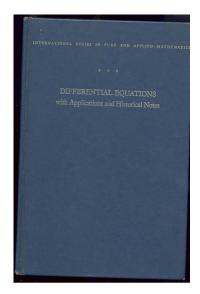
A Solution Manual For

Differential equations with applications and historial notes, George F. Simmons, 1971



Nasser M. Abbasi

October 12, 2023

Contents

1	Chapter 2, section 7, page 37	2
2	Chapter 2, section 8, page 41	12
3	Chapter 2, section 10, page 47	28
4	Chapter 2, section 11, page 49	40
5	Chapter 2, End of chapter, page 61	47

10

11

1	Chapter 2, section 7, page 37	
1.1	problem 1.a	3
1.2	problem 1.b	4
1.3	problem 1.c	5
1.4	problem 1.d	6
1.5	problem 1	7
1.6	problem 3.a	8
1.7	problem 3.b	9

1.8

1.9

1.1 problem 1.a

Internal problem ID [2571]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 7, page 37

Problem number: 1.a.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$x^2 - y^2 + xyy' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve((x^2-y(x)^2)+x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{-2\ln(x) + c_1} x$$

 $y(x) = -\sqrt{-2\ln(x) + c_1} x$

✓ Solution by Mathematica

Time used: 0.164 (sec). Leaf size: 36

 $DSolve[(x^2-y[x]^2)+x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x\sqrt{-2\log(x) + c_1}$$

$$y(x) \to x\sqrt{-2\log(x) + c_1}$$

1.2 problem 1.b

Internal problem ID [2572]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 7, page 37

Problem number: 1.b.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y'x^2 - 2yx - 2y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x)-2*x*y(x)-2*y(x)^2=0,y(x), singsol=all)$

$$y(x) = \frac{x^2}{-2x + c_1}$$

✓ Solution by Mathematica

Time used: 0.135 (sec). Leaf size: 22

DSolve[x^2*y'[x]-2*x*y[x]-2*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^2}{-2x + c_1}$$

$$y(x) \to 0$$

1.3 problem 1.c

Internal problem ID [2573]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 7, page 37

Problem number: 1.c.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'x^2 - 3(x^2 + y^2)\arctan\left(\frac{y}{x}\right) - yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $\label{eq:dsolve} \\ \text{dsolve}(x^2*\text{diff}(y(x),x)=3*(x^2+y(x)^2)*\arctan(y(x)/x)+x*y(x),y(x), \text{ singsol=all}) \\$

$$y(x) = \tan\left(c_1 x^3\right) x$$

✓ Solution by Mathematica

Time used: 0.172 (sec). Leaf size: 37

$$\operatorname{Solve} \left[\int_{1}^{\frac{y(x)}{x}} \frac{1}{\operatorname{Arctan}(K[1]) \left(K[1]^{2} + 1 \right)} dK[1] = 3 \log(x) + c_{1}, y(x) \right]$$

1.4 problem 1.d

Internal problem ID [2574]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 7, page 37

Problem number: 1.d.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x \sin\left(\frac{y}{x}\right) y' - \sin\left(\frac{y}{x}\right) y - x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $\label{eq:decomposition} \\ \mbox{dsolve}(x*\sin(y(x)/x)*\mbox{diff}(y(x),x)=y(x)*\sin(y(x)/x)+x,\\ y(x), \ \mbox{singsol=all}) \\$

$$y(x) = (\pi - \arccos(\ln(x) + c_1)) x$$

✓ Solution by Mathematica

Time used: 0.385 (sec). Leaf size: 33

DSolve[x*Sin[y[x]/x]*y'[x]==y[x]*Sin[y[x]/x]+x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(-\pi + \arccos(\log(x) + c_1))$$

 $y(x) \to x(\pi - \arccos(\log(x) + c_1))$

1.5 problem 1.

Internal problem ID [2575]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 7, page 37

Problem number: 1..

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D']]

$$y'x - y - 2e^{-\frac{y}{x}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(x*diff(y(x),x)=y(x)+2*exp(-y(x)/x),y(x), singsol=all)

$$y(x) = \ln\left(\frac{2c_1x - 2}{x}\right)x$$

✓ Solution by Mathematica

Time used: 0.555 (sec). Leaf size: 16

DSolve[x*y'[x] == y[x] + 2*Exp[-y[x]/x], y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to x \log \left(-\frac{2}{x} + c_1\right)$$

1.6 problem 3.a

Internal problem ID [2576]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 7, page 37

Problem number: 3.a.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$y' - (x+y)^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve(diff(y(x),x)=(x+y(x))^2,y(x), singsol=all)$

$$y(x) = -x - \tan(c_1 - x)$$

✓ Solution by Mathematica

Time used: 0.498 (sec). Leaf size: 14

 $DSolve[y'[x]==(x+y[x])^2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow -x + \tan(x + c_1)$$

1.7 problem 3.b

Internal problem ID [2577]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 7, page 37

Problem number: 3.b.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \sin(1 + x - y)^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

 $dsolve(diff(y(x),x)=sin(x-y(x)+1)^2,y(x), singsol=all)$

$$y(x) = x + 1 + \arctan(c_1 - x)$$

✓ Solution by Mathematica

Time used: 0.338 (sec). Leaf size: 33

 $DSolve[y'[x] == Sin[x-y[x]+1]^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$[2y(x) - 2(\tan(-y(x) + x + 1) - \arctan(\tan(-y(x) + x + 1))) = c_1, y(x)]$$

1.8 problem 5.a

Internal problem ID [2578]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 7, page 37

Problem number: 5.a.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$y' - \frac{x+y+4}{x-y-6} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 31

dsolve(diff(y(x),x)=(x+y(x)+4)/(x-y(x)-6),y(x), singsol=all)

$$y(x) = -5 - \tan\left(\text{RootOf}\left(2_Z + \ln\left(\frac{1}{\cos(-Z)^2}\right) + 2\ln(x - 1) + 2c_1\right)\right)(x - 1)$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 58

 $DSolve[y'[x] == (x+y[x]+4)/(x-y[x]-6), y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[2 \arctan \left(\frac{y(x) + x + 4}{y(x) - x + 6} \right) + \log \left(\frac{x^2 + y(x)^2 + 10y(x) - 2x + 26}{2(x - 1)^2} \right) + 2 \log(x - 1) + c_1 = 0, y(x) \right]$$

1.9 problem 5.b

Internal problem ID [2579]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 7, page 37

Problem number: 5.b.

ODE order: 1.
ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ C'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class',\ `2nd\ type',\ `class',\ `2nd\ type',\ `class',\ `2nd\ type',\ `2nd\ type',\ `2nd\ type',\ `class',\ `2nd\ type',\ `2nd\ type$

$$y' - \frac{x+y+4}{x+y-6} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(y(x),x)=(x+y(x)+4)/(x+y(x)-6),y(x), singsol=all)

$$y(x) = -x - 5 \operatorname{LambertW}\left(-\frac{\mathrm{e}^{-\frac{2x}{5}}c_1\mathrm{e}^{\frac{1}{5}}}{5}\right) + 1$$

✓ Solution by Mathematica

Time used: 3.764 (sec). Leaf size: 35

DSolve[y'[x] == (x+y[x]+4)/(x+y[x]-6), y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to -5W\left(-e^{-\frac{2x}{5}-1+c_1}\right) - x + 1$$
$$y(x) \to 1 - x$$

2	Chapte	r	2	2	,	\mathbf{S}	e	C	t	iC	n	1	8	,	p	a	g	e;e	4	4	1										
2.1	problem 1 .																														13
2.2	problem 2 .																														14
2.3	problem 3 .																														15
2.4	problem 4 .																														17
2.5	problem 5 .																														18
2.6	problem 6 .																														19
2.7	problem 7 .																														21
2.8	problem 8 .																														22
2.9	problem 9 .																														23
2.10	problem 10																														24
2.11	problem 11																														27

2.1 problem 1

Internal problem ID [2580]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 8, page 41

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact, _rational, [_Abel, '2nd type

$$\left(x + \frac{2}{y}\right)y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve((x+2/y(x))*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = e^{-\operatorname{LambertW}\left(\frac{x e^{\frac{c_1}{2}}}{2}\right) + \frac{c_1}{2}}$$

✓ Solution by Mathematica

Time used: 10.94 (sec). Leaf size: 58

 $DSolve[(x+2/y[x])*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{2W\left(-rac{1}{2}\sqrt{e^{c_1}x^2}
ight)}{x}$$
 $y(x) o rac{2W\left(rac{1}{2}\sqrt{e^{c_1}x^2}
ight)}{x}$ $y(x) o 0$

2.2 problem 2

Internal problem ID [2581]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 8, page 41

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$\sin(x)\tan(y) + 1 + \cos(x)\sec(y)^2y' = 0$$

X Solution by Maple

 $dsolve((sin(x)*tan(y(x))+1)+(cos(x)*sec(y(x))^2)*diff(y(x),x)=0,y(x), singsol=all)$

No solution found

✓ Solution by Mathematica

Time used: 2.075 (sec). Leaf size: 54

DSolve[(Sin[x]*Tan[y[x]]+1)+(Cos[x]*Sec[y[x]]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to -\arctan(\sin(x) + c_1 \cos(x))$$
$$y(x) \to -\frac{1}{2}\pi\sqrt{\cos^2(x)}\sec(x)$$
$$y(x) \to \frac{1}{2}\pi\sqrt{\cos^2(x)}\sec(x)$$

2.3 problem 3

Internal problem ID [2582]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 8, page 41

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$y - x^3 + (y^3 + x) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve((y(x)-x^3)+(x+y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)$

$$-\frac{x^4}{4} + y(x)x + \frac{y(x)^4}{4} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 60.165 (sec). Leaf size: 1126

DSolve[$(y[x]-x^3)+(x+y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \rightarrow \sqrt{\sqrt[3]{9x^2 + \sqrt{3}\sqrt{27x^4 + (x^4 + 4c_1)^3}} - \frac{x^4 + 4c_1}{\sqrt[3]{3x^2 + \sqrt{9x^4 + \frac{1}{3}(x^4 + 4c_1)^3}}} + \sqrt{\sqrt[3]{9x^2 + \sqrt{3}\sqrt{27x^4 + (x^4 + 4c_1)^3}}}$$

$$y(x) = \sqrt{\frac{\frac{6\sqrt{2}x}{\sqrt[3]{9x^2 + \sqrt{3}\sqrt{27x^4 + (x^4 + 4c_1)^3}} - \sqrt[3]{9x^2 + \sqrt{3}\sqrt{27x^4 + (x^4 + 4c_1)^3}}}{\sqrt[3]{3x^2 + \sqrt{9x^4 + \frac{1}{3}(x^4 + 4c_1)^3}}} - \sqrt[3]{9x^2 + \sqrt{3}\sqrt{27x^4 + (x^4 + 4c_1)^3}}$$

$$\sqrt[3]{9x^2 + \sqrt{3}\sqrt{27x^4 + (x^4 + 4c_1)^3}} - \frac{x^4 + 4c_1}{\sqrt[3]{3x^2 + \sqrt{9x^4 + \frac{1}{3}(x^4 + 4c_1)^3}}} - \sqrt[3]{9x^2 + \sqrt{3}\sqrt{27x^4 + (x^4 + 4c_1)^3}}$$

$$\sqrt[3]{9x^2 + \sqrt{3}\sqrt{27x^4 + (x^4 + 4c_1)^3}} - \frac{x^4 + 4c_1}{\sqrt[3]{3x^2 + \sqrt{9x^4 + \frac{1}{3}(x^4 + 4c_1)^3}}} + \sqrt[3]{-\sqrt[3]{9x^2 + \sqrt{3}\sqrt{27x^4 + (x^4 + 4c_1)^3}}}$$

2.4 problem 4

Internal problem ID [2583]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 8, page 41

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class B']]

$$2y^{2} - 4x + 5 - (4 - 2y + 4yx)y' = 0$$

X Solution by Maple

 $dsolve((2*y(x)^2-4*x+5)=(4-2*y(x)+4*x*y(x))*diff(y(x),x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(2*y[x]^2-4*x+5)==(4-2*y[x]+4*x*y[x])*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

Not solved

2.5 problem 5

Internal problem ID [2584]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 8, page 41

Problem number: 5.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y + y \cos(yx) + (x + x \cos(yx)) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve((y(x)+y(x)*cos(x*y(x)))+(x+x*cos(x*y(x)))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{\pi}{x}$$

$$y(x) = \frac{c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 49

$$y(x) \to -\frac{\pi}{x}$$

$$y(x) \to \frac{\pi}{x}$$

$$y(x) o rac{c_1}{x}$$

$$y(x) \to -\frac{\pi}{x}$$

$$y(x) \to \frac{\pi}{x}$$

2.6 problem 6

Internal problem ID [2585]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 8, page 41

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\cos(x)\cos(y)^2 + 2\sin(x)\sin(y)\cos(y)y' = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 31

 $dsolve(cos(x)*cos(y(x))^2+(2*sin(x)*sin(y(x))*cos(y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\pi}{2}$$

$$y(x) = \arccos\left(\sqrt{\sin(x) c_1}\right)$$

$$y(x) = \pi - \arccos\left(\sqrt{\sin(x) c_1}\right)$$

✓ Solution by Mathematica

Time used: 6.216 (sec). Leaf size: 85

 $DSolve[Cos[x]*Cos[y[x]]^2+(2*Sin[x]*Sin[y[x]]*Cos[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutors]$

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{\pi}{2}$$

$$y(x) \to -\arccos\left(-\frac{1}{4}c_1\sqrt{\cos(x)}\sqrt{\tan(x)}\right)$$

$$y(x) \to \arccos\left(-\frac{1}{4}c_1\sqrt{\cos(x)}\sqrt{\tan(x)}\right)$$

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{\pi}{2}$$

2.7 problem 7

Internal problem ID [2586]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 8, page 41

Problem number: 7.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$(\sin(x)\sin(y) - e^y x)y' - e^y - \cos(x)\cos(y) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve((sin(x)*sin(y(x))-x*exp(y(x)))*diff(y(x),x)=exp(y(x))+cos(x)*cos(y(x)),y(x)), singsol=axion(x)*sin(y(x))-x*exp(y(x)))*diff(y(x),x)=exp(y(x))+cos(x)*cos(y(x)),y(x)), singsol=axion(x)*sin(y(x))-x*exp(y(x)))*diff(y(x),x)=exp(y(x))+cos(x)*cos(y(x)),y(x)), singsol=axion(x)*sin(y(x))-x*exp(y(x)))*diff(y(x),x)=exp(y(x))+cos(x)*cos(y(x)),y(x)), singsol=axion(x)*sin(x)*s

$$c_1 + \sin(x)\cos(y(x)) + x e^{y(x)} = 0$$

✓ Solution by Mathematica

Time used: 0.616 (sec). Leaf size: 21

DSolve[(Sin[x]*Sin[y[x]]-x*Exp[y[x]])*y'[x] == Exp[y[x]]+Cos[x]*Cos[y[x]],y[x],x,IncludeSingular == Exp[y[x]]+Cos[x]*Cos[y[x]],y[x],x,IncludeSingular == Exp[y[x]]+Cos[x]*Cos[y[x]],y[x],x,IncludeSingular == Exp[y[x]]+Cos[x]*Cos[y[x]],y[x],x,IncludeSingular == Exp[y[x]]+Cos[x]*Cos[x]*Cos[y[x]],y[x],x,IncludeSingular == Exp[y[x]]+Cos[x]*Cos[x]*Cos[y[x]],y[x],x,IncludeSingular == Exp[y[x]]+Cos[x]*Cos

$$Solve \left[2(xe^{y(x)} + \sin(x)\cos(y(x))) = c_1, y(x) \right]$$

2.8 problem 8

Internal problem ID [2587]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 8, page 41

Problem number: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$-\frac{\sin\left(\frac{x}{y}\right)}{y} + \frac{x\sin\left(\frac{x}{y}\right)y'}{y^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

 $\label{eq:decomposition} \\ \mbox{dsolve}(-1/y(x)*\sin(x/y(x))+x/y(x)^2*\sin(x/y(x))*\mbox{diff}(y(x),x)=0,\\ y(x), \ \mbox{singsol=all}) \\ \mbox{dsolve}(-1/y(x))*\mbox{diff}(y(x),x)=0,\\ \mbox{diff}(y(x),x)=0,\\ \mbox{diff}(y(x),$

$$y(x) = \frac{x}{\pi - c_1}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 19

 $DSolve[-1/y[x]*Sin[x/y[x]]+x/y[x]^2*Sin[x/y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> Temporal content of the content$

$$y(x) \to c_1 x$$

 $y(x) \to \text{ComplexInfinity}$

 $y(x) \to \text{ComplexInfinity}$

2.9 problem 9

Internal problem ID [2588]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 8, page 41

Problem number: 9.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$1 + y + (1 - x)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve((1+y(x))+(1-x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -1 + c_1(x-1)$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 18

DSolve[(1+y[x])+(1-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -1 + c_1(x-1)$$
$$y(x) \to -1$$

2.10 problem 10

Internal problem ID [2589]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 8, page 41

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$2xy^{3} + \cos(x)y + (3x^{2}y^{2} + \sin(x))y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 375

 $dsolve((2*x*y(x)^3+y(x)*cos(x))+(3*x^2*y(x)^2+sin(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$\begin{split} y(x) &= \frac{\left(12\sqrt{3}\sqrt{27c_1^2x^2 + 4\sin\left(x\right)^3} - 108c_1x\right)^{\frac{1}{3}}}{6x} - \frac{2\sin\left(x\right)}{x\left(12\sqrt{3}\sqrt{27c_1^2x^2 + 4\sin\left(x\right)^3} - 108c_1x\right)^{\frac{1}{3}}} \\ y(x) &= -\frac{\left(12\sqrt{3}\sqrt{27c_1^2x^2 + 4\sin\left(x\right)^3} - 108c_1x\right)^{\frac{1}{3}}}{12x} \\ &+ \frac{12x}{\sin\left(x\right)} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(12\sqrt{3}\sqrt{27c_1^2x^2 + 4\sin\left(x\right)^3} - 108c_1x\right)^{\frac{1}{3}}}{4x\left(12\sqrt{3}\sqrt{27c_1^2x^2 + 4\sin\left(x\right)^3} - 108c_1x\right)^{\frac{1}{3}}} \\ &- \frac{i\sqrt{3}\left(\frac{\left(12\sqrt{3}\sqrt{27c_1^2x^2 + 4\sin\left(x\right)^3} - 108c_1x\right)^{\frac{1}{3}}}{2x} + \frac{2\sin\left(x\right)}{x\left(12\sqrt{3}\sqrt{27c_1^2x^2 + 4\sin\left(x\right)^3} - 108c_1x\right)^{\frac{1}{3}}} \right)} \\ &+ \frac{12x}{\sin\left(x\right)} \\ &+ \frac{2\sin\left(x\right)}{x\left(12\sqrt{3}\sqrt{27c_1^2x^2 + 4\sin\left(x\right)^3} - 108c_1x\right)^{\frac{1}{3}}} + \frac{2\sin\left(x\right)}{x\left(12\sqrt{3}\sqrt{27c_1^2x^2 + 4\sin\left(x\right)^3} - 108c_1x\right)^{\frac{1}{3}}} \\ &+ \frac{12x}{\sin\left(x\right)} \\ &+ \frac{12x}{\sin\left(x\right)} \\ &+ \frac{12x}{\sin\left(x\right)} \\ &+ \frac{12x}{\sin\left(x\right)} \\ &+ \frac{2\sin\left(x\right)}{x\left(12\sqrt{3}\sqrt{27c_1^2x^2 + 4\sin\left(x\right)^3} - 108c_1x\right)^{\frac{1}{3}}} \\ &+ \frac{2\sin\left(x$$

✓ Solution by Mathematica

Time used: 27.111 (sec). Leaf size: 339

$$y(x) \rightarrow \frac{\sqrt[3]{9c_1x^4 + \sqrt{12x^6 \sin^3(x) + 81c_1^2x^8}}}{\sqrt[3]{23^{2/3}x^2}} - \frac{\sqrt[3]{\frac{2}{3}}\sin(x)}{\sqrt[3]{9c_1x^4 + \sqrt{12x^6 \sin^3(x) + 81c_1^2x^8}}}$$

$$y(x) \rightarrow \frac{(1 + i\sqrt{3})\sin(x)}{2^{2/3}\sqrt[3]{27c_1x^4 + 3\sqrt{12x^6 \sin^3(x) + 81c_1^2x^8}}}$$

$$- \frac{(1 - i\sqrt{3})\sqrt[3]{27c_1x^4 + \sqrt{108x^6 \sin^3(x) + 729c_1^2x^8}}}{6\sqrt[3]{2}x^2}$$

$$y(x) \rightarrow \frac{(1 - i\sqrt{3})\sin(x)}{2^{2/3}\sqrt[3]{27c_1x^4 + 3\sqrt{12x^6 \sin^3(x) + 81c_1^2x^8}}}$$

$$- \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1x^4 + \sqrt{108x^6 \sin^3(x) + 729c_1^2x^8}}}{6\sqrt[3]{2}x^2}$$

2.11 problem 11

Internal problem ID [2590]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 8, page 41

Problem number: 11.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, _Riccati]

$$1 - \frac{y}{1 - x^2 y^2} - \frac{xy'}{1 - x^2 y^2} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(1=y(x)/(1-x^2+y(x)^2)+x/(1-x^2+y(x)^2)+diff(y(x),x),y(x), singsol=all)$

$$y(x) = -\frac{e^{-2x}c_1 + 1}{x(e^{-2x}c_1 - 1)}$$

✓ Solution by Mathematica

Time used: 0.147 (sec). Leaf size: 18

 $DSolve[1==y[x]/(1-x^2*y[x]^2)+x/(1-x^2*y[x]^2)*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{ anh(x + ic_1)}{x}$$

3	Chapter	2	2	,	S	S E	90	ct	i	0	r	l	1	0),	I)	3£	g (9	4	·7	•									
3.1	problem 2(a)																															29
3.2	problem 2(b)																															32
3.3	problem 2(c)																															35
3.4	problem 4(a)																															35
3.5	problem 4(b)																															36
3.6	problem 4(c)																															37
3.7	problem 4(d)																															38
3.8	problem 4(e)																															38

3.1 problem 2(a)

Internal problem ID [2591]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 10, page 47

Problem number: 2(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$(3x^2 - y^2) y' - 2yx = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 402

 $dsolve((3*x^2-y(x)^2)*diff(y(x),x)-2*x*y(x)=0,y(x), singsol=all)$

$$\begin{split} y(x) &= \frac{\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}}{6c_1} \\ &+ \frac{2}{3c_1\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}} + \frac{1}{3c_1} \\ y(x) &= -\frac{\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}}{12c_1} \\ &- \frac{1}{3c_1\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}} + \frac{1}{3c_1} \\ &- \frac{i\sqrt{3}\left(\frac{\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}}{6c_1} - \frac{2}{3c_1\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}}\right)}{2} \\ y(x) &= -\frac{\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}}{12c_1} \\ &- \frac{1}{3c_1\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}} - \frac{2}{3c_1\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}}{6c_1} - \frac{2}{3c_1\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}}\right)} \\ &+ \frac{2}{3c_1\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}}}{2c_1\left(12\sqrt{3}\,x\sqrt{27c_1^2x^2 - 4}\,c_1 - 108c_1^2x^2 + 8\right)^{\frac{1}{3}}}} \end{split}$$

✓ Solution by Mathematica

Time used: 60.192 (sec). Leaf size: 458

 $DSolve[(3*x^2-y[x]^2)*y'[x]-2*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$\begin{split} y(x) & \to \frac{1}{3} \left(\frac{\sqrt[3]{27e^{c_1}x^2 + 3\sqrt{81e^{2c_1}x^4 - 12e^{4c_1}x^2} - 2e^{3c_1}}}{\sqrt[3]{2}} \right. \\ & \quad + \frac{\sqrt[3]{2}e^{2c_1}}{\sqrt[3]{27e^{c_1}x^2 + 3\sqrt{81e^{2c_1}x^4 - 12e^{4c_1}x^2} - 2e^{3c_1}}} - e^{c_1} \right) \\ y(x) & \to \frac{i(\sqrt{3}+i)\sqrt[3]{27e^{c_1}x^2 + 3\sqrt{81e^{2c_1}x^4 - 12e^{4c_1}x^2} - 2e^{3c_1}}}{6\sqrt[3]{2}} \\ & \quad - \frac{i(\sqrt{3}-i)e^{2c_1}}{32^{2/3}\sqrt[3]{27e^{c_1}x^2 + 3\sqrt{81e^{2c_1}x^4 - 12e^{4c_1}x^2} - 2e^{3c_1}}} - \frac{e^{c_1}}{3}}{3} \\ y(x) & \to - \frac{i(\sqrt{3}-i)\sqrt[3]{27e^{c_1}x^2 + 3\sqrt{81e^{2c_1}x^4 - 12e^{4c_1}x^2} - 2e^{3c_1}}}{6\sqrt[3]{2}} \\ & \quad + \frac{i(\sqrt{3}+i)e^{2c_1}}{32^{2/3}\sqrt[3]{27e^{c_1}x^2 + 3\sqrt{81e^{2c_1}x^4 - 12e^{4c_1}x^2} - 2e^{3c_1}}} - \frac{e^{c_1}}{3} \end{split}$$

3.2 problem 2(b)

Internal problem ID [2592]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 10, page 47

Problem number: 2(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x),G(x)]'], [_Abel,

$$yx - 1 + \left(x^2 - yx\right)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

 $dsolve((x*y(x)-1)+(x^2-x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = x - \sqrt{x^2 - 2\ln(x) + 2c_1}$$

$$y(x) = x + \sqrt{x^2 - 2\ln(x) + 2c_1}$$

✓ Solution by Mathematica

Time used: 0.398 (sec). Leaf size: 68

 $DSolve[(x*y[x]-1)+(x^2-x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x + \sqrt{-\frac{1}{x}} \sqrt{-x(x^2 - 2\log(x) + c_1)}$$

$$y(x) \to x + x \left(-\frac{1}{x}\right)^{3/2} \sqrt{-x(x^2 - 2\log(x) + c_1)}$$

3.3 problem 2(c)

Internal problem ID [2593]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 10, page 47

Problem number: 2(c).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$(x + 3x^3y^4) y' + y = 0$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 129

 $dsolve((x+3*x^3*y(x)^4)*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{-6xc_1\left(-x + \sqrt{12c_1^2 + x^2}\right)}}{6xc_1}$$
$$y(x) = \frac{\sqrt{-6xc_1\left(-x + \sqrt{12c_1^2 + x^2}\right)}}{6xc_1}$$
$$y(x) = -\frac{\sqrt{6}\sqrt{xc_1\left(x + \sqrt{12c_1^2 + x^2}\right)}}{6xc_1}$$
$$y(x) = \frac{\sqrt{6}\sqrt{xc_1\left(x + \sqrt{12c_1^2 + x^2}\right)}}{6xc_1}$$

✓ Solution by Mathematica

Time used: 9.742 (sec). Leaf size: 166

 $DSolve[(x+3*x^3*y[x]^4)*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{c_1 - \frac{\sqrt{x^2(3+c_1^2 x^2)}}{x^2}}}{\sqrt{3}}$$

$$y(x) \to \frac{\sqrt{c_1 - \frac{\sqrt{x^2(3+c_1^2 x^2)}}{x^2}}}{\sqrt{3}}$$

$$y(x) \to -\frac{\sqrt{\frac{\sqrt{x^2(3+c_1^2 x^2)}}{x^2}} + c_1}{\sqrt{3}}$$

$$y(x) \to \frac{\sqrt{\frac{\sqrt{x^2(3+c_1^2 x^2)}}{x^2}} + c_1}{\sqrt{3}}$$

$$y(x) \to 0$$

3.4 problem 4(a)

Internal problem ID [2594]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 10, page 47

Problem number: 4(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$(x-1-y^2)y'-y=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

 $dsolve((x-1-y(x)^2)*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{2} - \frac{\sqrt{c_1^2 - 4x + 4}}{2}$$

$$y(x) = \frac{c_1}{2} + \frac{\sqrt{c_1^2 - 4x + 4}}{2}$$

✓ Solution by Mathematica

Time used: 0.259 (sec). Leaf size: 56

 $DSolve[(x-1-y[x]^2)*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{1}{2} \left(c_1 - \sqrt{-4x + 4 + c_1^2} \right)$$

$$y(x) \to \frac{1}{2} \Big(\sqrt{-4x + 4 + c_1^2} + c_1 \Big)$$

$$y(x) \to 0$$

3.5 problem 4(b)

Internal problem ID [2595]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 10, page 47

Problem number: 4(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$y - (x + xy^3)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(y(x)-(x+x*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = rac{1}{\left(rac{1}{ ext{LambertW}(c_1 x^3)}
ight)^{rac{1}{3}}}$$

✓ Solution by Mathematica

Time used: 4.156 (sec). Leaf size: 76

DSolve[y[x]-(x+x*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sqrt[3]{W(e^{3c_1}x^3)}$$

$$y(x) \to -\sqrt[3]{-1}\sqrt[3]{W(e^{3c_1}x^3)}$$

$$y(x) \to (-1)^{2/3}\sqrt[3]{W(e^{3c_1}x^3)}$$

$$y(x) \to 0$$

3.6 problem 4(c)

Internal problem ID [2596]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 10, page 47

Problem number: 4(c).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Riccati]

$$y'x - x^5 - x^3y^2 - y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(x*diff(y(x),x)=x^5+x^3*y(x)^2+y(x),y(x), singsol=all)$

$$y(x) = \tan\left(\frac{x^4}{4} + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.191 (sec). Leaf size: 18

DSolve $[x*y'[x] == x^5 + x^3 * y[x]^2 + y[x], y[x], x, Include Singular Solutions -> True]$

$$y(x) \to x \tan\left(\frac{x^4}{4} + c_1\right)$$

3.7 problem 4(d)

Internal problem ID [2597]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 10, page 47

Problem number: 4(d).

ODE order: 1.
ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `2nd\ type$

$$(x+y)y'-y+x=0$$

Time used: 0.0 (sec). Leaf size: 24

dsolve((y(x)+x)*diff(y(x),x)=(y(x)-x),y(x), singsol=all)

$$y(x) = \tan \left(\operatorname{RootOf} \left(2 Z + \ln \left(\frac{1}{\cos \left(Z \right)^2} \right) + 2 \ln \left(x \right) + 2 c_1 \right) \right) x$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 34

 $DSolve[(y[x]+x)*y'[x]==(y[x]-x),y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\arctan\left(\frac{y(x)}{x}\right) + \frac{1}{2}\log\left(\frac{y(x)^2}{x^2} + 1\right) = -\log(x) + c_1, y(x)\right]$$

3.8 problem 4(e)

Internal problem ID [2598]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 10, page 47

Problem number: 4(e).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Riccati]

$$y'x - y - x^2 - 9y^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve(x*diff(y(x),x)=y(x)+x^2+9*y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{\tan(3x + 3c_1)x}{3}$$

✓ Solution by Mathematica

Time used: 0.248 (sec). Leaf size: 17

DSolve $[x*y'[x]==y[x]+x^2+9*y[x]^2,y[x],x$, IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{3}x\tan(3(x+c_1))$$

4	Chapter	2	2,	5	S E	96	t	i	o	n	Ĺ	1	1	,	p	a	g	ge	•	4	9									
4.1	problem 2(a)																													41
4.2	problem 2(b)																													42
4.3	problem 2(c)																													43
4.4	problem 2(d)																													44
4.5	problem 2(e)																													45
4.6	problem $2(f)$.																													46

4.1 problem 2(a)

Internal problem ID [2599]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 11, page 49

Problem number: 2(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x - 3y - x^4 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(x*diff(y(x),x)-3*y(x)=x^4,y(x), singsol=all)$

$$y(x) = (x + c_1) x^3$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 13

DSolve[x*y'[x]-3*y[x]==x^4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x^3(x+c_1)$$

4.2 problem 2(b)

Internal problem ID [2600]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 11, page 49

Problem number: 2(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y + y' - \frac{1}{e^{2x} + 1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)+y(x)=1/(1+exp(2*x)),y(x), singsol=all)

$$y(x) = (\arctan(e^x) + c_1) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.08 (sec). Leaf size: 18

 $DSolve[y'[x]+y[x]==1/(1+Exp[2*x]),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^{-x}(\arctan(e^x) + c_1)$$

4.3 problem 2(c)

Internal problem ID [2601]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 11, page 49

Problem number: 2(c).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x^{2} + 1) y' + 2yx - \cot(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve((1+x^2)*diff(y(x),x)+2*x*y(x)=cot(x),y(x), singsol=all)$

$$y(x) = \frac{\ln(\sin(x)) + c_1}{x^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 22

DSolve[(1+x^2)*y'[x]+2*x*y[x]==Cot[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\log(\tan(x)) + \log(\cos(x)) + c_1}{x^2 + 1}$$

4.4 problem 2(d)

Internal problem ID [2602]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 11, page 49

Problem number: 2(d).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y + y' - 2x e^{-x} - x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(x),x)+y(x)=2*x*exp(-x)+x^2,y(x), singsol=all)$

$$y(x) = x^2 - 2x + e^{-x}x^2 + 2 + c_1e^{-x}$$

✓ Solution by Mathematica

Time used: 0.095 (sec). Leaf size: 24

 $DSolve[y'[x]+y[x]==2*x*Exp[-x]+x^2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to e^{-x}(x^2 + c_1) + (x - 2)x + 2$$

4.5 problem 2(e)

Internal problem ID [2603]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 11, page 49

Problem number: 2(e).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \cot(x) y - 2\csc(x) x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)+y(x)*cot(x)=2*x*csc(x),y(x), singsol=all)

$$y(x) = \frac{x^2 + c_1}{\sin(x)}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 14

DSolve[y'[x]+y[x]*Cot[x]==2*x*Csc[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (x^2 + c_1) \csc(x)$$

4.6 problem 2(f)

Internal problem ID [2604]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 11, page 49

Problem number: 2(f).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$2y - x^3 - y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve((2*y(x)-x^3)=x*diff(y(x),x),y(x), singsol=all)$

$$y(x) = (c_1 - x) x^2$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 15

 $DSolve[(2*y[x]-x^3)==x*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2(-x+c_1)$$

5	Chapte	r	2,	Ł	'n	d	0	t (cľ	\mathbf{a}	ιp	te	er	,	\mathbf{p}	\mathbf{a}	\mathbf{g}	e	6	L							
5.1	problem 2 .																										48
5.2	problem 3 .																										49
5.3	problem 4 .																										50
5.4	problem 5 .																										51
5.5	problem 6 .																										53
5.6	problem 8 .																										54
5.7	problem 9 .																										55
5.8	problem 10																										56
5.9	problem 12																										58
5.10	problem 13																										59
5.11	problem 14																										60
5.12	problem 15																										61
5.13	problem 17																										62
5.14	problem 18																										63
5.15	problem 19																										64
5.16	problem 20																										65
5.17	problem 21																										66
5.18	problem 22																										67
5.19	problem 24																										68
5.20	problem 25																										69

5.1 problem 2

Internal problem ID [2605]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 2.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'class G'],

$$(-yx+1)y' - y^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $dsolve((1-x*y(x))*diff(y(x),x)=y(x)^2,y(x), singsol=all)$

$$y(x) = e^{-LambertW(-xe^{-c_1})-c_1}$$

✓ Solution by Mathematica

Time used: 2.074 (sec). Leaf size: 25

 $DSolve[(1-x*y[x])*y'[x]==y[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{W(-e^{-c_1}x)}{x}$$

$$y(x) \to 0$$

5.2 problem 3

Internal problem ID [2606]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 3.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$2x + 3y + 1 + (2y - 3x + 5)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve((2*x+3*y(x)+1)+(2*y(x)-3*x+5)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -1 - \tan\left(\text{RootOf}\left(3_Z + \ln\left(\frac{1}{\cos\left(_Z\right)^2}\right) + 2\ln\left(x - 1\right) + 2c_1\right)\right)(x - 1)$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 68

 $\textbf{DSolve}[(2*x+3*y[x]+1)+(2*y[x]-3*x+5)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow \textbf{True}]$

Solve
$$\left[54 \arctan\left(\frac{3y(x) + 2x + 1}{2y(x) - 3x + 5}\right) + 18 \log\left(\frac{4(x^2 + y(x)^2 + 2y(x) - 2x + 2)}{13(x - 1)^2}\right) + 36 \log(x - 1) + 13c_1 = 0, y(x)\right]$$

5.3 problem 4

Internal problem ID [2607]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 4.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y'x - \sqrt{x^2 + y^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

 $dsolve(x*diff(y(x),x)=sqrt(x^2+y(x)^2),y(x), singsol=all)$

$$\frac{y(x)^{2}}{x^{2}} + \frac{y(x)\sqrt{x^{2} + y(x)^{2}}}{x^{2}} + \ln\left(y(x) + \sqrt{x^{2} + y(x)^{2}}\right) - 3\ln(x) - c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.307 (sec). Leaf size: 66

DSolve[x*y'[x]==Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\frac{1}{2} \left(\frac{y(x) \left(\sqrt{\frac{y(x)^2}{x^2} + 1} + \frac{y(x)}{x} \right)}{x} - \log \left(\sqrt{\frac{y(x)^2}{x^2} + 1} - \frac{y(x)}{x} \right) \right) = \log(x) + c_1, y(x) \right]$$

5.4 problem 5

Internal problem ID [2608]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 5.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'class G'],

$$y^2 - \left(x^3 - yx\right)y' = 0$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 285

 $dsolve(y(x)^2=(x^3-x*y(x))*diff(y(x),x),y(x), singsol=all)$

$$y(x) = c_1 \left(\frac{\left(-x^3 + \sqrt{x^6 - c_1^3} \right)^{\frac{1}{3}}}{x^3} + \frac{c_1}{x^3 \left(-x^3 + \sqrt{x^6 - c_1^3} \right)^{\frac{1}{3}}} \right) x^2$$

$$=\frac{c_{1}\left(-\frac{2\left(-x^{3}+\sqrt{x^{6}-c_{1}^{3}}\right)^{\frac{1}{3}}}{x^{3}}-\frac{2c_{1}}{x^{3}\left(-x^{3}+\sqrt{x^{6}-c_{1}^{3}}\right)^{\frac{1}{3}}}-2i\sqrt{3}\left(\frac{\left(-x^{3}+\sqrt{x^{6}-c_{1}^{3}}\right)^{\frac{1}{3}}}{x^{3}}-\frac{c_{1}}{x^{3}\left(-x^{3}+\sqrt{x^{6}-c_{1}^{3}}\right)^{\frac{1}{3}}}\right)\right)x^{2}}{4}$$

$$y(x) = \frac{c_1 \left(-\frac{2 \left(-x^3+\sqrt{x^6-c_1^3}\right)^{\frac{1}{3}}}{x^3} - \frac{2c_1}{x^3 \left(-x^3+\sqrt{x^6-c_1^3}\right)^{\frac{1}{3}}} + 2i\sqrt{3} \left(\frac{\left(-x^3+\sqrt{x^6-c_1^3}\right)^{\frac{1}{3}}}{x^3} - \frac{c_1}{x^3 \left(-x^3+\sqrt{x^6-c_1^3}\right)^{\frac{1}{3}}}\right)\right)x^2}{4}$$

✓ Solution by Mathematica

Time used: 60.119 (sec). Leaf size: 534

 $DSolve[y[x]^2 == (x^3 - x * y[x]) * y'[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2$$
 1

$$\frac{9^{\sqrt[3]{-e^{\frac{3c_1}{4}}x^{12}+2e^{\frac{3c_1}{8}}x^6+\sqrt{e^{\frac{3c_1}{8}}x^6\left(-1+e^{\frac{3c_1}{8}}x^6\right)^3}-1}}{\sqrt[3]{-e^{\frac{3c_1}{4}}x^{12}+2e^{\frac{3c_1}{8}}x^6+\sqrt{e^{\frac{3c_1}{8}}x^6\left(-1+e^{\frac{3c_1}{8}}x^6\right)^3}}}$$

$$y(x) o x^2 \left| 1 \right|$$

$$-\frac{18}{\frac{9i\left(\sqrt{3}+i\right)\sqrt[3]{-e^{\frac{3c_1}{4}}x^{12}+2e^{\frac{3c_1}{8}}x^6+\sqrt{e^{\frac{3c_1}{8}}x^6\left(-1+e^{\frac{3c_1}{8}}x^6\right)^3}-1}{-1+e^{\frac{3c_1}{8}}x^6}+\frac{9+9i\sqrt{3}}{\sqrt{-e^{\frac{3c_1}{4}}x^{12}+2e^{\frac{3c_1}{8}}x^6+\sqrt{e^{\frac{3c_1}{8}}x^6}}}$$

5.5 problem 6

Internal problem ID [2609]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$x^{2} + y + y^{3} - (x^{3}y^{2} - x)y' = 0$$

X Solution by Maple

 $dsolve((x^2+y(x)^3+y(x))=(x^3*y(x)^2-x)*diff(y(x),x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(x^2+y[x]^3+y[x])==(x^3*y[x]^2-x)*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

Not solved

5.6 problem 8

Internal problem ID [2610]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + y - x\cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(x*diff(y(x),x)+y(x)=x*cos(x),y(x), singsol=all)

$$y(x) = \frac{\cos(x) + x\sin(x) + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 17

DSolve[x*y'[x]+y[x]==x*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x) + \frac{\cos(x) + c_1}{x}$$

5.7 problem 9

Internal problem ID [2611]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 9.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A']

$$(yx - x^2)y' - y^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve((x*y(x)-x^2)*diff(y(x),x)=y(x)^2,y(x), singsol=all)$

$$y(x) = e^{-LambertW\left(-\frac{e^{-c_1}}{x}\right) - c_1}$$

✓ Solution by Mathematica

Time used: 2.225 (sec). Leaf size: 25

 $DSolve[(x*y[x]-x^2)*y'[x]==y[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o -xW\left(-rac{e^{-c_1}}{x}
ight)$$
 $y(x) o 0$

5.8 problem 10

Internal problem ID [2612]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 10.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$(e^x - 3x^2y^2)y' + e^xy - 2xy^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 347

 $dsolve((exp(x)-3*x^2*y(x)^2)*diff(y(x),x)+y(x)*exp(x)=2*x*y(x)^3,y(x), singsol=all)$

$$y(x) = \frac{\left(108c_1x + 12\sqrt{81c_1^2x^2 - 12\,e^{3x}}\right)^{\frac{1}{3}}}{6x} + \frac{2\,e^x}{x\left(108c_1x + 12\sqrt{81c_1^2x^2 - 12\,e^{3x}}\right)^{\frac{1}{3}}}$$

$$y(x) = -\frac{\left(\frac{108c_1x + 12\sqrt{81c_1^2x^2 - 12\,e^{3x}}}{12x}\right)^{\frac{1}{3}}}{12x} - \frac{e^x}{x\left(108c_1x + 12\sqrt{81c_1^2x^2 - 12\,e^{3x}}\right)^{\frac{1}{3}}}$$

$$-\frac{e^x}{x\left(108c_1x + 12\sqrt{81c_1^2x^2 - 12\,e^{3x}}\right)^{\frac{1}{3}}} - \frac{2\,e^x}{x\left(108c_1x + 12\sqrt{81c_1^2x^2 - 12\,e^{3x}}\right)^{\frac{1}{3}}}\right)}$$

$$y(x) = -\frac{\left(\frac{108c_1x + 12\sqrt{81c_1^2x^2 - 12\,e^{3x}}}{6x}\right)^{\frac{1}{3}}}{12x} - \frac{e^x}{x\left(108c_1x + 12\sqrt{81c_1^2x^2 - 12\,e^{3x}}\right)^{\frac{1}{3}}}$$

$$+\frac{i\sqrt{3}\left(\frac{\left(\frac{108c_1x + 12\sqrt{81c_1^2x^2 - 12\,e^{3x}}}\right)^{\frac{1}{3}}}{6x} - \frac{2\,e^x}{x\left(108c_1x + 12\sqrt{81c_1^2x^2 - 12\,e^{3x}}\right)^{\frac{1}{3}}}\right)}$$

✓ Solution by Mathematica

Time used: 54.59 (sec). Leaf size: 364

$$\begin{split} y(x) & \to \frac{2\sqrt[3]{3}e^x x^2 + \sqrt[3]{2} \left(9c_1 x^4 + \sqrt{-12e^{3x}x^6 + 81c_1^2 x^8}\right)^{2/3}}{6^{2/3}x^2\sqrt[3]{9c_1 x^4 + \sqrt{-12e^{3x}x^6 + 81c_1^2 x^8}}} \\ y(x) & \to \frac{i(\sqrt{3}+i)\sqrt[3]{9c_1 x^4 + \sqrt{-12e^{3x}x^6 + 81c_1^2 x^8}}}{2\sqrt[3]{23^{2/3}x^2}} - \frac{\left(\sqrt{3}+3i\right)e^x}{2^{2/3}3^{5/6}\sqrt[3]{9c_1 x^4 + \sqrt{-12e^{3x}x^6 + 81c_1^2 x^8}}} \\ y(x) & \to \frac{\left(-1-i\sqrt{3}\right)\sqrt[3]{9c_1 x^4 + \sqrt{-12e^{3x}x^6 + 81c_1^2 x^8}}}{2\sqrt[3]{23^{2/3}x^2}} - \frac{\left(\sqrt{3}-3i\right)e^x}{2\sqrt[3]{23^{2/3}x^2}} - \frac{\left(\sqrt{3}-3i\right)e^x}{2\sqrt[3]{23^{2/3}x^2}} \end{split}$$

5.9 problem 12

Internal problem ID [2613]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y + x^2 - y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve((x^2+y(x))=x*diff(y(x),x),y(x), singsol=all)$

$$y(x) = (x + c_1) x$$

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 11

DSolve[(x^2+y[x])==x*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x(x+c_1)$$

5.10 problem 13

Internal problem ID [2614]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 13.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + y - x^2\cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(x*diff(y(x),x)+y(x)=x^2*cos(x),y(x), singsol=all)$

$$y(x) = \frac{\sin(x) x^2 - 2\sin(x) + 2x\cos(x) + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 25

 $DSolve[x*y'[x]+y[x]==x^2*Cos[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{(x^2 - 2)\sin(x) + 2x\cos(x) + c_1}{x}$$

5.11 problem 14

Internal problem ID [2615]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 14.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$6x + 4y + 3 + (3x + 2y + 2)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve((6*x+4*y(x)+3)+(3*x+2*y(x)+2)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\frac{3x}{2} + \text{LambertW}\left(e^{-\frac{x}{2}}c_1\right)$$

✓ Solution by Mathematica

Time used: 4.049 (sec). Leaf size: 34

 $DSolve[(6*x+4*y[x]+3)+(3*x+2*y[x]+2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{3x}{2} + W\left(-e^{-\frac{x}{2}-1+c_1}\right)$$

 $y(x) \rightarrow -\frac{3x}{2}$

5.12 problem 15

Internal problem ID [2616]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 15.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _exact]

$$\cos(x+y) - x\sin(x+y) - x\sin(x+y)y' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(cos(x+y(x))-x*sin(x+y(x))=x*sin(x+y(x))*diff(y(x),x),y(x), singsol=all)

$$y(x) = -x + \arccos\left(\frac{c_1}{x}\right)$$

✓ Solution by Mathematica

Time used: 10.063 (sec). Leaf size: 35

DSolve[Cos[x+y[x]]-x*Sin[x+y[x]]==x*Sin[x+y[x]]*y'[x],y[x],x,IncludeSingularSolutions -> True

$$y(x) \to -x - \arccos\left(-\frac{c_1}{x}\right)$$

$$y(x) \to -x + \arccos\left(-\frac{c_1}{x}\right)$$

5.13 problem 17

Internal problem ID [2617]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 17.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$y^{2}e^{yx} + \cos(x) + (e^{yx} + xy e^{yx}) y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $dsolve((y(x)^2*exp(x*y(x))+cos(x))+(exp(x*y(x))+x*y(x)*exp(x*y(x)))*diff(y(x),x)=0,y(x), sing(x)=0,y(x), sing(x)=0,y(x)$

$$y(x) = \frac{\text{LambertW} \left(-x(c_1 + \sin (x))\right)}{x}$$

✓ Solution by Mathematica

Time used: 60.254 (sec). Leaf size: 19

 $DSolve[(y[x]^2*Exp[x*y[x]]+Cos[x])+(Exp[x*y[x]]+x*y[x]*Exp[x*y[x]])*y'[x]==0,y[x],x,IncludeSi$

$$y(x) \to \frac{W(x(-\sin(x)+c_1))}{x}$$

5.14 problem 18

Internal problem ID [2618]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 18.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _dAlembert]

$$y' \ln(x - y) - 1 - \ln(x - y) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve(diff(y(x),x)*ln(x-y(x))=1+ln(x-y(x)),y(x), singsol=all)

$$y(x) = -e^{\text{LambertW}((c_1 - x)e^{-1}) + 1} + x$$

✓ Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 26

 $DSolve[y'[x]*Log[x-y[x]] == 1 + Log[x-y[x]], y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$[(x - y(x))(-\log(x - y(x))) - y(x) = c_1, y(x)]$$

5.15 problem 19

Internal problem ID [2619]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2yx - e^{-x^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)+2*x*y(x)=exp(-x^2),y(x), singsol=all)$

$$y(x) = (x + c_1) e^{-x^2}$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 17

 $DSolve[y'[x]+2*x*y[x]==Exp[-x^2],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to e^{-x^2}(x+c_1)$$

5.16 problem 20

Internal problem ID [2620]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 20.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$y^{2} - 3yx - 2x^{2} - (x^{2} - yx)y' = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 59

 $dsolve((y(x)^2-3*x*y(x)-2*x^2)=(x^2-x*y(x))*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \frac{c_1 x^2 - \sqrt{2c_1^2 x^4 + 1}}{c_1 x}$$

$$y(x) = \frac{c_1 x^2 + \sqrt{2c_1^2 x^4 + 1}}{c_1 x}$$

Solution by Mathematica

Time used: 0.659 (sec). Leaf size: 99

$$y(x) \to x - \frac{\sqrt{2x^4 + e^{2c_1}}}{x}$$

$$y(x) \to x + \frac{\sqrt{2x^4 + e^{2c_1}}}{x}$$

$$y(x) \to x - \frac{\sqrt{2}\sqrt{x^4}}{x}$$

$$y(x) o rac{\sqrt{2}\sqrt{x^4}}{x} + x$$

5.17 problem 21

Internal problem ID [2621]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 21.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x^2 + 1) y' + 2yx - 4x^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve((1+x^2)*diff(y(x),x)+2*x*y(x)=4*x^3,y(x), singsol=all)$

$$y(x) = \frac{x^4 + c_1}{x^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 19

DSolve[$(1+x^2)*y'[x]+2*x*y[x]==4*x^3,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to \frac{x^4 + c_1}{x^2 + 1}$$

5.18 problem 22

Internal problem ID [2622]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$e^{x} \sin(y) - y \sin(yx) + (e^{x} \cos(y) - x \sin(yx)) y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

$$e^{x} \sin(y(x)) + \cos(y(x) x) + c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.547 (sec). Leaf size: 19

DSolve[(Exp[x]*Sin[y[x]]-y[x]*Sin[x*y[x]])+(Exp[x]*Cos[y[x]]-x*Sin[x*y[x]])*y'[x]==0,y[x],x,I

$$Solve[e^x \sin(y(x)) + \cos(xy(x)) = c_1, y(x)]$$

5.19 problem 24

Internal problem ID [2623]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 24.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [exact]

$$(e^{y}x + y - x^{2})y' - 2yx + e^{y} + x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve((x*exp(y(x))+y(x)-x^2)*diff(y(x),x)=(2*x*y(x)-exp(y(x))-x),y(x), singsol=all)$

$$-y(x) x^{2} + x e^{y(x)} + \frac{x^{2}}{2} + \frac{y(x)^{2}}{2} + c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.31 (sec). Leaf size: 35

 $DSolve[(x*Exp[y[x]]+y[x]-x^2)*y'[x]==(2*x*y[x]-Exp[y[x]]-x),y[x],x,IncludeSingularSolutions$

Solve
$$\left[x^2(-y(x)) + \frac{x^2}{2} + xe^{y(x)} + \frac{y(x)^2}{2} = c_1, y(x) \right]$$

5.20 problem 25

Internal problem ID [2624]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, End of chapter, page 61

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$e^{x}(x+1) - (e^{x}x - e^{y}y)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

dsolve(exp(x)*(1+x)=(x*exp(x)-y(x)*exp(y(x)))*diff(y(x),x),y(x), singsol=all)

$$x e^{-y(x)+x} + \frac{y(x)^2}{2} + c_1 = 0$$

Solution by Mathematica

Time used: 0.307 (sec). Leaf size: 26

DSolve[Exp[x]*(1+x)==(x*Exp[x]-y[x]*Exp[y[x]])*y'[x],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[-\frac{1}{2}y(x)^2 - xe^{x-y(x)} = c_1, y(x) \right]$$