 1 - \frac{i}{2}, 2 - \frac{i}{2}, -e^{2ix}\right) \cos(x)$$

$$+ c_1 \cos(x) + (4e^x + c_2) \sin(x)$$

9.11 problem Problem 11

Internal problem ID [2275]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - \csc(x) - 2x^2 - 5x - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $dsolve(diff(y(x),x$2)+y(x)=csc(x)+2*x^2+5*x+1,y(x), singsol=all)$

$$y(x) = \sin(x) c_2 + c_1 \cos(x) - \cos(x) x + \sin(x) \ln(\sin(x)) + 2x^2 + 5x - 3$$

✓ Solution by Mathematica

Time used: 0.106 (sec). Leaf size: 36

 $DSolve[y''[x]+y[x] == Csc[x]+2*x^2+5*x+1, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to (x+3)(2x-1) + (-x+c_1)\cos(x) + \sin(x)(\log(\tan(x)) + \log(\cos(x)) + c_2)$$

9.12 problem Problem 12

Internal problem ID [2276]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y - 2\tanh(x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)-y(x)=2*tanh(x),y(x), singsol=all)

$$y(x) = e^{-x}c_2 + c_1e^x + 2\arctan(e^x)(e^x + e^{-x})$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 28

DSolve[y''[x]-y[x]==2*Tanh[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow 4 \arctan(e^x) \cosh(x) + c_1 e^x + c_2 e^{-x}$$

9.13 problem Problem 13

Internal problem ID [2277]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2my' + m^2y - \frac{e^{mx}}{x^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

 $dsolve(diff(y(x),x\$2)-2*m*diff(y(x),x)+m^2*y(x)=exp(m*x)/(1+x^2),y(x), singsol=all)$

$$y(x) = e^{mx}c_2 + e^{mx}xc_1 + e^{mx}\left(-\frac{\ln(x^2+1)}{2} + x\arctan(x)\right)$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 35

$$y(x) \to \frac{1}{2}e^{mx} \left(-\log(x^2+1) + 2(x(\arctan(x)+c_2)+c_1)\right)$$

9.14 problem Problem 13

Internal problem ID [2278]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y - \frac{4e^{x}\ln(x)}{x^{3}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=4*exp(x)*x^{(-3)}*ln(x),y(x), singsol=all)$

$$y(x) = e^x c_2 + x e^x c_1 + \frac{2 e^x \ln(x) + 3 e^x}{x}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 27

 $DSolve[y''[x]-2*y'[x]+y[x]==4*Exp[x]*x^{-3}*Log[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{e^x(2\log(x) + x(c_2x + c_1) + 3)}{x}$$

9.15 problem Problem 15

Internal problem ID [2279]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y - \frac{e^{-x}}{\sqrt{-x^2 + 4}} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 54

 $dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=exp(-x)/sqrt(4-x^2),y(x), singsol=all)$

$$y(x) = e^{-x}c_2 + x e^{-x}c_1 - \frac{e^{-x}\left(-\arcsin\left(\frac{x}{2}\right)x\sqrt{-x^2+4} + x^2 - 4\right)}{\sqrt{-x^2+4}}$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 48

DSolve[y''[x]+2*y'[x]+y[x]==Exp[-x]/Sqrt[4-x^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} \left(\sqrt{4 - x^2} - 2x \cot^{-1} \left(\frac{x + 2}{\sqrt{4 - x^2}} \right) + c_2 x + c_1 \right)$$

9.16 problem Problem 16

Internal problem ID [2280]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 17y - \frac{64 e^{-x}}{3 + \sin(4x)^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 73

$$dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+17*y(x)=64*exp(-x)/(3+sin(4*x)^2),y(x), singsol=all)$$

$$y(x) = e^{-x} \sin(4x) c_2 + e^{-x} \cos(4x) c_1 + \frac{4\left(\sin(4x)\sqrt{3}\arctan\left(\frac{\sqrt{3}\sin(4x)}{3}\right) - \frac{3\cos(4x)(-\ln(\cos(4x)+2) + \ln(\cos(4x)-2))}{4}\right) e^{-x}}{3}$$

✓ Solution by Mathematica

Time used: 0.111 (sec). Leaf size: 61

$$y(x) \to \frac{1}{3}e^{-x} \Big(3\cos(4x) \left(2\coth^{-1}(2\sec(4x)) + c_2 \right) + \sin(4x) \left(4\sqrt{3}\cot^{-1}\left(\sqrt{3}\csc(4x)\right) + 3c_1 \right) \Big)$$

9.17 problem Problem 17

Internal problem ID [2281]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 4y - \frac{4e^{-2x}}{x^2 + 1} - 2x^2 + 1 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 46

 $dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=4*exp(-2*x)/(1+x^2)+2*x^2-1,y(x), singsol=all)$

$$y(x) = c_2 e^{-2x} + e^{-2x} x c_1 - 2 e^{-2x} \ln(x^2 + 1) + 4 \arctan(x) e^{-2x} x + \frac{(x-1)^2}{2}$$

✓ Solution by Mathematica

Time used: 0.287 (sec). Leaf size: 41

$$y(x) \to \frac{1}{2}(x-1)^2 + e^{-2x} (4x \arctan(x) - 2\log(x^2 + 1) + c_2 x + c_1)$$

9.18 problem Problem 18

Internal problem ID [2282]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 4y - 15e^{-2x}\ln(x) - 25\cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=15*exp(-2*x)*ln(x)+25*cos(x),y(x), singsol=all)

$$y(x) = c_2 e^{-2x} + e^{-2x} x c_1 + \frac{15x^2 \left(\ln\left(x\right) - \frac{3}{2}\right) e^{-2x}}{2} + 3\cos\left(x\right) + 4\sin\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.099 (sec). Leaf size: 45

$$y(x) \to \frac{1}{4}e^{-2x}(-45x^2 + 30x^2\log(x) + 4c_2x + 4c_1) + 4\sin(x) + 3\cos(x)$$

9.19 problem Problem 19

Internal problem ID [2283]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 19.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 3y'' + 3y' - y - \frac{2e^x}{x^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)+3*diff(y(x),x)-y(x)=2*x^{(-2)*exp(x),y(x)}, singsol=all)$

$$y(x) = -2e^{x} \ln(x) x + c_{1}e^{x} + c_{2}x e^{x} + c_{3}x^{2}e^{x}$$

✓ Solution by Mathematica

Time used: 0.379 (sec). Leaf size: 627

 $DSolve[y'''[x]-6*y''[x]+3*y'[x]-y[x]==2*x^{(-2)}*Exp[x],y[x],x,IncludeSingularSolutions -> True$

$$y(x) \xrightarrow{2i\left(\mathrm{Root}\left[\#1^{3}-6\#1^{2}+3\#1-1\&,1\right]-\mathrm{Root}\left[\#1^{3}-6\#1^{2}+3\#1-1\&,2\right]\right)\exp\left(x\mathrm{Root}\left[\#1^{3}-6\#1^{2}+3\#1-1\&,2\right]\right)} \\ + \frac{2i\left(\mathrm{Root}\left[\#1^{3}-6\#1^{2}+3\#1-1\&,2\right]-\mathrm{Root}\left[\#1^{3}-6\#1^{2}+3\#1-1\&,3\right]\right)\exp\left(x\mathrm{Root}\left[\#1^{3}-6\#1^{2}+3\#1-1\&,3\right]\right)}{2i\left(\mathrm{Root}\left[\#1^{3}-6\#1^{2}+3\#1-1\&,1\right]-\mathrm{Root}\left[\#1^{3}-6\#1^{2}+3\#1-1\&,3\right]\right)\exp\left(x\mathrm{Root}\left[\#1^{3}-6\#1^{2}+3\#1-1\&,3\right]\right)} \\ + c_{1}\exp\left(x\mathrm{Root}\left[\#1^{3}-6\#1^{2}+3\#1-1\&,2\right]\right) + c_{3}\exp\left(x\mathrm{Root}\left[\#1^{3}-6\#1^{2}+3\#1-1\&,3\right]\right)} \\ + c_{1}\exp\left(x\mathrm{Root}\left[\#1^{3}-6\#1^{2}+3\#1-1\&,1\right]\right)$$

9.20 problem Problem 20

Internal problem ID [2284]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 20.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 6y'' + 12y' - 8y - 36e^{2x}\ln(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+12*diff(y(x),x)-8*y(x)=36*exp(2*x)*ln(x),y(x), singsol(x)+12*diff(y(x),x)-8*y(x)=36*exp(2*x)*ln(x),y(x), singsol(x)+12*diff(y(x),x)-8*y(x)=36*exp(2*x)*ln(x),y(x), singsol(x)+12*diff(y(x),x)-8*y(x)=36*exp(2*x)*ln(x),y(x), singsol(x)+12*diff(y(x),x)-8*y(x)=36*exp(2*x)*ln(x),y(x), singsol(x)+12*diff(y(x),x)-8*y(x)=36*exp(2*x)*ln(x),y(x), singsol(x)+12*diff(y(x),x)-8*y(x)=36*exp(2*x)*ln(x),y(x), singsol(x)+12*diff(x)+12*d

$$y(x) = 6\ln(x)e^{2x}x^3 - 11e^{2x}x^3 + c_1e^{2x} + c_2e^{2x}x + c_3e^{2x}x^2$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 34

$$y(x) \to e^{2x} (6x^3 \log(x) + x(x(-11x + c_3) + c_2) + c_1)$$

9.21 problem Problem 21

Internal problem ID [2285]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 21.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + 3y'' + 3y' + y - \frac{2e^{-x}}{x^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 64

 $dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=2*exp(-x)/(1+x^2),y(x), singsol=al(x)+2+a$

$$y(x) = \arctan(x) x^2 e^{-x} - \ln(x^2 + 1) x e^{-x} - e^{-x} \arctan(x) + x e^{-x} + e^{-x} c_1 + c_2 e^{-x} x + c_3 x^2 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 40

$$y(x) \to e^{-x}((x^2 - 1)\arctan(x) + x(-\log(x^2 + 1) + c_3x + c_2) + x + c_1)$$

9.22 problem Problem 22

Internal problem ID [2286]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 22.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 6y'' + 9y' - 12e^{3x} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+9*diff(y(x),x)=12*exp(3*x),y(x), singsol=all)

$$y(x) = \frac{(3c_1x + 18x^2 - c_1 + 3c_2 - 12x + 4)e^{3x}}{9} + c_3$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 37

 $DSolve[y'''[x]-6*y''[x]+9*y'[x]==12*Exp[3*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{9}e^{3x}(3x(6x-4+c_2)+4+3c_1-c_2)+c_3$$

9.23 problem Problem 23

Internal problem ID [2287]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 9y - F(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

dsolve(diff(y(x),x\$2)-9*y(x)=F(x),y(x), singsol=all)

$$y(x) = c_2 e^{3x} + c_1 e^{-3x} + \frac{\left(\int e^{-3x} F(x) dx\right) e^{3x}}{6} - \frac{\left(\int e^{3x} F(x) dx\right) e^{-3x}}{6}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 60

DSolve[y''[x]-y[x]==F[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x \left(\int_1^x \frac{1}{2} e^{-K[1]} F(K[1]) dK[1] + c_1 \right) + e^{-x} \left(\int_1^x -\frac{1}{2} e^{K[2]} F(K[2]) dK[2] + c_2 \right)$$

9.24 problem Problem 24

Internal problem ID [2288]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 5y' + 4y - F(x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

dsolve(diff(y(x),x\$2)+5*diff(y(x),x)+4*y(x)=F(x),y(x), singsol=all)

$$y(x) = e^{-x}c_2 + c_1e^{-4x} + \frac{\left(\left(\int e^x F(x) dx\right) e^{3x} - \left(\int F(x) e^{4x} dx\right)\right) e^{-4x}}{3}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 61

DSolve[y''[x]+5*y'[x]+4*y[x]==F[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{-4x} \left(\int_{1}^{x} -\frac{1}{3} e^{4K[1]} F(K[1]) dK[1] + e^{3x} \left(\int_{1}^{x} \frac{1}{3} e^{K[2]} F(K[2]) dK[2] + c_{2} \right) + c_{1} \right)$$

9.25 problem Problem 25

Internal problem ID [2289]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 2y - F(x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

dsolve(diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=F(x),y(x), singsol=all)

$$y(x) = e^{x}c_{2} + e^{-2x}c_{1} + \frac{\left(\left(\int e^{-x}F(x) dx\right) e^{3x} - \left(\int F(x) e^{2x} dx\right)\right) e^{-2x}}{3}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 62

DSolve[y''[x]+y'[x]-2*y[x]==F[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} \left(\int_1^x -\frac{1}{3} e^{2K[1]} F(K[1]) dK[1] + c_1 \right) + e^x \left(\int_1^x \frac{1}{3} e^{-K[2]} F(K[2]) dK[2] + c_2 \right)$$

9.26 problem Problem 26

Internal problem ID [2290]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' - 12y - F(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 49

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)-12*y(x)=F(x),y(x), singsol=all)

$$y(x) = c_2 e^{2x} + c_1 e^{-6x} + \frac{\left(\left(\int F(x) e^{-2x} dx \right) e^{8x} - \left(\int F(x) e^{6x} dx \right) \right) e^{-6x}}{8}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 63

DSolve[y''[x]+4*y'[x]-12*y[x]==F[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-6x} \left(\int_1^x -\frac{1}{8} e^{6K[1]} F(K[1]) dK[1] + e^{8x} \left(\int_1^x \frac{1}{8} e^{-2K[2]} F(K[2]) dK[2] + c_2 \right) + c_1 \right)$$

9.27 problem Problem 27

Internal problem ID [2291]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 4y - 5x e^{2x} = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

dsolve([diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=5*x*exp(2*x),y(0) = 1, D(y)(0) = 0], y(x), singso(x) = 0

$$y(x) = \frac{e^{2x}(5x^3 - 12x + 6)}{6}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 24

$$y(x) \to \frac{1}{6}e^{2x}(5x^3 - 12x + 6)$$

9.28 problem Problem 28

Internal problem ID [2292]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

Problem number: Problem 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - \sec(x) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

dsolve([diff(y(x),x\$2)+y(x)=sec(x),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = \sin(x) + \sin(x) x - \cos(x) \ln(\sec(x))$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 24

 $DSolve[\{y''[x]-4*y'[x]+4*y[x]==5*x*Exp[2*x],\{y[0]==1,y'[0]==0\}\},y[x],x,IncludeSingularSolution[]$

$$y(x) \to \frac{1}{6}e^{2x}(5x^3 - 12x + 6)$$

10 Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

10.1	problem Problem 14													•				. 2	234
10.2	problem Problem 15																	4	235
10.3	problem Problem 16																	4	236
10.4	problem Problem 17																	. 2	237
10.5	problem Problem 18																	4	238
10.6	problem Problem 19																	4	239
10.7	problem Problem 20																	4	24 0
10.8	problem Problem 21																	. :	241
10.9	problem Problem 22																	4	242
10.10)problem Problem 23																	6	243

10.1 problem Problem 14

Internal problem ID [2293]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^{2}y'' + 4y'x + 2y - 4\ln(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $\label{local-condition} \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x$\$2$}) + 4 * \mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x}) + 2 * \mbox{y}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x}),\mbox{y}(\mbox{x}),\mbox{singsol=all}) \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x$\$2$}) + 4 * \mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x}) + 2 * \mbox{y}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x}),\mbox{y}(\mbox{x}),\mbox{singsol=all}) \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x}) + 2 * \mbox{y}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x}),\mbox{y}(\mbox{x}),\mbox{singsol=all}) \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x}) + 2 * \mbox{y}(\mbox{x}) + 2 * \mbox{y}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x}),\mbox{y}(\mbox{x}),\mbox{y}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x}),\mbox{y}(\mbox{x}),\mbox{y}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x}),\mbox{y}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x}),\mbox{y}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x}),\mbox{y}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x}),\mbox{y}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x}) = 4 * \mbox{ln}(\mbox{x})$

$$y(x) = 2\ln(x) + \frac{c_1}{x} - 3 + \frac{c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 22

 $DSolve[x^2*y''[x]+4*x*y'[x]+2*y[x]==4*Log[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_2 x + c_1}{x^2} + 2\log(x) - 3$$

10.2 problem Problem 15

Internal problem ID [2294]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^{2}y'' + 4y'x + 2y - \cos(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $dsolve(x^2*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=cos(x),y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} - \frac{\cos(x)}{x^2} + \frac{c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 20

 $DSolve[x^2*y''[x]+4*x*y'[x]+2*y[x] == Cos[x], y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to \frac{-\cos(x) + c_2 x + c_1}{x^2}$$

10.3 problem Problem 16

Internal problem ID [2295]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + 9y - 9\ln(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+9*y(x)=9*ln(x),y(x), singsol=all)$

$$y(x) = \sin(3\ln(x)) c_2 + \cos(3\ln(x)) c_1 + \ln(x)$$

✓ Solution by Mathematica

Time used: 0.071 (sec). Leaf size: 24

 $DSolve[x^2*y''[x]+x*y'[x]+9*y[x]==9*Log[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \log(x) + c_1 \cos(3\log(x)) + c_2 \sin(3\log(x))$$

10.4 problem Problem 17

Internal problem ID [2296]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - y'x + 5y - 8x \ln(x)^{2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $\label{localization} $$ dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+5*y(x)=8*x*(ln(x))^2,y(x), singsol=all)$ $$$

$$y(x) = x \sin(2\ln(x)) c_2 + x \cos(2\ln(x)) c_1 + 2\ln(x)^2 x - x$$

✓ Solution by Mathematica

Time used: 0.071 (sec). Leaf size: 31

 $DSolve[x^2*y''[x]-x*y'[x]+5*y[x]==8*x*(Log[x])^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x(2\log^2(x) + c_2\cos(2\log(x)) + c_1\sin(2\log(x)) - 1)$$

10.5 problem Problem 18

Internal problem ID [2297]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - 4y'x + 6y - \sin(x) x^{4} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=x^4*sin(x),y(x), singsol=all)$

$$y(x) = x^{2}c_{2} + c_{1}x^{3} - \sin(x) x^{2}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 20

DSolve[x^2*y''[x]-4*x*y'[x]+6*y[x]==x^4*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2(-\sin(x) + c_2x + c_1)$$

10.6 problem Problem 19

Internal problem ID [2298]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^2y'' + 6y'x + 6y - 4e^{2x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

 $dsolve(x^2*diff(y(x),x$2)+6*x*diff(y(x),x)+6*y(x)=4*exp(2*x),y(x), singsol=all)$

$$y(x) = \frac{-\frac{c_1}{x} - \frac{e^{2x}}{x} + e^{2x} + c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 25

 $DSolve[x^2*y''[x]+6*x*y'[x]+6*y[x]==4*Exp[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{e^{2x}(x-1) + c_2x + c_1}{x^3}$$

10.7 problem Problem 20

Internal problem ID [2299]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - 3y'x + 4y - \frac{x^{2}}{\ln(x)} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

 $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*y(x)=x^2/ln(x),y(x), singsol=all)$

$$y(x) = x^2c_2 + \ln(x) c_1x^2 + \ln(x) x^2(-1 + \ln(\ln(x)))$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 24

DSolve[x^2*y''[x]-3*x*y'[x]+4*y[x]==x^2/Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2(\log(x)(\log(\log(x)) - 1 + 2c_2) + c_1)$$

10.8 problem Problem 21

Internal problem ID [2300]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - (2m - 1)xy' + m^{2}y - x^{m} \ln(x)^{k} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

 $dsolve(x^2*diff(y(x),x\$2)-(2*m-1)*x*diff(y(x),x)+m^2*y(x)=x^m*(ln(x))^k,y(x), singsol=all)$

$$y(x) = x^m c_2 + \ln(x) x^m c_1 + \frac{x^m \ln(x)^{k+2}}{k^2 + 3k + 2}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 35

 $DSolve[x^2*y''[x]-(2*m-1)*x*y'[x]+m^2*y[x]==x^m*(Log[x])^k,y[x],x,IncludeSingular Solutions \rightarrow x^m + x^m +$

$$y(x) \to x^m \left(\frac{\log^{k+2}(x)}{k^2 + 3k + 2} + c_2 m \log(x) + c_1 \right)$$

10.9 problem Problem 22

Internal problem ID [2301]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y'x + 5y = 0$$

With initial conditions

$$\left[y(1) = \sqrt{2}, y'(1) = 3\sqrt{2}\right]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 20

$$dsolve([x^2*diff(y(x),x$2)-x*diff(y(x),x)+5*y(x)=0,y(1) = 2^(1/2), D(y)(1) = 3*2^(1/2)],y(x),$$

$$y(x) = \sqrt{2} x(\sin(2\ln(x)) + \cos(2\ln(x)))$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 23

$$y(x) \rightarrow \sqrt{2}x(\sin(2\log(x)) + \cos(2\log(x)))$$

10.10 problem Problem 23

Internal problem ID [2302]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

Problem number: Problem 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$t^2y'' + ty' + 25y = 0$$

With initial conditions

$$y(1) = \frac{3\sqrt{3}}{2}, y'(1) = \frac{15}{2}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 22

 $dsolve([t^2*diff(y(t),t^2)+t*diff(y(t),t)+25*y(t)=0,y(1) = 3/2*3^(1/2), D(y)(1) = 15/2],y(t),$

$$y(t) = \frac{3\sin(5\ln(t))}{2} + \frac{3\sqrt{3}\cos(5\ln(t))}{2}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 26

DSolve[{t^2*y''[t]+t*y'[t]+25*y[t]==0,{y[1]==3*Sqrt[3]/2,y'[1]==15/2}},y[t],t,IncludeSingular

$$y(t) \rightarrow \frac{3}{2} \left(\sin(5\log(t)) + \sqrt{3}\cos(5\log(t)) \right)$$

11	Chapter 8, Linear differential equations of order n.
	Section 8.9, Reduction of Order. page 572

11.1	problem	Problem	1			•	•	•	•						•	•		•		•			2	45
11.2	problem	${\bf Problem}$	2																				2	46
11.3	problem	${\bf Problem}$	3																				. 2	47
11.4	problem	${\bf Problem}$	4																				2	48
11.5	problem	${\bf Problem}$	5																				2	49
11.6	problem	${\bf Problem}$	6																				2	50
11.7	problem	${\bf Problem}$	10)																			. 2	251
11.8	problem	${\bf Problem}$	11																				2	52
11.9	problem	${\bf Problem}$	12	2																			2	53
11.10)problem	${\bf Problem}$	13	3																			. 2	54
11.11	l problem	${\bf Problem}$	14	Ļ																			2	55
11.12	2 problem	Problem	15	<u>, </u>																			2	56

11.1 problem Problem 1

Internal problem ID [2303]

 ${f Book}$: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$x^2y'' - 3y'x + 4y = 0$$

Given that one solution of the ode is

$$y_1 = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve([x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*y(x)=0,x^2],y(x), singsol=all)$

$$y(x) = c_1 x^2 + c_2 x^2 \ln(x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 18

 $DSolve[x^2*y''[x]-3*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2(2c_2\log(x) + c_1)$$

11.2 problem Problem 2

Internal problem ID [2304]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' + (1 - 2x)y' + (x - 1)y = 0$$

Given that one solution of the ode is

$$y_1 = e^x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve([x*diff(y(x),x\$2)+(1-2*x)*diff(y(x),x)+(x-1)*y(x)=0,exp(x)],y(x), singsol=all)

$$y(x) = c_1 e^x + c_2 e^x \ln(x)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 17

 $DSolve[x*y''[x]+(1-2*x)*y'[x]+(x-1)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^x(c_2 \log(x) + c_1)$$

11.3 problem Problem 3

Internal problem ID [2305]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - 2y'x + (x^{2} + 2)y = 0$$

Given that one solution of the ode is

$$y_1 = \sin(x) x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve([x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+(x^2+2)*y(x)=0,x*sin(x)],y(x), singsol=all)$

$$y(x) = c_1 \sin(x) x + c_2 \cos(x) x$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 33

 $DSolve[x^2*y''[x]-2*x*y'[x]+(x^2+2)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-ix} x - \frac{1}{2} i c_2 e^{ix} x$$

11.4 problem Problem 4

Internal problem ID [2306]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(1 - x^2) y'' - 2y'x + 2y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

 $dsolve([(1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,x],y(x), singsol=all)$

$$y(x) = c_1 x + c_2 \left(\frac{\ln(x-1)x}{2} - \frac{\ln(x+1)x}{2} + 1 \right)$$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 19

 $DSolve[(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_2(x\operatorname{arctanh}(x) - 1) + c_1x$$

11.5 problem Problem 5

Internal problem ID [2307]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(

$$y'' - \frac{y'}{x} + 4x^2y = 0$$

Given that one solution of the ode is

$$y_1 = \sin\left(x^2\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve([diff(y(x),x$2)-1/x*diff(y(x),x)+4*x^2*y(x)=0,sin(x^2)],y(x), singsol=all)$

$$y(x) = c_1 \sin(x^2) + c_2 \cos(x^2)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 20

 $DSolve[y''[x]-1/x*y'[x]+4*x^2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1 \cos\left(x^2\right) + c_2 \sin\left(x^2\right)$$

11.6 problem Problem 6

Internal problem ID [2308]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^{2}y'' + 4y'x + (4x^{2} - 1)y = 0$$

Given that one solution of the ode is

$$y_1 = \frac{\sin\left(x\right)}{\sqrt{x}}$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 19

 $dsolve([4*x^2*diff(y(x),x$2)+4*x*diff(y(x),x)+(4*x^2-1)*y(x)=0, sin(x)/x^(1/2)], y(x), singsol=0.$

$$y(x) = \frac{c_1 \sin(x)}{\sqrt{x}} + \frac{c_2 \cos(x)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 39

 $DSolve[4*x^2*y''[x]+4*x*y'[x]+(4*x^2-1)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{e^{-ix}(2c_1 - ic_2e^{2ix})}{2\sqrt{x}}$$

11.7 problem Problem 10

Internal problem ID [2309]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - \csc\left(x\right) = 0$$

Given that one solution of the ode is

$$y_1 = \sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve([diff(y(x),x\$2)+y(x)=csc(x),sin(x)],y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) - \ln(\csc(x)) \sin(x) - \cos(x) x$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 27

DSolve[y''[x]+y[x]==Csc[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (-x + c_1)\cos(x) + \sin(x)(\log(\tan(x)) + \log(\cos(x)) + c_2)$$

11.8 problem Problem 11

Internal problem ID [2310]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' - (1+2x)y' + 2y - 8x^2e^{2x} = 0$$

Given that one solution of the ode is

$$y_1 = e^{2x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve([x*diff(y(x),x$2)-(2*x+1)*diff(y(x),x)+2*y(x)=8*x^2*exp(2*x),exp(2*x)],y(x), singsol=ax(x)=ax(x)+ax$

$$y(x) = (1+2x) c_2 + c_1 e^{2x} + 2 e^{2x} x^2$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 32

$$y(x) \to e^{2x} (2x^2 - 1 + c_1) - \frac{1}{4}c_2(2x+1)$$

11.9 problem Problem 12

Internal problem ID [2311]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - 3y'x + 4y - 8x^4 = 0$$

Given that one solution of the ode is

$$y_1 = x^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $dsolve([x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*y(x)=8*x^4,x^2],y(x), singsol=all)$

$$y(x) = x^{2}c_{2} + \ln(x) c_{1}x^{2} + 2x^{4}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 23

 $DSolve[x^2*y''[x]-3*x*y'[x]+4*y[x]==8*x^4,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2(2x^2 + 2c_2\log(x) + c_1)$$

11.10 problem Problem 13

Internal problem ID [2312]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 6y' + 9y - 15e^{3x}\sqrt{x} = 0$$

Given that one solution of the ode is

$$y_1 = e^{3x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve([diff(y(x),x\$2)-6*diff(y(x),x)+9*y(x)=15*exp(3*x)*sqrt(x),exp(3*x)],y(x), singsol=all)

$$y(x) = c_2 e^{3x} + x e^{3x} c_1 + 4x^{\frac{5}{2}} e^{3x}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 25

DSolve[y''[x]-6*y'[x]+9*y[x]==15*Exp[3*x]*Sqrt[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{3x} (4x^{5/2} + c_2x + c_1)$$

11.11 problem Problem 14

Internal problem ID [2313]

 ${f Book}$: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 4y - 4e^{2x}\ln(x) = 0$$

Given that one solution of the ode is

$$y_1 = e^{2x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

dsolve([diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=4*exp(2*x)*ln(x),exp(2*x)],y(x), singsol=all)

$$y(x) = c_2 e^{2x} + e^{2x} x c_1 + e^{2x} x^2 (2 \ln(x) - 3)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 29

DSolve[y''[x]-4*y'[x]+4*y[x]==4*Exp[2*x]*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x} (2x^2 \log(x) + x(-3x + c_2) + c_1)$$

11.12 problem Problem 15

Internal problem ID [2314]

 $\bf Book:$ Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

Problem number: Problem 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$4x^2y'' + y - \sqrt{x} \ln(x) = 0$$

Given that one solution of the ode is

$$y_1 = \sqrt{x}$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

 $dsolve([4*x^2*diff(y(x),x$2)+y(x)=sqrt(x)*ln(x),sqrt(x)],y(x), singsol=all)$

$$y(x) = \sqrt{x} c_2 + \sqrt{x} \ln(x) c_1 + \frac{\ln(x)^3 \sqrt{x}}{24}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 29

 $DSolve [4*x^2*y''[x]+y[x] == Sqrt[x]*Log[x], y[x], x, Include Singular Solutions \rightarrow True] \\$

$$y(x) \to \frac{1}{24} \sqrt{x} (\log^3(x) + 12c_2 \log(x) + 24c_1)$$

264

265

266

268

269

270

272

12	Chapter 8, Linear differential equations of order	n
	Section 8.10, Chapter review. page 575	
12.1	problem Problem 7	258
12.2	problem Problem 8	259
12.3	problem Problem 18	260
12.4	oroblem Problem 19	261
12.5	problem Problem 20	262
12.6	problem Problem 21	263

12.7 problem Problem 2212.8 problem Problem 27

12.9 problem Problem 28

12.10problem Problem 29

12.11 problem Problem 30

12.12problem Problem 31

12.13problem Problem 32

12.14problem Problem 33

12.15 problem Problem 34

12.1 problem Problem 7

Internal problem ID [2315]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 7.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 3y'' - 4y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)-4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{-2x} x$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 25

DSolve[y'''[x]+3*y''[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x}(c_2x + c_1) + c_3e^x$$

12.2 problem Problem 8

Internal problem ID [2316]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 8.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 11y'' + 36y' + 26y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$3)+11*diff(y(x),x\$2)+36*diff(y(x),x)+26*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + c_2e^{-5x}\sin(x) + c_3e^{-5x}\cos(x)$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

 $DSolve[y'''[x]+11*y''[x]+36*y'[x]+26*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-5x} (c_3 e^{4x} + c_2 \cos(x) + c_1 \sin(x))$$

12.3 problem Problem 18

Internal problem ID [2317]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 9y - 4e^{-3x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+9*y(x)=4*exp(-3*x),y(x), singsol=all)

$$y(x) = c_2 e^{-3x} + x e^{-3x} c_1 + 2 e^{-3x} x^2$$

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 22

 $DSolve[y''[x]+6*y'[x]+9*y[x] == 4*Exp[-3*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-3x}(x(2x+c_2)+c_1)$$

12.4 problem Problem 19

Internal problem ID [2318]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 9y - 4e^{-2x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+9*y(x)=4*exp(-2*x),y(x), singsol=all)

$$y(x) = c_2 e^{-3x} + x e^{-3x} c_1 + 4 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 23

 $\textbf{DSolve}[y''[x]+6*y'[x]+9*y[x]==4*\textbf{Exp}[-2*x],y[x],x,IncludeSingularSolutions} \rightarrow \textbf{True}]$

$$y(x) \to e^{-3x} (4e^x + c_2x + c_1)$$

12.5 problem Problem 20

Internal problem ID [2319]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 20.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 6y'' + 25y' - x^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 63

 $dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+25*diff(y(x),x)=x^2,y(x), singsol=all)$

$$y(x) = \frac{6x^2}{625} + \frac{x^3}{75} + \frac{3e^{3x}\cos(4x)c_1}{25} + \frac{4c_1e^{3x}\sin(4x)}{25} - \frac{4c_2e^{3x}\cos(4x)}{25} + \frac{3e^{3x}\sin(4x)c_2}{25} + \frac{22x}{15625} + c_3$$

✓ Solution by Mathematica

Time used: 0.129 (sec). Leaf size: 61

DSolve[$y'''[x]-6*y''[x]+25*y'[x]==x^2,y[x],x$,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x(25x(25x+18)+66)}{46875} + \frac{1}{25}e^{3x}((3c_2-4c_1)\cos(4x) + (3c_1+4c_2)\sin(4x)) + c_3$$

12.6 problem Problem 21

Internal problem ID [2320]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 21.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 6y'' + 25y' - \sin(4x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 62

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+25*diff(y(x),x)=sin(4*x),y(x), singsol=all)

$$y(x) = \frac{3e^{3x}\cos(4x)c_1}{25} + \frac{4c_1e^{3x}\sin(4x)}{25} - \frac{4c_2e^{3x}\cos(4x)}{25} + \frac{3e^{3x}\sin(4x)c_2}{25} + \frac{2\sin(4x)}{219} - \frac{\cos(4x)}{292} + c_3$$

✓ Solution by Mathematica

Time used: 0.337 (sec). Leaf size: 62

 $DSolve[y'''[x]-6*y''[x]+25*y'[x] == Sin[4*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{219}\sin(4x) - \frac{1}{292}\cos(4x) + \frac{1}{25}e^{3x}((3c_2 - 4c_1)\cos(4x) + (3c_1 + 4c_2)\sin(4x)) + c_3$$

12.7 problem Problem 22

Internal problem ID [2321]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 22.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' + 9y'' + 24y' + 16y - 8e^{-x} - 1 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

dsolve(diff(y(x),x\$3)+9*diff(y(x),x\$2)+24*diff(y(x),x)+16*y(x)=8*exp(-x)+1,y(x), singsol=all)

$$y(x) = \frac{1}{16} - \frac{16 e^{-x}}{27} + \frac{8x e^{-x}}{9} + c_1 e^{-4x} + e^{-x} c_2 + c_3 x e^{-4x}$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 39

 $DSolve[y'''[x]+9*y''[x]+24*y'[x]+16*y[x]==8*Exp[-x]+1,y[x],x,IncludeSingularSolutions \rightarrow True$

$$y(x) \to \frac{1}{16} + e^{-4x} \left(c_2 x + e^{3x} \left(\frac{8x}{9} - \frac{16}{27} + c_3 \right) + c_1 \right)$$

12.8 problem Problem 27

Internal problem ID [2322]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y - 5e^x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-4*y(x)=5*exp(x),y(x), singsol=all)

$$y(x) = c_2 e^{2x} + e^{-2x} c_1 - \frac{5 e^x}{3}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 29

DSolve[y''[x]-4*y[x]==5*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{5e^x}{3} + c_1e^{2x} + c_2e^{-2x}$$

12.9 problem Problem 28

Internal problem ID [2323]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y - 2x e^{-x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=2*x*exp(-x),y(x), singsol=all)

$$y(x) = e^{-x}c_2 + x e^{-x}c_1 + \frac{e^{-x}x^3}{3}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 27

DSolve[y''[x]+2*y'[x]+y[x]==2*x*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{3}e^{-x}(x^3 + 3c_2x + 3c_1)$$

12.10 problem Problem 29

Internal problem ID [2324]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y - 4e^x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)-y(x)=4*exp(x),y(x), singsol=all)

$$y(x) = e^{-x}c_2 + c_1e^x + 2x e^x$$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 25

DSolve[y''[x]-y[x]==4*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^x(2x - 1 + c_1) + c_2e^{-x}$$

12.11 problem Problem 30

Internal problem ID [2325]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + yx - \sin\left(x\right) = 0$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 49

dsolve(diff(y(x),x\$2)+x*y(x)=sin(x),y(x), singsol=all)

$$y(x) = \operatorname{AiryAi}(-x) c_2 + \operatorname{AiryBi}(-x) c_1 + \pi \left(\operatorname{AiryAi}(-x) \left(\int \operatorname{AiryBi}(-x) \sin(x) dx \right) - \operatorname{AiryBi}(-x) \left(\int \operatorname{AiryAi}(-x) \sin(x) dx \right) \right)$$

✓ Solution by Mathematica

Time used: 51.516 (sec). Leaf size: 99

DSolve[y''[x]+x*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \operatorname{AiryAi}\left(\sqrt[3]{-1}x\right) \int_{1}^{x} (-1)^{2/3}\pi \operatorname{AiryBi}\left(\sqrt[3]{-1}K[1]\right) \sin(K[1]) dK[1] \\ &+ \operatorname{AiryBi}\left(\sqrt[3]{-1}x\right) \int_{1}^{x} -(-1)^{2/3}\pi \operatorname{AiryAi}\left(\sqrt[3]{-1}K[2]\right) \sin(K[2]) dK[2] \\ &+ c_{1} \operatorname{AiryAi}\left(\sqrt[3]{-1}x\right) + c_{2} \operatorname{AiryBi}\left(\sqrt[3]{-1}x\right) \end{split}$$

12.12 problem Problem 31

Internal problem ID [2326]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - \ln\left(x\right) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 65

dsolve(diff(y(x),x\$2)+4*y(x)=ln(x),y(x), singsol=all)

$$y(x) = \sin(2x) c_2 + \cos(2x) c_1 + \frac{i\pi \cos(2x) (\operatorname{csgn}(x) - 1) \operatorname{csgn}(ix)}{8} - \frac{\cos(2x) \operatorname{Ci}(2x)}{4} + \frac{(\pi \operatorname{csgn}(x) - 2 \operatorname{Si}(2x)) \sin(2x)}{8} + \frac{\ln(x)}{4}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 44

DSolve[y''[x]+4*y[x]==Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}(\cos(2x)(-\cos(2x)) + 4c_1) + \sin(2x)(-\sin(2x) + 4c_2) + \log(x))$$

12.13 problem Problem 32

Internal problem ID [2327]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' - 3y - 5e^x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)-3*y(x)=5*exp(x),y(x), singsol=all)

$$y(x) = e^x c_2 + c_1 e^{-3x} + \frac{5x e^x}{4}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 29

DSolve[y''[x]+2*y'[x]-3*y[x]==5*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-3x} + e^x \left(\frac{5x}{4} - \frac{5}{16} + c_2\right)$$

12.14 problem Problem 33

Internal problem ID [2328]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - \tan(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+y(x)=tan(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) - \ln(\sec(x) + \tan(x)) \cos(x)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 22

DSolve[y''[x]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \cos(x)(-\arctan(\sin(x)) + c_1) + c_2\sin(x)$$

12.15 problem Problem 34

Internal problem ID [2329]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

Problem number: Problem 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - 4\cos(2x) - 3e^x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+y(x)=4*cos(2*x)+3*exp(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) - \frac{4\cos(2x)}{3} + \frac{3e^x}{2}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 30

DSolve[y''[x]+y[x]==4*Cos[x]*3*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{12}{5}e^x(2\sin(x) + \cos(x)) + c_1\cos(x) + c_2\sin(x)$$

13 Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

13.1 problem Problem 1	 . 274
13.2 problem Problem 2	 275
13.3 problem Problem 3	 276
13.4 problem Problem 4	 . 277
13.5 problem Problem 5	 278
13.6 problem Problem 6	 279
13.7 problem Problem 7	 280
13.8 problem Problem 8	 . 281
13.9 problem Problem 9	 282
13.10 problem Problem 10	 283
13.11 problem Problem 11	 . 284
13.12 problem Problem 12	 285
13.13 problem Problem 13	 286
13.14problem Problem 14	 . 287
13.15 problem Problem 15	 288
13.16 problem Problem 16	 289
13.17 problem Problem 17	 290
13.18 problem Problem 18	 . 291
13.19 problem Problem 19	 292
13.20 problem Problem 20	 293
13.21 problem Problem 21	 . 294
13.22 problem Problem 22	 295
13.23 problem Problem 23	 296
13.24problem Problem 24	 . 297
13.25 problem Problem 25 \dots	 298
13.26 problem Problem 26	 299
13.27 problem Problem 27	 300
13.28 problem Problem 28	 . 301

13.1 problem Problem 1

Internal problem ID [2330]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth

edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for

10.4. page 689

Problem number: Problem 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y - 6e^{5t} = 0$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(t),t)-2*y(t)=6*exp(5*t),y(0) = 3],y(t), singsol=all)

$$y(t) = (2e^{3t} + 1)e^{2t}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 18

 $DSolve[\{y'[t]-2*y[t]==6*Exp[5*t],\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to e^{2t} + 2e^{5t}$$

13.2 problem Problem 2

Internal problem ID [2331]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y - 8e^{3t} = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

dsolve([diff(y(t),t)+y(t)=8*exp(3*t),y(0) = 2],y(t), singsol=all)

$$y(t) = 2e^{3t}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 12

 $DSolve[\{y'[t]+y[t]==8*Exp[3*t],\{y[0]==2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 2e^{3t}$$

13.3 problem Problem 3

Internal problem ID [2332]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 3y - 2e^{-t} = 0$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(y(t),t)+3*y(t)=2*exp(-t),y(0) = 3],y(t), singsol=all)

$$y(t) = \left(e^{2t} + 2\right)e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 18

 $DSolve[\{y'[t]+3*y[t]==2*Exp[-t],\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to e^{-3t} (e^{2t} + 2)$$

13.4 problem Problem 4

Internal problem ID [2333]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$2y + y' - 4t = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(y(t),t)+2*y(t)=4*t,y(0) = 1],y(t), singsol=all)

$$y(t) = 2t - 1 + 2e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 17

 $DSolve[\{y'[t]+2*y[t]==4*t,\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 2t + 2e^{-2t} - 1$$

13.5 problem Problem 5

Internal problem ID [2334]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y - 6\cos(t) = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(t),t)-y(t)=6*cos(t),y(0) = 2],y(t), singsol=all)

$$y(t) = 3\sin(t) - 3\cos(t) + 5e^{t}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 19

 $\label{eq:DSolve} DSolve[\{y'[t]-y[t]==6*Cos[t],\{y[0]==2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 5e^t + 3\sin(t) - 3\cos(t)$$

13.6 problem Problem 6

Internal problem ID [2335]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y - 5\sin(2t) = 0$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve([diff(y(t),t)-y(t)=5*sin(2*t),y(0) = -1],y(t), singsol=all)

$$y(t) = -2\cos(2t) - \sin(2t) + e^t$$

✓ Solution by Mathematica

Time used: 0.091 (sec). Leaf size: 21

 $DSolve[\{y'[t]-y[t]==5*Sin[2*t],\{y[0]==-1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to e^t - \sin(2t) - 2\cos(2t)$$

13.7 problem Problem 7

Internal problem ID [2336]

 ${f Book}$: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y - 5e^t \sin(t) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{y(t)},\mbox{t}) + \mbox{y(t)} = 5 * \exp(\mbox{t}) * \sin(\mbox{t}) , \mbox{y(0)} = 1] , \\ \mbox{y(t)}, \ \mbox{singsol=all}) \\$

$$y(t) = 2e^{-t} + e^{t}(-\cos(t) + 2\sin(t))$$

✓ Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 25

 $DSolve[\{y'[t]+y[t]==5*Exp[t]*Sin[t],\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 2e^{-t} - e^t(\cos(t) - 2\sin(t))$$

13.8 problem Problem 8

Internal problem ID [2337]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 2y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 15

dsolve([diff(y(t),t\$2)+diff(y(t),t)-2*y(t)=0,y(0) = 1, D(y)(0) = 4],y(t), singsol=all)

$$y(t) = (2e^{3t} - 1)e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

$$y(t) \to 2e^t - e^{-2t}$$

13.9 problem Problem 9

Internal problem ID [2338]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y = 0$$

With initial conditions

$$[y(0) = 5, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve([diff(y(t),t\$2)+4*y(t)=0,y(0) = 5, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = \frac{\sin(2t)}{2} + 5\cos(2t)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 17

 $DSolve[\{y''[t]+4*y[t]==0,\{y[0]==5,y'[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 5\cos(2t) + \sin(t)\cos(t)$$

13.10 problem Problem 10

Internal problem ID [2339]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 3y' + 2y - 4 = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([diff(y(t),t\$2)-3*diff(y(t),t)+2*y(t)=4,y(0) = 0, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = 3e^{2t} - 5e^t + 2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

DSolve[{y''[t]-3*y'[t]+2*y[t]==4,{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow (e^t - 1) (3e^t - 2)$$

13.11 problem Problem 11

Internal problem ID [2340]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for

10.4. page 689

Problem number: Problem 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 12y - 36 = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 12]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 12

 $dsolve([diff(y(t),t)^2)-diff(y(t),t)^{-12*}y(t)=36,y(0)=0, D(y)(0)=12],y(t), singsol=all)$

$$y(t) = 3e^{4t} - 3$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 14

DSolve[{y''[t]-y'[t]-12*y[t]==36,{y[0]==0,y'[0]==12}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to 3\left(e^{4t} - 1\right)$$

13.12 problem Problem 12

Internal problem ID [2341]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' - 2y - 10e^{-t} = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)+diff(y(t),t)-2*y(t)=10*exp(-t),y(0) = 0, D(y)(0) = 1],y(t), singsol=al(t) = 0

$$y(t) = (2e^{3t} - 5e^t + 3)e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 25

DSolve[{y''[t]+y'[t]-2*y[t]==10*Exp[-t],{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions -

$$y(t) \rightarrow e^{-2t} \left(-5e^t + 2e^{3t} + 3 \right)$$

13.13 problem Problem 13

Internal problem ID [2342]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 3y' + 2y - 4e^{3t} = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

dsolve([diff(y(t),t\$2)-3*diff(y(t),t)+2*y(t)=4*exp(3*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=0

$$y(t) = -4e^{2t} + 2e^{2t}e^{t} + 2e^{t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 17

$$y(t) \rightarrow 2e^t (e^t - 1)^2$$

13.14 problem Problem 14

Internal problem ID [2343]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 2y' - 30e^{-3t} = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)-2*diff(y(t),t)=30*exp(-3*t),y(0) = 1, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = (3e^{5t} - 4e^{3t} + 2)e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 21

 $DSolve[\{y''[t]-2*y'[t]==30*Exp[-3*t],\{y[0]==1,y'[0]==0\}\},y[t],t,IncludeSingularSo]utions -> T(x,y[0]==0)$

$$y(t) \rightarrow 2e^{-3t} + 3e^{2t} - 4$$

13.15 problem Problem 15

Internal problem ID [2344]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y - 12e^{2t} = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

 $\label{eq:dsolve} \\ \text{dsolve}([\text{diff}(y(t),t\$2)-y(t)=12*exp(2*t),y(0) = 1, D(y)(0) = 1],y(t), \text{ singsol=all}) \\$

$$y(t) = 2e^{-t} - 5e^{t} + 4e^{2t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 25

$$y(t) \to 2e^{-t} - 5e^t + 4e^{2t}$$

13.16 problem Problem 16

Internal problem ID [2345]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y - 10e^{-t} = 0$$

With initial conditions

$$[y(0) = 4, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)+4*y(t)=10*exp(-t),y(0) = 4, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \sin(2t) + 2\cos(2t) + 2e^{-t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 23

$$y(t) \to 2e^{-t} + \sin(2t) + 2\cos(2t)$$

13.17 problem Problem 17

Internal problem ID [2346]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 6y - 12 + 6e^t = 0$$

With initial conditions

$$[y(0) = 5, y'(0) = -3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 20

dsolve([diff(y(t),t\$2)-diff(y(t),t)-6*y(t)=6*(2-exp(t)),y(0) = 5, D(y)(0) = -3],y(t), singsolve([diff(y(t),t\$2)-diff(y(t),t)-6*y(t)=6*(2-exp(t)),y(0) = 5, D(y)(0) = -3],y(t), singsolve([diff(y(t),t)-6*y(t)-6*y

$$y(t) = \frac{(8e^{5t} + 5e^{3t} - 10e^{2t} + 22)e^{-2t}}{5}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 28

DSolve[{y''[t]-y'[t]-6*y[t]==6*(2-Exp[t]),{y[0]==5,y'[0]==-3}},y[t],t,IncludeSingularSolution

$$y(t) o rac{22e^{-2t}}{5} + e^t + rac{8e^{3t}}{5} - 2$$

13.18 problem Problem 18

Internal problem ID [2347]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y - 6\cos(t) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

dsolve([diff(y(t),t\$2)-y(t)=6*cos(t),y(0) = 0, D(y)(0) = 4],y(t), singsol=all)

$$y(t) = -\frac{e^{-t}}{2} + \frac{7e^{t}}{2} - 3\cos(t)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 18

 $DSolve[\{y''[t]-y[t]==6*Cos[t],\{y[0]==0,y'[0]==4\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow -3\cos(t) + 4\sinh(t) + 3\cosh(t)$$

13.19 problem Problem 19

Internal problem ID [2348]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 9y - 13\sin(2t) = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)-9*y(t)=13*sin(2*t),y(0) = 3, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = 2e^{3t} + e^{-3t} - \sin(2t)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 22

$$y(t) \rightarrow -\sin(2t) + \sinh(3t) + 3\cosh(3t)$$

13.20 problem Problem 20

Internal problem ID [2349]

 ${f Book}$: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y - 8\sin(t) + 6\cos(t) = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)-y(t)=8*sin(t)-6*cos(t),y(0) = 2, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = -2e^{-t} + e^{t} - 4\sin(t) + 3\cos(t)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 22

DSolve[{y''[t]-y[t]==8*Sin[t]-6*Cos[t],{y[0]==2,y'[0]==-1}},y[t],t,IncludeSingularSolutions -

$$y(t) \to -4\sin(t) + 3\cos(t) + 3\sinh(t) - \cosh(t)$$

13.21 problem Problem 21

Internal problem ID [2350]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y' - 2y - 10\cos(t) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)-diff(y(t),t)-2*y(t)=10*cos(t),y(0) = 0, D(y)(0) = -1],y(t), singsol=al(t) = 0

$$y(t) = e^{2t} + 2e^{-t} - 3\cos(t) - \sin(t)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 26

DSolve[{y''[t]-y'[t]-2*y[t]==10*Cos[t],{y[0]==0,y'[0]==-1}},y[t],t,IncludeSingularSolutions -

$$y(t) \to 2e^{-t} + e^{2t} - \sin(t) - 3\cos(t)$$

13.22 problem Problem 22

Internal problem ID [2351]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 5y' + 4y - 20\sin(2t) = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)+5*diff(y(t),t)+4*y(t)=20*sin(2*t),y(0) = -1, D(y)(0) = 2],y(t), singsolve([diff(y(t),t\$2)+5*diff(y(t),t)+4*y(t)=20*sin(2*t),y(0) = -1, D(y)(0) = 2],y(t), singsolve([diff(y(t),t)+4*y(t)=20*sin(2*t),y(0) = -1, D(y)(0) = -2],y(t), singsolve([diff(y(t),t)+4*y(t)=20*sin(2*t),y(0) = -1, D(y)(0) = -1, D(y

$$y(t) = 2e^{-t} - e^{-4t} - 2\cos(2t)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 27

$$y(t) \to e^{-4t} (2e^{3t} - 1) - 2\cos(2t)$$

13.23 problem Problem 23

Internal problem ID [2352]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 5y' + 4y - 20\sin(2t) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -2]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)+5*diff(y(t),t)+4*y(t)=20*sin(2*t),y(0) = 1, D(y)(0) = -2], y(t), singso(x,t) = 0

$$y(t) = \frac{10 e^{-t}}{3} - \frac{e^{-4t}}{3} - 2\cos(2t)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 30

$$y(t) \to \frac{1}{3}e^{-4t}(10e^{3t} - 1) - 2\cos(2t)$$

13.24 problem Problem 24

Internal problem ID [2353]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3y' + 2y - 3\cos(t) - \sin(t) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

$$y(t) = \frac{7e^{2t}}{5} + \frac{3\cos(t)}{5} - \frac{4\sin(t)}{5} - e^t$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 29

DSolve[{y''[t]-3*y'[t]+2*y[t]==3*Cos[t]+Sin[t],{y[0]==1,y'[0]==1}},y[t],t,IncludeSingularSolu

$$y(t) \to \frac{1}{5} (e^t (7e^t - 5) - 4\sin(t) + 3\cos(t))$$

13.25 problem Problem 25

Internal problem ID [2354]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - 9\sin\left(t\right) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 19

dsolve([diff(y(t),t\$2)+4*y(t)=9*sin(t),y(0) = 1, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = -2\sin(2t) + \cos(2t) + 3\sin(t)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 20

 $DSolve[\{y''[t]+4*y[t]==9*Sin[t],\{y[0]==1,y'[0]==-1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 3\sin(t) - 2\sin(2t) + \cos(2t)$$

13.26 problem Problem 26

Internal problem ID [2355]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - 6\cos(2t) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 19

$$dsolve([diff(y(t),t$2)+y(t)=6*cos(2*t),y(0) = 0, D(y)(0) = 2],y(t), singsol=all)$$

$$y(t) = 2\sin(t) + 2\cos(t) - 2\cos(2t)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 18

DSolve[{y''[t]+y[t]==6*Cos[2*t],{y[0]==0,y'[0]==2}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 2(\sin(t) + \cos(t) - \cos(2t))$$

13.27 problem Problem 27

Internal problem ID [2356]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y - 7\sin(4t) - 14\cos(4t) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 29

dsolve([diff(y(t),t\$2)+9*y(t)=7*sin(4*t)+14*cos(4*t),y(0) = 1, D(y)(0) = 2],y(t), singsol=all = 0

$$y(t) = 2\sin(3t) + 3\cos(3t) - \sin(4t) - 2\cos(4t)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 50

 $DSolve[\{y''[t]+8*y[t]=-7*Sin[4*t]+14*Cos[4*t],\{y[0]=-1,y'[0]=-2\}\},y[t],t,IncludeSingularSolut]$

$$y(t) \to \frac{1}{8} \left(11\sqrt{2} \sin\left(2\sqrt{2}t\right) + 22\cos\left(2\sqrt{2}t\right) - 7(\sin(4t) + 2\cos(4t)) \right)$$

13.28 problem Problem 28

Internal problem ID [2357]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

Problem number: Problem 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

With initial conditions

$$[y(0) = A, y'(0) = B]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)-y(t)=0,y(0) = A, D(y)(0) = B],y(t), singsol=all)

$$y(t) = \frac{(A-B)e^{-t}}{2} + \frac{e^{t}(B+A)}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 14

 $DSolve[\{y''[t]-y[t]==0,\{y[0]==a,y'[0]==b\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to a \cosh(t) + b \sinh(t)$$

14	Chapter 10, The Laplace Transform and Some
	Elementary Applications. Exercises for 10.7. page
	704

14.1 problem Problem 27													•	303
14.2 problem Problem 28														. 304
14.3 problem Problem 29														305
14.4 problem Problem 30														306
14.5 problem Problem 31														. 307
14.6 problem Problem 32														308
14.7 problem Problem 33														309
14.8 problem Problem 34														310
14.9 problem Problem 35														. 311
14.10problem Problem 36														312
14.11 problem Problem 37					 •									313
14.12problem Problem 38														. 314
14.13 problem Problem 39					 •									315
14.14problem Problem 40														316
14.15problem Problem 41					 •									. 317
14.16problem Problem 46 p	part	\mathbf{a}			 •			•						318
14.17problem Problem 46 p	part	b												319

14.1 problem Problem 27

Internal problem ID [2358]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$2y + y' - 2 \operatorname{Heaviside}(t - 1) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 25

dsolve([diff(y(t),t)+2*y(t)=2*Heaviside(t-1),y(0) = 1],y(t), singsol=all)

$$y(t) = \text{Heaviside}(t-1) - \text{Heaviside}(t-1)e^{-2t+2} + e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 25

DSolve[{y'[t]-y[t]==2*UnitStep[t-1],{y[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \{ e^t & t \leq 1 \\ -2 + e^{t-1}(2+e) & \text{True}$$

14.2 problem Problem 28

Internal problem ID [2359]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y - \text{Heaviside}(t-2)e^{t-2} = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 30

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{y}(\mbox{t}),\mbox{t})-2*\mbox{y}(\mbox{t})=\mbox{Heaviside}(\mbox{t}-2)*\mbox{exp}(\mbox{t}-2),\mbox{y}(\mbox{0}) = 2],\mbox{y}(\mbox{t}), \\ \mbox{singsol=all})$

$$y(t) = (-\text{Heaviside}(t-2)e^{-t-2} + \text{Heaviside}(t-2)e^{-4} + 2)e^{2t}$$

✓ Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 40

 $DSolve[\{y'[t]-2*y[t]==UnitStep[t-2]*Exp[t-2],\{y[0]==2\}\},y[t],t,IncludeSingularSolutions \rightarrow Tr(x)$

$$y(t) \to \{ e^{2t} & t \le 2$$

 $e^{t-4}(-e^2 + e^t + 2e^{t+4}) \text{ True }$

14.3 problem Problem 29

Internal problem ID [2360]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y - 4$$
 Heaviside $\left(t - \frac{\pi}{4}\right) \sin\left(t + \frac{\pi}{4}\right) = 0$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 39

dsolve([diff(y(t),t)-y(t)=4*Heaviside(t-Pi/4)*cos(t-Pi/4),y(0) = 1],y(t), singsol=all)

$$y(t) = \left(-2\cos\left(t + \frac{\pi}{4}\right) + 2\operatorname{e}^{t - \frac{\pi}{4}} - 2\sin\left(t + \frac{\pi}{4}\right)\right)\operatorname{Heaviside}\left(t - \frac{\pi}{4}\right) + \operatorname{e}^{t}$$

✓ Solution by Mathematica

Time used: 0.111 (sec). Leaf size: 40

$$y(t) \rightarrow \begin{cases} e^t & 4t \le \pi \\ -2\sqrt{2}\cos(t) + e^t + 2e^{t-\frac{\pi}{4}} & \text{True} \end{cases}$$

14.4 problem Problem 30

Internal problem ID [2361]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$2y + y' - \text{Heaviside}(-\pi + t)\sin(2t) = 0$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 46

dsolve([diff(y(t),t)+2*y(t)=Heaviside(t-Pi)*sin(2*t),y(0) = 3],y(t), singsol=all)

$$y(t) = \frac{\text{Heaviside}\left(-\pi + t\right) e^{-2t + 2\pi}}{4} + \frac{\text{Heaviside}\left(-\pi + t\right)\left(-\cos\left(2t\right) + \sin\left(2t\right)\right)}{4} + 3e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.117 (sec). Leaf size: 46

DSolve[{y'[t]+2*y[t]==UnitStep[t-Pi]*Sin[2*t],{y[0]==3}},y[t],t,IncludeSingularSolutions -> T

$$y(t) \to \begin{cases} 3e^{-2t} & t \le \pi \\ \frac{1}{4}(-\cos(2t) + \sin(2t) + e^{-2t}(12 + e^{2\pi})) & \text{True} \end{cases}$$

14.5 problem Problem 31

Internal problem ID [2362]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$\begin{vmatrix} y' + 3y - \begin{pmatrix} 1 & 0 \le t < 1 \\ 0 & 1 \le t \end{vmatrix} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 41

 $dsolve([diff(y(t),t)+3*y(t)=piecewise(0<=t \ and \ t<1,1,t>=1,0),y(0) = 1],y(t), \ singsol=all)$

$$y(t) = \begin{cases} e^{-3t} & t < 0\\ \frac{2e^{-3t}}{3} + \frac{1}{3} & t < 1\\ \frac{2e^{-3t}}{3} + \frac{e^{3-3t}}{3} & 1 \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 47

 $DSolve[\{y'[t]+3*y[t]==Piecewise[\{\{1,0<=t<1\},\{0,t>=1\}\}],\{y[0]==1\}\},y[t],t,IncludeSingularSolve]$

$$e^{-3t}$$
 $t \le 0$ $y(t) \to \left\{ \begin{array}{cc} \frac{1}{3}e^{-3t}(2+e^3) & t > 1 \\ \frac{1}{3} + \frac{2e^{-3t}}{3} & \text{True} \end{array} \right.$

14.6 problem Problem 32

Internal problem ID [2363]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 32.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 3y - \left(\begin{cases} \sin(t) & 0 \le t < \frac{\pi}{2} \\ 1 & \frac{\pi}{2} \le t \end{cases} \right) = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.235 (sec). Leaf size: 57

$$y(t) = \begin{cases} 2e^{3t} & t < 0\\ \frac{21e^{3t}}{10} - \frac{\cos(t)}{10} - \frac{3\sin(t)}{10} & t < \frac{\pi}{2} \\ \frac{21e^{3t}}{10} + \frac{e^{3t - \frac{3\pi}{2}}}{30} - \frac{1}{3} & \frac{\pi}{2} \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.104 (sec). Leaf size: 65

DSolve[{y'[t]-3*y[t]==Piecewise[{{Sin[t],0<=t<Pi/2},{1,t >= Pi/2}}],{y[0]==2}},y[t],t,Include

$$2e^{3t} t \le 0$$

$$y(t) \to \left\{ \frac{1}{30} \left(-10 + e^{3t} \left(63 + e^{-3\pi/2} \right) \right) 2t > \pi \right.$$

$$\frac{1}{10} \left(-\cos(t) + 21e^{3t} - 3\sin(t) \right) \text{True}$$

14.7 problem Problem 33

Internal problem ID [2364]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 33.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 3y + 10e^{-t+a}\sin(-2t + 2a)$$
 Heaviside $(t - a) = 0$

With initial conditions

$$[y(0) = 5]$$

Time used: 0.172 (sec). Leaf size: 100

$$dsolve([diff(y(t),t)-3*y(t)=10*exp(-(t-a))*sin(2*(t-a))*Heaviside(t-a),y(0) = 5],y(t), singsolve([diff(y(t),t)-3*y(t)=10*exp(-(t-a))*sin(2*(t-a))*Heaviside(t-a),y(0) = 5],y(t), singsolve([diff(y(t),t)-3*y(t)=10*exp(-(t-a))*sin(2*$$

$$\begin{split} y(t) &= - \bigg(\left(\left(\cos \left(2t \right) + 2 \sin \left(2t \right) \right) \cos \left(2a \right) - 2 \sin \left(2a \right) \left(\cos \left(2t \right) - \frac{\sin \left(2t \right)}{2} \right) \bigg) \text{ Heaviside} \left(t - a \right) \\ &- a \right) \mathrm{e}^{4a - 4t} - \mathrm{Heaviside} \left(t - a \right) + \left(\mathrm{Heaviside} \left(a \right) - 1 \right) \mathrm{e}^{4a} \cos \left(2a \right) \\ &+ \left(-2 \operatorname{Heaviside} \left(a \right) + 2 \right) \sin \left(2a \right) \mathrm{e}^{4a} - 5 \, \mathrm{e}^{3a} - \mathrm{Heaviside} \left(a \right) + 1 \bigg) \, \mathrm{e}^{3t - 3a} \end{split}$$

✓ Solution by Mathematica

Time used: 0.444 (sec). Leaf size: 88

$$DSolve[\{y'[t]-3*y[t]==10*Exp[-(t-a)]*Sin[2*(t-a)]*UnitStep[t-a],\{y[0]==5\}\},y[t],t],IncludeSing[x]=10*Exp[-(t-a)]*Sin[2*(t-a)]*UnitStep[t-a],\{y[0]==5\}\},y[t],t]$$

$$y(t) \to e^{3t-3a} \left(\theta(t-a) + \theta(-a) \left(e^{4a} (\cos(2a) - 2\sin(2a)) - 1 \right) + 5e^{3a} \right) - e^{a-t} \theta(t-a) (\cos(2(a-t)) - 2\sin(2(a-t)))$$

14.8 problem Problem 34

Internal problem ID [2365]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y - \text{Heaviside}(t - 1) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 33

dsolve([diff(y(t),t\$2)-y(t)=Heaviside(t-1),y(0)=1,D(y)(0)=0],y(t),singsol=all)

$$y(t) = \frac{\operatorname{Heaviside}\left(t-1\right) \operatorname{e}^{-t+1}}{2} + \frac{\left(\operatorname{e}^{t-1}-2\right) \operatorname{Heaviside}\left(t-1\right)}{2} + \frac{\operatorname{e}^{-t}}{2} + \frac{\operatorname{e}^{t}}{2}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 23

$$y(t) \rightarrow \{ cosh(t) & t \leq 1 \\ cosh(1-t) + cosh(t) - 1 & True \}$$

14.9 problem Problem 35

Internal problem ID [2366]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y' - 2y - 1 + 3$$
 Heaviside $(t - 2) = 0$

With initial conditions

$$[y(0) = 1, y'(0) = -2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 48

$$dsolve([diff(y(t),t\$2)-diff(y(t),t)-2*y(t)=1-3*Heaviside(t-2),y(0) = 1, D(y)(0) = -2],y(t), s(t) = -2,y(t) = -2,y($$

$$y(t) = -\frac{\mathrm{e}^{2t}}{6} + \frac{5\,\mathrm{e}^{-t}}{3} + \frac{3\,\mathrm{Heaviside}\left(t-2\right)}{2} - \frac{\mathrm{Heaviside}\left(t-2\right)\,\mathrm{e}^{2t-4}}{2} - \frac{1}{2} - \mathrm{Heaviside}\left(t-2\right)\,\mathrm{e}^{2-t}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 65

 $DSolve[\{y''[t]-y'[t]-2*y[t]==1-3*UnitStep[t-2], \{y[0]==1,y'[0]==-2\}\}, y[t], t, IncludeSingularSolve[t], t, Inclu$

$$y(t) \rightarrow \{ \begin{cases} \frac{1}{6}(-3+10e^{-t}-e^{2t}) & t \leq 2\\ 1+\frac{1}{3}e^{-t}(5-3e^2)-\frac{1}{6}e^{2t-4}(3+e^4) & \text{True} \end{cases}$$

14.10 problem Problem 36

Internal problem ID [2367]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 36.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y - \text{Heaviside}(t-1) + \text{Heaviside}(t-2) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 75

dsolve([diff(y(t),t\$2)-4*y(t)=Heaviside(t-1)-Heaviside(t-2),y(0)=0,D(y)(0)=4],y(t),sing(t)=0

$$y(t) = e^{2t} - e^{-2t} - \frac{\text{Heaviside}\left(t-1\right)}{4} + \frac{\text{Heaviside}\left(t-1\right)e^{2t-2}}{8} + \frac{\text{Heaviside}\left(t-2\right)}{4} - \frac{\text{Heaviside}\left(t-2\right)e^{2t-4}}{8} + \frac{\text{Heaviside}\left(t-1\right)e^{-2t+2}}{8} - \frac{\text{Heaviside}\left(t-2\right)e^{-2t+4}}{8}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 61

$$y(t) \to \frac{1}{4}(-\theta(1-t)(\cosh(2-2t)-1) + \theta(2-t)(\cosh(4-2t)-1) + 8\sinh(2t) + \cosh(2-2t) - \cosh(4-2t))$$

14.11 problem Problem 37

Internal problem ID [2368]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 37.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - t + \text{Heaviside}(t - 1)(t - 1) = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve([diff(y(t),t\$2)+y(t)=t-Heaviside(t-1)*(t-1),y(0) = 2, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = 2\cos(t) + (-t + \sin(t - 1) + 1)$$
 Heaviside $(t - 1) + t$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 31

 $DSolve[\{y''[t]+y[t]==t-UnitStep[t-1]*(t-1),\{y[0]==2,y'[0]==1\}\},y[t],t,IncludeSingularSolution]$

$$y(t) \rightarrow \{ \begin{array}{cc} t + 2\cos(t) & t \leq 1 \\ 2\cos(t) - \sin(1-t) + 1 & \text{True} \end{array}$$

14.12 problem Problem 38

Internal problem ID [2369]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y + 10$$
 Heaviside $\left(t - \frac{\pi}{4}\right)\cos\left(t + \frac{\pi}{4}\right) = 0$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 67

dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=10*Heaviside(t-Pi/4)*sin(t-Pi/4),y(0)) = 1, D(y)(t-Pi/4)*sin(t-Pi/4

$$y(t) = -2 \operatorname{Heaviside}\left(t - \frac{\pi}{4}\right) e^{-2t + \frac{\pi}{2}} + 5 \operatorname{Heaviside}\left(t - \frac{\pi}{4}\right) e^{-t + \frac{\pi}{4}}$$
$$-2\left(\cos\left(t\right) + \frac{\sin\left(t\right)}{2}\right) \sqrt{2} \operatorname{Heaviside}\left(t - \frac{\pi}{4}\right) - e^{-2t} + 2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 76

 $DSolve[\{y''[t]+3*y'[t]+2*y[t]==10*UnitStep[t-Pi/4]*Sin[t-Pi/4],\{y[0]==1,y'[0]==0\}\},y[t],t,Incomplete the property of the pro$

$$y(t) \to \begin{cases} e^{-2t}(-1+2e^t) & 4t \le \pi \\ -\sqrt{2}(2\cos(t)+\sin(t)) - e^{-2t}(1+2e^{\pi/2}) + e^{-t}(2+5e^{\pi/4}) & \text{True} \end{cases}$$

14.13 problem Problem 39

Internal problem ID [2370]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 39.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 6y - 30$$
 Heaviside $(t - 1) e^{-t+1} = 0$

With initial conditions

$$[y(0) = 3, y'(0) = -4]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 45

$$dsolve([diff(y(t),t$2)+diff(y(t),t)-6*y(t)=30*Heaviside(t-1)*exp(-(t-1)),y(0) = 3, D(y)(0) = 3)$$

 $y(t) = \left(\mathrm{e}^{5t} + 3\operatorname{Heaviside}\left(t - 1\right)\mathrm{e}^{3} + 2\operatorname{Heaviside}\left(t - 1\right)\mathrm{e}^{-2 + 5t} - 5\operatorname{Heaviside}\left(t - 1\right)\mathrm{e}^{1 + 2t} + 2\right)\mathrm{e}^{-3t}$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 59

$$y(t) \rightarrow \{ e^{-3t}(2+e^{5t}) & t \le 1 \\ e^{-3t}(2+3e^3-5e^{2t+1}+e^{5t-2}(2+e^2)) & \text{True}$$

14.14 problem Problem 40

Internal problem ID [2371]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 40.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 5y - 5$$
 Heaviside $(t - 3) = 0$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 46

$$y(t) = -\text{Heaviside}(t-3)(\cos(t-3) + 2\sin(t-3))e^{-2t+6}$$

+ Heaviside $(t-3) + (2\cos(t) + 5\sin(t))e^{-2t}$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 63

DSolve[{y''[t]+4*y'[t]+5*y[t]==5*UnitStep[t-3],{y[0]==2,y'[0]==1}},y[t],t,IncludeSingularSolu

$$y(t) \to \begin{cases} e^{-2t}(2\cos(t) + 5\sin(t)) & t \le 3 \\ e^{-2t}(2\cos(t) - e^{6}(\cos(3-t) - 2\sin(3-t)) + 5\sin(t)) + 1 & \text{True} \end{cases}$$

14.15 problem Problem 41

Internal problem ID [2372]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 41.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 5y - 2\sin(t) - \text{Heaviside}\left(t - \frac{\pi}{2}\right)(1 + \cos(t)) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 68

dsolve([diff(y(t),t\$2)-2*diff(y(t),t)+5*y(t)=2*sin(t)+Heaviside(t-Pi/2)*(1-sin(t-Pi/2)),y(0))

$$y(t) = \frac{\left(\left(2\cos(t)^2 - 3\cos(t)\sin(t) - 1\right)e^{t - \frac{\pi}{2}} + 2\cos(t) - \sin(t) + 2\right) \text{ Heaviside } \left(t - \frac{\pi}{2}\right)}{10} - \frac{2e^t\cos(t)^2}{5} - \frac{e^t\cos(t)\sin(t)}{5} + \frac{\cos(t)}{5} + \frac{e^t}{5} + \frac{2\sin(t)}{5}$$

✓ Solution by Mathematica

Time used: 0.241 (sec). Leaf size: 90

 $DSolve[\{y''[t]-2*y'[t]+5*y[t]==2*Sin[t]+UnitStep[t-Pi/2]*(1-Sin[t-Pi/2]),\{y[0]==0\}\},$

 $y(t) \\ \rightarrow \begin{cases} \frac{\frac{1}{5}(\cos(t) + 2\sin(t) - e^t(\cos(2t) + \cos(t)\sin(t)))}{\frac{1}{20}\left(8\cos(t) + 2e^t\left(-2 + e^{-\pi/2}\right)\cos(2t) + 6\sin(t) + e^t\left(-2 - 3e^{-\pi/2}\right)\sin(2t) + 4\right)} & \text{True} \end{cases}$

14.16 problem Problem 46 part a

Internal problem ID [2373]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 46 part a.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y - \left(\left\{ \begin{array}{cc} 2 & 0 \le t < 1 \\ -1 & 1 \le t \end{array} \right) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 34

 $dsolve([diff(y(t),t)-y(t)=piecewise(0<=t\ and\ t<1,2,t>=1,-1),y(0)\ =\ 1],y(t),\ singsol=all)$

$$y(t) = \begin{cases} e^t & t < 0 \\ 3e^t - 2 & t < 1 \\ 3e^t - 3e^{t-1} + 1 & 1 \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.066 (sec). Leaf size: 40

$$y(t) \rightarrow \begin{cases} e^t & t \leq 0 \\ -2 + 3e^t & 0 < t \leq 1 \end{cases}$$

$$1 + 3(-1 + e)e^{t-1} \quad \text{True}$$

14.17 problem Problem 46 part b

Internal problem ID [2374]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704

Problem number: Problem 46 part b.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y - \left(\left\{ \begin{array}{cc} 2 & 0 \le t < 1 \\ -1 & 1 \le t \end{array} \right) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 34

 $dsolve([diff(y(t),t)-y(t)=piecewise(0<=t \ and \ t<1,2,t>=1,-1),y(0) = 1],y(t), \ singsol=all)$

$$y(t) = \begin{cases} e^t & t < 0 \\ 3e^t - 2 & t < 1 \\ 3e^t - 3e^{t-1} + 1 & 1 \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.066 (sec). Leaf size: 40

$$y(t) \rightarrow \begin{cases} e^t & t \leq 0 \\ -2 + 3e^t & 0 < t \leq 1 \end{cases}$$

$$1 + 3(-1 + e)e^{t-1} \quad \text{True}$$

15	Chapter 10, The Laplace Transform and Some
	Elementary Applications. Exercises for 10.8. page
	710

15.1	problem	Problem	1			•			•			•			•									321
15.2	$\operatorname{problem}$	${\bf Problem}$	2																					322
15.3	$\operatorname{problem}$	${\bf Problem}$	3																					323
15.4	$\operatorname{problem}$	${\bf Problem}$	4																					324
15.5	${\bf problem}$	${\bf Problem}$	5																			•	,	325
15.6	${\bf problem}$	${\bf Problem}$	6																			•	,	326
15.7	$\operatorname{problem}$	${\bf Problem}$	7																					327
15.8	$\operatorname{problem}$	${\bf Problem}$	8																				,	328
15.9	${\bf problem}$	${\bf Problem}$	9																			•	,	329
15.10	problem	${\bf Problem}$	10)																		•	,	330
15.11	problem	${\bf Problem}$	11	-																				331
15.12	2problem	${\bf Problem}$	12	2									•											332
15.13	3 problem	${\bf Problem}$	13	3																				333

15.1 problem Problem 1

Internal problem ID [2375]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y - (\delta(t-5)) = 0$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve([diff(y(t),t)+y(t)=Dirac(t-5),y(0) = 3],y(t), singsol=all)

$$y(t) = (e^5 \text{ Heaviside } (t-5) + 3) e^{-t}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 21

DSolve[{y'[t]+y[t]==DiracDelta[t-5],{y[0]==3}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t} (e^5 \theta(t-5) + 3)$$

15.2 problem Problem 2

Internal problem ID [2376]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y - (\delta(t-2)) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve([diff(y(t),t)-2*y(t)=Dirac(t-2),y(0) = 1],y(t), singsol=all)

$$y(t) = (\text{Heaviside}(t-2)e^{-4} + 1)e^{2t}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 23

DSolve[{y'[t]-2*y[t]==DiracDelta[t-2],{y[0]==3}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{2t-4} (\theta(t-2) + 3e^4)$$

15.3 problem Problem 3

Internal problem ID [2377]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 4y - 3(\delta(t - 1)) = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

dsolve([diff(y(t),t)+4*y(t)=3*Dirac(t-1),y(0) = 2],y(t), singsol=all)

$$y(t) = 3 e^{-4t}$$
 Heaviside $(t - 1) e^4 + 2 e^{-4t}$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 22

DSolve[{y'[t]+4*y[t]==3*DiracDelta[t-1],{y[0]==2}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-4t} (3e^4\theta(t-1) + 2)$$

15.4 problem Problem 4

Internal problem ID [2378]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 5y - 2e^{-t} - (\delta(t-3)) = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 24

dsolve([diff(y(t),t)-5*y(t)=2*exp(-t)+Dirac(t-3),y(0)=0],y(t), singsol=all)

$$y(t) = \frac{e^{5t}}{3} + \text{Heaviside}(t-3)e^{5t-15} - \frac{e^{-t}}{3}$$

✓ Solution by Mathematica

Time used: 0.095 (sec). Leaf size: 34

$$y(t) \to \frac{1}{3}e^{-t} (3e^{6t-15}\theta(t-3) + e^{6t} - 1)$$

15.5 problem Problem 5

Internal problem ID [2379]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3y' + 2y - (\delta(t-1)) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 36

dsolve([diff(y(t),t\$2)-3*diff(y(t),t)+2*y(t)=Dirac(t-1),y(0) = 1, D(y)(0) = 0],y(t), singsol=0

$$y(t) = -\text{Heaviside}(t-1)e^{t-1} + \text{Heaviside}(t-1)e^{2t-2} - e^{2t} + 2e^{t}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 31

$$y(t) \rightarrow e^t \left(\frac{(e^t - e)\theta(t - 1)}{e^2} - e^t + 2 \right)$$

15.6 problem Problem 6

Internal problem ID [2380]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y - (\delta(t-3)) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 38

dsolve([diff(y(t),t\$2)-4*y(t)=Dirac(t-3),y(0) = 0, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = \frac{e^{2t}}{4} - \frac{e^{-2t}}{4} - \frac{\text{Heaviside}(t-3)e^{-2t+6}}{4} + \frac{\text{Heaviside}(t-3)e^{2t-6}}{4}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 26

$$y(t) \to \frac{1}{2}(\sinh(2t) - \theta(t-3)\sinh(6-2t))$$

15.7 problem Problem 7

Internal problem ID [2381]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y - \left(\delta\left(t - \frac{\pi}{2}\right)\right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 34

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+5*y(t)=Dirac(t-Pi/2),y(0)=0,D(y)(0)=2],y(t),sings(t-Pi/2),y(t)=0,D(y)(t)=0,D

$$y(t) = \frac{\sin(2t)\left(-\text{Heaviside}\left(t - \frac{\pi}{2}\right)e^{-t + \frac{\pi}{2}} + 2e^{-t}\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 34

 $DSolve[\{y''[t]+2*y'[t]+5*y[t]==DiracDelta[t-Pi/2], \{y[0]==0,y'[0]==2\}\}, y[t], t, IncludeSingularSolve[t]==0, y'[0]==0, y'[0]$

$$y(t) \to -e^{-t} (e^{\pi/2}\theta(2t-\pi) - 2)\sin(t)\cos(t)$$

15.8 problem Problem 8

Internal problem ID [2382]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 13y - \left(\delta\left(t - \frac{\pi}{4}\right)\right) = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 53

$$y(t) = -\frac{\sqrt{2}e^{2t - \frac{\pi}{2}} \operatorname{Heaviside}\left(t - \frac{\pi}{4}\right) \left(\sin\left(3t\right) + \cos\left(3t\right)\right)}{6} + 3\left(\cos\left(3t\right) - \frac{2\sin\left(3t\right)}{3}\right)e^{2t}$$

✓ Solution by Mathematica

Time used: 0.097 (sec). Leaf size: 61

DSolve[{y''[t]-4*y'[t]+13*y[t]==DiracDelta[t-Pi/4],{y[0]==3,y'[0]==0}},y[t],t,IncludeSingular

$$y(t) \to \frac{1}{6}e^{2t} \Big(6(3\cos(3t) - 2\sin(3t)) - \sqrt{2}e^{-\pi/2}\theta(4t - \pi)(\sin(3t) + \cos(3t)) \Big)$$

15.9 problem Problem 9

Internal problem ID [2383]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 3y - (\delta(t-2)) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 30

 $\frac{dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+3*y(t)=Dirac(t-2),y(0)=1,\ D(y)(0)=-1],y}{(t),\ singsolve([diff(y(t),t\$2)+4*diff(y(t),t)+3*y(t)=Dirac(t-2),y(0)=1,\ D(y)(0)=-1],y}$

$$y(t) = e^{-t} - \frac{\text{Heaviside}(t-2)e^{6-3t}}{2} + \frac{\text{Heaviside}(t-2)e^{2-t}}{2}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 37

$$y(t) \to \frac{1}{2}e^{2-3t}(e^{2t} - e^4) \theta(t-2) + e^{-t}$$

15.10 problem Problem 10

Internal problem ID [2384]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 13y - \left(\delta\left(t - \frac{\pi}{4}\right)\right) = 0$$

With initial conditions

$$[y(0) = 5, y'(0) = 5]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 42

dsolve([diff(y(t),t\$2)+6*diff(y(t),t)+13*y(t)=Dirac(t-Pi/4),y(0) = 5, D(y)(0) = 5],y(t), sing(t) = 0

$$y(t) = -\frac{\text{Heaviside}\left(t - \frac{\pi}{4}\right)\cos(2t)e^{\frac{3\pi}{4} - 3t}}{2} + 5e^{-3t}(\cos(2t) + 2\sin(2t))$$

✓ Solution by Mathematica

Time used: 0.116 (sec). Leaf size: 121

DSolve[{y''[t]+46*y'[t]+13*y[t]==DiracDelta[t-Pi/4],{y[0]==1,y'[0]==-1}},y[t],t,IncludeSingul

$$y(t) \to \frac{1}{516} e^{-2\sqrt{129}t - 23t - \frac{\sqrt{129}\pi}{2}} \left(2e^{\frac{\sqrt{129}\pi}{2}} \left(\left(129 + 11\sqrt{129} \right) e^{4\sqrt{129}t} + 129 - 11\sqrt{129} \right) - \sqrt{129}e^{23\pi/4} \left(e^{\sqrt{129}\pi} - e^{4\sqrt{129}t} \right) \theta(4t - \pi) \right)$$

15.11 problem Problem 11

Internal problem ID [2385]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y - 15\sin(2t) - \left(\delta\left(t - \frac{\pi}{6}\right)\right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 29

$$y(t) = -2\sin(3t) + 3\sin(2t) - \frac{\cos(3t)\operatorname{Heaviside}\left(t - \frac{\pi}{6}\right)}{3}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 34

DSolve[{y''[t]+9*y[t]==15*Sin[2*t]+DiracDelta[t-Pi/6],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingu

$$y(t) \to -\frac{1}{3}\theta(6t - \pi)\cos(3t) + 3\sin(2t) - 2\sin(3t)$$

15.12 problem Problem 12

Internal problem ID [2386]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 16y - 4\cos(3t) - \left(\delta\left(t - \frac{\pi}{3}\right)\right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 40

 $\frac{\text{dsolve}([\text{diff}(y(t),t\$2)+16*y(t)=4*\cos(3*t)+\text{Dirac}(t-\text{Pi}/3),y(0)=0,\ D(y)(0)=0],y(t),\ \text{singsol=0} }{\text{dsolve}([\text{diff}(y(t),t\$2)+16*y(t)=4*\cos(3*t)+\text{Dirac}(t-\text{Pi}/3),y(0)=0,\ D(y)(0)=0],y(t),\ \text{singsol=0} }$

$$y(t) = -\frac{4\cos(4t)}{7} + \frac{(\sqrt{3}\cos(4t) - \sin(4t)) \text{ Heaviside }(t - \frac{\pi}{3})}{8} + \frac{4\cos(3t)}{7}$$

✓ Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 50

$$y(t) \to \frac{1}{8}\theta(3t - \pi)\left(\sqrt{3}\cos(4t) - \sin(4t)\right) + \frac{4}{7}(\cos(3t) - \cos(4t))$$

15.13 problem Problem 13

Internal problem ID [2387]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

Problem number: Problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y - 4\sin\left(t\right) - \left(\delta\left(t - \frac{\pi}{6}\right)\right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 69

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+5*y(t)=4*sin(t)+Dirac(t-Pi/6),y(0) = 0, D(y)(0) = 1],y(0)

$$y(t) = -\frac{\left(\cos(t)^{2}\sqrt{3} - \cos(t)\sin(t) - \frac{\sqrt{3}}{2}\right) \text{Heaviside}\left(t - \frac{\pi}{6}\right) e^{-t + \frac{\pi}{6}}}{2} + \frac{\left(4\cos(t)^{2} + 3\cos(t)\sin(t) - 2\right) e^{-t}}{5} - \frac{2\cos(t)}{5} + \frac{4\sin(t)}{5}$$

✓ Solution by Mathematica

Time used: 0.296 (sec). Leaf size: 73

$$y(t) \to \frac{1}{20}e^{-t} \left(-5e^{\pi/6}\theta(6t - \pi) \left(\sqrt{3}\cos(2t) - \sin(2t) \right) + 6\sin(2t) + 8\cos(2t) - 8e^{t}(\cos(t) - 2\sin(t)) \right)$$

16	Chapter 11, Series Solutions to Linear Differential
	Equations. Exercises for 11.2. page 739

16.1 problem Problem 1	335
16.2 problem Problem 2	336
16.3 problem Problem 3	337
16.4 problem Problem 4	338
16.5 problem Problem 5	339
16.6 problem Problem 6	340
16.7 problem Problem 7	341
16.8 problem Problem 8	342
16.9 problem Problem 9	343
16.10 problem Problem 10	344
16.11 problem Problem 11	345
16.12 problem Problem 12	346
16.13problem Problem 13	347
16.14problem Problem 14	348
16.15 problem Problem 15	349
16.16 problem Problem 17	350
16.17 problem Problem 18	351
16.18 problem Problem 19	352
16.19 problem Problem 20	353
16.20 problem Problem 21	354

16.1 problem Problem 1

Internal problem ID [2388]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{24}x^4\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^5}{120} + \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{24} + \frac{x^2}{2} + 1\right)$$

16.2 problem Problem 2

Internal problem ID [2389]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_erf]

$$y'' + 2y'x + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+2*x*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - 2x^2 + \frac{4}{3}x^4\right)y(0) + \left(x - x^3 + \frac{1}{2}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

AsymptoticDSolveValue[$y''[x]+2*x*y'[x]+4*y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_2 igg(rac{x^5}{2} - x^3 + x igg) + c_1 igg(rac{4x^4}{3} - 2x^2 + 1 igg)$$

16.3 problem Problem 3

Internal problem ID [2390]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' - 2y'x - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

Order:=6; dsolve(diff(y(x),x\$2)-2*x*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + x^2 + \frac{1}{2}x^4\right)y(0) + \left(x + \frac{2}{3}x^3 + \frac{4}{15}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

AsymptoticDSolveValue[$y''[x]-2*x*y'[x]-2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{4x^5}{15} + \frac{2x^3}{3} + x\right) + c_1 \left(\frac{x^4}{2} + x^2 + 1\right)$$

16.4 problem Problem 4

Internal problem ID [2391]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' - y'x^2 - 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; $dsolve(diff(y(x),x$2)-x^2*diff(y(x),x)-2*x*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 + \frac{x^3}{3}\right)y(0) + \left(x + \frac{1}{4}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]-x^2*y'[x]-2*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^4}{4} + x\right) + c_1 \left(\frac{x^3}{3} + 1\right)$$

16.5 problem Problem 5

Internal problem ID [2392]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{12} \right) + c_1 \left(1 - \frac{x^3}{6} \right)$$

16.6 problem Problem 6

Internal problem ID [2393]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x + 3y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+x*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{3}{2}x^2 + \frac{5}{8}x^4\right)y(0) + \left(x - \frac{2}{3}x^3 + \frac{1}{5}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x]+x*y'[x]+3*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_2 \left(\frac{x^5}{5} - \frac{2x^3}{3} + x \right) + c_1 \left(\frac{5x^4}{8} - \frac{3x^2}{2} + 1 \right)$$

16.7 problem Problem 7

Internal problem ID [2394]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y'x^2 - 3yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)-x^2*diff(y(x),x)-3*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^3}{2}\right)y(0) + \left(x + \frac{1}{3}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]-x^2*y'[x]-3*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^4}{3} + x\right) + c_1 \left(\frac{x^3}{2} + 1\right)$$

16.8 problem Problem 8

Internal problem ID [2395]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y'x^2 + 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+2*x^2*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{3}\right)y(0) + \left(x - \frac{1}{3}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+2*x^2*y'[x]+2*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{3} \right) + c_1 \left(1 - \frac{x^3}{3} \right)$$

16.9 problem Problem 9

Internal problem ID [2396]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^2 - 3) y'' - 3y'x - 5y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; $dsolve((x^2-3)*diff(y(x),x$2)-3*x*diff(y(x),x)-5*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{5}{6}x^2 + \frac{5}{24}x^4\right)y(0) + \left(x - \frac{4}{9}x^3 + \frac{8}{135}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 42

AsymptoticDSolveValue[$(x^2-3)*y''[x]-3*x*y'[x]-5*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{8x^5}{135} - \frac{4x^3}{9} + x\right) + c_1 \left(\frac{5x^4}{24} - \frac{5x^2}{6} + 1\right)$$

16.10 problem Problem 10

Internal problem ID [2397]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^2 + 1)y'' + 4y'x + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

Order:=6; dsolve((1+x^2)*diff(y(x),x\$2)+4*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = (x^4 - x^2 + 1) y(0) + (x^5 - x^3 + x) D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 30

AsymptoticDSolveValue[$(1+x^2)*y''[x]+4*x*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2(x^5 - x^3 + x) + c_1(x^4 - x^2 + 1)$$

16.11 problem Problem 11

Internal problem ID [2398]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(-4x^2 + 1)y'' - 20y'x - 16y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve((1-4*x^2)*diff(y(x),x\$2)-20*x*diff(y(x),x)-16*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + 8x^2 + \frac{128}{3}x^4\right)y(0) + \left(30x^5 + 6x^3 + x\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 36

AsymptoticDSolveValue[$(1-4*x^2)*y''[x]-20*x*y'[x]-16*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 (30x^5 + 6x^3 + x) + c_1 \left(\frac{128x^4}{3} + 8x^2 + 1\right)$$

16.12 problem Problem 12

Internal problem ID [2399]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(x^2 - 1)y'' - 6y'x + 12y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

Order:=6; $dsolve((x^2-1)*diff(y(x),x$2)-6*x*diff(y(x),x)+12*y(x)=0,y(x),type='series',x=0);$

$$y(x) = (x^4 + 6x^2 + 1) y(0) + (x^3 + x) D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 25

AsymptoticDSolveValue[$(x^2-1)*y''[x]-6*x*y'[x]+12*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2(x^3 + x) + c_1(x^4 + 6x^2 + 1)$$

16.13 problem Problem 13

Internal problem ID [2400]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + 4yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

Order:=6; dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+4*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{2}{3}x^3 + \frac{1}{3}x^4 - \frac{2}{15}x^5\right)y(0) + \left(x - x^2 + \frac{2}{3}x^3 - \frac{2}{3}x^4 + \frac{7}{15}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 61

 $AsymptoticDSolveValue[y''[x]+2*y'[x]+4*x*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(-\frac{2x^5}{15} + \frac{x^4}{3} - \frac{2x^3}{3} + 1 \right) + c_2 \left(\frac{7x^5}{15} - \frac{2x^4}{3} + \frac{2x^3}{3} - x^2 + x \right)$$

16.14 problem Problem 14

Internal problem ID [2401]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x + (2+x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

Order:=6; dsolve(diff(y(x),x\$2)+x*diff(y(x),x)+(2+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - x^2 - \frac{1}{6}x^3 + \frac{1}{3}x^4 + \frac{11}{120}x^5\right)y(0) + \left(x - \frac{1}{2}x^3 - \frac{1}{12}x^4 + \frac{1}{8}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 61

AsymptoticDSolveValue[$y''[x]+x*y'[x]+(2+x)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_2 \left(rac{x^5}{8} - rac{x^4}{12} - rac{x^3}{2} + x
ight) + c_1 \left(rac{11x^5}{120} + rac{x^4}{3} - rac{x^3}{6} - x^2 + 1
ight)$$

16.15 problem Problem 15

Internal problem ID [2402]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - e^x y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve(diff(y(x),x\$2)-exp(x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{1}{24}x^5\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{1}{30}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63

AsymptoticDSolveValue[y''[x]-Exp[x]*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2 \left(\frac{x^5}{30} + \frac{x^4}{12} + \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^5}{24} + \frac{x^4}{12} + \frac{x^3}{6} + \frac{x^2}{2} + 1\right)$$

16.16 problem Problem 17

Internal problem ID [2403]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' - (x - 1)y' - yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 53

Order:=6; dsolve(x*diff(y(x),x\$2)-(x-1)*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);

$$y(x) = (c_2 \ln(x) + c_1) \left(1 + \frac{1}{4}x^2 + \frac{1}{18}x^3 + \frac{5}{192}x^4 + \frac{23}{3600}x^5 + O(x^6) \right)$$
$$+ \left(x + \frac{11}{108}x^3 + \frac{11}{1152}x^4 + \frac{883}{216000}x^5 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 96

AsymptoticDSolveValue[$x*y''[x]-(x-1)*y'[x]-x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{23x^5}{3600} + \frac{5x^4}{192} + \frac{x^3}{18} + \frac{x^2}{4} + 1 \right)$$

+ $c_2 \left(\frac{883x^5}{216000} + \frac{11x^4}{1152} + \frac{11x^3}{108} + \left(\frac{23x^5}{3600} + \frac{5x^4}{192} + \frac{x^3}{18} + \frac{x^2}{4} + 1 \right) \log(x) + x \right)$

16.17problem Problem 18

Internal problem ID [2404]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(1+2x^2)y'' + 7y'x + 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 14

 $dsolve([(1+2*x^2)*diff(y(x),x$2)+7*x*diff(y(x),x)+2*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='$

$$y(x) = x - \frac{3}{2}x^3 + \frac{21}{8}x^5 + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

AsymptoticDSolveValue[{(1+2*x^2)*y''[x]+7*x*y'[x]+2*y[x]==0,{y[0]==0,y'[0]==1}},y [x],{x,0,5}]

$$y(x) \to \frac{21x^5}{8} - \frac{3x^3}{2} + x$$

16.18 problem Problem 19

Internal problem ID [2405]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$4y'' + y'x + 4y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 14

Time about 0.0 (Bee). Dear Bize. 11

$$y(x) = 1 - \frac{1}{2}x^2 + \frac{1}{16}x^4 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

AsymptoticDSolveValue[$\{4*y''[x]+x*y'[x]+4*y[x]==0,\{y[0]==1,y'[0]==0\}\},y[x],\{x,0,5\}$]

dsolve([4*diff(y(x),x\$2)+x*diff(y(x),x)+4*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=

$$y(x) \to \frac{x^4}{16} - \frac{x^2}{2} + 1$$

16.19 problem Problem 20

Internal problem ID [2406]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y'x^2 + yx - 2\cos(x) = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

Order:=6; dsolve(diff(y(x),x\$2)+2*x^2*diff(y(x),x)+x*y(x)=2*cos(x),y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{4}x^4\right)D(y)(0) + x^2 - \frac{x^4}{12} - \frac{x^5}{4} + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 45

AsymptoticDSolveValue[$y''[x]+2*x^2*y'[x]+x*y[x]==2*Cos[x],y[x],\{x,0,5\}$]

$$y(x)
ightarrow -rac{x^5}{4} -rac{x^4}{12} + c_2 \left(x -rac{x^4}{4}
ight) + c_1 \left(1 -rac{x^3}{6}
ight) + x^2$$

16.20 problem Problem 21

Internal problem ID [2407]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

Problem number: Problem 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y'x - 4y - 6e^x = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 42

Order:=6; dsolve(diff(y(x),x\$2)+x*diff(y(x),x)-4*y(x)=6*exp(x),y(x),type='series',x=0);

$$y(x) = \left(1 + 2x^2 + \frac{1}{3}x^4\right)y(0) + \left(x + \frac{1}{2}x^3 + \frac{1}{40}x^5\right)D(y)\left(0\right) + 3x^2 + x^3 + \frac{3x^4}{4} + \frac{x^5}{10} + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 62

AsymptoticDSolveValue[$y''[x]+x*y'[x]-4*y[x]==6*Exp[x],y[x],\{x,0,5\}$]

$$y(x)
ightarrow rac{x^5}{10} + rac{3x^4}{4} + x^3 + 3x^2 + c_2 \left(rac{x^5}{40} + rac{x^3}{2} + x
ight) + c_1 \left(rac{x^4}{3} + 2x^2 + 1
ight)$$

17 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

7.1 problem 1 \dots 3	56
7.2 problem $3 \ldots \ldots \ldots \ldots \ldots 3$	57
7.3 problem $4 \ldots \ldots \ldots \ldots$ 3	58
7.4 problem $5 \ldots \ldots \ldots \ldots 3$	60
7.5 problem 6	61
7.6 problem 7	63
7.7 problem 8	64
7.8 problem 9	65
7.9 problem 10	67
7.10 problem 11	68
7.11 problem 12	69
7.12problem 13	371
7.13problem 14	72
7.14problem 15	73
7.15 problem 16	74
7.16 problem 17	76
7.17 problem 18	77
7.18problem 19	78
7.19problem 20	79
7.20problem 21	80

17.1 problem 1

Internal problem ID [2408]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{y'}{1 - x} + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 44

Order:=6;

dsolve(diff(y(x),x\$2)+1/(1-x)*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{60}x^5\right)y(0) + \left(x - \frac{1}{2}x^2 - \frac{1}{12}x^4 + \frac{1}{24}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

 $\label{eq:asymptoticDSolveValue} A symptotic DSolveValue[y''[x]+1/(1-x)*y'[x]+x*y[x]==0,y[x],\{x,0,5\}]$

$$y(x)
ightarrow c_1 \left(rac{x^5}{60} + rac{x^4}{24} - rac{x^3}{6} + 1
ight) + c_2 \left(rac{x^5}{24} - rac{x^4}{12} - rac{x^2}{2} + x
ight)$$

17.2 problem 3

Internal problem ID [2409]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + \frac{xy'}{(1-x^{2})^{2}} + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 45

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x/(1-x^2)^2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{-i} \left(1 + \left(-\frac{1}{4} + \frac{i}{4} \right) x^2 + \left(-\frac{1}{80} + \frac{7i}{80} \right) x^4 + \mathcal{O}\left(x^6\right) \right)$$
$$+ c_2 x^i \left(1 + \left(-\frac{1}{4} - \frac{i}{4} \right) x^2 + \left(-\frac{1}{80} - \frac{7i}{80} \right) x^4 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 70

AsymptoticDSolveValue[$x^2*y''[x]+x/(1-x^2)^2*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to \left(\frac{1}{80} + \frac{3i}{80}\right) c_2 x^{-i} \left((2+i)x^4 + (4+8i)x^2 + (8-24i)\right)$$
$$-\left(\frac{3}{80} + \frac{i}{80}\right) c_1 x^i \left((1+2i)x^4 + (8+4i)x^2 - (24-8i)\right)$$

17.3 problem 4

Internal problem ID [2410]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(-2+x)^{2}y'' + (-2+x)e^{x}y' + \frac{4y}{x} = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 60

Order:=6; dsolve((x-2)^2*diff(y(x),x\$2)+(x-2)*exp(x)*diff(y(x),x)+4/x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 - \frac{1}{4} x - \frac{1}{24} x^2 - \frac{13}{576} x^3 - \frac{35}{2304} x^4 - \frac{1297}{138240} x^5 + O(x^6) \right)$$

$$+ c_2 \left(\ln(x) \left(-x + \frac{1}{4} x^2 + \frac{1}{24} x^3 + \frac{13}{576} x^4 + \frac{35}{2304} x^5 + O(x^6) \right)$$

$$+ \left(1 + \frac{1}{2} x - \frac{5}{4} x^2 - \frac{41}{144} x^3 - \frac{1097}{6912} x^4 - \frac{397}{4320} x^5 + O(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 87

AsymptoticDSolveValue[$(x-2)^2*y''[x]+(x-2)*Exp[x]*y'[x]+4/x*y[x]==0,y[x],{x,0,5}]$

$$y(x) \to c_1 \left(\frac{1}{576} x \left(13x^3 + 24x^2 + 144x - 576 \right) \log(x) + \frac{-1097x^4 - 1968x^3 - 8640x^2 + 3456x + 6912}{6912} \right) + c_2 \left(-\frac{35x^5}{2304} - \frac{13x^4}{576} - \frac{x^3}{24} - \frac{x^2}{4} + x \right)$$

17.4 problem 5

Internal problem ID [2411]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$y'' + \frac{2y'}{x(x-3)} - \frac{y}{x^3(x+3)} = 0$$

With the expansion point for the power series method at x=0.

X Solution by Maple

Order:=6; $dsolve(diff(y(x),x$2)+2/(x*(x-3))*diff(y(x),x)-1/(x^3*(x+3))*y(x)=0,y(x),type='series',x=0);$

No solution found

Solution by Mathematica

Time used: 0.227 (sec). Leaf size: 258

AsymptoticDSolveValue[$y''[x]+2/(x*(x-3))*y'[x]-1/(x^3*(x+3))*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_{1}e^{-\frac{2}{\sqrt{3}\sqrt{x}}} \left(\frac{10879996003390494539x^{9/2}}{6059672463464202240\sqrt{3}} + \frac{64713480610417x^{7/2}}{328758271672320\sqrt{3}} + \frac{287821451x^{5/2}}{3397386240\sqrt{3}} \right. \\ + \frac{19817x^{3/2}}{73728\sqrt{3}} - \frac{4894564486149401320457x^{5}}{1246561192484064460800} - \frac{116612812982297797x^{4}}{378729528966512640} - \frac{22160647459x^{3}}{587068342272} \\ + \frac{463507x^{2}}{42467328} + \frac{587x}{4608} + \frac{25\sqrt{x}}{16\sqrt{3}} \\ + 1 \right) x^{13/12} + c_{2}e^{\frac{2}{\sqrt{3}\sqrt{x}}} \left(-\frac{10879996003390494539x^{9/2}}{6059672463464202240\sqrt{3}} - \frac{64713480610417x^{7/2}}{328758271672320\sqrt{3}} - \frac{287821451x^{5/2}}{3397386240\sqrt{3}} - \frac{19817x^{3/2}}{73728\sqrt{x}} \right)$$

17.5 problem 6

Internal problem ID [2412]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(1-x)y' - 7y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 478

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*(1-x)*diff(y(x),x)-7*y(x)=0,y(x),type='series',x=0);$

$$y(x) = x^{-\sqrt{7}}c_1 \left(1 + \frac{\sqrt{7}}{-1 + 2\sqrt{7}}x + \frac{\sqrt{7}}{-4 + 8\sqrt{7}}x^2 + \frac{\sqrt{7}(\sqrt{7} - 2)}{372 - 96\sqrt{7}}x^3 + \frac{\sqrt{7}(\sqrt{7} - 3)}{2976 - 768\sqrt{7}}x^4 \right)$$

$$+ \frac{\sqrt{7}(\sqrt{7} - 3)(\sqrt{7} - 4)}{48960\sqrt{7} - 128160}x^5 + O(x^6) + c_2x^{\sqrt{7}}\left(1 + \frac{\sqrt{7}}{1 + 2\sqrt{7}}x + \frac{\sqrt{7}}{4 + 8\sqrt{7}}x^2 + \frac{\sqrt{7}(\sqrt{7} + 2)}{372 + 96\sqrt{7}}x^3 + \frac{(\sqrt{7} + 3)\sqrt{7}}{2976 + 768\sqrt{7}}x^4 + \frac{(\sqrt{7} + 4)(\sqrt{7} + 3)\sqrt{7}}{48960\sqrt{7} + 128160}x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 1066

AsymptoticDSolveValue[$x^2*y''[x]+x*(1-x)*y'[x]-7*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow \left(\frac{\sqrt{7}(1+\sqrt{7}) (2+\sqrt{7}) (3+\sqrt{7}) (4+\sqrt{7}) (2+\sqrt{7}) (3+\sqrt{7}) (4+\sqrt{7}) (2+\sqrt{7}) (3+\sqrt{7}) (4+\sqrt{7}) (2+\sqrt{7}) (3+\sqrt{7}) (2+\sqrt{7}) (3+\sqrt{7}) (2+\sqrt{7}) (3+\sqrt{7}) (3+\sqrt{7}) (3+\sqrt{7}) (3+\sqrt{7}) (3+\sqrt{7}) (2+\sqrt{7}) x^3 + \frac{\sqrt{7}(1+\sqrt{7}) (2+\sqrt{7}) x^3}{(-6+\sqrt{7}+\sqrt{7}(1+\sqrt{7})) (-5+\sqrt{7}+(1+\sqrt{7}) (2+\sqrt{7})) (-4+\sqrt{7}+(2+\sqrt{7}) (3+\sqrt{7}))} + \frac{\sqrt{7}(1+\sqrt{7}) x^2}{(-6+\sqrt{7}+\sqrt{7}(1+\sqrt{7})) (-5+\sqrt{7}+(1+\sqrt{7}) (2+\sqrt{7})) (2+\sqrt{7}) (3-\sqrt{7}) (4-\sqrt{7}+(2+\sqrt{7}) (3+\sqrt{7})) (-6+\sqrt{7}+\sqrt{7}(1+\sqrt{7})) (2-\sqrt{7}) (3-\sqrt{7}) (3-\sqrt{7}) (4-\sqrt{7}+(2-\sqrt{7}) (3-\sqrt{7})) (-6-\sqrt{7}-\sqrt{7}(1-\sqrt{7})) (-5-\sqrt{7}+(1-\sqrt{7}) (2-\sqrt{7})) (-4-\sqrt{7}+(2-\sqrt{7}) (3-\sqrt{7})) (-3-\sqrt{7}(1-\sqrt{7}) (2-\sqrt{7}) x^3) (-6-\sqrt{7}-\sqrt{7}(1-\sqrt{7})) (-5-\sqrt{7}+(1-\sqrt{7}) (2-\sqrt{7})) (-4-\sqrt{7}+(2-\sqrt{7}) (3-\sqrt{7})) (-6-\sqrt{7}-\sqrt{7}(1-\sqrt{7})) (-5-\sqrt{7}+(1-\sqrt{7}) (2-\sqrt{7})) (-4-\sqrt{7}+(2-\sqrt{7}) (3-\sqrt{7})) (-6-\sqrt{7}-\sqrt{7}(1-\sqrt{7})) (-5-\sqrt{7}+(1-\sqrt{7}) (2-\sqrt{7})) (-5-\sqrt{7}+(1-\sqrt{7}) (2-\sqrt{7}) (2-\sqrt{7})) (-5-\sqrt{7}+(1-\sqrt{7}) (2-\sqrt{7}) (2-\sqrt{7})) (-5-\sqrt{7}+(1-\sqrt{7}) (2-\sqrt{7}) ($$

17.6 problem 7

Internal problem ID [2413]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$4x^2y'' + y'e^xx - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 45

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)+x*exp(x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2 x^{\frac{5}{4}} \left(1 - \frac{1}{9} x - \frac{5}{468} x^2 - \frac{11}{23868} x^3 + \frac{79}{501228} x^4 + \frac{16043}{313267500} x^5 + \mathcal{O}\left(x^6\right)\right) + c_1 \left(1 - \frac{1}{4} x + \frac{5}{96} x^2 + \frac{17}{8064} x^3 - \frac{313}{1419264} x^3 + \frac{11}{23868} x^4 + \frac{11}{23868} x^2 + \frac{11}{23868} x^3 + \frac{1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 86

AsymptoticDSolveValue $[4*x^2*y''[x]+x*Exp[x]*y'[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 x \left(\frac{16043x^5}{313267500} + \frac{79x^4}{501228} - \frac{11x^3}{23868} - \frac{5x^2}{468} - \frac{x}{9} + 1 \right) + \frac{c_2 \left(-\frac{69703x^5}{709632000} - \frac{313x^4}{1419264} + \frac{17x^3}{8064} + \frac{5x^2}{96} - \frac{x}{4} + 1 \right)}{\sqrt[4]{x}}$$

17.7 problem 8

Internal problem ID [2414]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4xy'' - y'x + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 46

Order:=6; dsolve(4*x*diff(y(x),x\$2)-x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \ln(x) \left(-\frac{1}{2}x + \frac{1}{16}x^2 + O(x^6) \right) c_2 + c_1 x \left(1 - \frac{1}{8}x + O(x^6) \right)$$
$$+ \left(1 + \frac{1}{4}x - \frac{3}{16}x^2 + \frac{1}{384}x^3 + \frac{1}{18432}x^4 + \frac{1}{737280}x^5 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 52

 $A symptotic DSolve Value [4*x*y''[x]-x*y'[x]+2*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(x - \frac{x^2}{8}\right) + c_1 \left(\frac{x^4 + 48x^3 - 4608x^2 + 13824x + 18432}{18432} + \frac{1}{16}(x - 8)x\log(x)\right)$$

17.8 problem 9

Internal problem ID [2415]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - y'\cos(x)x + 5ye^{2x} = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 71

Order:=6; dsolve(x^2*diff(y(x),x\$2)-x*cos(x)*diff(y(x),x)+5*exp(2*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{1-2i} \left(1 + \left(-\frac{10}{17} - \frac{40i}{17} \right) x + \left(-\frac{365}{136} + \frac{13i}{17} \right) x^2 + \left(\frac{223}{1020} + \frac{1723i}{765} \right) x^3 \right.$$

$$\left. + \left(\frac{114911}{78336} + \frac{24835i}{78336} \right) x^4 + \left(\frac{4041077}{8029440} - \frac{1112267i}{1605888} \right) x^5 + \mathcal{O}\left(x^6 \right) \right)$$

$$\left. + c_2 x^{1+2i} \left(1 + \left(-\frac{10}{17} + \frac{40i}{17} \right) x + \left(-\frac{365}{136} - \frac{13i}{17} \right) x^2 + \left(\frac{223}{1020} - \frac{1723i}{765} \right) x^3 \right.$$

$$\left. + \left(\frac{114911}{78336} - \frac{24835i}{78336} \right) x^4 + \left(\frac{4041077}{8029440} + \frac{1112267i}{1605888} \right) x^5 + \mathcal{O}\left(x^6 \right) \right)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 94

$$y(x) \to \left(\frac{11}{391680} + \frac{7i}{391680}\right) c_1 \left((32064 - 31693i)x^4 - (30784 + 60608i)x^3 - (80352 - 23904i)x^2 + (23040 + 69120i)x + (25344 - 16128i) \right) x^{1+2i}$$

$$+ \left(\frac{7}{391680} + \frac{11i}{391680}\right) c_2 \left((31693 - 32064i)x^4 + (60608 + 30784i)x^3 - (23904 - 80352i)x^2 - (69120 + 23040i)x + (16128 - 25344i) \right) x^{1-2i}$$

17.9 problem 10

Internal problem ID [2416]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$4x^2y'' + 3y'x + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 44

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)+3*x*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{1}{4}} \left(1 - \frac{1}{5}x + \frac{1}{90}x^2 - \frac{1}{3510}x^3 + \frac{1}{238680}x^4 - \frac{1}{25061400}x^5 + O(x^6) \right)$$
$$+ c_2 \left(1 - \frac{1}{3}x + \frac{1}{42}x^2 - \frac{1}{1386}x^3 + \frac{1}{83160}x^4 - \frac{1}{7900200}x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 85

AsymptoticDSolveValue $[4*x^2*y''[x]+3*x*y'[x]+x*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \sqrt[4]{x} \left(-\frac{x^5}{25061400} + \frac{x^4}{238680} - \frac{x^3}{3510} + \frac{x^2}{90} - \frac{x}{5} + 1 \right)$$
$$+ c_2 \left(-\frac{x^5}{7900200} + \frac{x^4}{83160} - \frac{x^3}{1386} + \frac{x^2}{42} - \frac{x}{3} + 1 \right)$$

17.10 problem 11

Internal problem ID [2417]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$6x^{2}y'' + x(1+18x)y' + (1+12x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 47

Order:=6; dsolve(6*x^2*diff(y(x),x\$2)+x*(1+18*x)*diff(y(x),x)+(1+12*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{1}{3}} \left(1 - \frac{18}{5}x + \frac{324}{55}x^2 - \frac{5832}{935}x^3 + \frac{104976}{21505}x^4 - \frac{1889568}{623645}x^5 + O(x^6) \right)$$
$$+ c_2 \sqrt{x} \left(1 - 3x + \frac{9}{2}x^2 - \frac{9}{2}x^3 + \frac{27}{8}x^4 - \frac{81}{40}x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 88

$$y(x) \to c_1 \sqrt{x} \left(-\frac{81x^5}{40} + \frac{27x^4}{8} - \frac{9x^3}{2} + \frac{9x^2}{2} - 3x + 1 \right)$$

+ $c_2 \sqrt[3]{x} \left(-\frac{1889568x^5}{623645} + \frac{104976x^4}{21505} - \frac{5832x^3}{935} + \frac{324x^2}{55} - \frac{18x}{5} + 1 \right)$

17.11 problem 12

Internal problem ID [2418]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x - (2+x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 321

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-(2+x)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = x^{-\sqrt{2}}c_1 \left(1 - \frac{1}{-1 + 2\sqrt{2}}x + \frac{1}{20 - 12\sqrt{2}}x^2 - \frac{1}{228\sqrt{2} - 324}x^3 + \frac{1}{8832 - 6240\sqrt{2}}x^4 - \frac{1}{480} \frac{1}{(-1 + 2\sqrt{2})(\sqrt{2} - 1)(-3 + 2\sqrt{2})(\sqrt{2} - 2)(-5 + 2\sqrt{2})}x^5 + O(x^6) \right) + c_2 x^{\sqrt{2}} \left(1 + \frac{1}{1 + 2\sqrt{2}}x + \frac{1}{20 + 12\sqrt{2}}x^2 + \frac{1}{228\sqrt{2} + 324}x^3 + \frac{1}{8832 + 6240\sqrt{2}}x^4 + \frac{1}{244320\sqrt{2} + 345600}x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 843

AsymptoticDSolveValue[$x^2*y''[x]+x*y'[x]-(2+x)*y[x]==0,y[x],\{x,0,5\}$]

$$\begin{split} y(x) & \to \left(\frac{x^5}{\left(-1 + \sqrt{2} + \sqrt{2} \left(1 + \sqrt{2} \right) \right) \left(\sqrt{2} + \left(1 + \sqrt{2} \right) \left(2 + \sqrt{2} \right) \right) \left(1 + \sqrt{2} + \left(2 + \sqrt{2} \right) \left(3 + \sqrt{2} \right) \right) \left(2 + \sqrt{2} + \left(3 + \sqrt{2} \right) \right) } \right. \\ & + \frac{x^4}{\left(-1 + \sqrt{2} + \sqrt{2} \left(1 + \sqrt{2} \right) \right) \left(\sqrt{2} + \left(1 + \sqrt{2} \right) \left(2 + \sqrt{2} \right) \right) \left(1 + \sqrt{2} + \left(2 + \sqrt{2} \right) \left(3 + \sqrt{2} \right) \right) \left(2 + \sqrt{2} + \left(3 + \sqrt{2} \right) \right) } \right. \\ & + \frac{x^3}{\left(-1 + \sqrt{2} + \sqrt{2} \left(1 + \sqrt{2} \right) \right) \left(\sqrt{2} + \left(1 + \sqrt{2} \right) \left(2 + \sqrt{2} \right) \right) \left(1 + \sqrt{2} + \left(2 + \sqrt{2} \right) \left(3 + \sqrt{2} \right) \right) } \\ & + \frac{x^2}{\left(-1 + \sqrt{2} + \sqrt{2} \left(1 + \sqrt{2} \right) \right) \left(\sqrt{2} + \left(1 + \sqrt{2} \right) \left(2 + \sqrt{2} \right) \right) \left(1 + \sqrt{2} + \left(2 + \sqrt{2} \right) \left(3 + \sqrt{2} \right) \right) } \\ & + 1 \right) c_1 x^{\sqrt{2}} \\ & + \left(\frac{x^5}{\left(-1 - \sqrt{2} - \sqrt{2} \left(1 - \sqrt{2} \right) \right) \left(-\sqrt{2} + \left(1 - \sqrt{2} \right) \left(2 - \sqrt{2} \right) \right) \left(1 - \sqrt{2} + \left(2 - \sqrt{2} \right) \left(3 - \sqrt{2} \right) \right) \left(2 - \sqrt{2} + \left(1 - \sqrt{2} \right) \left(2 - \sqrt{2} \right) \right) \left(1 - \sqrt{2} + \left(2 - \sqrt{2} \right) \left(3 - \sqrt{2} \right) \right) \left(2 - \sqrt{2} + \left(1 - \sqrt{2} - \sqrt{2} \left(1 - \sqrt{2} \right) \right) \left(-\sqrt{2} + \left(1 - \sqrt{2} \right) \left(2 - \sqrt{2} \right) \right) \left(1 - \sqrt{2} + \left(2 - \sqrt{2} \right) \left(3 - \sqrt{2} \right) \right) } \\ & + \frac{x^2}{\left(-1 - \sqrt{2} - \sqrt{2} \left(1 - \sqrt{2} \right) \right) \left(-\sqrt{2} + \left(1 - \sqrt{2} \right) \left(2 - \sqrt{2} \right) \right) \left(1 - \sqrt{2} + \left(2 - \sqrt{2} \right) \left(3 - \sqrt{2} \right) \right) \left(2 - \sqrt{2} + \left(1 - \sqrt{2} \right) \left(2 - \sqrt{2} \right) \right) \left(1 - \sqrt{2} + \left(2 - \sqrt{2} \right) \left(3 - \sqrt{2} \right) \right) } \\ & + \frac{x^2}{\left(-1 - \sqrt{2} - \sqrt{2} \left(1 - \sqrt{2} \right) \left(-\sqrt{2} + \left(1 - \sqrt{2} \right) \left(2 - \sqrt{2} \right) \right) \left(1 - \sqrt{2} + \left(2 - \sqrt{2} \right) \left(3 - \sqrt{2} \right) \right) \left(2 - \sqrt{2} + \left(1 - \sqrt{2} \right) \left(2 - \sqrt{2} \right) \left(1 - \sqrt{2} - \sqrt{2} \left(1 - \sqrt{2} \right) \right) \left(-\sqrt{2} + \left(1 - \sqrt{2} \right) \left(2 - \sqrt{2} \right) \right) \left(1 - \sqrt{2} + \left(2 - \sqrt{2} \right) \left(3 - \sqrt{2} \right) \right) \right) } \\ & + \frac{x^2}{\left(-1 - \sqrt{2} - \sqrt{2} \left(1 - \sqrt{2} \right) \left(-\sqrt{2} + \left(1 - \sqrt{2} \right) \left(2 - \sqrt{2} \right) \right) \left(1 - \sqrt{2} + \left(2 - \sqrt{2} \right) \left(3 - \sqrt{2} \right) \right) \left(2 - \sqrt{2} + \left(1 - \sqrt{2} \right) \left(2 - \sqrt{2} \right) \left(2 - \sqrt{2} \right) \left(1 - \sqrt{2} - \sqrt{2} \left(1 - \sqrt{2} \right) \right) \right) \right) \right) \right) \right) \right)$$

17.12 problem 13

Internal problem ID [2419]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2xy'' + y' - 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

Order:=6; dsolve(2*x*diff(y(x),x\$2)+diff(y(x),x)-2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \sqrt{x} \left(1 + \frac{1}{5}x^2 + \frac{1}{90}x^4 + O\left(x^6\right) \right) + c_2 \left(1 + \frac{1}{3}x^2 + \frac{1}{42}x^4 + O\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 47

AsymptoticDSolveValue[$2*x*y''[x]+y'[x]-2*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \sqrt{x} \left(\frac{x^4}{90} + \frac{x^2}{5} + 1 \right) + c_2 \left(\frac{x^4}{42} + \frac{x^2}{3} + 1 \right)$$

17.13 problem 14

Internal problem ID [2420]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3x^2y'' - x(x+8)y' + 6y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

Order:=6; dsolve(3*x^2*diff(y(x),x\$2)-x*(x+8)*diff(y(x),x)+6*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{2}{3}} \left(1 - \frac{1}{6}x + \frac{5}{36}x^2 + \frac{5}{81}x^3 + \frac{11}{972}x^4 + \frac{77}{58320}x^5 + O\left(x^6\right) \right)$$
$$+ c_2 x^3 \left(1 + \frac{3}{10}x + \frac{3}{65}x^2 + \frac{1}{208}x^3 + \frac{3}{7904}x^4 + \frac{21}{869440}x^5 + O\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 88

AsymptoticDSolveValue $[3*x^2*y''[x]-x*(x+8)*y'[x]+6*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{21x^5}{869440} + \frac{3x^4}{7904} + \frac{x^3}{208} + \frac{3x^2}{65} + \frac{3x}{10} + 1 \right) x^3$$
$$+ c_2 \left(\frac{77x^5}{58320} + \frac{11x^4}{972} + \frac{5x^3}{81} + \frac{5x^2}{36} - \frac{x}{6} + 1 \right) x^{2/3}$$

17.14 problem 15

Internal problem ID [2421]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2x^{2}y'' - x(1+2x)y' + 2(4x-1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 41

Order:=6; dsolve(2*x^2*diff(y(x),x\$2)-x*(1+2*x)*diff(y(x),x)+2*(4*x-1)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2 x^{\frac{5}{2}} \left(1 - \frac{4}{7}x + \frac{4}{63}x^2 + \mathcal{O}(x^6)\right) + c_1 \left(1 + 3x + \frac{21}{2}x^2 - \frac{35}{2}x^3 + \frac{35}{8}x^4 - \frac{7}{40}x^5 + \mathcal{O}(x^6)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 65

AsymptoticDSolveValue[$2*x^2*y''[x]-x*(1+2*x)*y'[x]+2*(4*x-1)*y[x]==0,y[x],{x,0,5}$

$$y(x) \to c_1 \left(\frac{4x^2}{63} - \frac{4x}{7} + 1\right) x^2 + \frac{c_2 \left(-\frac{7x^5}{40} + \frac{35x^4}{8} - \frac{35x^3}{2} + \frac{21x^2}{2} + 3x + 1\right)}{\sqrt{x}}$$

17.15 problem 16

Internal problem ID [2422]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(1-x)y' - (x+5)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 503

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*(1-x)*diff(y(x),x)-(5+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{-\sqrt{5}} \left(1 + \frac{\sqrt{5} - 1}{-1 + 2\sqrt{5}} x + \frac{-2 + \sqrt{5}}{8\sqrt{5} - 4} x^2 + \frac{(-2 + \sqrt{5})(\sqrt{5} - 3)}{276 - 96\sqrt{5}} x^3 \right)$$

$$+ \frac{(\sqrt{5} - 3)(\sqrt{5} - 4)}{2208 - 768\sqrt{5}} x^4 + \frac{(-5 + \sqrt{5})(\sqrt{5} - 3)(\sqrt{5} - 4)}{41280\sqrt{5} - 93600} x^5 + O(x^6) \right)$$

$$+ c_2 x^{\sqrt{5}} \left(1 + \frac{\sqrt{5} + 1}{1 + 2\sqrt{5}} x + \frac{\sqrt{5} + 2}{8\sqrt{5} + 4} x^2 + \frac{(\sqrt{5} + 3)(\sqrt{5} + 2)}{276 + 96\sqrt{5}} x^3 \right)$$

$$+ \frac{(\sqrt{5} + 4)(\sqrt{5} + 3)}{2208 + 768\sqrt{5}} x^4 + \frac{(5 + \sqrt{5})(\sqrt{5} + 4)(\sqrt{5} + 3)}{41280\sqrt{5} + 93600} x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 1093

AsymptoticDSolveValue[$x^2*y''[x]+x*(1-x)*y'[x]-(5+x)*y[x]==0,y[x],{x,0,5}$]

$$y(x) \rightarrow \left(\frac{(-5-\sqrt{5})\left(-4-\sqrt{5}\right)\left(-3-\sqrt{5}\right)\left(-2-\sqrt{5}\right)\left(1+\sqrt{5}\right)}{(-4+\sqrt{5}+\sqrt{5}\left(1+\sqrt{5}\right))\left(-3+\sqrt{5}+\left(1+\sqrt{5}\right)\left(2+\sqrt{5}\right)\right)\left(-2+\sqrt{5}+\left(2+\sqrt{5}\right)\left(3+\sqrt{5}\right)\right)\left(-1+\sqrt{5}\right)} - \frac{(-4-\sqrt{5})\left(-3-\sqrt{5}\right)\left(-2-\sqrt{5}\right)\left(1+\sqrt{5}\right)x^4}{(-4+\sqrt{5}+\sqrt{5}\left(1+\sqrt{5}\right))\left(-3+\sqrt{5}+\left(1+\sqrt{5}\right)\left(2+\sqrt{5}\right)\right)\left(-2+\sqrt{5}+\left(2+\sqrt{5}\right)\left(3+\sqrt{5}\right)\right)\left(-1+\sqrt{5}\right)x^4} + \frac{(-3-\sqrt{5})\left(-2-\sqrt{5}\right)\left(1+\sqrt{5}\right)x^3}{(-4+\sqrt{5}+\sqrt{5}\left(1+\sqrt{5}\right))\left(-3+\sqrt{5}+\left(1+\sqrt{5}\right)\left(2+\sqrt{5}\right)\right)\left(-2+\sqrt{5}+\left(2+\sqrt{5}\right)\left(3+\sqrt{5}\right)\right)} - \frac{(-2-\sqrt{5})\left(1+\sqrt{5}\right)x^2}{(-4+\sqrt{5}+\sqrt{5}\left(1+\sqrt{5}\right))\left(-3+\sqrt{5}\right)\left(-3+\sqrt{5}\right)\left(-3+\sqrt{5}\right)} + \frac{(1+\sqrt{5})x}{-4+\sqrt{5}+\sqrt{5}\left(1+\sqrt{5}\right)} + 1\right)c_1x^{\sqrt{5}} + \left(\frac{(1-\sqrt{5})\left(-5+\sqrt{5}\right)\left(-4+\sqrt{5}\right)\left(-3+\sqrt{5}\right)\left(-2+\sqrt{5}\right)}{(-4-\sqrt{5}-\sqrt{5}\left(1-\sqrt{5}\right))\left(-3-\sqrt{5}+\left(1-\sqrt{5}\right)\left(2-\sqrt{5}\right)\right)\left(-2-\sqrt{5}+\left(2-\sqrt{5}\right)\left(3-\sqrt{5}\right)\right)\left(-1-\sqrt{5}\right)\left(-4+\sqrt{5}\right)\left(-3+\sqrt{5}\right)\left(-2+\sqrt{5}\right)x^4} - \frac{(1-\sqrt{5})\left(-3+\sqrt{5}\right)\left(-2+\sqrt{5}\right)x^3}{(-4-\sqrt{5}-\sqrt{5}\left(1-\sqrt{5}\right))\left(-3-\sqrt{5}+\left(1-\sqrt{5}\right)\left(2-\sqrt{5}\right)\right)\left(-2-\sqrt{5}+\left(2-\sqrt{5}\right)\left(3-\sqrt{5}\right)\right)} - \frac{(1-\sqrt{5})\left(-2+\sqrt{5}\right)x^2}{(-4-\sqrt{5}-\sqrt{5}\left(1-\sqrt{5}\right))\left(-3-\sqrt{5}+\left(1-\sqrt{5}\right)\left(2-\sqrt{5}\right)\right)\left(-2-\sqrt{5}+\left(2-\sqrt{5}\right)\left(3-\sqrt{5}\right)\right)} - \frac{(1-\sqrt{5})\left(-2+\sqrt{5}\right)x^2}{(-4-\sqrt{5}-\sqrt{5}\left(1-\sqrt{5}\right))\left(-3-\sqrt{5}+\left(1-\sqrt{5}\right)\left(2-\sqrt{5}\right)\right)} + \frac{(1-\sqrt{5})x}{-4-\sqrt{5}-\sqrt{5}\left(1-\sqrt{5}\right)} + 1\right)c_2x^{-\sqrt{5}} + 1$$

17.16 problem 17

Internal problem ID [2423]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$3x^{2}y'' + x(7+3x)y' + (6x+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

Order:=6; dsolve(3*x^2*diff(y(x),x\$2)+x*(7+3*x)*diff(y(x),x)+(1+6*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 \left(1 - 3x + \frac{9}{4}x^2 - \frac{27}{28}x^3 + \frac{81}{280}x^4 - \frac{243}{3640}x^5 + \mathcal{O}\left(x^6\right)\right)x^{\frac{1}{3}} + c_2 \left(1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{24}x^4 - \frac{1}{120}x^5 + \mathcal{O}\left(x^6\right)\right)}{x^{\frac{4}{3}}}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 84

$$y(x) \to \frac{c_1 \left(-\frac{x^5}{120} + \frac{x^4}{24} - \frac{x^3}{6} + \frac{x^2}{2} - x + 1\right)}{\sqrt[3]{x}} + \frac{c_2 \left(-\frac{243x^5}{3640} + \frac{81x^4}{280} - \frac{27x^3}{28} + \frac{9x^2}{4} - 3x + 1\right)}{x}$$

17.17 problem 18

Internal problem ID [2424]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + (1-x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(1-x)*y(x)=0,y(x),type='series',x=0);$

$$\begin{split} y(x) &= c_1 x^{-i} \left(1 + \left(\frac{1}{5} + \frac{2i}{5} \right) x + \left(-\frac{1}{40} + \frac{3i}{40} \right) x^2 + \left(-\frac{3}{520} + \frac{7i}{1560} \right) x^3 + \left(-\frac{1}{2496} + \frac{i}{12480} \right) x^4 \right. \\ &\quad + \left(-\frac{9}{603200} - \frac{i}{361920} \right) x^5 + \mathcal{O}\left(x^6 \right) \right) + c_2 x^i \left(1 + \left(\frac{1}{5} - \frac{2i}{5} \right) x + \left(-\frac{1}{40} - \frac{3i}{40} \right) x^2 \right. \\ &\quad + \left(-\frac{3}{520} - \frac{7i}{1560} \right) x^3 + \left(-\frac{1}{2496} - \frac{i}{12480} \right) x^4 + \left(-\frac{9}{603200} + \frac{i}{361920} \right) x^5 + \mathcal{O}\left(x^6 \right) \right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 90

AsymptoticDSolveValue[$x^2*y''[x]+x*y'[x]+(1-x)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to \left(\frac{1}{12480} + \frac{i}{2496}\right) c_2 x^{-i} \left(ix^4 + (8+16i)x^3 + (168+96i)x^2 + (1056-288i)x + (480-2400i)\right) - \left(\frac{1}{2496} + \frac{i}{12480}\right) c_1 x^i \left(x^4 + (16+8i)x^3 + (96+168i)x^2 - (288-1056i)x - (2400-480i)\right)$$

17.18 problem 19

Internal problem ID [2425]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3x^2y'' + x(3x^2 + 1)y' - 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

Order:=6; dsolve(3*x^2*diff(y(x),x\$2)+x*(1+3*x^2)*diff(y(x),x)-2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{2}{3}} \left(1 + \frac{2}{5}x - \frac{3}{40}x^2 - \frac{43}{660}x^3 + \frac{31}{3696}x^4 + \frac{2259}{261800}x^5 + \mathcal{O}\left(x^6\right) \right) + c_2 \left(1 + 2x + \frac{1}{2}x^2 - \frac{5}{21}x^3 - \frac{73}{840}x^4 + \frac{827}{27300}x^5 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 83

AsymptoticDSolveValue[$3*x^2*y''[x]+x*(1+3*x^2)*y'[x]-2*x*y[x]==0,y[x],{x,0,5}$]

$$y(x) \to c_2 \left(\frac{827x^5}{27300} - \frac{73x^4}{840} - \frac{5x^3}{21} + \frac{x^2}{2} + 2x + 1 \right)$$
$$+ c_1 x^{2/3} \left(\frac{2259x^5}{261800} + \frac{31x^4}{3696} - \frac{43x^3}{660} - \frac{3x^2}{40} + \frac{2x}{5} + 1 \right)$$

17.19 problem 20

Internal problem ID [2426]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^{2}y'' - 4y'x^{2} + (1+2x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 49

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)-4*x^2*diff(y(x),x)+(1+2*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(\left(x + \frac{1}{4}x^2 + \frac{1}{18}x^3 + \frac{1}{96}x^4 + \frac{1}{600}x^5 + O\left(x^6\right) \right) c_2 + \left(c_2 \ln\left(x\right) + c_1\right) \left(1 + O\left(x^6\right) \right) \right) \sqrt{x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 60

AsymptoticDSolveValue $[4*x^2*y''[x]-4*x^2*y'[x]+(1+2*x)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\sqrt{x} \left(\frac{x^5}{600} + \frac{x^4}{96} + \frac{x^3}{18} + \frac{x^2}{4} + x \right) + \sqrt{x} \log(x) \right) + c_1 \sqrt{x}$$

17.20 problem 21

Internal problem ID [2427]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$x^{2}y'' + x(-2x + 3)y' + (1 - 2x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*(3-2*x)*diff(y(x),x)+(1-2*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{(c_2 \ln(x) + c_1)(1 + O(x^6)) + (2x + x^2 + \frac{4}{9}x^3 + \frac{1}{6}x^4 + \frac{4}{75}x^5 + O(x^6))c_2}{x}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 52

AsymptoticDSolveValue $[x^2*y''[x]+x*(3-2*x)*y'[x]+(1-2*x)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x)
ightarrow c_2 \Biggl(rac{rac{4x^5}{75} + rac{x^4}{6} + rac{4x^3}{9} + x^2 + 2x}{x} + rac{\log(x)}{x}\Biggr) + rac{c_1}{x}$$

18 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

18.1 problem Example 11.5.2 page 763	382
18.2 problem Example 11.5.4 page 765	383
18.3 problem Example 11.5.5 page 768	384
18.4 problem (a)	385
18.5 problem (b)	386
18.6 problem (c)	
18.7 problem (d)	388
18.8 problem (e)	389
18.9 problem 1	390
18.10 problem 2	391
18.11 problem 3	
18.12 problem 4	393
18.13 problem 5	394
18.14problem 6	
18.15 problem 7	396
18.16 problem 8	397
18.17 problem 11	398
18.18 problem 12	399
18.19 problem 13	400
18.20 problem 14	401
18.21 problem 15	402
18.22 problem 16	403
18.23 problem 17	404
18.24problem 18	405
18.25 problem 19	406
18.26 problem 20	407
18.27 problem 21	408
18.28 problem 22	409
18.29 problem 23	410
18.30 problem 24	411
18.31 problem 25	412
18.32 problem 26	413
18.33 problem 27	414
18.34 problem 28	415
18.35 problem 29	416

18.1 problem Example 11.5.2 page 763

Internal problem ID [2428]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: Example 11.5.2 page 763.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - x(x+3)y' + (-x+4)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

Order:=6; dsolve(x^2*diff(y(x),x\$2)-x*(3+x)*diff(y(x),x)+(4-x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = x^{2} \left((c_{2} \ln(x) + c_{1}) \left(1 + 3x + 3x^{2} + \frac{5}{3}x^{3} + \frac{5}{8}x^{4} + \frac{7}{40}x^{5} + O(x^{6}) \right) + \left((-5)x - \frac{29}{4}x^{2} - \frac{173}{36}x^{3} - \frac{193}{96}x^{4} - \frac{1459}{2400}x^{5} + O(x^{6}) \right) c_{2} \right)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 118

AsymptoticDSolveValue[$x^2*y''[x]-x*(3+x)*y'[x]+(4-x)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{7x^5}{40} + \frac{5x^4}{8} + \frac{5x^3}{3} + 3x^2 + 3x + 1 \right) x^2$$
$$+ c_2 \left(\left(-\frac{1459x^5}{2400} - \frac{193x^4}{96} - \frac{173x^3}{36} - \frac{29x^2}{4} - 5x \right) x^2 + \left(\frac{7x^5}{40} + \frac{5x^4}{8} + \frac{5x^3}{3} + 3x^2 + 3x + 1 \right) x^2 \log(x) \right)$$

18.2 problem Example 11.5.4 page 765

Internal problem ID [2429]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: Example 11.5.4 page 765.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(-x+3)y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 53

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*(3-x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{\left(c_2 \ln (x) + c_1\right) \left(1 - x + O\left(x^6\right)\right) + \left(3x - \frac{1}{4}x^2 - \frac{1}{36}x^3 - \frac{1}{288}x^4 - \frac{1}{2400}x^5 + O\left(x^6\right)\right) c_2}{x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 66

AsymptoticDSolveValue $[x^2*y''[x]+x*(3-x)*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\frac{-\frac{x^5}{2400} - \frac{x^4}{288} - \frac{x^3}{36} - \frac{x^2}{4} + 3x}{x} + \frac{(1-x)\log(x)}{x} \right) + \frac{c_1(1-x)}{x}$$

18.3 problem Example 11.5.5 page 768

Internal problem ID [2430]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: Example 11.5.5 page 768.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x - (x+4)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 61

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-(4+x)*y(x)=0,y(x),type='series',x=0);$

$$=\frac{c_{1}x^{4}\left(1+\frac{1}{5}x+\frac{1}{60}x^{2}+\frac{1}{1260}x^{3}+\frac{1}{40320}x^{4}+\frac{1}{1814400}x^{5}+\mathcal{O}\left(x^{6}\right)\right)+c_{2}\left(\ln\left(x\right)\left(x^{4}+\frac{1}{5}x^{5}+\mathcal{O}\left(x^{6}\right)\right)+\left(-144+\frac{1}{2}x^{5}+\frac{1}{2}x^{5}+\mathcal{O}\left(x^{6}\right)\right)}{x^{2}}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 77

 $A symptotic DSolve Value [x^2*y''[x]+x*y'[x]-(4+x)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{x^4 - 16x^3 + 48x^2 - 192x + 576}{576x^2} - \frac{1}{144}x^2 \log(x) \right)$$
$$+ c_2 \left(\frac{x^6}{40320} + \frac{x^5}{1260} + \frac{x^4}{60} + \frac{x^3}{5} + x^2 \right)$$

18.4 problem (a)

Internal problem ID [2431]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$x^{2}y'' - (-x^{2} + x) y' + (x^{3} + 1) y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 63

Order:=6; dsolve(x^2*diff(y(x),x\$2)-(x-x^2)*diff(y(x),x)+(1+x^3)*y(x)=0,y(x),type='series',x=0);

$$y(x) = x \left((c_2 \ln(x) + c_1) \left(1 - x + \frac{1}{2}x^2 - \frac{5}{18}x^3 + \frac{19}{144}x^4 - \frac{167}{3600}x^5 + O(x^6) \right) + \left(x - \frac{3}{4}x^2 + \frac{41}{108}x^3 - \frac{89}{432}x^4 + \frac{2281}{27000}x^5 + O(x^6) \right) c_2 \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 114

AsymptoticDSolveValue $[x^2*y''[x]-(x-x^2)*y'[x]+(1+x^3)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 x \left(-\frac{167x^5}{3600} + \frac{19x^4}{144} - \frac{5x^3}{18} + \frac{x^2}{2} - x + 1 \right) + c_2 \left(x \left(\frac{2281x^5}{27000} - \frac{89x^4}{432} + \frac{41x^3}{108} - \frac{3x^2}{4} + x \right) + x \left(-\frac{167x^5}{3600} + \frac{19x^4}{144} - \frac{5x^3}{18} + \frac{x^2}{2} - x + 1 \right) \log(x) \right)$$

18.5 problem (b)

Internal problem ID [2432]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - \left(-1 + 2\sqrt{5}\right)xy' + \left(\frac{19}{4} - 3x^{2}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 325

Order:=6;

 $dsolve(x^2*diff(y(x),x$2)-(2*sqrt(5)-1)*x*diff(y(x),x)+(19/4-3*x^2)*y(x)=0,y(x),type='series'$

$$y(x) = \left(\left(1 + \frac{3}{2}x^2 + \frac{3}{8}x^4 + O\left(x^6\right) \right) c_1 + xc_2 \left(\ln\left(x\right) \left(1 + \frac{1}{2}x^2 + \frac{3}{40}x^4 + O\left(x^6\right) \right) + \left(-\frac{5}{12}x^2 - \frac{77}{800}x^4 + O\left(x^6\right) \right) \right) \right) x^{-\frac{1}{2} + \sqrt{5}}$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 94

AsymptoticDSolveValue[$x^2*y''[x]-(2*Sqrt[5]-1)*x*y'[x]+(19/4-3*x^2)*y[x]==0,y[x],{x,0,5}$

$$y(x) \to c_1 \left(\frac{3}{8} x^{\frac{7}{2} + \sqrt{5}} + \frac{3}{2} x^{\frac{3}{2} + \sqrt{5}} + x^{\sqrt{5} - \frac{1}{2}} \right) + c_2 \left(\frac{3}{40} x^{\frac{9}{2} + \sqrt{5}} + \frac{1}{2} x^{\frac{5}{2} + \sqrt{5}} + x^{\frac{1}{2} + \sqrt{5}} \right)$$

18.6 problem (c)

Internal problem ID [2433]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: (c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + (-2x^{5} + 9x)y' + (10x^{4} + 5x^{2} + 25)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 55

Order:=7; dsolve(x^2*diff(y(x),x\$2)+(9*x-2*x^5)*diff(y(x),x)+(25+5*x^2+10*x^4)*y(x)=0,y(x),type='series

$$y(x) = c_1 x^{-4-3i} \left(1 + \left(-\frac{1}{8} - \frac{3i}{8} \right) x^2 + \left(-\frac{179}{832} - \frac{483i}{832} \right) x^4 + \left(-\frac{433}{3744} + \frac{3943i}{29952} \right) x^6 + \mathcal{O}\left(x^7 \right) \right)$$

$$+ c_2 x^{-4+3i} \left(1 + \left(-\frac{1}{8} + \frac{3i}{8} \right) x^2 + \left(-\frac{179}{832} + \frac{483i}{832} \right) x^4 + \left(-\frac{433}{3744} - \frac{3943i}{29952} \right) x^6 + \mathcal{O}\left(x^7 \right) \right)$$

$$+ \mathcal{O}\left(x^7 \right)$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 70

AsymptoticDSolveValue[$x^2*y''[x]+(9*x-2*x^5)*y'[x]+(25+5*x^2+10*x^4)*y[x]==0,y[x]$, {x,0,6}]

$$y(x) \to \left(\frac{1}{832} + \frac{5i}{832}\right) c_1 x^{-4+3i} \left((86 + 53i)x^4 + (56 + 32i)x^2 + (32 - 160i) \right)$$
$$-\left(\frac{5}{832} + \frac{i}{832}\right) c_2 x^{-4-3i} \left((53 + 86i)x^4 + (32 + 56i)x^2 - (160 - 32i) \right)$$

18.7 problem (d)

Internal problem ID [2434]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: (d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + \left(4x + \frac{1}{2}x^{2} - \frac{1}{3}x^{3}\right)y' - \frac{7y}{4} = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 63

Order:=6; dsolve(x^2*diff(y(x),x\$2)+(4*x+1/2*x^2-1/3*x^3)*diff(y(x),x)-7/4*y(x)=0,y(x),type='series',x=

$$y(x) = \frac{c_1 x^4 \left(1 - \frac{1}{20}x + \frac{49}{2880}x^2 - \frac{533}{241920}x^3 + \frac{277}{491520}x^4 - \frac{203759}{2388787200}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\left(\frac{8491}{768}x^4 - \frac{8491}{15360}x^5 + \mathcal{O}\left(x^6\right)\right)\ln \frac{x^7}{x^7}\right)}{x^7}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 93

AsymptoticDSolveValue[$x^2*y''[x]+(4*x+1/2*x^2-1/3*x^3)*y'[x]-7/4*y[x]==0,y[x],{x,0,5}$

$$y(x) \rightarrow c_2 \left(\frac{277x^{9/2}}{491520} - \frac{533x^{7/2}}{241920} + \frac{49x^{5/2}}{2880} - \frac{x^{3/2}}{20} + \sqrt{x} \right) + c_1 \left(\frac{65067x^4 - 124096x^3 + 209664x^2 - 258048x + 442368}{442368x^{7/2}} - \frac{8491\sqrt{x}\log(x)}{110592} \right)$$

18.8 problem (e)

Internal problem ID [2435]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: (e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, '

$$x^2y'' + y'x^2 + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 58

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x^2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x \left(1 - x + \frac{1}{2} x^2 - \frac{1}{6} x^3 + \frac{1}{24} x^4 - \frac{1}{120} x^5 + O(x^6) \right)$$
$$+ c_2 \left(\ln(x) \left(-x + x^2 - \frac{1}{2} x^3 + \frac{1}{6} x^4 - \frac{1}{24} x^5 + O(x^6) \right) + \left(1 - x + \frac{1}{4} x^3 - \frac{5}{36} x^4 + \frac{13}{288} x^5 + O(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 80

 $AsymptoticDSolveValue[x^2*y''[x]+x^2*y'[x]+x*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{1}{6} x \left(x^3 - 3x^2 + 6x - 6 \right) \log(x) + \frac{1}{36} \left(-11x^4 + 27x^3 - 36x^2 + 36 \right) \right)$$
$$+ c_2 \left(\frac{x^5}{24} - \frac{x^4}{6} + \frac{x^3}{2} - x^2 + x \right)$$

18.9 problem 1

Internal problem ID [2436]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(x-3)y' + (-x+4)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 69

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*(x-3)*diff(y(x),x)+(4-x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = x^{2} \left((c_{2} \ln(x) + c_{1}) \left(1 - x + \frac{1}{2}x^{2} - \frac{1}{6}x^{3} + \frac{1}{24}x^{4} - \frac{1}{120}x^{5} + O(x^{6}) \right) + \left(x - \frac{3}{4}x^{2} + \frac{11}{36}x^{3} - \frac{25}{288}x^{4} + \frac{137}{7200}x^{5} + O(x^{6}) \right) c_{2} \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 120

$$y(x) \to c_1 \left(-\frac{x^5}{120} + \frac{x^4}{24} - \frac{x^3}{6} + \frac{x^2}{2} - x + 1 \right) x^2 + c_2 \left(\left(\frac{137x^5}{7200} - \frac{25x^4}{288} + \frac{11x^3}{36} - \frac{3x^2}{4} + x \right) x^2 + \left(-\frac{x^5}{120} + \frac{x^4}{24} - \frac{x^3}{6} + \frac{x^2}{2} - x + 1 \right) x^2 \log(x) \right)$$

18.10 problem 2

Internal problem ID [2437]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^2y'' + 2y'x^2 + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 67

Order:=6; $dsolve(4*x^2*diff(y(x),x$2)+2*x^2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left((c_2 \ln(x) + c_1) \left(1 - \frac{1}{4}x + \frac{3}{64}x^2 - \frac{5}{768}x^3 + \frac{35}{49152}x^4 - \frac{21}{327680}x^5 + O(x^6) \right) + \left(-\frac{1}{64}x^2 + \frac{1}{256}x^3 - \frac{19}{32768}x^4 + \frac{25}{393216}x^5 + O(x^6) \right) c_2 \right) \sqrt{x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 129

AsymptoticDSolveValue $[4*x^2*y''[x]+2*x^2*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \sqrt{x} \left(-\frac{21x^5}{327680} + \frac{35x^4}{49152} - \frac{5x^3}{768} + \frac{3x^2}{64} - \frac{x}{4} + 1 \right)$$

$$+ c_2 \left(\sqrt{x} \left(\frac{25x^5}{393216} - \frac{19x^4}{32768} + \frac{x^3}{256} - \frac{x^2}{64} \right) \right)$$

$$+ \sqrt{x} \left(-\frac{21x^5}{327680} + \frac{35x^4}{49152} - \frac{5x^3}{768} + \frac{3x^2}{64} - \frac{x}{4} + 1 \right) \log(x) \right)$$

18.11 problem 3

Internal problem ID [2438]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'\cos(x)x - 2e^{x}y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 389

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*cos(x)*diff(y(x),x)-2*exp(x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{-\sqrt{2}} \left(1 - 2 \frac{1}{-1 + 2\sqrt{2}} x + \frac{-5\sqrt{2} + 14}{40 - 24\sqrt{2}} x^2 + \frac{-122 + 75\sqrt{2}}{684\sqrt{2} - 972} x^3 + \frac{-1626\sqrt{2} + 2375}{52992 - 37440\sqrt{2}} x^4 + \frac{1}{7200} \frac{-75763 + 52810\sqrt{2}}{\left(-1 + 2\sqrt{2}\right) \left(\sqrt{2} - 1\right) \left(-3 + 2\sqrt{2}\right) \left(-2 + \sqrt{2}\right) \left(-5 + 2\sqrt{2}\right)} x^5 + \mathcal{O}\left(x^6\right) \right) + c_2 x^{\sqrt{2}} \left(1 + 2 \frac{1}{1 + 2\sqrt{2}} x + \frac{5\sqrt{2} + 14}{40 + 24\sqrt{2}} x^2 + \frac{122 + 75\sqrt{2}}{684\sqrt{2} + 972} x^3 + \frac{1626\sqrt{2} + 2375}{52992 + 37440\sqrt{2}} x^4 + \frac{1}{7200} \frac{75763 + 52810\sqrt{2}}{\left(1 + 2\sqrt{2}\right) \left(1 + \sqrt{2}\right) \left(3 + 2\sqrt{2}\right) \left(2 + \sqrt{2}\right) \left(5 + 2\sqrt{2}\right)} x^5 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 2210

 $A symptotic DSolve Value [x^2*y''[x]+x*Cos[x]*y'[x]-2*Exp[x]*y[x]==0,y[x],\{x,0,5\}]$

Too large to display

18.12 problem 4

Internal problem ID [2439]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x^{2} - (2+x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x^2*diff(y(x),x)-(2+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^2 \left(1 - \frac{1}{4}x + \frac{1}{20}x^2 - \frac{1}{120}x^3 + \frac{1}{840}x^4 - \frac{1}{6720}x^5 + O(x^6) \right) + \frac{c_2 \left(12 - 12x + 6x^2 - 2x^3 + \frac{1}{2}x^4 - \frac{1}{10}x^5 + O(x^6) \right)}{x}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 66

AsymptoticDSolveValue[$x^2*y''[x]+x^2*y'[x]-(2+x)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^3}{24} - \frac{x^2}{6} + \frac{x}{2} + \frac{1}{x} - 1\right) + c_2 \left(\frac{x^6}{840} - \frac{x^5}{120} + \frac{x^4}{20} - \frac{x^3}{4} + x^2\right)$$

18.13 problem 5

Internal problem ID [2440]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + 2y'x^{2} + \left(x - \frac{3}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 45

Order:=6; $dsolve(x^2*diff(y(x),x$2)+2*x^2*diff(y(x),x)+(x-3/4)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{4}{3}x + x^2 - \frac{8}{15}x^3 + \frac{2}{9}x^4 - \frac{8}{105}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(-2 + 4x^2 - \frac{16}{3}x^3 + 4x^4 - \frac{32}{15}x^5 + \mathcal{O}\left(x^6\right)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 77

$$y(x) \to c_1 \left(-2x^{7/2} + \frac{8x^{5/2}}{3} - 2x^{3/2} + \frac{1}{\sqrt{x}} \right) + c_2 \left(\frac{2x^{11/2}}{9} - \frac{8x^{9/2}}{15} + x^{7/2} - \frac{4x^{5/2}}{3} + x^{3/2} \right)$$

18.14 problem 6

Internal problem ID [2441]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + (2x - 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 63

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(2*x-1)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{2}{3}x + \frac{1}{6}x^2 - \frac{1}{45}x^3 + \frac{1}{540}x^4 - \frac{1}{9450}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right)\right) + c_4 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right) + c_4 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right)\right) + c_4 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right)\right) + c_4 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right)\right) + c_4 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right)\right) + c_4 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right)\right) + c_4 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right)\right) + c_4 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right)\right) + c_4 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right)\right) + c_4 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right)\right) + c_4 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right)\right) + c_4 \left(\ln\left(x\right)\left(4x^2 - \frac{8}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{45}x^5 + \mathcal{O}\left(x^6\right)\right)\right)$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 83

$$y(x) \to c_1 \left(\frac{31x^4 - 88x^3 + 36x^2 + 72x + 36}{36x} - \frac{1}{3}x(x^2 - 4x + 6)\log(x) \right) + c_2 \left(\frac{x^5}{540} - \frac{x^4}{45} + \frac{x^3}{6} - \frac{2x^2}{3} + x \right)$$

18.15 problem 7

Internal problem ID [2442]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x^{3}y' - (2+x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 65

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x^3*diff(y(x),x)-(2+x)*y(x)=0,y(x),type='series',x=0); \\$

$$y(x) = \frac{c_1 x^3 \left(1 + \frac{1}{4}x - \frac{7}{40}x^2 - \frac{37}{720}x^3 + \frac{467}{20160}x^4 + \frac{5647}{806400}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(-x^3 - \frac{1}{4}x^4 + \frac{7}{40}x^5 + \mathcal{O}\left(x^6\right)\right) + \left(x^6 - \frac{1}{4}x^4 + \frac{7$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 82

 $\label{eq:asymptoticDSolveValue} A symptoticDSolveValue [x^2*y''[x]+x^3*y'[x]-(2+x)*y[x] ==0, y[x], \{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{91x^4 + 160x^3 - 144x^2 - 288x + 576}{576x} - \frac{1}{48}x^2(x+4)\log(x) \right)$$
$$+ c_2 \left(\frac{467x^6}{20160} - \frac{37x^5}{720} - \frac{7x^4}{40} + \frac{x^3}{4} + x^2 \right)$$

18.16 problem 8

Internal problem ID [2443]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$x^{2}(x^{2}+1)y'' + 7y'e^{x}x + 9(1+\tan(x))y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 75

Order:=7; $dsolve(x^2*(x^2+1)*diff(y(x),x$2)+7*x*exp(x)*diff(y(x),x)+9*(1+tan(x))*y(x)=0,y(x),type='serial content for the co$

$$y(x) = \frac{\left(c_2 \ln \left(x\right) + c_1\right) \left(1 + 12x + \frac{117}{8}x^2 - \frac{67}{36}x^3 + \frac{505}{256}x^4 - \frac{262}{125}x^5 + \frac{2443637}{2304000}x^6 + \mathcal{O}\left(x^7\right)\right) + \left(\left(-31\right)x - \frac{147}{2}x^2 + \frac{37}{8}x^3 + \frac{37}{2304000}x^6 + \mathcal{O}\left(x^7\right)\right)}{x^3}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 143

AsymptoticDSolveValue $[x^2*(x^2+1)*y''[x]+7*x*Exp[x]*y'[x]+9*(1+Tan[x])*y[x]==0,y[x],{x,0,6}]$

$$y(x) \rightarrow \frac{c_1 \left(\frac{2443637x^6}{2304000} - \frac{262x^5}{125} + \frac{505x^4}{256} - \frac{67x^3}{36} + \frac{117x^2}{8} + 12x + 1\right)}{x^3} + c_2 \left(\frac{-\frac{3797765581x^6}{622080000} + \frac{5057587x^5}{480000} - \frac{44803x^4}{4608} + \frac{37x^3}{8} - \frac{147x^2}{2} - 31x}{x^3} + \frac{\left(\frac{2443637x^6}{2304000} - \frac{262x^5}{125} + \frac{505x^4}{256} - \frac{67x^3}{36} + \frac{117x^2}{8} + 12x + 1\right)\log(x)}{x^3}\right)$$

18.17 problem 11

Internal problem ID [2444]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}(x+1)y'' + y'x^{2} - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

Order:=6; dsolve(x^2*(1+x)*diff(y(x),x\$2)+x^2*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^2 \left(1 - x + \frac{9}{10} x^2 - \frac{4}{5} x^3 + \frac{5}{7} x^4 - \frac{9}{14} x^5 + \mathcal{O}\left(x^6\right) \right) + \frac{c_2 (12 + 6x + \mathcal{O}\left(x^6\right))}{x}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 47

AsymptoticDSolveValue[$x^2*(1+x)*y''[x]+x^2*y'[x]-2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_2 \left(rac{5x^6}{7} - rac{4x^5}{5} + rac{9x^4}{10} - x^3 + x^2
ight) + c_1 \left(rac{1}{x} + rac{1}{2}
ight)$$

18.18 problem 12

Internal problem ID [2445]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + 3y'x + (1-x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

Order:=6; $dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)+(1-x)*y(x)=0,y(x),type='series',x=0); \\$

$$y(x) = \frac{(c_2 \ln(x) + c_1) \left(1 + x + \frac{1}{4}x^2 + \frac{1}{36}x^3 + \frac{1}{576}x^4 + \frac{1}{14400}x^5 + O\left(x^6\right)\right) + \left((-2)x - \frac{3}{4}x^2 - \frac{11}{108}x^3 - \frac{25}{3456}x^4 - \frac{13}{4320}x^5 + O\left(x^6\right)\right)}{x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 118

$$y(x) \to \frac{c_1 \left(\frac{x^5}{14400} + \frac{x^4}{576} + \frac{x^3}{36} + \frac{x^2}{4} + x + 1\right)}{x} + c_2 \left(\frac{-\frac{137x^5}{432000} - \frac{25x^4}{3456} - \frac{11x^3}{108} - \frac{3x^2}{4} - 2x}{x} + \frac{\left(\frac{x^5}{14400} + \frac{x^4}{576} + \frac{x^3}{36} + \frac{x^2}{4} + x + 1\right) \log(x)}{x}\right)$$

18.19 problem 13

Internal problem ID [2446]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$xy'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 58

Order:=6; dsolve(x*diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 + \frac{1}{2} x + \frac{1}{12} x^2 + \frac{1}{144} x^3 + \frac{1}{2880} x^4 + \frac{1}{86400} x^5 + O(x^6) \right)$$

$$+ c_2 \left(\ln(x) \left(x + \frac{1}{2} x^2 + \frac{1}{12} x^3 + \frac{1}{144} x^4 + \frac{1}{2880} x^5 + O(x^6) \right)$$

$$+ \left(1 - \frac{3}{4} x^2 - \frac{7}{36} x^3 - \frac{35}{1728} x^4 - \frac{101}{86400} x^5 + O(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 85

AsymptoticDSolveValue[$x*y''[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{1}{144} x \left(x^3 + 12x^2 + 72x + 144 \right) \log(x) + \frac{-47x^4 - 480x^3 - 2160x^2 - 1728x + 1728}{1728} \right) + c_2 \left(\frac{x^5}{2880} + \frac{x^4}{144} + \frac{x^3}{12} + \frac{x^2}{2} + x \right)$$

18.20 problem 14

Internal problem ID [2447]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(x^{2} + 6)y' + 6y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*(6+x^2)*diff(y(x),x)+6*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 \left(1 + \frac{1}{3}x^2 + \mathcal{O}(x^6)\right) x + c_2 \left(1 + \frac{3}{2}x^2 + \frac{1}{8}x^4 + \mathcal{O}(x^6)\right)}{x^3}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 33

AsymptoticDSolveValue $[x^2*y''[x]+x*(6+x^2)*y'[x]+6*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{1}{x^3} + \frac{x}{8} + \frac{3}{2x} \right) + c_2 \left(\frac{1}{x^2} + \frac{1}{3} \right)$$

18.21 problem 15

Internal problem ID [2448]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(1-x)y' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*(1-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x \left(1 + \frac{1}{3} x + \frac{1}{12} x^2 + \frac{1}{60} x^3 + \frac{1}{360} x^4 + \frac{1}{2520} x^5 + O(x^6) \right) + \frac{c_2 \left(-2 - 2x - x^2 - \frac{1}{3} x^3 - \frac{1}{12} x^4 - \frac{1}{60} x^5 + O(x^6) \right)}{x}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 64

AsymptoticDSolveValue[$x^2*y''[x]+x*(1-x)*y'[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{x^3}{24} + \frac{x^2}{6} + \frac{x}{2} + \frac{1}{x} + 1\right) + c_2 \left(\frac{x^5}{360} + \frac{x^4}{60} + \frac{x^3}{12} + \frac{x^2}{3} + x\right)$$

18.22 problem 16

Internal problem ID [2449]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^2y'' + (1 - 4x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)+(1-4*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left((c_2 \ln(x) + c_1) \left(1 + x + \frac{1}{4}x^2 + \frac{1}{36}x^3 + \frac{1}{576}x^4 + \frac{1}{14400}x^5 + \mathcal{O}\left(x^6\right) \right) + \left((-2)x - \frac{3}{4}x^2 - \frac{11}{108}x^3 - \frac{25}{3456}x^4 - \frac{137}{432000}x^5 + \mathcal{O}\left(x^6\right) \right) c_2 \right) \sqrt{x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 124

AsymptoticDSolveValue $[4*x^2*y''[x]+(1-4*x)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \sqrt{x} \left(\frac{x^5}{14400} + \frac{x^4}{576} + \frac{x^3}{36} + \frac{x^2}{4} + x + 1 \right)$$

$$+ c_2 \left(\sqrt{x} \left(-\frac{137x^5}{432000} - \frac{25x^4}{3456} - \frac{11x^3}{108} - \frac{3x^2}{4} - 2x \right) \right)$$

$$+ \sqrt{x} \left(\frac{x^5}{14400} + \frac{x^4}{576} + \frac{x^3}{36} + \frac{x^2}{4} + x + 1 \right) \log(x)$$

18.23 problem 17

Internal problem ID [2450]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$xy'' + y' - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Order:=6;

Time used: 0.015 (sec). Leaf size: 59

dsolve(x*diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = (c_2 \ln(x) + c_1) \left(1 + 2x + x^2 + \frac{2}{9}x^3 + \frac{1}{36}x^4 + \frac{1}{450}x^5 + O(x^6) \right)$$
$$+ \left((-4)x - 3x^2 - \frac{22}{27}x^3 - \frac{25}{216}x^4 - \frac{137}{13500}x^5 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 101

AsymptoticDSolveValue $[x*y''[x]+y'[x]-2*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{x^5}{450} + \frac{x^4}{36} + \frac{2x^3}{9} + x^2 + 2x + 1 \right)$$

+ $c_2 \left(-\frac{137x^5}{13500} - \frac{25x^4}{216} - \frac{22x^3}{27} - 3x^2 + \left(\frac{x^5}{450} + \frac{x^4}{36} + \frac{2x^3}{9} + x^2 + 2x + 1 \right) \log(x) - 4x \right)$

18.24 problem 18

Internal problem ID [2451]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x - (x+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 63

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-(1+x)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{c_1 x^2 \left(1 + \frac{1}{3}x + \frac{1}{24}x^2 + \frac{1}{360}x^3 + \frac{1}{8640}x^4 + \frac{1}{302400}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(x^2 + \frac{1}{3}x^3 + \frac{1}{24}x^4 + \frac{1}{360}x^5 + \mathcal{O}\left(x^6\right)\right)}{x}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 83

 $A symptotic DSolve Value [x^2*y''[x]+x*y'[x]-(1+x)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{31x^4 + 176x^3 + 144x^2 - 576x + 576}{576x} - \frac{1}{48}x(x^2 + 8x + 24)\log(x) \right) + c_2 \left(\frac{x^5}{8640} + \frac{x^4}{360} + \frac{x^3}{24} + \frac{x^2}{3} + x \right)$$

18.25 problem 19

Internal problem ID [2452]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - x(x+3)y' + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

Order:=6; dsolve(x^2*diff(y(x),x\$2)-x*(x+3)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);

$$y(x) = x^{2} \left((c_{2} \ln(x) + c_{1}) \left(1 + 2x + \frac{3}{2}x^{2} + \frac{2}{3}x^{3} + \frac{5}{24}x^{4} + \frac{1}{20}x^{5} + O(x^{6}) \right) + \left((-3)x - \frac{13}{4}x^{2} - \frac{31}{18}x^{3} - \frac{173}{288}x^{4} - \frac{187}{1200}x^{5} + O(x^{6}) \right) c_{2} \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 122

AsymptoticDSolveValue[$x^2*y''[x]-x*(x+3)*y'[x]+4*y[x]==0,y[x],{x,0,5}$]

$$y(x) \to c_1 \left(\frac{x^5}{20} + \frac{5x^4}{24} + \frac{2x^3}{3} + \frac{3x^2}{2} + 2x + 1\right) x^2 + c_2 \left(\left(-\frac{187x^5}{1200} - \frac{173x^4}{288} - \frac{31x^3}{18} - \frac{13x^2}{4} - 3x\right) x^2 + \left(\frac{x^5}{20} + \frac{5x^4}{24} + \frac{2x^3}{3} + \frac{3x^2}{2} + 2x + 1\right) x^2 \log(x)\right)$$

18.26 problem 20

Internal problem ID [2453]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - y'x^2 - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 45

Order:=6; $dsolve(x^2*diff(y(x),x$2)-x^2*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x^2 \left(1 + \frac{1}{2} x + \frac{3}{20} x^2 + \frac{1}{30} x^3 + \frac{1}{168} x^4 + \frac{1}{1120} x^5 + \mathcal{O}\left(x^6\right) \right) + \frac{c_2 \left(12 + 6x - x^3 - \frac{1}{2} x^4 - \frac{3}{20} x^5 + \mathcal{O}\left(x^6\right) \right)}{x}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 63

AsymptoticDSolveValue[$x^2*y''[x]-x^2*y'[x]-2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(-\frac{x^3}{24} - \frac{x^2}{12} + \frac{1}{x} + \frac{1}{2} \right) + c_2 \left(\frac{x^6}{168} + \frac{x^5}{30} + \frac{3x^4}{20} + \frac{x^3}{2} + x^2 \right)$$

18.27 problem 21

Internal problem ID [2454]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - y'x^{2} - (3x + 2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 65

Order:=6; $dsolve(x^2*diff(y(x),x$2)-x^2*diff(y(x),x)-(3*x+2)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{c_1 x^3 \left(1 + \frac{5}{4}x + \frac{3}{4}x^2 + \frac{7}{24}x^3 + \frac{1}{12}x^4 + \frac{3}{160}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - 1)x^2 + c_2 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - 1)x^2 + c_2 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - 1)x^2 + c_2 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - 1)x^2 + c_2 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - 1)x^2 + c_2 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - 1)x^2 + c_2 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - 1)x^2 + c_2 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - 1)x^2 + c_2 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - 1)x^2 + c_2 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - 1)x^2 + c_2 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + (12 - 1)x^2 + c_2 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^3 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^4 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^4 + 30x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^4 + 30x^4 + 18x^4 + 18x^5 + \mathcal{O}\left(x^6\right)\right) + c_3 (\ln\left(x\right) \left(24x^4 + 30x^4 + 18x^4 + 18x^4$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 84

AsymptoticDSolveValue[$x^2*y''[x]-x^2*y'[x]-(3*x+2)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{1}{2} x^2 (5x+4) \log(x) - \frac{3x^4 - 6x^3 - 6x^2 + 4x - 4}{4x} \right) + c_2 \left(\frac{x^6}{12} + \frac{7x^5}{24} + \frac{3x^4}{4} + \frac{5x^3}{4} + \frac{5x^3$$

18.28 problem 22

Internal problem ID [2455]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(5-x)y' + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 57

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*(5-x)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{(c_2 \ln(x) + c_1) \left(1 - 2x + \frac{1}{2}x^2 + O(x^6)\right) + \left(5x - \frac{9}{4}x^2 + \frac{1}{18}x^3 + \frac{1}{288}x^4 + \frac{1}{3600}x^5 + O(x^6)\right) c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 80

AsymptoticDSolveValue[$x^2*y''[x]+x*(5-x)*y'[x]+4*y[x]==0,y[x],{x,0,5}$]

$$y(x) \to \frac{c_1\left(\frac{x^2}{2} - 2x + 1\right)}{x^2} + c_2\left(\frac{\left(\frac{x^2}{2} - 2x + 1\right)\log(x)}{x^2} + \frac{\frac{x^5}{3600} + \frac{x^4}{288} + \frac{x^3}{18} - \frac{9x^2}{4} + 5x}{x^2}\right)$$

18.29 problem 23

Internal problem ID [2456]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^{2}y'' + 4x(1-x)y' + (2x-9)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)+4*x*(1-x)*diff(y(x),x)+(2*x-9)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^3 \left(1 + \frac{1}{4}x + \frac{1}{20}x^2 + \frac{1}{120}x^3 + \frac{1}{840}x^4 + \frac{1}{6720}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(12 + 12x + 6x^2 + 2x^3 + \frac{1}{2}x^4 + \frac{1}{10}x^5 + \mathcal{O}\left(x^6\right)\right)}{x^{\frac{3}{2}}}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 90

AsymptoticDSolveValue $[4*x^2*y''[x]+4*x*(1-x)*y'[x]+(2*x-9)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{x^{5/2}}{24} + \frac{x^{3/2}}{6} + \frac{1}{x^{3/2}} + \frac{\sqrt{x}}{2} + \frac{1}{\sqrt{x}} \right) + c_2 \left(\frac{x^{11/2}}{840} + \frac{x^{9/2}}{120} + \frac{x^{7/2}}{20} + \frac{x^{5/2}}{4} + x^{3/2} \right)$$

18.30 problem 24

Internal problem ID [2457]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + 2x(2+x)y' + 2(x+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 51

Order:=6; dsolve(x^2*diff(y(x),x\$2)+2*x*(2+x)*diff(y(x),x)+2*(1+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1(1 + \mathcal{O}(x^6)) x + (2x + \mathcal{O}(x^6)) \ln(x) c_2 + (1 - 2x - 2x^2 + \frac{2}{3}x^3 - \frac{2}{9}x^4 + \frac{1}{15}x^5 + \mathcal{O}(x^6)) c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 48

$$y(x) \to c_1 \left(\frac{2\log(x)}{x} - \frac{2x^4 - 6x^3 + 18x^2 + 36x - 9}{9x^2} \right) + \frac{c_2}{x}$$

18.31 problem 25

Internal problem ID [2458]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - x(1-x)y' + (1-x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

Order:=6; $dsolve(x^2*diff(y(x),x$2)-x*(1-x)*diff(y(x),x)+(1-x)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = x\left(\left(c_2 \ln{(x)} + c_1\right)\left(1 + O\left(x^6\right)\right) + \left(-x + \frac{1}{4}x^2 - \frac{1}{18}x^3 + \frac{1}{96}x^4 - \frac{1}{600}x^5 + O\left(x^6\right)\right)c_2\right)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 50

AsymptoticDSolveValue $[x^2*y''[x]-x*(1-x)*y'[x]+(1-x)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(x \left(-\frac{x^5}{600} + \frac{x^4}{96} - \frac{x^3}{18} + \frac{x^2}{4} - x \right) + x \log(x) \right) + c_1 x$$

18.32 problem 26

Internal problem ID [2459]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^{2}y'' + 4x(1+2x)y' + (4x-1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

Order:=6; $dsolve(4*x^2*diff(y(x),x$2)+4*x*(1+2*x)*diff(y(x),x)+(4*x-1)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{c_1 x \left(1 - x + \frac{2}{3}x^2 - \frac{1}{3}x^3 + \frac{2}{15}x^4 - \frac{2}{45}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(1 - 2x + 2x^2 - \frac{4}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{15}x^5 + \mathcal{O}\left(x^6\right)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 88

AsymptoticDSolveValue $[4*x^2*y''[x]+4*x*(1+2*x)*y'[x]+(4*x-1)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{2x^{7/2}}{3} - \frac{4x^{5/2}}{3} + 2x^{3/2} - 2\sqrt{x} + \frac{1}{\sqrt{x}} \right) + c_2 \left(\frac{2x^{9/2}}{15} - \frac{x^{7/2}}{3} + \frac{2x^{5/2}}{3} - x^{3/2} + \sqrt{x} \right)$$

18.33 problem 27

Internal problem ID [2460]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^2y'' - (4x+3)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

Order:=6; dsolve(4*x^2*diff(y(x),x\$2)-(3+4*x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 + \frac{1}{3}x + \frac{1}{24}x^2 + \frac{1}{360}x^3 + \frac{1}{8640}x^4 + \frac{1}{302400}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(x^2 + \frac{1}{3}x^3 + \frac{1}{24}x^4 + \frac{1}{360}x^5 + \mathcal{O}\left(x^6\right)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 101

AsymptoticDSolveValue
$$[4*x^2*y''[x]-(3+4*x)*y[x]==0,y[x],\{x,0,5\}]$$

$$y(x) \to c_2 \left(\frac{x^{11/2}}{8640} + \frac{x^{9/2}}{360} + \frac{x^{7/2}}{24} + \frac{x^{5/2}}{3} + x^{3/2} \right) + c_1 \left(\frac{31x^4 + 176x^3 + 144x^2 - 576x + 576}{576\sqrt{x}} - \frac{1}{48}x^{3/2} (x^2 + 8x + 24) \log(x) \right)$$

18.34 problem 28

Internal problem ID [2461]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Laguerre, [_2nd_order, _linear, '_with_symmetry_[0,F(x)]']]

$$xy'' - y'x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

Order:=6; dsolve(x*diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = (-x + O(x^{6})) \ln(x) c_{2} + c_{1}(1 + O(x^{6})) x$$
$$+ \left(1 + x - \frac{1}{2}x^{2} - \frac{1}{12}x^{3} - \frac{1}{72}x^{4} - \frac{1}{480}x^{5} + O(x^{6})\right) c_{2}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 41

$$y(x)
ightarrow c_1 igg(rac{1}{72} ig(-x^4 - 6x^3 - 36x^2 + 144x + 72 ig) - x \log(x) igg) + c_2 x$$

18.35 problem 29

Internal problem ID [2462]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + x(x+4)y' + (2+x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 51

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*(4+x)*diff(y(x),x)+(2+x)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{(x + \mathcal{O}(x^6)) \ln(x) c_2 + c_1(1 + \mathcal{O}(x^6)) x + (1 - x - \frac{1}{2}x^2 + \frac{1}{12}x^3 - \frac{1}{72}x^4 + \frac{1}{480}x^5 + \mathcal{O}(x^6)) c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 45

$$y(x) \to c_1 \left(\frac{\log(x)}{x} - \frac{x^4 - 6x^3 + 36x^2 + 144x - 72}{72x^2} \right) + \frac{c_2}{x}$$

19	Chapter 11, Series Solutions to Linear Differential														
	Equations. Exercises for 11.6. page 783														
19.1	problem 2	18													
19.2	problem 3	19													

19.1 problem 2

Internal problem ID [2463]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.6. page 783

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(x^{2} - \frac{9}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-9/4)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^3 \left(1 - \frac{1}{10} x^2 + \frac{1}{280} x^4 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(12 + 6x^2 - \frac{3}{2} x^4 + \mathcal{O}\left(x^6\right)\right)}{x^{\frac{3}{2}}}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 58

AsymptoticDSolveValue[$x^2*y''[x]+x*y'[x]+(x^2-9/4)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(-\frac{x^{5/2}}{8} + \frac{1}{x^{3/2}} + \frac{\sqrt{x}}{2} \right) + c_2 \left(\frac{x^{11/2}}{280} - \frac{x^{7/2}}{10} + x^{3/2} \right)$$

19.2 problem 3

Internal problem ID [2464]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.6. page 783

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' - y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

Order:=6; dsolve(x*diff(y(x),x\$2)-diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^2 \left(1 - \frac{1}{8} x^2 + \frac{1}{192} x^4 + \mathcal{O}(x^6) \right)$$

+ $c_2 \left(\ln(x) \left(x^2 - \frac{1}{8} x^4 + \mathcal{O}(x^6) \right) + \left(-2 + \frac{3}{32} x^4 + \mathcal{O}(x^6) \right) \right)$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 59

AsymptoticDSolveValue[$x*y''[x]-y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{1}{16}(x^2 - 8) x^2 \log(x) + \frac{1}{64}(-5x^4 + 16x^2 + 64)\right) + c_2 \left(\frac{x^6}{192} - \frac{x^4}{8} + x^2\right)$$

20 Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

20.1	$\operatorname{problem}$	1												 								421
20.2	${\bf problem}$	2												 								422
20.3	${\bf problem}$	3												 								42 3
20.4	${\bf problem}$	4												 								424
20.5	${\bf problem}$	5												 								425
20.6	${\bf problem}$	6												 								426
20.7	${\bf problem}$	7		•										 								427
20.8	${\bf problem}$	8		•										 								428
20.9	${\bf problem}$	9		•										 								429
20.10	problem	10												 								430
20.11	problem	11												 								431
20.12	problem	12											•	 								432
20.13	$\mathbf{problem}$	13												 								433
20.1/	Inroblem	20																				434

20.1 problem 1

Internal problem ID [2465]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{12} \right) + c_1 \left(1 - \frac{x^3}{6} \right)$$

20.2 problem 2

Internal problem ID [2466]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' - x^2 y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; $dsolve(diff(y(x),x$2)-x^2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 + \frac{x^4}{12}\right)y(0) + \left(x + \frac{1}{20}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]-x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_2 \left(\frac{x^5}{20} + x \right) + c_1 \left(\frac{x^4}{12} + 1 \right)$$

20.3 problem 3

Internal problem ID [2467]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(1 - x^2) y'' - 6y'x - 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; $dsolve((1-x^2)*diff(y(x),x$2)-6*x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(3x^4 + 2x^2 + 1\right)y(0) + \left(x + \frac{5}{3}x^3 + \frac{7}{3}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

AsymptoticDSolveValue[$(1-x^2)*y''[x]-6*x*y'[x]-4*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{7x^5}{3} + \frac{5x^3}{3} + x\right) + c_1(3x^4 + 2x^2 + 1)$$

20.4 problem 4

Internal problem ID [2468]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' + y' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 59

Order:=6; dsolve(x*diff(y(x),x\$2)+diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = (c_2 \ln(x) + c_1) \left(1 - 2x + x^2 - \frac{2}{9}x^3 + \frac{1}{36}x^4 - \frac{1}{450}x^5 + O(x^6) \right)$$
$$+ \left(4x - 3x^2 + \frac{22}{27}x^3 - \frac{25}{216}x^4 + \frac{137}{13500}x^5 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 101

AsymptoticDSolveValue[$x*y''[x]+y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(-\frac{x^5}{450} + \frac{x^4}{36} - \frac{2x^3}{9} + x^2 - 2x + 1 \right)$$

+ $c_2 \left(\frac{137x^5}{13500} - \frac{25x^4}{216} + \frac{22x^3}{27} - 3x^2 + \left(-\frac{x^5}{450} + \frac{x^4}{36} - \frac{2x^3}{9} + x^2 - 2x + 1 \right) \log(x) + 4x \right)$

20.5 problem 5

Internal problem ID [2469]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' + 2y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

Order:=6; dsolve(x*diff(y(x),x\$2)+2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \left(1 - \frac{1}{6}x^2 + \frac{1}{120}x^4 + \mathcal{O}\left(x^6\right) \right) + \frac{c_2 \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + \mathcal{O}\left(x^6\right) \right)}{x}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 42

AsymptoticDSolveValue[$x*y''[x]+2*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 \left(\frac{x^3}{24} - \frac{x}{2} + \frac{1}{x} \right) + c_2 \left(\frac{x^4}{120} - \frac{x^2}{6} + 1 \right)$$

20.6 problem 6

Internal problem ID [2470]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2xy'' + 5(1 - 2x)y' - 5y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

Order:=6; dsolve(2*x*diff(y(x),x\$2)+5*(1-2*x)*diff(y(x),x)-5*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2\left(1 + x + \frac{15}{14}x^2 + \frac{125}{126}x^3 + \frac{625}{792}x^4 + \frac{625}{1144}x^5 + \mathcal{O}\left(x^6\right)\right)x^{\frac{3}{2}} + c_1\left(1 + 10x + \mathcal{O}\left(x^6\right)\right)}{x^{\frac{3}{2}}}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 51

AsymptoticDSolveValue $[2*x*y''[x]+5*(1-2*x)*y'[x]-5*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to \frac{c_2(10x+1)}{x^{3/2}} + c_1\left(\frac{625x^5}{1144} + \frac{625x^4}{792} + \frac{125x^3}{126} + \frac{15x^2}{14} + x + 1\right)$$

20.7 problem 7

Internal problem ID [2471]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' + y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

Order:=6; dsolve(x*diff(y(x),x\$2)+diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = (c_2 \ln(x) + c_1) \left(1 - \frac{1}{4}x^2 + \frac{1}{64}x^4 + O(x^6) \right) + \left(\frac{1}{4}x^2 - \frac{3}{128}x^4 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 60

AsymptoticDSolveValue[$x*y''[x]+y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^4}{64} - \frac{x^2}{4} + 1\right) + c_2 \left(-\frac{3x^4}{128} + \frac{x^2}{4} + \left(\frac{x^4}{64} - \frac{x^2}{4} + 1\right)\log(x)\right)$$

20.8 problem 8

Internal problem ID [2472]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(4x^2 + 1)y'' - 8y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

Order:=6; dsolve((1+4*x^2)*diff(y(x),x\$2)-8*y(x)=0,y(x),type='series',x=0);

$$y(x) = (4x^2 + 1) y(0) + \left(x + \frac{4}{3}x^3 - \frac{16}{15}x^5\right) D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 33

AsymptoticDSolveValue[$(1+4*x^2)*y''[x]-8*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 (4x^2 + 1) + c_2 \left(-\frac{16x^5}{15} + \frac{4x^3}{3} + x \right)$$

20.9 problem 9

Internal problem ID [2473]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(x^{2} - \frac{1}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 \left(1 - \frac{1}{6}x^2 + \frac{1}{120}x^4 + \mathcal{O}\left(x^6\right)\right)x + c_2 \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + \mathcal{O}\left(x^6\right)\right)}{\sqrt{x}}$$

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 58

AsymptoticDSolveValue $[x^2*y''[x]+x*y'[x]+(x^2-1/4)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x)
ightarrow c_1 \left(rac{x^{7/2}}{24} - rac{x^{3/2}}{2} + rac{1}{\sqrt{x}}
ight) + c_2 \left(rac{x^{9/2}}{120} - rac{x^{5/2}}{6} + \sqrt{x}
ight)$$

20.10 problem 10

Internal problem ID [2474]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.

Section 11.7. page 788 **Problem number**: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$4xy'' + 3y' + 3y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

Order:=6; dsolve(4*x*diff(y(x),x\$2)+3*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{\frac{1}{4}} \left(1 - \frac{3}{5}x + \frac{1}{10}x^2 - \frac{1}{130}x^3 + \frac{3}{8840}x^4 - \frac{3}{309400}x^5 + O(x^6) \right)$$
$$+ c_2 \left(1 - x + \frac{3}{14}x^2 - \frac{3}{154}x^3 + \frac{3}{3080}x^4 - \frac{9}{292600}x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 83

AsymptoticDSolveValue $[4*x*y''[x]+3*y'[x]+3*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \sqrt[4]{x} \left(-\frac{3x^5}{309400} + \frac{3x^4}{8840} - \frac{x^3}{130} + \frac{x^2}{10} - \frac{3x}{5} + 1 \right)$$
$$+ c_2 \left(-\frac{9x^5}{292600} + \frac{3x^4}{3080} - \frac{3x^3}{154} + \frac{3x^2}{14} - x + 1 \right)$$

20.11 problem 11

Internal problem ID [2475]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.

Section 11.7. page 788

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + \frac{3y'x}{2} - \frac{(x+1)y}{2} = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

Order:=6; dsolve(x^2*diff(y(x),x\$2)+3/2*x*diff(y(x),x)-1/2*(1+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_2 x^{\frac{3}{2}} \left(1 + \frac{1}{5}x + \frac{1}{70}x^2 + \frac{1}{1890}x^3 + \frac{1}{83160}x^4 + \frac{1}{5405400}x^5 + \mathcal{O}\left(x^6\right)\right) + c_1 \left(1 - x - \frac{1}{2}x^2 - \frac{1}{18}x^3 - \frac{1}{360}x^4 - \frac{1}{12600}x^5\right)}{x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 86

$$y(x) \to c_1 \sqrt{x} \left(\frac{x^5}{5405400} + \frac{x^4}{83160} + \frac{x^3}{1890} + \frac{x^2}{70} + \frac{x}{5} + 1 \right) + \frac{c_2 \left(-\frac{x^5}{12600} - \frac{x^4}{360} - \frac{x^3}{18} - \frac{x^2}{2} - x + 1 \right)}{x}$$

20.12 problem 12

Internal problem ID [2476]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.

Section 11.7. page 788 **Problem number**: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - x(2-x)y' + (x^{2}+2)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

Order:=6; $dsolve(x^2*diff(y(x),x$2)-x*(2-x)*diff(y(x),x)+(2+x^2)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = x \left(c_1 x \left(1 - x + \frac{1}{3} x^2 - \frac{1}{36} x^3 - \frac{7}{720} x^4 + \frac{31}{10800} x^5 + O\left(x^6\right) \right) + c_2 \left(\ln\left(x\right) \left(-x + x^2 - \frac{1}{3} x^3 + \frac{1}{36} x^4 + \frac{7}{720} x^5 + O\left(x^6\right) \right) + \left(1 - x - \frac{1}{2} x^2 + \frac{19}{36} x^3 - \frac{53}{432} x^4 - \frac{1}{675} x^5 + O\left(x^6\right) \right) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 85

AsymptoticDSolveValue[$x^2*y''[x]-x*(2-x)*y'[x]+(2+x^2)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{1}{36} x^2 \left(x^3 - 12x^2 + 36x - 36 \right) \log(x) - \frac{1}{432} x \left(65x^4 - 372x^3 + 648x^2 - 432 \right) \right) + c_2 \left(-\frac{7x^6}{720} - \frac{x^5}{36} + \frac{x^4}{3} - x^3 + x^2 \right)$$

20.13 problem 13

Internal problem ID [2477]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.

Section 11.7. page 788 **Problem number**: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - 3y'x + 4(x+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 69

Order:=6; $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*(x+1)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = x^{2} \left((c_{2} \ln(x) + c_{1}) \left(1 - 4x + 4x^{2} - \frac{16}{9}x^{3} + \frac{4}{9}x^{4} - \frac{16}{225}x^{5} + O(x^{6}) \right) + \left(8x - 12x^{2} + \frac{176}{27}x^{3} - \frac{50}{27}x^{4} + \frac{1096}{3375}x^{5} + O(x^{6}) \right) c_{2} \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 116

AsymptoticDSolveValue[$x^2*y''[x]-3*x*y'[x]+4*(x+1)*y[x]==0,y[x],{x,0,5}$]

$$y(x) \to c_1 \left(-\frac{16x^5}{225} + \frac{4x^4}{9} - \frac{16x^3}{9} + 4x^2 - 4x + 1 \right) x^2$$

$$+ c_2 \left(\left(\frac{1096x^5}{3375} - \frac{50x^4}{27} + \frac{176x^3}{27} - 12x^2 + 8x \right) x^2$$

$$+ \left(-\frac{16x^5}{225} + \frac{4x^4}{9} - \frac{16x^3}{9} + 4x^2 - 4x + 1 \right) x^2 \log(x) \right)$$

20.14 problem 20

Internal problem ID [2478]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \left(1 - \frac{3}{4x^2}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve(diff(y(x),x\$2)+(1-3/(4*x^2))*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{1}{8} x^2 + \frac{1}{192} x^4 + \mathcal{O}(x^6)\right) + c_2 \left(\ln\left(x\right) \left(x^2 - \frac{1}{8} x^4 + \mathcal{O}(x^6)\right) + \left(-2 + \frac{3}{32} x^4 + \mathcal{O}(x^6)\right)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 72

AsymptoticDSolveValue[$y''[x]+(1-3/(4*x^2))*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^{11/2}}{192} - \frac{x^{7/2}}{8} + x^{3/2}\right) + c_1 \left(\frac{1}{16}x^{3/2}(x^2 - 8)\log(x) - \frac{5x^4 - 16x^2 - 64}{64\sqrt{x}}\right)$$