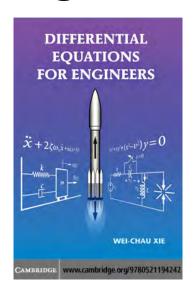
A Solution Manual For

Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010



Nasser M. Abbasi

October 12, 2023

Contents

1	Chapter 2. First-Order and Simple Higher-Order Differential Equations.	
	Page 78	2
2	Chapter 4. Linear Differential Equations. Page 183	120

1	Chapter 2. First-Order and Simple Higher-Order
	Differential Equations. Page 78

1.1	problem 1	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	 •	•	•	•	•	•	•	•	•	•	•		5
1.2	problem 2																																		6
1.3	problem 3																																		7
1.4	problem 4																																		9
1.5	problem 5																																		10
1.6	problem 6																																		11
1.7	problem 7																																		12
1.8	problem 8																																		13
1.9	problem 9																																		14
1.10	problem 10																																		15
1.11	problem 11																																		16
1.12	problem 12																																		17
1.13	problem 13																																		19
1.14	problem 14																																	:	20
1.15	problem 15																																		21
1.16	problem 16																																	:	22
1.17	problem 17																																	:	23
1.18	problem 18																																	. :	24
1.19	problem 19																																	:	25
1.20	problem 20																																		26
1.21	problem 21																																		28
1.22	problem 22																																	:	29
1.23	problem 23																																	;	30
1.24	problem 24																																		31
1.25	problem 25																																	;	32
1.26	problem 26																																		35
1.27	problem 27																																		36
1.28	problem 28																																		37
1.29	problem 29																																		38
1.30	problem 30																																		39
1.31	problem 31																																		40
1.32	problem 32																																		42
1.33	problem 33																																		43
1.34	problem 34																																		44
1.35	problem 35																																		45
1.36	problem 36																																		46
1.37	problem 37																																		47
	problem 38																																		48

1.39	problem	39			•						•					•					49
1.40	problem	41																			50
1.41	problem	42																			51
1.42	problem	43																			52
1.43	problem	44																			53
1.44	problem	45																			54
1.45	problem	46																			55
1.46	problem	47																			56
1.47	problem	48																			57
1.48	problem	49																			58
1.49	problem	50																			59
1.50	problem	51																			60
1.51	problem	52																			61
1.52	problem	53																			62
1.53	problem	54																			64
1.54	problem	55																			65
1.55	problem	56																			68
1.56	problem	57									•										69
1.57	problem	58																			70
1.58	problem	59									•										72
1.59	problem	60																			73
1.60	problem	61									•										74
1.61	problem	62									•										75
1.62	problem	63																			76
1.63	problem	64									•										77
1.64	problem	65									•										78
1.65	problem	66									•										79
1.66	problem	68									•										80
1.67	problem	69																			81
1.68	problem	71.1									•										83
1.69	problem	72																			84
1.70	problem	73									•										86
1.71	problem	74																			87
1.72	problem	75																			88
1.73	problem	76																			89
1.74	problem	77																			90
1.75	problem	78																			91
1.76	problem	79																			92
1.77	problem	80																			94
1.78	problem	81																			96
1.79	problem	82																			97

1.80	problem	83																				98
1.81	problem	84												 								99
1.82	problem	85												 								101
1.83	problem	86												 								103
1.84	problem	87		•										 								105
1.85	problem	88												 								106
1.86	problem	89		•										 								107
1.87	problem	90												 								108
1.88	problem	91		•										 								110
1.89	problem	92												 								111
1.90	problem	111											•	 								112
1.91	problem	112											•	 								114
1.92	problem	113												 								115
1.93	problem	115												 								116
1.94	problem	116											•	 								117
1.95	problem	117												 								118
1.96	problem	119												 								119

1.1 problem 1

Internal problem ID [2637]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$\cos(y)^{2} + (1 + e^{-x})\sin(y)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(cos(y(x))^2+(1+exp(-x))*sin(y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \pi - \arccos\left(\frac{1}{\ln(e^x + 1) + c_1}\right)$$

✓ Solution by Mathematica

Time used: 0.901 (sec). Leaf size: 57

 $DSolve[Cos[y[x]]^2 + (1+Exp[-x])*Sin[y[x]]*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sec^{-1}\left(-\log\left(e^x + 1\right) + 2c_1\right)$$
$$y(x) \to \sec^{-1}\left(-\log\left(e^x + 1\right) + 2c_1\right)$$
$$y(x) \to -\frac{\pi}{2}$$
$$y(x) \to \frac{\pi}{2}$$

1.2 problem 2

Internal problem ID [2638]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 2.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{x^3 e^{x^2}}{y \ln(y)} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

 $dsolve(diff(y(x),x)=(x^3*exp(x^2))/(y(x)*ln(y(x))),y(x), singsol=all)$

$$y(x) = \mathrm{e}^{rac{\mathrm{LambertW}\left(2\left(x^2\mathrm{e}^{x^2}-\mathrm{e}^{x^2}+2c_1
ight)\mathrm{e}^{-1}
ight)}{2}+rac{1}{2}}$$

✓ Solution by Mathematica

Time used: 60.179 (sec). Leaf size: 71

 $DSolve[y'[x] == (x^3*Exp[x^2])/(y[x]*Log[y[x]]), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\exp\left(\frac{1}{2}\left(1 + W\left(\frac{2e^{x^2}(x^2 - 1) + 4c_1}{e}\right)\right)\right)$$

$$y(x) \to \exp\left(\frac{1}{2}\left(1 + W\left(\frac{2e^{x^2}(x^2 - 1) + 4c_1}{e}\right)\right)\right)$$

1.3 problem 3

Internal problem ID [2639]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$x\cos(y)^{2} + e^{x}\tan(y)y' = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 69

 $dsolve(x*cos(y(x))^2+exp(x)*tan(y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \operatorname{arccot}\left(\frac{\sqrt{-2(c_1 e^x - x - 1)e^x}}{2c_1 e^x - 2x - 2}\right)$$

$$y(x) = \pi - \operatorname{arccot}\left(\frac{\sqrt{-2(c_1 e^x - x - 1)e^x}}{2c_1 e^x - 2x - 2}\right)$$

✓ Solution by Mathematica

Time used: 15.095 (sec). Leaf size: 123

DSolve[x*Cos[y[x]]^2+Exp[x]*Tan[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sec^{-1}\left(-\sqrt{2e^{-x}(x+1) + 8c_1}\right)$$

$$y(x) \to \sec^{-1}\left(-\sqrt{2e^{-x}(x+1) + 8c_1}\right)$$

$$y(x) \to -\sec^{-1}\left(\sqrt{2e^{-x}(x+1) + 8c_1}\right)$$

$$y(x) \to \sec^{-1}\left(\sqrt{2e^{-x}(x+1) + 8c_1}\right)$$

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{\pi}{2}$$

1.4 problem 4

Internal problem ID [2640]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 4.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$x(1+y^2) + (1+2y)e^{-x}y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

 $dsolve(x*(y(x)^2+1)+(2*y(x)+1)*exp(-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \tan\left(\text{RootOf}\left(e^{x}x + \ln\left(\frac{2}{1 + \cos(2\underline{Z})}\right) + \underline{Z} - e^{x} + c_{1}\right)\right)$$

✓ Solution by Mathematica

Time used: 0.603 (sec). Leaf size: 43

 $DSolve[x*(y[x]^2+1)+(2*y[x]+1)*Exp[-x]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \text{InverseFunction}\left[\log\left(\#1^2+1\right) + \arctan(\#1)\&\right]\left[-e^x(x-1) + c_1\right]$$

$$y(x) \rightarrow -i$$

$$y(x) \to i$$

1.5 problem 5

Internal problem ID [2641]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$xy^3 + y'e^{x^2} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $dsolve(x*y(x)^3+exp(x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{-e^{-x^2} + c_1}}$$
$$y(x) = -\frac{1}{\sqrt{-e^{-x^2} + c_1}}$$

$$y(x) = -\frac{1}{\sqrt{-e^{-x^2} + c_1}}$$

Solution by Mathematica

Time used: 7.031 (sec). Leaf size: 70

DSolve[x*y[x]^3+Exp[x^2]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o -rac{ie^{rac{x^2}{2}}}{\sqrt{1+2c_1e^{x^2}}}$$

$$y(x) o rac{ie^{rac{x^2}{2}}}{\sqrt{1 + 2c_1e^{x^2}}}$$

$$y(x) \to 0$$

1.6 problem 6

Internal problem ID [2642]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x\cos(y)^2 + \tan(y)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $dsolve(x*cos(y(x))^2+tan(y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \operatorname{arccot}\left(\frac{1}{\sqrt{-x^2 - 2c_1}}\right)$$
$$y(x) = \pi - \operatorname{arccot}\left(\frac{1}{\sqrt{-x^2 - 2c_1}}\right)$$

✓ Solution by Mathematica

Time used: 1.176 (sec). Leaf size: 103

DSolve[x*Cos[y[x]]^2+Tan[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sec^{-1}\left(-\sqrt{-x^2 + 8c_1}\right)$$
$$y(x) \to \sec^{-1}\left(-\sqrt{-x^2 + 8c_1}\right)$$
$$y(x) \to -\sec^{-1}\left(\sqrt{-x^2 + 8c_1}\right)$$
$$y(x) \to \sec^{-1}\left(\sqrt{-x^2 + 8c_1}\right)$$
$$y(x) \to -\frac{\pi}{2}$$
$$y(x) \to \frac{\pi}{2}$$

problem 7 1.7

Internal problem ID [2643]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$xy^3 + (1+y)e^{-x}y' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 71

 $dsolve(x*y(x)^3+(y(x)+1)*exp(-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{-1 + \sqrt{2 e^x x - 2 e^x + 2c_1 + 1}}{2 (e^x x - e^x + c_1)}$$
$$y(x) = \frac{1 + \sqrt{2 e^x x - 2 e^x + 2c_1 + 1}}{2 e^x x + 2c_1 - 2 e^x}$$

Solution by Mathematica

Time used: 9.928 (sec). Leaf size: 60

DSolve $[x*y[x]^3+(y[x]+1)*Exp[-x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{1}{1 + \sqrt{2e^x(x-1) + 1 - 2c_1}}$$
$$y(x) \to \frac{1}{-1 + \sqrt{2e^x(x-1) + 1 - 2c_1}}$$
$$y(x) \to 0$$

1.8 problem 8

Internal problem ID [2644]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 8.

ODE order: 1.
ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `2nd\ type$

$$y' + \frac{x}{y} + 2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(y(x),x)+x/y(x)+2=0,y(x), singsol=all)

$$y(x) = -\frac{x(\text{LambertW}(-c_1x) + 1)}{\text{LambertW}(-c_1x)}$$

✓ Solution by Mathematica

Time used: 0.116 (sec). Leaf size: 31

DSolve[y'[x]+x/y[x]+2==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\frac{1}{\frac{y(x)}{x}+1} + \log\left(\frac{y(x)}{x}+1\right) = -\log(x) + c_1, y(x)\right]$$

1.9 problem 9

Internal problem ID [2645]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 9.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'x - y - x \cot\left(\frac{y}{x}\right) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve(x*diff(y(x),x)-y(x)=x*cot(y(x)/x),y(x), singsol=all)

$$y(x) = x \arccos\left(\frac{1}{c_1 x}\right)$$

✓ Solution by Mathematica

Time used: 24.58 (sec). Leaf size: 48

 $DSolve[x*y'[x]-y[x]==x*Cot[y[x]/x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x \sec^{-1}(e^{c_1}x)$$

$$y(x) \to x \sec^{-1}(e^{c_1}x)$$

$$y(x) \to -\frac{\pi x}{2}$$

$$y(x) \to \frac{\pi x}{2}$$

1.10 problem 10

Internal problem ID [2646]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x\cos\left(\frac{y}{x}\right)^2 - y + y'x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve((x*cos(y(x)/x)^2-y(x))+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\arctan\left(\ln\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.448 (sec). Leaf size: $37\,$

 $DSolve[(x*Cos[y[x]/x]^2-y[x])+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True] \\$

$$y(x) \to x \arctan(-\log(x) + 2c_1)$$

$$y(x) \to -\frac{\pi x}{2}$$

$$y(x) o \frac{\pi x}{2}$$

1.11 problem 11

Internal problem ID [2647]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 11.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'x - y(1 + \ln(y) - \ln(x)) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(x*diff(y(x),x)=y(x)*(1+ln(y(x))-ln(x)),y(x), singsol=all)

$$y(x) = x e^{c_1 x}$$

✓ Solution by Mathematica

Time used: 0.208 (sec). Leaf size: $20\,$

 $DSolve[x*y'[x] == y[x]*(1+Log[y[x]]-Log[x]), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to xe^{e^{c_1}x}$$

$$y(x) \to x$$

1.12 problem 12

Internal problem ID [2648]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 12.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$yx + \left(x^2 + y^2\right)y' = 0$$

✓ Solution by Maple

Time used: 0.282 (sec). Leaf size: 223

 $dsolve(x*y(x)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{x^2c_1\left(c_1x^2 + \sqrt{c_1^2x^4 + 1}\right)}}{x\left(c_1x^2 + \sqrt{c_1^2x^4 + 1}\right)c_1}$$

$$y(x) = \frac{\sqrt{-x^2c_1\left(-c_1x^2 + \sqrt{c_1^2x^4 + 1}\right)}}{x\left(c_1x^2 - \sqrt{c_1^2x^4 + 1}\right)c_1}$$

$$y(x) = -\frac{\sqrt{x^2c_1\left(c_1x^2 + \sqrt{c_1^2x^4 + 1}\right)}}{x\left(c_1x^2 + \sqrt{c_1^2x^4 + 1}\right)c_1}$$

$$y(x) = -\frac{\sqrt{-x^2c_1\left(-c_1x^2 + \sqrt{c_1^2x^4 + 1}\right)}}{x\left(c_1x^2 - \sqrt{c_1^2x^4 + 1}\right)c_1}$$

✓ Solution by Mathematica

Time used: 8.734 (sec). Leaf size: 218

 $DSolve[x*y[x]+(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) & \to -\sqrt{-x^2 - \sqrt{x^4 + e^{4c_1}}} \\ y(x) & \to \sqrt{-x^2 - \sqrt{x^4 + e^{4c_1}}} \\ y(x) & \to -\sqrt{-x^2 + \sqrt{x^4 + e^{4c_1}}} \\ y(x) & \to \sqrt{-x^2 + \sqrt{x^4 + e^{4c_1}}} \\ y(x) & \to \sqrt{-x^2 + \sqrt{x^4 + e^{4c_1}}} \\ y(x) & \to 0 \\ y(x) & \to -\sqrt{-\sqrt{x^4 - x^2}} \\ y(x) & \to \sqrt{-\sqrt{x^4 - x^2}} \\ y(x) & \to -\sqrt{\sqrt{x^4 - x^2}} \\ y(x) & \to \sqrt{\sqrt{x^4 - x^2}} \\ \end{split}$$

1.13 problem 13

Internal problem ID [2649]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 13.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$\left(1 - e^{-\frac{y}{x}}\right)y' + 1 - \frac{y}{x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

 $\label{eq:decomposition} dsolve((1-exp(-y(x)/x))*diff(y(x),x)+(1-y(x)/x)=0,y(x), singsol=all)$

$$y(x) = -rac{ ext{LambertW}\left(-\mathrm{e}^{-rac{1}{c_1x}}
ight)c_1x + 1}{c_1}$$

✓ Solution by Mathematica

Time used: 60.185 (sec). Leaf size: 29

 $DSolve[(1-Exp[-y[x]/x])*y'[x]+(1-y[x]/x)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -xW\left(-e^{-\frac{e^{c_1}}{x}}\right) - e^{c_1}$$

1.14 problem 14

Internal problem ID [2650]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 14.

ODE order: 1.
ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `2nd\ type$

$$x^2 - yx + y^2 - xyy' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

 $dsolve((x^2-x*y(x)+y(x)^2)-x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = e^{-LambertW\left(\frac{e^{-c_1}e^{-1}}{x}\right) - c_1 - 1} + x$$

✓ Solution by Mathematica

Time used: 3.558 (sec). Leaf size: 25

 $DSolve[(x^2-x*y[x]+y[x]^2)-x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \left(1 + W\left(\frac{e^{-1+c_1}}{x}\right)\right)$$

 $y(x) \to x$

1.15 problem 15

Internal problem ID [2651]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 15.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$(3 + 2x + 4y) y' - x - 2y - 1 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

dsolve((3+2*x+4*y(x))*diff(y(x),x)=1+x+2*y(x),y(x), singsol=all)

$$y(x) = -\frac{x}{2} + \frac{\text{LambertW}(e^5 e^{8x} c_1)}{8} - \frac{5}{8}$$

✓ Solution by Mathematica

Time used: 4.658 (sec). Leaf size: 39

 $DSolve[(3+2*x+4*y[x])*y'[x]==1+x+2*y[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{8} (W(-e^{8x-1+c_1}) - 4x - 5)$$

 $y(x) \to \frac{1}{8} (-4x - 5)$

1.16 problem 16

Internal problem ID [2652]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$y' - \frac{2x + y - 1}{x - y - 2} = 0$$

✓ Solution by Maple

Time used: 0.093 (sec). Leaf size: 50

dsolve(diff(y(x),x)=(2*x+y(x)-1)/(x-y(x)-2),y(x), singsol=all)

$$y(x) = -1 - \tan \left(\text{RootOf} \left(\sqrt{2} \ln \left(2 \tan \left(\underline{Z} \right)^2 (x-1)^2 + 2(x-1)^2 \right) + 2\sqrt{2} c_1 + 2\underline{Z} \right) \right) (x-1) \sqrt{2}$$

✓ Solution by Mathematica

Time used: 0.115 (sec). Leaf size: 75

 $DSolve[y'[x] == (2*x+y[x]-1)/(x-y[x]-2), y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[2\sqrt{2}\arctan\left(\frac{y(x)+2x-1}{\sqrt{2}(-y(x)+x-2)}\right) + \log(9) = 2\log\left(\frac{2x^2+y(x)^2+2y(x)-4x+3}{(x-1)^2}\right) + 4\log(x-1) + 3c_1, y(x)\right]$$

1.17 problem 17

Internal problem ID [2653]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 17.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$y + 2 - (2x + y - 4)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

dsolve(y(x)+2=(2*x+y(x)-4)*diff(y(x),x),y(x), singsol=all)

$$y(x) = \frac{1 - 4c_1 + \sqrt{4c_1x - 12c_1 + 1}}{2c_1}$$
$$y(x) = -\frac{-1 + 4c_1 + \sqrt{4c_1x - 12c_1 + 1}}{2c_1}$$

✓ Solution by Mathematica

Time used: 0.238 (sec). Leaf size: 82

DSolve[y[x]+2==(2*x+y[x]-4)*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{\sqrt{1+4c_1(x-3)}-1+4c_1}{2c_1}$$

$$y(x) \rightarrow \frac{\sqrt{1+4c_1(x-3)}+1-4c_1}{2c_1}$$

$$y(x) \rightarrow -2$$

$$y(x) \rightarrow \text{Indeterminate}$$

$$y(x) \rightarrow 1-x$$

1.18 problem 18

Internal problem ID [2654]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 18.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \sin\left(x - y\right)^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve(diff(y(x),x)=sin(x-y(x))^2,y(x), singsol=all)$

$$y(x) = x + \arctan(c_1 - x)$$

✓ Solution by Mathematica

Time used: 0.202 (sec). Leaf size: 31

DSolve[y'[x]==Sin[x-y[x]]^2,y[x],x,IncludeSingularSolutions -> True]

$$Solve[2y(x) - 2(\tan(x - y(x))) - \arctan(\tan(x - y(x)))) = c_1, y(x)]$$

1.19 problem 19

Internal problem ID [2655]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 19.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$y' - (x+1)^2 - (4y+1)^2 - 8yx - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)=(x+1)^2+(4*y(x)+1)^2+8*x*y(x)+1,y(x), singsol=all)$

$$y(x) = -\frac{x}{4} - \frac{1}{4} - \frac{3\tan(-6x + 6c_1)}{8}$$

✓ Solution by Mathematica

Time used: 0.176 (sec). Leaf size: 49

 $DSolve[y'[x] == (x+1)^2 + (4*y[x]+1)^2 + 8*x*y[x]+1, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{16} \left(-4x + \frac{1}{c_1 e^{12ix} - \frac{i}{12}} - (4+6i) \right)$$
$$y(x) \to \frac{1}{8} (-2x - (2+3i))$$

1.20 problem 20

Internal problem ID [2656]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 20.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$3x^{2} + 6xy^{2} + (6x^{2}y + 4y^{3})y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 125

 $dsolve((3*x^2+6*x*y(x)^2)+(6*x^2*y(x)+4*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{-6x^2 - 2\sqrt{9x^4 - 4x^3 - 4c_1}}}{2}$$

$$y(x) = \frac{\sqrt{-6x^2 - 2\sqrt{9x^4 - 4x^3 - 4c_1}}}{2}$$

$$y(x) = -\frac{\sqrt{-6x^2 + 2\sqrt{9x^4 - 4x^3 - 4c_1}}}{2}$$

$$y(x) = \frac{\sqrt{-6x^2 + 2\sqrt{9x^4 - 4x^3 - 4c_1}}}{2}$$

✓ Solution by Mathematica

Time used: 5.909 (sec). Leaf size: 159

$$y(x) \to -\frac{\sqrt{-3x^2 - \sqrt{(9x - 4)x^3 + 4c_1}}}{\sqrt{2}}$$
$$y(x) \to \frac{\sqrt{-3x^2 - \sqrt{(9x - 4)x^3 + 4c_1}}}{\sqrt{2}}$$
$$y(x) \to -\frac{\sqrt{-3x^2 + \sqrt{(9x - 4)x^3 + 4c_1}}}{\sqrt{2}}$$
$$y(x) \to \frac{\sqrt{-3x^2 + \sqrt{(9x - 4)x^3 + 4c_1}}}{\sqrt{2}}$$

1.21 problem 21

Internal problem ID [2657]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [exact, rational, [Abel, '2nd type', 'class B']]

$$2x^{2} - xy^{2} - 2y + 3 - (x^{2}y + 2x)y' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 53

 $dsolve((2*x^2-x*y(x)^2-2*y(x)+3)-(x^2*y(x)+2*x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-2 - \frac{\sqrt{12x^3 + 18c_1 + 54x + 36}}{3}}{x}$$

$$y(x) = \frac{-2 + \frac{\sqrt{12x^3 + 18c_1 + 54x + 36}}{3}}{3}$$

$$y(x) = \frac{-2 + \frac{\sqrt{12x^3 + 18c_1 + 54x + 36}}{3}}{x}$$

Solution by Mathematica

Time used: 0.586 (sec). Leaf size: 87

 $DSolve[(2*x^2-x*y[x]^2-2*y[x]+3)-(x^2*y[x]+2*x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow T$

$$y(x) \rightarrow -\frac{6x + \sqrt{3}\sqrt{x^2(4x^3 + 18x + 12 + 3c_1)}}{3x^2}$$

$$y(x) \to \frac{-6x + \sqrt{3}\sqrt{x^2(4x^3 + 18x + 12 + 3c_1)}}{3x^2}$$

1.22 problem 22

Internal problem ID [2658]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 22.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_Abel, '2nd type', 'class B']]

$$xy^{2} + x - 2y + 3 + (x^{2}y - 2y - 2x)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 92

 $dsolve((x*y(x)^2+x-2*y(x)+3)+(x^2*y(x)-2*(x+y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{2x + \sqrt{-x^4 - 2c_1x^2 - 6x^3 + 6x^2 + 4c_1 + 12x}}{x^2 - 2}$$
$$y(x) = -\frac{-2x + \sqrt{-x^4 - 2c_1x^2 - 6x^3 + 6x^2 + 4c_1 + 12x}}{x^2 - 2}$$

✓ Solution by Mathematica

Time used: 0.492 (sec). Leaf size: 85

DSolve[$(x*y[x]^2+x-2*y[x]+3)+(x^2*y[x]-2*(x+y[x]))*y'[x]==0,y[x],x,IncludeSingularSolutions -$

$$y(x) \to \frac{2x - \sqrt{x(12 + x(-x(x+6) + 6 + c_1)) - 2c_1}}{x^2 - 2}$$
$$2x + \sqrt{x(12 + x(-x(x+6) + 6 + c_1)) - 2c_1}$$

$$y(x) \rightarrow \frac{2x + \sqrt{x(12 + x(-x(x+6) + 6 + c_1)) - 2c_1}}{x^2 - 2}$$

1.23 problem 23

Internal problem ID [2659]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 23.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]'

$$3y(x^2 - 1) + (x^3 + 8y - 3x)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 67

 $dsolve((3*y(x)*(x^2-1))+(x^3+8*y(x)-3*x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{x^3}{8} + \frac{3x}{8} - \frac{\sqrt{x^6 - 6x^4 + 9x^2 - 16c_1}}{8}$$

$$y(x) = -\frac{x^3}{8} + \frac{3x}{8} + \frac{\sqrt{x^6 - 6x^4 + 9x^2 - 16c_1}}{8}$$

✓ Solution by Mathematica

Time used: 0.156 (sec). Leaf size: 82

 $DSolve[(3*y[x]*(x^2-1))+(x^3+8*y[x]-3*x)*y'[x]==0,y[x],x,IncludeSingularSolutions \\ -> True]$

$$y(x) \to \frac{1}{8} \left(-x^3 - \sqrt{x^2 (x^2 - 3)^2 + 64c_1} + 3x \right)$$

$$y(x) \to \frac{1}{8} \left(-x^3 + \sqrt{x^2 (x^2 - 3)^2 + 64c_1} + 3x \right)$$

$$y(x) \to 0$$

1.24 problem 24

Internal problem ID [2660]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$x^2 + \ln(y) + \frac{xy'}{y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve((x^2+ln(y(x)))+(x/y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = e^{-\frac{x^2}{3}} e^{-\frac{c_1}{x}}$$

✓ Solution by Mathematica

Time used: 0.237 (sec). Leaf size: 21

 $DSolve[(x^2+Log[y[x]])+(x/y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-\frac{x^2}{3} + \frac{c_1}{x}}$$

1.25 problem 25

Internal problem ID [2661]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$2x(3x + y - y e^{-x^2}) + (x^2 + 3y^2 + e^{-x^2})y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 1085

$$y(x) = \frac{e^{-x^2} \Big(\Big(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4) e^{-x^2} - 108 e^{x^2} \Big) e^{-x^2} \Big(\Big(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4) e^{-x^2}} - 108 e^{x^2} \Big) e^{-x^2} \Big(\Big(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4) e^{-x^2}} - 108 e^{x^2} \Big) e^{-x^2} \Big(\Big(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4) e^{-x^2}} - 108 e^{x^2} \Big) e^{-x^2} \Big(\Big(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4) e^{-x^2}} - 108 e^{x^2} \Big) e^{-x^2} \Big(\Big(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4) e^{-x^2}} - 108 e^{x^2} \Big) e^{-x^2} \Big(\Big(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4) e^{-x^2}} - 108 e^{x^2} \Big) e^{-x^2} \Big(\Big(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4) e^{-x^2}} - 108 e^{x^2} \Big) e^{-x^2} \Big) e^{-x^2} \Big(\Big(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4) e^{-x^2}} - 108 e^{x^2} \Big) e^{-x^2} \Big)$$

$$v(x) = \frac{e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3}\sqrt{(112\,e^{3x^2}x^6 + 108\,e^{3x^2}c_1x^3 + 12\,e^{2x^2}x^4 + 27\,e^{3x^2}c_1^2 + 12x^2e^{x^2} + 4\right)e^{-x^2} - 1}{12} + \frac{12}{\left(\left(-216x^3 e^{x^2} + 12\sqrt{3}\sqrt{(112\,e^{3x^2}x^6 + 108\,e^{3x^2}c_1x^3 + 12\,e^{2x^2}x^4 + 27\,e^{3x^2}c_1^2 + 12x^2e^{x^2} + 4\right)e^{-x^2} - 108\,e^{x^2}} \right)}{i\sqrt{3}\left(\frac{e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3}\sqrt{(112\,e^{3x^2}x^6 + 108\,e^{3x^2}c_1x^3 + 12\,e^{2x^2}x^4 + 27\,e^{3x^2}c_1^2 + 12x^2e^{x^2} + 4\right)e^{-x^2} - 108\,e^{x^2}c_1\right)e^{2x^2}} \right)^{\frac{1}{3}}}{\left(\left(-216x^3 e^{x^2} + 12\sqrt{3}\sqrt{(112\,e^{3x^2}x^6 + 108\,e^{3x^2}c_1x^3 + 12\,e^{2x^2}x^4 + 27\,e^{3x^2}c_1^2 + 12x^2e^{x^2} + 4\right)e^{-x^2} - 108\,e^{x^2}c_1\right)e^{2x^2}} \right)^{\frac{1}{3}}} + \frac{1}{\left(\left(-216x^3 e^{x^2} + 12\sqrt{3}\sqrt{(112\,e^{3x^2}x^6 + 108\,e^{3x^2}c_1x^3 + 12\,e^{2x^2}x^4 + 27\,e^{3x^2}c_1^2 + 12x^2e^{x^2} + 4\right)e^{-x^2} - 108\,e^{x^2}c_1\right)e^{-x^2}} \right)^{\frac{1}{3}}} + \frac{1}{\left(\left(-216x^3 e^{x^2} + 12\sqrt{3}\sqrt{(112\,e^{3x^2}x^6 + 108\,e^{3x^2}c_1x^3 + 12\,e^{2x^2}x^4 + 27\,e^{3x^2}c_1^2 + 12x^2e^{x^2} + 4\right)e^{-x^2} - 108\,e^{x^2}c_1\right)e^{-x^2}} \right)^{\frac{1}{3}}} + \frac{1}{\left(\left(-216x^3 e^{x^2} + 12\sqrt{3}\sqrt{(112\,e^{3x^2}x^6 + 108\,e^{3x^2}c_1x^3 + 12\,e^{2x^2}x^4 + 27\,e^{3x^2}c_1^2 + 12x^2e^{x^2} + 4\right)e^{-x^2} - 108\,e^{x^2}c_1\right)e^{-x^2}} \right)^{\frac{1}{3}}} + \frac{1}{\left(-216x^3 e^{x^2} + 12\sqrt{3}\sqrt{(112\,e^{3x^2}x^6 + 108\,e^{3x^2}c_1x^3 + 12\,e^{2x^2}x^4 + 27\,e^{3x^2}c_1^2 + 12x^2e^{x^2} + 4\right)e^{-x^2} - 108\,e^{x^2}c_1\right)e^{-x^2}} \right)^{\frac{1}{3}}} + \frac{1}{\left(-216x^3 e^{x^2} + 12\sqrt{3}\sqrt{(112\,e^{3x^2}x^6 + 108\,e^{3x^2}c_1x^3 + 12\,e^{2x^2}x^4 + 27\,e^{3x^2}c_1^2 + 12x^2e^{x^2} + 4\right)e^{-x^2} - 108\,e^{x^2}c_1\right)e^{-x^2}} \right)^{\frac{1}{3}}}$$

✓ Solution by Mathematica

Time used: 33.131 (sec). Leaf size: 416

$$y(x) \rightarrow \frac{-6\sqrt[3]{2}\left(x^{2} + e^{-x^{2}}\right) + 2^{2/3}\left(-54x^{3} + \sqrt{108\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2}} + 27c_{1}\right)^{2/3}}{6\sqrt[3]{-54x^{3} + \sqrt{108\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2}} + 27c_{1}}}}{2^{2/3}\sqrt[3]{-54x^{3} + \sqrt{108\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2} + 27c_{1}}}}}{2^{2/3}\sqrt[3]{-54x^{3} + \sqrt{108\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2} + 27c_{1}}}}{6\sqrt[3]{2}}}$$

$$y(x) \rightarrow \frac{\left(1 - i\sqrt{3}\right)\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2} + 27c_{1}}{6\sqrt[3]{2}}}$$

$$y(x) \rightarrow \frac{\left(1 - i\sqrt{3}\right)\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2} + 27c_{1}}{6\sqrt[3]{2}}}$$

$$-\frac{\left(1 + i\sqrt{3}\right)\sqrt[3]{-54x^{3} + \sqrt{108\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2} + 27c_{1}}}{6\sqrt[3]{2}}$$

1.26 problem 26

Internal problem ID [2662]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 26.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, [_Abel, '2nd type', 'class B']]

$$3 + y + 2y^{2} \sin(x)^{2} + (x + 2yx - y \sin(2x)) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 88

$$y(x) = \frac{x + \sqrt{2c_1 \sin(2x) + 6x \sin(2x) - 4c_1x - 11x^2}}{\sin(2x) - 2x}$$
$$y(x) = -\frac{-x + \sqrt{2c_1 \sin(2x) + 6x \sin(2x) - 4c_1x - 11x^2}}{\sin(2x) - 2x}$$

✓ Solution by Mathematica

Time used: 1.227 (sec). Leaf size: 97

 $DSolve[(3+y[x]+2*y[x]^2*Sin[x]^2)+(x+2*x*y[x]-y[x]*Sin[2*x])*y'[x]==0,y[x],x,IncludeSingularSin[x]+2*y[x]+2*y[x]^2*Sin[x]^2+2*y$

$$y(x) \to \frac{x - i\sqrt{x(11x + 2c_1) - (6x + c_1)\sin(2x)}}{\sin(2x) - 2x}$$

$$y(x) \to \frac{x + i\sqrt{x(11x + 2c_1) - (6x + c_1)\sin(2x)}}{\sin(2x) - 2x}$$

1.27 problem 27

Internal problem ID [2663]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 27.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$2yx + (y^2 + 2yx + x^2)y' = 0$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 56

 $dsolve((2*x*y(x))+(x^2+2*x*y(x)+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -x + \sqrt{2} x \tan \left(\text{RootOf} \left(2\sqrt{2} \ln \left(-x^3 \left(\sqrt{2} - 2 \tan \left(\underline{Z} \right) \right) \left(\tan \left(\underline{Z} \right)^2 + 1 \right) \right) + \sqrt{2} \ln (2) + 6\sqrt{2} c_1 + 4\underline{Z} \right) \right)$$

✓ Solution by Mathematica

Time used: 0.194 (sec). Leaf size: 62

 $DSolve[(2*x*y[x])+(x^2+2*x*y[x]+y[x]^2)*y'[x] ==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{1}{3}\left(\sqrt{2}\arctan\left(\frac{\frac{y(x)}{x}+1}{\sqrt{2}}\right) + \log\left(\frac{y(x)^2}{x^2} + \frac{2y(x)}{x} + 3\right) + \log\left(\frac{y(x)}{x}\right)\right) = -\log(x) + c_1, y(x)\right]$$

1.28 problem 28

Internal problem ID [2664]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 28.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$x^{2} - \sin(y)^{2} + x\sin(2y)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

 $dsolve((x^2-sin(y(x))^2)+(x*sin(2*y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \arcsin\left(\sqrt{-c_1x - x^2}\right)$$

$$y(x) = -\arcsin\left(\sqrt{-c_1x - x^2}\right)$$

✓ Solution by Mathematica

Time used: 6.171 (sec). Leaf size: 39

 $DSolve[(x^2-Sin[y[x]]^2)+(x*Sin[2*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions \ \ -> True]$

$$y(x) \to -\arcsin\left(\sqrt{-x(x+2c_1)}\right)$$

$$y(x) \to \arcsin\left(\sqrt{-x(x+2c_1)}\right)$$

1.29 problem 29

Internal problem ID [2665]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 29.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, [_Abel, '2nd type', 'class D']

$$y(2x - y + 2) + 2(x - y)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 73

dsolve(y(x)*(2*x-y(x)+2)+2*(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{\left(c_1 e^x x + \sqrt{e^{2x} c_1^2 x^2 + c_1 e^x}\right) e^{-x}}{c_1}$$
$$y(x) = -\frac{\left(-c_1 e^x x + \sqrt{e^{2x} c_1^2 x^2 + c_1 e^x}\right) e^{-x}}{c_1}$$

✓ Solution by Mathematica

Time used: 42.371 (sec). Leaf size: 125

 $DSolve[y[x]*(2*x-y[x]+2)+2*(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x - e^{-x} \sqrt{e^x (e^x x^2 - e^{2c_1})}$$

 $y(x) \to x + e^{-x} \sqrt{e^x (e^x x^2 - e^{2c_1})}$
 $y(x) \to x - e^{-x} \sqrt{e^{2x} x^2}$
 $y(x) \to e^{-x} \sqrt{e^{2x} x^2} + x$

1.30 problem 30

Internal problem ID [2666]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 30.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class B']]

$$4yx + 3y^2 - x + x(x + 2y)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 53

 $dsolve((4*x*y(x)+3*y(x)^2-x)+x*(x+2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-x^3 + \sqrt{x^6 + x^5 - 4c_1x}}{2x^2}$$

$$y(x) = -\frac{x^3 + \sqrt{x^6 + x^5 - 4c_1x}}{2x^2}$$

✓ Solution by Mathematica

Time used: 0.567 (sec). Leaf size: 80

 $DSolve[(4*x*y[x]+3*y[x]^2-x)+x*(x+2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{x^4 + \sqrt{x^2}\sqrt{x^6 + x^5 + 4c_1x}}{2x^3}$$

$$y(x) \to -\frac{x}{2} + \frac{\sqrt{x^2}\sqrt{x^6 + x^5 + 4c_1x}}{2x^3}$$

1.31 problem 31

Internal problem ID [2667]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(y)]']]

$$y + x(\ln(x) + y^2)y' = 0$$

/

Solution by Maple

Time used: 0.0 (sec). Leaf size: 275

 $dsolve((y(x))+x*(y(x)^2+ln(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$\begin{split} y(x) &= \frac{\left(-12c_1 + 4\sqrt{4\ln(x)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} - \frac{2\ln(x)}{\left(-12c_1 + 4\sqrt{4\ln(x)^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ y(x) &= -\frac{\left(-12c_1 + 4\sqrt{4\ln(x)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{4} + \frac{\ln(x)}{\left(-12c_1 + 4\sqrt{4\ln(x)^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &- \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4\ln(x)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2\ln(x)}{\left(-12c_1 + 4\sqrt{4\ln(x)^3 + 9c_1^2}\right)^{\frac{1}{3}}}\right)}{2} \\ y(x) &= -\frac{\left(-12c_1 + 4\sqrt{4\ln(x)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{4} + \frac{\ln(x)}{\left(-12c_1 + 4\sqrt{4\ln(x)^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4\ln(x)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2\ln(x)}{\left(-12c_1 + 4\sqrt{4\ln(x)^3 + 9c_1^2}\right)^{\frac{1}{3}}}\right)} \\ &+ \frac{2\ln(x)}{\left(-12c_1 + 4\sqrt{4\ln(x)^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &+ \frac{2\ln(x)}{\left(-12c_1 + 4\sqrt{4\ln($$

✓ Solution by Mathematica

Time used: 1.121 (sec). Leaf size: 233

DSolve[(y[x])+x*(y[x]^2+Log[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\sqrt[3]{\sqrt{4\log^3(x) + 9c_1^2 + 3c_1}}}{\sqrt[3]{2}} - \frac{\sqrt[3]{2\log(x)}}{\sqrt[3]{\sqrt{4\log^3(x) + 9c_1^2 + 3c_1}}}$$

$$y(x) \to \frac{2\sqrt[3]{-2}\log(x) + (-2)^{2/3} \left(\sqrt{4\log^3(x) + 9c_1^2 + 3c_1}\right)^{2/3}}{2\sqrt[3]{\sqrt{4\log^3(x) + 9c_1^2 + 3c_1}}}$$

$$y(x) \to -\frac{2(-1)^{2/3}\log(x) + \sqrt[3]{-2} \left(\sqrt{4\log^3(x) + 9c_1^2 + 3c_1}\right)^{2/3}}{2^{2/3}\sqrt[3]{\sqrt{4\log^3(x) + 9c_1^2 + 3c_1}}}$$

$$y(x) \to 0$$

1.32 problem 32

Internal problem ID [2668]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 32.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x),G(x)]'], [_Abel,

$$x^{2} + 2x + y + (3x^{2}y - x)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

 $dsolve((x^2+2*x+y(x))+(3*x^2*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{-1 + \sqrt{-12\ln(x)x^2 - 6c_1x^2 - 6x^3 + 1}}{3x}$$
$$y(x) = \frac{1 + \sqrt{-12\ln(x)x^2 - 6c_1x^2 - 6x^3 + 1}}{3x}$$

✓ Solution by Mathematica

Time used: 0.506 (sec). Leaf size: 94

 $DSolve[(x^2+2*x+y[x])+(3*x^2*y[x]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{3} \left(\frac{1}{x} - \sqrt{\frac{1}{x^2}} \sqrt{-6x^3 - 12x^2 \log(x) + 9c_1 x^2 + 1} \right)$$
$$y(x) \to \frac{1 + \sqrt{\frac{1}{x^2}} x \sqrt{-6x^3 - 12x^2 \log(x) + 9c_1 x^2 + 1}}{3x}$$

1.33 problem 33

Internal problem ID [2669]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 33.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$y^{2} + (yx + y^{2} - 1)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve((y(x)^2)+(x*y(x)+y(x)^2-1)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = e^{\text{RootOf}(-e^2 - Z - 2x e^{-Z} + 2c_1 + 2 - Z)}$$

✓ Solution by Mathematica

Time used: 0.148 (sec). Leaf size: 30

 $DSolve[(y[x]^2)+(x*y[x]+y[x]^2-1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$x = \frac{\log(y(x)) - \frac{y(x)^2}{2}}{y(x)} + \frac{c_1}{y(x)}, y(x)$$

1.34 problem 34

Internal problem ID [2670]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 34.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational]

$$3x^2 + 3y^2 + x(x^2 + 3y^2 + 6y)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(3*(x^2+y(x)^2)+x*(x^2+3*y(x)^2+6*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$c_1 + e^{y(x)} \left(\frac{x^3}{3} + y(x)^2 x \right) = 0$$

✓ Solution by Mathematica

Time used: 0.141 (sec). Leaf size: 26

Solve
$$\left[x^3 e^{y(x)} + 3x e^{y(x)} y(x)^2 = c_1, y(x)\right]$$

1.35 problem 35

Internal problem ID [2671]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 35.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$2y(x+y+2) + (y^2 - x^2 - 4x - 1)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 55

 $dsolve(2*y(x)*(x+y(x)+2)+(y(x)^2-x^2-4*x-1)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -x - 2 + \frac{c_1}{2} - \frac{\sqrt{c_1^2 - 4c_1x - 8c_1 + 12}}{2}$$

$$y(x) = -x - 2 + \frac{c_1}{2} + \frac{\sqrt{c_1^2 - 4c_1x - 8c_1 + 12}}{2}$$

✓ Solution by Mathematica

Time used: 0.402 (sec). Leaf size: 74

 $DSolve[2*y[x]*(x+y[x]+2)+(y[x]^2-x^2-4*x-1)*y'[x] ==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2} \left(-2x - \sqrt{4(-4+c_1)x - 4 + {c_1}^2} - c_1 \right)$$

$$y(x) \to \frac{1}{2} \left(-2x + \sqrt{4(-4+c_1)x - 4 + c_1^2} - c_1 \right)$$

$$y(x) \to 0$$

1.36 problem 36

Internal problem ID [2672]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 36.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

$$2 + y^2 + 2x + 2yy' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve((2+y(x)^2+2*x)+(2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{c_1 \mathrm{e}^{-x} - 2x}$$

$$y(x) = -\sqrt{c_1 \mathrm{e}^{-x} - 2x}$$

✓ Solution by Mathematica

Time used: 3.319 (sec). Leaf size: 43

 $DSolve[(2+y[x]^2+2*x)+(2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{-2x + c_1 e^{-x}}$$

$$y(x) \rightarrow \sqrt{-2x + c_1 e^{-x}}$$

1.37 problem 37

Internal problem ID [2673]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 37.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational]

$$2xy^{2} - y + (y^{2} + x + y) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $dsolve((2*x*y(x)^2-y(x))+(y(x)^2+x+y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = e^{\text{RootOf}(x^2 e^{-Z} + e^2 - Z + e^{-Z}c_1 + \underline{Z}e^{-Z} - x)}$$

✓ Solution by Mathematica

Time used: 0.174 (sec). Leaf size: 22

 $DSolve[(2*x*y[x]^2-y[x])+(y[x]^2+x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions] -> True]$

Solve
$$\left[x^2 - \frac{x}{y(x)} + y(x) + \log(y(x)) = c_1, y(x)\right]$$

1.38 problem 38

Internal problem ID [2674]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 38.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class A']]

$$y(x+y) + (x+2y-1)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 93

dsolve(y(x)*(x+y(x))+(x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\frac{\left(e^{x}x - e^{x} - \sqrt{x^{2}e^{2x} - 2e^{2x}x + e^{2x} - 4c_{1}e^{x}}\right)e^{-x}}{2}$$
$$y(x) = -\frac{\left(e^{x}x - e^{x} + \sqrt{x^{2}e^{2x} - 2e^{2x}x + e^{2x} - 4c_{1}e^{x}}\right)e^{-x}}{2}$$

✓ Solution by Mathematica

Time used: 11.747 (sec). Leaf size: 80

DSolve[y[x]*(x+y[x])+(x+2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} \left(-x - \frac{\sqrt{e^x(x-1)^2 + 4c_1}}{\sqrt{e^x}} + 1 \right)$$

$$y(x) o \frac{1}{2} \Biggl(-x + \frac{\sqrt{e^x(x-1)^2 + 4c_1}}{\sqrt{e^x}} + 1 \Biggr)$$

1.39 problem 39

Internal problem ID [2675]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 39.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$2x(x^{2} - \sin(y) + 1) + (x^{2} + 1)\cos(y)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(2*x*(x^2-sin(y(x))+1)+(x^2+1)*cos(y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\arcsin(\ln(x^2+1)x^2 + c_1x^2 + \ln(x^2+1) + c_1)$$

✓ Solution by Mathematica

Time used: 7.301 (sec). Leaf size: 25

 $DSolve[2*x*(x^2-Sin[y[x]]+1)+(x^2+1)*Cos[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> Trivial Cos[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> Trivial Cos[y[x]]*y'[x]=0,y[x],x,IncludeSingularSolutions -> Trivial Cos[x]*y'[x]=0,y[x]=0$

$$y(x) \to -\arcsin((x^2+1)(\log(x^2+1)+8c_1))$$

1.40 problem 41

Internal problem ID [2676]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 41.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Riccati]

$$x^2 + y + y^2 - y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $dsolve((x^2+y(x)+y(x)^2)-x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \tan(x + c_1) x$$

✓ Solution by Mathematica

Time used: 0.191 (sec). Leaf size: 12

 $DSolve[(x^2+y[x]+y[x]^2)-x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \tan(x + c_1)$$

1.41 problem 42

Internal problem ID [2677]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 42.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _dAlembert]

$$x - \sqrt{x^2 + y^2} + (y - \sqrt{x^2 + y^2})y' = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 58

 $dsolve((x-sqrt(x^2+y(x)^2))+(y(x)-sqrt(x^2+y(x)^2))*diff(y(x),x)=0,y(x), singsol=all)$

$$-c_{1} + \frac{\sqrt{x^{2} + y(x)^{2}}}{x^{2}y(x)} + \frac{1}{xy(x)} + \frac{1}{y(x)^{2}} + \frac{1}{x^{2}} + \frac{\sqrt{x^{2} + y(x)^{2}}}{xy(x)^{2}} = 0$$

✓ Solution by Mathematica

Time used: 0.668 (sec). Leaf size: 34

 $\textbf{DSolve}[(x-\textbf{Sqrt}[x^2+y[x]^2])+(y[x]-\textbf{Sqrt}[x^2+y[x]^2])*y'[x] ==0, y[x], x, IncludeSingular Solutions]$

$$y(x) o -rac{e^{c_1}(2x + e^{c_1})}{2(x + e^{c_1})}$$

 $y(x) o 0$

1.42 problem 43

Internal problem ID [2678]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 43.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$y\sqrt{1+y^2} + (x\sqrt{1+y^2} - y)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve((y(x)*sqrt(1+y(x)^2))+(x*sqrt(1+y(x)^2)-y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$x - \frac{\sqrt{y(x)^2 + 1} + c_1}{y(x)} = 0$$

✓ Solution by Mathematica

Time used: 0.438 (sec). Leaf size: 82

 $\textbf{DSolve}[(y[x]*Sqrt[1+y[x]^2]) + (x*Sqrt[1+y[x]^2]-y[x])*y'[x] == 0, y[x], x, IncludeSingularSolutions]$

$$y(x) \to \frac{c_1 x - \sqrt{x^2 - 1 + c_1^2}}{x^2 - 1}$$

$$y(x) o rac{\sqrt{x^2 - 1 + c_1^2} + c_1 x}{x^2 - 1}$$

$$y(x) \to 0$$

$$y(x) \to -i$$

$$y(x) \to i$$

1.43 problem 44

Internal problem ID [2679]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 44.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'class G'],

$$y^2 - (yx + x^3)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

 $dsolve((y(x)^2)-(x*y(x)+x^3)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \left(-x - \sqrt{x^2 + c_1}\right)x$$

$$y(x) = \left(-x + \sqrt{x^2 + c_1}\right)x$$

✓ Solution by Mathematica

Time used: 0.487 (sec). Leaf size: 67

 $DSolve[(y[x]^2)-(x*y[x]+x^3)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow -x^2 \Biggl(1 + \sqrt{rac{1}{x^3}} \sqrt{x(x^2 + c_1)}\Biggr)$$

$$y(x) \to x^2 \left(-1 + \sqrt{\frac{1}{x^3}} \sqrt{x(x^2 + c_1)}\right)$$

$$y(x) \to 0$$

1.44 problem 45

Internal problem ID [2680]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 45.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[homogeneous, 'class D']]

$$y - 2x^3 \tan\left(\frac{y}{x}\right) - y'x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve(y(x)-2*x^3*tan(y(x)/x)-x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \arcsin\left(c_1 \mathrm{e}^{-x^2}\right) x$$

✓ Solution by Mathematica

Time used: 58.921 (sec). Leaf size: 23

 $DSolve[y[x]-2*x^3*Tan[y[x]/x]-x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \arcsin\left(e^{-x^2+c_1}\right)$$

 $y(x) \to 0$

1.45 problem 46

Internal problem ID [2681]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 46.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'class G'],

$$2x^{2}y^{2} + y + (x^{3}y - x)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

 $dsolve((2*x^2*y(x)^2+y(x))+(x^3*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = x e^{-\text{LambertW}(-x^3 e^{-3c_1}) - 3c_1}$$

✓ Solution by Mathematica

Time used: 2.227 (sec). Leaf size: 33

 $DSolve[(2*x^2*y[x]^2+y[x])+(x^3*y[x]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow -rac{W\left(e^{-1+rac{9c_1}{2^{2/3}}}x^3
ight)}{x^2}$$
 $y(x)
ightarrow 0$

1.46 problem 47

Internal problem ID [2682]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 47.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$y^2 + (yx + \tan(yx))y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

 $dsolve((y(x)^2)+(x*y(x)+tan(x*y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\text{RootOf}(\underline{Zc_1 \sin(\underline{Z}) - x})}{x}$$

✓ Solution by Mathematica

Time used: 0.255 (sec). Leaf size: 14

 $DSolve[(y[x]^2)+(x*y[x]+Tan[x*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$Solve[y(x)\sin(xy(x)) = c_1, y(x)]$$

1.47 problem 48

Internal problem ID [2683]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 48.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$2y^{4}x - y + (4x^{3}y^{3} - x)y' = 0$$

X Solution by Maple

 $dsolve((2*x*y(x)^4-y(x))+(4*x^3*y(x)^3-x)*diff(y(x),x)=0,y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[(2*x*y[x]^4-y[x])+(4*x^3*y[x]^3-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Not solved

1.48 problem 49

Internal problem ID [2684]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 49.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$x^{2} + y^{3} + y + (x^{3} + y^{2} - x)y' = 0$$

X Solution by Maple

 $dsolve((x^2+y(x)^3+y(x))+(x^3+y(x)^2-x)*diff(y(x),x)=0,y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(x^2+y[x]^3+y[x])+(x^3+y[x]^2-x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Not solved

1.49 problem 50

Internal problem ID [2685]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 50.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$y(1+y^2) + x(y^2 - x + 1)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 153

 $dsolve((y(x)*(y(x)^2+1))+(x*(y(x)^2-x+1))*diff(y(x),x)=0,y(x), singsol=all)$

$$-\sqrt{-\frac{2x^2}{(x-1)^2\left(\frac{1}{y(x)^2}-\frac{1}{x-1}\right)}} \; \operatorname{arctanh}\left(\frac{\sqrt{-\frac{2x^2}{(x-1)^2\left(\frac{1}{y(x)^2}-\frac{1}{x-1}\right)}}(x-1)}{\sqrt{\frac{2x+\frac{2}{y(x)^2}-\frac{1}{x-1}}{x-1}}}\right) + \sqrt{\frac{2x+\frac{2}{\frac{1}{y(x)^2}-\frac{1}{x-1}}-2}{x-1}}{x-1}}\right) \\ c_1 + \frac{\sqrt{-\frac{2x^2}{y(x)^2-\frac{1}{x-1}}}}{\sqrt{-\frac{2x^2}{(x-1)^2\left(\frac{1}{y(x)^2}-\frac{1}{x-1}\right)}}}\right) = 0$$

✓ Solution by Mathematica

Time used: 0.075 (sec). Leaf size: 34

$$Solve\left[\frac{1}{2}\left(-\arctan(y(x)) - \frac{1}{y(x)}\right) + \frac{1}{2xy(x)} = c_1, y(x)\right]$$

1.50 problem 51

Internal problem ID [2686]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 51.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], [_Abel, '2nd type', 'cl

$$y^2 + (e^x - y)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 16

 $dsolve((y(x)^2)+(exp(x)-y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -e^x \text{LambertW} \left(-c_1 e^{-x} \right)$$

✓ Solution by Mathematica

Time used: 6.641 (sec). Leaf size: 306

$$Solve \begin{bmatrix} \frac{1}{9} 2^{2/3} \left(\frac{\left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right) \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^{3x}} (e^x - y(x))} + 1\right) \left(\left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} - 1\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right)\right) + \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^x - y(x)}} - 1\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right)\right) + \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^x - y(x)}} - 1\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right)\right) + \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^x - y(x)}} - 1\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right)\right) + \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^{3x}}} - \frac{1}{\sqrt[3]{e^{3x}}} + 2\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right)\right) + \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^{3x}}} - \frac{1}{\sqrt[3]{e^{3x}}} + 2\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right)\right) + \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^{3x}}} - \frac{1}{\sqrt[3]{e^{3x}}} + 2\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right)\right) + \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^{3x}}} - \frac{1}{\sqrt[3]{e^{3x}}} + 2\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}} + 2\right)\right) + \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^{3x}}} - \frac{1}{\sqrt[3]{e^{3x}}} + 2\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}} + 2\right)\right) + \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^{3x}}} - \frac{1}{\sqrt[3]{e^{3x}}} + 2\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}} + 2\right)\right) + \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^{3x}}} - \frac{1}{\sqrt[3]{e^{3x}}} + 2\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}} + 2\right)\right) + \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^x - y(x)}} - \frac{1}{\sqrt[3]{e^x - y(x)}} + 2\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^x}{e^x - y(x)}} + 2\right)\right) + \left(\frac{e^x - \frac{3e^x}{e^x - y(x)}} + 2\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^x}{e^x - y(x)}} + 2\right)\right) + \left(\frac{e^x - \frac{3e^x}{e^x - y(x)}} + 2\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^x}{e^x - y(x)}} + 2\right)\right)$$

1.51 problem 52

Internal problem ID [2687]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 52.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'class G'],

$$x^{2}y^{2} - 2y + (x^{3}y - x)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $dsolve((x^2*y(x)^2-2*y(x))+(x^3*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{1}{\text{LambertW}\left(-\frac{c_1}{x}\right)x^2}$$

✓ Solution by Mathematica

Time used: 6.387 (sec). Leaf size: 35

 $DSolve[(x^2*y[x]^2-2*y[x])+(x^3*y[x]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{x^2 W\left(\frac{e^{-1+\frac{9c_1}{2^{2/3}}}}{x}\right)}$$

$$y(x) \to 0$$

1.52 problem 53

Internal problem ID [2688]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 53.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$2x^{3}y + y^{3} - (x^{4} + 2xy^{2})y' = 0$$

✓ Solution by Maple

Time used: 0.5 (sec). Leaf size: 148

$$dsolve((2*x^3*y(x)+y(x)^3)-(x^4+2*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$$

$$y(x) = \frac{x^{\frac{3}{2} \operatorname{RootOf}\left(-16 + x^{7} c_{1} Z^{12} - 4 c_{1} x^{\frac{11}{2}} Z^{10} + 6 c_{1} x^{4} Z^{8} + \left(128 x^{\frac{9}{2}} - 4 c_{1} x^{\frac{5}{2}}\right) Z^{6} + \left(-192 x^{3} + c_{1} x\right) Z^{12}}{2 \operatorname{RootOf}\left(-16 + x^{7} c_{1} Z^{12} - 4 c_{1} x^{\frac{11}{2}} Z^{10} + 6 c_{1} x^{4} Z^{8} + \left(128 x^{\frac{9}{2}} - 4 c_{1} x^{\frac{5}{2}}\right) Z^{6} + \left(-192 x^{3} + c_{1} x\right) Z^{12}}\right)$$

✓ Solution by Mathematica

Time used: 60.163 (sec). Leaf size: 2019

$$y(x) \rightarrow \frac{1}{\sqrt{48x^3 + \frac{e^{4c_1}x^2}{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}}} + e^{2c_1}x\left(-1 - \frac{e^{4c_1}x^2}{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}}}\right)} + e^{2c_1}x\left(-1 - \frac{e^{4c_1}x^2}{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}}}\right)$$

$$y(x) = \sqrt{\frac{48x^3 + \frac{e^{4c_1}x^2}{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}}} + e^{2c_1}x\left(-1 - \frac{e^{4c_1}x^2}{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}}}\right)}$$

$$y(x) \rightarrow \underbrace{\begin{bmatrix} i(\sqrt{3}+i)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48x^3\sqrt{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48x^3\sqrt{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48x^3\sqrt{-2456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48x^3\sqrt{-2456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48x^3\sqrt{-2456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48x^3\sqrt{-2456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48x^3\sqrt{-2456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48x^3\sqrt{-2456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48x^3\sqrt{-e^{4c_1}x^2 + e^{2c_1}}\right) - 2e^{2c_1}x\left(48x^3\sqrt{-e^{4c_1}x^2 + e^{4c_1}x^2 + e^{2c_1}}\right) - 2e^{2c_1}x\left(48x^3\sqrt{-e^{4c_1}x^2 + e^{4c_1}x^2 + e^{4c_1}}\right) - 2e^{2c_1}x\left(48x^3\sqrt{-e^{4c_1}x^2 + e^{4c_1}x^2 + e^{4c_1}}\right) - 2e^{2c_1}x\left(48x^3\sqrt{-e^{4c_1}x^2 + e^{4c_1}x^2 + e^{4c_1}}\right) - 2e^{2c_1}x\left(48x^3\sqrt{-e^{4c_1}x^2 + e^{4c_1}x^2 + e^{4c_1}x^$$

$$y(x) = \sqrt{\frac{i(\sqrt{3}+i)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48i\left(\frac{x^3}{2}\right)\right)}} = \sqrt{\frac{i(\sqrt{3}+i)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48i\left(\frac{x^3}{2}\right)\right)}}{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48i\left(\frac{x^3}{2}\right)\right)}}$$

$$y(x) \rightarrow \frac{\sqrt{\left(-1 - i\sqrt{3}\right)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} + i\left(\sqrt{3} + i\right)}{\sqrt[3]{-3456e^2}}$$

$$y(x) = \sqrt{\frac{\left(-1 - i\sqrt{3}\right)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} + i\left(\sqrt{3} + i\right)\left(-108x^2 + e^{2c_1}\right)}{\sqrt[3]{-3456e^{2c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}} + i\left(\sqrt{3} + i\right)\left(-108x^2 + e^{2c_1}\right)}$$

1.53 problem 54

Internal problem ID [2689]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 54.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$1 + \cos(x) y - \sin(x) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve((1+y(x)*cos(x))-(sin(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (-\cot(x) + c_1)\sin(x)$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 15

DSolve[(1+y[x]*Cos[x])-(Sin[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\cos(x) + c_1\sin(x)$$

1.54 problem 55

Internal problem ID [2690]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 55.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\left(\sin\left(y\right)^{2} + x\cot\left(y\right)\right)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 1223

 $dsolve((sin(y(x))^2+x*cot(y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$=\arctan\left(-\frac{\sqrt{6\left(108x^{2}+12\sqrt{12x^{6}+81x^{4}}\right)^{\frac{1}{3}}-\frac{72x^{2}}{\left(108x^{2}+12\sqrt{12x^{6}+81x^{4}}\right)^{\frac{1}{3}}}}}{6},\frac{\left(6\left(108x^{2}+12\sqrt{12x^{6}+81x^{4}}\right)^{\frac{1}{3}}-\frac{72x^{2}}{\left(108x^{2}+12\sqrt{12x^{6}+81x^{4}}\right)^{\frac{1}{3}}}}{216x}\right)}{6}$$

$$y(x) = \arctan\left(\frac{\sqrt{6\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}} - \frac{72x^2}{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}}}}{6}\right)}{6}$$

$$-\frac{\left(6 \left(108 x^2+12 \sqrt{12 x^6+81 x^4}\right)^{\frac{1}{3}}-\frac{72 x^2}{\left(108 x^2+12 \sqrt{12 x^6+81 x^4}\right)^{\frac{3}{3}}}\right)^{\frac{3}{2}}}{216 x}$$

$$y(x) = \arctan \left(-\frac{\sqrt{-3\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}} + \frac{36x^2}{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}} - 18i\sqrt{3}\left(\frac{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}}{6} + \frac{36x^2}{6}\right)^{\frac{1}{3}}}{6} + \frac{36x^2}{6} + \frac{36$$

$$= \arctan \left(\frac{\sqrt{-3\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}} + \frac{36x^2}{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}} - 18i\sqrt{3}\left(\frac{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}}{6} + \frac{6}{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}} + \frac{36x^2}{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}} - 18i\sqrt{3}\left(\frac{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}}{6} + \frac{6}{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}} + \frac{18i\sqrt{3}\left(\frac{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}}{6} + \frac{18i\sqrt{3}\left(\frac{\left$$

$$-\frac{\left(-3 \left(108 x^2+12 \sqrt{12 x^6+81 x^4}\right)^{\frac{1}{3}}+\frac{36 x^2}{\left(108 x^2+12 \sqrt{12 x^6+81 x^4}\right)^{\frac{1}{3}}}-18 i \sqrt{3} \left(\frac{\left(108 x^2+12 \sqrt{12 x^6+81 x^4}\right)^{\frac{1}{3}}}{6}+\frac{108 x^2+12 \sqrt{12 x^6+81 x^4}}{216 x}\right)^{\frac{1}{3}}}{216 x}$$

y(x)

✓ Solution by Mathematica

Time used: 0.258 (sec). Leaf size: 1647

$$y(x) \to -\arccos\left(-\sqrt{-\frac{\sqrt[3]{\frac{2}{3}x^2}}{\sqrt[3]{\sqrt{3}\sqrt{x^4(4x^2+27)}-9x^2}}} + \frac{\sqrt[3]{\sqrt{3}\sqrt{x^4(4x^2+27)}-9x^2}}{\sqrt[3]{2}3^{2/3}} + 1\right)$$

$$y(x) \to \arccos\left(-\sqrt{-\frac{\sqrt[3]{\frac{2}{3}x^2}}{\sqrt[3]{\sqrt[3]{\sqrt{x^4(4x^2+27)}-9x^2}}} + \frac{\sqrt[3]{\sqrt[3]{\sqrt[3]{\sqrt{x^4(4x^2+27)}-9x^2}}}{\sqrt[3]{2}3^{2/3}} + 1\right)$$

$$y(x) \to -\arccos\left(\sqrt{-\frac{\sqrt[3]{\frac{2}{3}x^2}}{\sqrt[3]{\sqrt[3]{\sqrt{x^4(4x^2+27)}-9x^2}}} + \frac{\sqrt[3]{\sqrt[3]{\sqrt[3]{\sqrt{x^4(4x^2+27)}-9x^2}}}{\sqrt[3]{2}3^{2/3}} + 1\right)$$

$$y(x) \to \arccos\left(\sqrt{-\frac{\sqrt[3]{\frac{2}{3}}x^2}{\sqrt[3]{\sqrt{3}\sqrt{x^4(4x^2+27)}-9x^2}} + \frac{\sqrt[3]{\sqrt{3}\sqrt{x^4(4x^2+27)}-9x^2}}{\sqrt[3]{2}3^{2/3}} + 1}\right)$$

$$y(x) \rightarrow -\arccos\left(-\sqrt{\frac{\left(\sqrt{3}-3i\right)x^{2}}{2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^{4}\left(4x^{2}+27\right)}-9x^{2}}} + \frac{1}{12}\left(-i2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^{4}\left(4x^{2}+27\right)}-9x^{2}}-2^{2/3}\right)}\right)$$

$$y(x) \rightarrow \arccos\left(-\sqrt{\frac{\left(\sqrt{3}-3i\right)x^{2}}{2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^{4}\left(4x^{2}+27\right)}-9x^{2}}}} + \frac{1}{12}\left(-i2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^{4}\left(4x^{2}+27\right)}-9x^{2}}-2^{2/3}\sqrt[3]{x^{4}\left(4x^{2}+27\right)}\right)\right)$$

$$y(x) \rightarrow -\arccos\left(\sqrt{\frac{\left(\sqrt{3}-3i\right)x^{2}}{2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^{4}\left(4x^{2}+27\right)}-9x^{2}}}} + \frac{1}{12}\left(-i2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^{4}\left(4x^{2}+27\right)}-9x^{2}}-2^{2/3}\sqrt[3]{x^{4}\left(4x^{2}+27\right)}\right)\right)$$

$$y(x) \rightarrow \arccos\left(\sqrt{\frac{\left(\sqrt{3}-3i\right)x^{2}}{2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^{4}\left(4x^{2}+27\right)}-9x^{2}}}} + \frac{1}{12}\left(-i2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^{4}\left(4x^{2}+27\right)}-9x^{2}}-2^{2/3}\sqrt[3]{3x^{2}}\right)\right)$$

$$y(x) \rightarrow \left(\frac{\sqrt{3} + 3i}{x^2} \right) x^2 \qquad 1 \left(\frac{\sqrt{3} + 3i}{x^2} \right) x^2 \qquad 3 \left(\frac{\sqrt{3} + 3i}{x^2}$$

1.55 problem 56

Internal problem ID [2691]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 56.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$1 - \left(y - 2yx\right)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

dsolve(1-(y(x)-2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \sqrt{-\ln(-1+2x) + c_1}$$
$$y(x) = -\sqrt{-\ln(-1+2x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 45

 $DSolve[1-(y[x]-2*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{-\log(1-2x) + 2c_1}$$

$$y(x) \to \sqrt{-\log(1-2x) + 2c_1}$$

1.56 problem 57

Internal problem ID [2692]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 57.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$1 - (1 + 2x \tan(y)) y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 41

dsolve(1-(1+2*x*tan(y(x)))*diff(y(x),x)=0,y(x), singsol=all)

$$\frac{c_1}{2\cos(2y(x)) + 2} + x - \frac{2y(x) + \sin(2y(x))}{2\cos(2y(x)) + 2} = 0$$

✓ Solution by Mathematica

Time used: 0.147 (sec). Leaf size: 36

 $DSolve[1-(1+2*x*Tan[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[x = \left(\frac{y(x)}{2} + \frac{1}{4}\sin(2y(x))\right)\sec^2(y(x)) + c_1\sec^2(y(x)), y(x)\right]$$

1.57 problem 58

Internal problem ID [2693]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 58.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$\left(y^3 + \frac{x}{y}\right)y' - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve((y(x)^3+x/y(x))*diff(y(x),x)=1,y(x), singsol=all)$

$$-c_1 y(x) + x - \frac{y(x)^4}{3} = 0$$

✓ Solution by Mathematica

Time used: 0.102 (sec). Leaf size: 997

 $DSolve[(y[x]^3+x/y[x])*y'[x]==1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) & \to \frac{1}{2} \sqrt{\frac{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}} - \frac{4\sqrt[3]{2x}}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} - \frac{6c_1}{\sqrt[3]{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} - \frac{6c_1}{\sqrt[3]{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^$$

1.58 problem 59

Internal problem ID [2694]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 59.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_exponential_symmetries]]

$$1 + \left(-y^2 + x\right)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 24

 $dsolve(1+(x-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$(x - y(x))^{2} + 2y(x) - 2 - e^{-y(x)}c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.123 (sec). Leaf size: 24

DSolve[1+($x-y[x]^2$)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$[x = y(x)^2 - 2y(x) + c_1 e^{-y(x)} + 2, y(x)]$$

1.59 problem 60

Internal problem ID [2695]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 60.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$y^{2} + (yx + y^{2} - 1)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(y(x)^2+(x*y(x)+y(x)^2-1)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = e^{\text{RootOf}(-e^2 - Z - 2x e^{-Z} + 2c_1 + 2 Z)}$$

✓ Solution by Mathematica

Time used: 0.132 (sec). Leaf size: 30

 $DSolve[y[x]^2+(x*y[x]+y[x]^2-1)*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$x = \frac{\log(y(x)) - \frac{y(x)^2}{2}}{y(x)} + \frac{c_1}{y(x)}, y(x)$$

1.60 problem 61

Internal problem ID [2696]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 61.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$y - (e^y + 2yx - 2x)y' = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 62

dsolve(y(x)=(exp(y(x))+2*x*y(x)-2*x)*diff(y(x),x),y(x), singsol=all)

$$y(x) = \text{RootOf}\left(_Z^2x - c_1 + _Z + e^{\text{RootOf}(-x e^2 - Z} - Z^2 + _Z e^{-Z} + c_1 - e^{-Z})}\right) e^{-\text{RootOf}(-x e^2 - Z} - Z^2 + _Z e^{-Z} + c_1 - e^{-Z})}$$

✓ Solution by Mathematica

Time used: 0.294 (sec). Leaf size: 34

 $DSolve[y[x] == (Exp[y[x]] + 2*x*y[x] - 2*x)*y'[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[x = \frac{e^{y(x)}(-y(x) - 1)}{y(x)^2} + \frac{c_1 e^{2y(x)}}{y(x)^2}, y(x) \right]$$

1.61 problem 62

Internal problem ID [2697]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 62.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$(2x+3)y' - y - \sqrt{2x+3} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve((2*x+3)*diff(y(x),x)=y(x)+sqrt(2*x+3),y(x), singsol=all)

$$y(x) = \left(\frac{\ln(2x+3)}{2} + c_1\right)\sqrt{2x+3}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 29

DSolve[(2*x+3)*y'[x]==y[x]+Sqrt[2*x+3],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}\sqrt{2x+3}(\log(2x+3)+2c_1)$$

1.62 problem 63

Internal problem ID [2698]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 63.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y + (y^2 e^y - x) y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $dsolve(y(x)+(y(x)^2*exp(y(x))-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$x - (-e^{y(x)} + c_1) y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.198 (sec). Leaf size: 19

 $DSolve[y[x]+(y[x]^2*Exp[y[x]]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

Solve
$$[x = -e^{y(x)}y(x) + c_1y(x), y(x)]$$

1.63 problem 64

Internal problem ID [2699]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 64.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - 1 - 3y\tan(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(x),x)=1+3*y(x)*tan(x),y(x), singsol=all)

$$y(x) = \frac{9\sin(x) + \sin(3x) + 12c_1}{3\cos(3x) + 9\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 26

DSolve[y'[x]==1+3*y[x]*Tan[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{12} \sec^3(x)(9\sin(x) + \sin(3x) + 12c_1)$$

1.64 problem 65

Internal problem ID [2700]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 65.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [linear]

$$(\cos(x) + 1) y' - \sin(x) (\sin(x) + \cos(x) \sin(x) - y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve((1+cos(x))*diff(y(x),x)=sin(x)*(sin(x)+sin(x)*cos(x)-y(x)),y(x), singsol=all)

$$y(x) = (-\sin(x) + x + c_1)(\cos(x) + 1)$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 24

DSolve[(1+Cos[x])*y'[x]==Sin[x]*(Sin[x]+Sin[x]*Cos[x]-y[x]),y[x],x,IncludeSingularSolutions

$$y(x) \rightarrow \cos^2\left(\frac{x}{2}\right)(2x - 2\sin(x) + c_1)$$

1.65 problem 66

Internal problem ID [2701]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 66.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \left(\sin\left(x\right)^2 - y\right)\cos\left(x\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)=(sin(x)^2-y(x))*cos(x),y(x), singsol=all)$

$$y(x) = \frac{5}{2} + e^{-\sin(x)}c_1 - \frac{\cos(2x)}{2} - 2\sin(x)$$

✓ Solution by Mathematica

Time used: 0.136 (sec). Leaf size: 30

 $DSolve[y'[x] == (Sin[x]^2-y[x])*Cos[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -2\sin(x) - \frac{1}{2}\cos(2x) + c_1e^{-\sin(x)} + \frac{5}{2}$$

1.66 problem 68

Internal problem ID [2702]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 68.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$(x+1)y' - y - x(x+1)^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((1+x)*diff(y(x),x)-y(x)=x*(1+x)^2,y(x), singsol=all)$

$$y(x) = \left(\frac{x^2}{2} + c_1\right)(x+1)$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 20

 $DSolve[(1+x)*y'[x]-y[x]==x*(1+x)^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}(x+1)(x^2+2c_1)$$

1.67 problem 69

Internal problem ID [2703]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 69.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]'

$$1 + y + (x - y(1 + y)^{2}) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve((1+y(x))+(x-y(x)*(1+y(x))^2)* diff(y(x),x)=0,y(x), singsol=all)$

$$x - \frac{\frac{y(x)^4}{4} + \frac{2y(x)^3}{3} + \frac{y(x)^2}{2} + c_1}{y(x) + 1} = 0$$

✓ Solution by Mathematica

Time used: 33.344 (sec). Leaf size: 1586

DSolve[(1+y[x])+(x-y[x]*(1+y[x])^2)* y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{6} \left(-\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3} + 1 + 12c_1} + 6\sqrt[3]{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3} + 1 + 12c_1} + 6\sqrt[3]{27x} - \sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}}\sqrt{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3} + 1 + 12c_1}} - 4\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}\sqrt{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3} + 1 + 12c_1}} - 4\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}\sqrt{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3} + 1 + 12c_1}} - 4\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}\sqrt{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3} + 1 + 12c_1}} - 4\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}\sqrt{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3} + 1 + 12c_1}} - 4\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}\sqrt{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3} + 1 + 12c_1}} - 4\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}\sqrt{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3} + 1 + 12c_1}}} - 4\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}\sqrt{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3} + 1 + 12c_1}}} - 4\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}\sqrt{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3}}} - 4\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}\sqrt{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3}}} - 4\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}\sqrt{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3}}} - 4\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}\sqrt{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3}}} - 4\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{3}\sqrt{27x^2 - \frac{1}{432}}\sqrt{27x^2 - \frac{1}{432}\sqrt{27x^2 - \frac{1}{432}}\sqrt{27x^2 - \frac{1}{432}\sqrt{27x^2 - \frac{1}{432}\sqrt{27x^2 - \frac{1}{432}\sqrt{27x^2 - \frac{1}{432}}}}} - 4\sqrt{\frac{16624(27x^2 + 1 + 12c_1)^2 - \frac{1}{432}\sqrt{27x^2 - \frac{1}{432}\sqrt{27x^2 - \frac{1}{432}}}}} - 4\sqrt{\frac{16624(27x^2 + 1 + 12c_1)^2 - \frac{1}{432}\sqrt{27x^2 - \frac{1}{432}}}}}$$

$$\frac{1}{6} \left(-\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3 + 1 + 12c_1}} + 6\sqrt[3]{27x^2 - \frac{1}{432}} + 6\sqrt[3]{27x^2 - \frac{1}{432}} \right) + 3\sqrt[3]{\frac{8(27x + 2)}{27x^2}} + 6\sqrt[3]{27x^2} + 6\sqrt[3]{27x^2$$

$$\sqrt{9\sqrt{\frac{-24x+6+72c_1}{\sqrt[3]{27x^2-\frac{1}{432}}\sqrt{186624\left(27x^2+1+12c_1\right)^2-4(-144x+36+432c_1)^3}+1+12c_1}} + 6\sqrt[3]{2}$$

- 4

()

1.68 problem 71.1

Internal problem ID [2704]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 71.1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Riccati]

$$y' + y^2 - x^2 - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(diff(y(x),x)+y(x)^2=1+x^2,y(x), singsol=all)$

$$y(x) = x - \frac{e^{-x^2}}{c_1 - \frac{\sqrt{\pi} \operatorname{erf}(x)}{2}}$$

Solution by Mathematica

Time used: 0.139 (sec). Leaf size: 36

DSolve[y'[x]+y[x]^2==1+x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + \frac{2e^{-x^2}}{\sqrt{\pi} \text{erf}(x) + 2c_1}$$

$$y(x) \to x$$

1.69 problem 72

Internal problem ID [2705]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 72.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$3y'x - 3xy^4 \ln(x) - y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 234

 $dsolve(3*x*diff(y(x),x)-3*x*y(x)^4*ln(x)-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{\left(-4x(6\ln(x)x^2 - 3x^2 - 4c_1)^2\right)^{\frac{1}{3}}}{6\ln(x)x^2 - 3x^2 - 4c_1}$$

$$y(x) = -\frac{\left(-4x(6\ln(x)x^2 - 3x^2 - 4c_1)^2\right)^{\frac{1}{3}}}{2\left(6\ln(x)x^2 - 3x^2 - 4c_1\right)} - \frac{i\sqrt{3}\left(-4x(6\ln(x)x^2 - 3x^2 - 4c_1)^2\right)^{\frac{1}{3}}}{2\left(6\ln(x)x^2 - 3x^2 - 4c_1\right)}$$

$$y(x) = -\frac{\left(-4x(6\ln(x)x^2 - 3x^2 - 4c_1)^2\right)^{\frac{1}{3}}}{2\left(6\ln(x)x^2 - 3x^2 - 4c_1\right)^2} + \frac{i\sqrt{3}\left(-4x(6\ln(x)x^2 - 3x^2 - 4c_1)^2\right)^{\frac{1}{3}}}{12\ln(x)x^2 - 6x^2 - 8c_1}$$

✓ Solution by Mathematica

Time used: 0.221 (sec). Leaf size: 120

DSolve[3*x*y'[x]-3*x*y[x]^4*Log[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{(-2)^{2/3}\sqrt[3]{x}}{\sqrt[3]{3x^2 - 6x^2 \log(x) + 4c_1}}$$
$$y(x) \to \frac{2^{2/3}\sqrt[3]{x}}{\sqrt[3]{3x^2 - 6x^2 \log(x) + 4c_1}}$$
$$y(x) \to -\frac{\sqrt[3]{-1}2^{2/3}\sqrt[3]{x}}{\sqrt[3]{3x^2 - 6x^2 \log(x) + 4c_1}}$$
$$y(x) \to 0$$

1.70 problem 73

Internal problem ID [2706]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 73.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'class G'],

$$y' - \frac{4x^3y^2}{yx^4 + 2} = 0$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 45

 $dsolve(diff(y(x),x)=(4*x^3*y(x)^2)/(x^4*y(x)+2),y(x), singsol=all)$

$$y(x) = \frac{x^4 - \sqrt{x^8 + 4c_1}}{2c_1}$$

$$y(x) = \frac{x^4 + \sqrt{x^8 + 4c_1}}{2c_1}$$

✓ Solution by Mathematica

Time used: 0.388 (sec). Leaf size: 56

 $DSolve[y'[x] == (4*x^3*y[x]^2)/(x^4*y[x]+2), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{-x^4 + \sqrt{x^8 + 4c_1}}$$

$$y(x) \to -\frac{2}{x^4 + \sqrt{x^8 + 4c_1}}$$

$$y(x) \to 0$$

1.71 problem 74

Internal problem ID [2707]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 74.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

$$y(6y^2 - x - 1) + 2y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 54

 $dsolve(y(x)*(6*y(x)^2-x-1)+2*x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{(c_1 e^{-x} + 6) x}}{c_1 e^{-x} + 6}$$

$$y(x) = -\frac{\sqrt{(c_1 e^{-x} + 6) x}}{c_1 e^{-x} + 6}$$

✓ Solution by Mathematica

Time used: 0.651 (sec). Leaf size: 65

 $DSolve[y[x]*(6*y[x]^2-x-1)+2*x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{e^{x/2}\sqrt{x}}{\sqrt{6e^x + c_1}}$$

$$y(x) \to \frac{e^{x/2}\sqrt{x}}{\sqrt{6e^x + c_1}}$$

$$y(x) \to 0$$

1.72 problem 75

Internal problem ID [2708]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 75.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

$$(x+1)(y'+y^2) - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve((1+x)*(diff(y(x),x)+y(x)^2)-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{2x+2}{x^2+2c_1+2x}$$

✓ Solution by Mathematica

Time used: 0.187 (sec). Leaf size: 27

 $DSolve[(1+x)*(y'[x]+y[x]^2)-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2(x+1)}{x(x+2) + 2c_1}$$
$$y(x) \to 0$$

1.73 problem 76

Internal problem ID [2709]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 76.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [Bernoulli]

$$xyy' + y^2 - \sin(x) = 0$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 42

 $dsolve(x*y(x)*diff(y(x),x)+y(x)^2-sin(x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{2\sin(x) - 2x\cos(x) + c_1}}{x}$$
$$y(x) = -\frac{\sqrt{2\sin(x) - 2x\cos(x) + c_1}}{x}$$

$$y(x) = -\frac{\sqrt{2\sin(x) - 2x\cos(x) + c_1}}{x}$$

Solution by Mathematica

Time used: 0.311 (sec). Leaf size: 50

DSolve[x*y[x]*y'[x]+y[x]^2-Sin[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sqrt{2\sin(x) - 2x\cos(x) + c_1}}{x}$$
$$y(x) \to \frac{\sqrt{2\sin(x) - 2x\cos(x) + c_1}}{x}$$

$$y(x) \to \frac{\sqrt{2\sin(x) - 2x\cos(x) + c_1}}{x}$$

1.74 problem 77

Internal problem ID [2710]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 77.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Bernoulli]

$$2x^3 - y^4 + xy^3y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 73

 $dsolve((2*x^3-y(x)^4)+(x*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = (c_1 x^4 + 8x^3)^{\frac{1}{4}}$$

$$y(x) = -(c_1 x^4 + 8x^3)^{\frac{1}{4}}$$

$$y(x) = -i(c_1 x^4 + 8x^3)^{\frac{1}{4}}$$

$$y(x) = i(c_1 x^4 + 8x^3)^{\frac{1}{4}}$$

✓ Solution by Mathematica

Time used: 0.216 (sec). Leaf size: 88

 $DSolve[(2*x^3-y[x]^4)+(x*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -x^{3/4} \sqrt[4]{8 + c_1 x}$$

$$y(x) \to -ix^{3/4} \sqrt[4]{8 + c_1 x}$$

$$y(x) \to ix^{3/4} \sqrt[4]{8 + c_1 x}$$

$$y(x) \to x^{3/4} \sqrt[4]{8 + c_1 x}$$

1.75 problem 78

Internal problem ID [2711]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 78.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' - y \tan(x) + y^2 \cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)-y(x)*tan(x)+y(x)^2*cos(x)=0,y(x), singsol=all)$

$$y(x) = \frac{1}{(x+c_1)\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.204 (sec). Leaf size: 19

DSolve[y'[x]-y[x]*Tan[x]+y[x]^2*Cos[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\sec(x)}{x + c_1}$$

$$y(x) \to 0$$

1.76 problem 79

Internal problem ID [2712]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 79.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'class G'],

$$6y^2 - x(2x^3 + y)y' = 0$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 227

 $dsolve(6*y(x)^2-(x*(2*x^3+y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = x^{3} \left(\frac{x^{3} - \sqrt{x^{6} + 8c_{1}x^{3}}}{2c_{1}} + 2 \right)$$

$$y(x) = x^{3} \left(\frac{x^{3} + \sqrt{x^{6} + 8c_{1}x^{3}}}{2c_{1}} + 2 \right)$$

$$y(x) = x^{3} \left(\frac{\left(-\frac{1}{2} - \frac{i\sqrt{3}}{2} \right)^{3} \left(x^{3} - \sqrt{x^{6} + 8c_{1}x^{3}} \right)}{2c_{1}} + 2 \right)$$

$$y(x) = x^{3} \left(\frac{\left(-\frac{1}{2} - \frac{i\sqrt{3}}{2} \right)^{3} \left(x^{3} + \sqrt{x^{6} + 8c_{1}x^{3}} \right)}{2c_{1}} + 2 \right)$$

$$y(x) = x^{3} \left(\frac{\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2} \right)^{3} \left(x^{3} - \sqrt{x^{6} + 8c_{1}x^{3}} \right)}{2c_{1}} + 2 \right)$$

$$y(x) = x^{3} \left(\frac{\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2} \right)^{3} \left(x^{3} + \sqrt{x^{6} + 8c_{1}x^{3}} \right)}{2c_{1}} + 2 \right)$$

✓ Solution by Mathematica

Time used: 1.296 (sec). Leaf size: 123

 $DSolve[6*y[x]^2-(x*(2*x^3+y[x]))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to 2x^{3} \left(-1 + \frac{2}{1 - \frac{4x^{3/2}}{\sqrt{16x^{3} + c_{1}}}}\right)$$

$$y(x) \to 2x^{3} \left(-1 + \frac{2}{1 + \frac{4x^{3/2}}{\sqrt{16x^{3} + c_{1}}}}\right)$$

$$y(x) \to 0$$

$$y(x) \to 2x^{3}$$

$$y(x) \to \frac{2\left((x^{3})^{3/2} - x^{9/2}\right)}{x^{3/2} + \sqrt{x^{3}}}$$

1.77 problem 80

Internal problem ID [2713]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 80.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$xy'^3 - yy'^2 + 1 = 0$$

Solution by Maple

Time used: 0.203 (sec). Leaf size: 80

 $dsolve(x*(diff(y(x),x))^3-y(x)*(diff(y(x),x))^2+1=0,y(x), singsol=all)$

$$egin{split} y(x) &= rac{3\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{2} \ y(x) &= -rac{3\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{4} - rac{3i\sqrt{3}\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{4} \ y(x) &= -rac{3\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{4} + rac{3i\sqrt{3}\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{4} \ y(x) &= c_1x + rac{1}{c_1^2} \end{split}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 69

 $DSolve[x*(y'[x])^3-y[x]*(y'[x])^2+1==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x + \frac{1}{c_1^2}$$

$$y(x) \to 3\left(-\frac{1}{2}\right)^{2/3} x^{2/3}$$

$$y(x) \to \frac{3x^{2/3}}{2^{2/3}}$$

$$y(x) \to -\frac{3\sqrt[3]{-1}x^{2/3}}{2^{2/3}}$$

1.78 problem 81

Internal problem ID [2714]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 81.

ODE order: 1.
ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y - y'x - y'^3 = 0$$

/

Solution by Maple

Time used: 0.125 (sec). Leaf size: 33

 $dsolve(y(x)=x*diff(y(x),x)+(diff(y(x),x))^3,y(x), singsol=all)$

$$y(x) = -\frac{2\sqrt{-3x}\,x}{9}$$

$$y(x) = \frac{2\sqrt{-3x}\,x}{9}$$

$$y(x) = c_1^3 + c_1 x$$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 54

 $DSolve[y[x] == x*y'[x] + (y'[x])^3, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1(x + c_1^2)$$

$$y(x) \to -\frac{2ix^{3/2}}{3\sqrt{3}}$$

$$y(x) \to \frac{2ix^{3/2}}{3\sqrt{3}}$$

1.79 problem 82

Internal problem ID [2715]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 82.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [quadrature]

$$x(y'^2 - 1) - 2y' = 0$$

Solution by Maple

Time used: 0.109 (sec). Leaf size: 49

 $dsolve(x*((diff(y(x),x))^2-1)=2*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \sqrt{x^2 + 1} - \operatorname{arctanh}\left(\frac{1}{\sqrt{x^2 + 1}}\right) + \ln(x) + c_1$$

$$y(x) = -\sqrt{x^2 + 1} + \operatorname{arctanh}\left(\frac{1}{\sqrt{x^2 + 1}}\right) + \ln(x) + c_1$$

/

Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 59

 $DSolve[x*((y'[x])^2-1)==2*y'[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \sqrt{x^2 + 1} + \log(\sqrt{x^2 + 1} - 1) + c_1$$

$$y(x) \to -\sqrt{x^2 + 1} + \log(\sqrt{x^2 + 1} + 1) + c_1$$

1.80 problem 83

Internal problem ID [2716]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 83.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'(y'+2) - y = 0$$

/

Solution by Maple

Time used: 0.078 (sec). Leaf size: 49

dsolve(x*diff(y(x),x)*(diff(y(x),x)+2)=y(x),y(x), singsol=all)

$$y(x) = -x$$

$$y(x) = \sqrt{c_1 x} \left(\frac{\sqrt{c_1 x}}{x} + 2 \right)$$

$$y(x) = -\sqrt{c_1 x} \left(-\frac{\sqrt{c_1 x}}{x} + 2 \right)$$

Solution by Mathematica

Time used: 0.152 (sec). Leaf size: 63

 $DSolve[x*y'[x]*(y'[x]+2)==y[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow e^{c_1} - 2e^{\frac{c_1}{2}}\sqrt{x}$$
 $y(x)
ightarrow 2e^{-\frac{c_1}{2}}\sqrt{x} + e^{-c_1}$
 $y(x)
ightarrow 0$
 $y(x)
ightarrow -x$

1.81 problem 84

Internal problem ID [2717]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 84.

ODE order: 1.
ODE degree: 4.

CAS Maple gives this as type [_quadrature]

$$x - y'\sqrt{y'^2 + 1} = 0$$

/

Solution by Maple

Time used: 0.203 (sec). Leaf size: 187

$$dsolve(x=diff(y(x),x)*sqrt((diff(y(x),x))^2+1),y(x), singsol=all)$$

$$y(x) = \frac{i\sqrt{2}\left(-\frac{256\sqrt{\pi}\sqrt{2}x^3\cosh\left(\frac{3\arcsin(2x)}{2}\right)}{3} - \frac{8\sqrt{\pi}\sqrt{2}\left(-\frac{64}{3}x^4 - \frac{8}{3}x^2 + \frac{2}{3}\right)\sinh\left(\frac{3\arcsin(2x)}{2}\right)}{\sqrt{4x^2 + 1}}\right)}{32\sqrt{\pi}} + c_1$$

$$y(x) = -\frac{i\sqrt{2}\left(-\frac{256\sqrt{\pi}\sqrt{2}x^3\cosh\left(\frac{3\arcsin(2x)}{2}\right)}{3} - \frac{8\sqrt{\pi}\sqrt{2}\left(-\frac{64}{3}x^4 - \frac{8}{3}x^2 + \frac{2}{3}\right)\sinh\left(\frac{3\arcsin(2x)}{2}\right)}{\sqrt{4x^2 + 1}}\right)}{32\sqrt{\pi}} + c_1$$

$$y(x) = \int -\frac{\sqrt{-2 + 2\sqrt{4x^2 + 1}}}{2}dx + c_1$$

$$y(x) = \int \frac{\sqrt{-2 + 2\sqrt{4x^2 + 1}}}{2}dx + c_1$$

✓ Solution by Mathematica

Time used: 0.145 (sec). Leaf size: 207

DSolve[x==y'[x]*Sqrt[(y'[x])^2+1],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sqrt{2}x(\sqrt{4x^2 + 1} - 2)}{3\sqrt{\sqrt{4x^2 + 1} - 1}} + c_1$$

$$y(x) \to \frac{\sqrt{2}x(\sqrt{4x^2 + 1} - 2)}{3\sqrt{\sqrt{4x^2 + 1} - 1}} + c_1$$

$$y(x) \to -\frac{\sqrt{2}x(4x^2 + 3\sqrt{4x^2 + 1} + 3)}{3(-\sqrt{4x^2 + 1} - 1)^{3/2}} + c_1$$

$$y(x) \to \frac{\sqrt{2}x(4x^2 + 3\sqrt{4x^2 + 1} + 3)}{3(-\sqrt{4x^2 + 1} - 1)^{3/2}} + c_1$$

1.82 problem 85

Internal problem ID [2718]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 85.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$2y'^2(y - y'x) - 1 = 0$$

/

Solution by Maple

Time used: 0.203 (sec). Leaf size: 57

 $dsolve(2*(diff(y(x),x))^2*(y(x)-x*diff(y(x),x))=1,y(x), singsol=all)$

$$egin{aligned} y(x) &= rac{3x^{rac{2}{3}}}{2} \ y(x) &= -rac{3x^{rac{2}{3}}}{4} - rac{3i\sqrt{3}\,x^{rac{2}{3}}}{4} \ y(x) &= -rac{3x^{rac{2}{3}}}{4} + rac{3i\sqrt{3}\,x^{rac{2}{3}}}{4} \ y(x) &= c_1x + rac{1}{2c_1^2} \end{aligned}$$

Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 67

 $DSolve[2*(y'[x])^2*(y[x]-x*y'[x]) == 1, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x + \frac{1}{2c_1^2}$$

 $y(x) \to \frac{3x^{2/3}}{2}$
 $y(x) \to -\frac{3}{2}\sqrt[3]{-1}x^{2/3}$
 $y(x) \to \frac{3}{2}(-1)^{2/3}x^{2/3}$

1.83 problem 86

Internal problem ID [2719]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 86.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y - 2y'x - y^2{y'}^3 = 0$$

Solution by Maple

Time used: 0.219 (sec). Leaf size: 107

 $dsolve(y(x)=2*x*diff(y(x),x)+y(x)^2*(diff(y(x),x))^3,y(x), singsol=all)$

$$y(x) = -\frac{22^{\frac{1}{4}}3^{\frac{1}{4}}(-x^3)^{\frac{1}{4}}}{3}$$

$$y(x) = \frac{22^{\frac{1}{4}}3^{\frac{1}{4}}(-x^3)^{\frac{1}{4}}}{3}$$

$$y(x) = -\frac{2i2^{\frac{1}{4}}3^{\frac{1}{4}}(-x^3)^{\frac{1}{4}}}{3}$$

$$y(x) = \frac{2i2^{\frac{1}{4}}3^{\frac{1}{4}}(-x^3)^{\frac{1}{4}}}{3}$$

$$y(x) = 0$$

$$y(x) = \sqrt{c_1^3 + 2c_1x}$$

$$y(x) = -\sqrt{c_1^3 + 2c_1x}$$

✓ Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 119

 $DSolve[y[x] == 2*x*y'[x] + y[x]^2*(y'[x])^3, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{2c_1x + c_1^3}$$

$$y(x) \to \sqrt{2c_1x + c_1^3}$$

$$y(x) \to (-1 - i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

$$y(x) \to (1 - i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

$$y(x) \to (-1 + i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

$$y(x) \to (1 + i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

1.84 problem 87

Internal problem ID [2720]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 87.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y'^3 + y^2 - yy'x = 0$$

/

Solution by Maple

Time used: 0.203 (sec). Leaf size: 269

 $dsolve((diff(y(x),x))^3+y(x)^2=x*y(x)*diff(y(x),x),y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = \frac{2x^4}{81\left(\frac{x}{3} - \frac{\sqrt{x^2 + 3c_1}}{3}\right)} - \frac{2x^3\sqrt{x^2 + 3c_1}}{81\left(\frac{x}{3} - \frac{\sqrt{x^2 + 3c_1}}{3}\right)} - \frac{c_1x^2}{27\left(\frac{x}{3} - \frac{\sqrt{x^2 + 3c_1}}{3}\right)}$$

$$+ \frac{2c_1x\sqrt{x^2 + 3c_1}}{27\left(\frac{x}{3} - \frac{\sqrt{x^2 + 3c_1}}{3}\right)} + \frac{c_1^2}{3x - 3\sqrt{x^2 + 3c_1}}$$

$$y(x) = \frac{2x^4}{81\left(\frac{x}{3} + \frac{\sqrt{x^2 + 3c_1}}{3}\right)} + \frac{2x^3\sqrt{x^2 + 3c_1}}{81\left(\frac{x}{3} + \frac{\sqrt{x^2 + 3c_1}}{3}\right)} - \frac{c_1x^2}{27\left(\frac{x}{3} + \frac{\sqrt{x^2 + 3c_1}}{3}\right)}$$

$$- \frac{2c_1x\sqrt{x^2 + 3c_1}}{27\left(\frac{x}{3} + \frac{\sqrt{x^2 + 3c_1}}{3}\right)} + \frac{c_1^2}{3x + 3\sqrt{x^2 + 3c_1}}$$

X

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[$(y'[x])^3+y[x]^2==x*y[x]*y'[x],y[x],x$,IncludeSingularSolutions -> True]

Timed out

1.85 problem 88

Internal problem ID [2721]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 88.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$2y'x - y - y'\ln(yy') = 0$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 80

dsolve(2*x*diff(y(x),x)-y(x)=diff(y(x),x)*ln(y(x)*diff(y(x),x)),y(x), singsol=all)

$$\begin{split} y(x) &= \mathrm{e}^{-\frac{1}{2} + x} \\ y(x) &= -\mathrm{e}^{-\frac{1}{2} + x} \\ y(x) &= \sqrt{-2 \, \mathrm{e}^{-2x} \mathrm{e}^{2c_1} c_1 + 2 \, \mathrm{e}^{-2x} \mathrm{e}^{2c_1} x} \, \mathrm{e}^x \\ y(x) &= -\sqrt{-2 \, \mathrm{e}^{-2x} \mathrm{e}^{2c_1} c_1 + 2 \, \mathrm{e}^{-2x} \mathrm{e}^{2c_1} x} \, \mathrm{e}^x \end{split}$$

✓ Solution by Mathematica

Time used: 0.315 (sec). Leaf size: 59

DSolve[2*x*y'[x]-y[x]==y'[x]*Log[y[x]*y'[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -e^{c_1}\sqrt{-2x + i\pi + 2c_1}$$
$$y(x) \to e^{c_1}\sqrt{-2x + i\pi + 2c_1}$$
$$y(x) \to 0$$

problem 89 1.86

Internal problem ID [2722]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 89.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y - y'x + x^2{y'}^3 = 0$$

Solution by Maple

Time used: 0.188 (sec). Leaf size: 123

 $dsolve(y(x)=x*diff(y(x),x)-x^2*(diff(y(x),x))^3,y(x), singsol=all)$

$$y(x) = -x^{2} \operatorname{RootOf} \left(4 Z^{4} c_{1} x^{2} + 8 Z^{2} c_{1} x - Z + 4 c_{1}\right)^{3}$$

$$+ x \operatorname{RootOf} \left(4 Z^{4} c_{1} x^{2} + 8 Z^{2} c_{1} x - Z + 4 c_{1}\right)$$

$$y(x) = -x^{2} \operatorname{RootOf} \left(4 Z^{4} c_{1} x^{2} - 16 Z^{2} c_{1} x - Z + 16 c_{1}\right)^{3}$$

$$+ x \operatorname{RootOf} \left(4 Z^{4} c_{1} x^{2} - 16 Z^{2} c_{1} x - Z + 16 c_{1}\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y[x] == x*y'[x] - x^2*(y'[x])^3, y[x], x, IncludeSingularSolutions \rightarrow True]$

Timed out

1.87 problem 90

Internal problem ID [2723]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 90.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[homogeneous, 'class G']]

$$y(y - 2y'x)^3 - y'^2 = 0$$

Solution by Maple

Time used: 0.188 (sec). Leaf size: 577

$$dsolve(y(x)* (y(x)-2*x*diff(y(x),x))^3 = (diff(y(x),x))^2 ,y(x), singsol=all)$$

$$y(x) = -\frac{\sqrt{3}}{9x}$$

$$y(x) = \frac{\sqrt{3}}{9x}$$

$$y(x) = 0$$

y(x)

$$y(x) = \frac{\text{RootOf}\left(-\ln\left(x\right) + c_1 + 24\left(\int^{-Z} \frac{\left(24_a^3\sqrt{81_a^2 - 3} - 216_a^4 + 36_a^2\right)^{\frac{1}{3}}_a^2 + \left(24_a^3\sqrt{81_a^2 - 3} - 216_a^4 + 36_a^2\right)^{\frac{1}{3}}$$

y(x)

RootOf
$$\left(-\ln{(x)} + c_1 - 48\left(\int^{-Z} \frac{1}{i\left(24\underline{a}^3\sqrt{81\underline{a}^2-3} - 216\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2-3} - 216\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}}\right)$$

$$= \frac{\text{RootOf}\left(-\ln\left(x\right) + c_1 + 48\left(\int^{-Z} \frac{\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 124\underline{a}^2 - 124$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y[x]*(y[x]-2*x*y'[x])^3 == (y'[x])^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

Timed out

1.88 problem 91

Internal problem ID [2724]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 91.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _dAlembert]

$$y'x + y - 4\sqrt{y'} = 0$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 63

dsolve(y(x)+x*diff(y(x),x) = 4*sqrt(diff(y(x),x)),y(x), singsol=all)

$$y(x) = -\frac{4 \operatorname{LambertW} \left(-\frac{c_1 x}{2}\right)^2}{x} + 8\sqrt{\frac{\operatorname{LambertW} \left(-\frac{c_1 x}{2}\right)^2}{x^2}}$$

$$y(x) = -\frac{4 \operatorname{LambertW}\left(\frac{c_1 x}{2}\right)^2}{x} + 8 \sqrt{\frac{\operatorname{LambertW}\left(\frac{c_1 x}{2}\right)^2}{x^2}}$$

✓ Solution by Mathematica

Time used: 1.09 (sec). Leaf size: 94

DSolve[y[x]+x*y'[x]==4*Sqrt[y'[x]],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\frac{2e^{-\frac{1}{2}\sqrt{4-xy(x)}}\left(-2\sqrt{4-xy(x)}-4\right)}{y(x)} = c_1, y(x)\right]$$
Solve
$$\left[\frac{2e^{\frac{1}{2}\sqrt{4-xy(x)}}\left(2\sqrt{4-xy(x)}-4\right)}{y(x)} = c_1, y(x)\right]$$

$$y(x) \to 0$$

1.89 problem 92

Internal problem ID [2725]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 92.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$2y'x - y - \ln(y') = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

dsolve(2*x*diff(y(x),x) - y(x) = ln(diff(y(x),x)),y(x), singsol=all)

$$y(x) = 1 + \sqrt{4c_1x + 1} - \ln\left(\frac{1 + \sqrt{4c_1x + 1}}{2x}\right)$$
$$y(x) = 1 - \sqrt{4c_1x + 1} - \ln\left(-\frac{-1 + \sqrt{4c_1x + 1}}{2x}\right)$$

✓ Solution by Mathematica

Time used: 0.101 (sec). Leaf size: 34

DSolve[2*x*y'[x] -y[x] == Log[y'[x]],y[x],x,IncludeSingularSolutions -> True]

Solve
$$[W(-2xe^{-y(x)}) - \log(W(-2xe^{-y(x)}) + 2) + y(x) = c_1, y(x)]$$

1.90 problem 111

Internal problem ID [2726]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 111.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$xy^2(y'x+y) - 1 = 0$$

✓ S

Solution by Maple

Time used: 0.016 (sec). Leaf size: 96

 $dsolve(x*y(x)^2*(x*diff(y(x),x)+y(x))=1,y(x), singsol=all)$

$$y(x) = \frac{\left(12x^2 + 8c_1\right)^{\frac{1}{3}}}{2x}$$

$$y(x) = \frac{-\frac{\left(12x^2 + 8c_1\right)^{\frac{1}{3}}}{4} - \frac{i\sqrt{3}\left(12x^2 + 8c_1\right)^{\frac{1}{3}}}{4}}{x}}{x}$$

$$y(x) = \frac{-\frac{\left(12x^2 + 8c_1\right)^{\frac{1}{3}}}{4} + \frac{i\sqrt{3}\left(12x^2 + 8c_1\right)^{\frac{1}{3}}}{4}}{x}}{x}$$

✓ Solution by Mathematica

Time used: 0.223 (sec). Leaf size: 80

 $DSolve[x*y[x]^2*(x*y'[x]+y[x]) == 1, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt[3]{-\frac{1}{2}}\sqrt[3]{3x^2 + 2c_1}}{x}$$
$$y(x) \to \frac{\sqrt[3]{\frac{3x^2}{2} + c_1}}{x}$$
$$y(x) \to \frac{(-1)^{2/3}\sqrt[3]{\frac{3x^2}{2} + c_1}}{x}$$

1.91 problem 112

Internal problem ID [2727]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 112.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$5y + {y'}^2 - x(x + y') = 0$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 105

 $dsolve(5*y(x)+(diff(y(x),x))^2=x*(x+diff(y(x),x)),y(x), singsol=all)$

$$y(x) = \frac{x^2}{4}$$

$$y(x) = \frac{3x^2}{2} - \frac{x(5x - 2\sqrt{-5c_1})}{2} + c_1$$

$$y(x) = \frac{3x^2}{2} - \frac{x(5x + 2\sqrt{-5c_1})}{2} + c_1$$

$$y(x) = \frac{3x^2}{2} + \frac{x(-5x - 2\sqrt{-5c_1})}{2} + c_1$$

$$y(x) = \frac{3x^2}{2} + \frac{x(-5x + 2\sqrt{-5c_1})}{2} + c_1$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve $[5*y[x]+(y'[x])^2==x*(x+y'[x]),y[x],x,IncludeSingularSolutions -> True]$

Timed out

1.92 problem 113

Internal problem ID [2728]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 113.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y+2}{x+1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(x),x)=(y(x)+2)/(x+1),y(x), singsol=all)

$$y(x) = -2 + c_1(x+1)$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: $18\,$

DSolve[y'[x] == (y[x]+2)/(x+1),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -2 + c_1(x+1)$$

$$y(x) \rightarrow -2$$

1.93 problem 115

Internal problem ID [2729]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 115.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'x - y + e^{\frac{y}{x}}x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(x*diff(y(x),x)=y(x)-x*exp(y(x)/x),y(x), singsol=all)

$$y(x) = -\ln\left(\ln\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.349 (sec). Leaf size: 16

DSolve[x*y'[x] == y[x]-x*Exp[y[x]/x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x \log(\log(x) - c_1)$$

1.94 problem 116

Internal problem ID [2730]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 116.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _Bernoulli]

$$1 + y^{2} \sin(2x) - 2y \cos(x)^{2} y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve((1+y(x)^2*sin(2*x))-(2*y(x)*cos(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{x + c_1}}{\cos(x)}$$

$$y(x) = -\frac{\sqrt{x + c_1}}{\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.28 (sec). Leaf size: 32

 $DSolve[(1+y[x]^2*Sin[2*x]) - (2*y[x]*Cos[x]^2)*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True (1+y[x]^2*Sin[2*x]) - (2*y[x]*Cos[x]^2)*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True (1+y[x]^2*Sin[2*x]) - (2*y[x]^2*Sin[2*x]) - (2$

$$y(x) \to -\sqrt{x+c_1}\sec(x)$$

$$y(x) \to \sqrt{x + c_1} \sec(x)$$

1.95 problem 117

Internal problem ID [2731]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 117.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$2\sqrt{yx} - y - y'x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 58

dsolve((2*sqrt(x*y(x))-y(x))-x*diff(y(x),x)=0,y(x), singsol=all)

$$\frac{\sqrt{y(x)x}}{(y(x)-x)\left(\sqrt{y(x)x}-x\right)x} + \frac{1}{(y(x)-x)\left(\sqrt{y(x)x}-x\right)} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.193 (sec). Leaf size: 26

DSolve[(2*Sqrt[x*y[x]]-y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{\left(x + e^{\frac{c_1}{2}}\right)^2}{x}$$
 $y(x) o x$

1.96 problem 119

Internal problem ID [2732]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 119.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' - e^{\frac{xy'}{y}} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 15

 $\label{eq:diff} dsolve(diff(y(x),x)=\exp(x*diff(y(x),x)/y(x)),y(x),\ singsol=all)$

$$y(x) = -\frac{\mathrm{e}^{-c_1 x}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 21

 $DSolve[y'[x] == Exp[x*y'[x]/y[x]], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -e^{c_1 - e^{-c_1}x}$$

2	Chapter	4.	Line	ear	Di	ffer	ential	Equ	ations.	Page	183
2.1	problem 1										121
2.2	problem 2										. 122
2.3	problem 3										. 123
2.4	problem 4										124
2.5	problem 5										. 125
2.6	problem 6										. 126
2.7	problem 7										127
2.8	problem 8										. 128
2.9	problem 9										. 129
2.10	problem 10 .										. 130
2.11	problem 11 .										131
2.12	problem 12 .										. 132
2.13	problem 13 .										. 133
2.14	problem 14 .										134
2.15	problem 15 .										. 135
2.16	problem 16 .										. 136
2.17	problem 17 .										137
2.18	problem 18 .										. 138
2.19	problem 19 .										. 139
2.20	problem 20 .										. 140
2.21	problem 21 .										141
2.22	problem 22 .										. 142

2.1 problem 1

Internal problem ID [2733]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 1.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 2y'' + y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$3)-2*diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 \sin(x) + c_3 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 24

$$y(x) \to c_3 e^{2x} + c_1 \cos(x) + c_2 \sin(x)$$

2.2 problem 2

Internal problem ID [2734]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 2.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' + 9y' + 9y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)+9*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-x} + c_2 \sin(3x) + c_3 \cos(3x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

$$y(x) \to c_3 e^{-x} + c_1 \cos(3x) + c_2 \sin(3x)$$

2.3 problem 3

Internal problem ID [2735]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 3.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' - y' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $\label{eq:diff} dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)-diff(y(x),x)-y(x)=0,y(x), \ singsol=all)$

$$y(x) = c_1 e^x + c_2 e^{-x} + c_3 e^{-x} x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 25

DSolve[y'''[x]+y''[x]-y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x}(c_2x + c_1) + c_3e^x$$

2.4 problem 4

Internal problem ID [2736]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 4.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 8y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve(diff(y(x),x\$3)+8*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-2x}c_1 + c_2e^x \sin(\sqrt{3}x) + c_3e^x \cos(\sqrt{3}x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 41

DSolve[y'''[x]+8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^{-2x} + e^x \left(c_3 \cos \left(\sqrt{3}x \right) + c_2 \sin \left(\sqrt{3}x \right) \right)$$

2.5 problem 5

Internal problem ID [2737]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 5.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$3)-8*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-x} \sin\left(\sqrt{3}x\right) + c_3 e^{-x} \cos\left(\sqrt{3}x\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 42

DSolve[y'''[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} \left(c_1 e^{3x} + c_2 \cos\left(\sqrt{3}x\right) + c_3 \sin\left(\sqrt{3}x\right) \right)$$

2.6 problem 6

Internal problem ID [2738]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 6.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 4y = 0$$

/

Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$4)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x \sin(x) + c_2 e^x \cos(x) + c_3 e^{-x} \sin(x) + c_4 e^{-x} \cos(x)$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 38

DSolve[y'''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x}(c_1 \cos(x) + c_2 \sin(x)) + e^{x}(c_4 \cos(x) + c_3 \sin(x))$$

2.7 problem 7

Internal problem ID [2739]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 7.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 18y'' + 81y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$4)+18*diff(y(x),x\$2)+81*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(3x) + c_2 \cos(3x) + c_3 \sin(3x) x + c_4 \cos(3x) x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

DSolve[y'''[x]+18*y''[x]+81*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (c_2x + c_1)\cos(3x) + (c_4x + c_3)\sin(3x)$$

2.8 problem 8

Internal problem ID [2740]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 8.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 4y'' + 16y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 48

dsolve(diff(y(x),x\$4)-4*diff(y(x),x\$2)+16*y(x)=0,y(x), singsol=all)

$$y(x) = -c_1 e^{\sqrt{3}x} \sin(x) + c_2 e^{-\sqrt{3}x} \sin(x) + c_3 e^{\sqrt{3}x} \cos(x) + c_4 e^{-\sqrt{3}x} \cos(x)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 49

 $DSolve[y''''[x]-4*y''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-\sqrt{3}x} \Big(c_2 \cos(x) + c_4 \sin(x) + e^{2\sqrt{3}x} (c_3 \cos(x) + c_1 \sin(x)) \Big)$$

2.9 problem 9

Internal problem ID [2741]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 9.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 2y''' + 2y'' - 2y' + y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

$$y(x) = c_1 e^x + c_2 e^x x + c_3 \sin(x) + c_4 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 27

DSolve[y'''[x]-2*y'''[x]+2*y''[x]-2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(c_4x + c_3) + c_1\cos(x) + c_2\sin(x)$$

2.10 problem 10

Internal problem ID [2742]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 10.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 5y''' + 5y'' + 5y' - 6y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$4)-5*diff(y(x),x\$3)+5*diff(y(x),x\$2)+5*diff(y(x),x)-6*y(x)=0,y(x), singsolve(x),x

$$y(x) = c_1 e^x + c_2 e^{-x} + c_3 e^{2x} + c_4 e^{3x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 36

$$y(x) \rightarrow c_1 e^{-x} + c_2 e^x + c_3 e^{2x} + c_4 e^{3x}$$

2.11 problem 11

Internal problem ID [2743]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 11.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(5)} - 6y'''' + 9y''' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$5)-6*diff(y(x),x\$4)+9*diff(y(x),x\$3)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 x + c_3 x^2 + c_4 e^{3x} + c_5 e^{3x} x$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 35

 $DSolve[y''''[x]-6*y''''[x]+9*y'''[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{27}e^{3x}(c_2(x-1)+c_1)+x(c_5x+c_4)+c_3$$

2.12 problem 12

Internal problem ID [2744]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 12.

ODE order: 6.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(6)} - 64y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 61

dsolve(diff(y(x),x\$6)-64*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-2x}c_1 + c_2e^{2x} + c_3e^x \sin(\sqrt{3}x) + c_4e^x \cos(\sqrt{3}x) + c_5e^{-x} \sin(\sqrt{3}x) + c_6e^{-x} \cos(\sqrt{3}x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 67

DSolve[y''''[x]-64*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} \Big(c_1 e^{4x} + e^x \Big((c_2 e^{2x} + c_3) \cos \Big(\sqrt{3}x \Big) + (c_6 e^{2x} + c_5) \sin \Big(\sqrt{3}x \Big) \Big) + c_4 \Big)$$

2.13 problem 13

Internal problem ID [2745]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 10y - 3x e^{-3x} + 2e^{3x} \cos(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 43

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+10*y(x)=3*x*exp(-3*x)-2*exp(3*x)*cos(x),y(x)), singsol=al(x)+al

$$y(x) = e^{-3x} \sin(x) c_2 + e^{-3x} \cos(x) c_1 + \frac{(-3\cos(x) - \sin(x)) e^{3x}}{60} + 3x e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.205 (sec). Leaf size: 42

$$y(x) \to -\frac{1}{60}e^{3x}(\sin(x) + 3\cos(x)) + e^{-3x}(3x + c_2\cos(x) + c_1\sin(x))$$

2.14 problem 14

Internal problem ID [2746]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - 8y' + 17y - e^{4x}(x^2 - 3\sin(x)x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 46

 $dsolve(diff(y(x),x\$2)-8*diff(y(x),x)+17*y(x)=exp(4*x)*(x^2-3*x*sin(x)),y(x), singsol=all)$

$$y(x) = e^{4x} \sin(x) c_2 + e^{4x} \cos(x) c_1 - \frac{e^{4x} (-3\cos(x) x^2 + 3x\sin(x) - 4x^2 + 8)}{4}$$

✓ Solution by Mathematica

Time used: 0.119 (sec). Leaf size: 47

$$y(x) \to \frac{1}{8}e^{4x} (8(x^2 - 2) + (6x^2 - 3 + 8c_2)\cos(x) + (-6x + 8c_1)\sin(x))$$

2.15 problem 15

Internal problem ID [2747]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 2y - (x + e^x)\sin(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 40

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+2*y(x)=(x+exp(x))*sin(x),y(x), singsol=all)

$$y(x) = e^{x} \sin(x) c_{2} + e^{x} \cos(x) c_{1} + \frac{(-25 e^{x} x + 20x + 28) \cos(x)}{50} + \frac{\sin(x) (5x + 2)}{25}$$

✓ Solution by Mathematica

Time used: 0.153 (sec). Leaf size: 45

DSolve[y''[x]-2*y'[x]+2*y[x]==(x+Exp[x])*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{50}((20x - 25e^x(x - 2c_2) + 28)\cos(x) + 2(5x + 25c_1e^x + 2)\sin(x))$$

2.16 problem 16

Internal problem ID [2748]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - \sinh(x)\sin(2x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

dsolve(diff(y(x),x\$2)+4*y(x)=sinh(x)*sin(2*x),y(x), singsol=all)

$$y(x) = \sin(2x) c_2 + c_1 \cos(2x) + \frac{(-4e^x - 4e^{-x})\cos(2x)}{34} + \frac{\sin(2x)(e^x - e^{-x})}{34}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 38

DSolve[y''[x]+4*y[x]==Sinh[x]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{4}{17}\cos(2x)\cosh(x) + c_1\cos(2x) + \frac{1}{17}\sin(2x)(\sinh(x) + 17c_2)$$

2.17 problem 17

Internal problem ID [2749]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 2y' + 2y - \cosh(x)\sin(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+2*y(x)=cosh(x)*sin(x),y(x), singsol=all)

$$y(x) = e^{-x} \sin(x) c_2 + e^{-x} \cos(x) c_1 - \frac{e^{-x} \cos(x) x}{4} - \frac{e^{x} (\cos(x) - \sin(x))}{16}$$

✓ Solution by Mathematica

Time used: 0.085 (sec). Leaf size: 47

DSolve[y''[x]+2*y'[x]+2*y[x]==Cosh[x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{16}e^{-x}((e^{2x} + 2 + 16c_1)\sin(x) - (e^{2x} + 4(x - 4c_2))\cos(x))$$

2.18 problem 18

Internal problem ID [2750]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 18.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' + y' - x\cos(x) - \sin(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$3)+diff(y(x),x)=sin(x)+x*cos(x),y(x), singsol=all)

$$y(x) = -\frac{\cos(x) x^{2}}{4} + \frac{\cos(x)}{2} + \frac{x \sin(x)}{4} - c_{2} \cos(x) + \sin(x) c_{1} + c_{3}$$

✓ Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 36

DSolve[y'''[x]+y'[x]==Sin[x]+x*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{8}(2x^2 - 3 + 8c_2)\cos(x) + (\frac{x}{4} + c_1)\sin(x) + c_3$$

2.19 problem 19

Internal problem ID [2751]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 19.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, linear, nonhomogeneous]]

$$y''' - 2y'' + 4y' - 8y - e^{2x}\sin(2x) - 2x^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 96

 $dsolve(diff(y(x),x$3)-2*diff(y(x),x$2)+4*diff(y(x),x)-8*y(x)=exp(2*x)*sin(2*x)+2*x^2,y(x), sin(x)+2*x^2,y(x)$

$$y(x) = -\frac{e^{-2x}(2e^{4x} + 5e^{2x})\cos(2x)}{80} - \frac{e^{-2x}(4e^{4x} - 5e^{2x})\sin(2x)}{80} - \frac{e^{-2x}(4x^2e^{2x} + 4e^{2x}x + e^{4x})}{16} + c_1\cos(2x) + c_2e^{2x} + c_3\sin(2x)$$

✓ Solution by Mathematica

Time used: 0.225 (sec). Leaf size: 58

$$y(x) \to \frac{1}{80} \left(-20(x^2 + x - 4c_1\cos(2x) - 4c_2\sin(2x)) - e^{2x}(4\sin(2x) + 2\cos(2x) + 5 - 80c_3) \right)$$

2.20 problem 20

Internal problem ID [2752]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 20.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 4y'' + 3y' - x^2 - x e^{2x} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

 $dsolve(diff(y(x),x\$3)-4*diff(y(x),x\$2)+3*diff(y(x),x)=x^2+x*exp(2*x),y(x), singsol=all)$

$$y(x) = \frac{x^3}{9} + \frac{4x^2}{9} - \frac{e^{2x}x}{2} + \frac{e^{2x}}{4} + e^x c_2 + \frac{e^{3x}c_1}{3} + \frac{26x}{27} + c_3$$

✓ Solution by Mathematica

Time used: 0.11 (sec). Leaf size: 52

DSolve[y'''[x]-4*y''[x]+3*y'[x]==x^2+x*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}e^{2x}(1-2x) + \frac{1}{27}x(3x(x+4)+26) + c_1e^x + \frac{1}{3}c_2e^{3x} + c_3$$

2.21 problem 21

Internal problem ID [2753]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 21.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' + 2y'' - 7x + 3\cos(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$2)=7*x-3*cos(x),y(x), singsol=all)

$$y(x) = \frac{7x^3}{12} - \frac{\cos(\sqrt{2}x)c_1}{2} - \frac{\sin(\sqrt{2}x)c_2}{2} + 3\cos(x) + c_3x + c_4$$

✓ Solution by Mathematica

Time used: 0.303 (sec). Leaf size: 51

 $DSolve[y'''[x]+2*y''[x]==7*x-3*Cos[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{7x^3}{12} + 3\cos(x) + c_4x - \frac{1}{2}c_1\cos(\sqrt{2}x) - \frac{1}{2}c_2\sin(\sqrt{2}x) + c_3$$

2.22 problem 22

Internal problem ID [2754]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 22.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 5y'' + 4y - \sin(x)\cos(2x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 40

dsolve(diff(y(x),x\$4)+5*diff(y(x),x\$2)+4*y(x)=sin(x)*cos(2*x),y(x), singsol=all)

$$y(x) = \frac{x\cos(x)}{12} + \frac{\sin(3x)}{80} - \frac{\sin(x)}{144} + \cos(x)c_1 + c_2\sin(x) + c_3\cos(2x) + c_4\sin(2x)$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 48

DSolve[y'''[x]+5*y''[x]+4*y[x]==Sin[x]*Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{80}\sin(3x) + \left(\frac{x}{12} + c_3\right)\cos(x) + c_1\cos(2x) + \left(\frac{1}{72} + c_4\right)\sin(x) + c_2\sin(2x)$$