A Solution Manual For

Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961

Nasser M. Abbasi

October 12, 2023

Contents

1 Exercis 2, page 5

1 Exercis 2, page 5

1.1	problem 2(a)		•	•	•	•	•	•		•	•						•	•	•	•				•		•	•		•	•			3
1.2	problem 2(b)	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
1.3	problem 2(c)		•	•	•	•	•	•	•	•	•		•			•	•	•	•	•		•	•	•	•	•	•		•	•	•		5
1.4	problem 2(d)		•	•	•			•	•	•	•	•	•			•	•	•	•	•	•			•		•	•	•	•		•		6
1.5	problem 2(e)		•	•	•	•	•	•	•	•	•		•			•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	7
1.6	problem 2(a)		•	•	•			•	•	•	•	•	•			•	•	•	•	•	•			•		•	•	•	•		•		8
1.7	problem 3(a)		•	•	•			•	•	•	•	•	•			•	•	•	•	•	•			•		•	•	•	•		•		9
1.8	problem 3(b)		•	•	•	•	•	•		•	•						•	•	•	•				•		•	•		•	•			10
1.9	problem 3(c)		•	•	•	•	•	•	•	•	•		•			•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	11
1.10	problem 3(d)		•	•	•	•	•	•	•	•	•		•			•	•	•	•	•		•	•	•	•	•	•		•	•	•		12
1.11	problem 3(e)		•	•	•	•	•	•	•	•	•		•			•	•	•	•	•		•	•	•	•	•	•		•	•	•		13
1.12	problem $3(f)$.	•	•	•	•			•	•	•	•	•	•			•	•	•	•	•	•			•		•	•	•	•		•	•	14
1.13	problem 3(g)		•	•	•			•	•	•	•	•	•			•	•	•	•	•	•			•		•	•	•	•		•		15
1.14	problem 3(h)		•	•	•	•	•																						•	•		,	16
1.15	problem 3(i).	•	•	•	•		•																	•					•				17

1.1 problem 2(a)

Internal problem ID [1923]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(a).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(diff(y(x),x)=2,y(x), singsol=all)

$$y(x) = 2x + c_1$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 11

DSolve[y'[x]==2,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \rightarrow 2x + c_1$

1.2 problem 2(b)

Internal problem ID [1924]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(b).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2e^{3x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x)=2*exp(3*x),y(x), singsol=all)

$$y(x) = \frac{2 e^{3x}}{3} + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 17

DSolve[y'[x]==2*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2e^{3x}}{3} + c_1$$

1.3 problem 2(c)

Internal problem ID [1925]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(c).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{2}{\sqrt{1-x^2}} = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

dsolve(diff(y(x),x)=2/sqrt(1-x^2),y(x), singsol=all)

$$y(x) = 2\arcsin\left(x\right) + c_1$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 26

DSolve[y'[x]==2/Sqrt[1-x^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -4 \cot^{-1}\left(\frac{x+1}{\sqrt{1-x^2}}\right) + c_1$$

1.4 problem 2(d)

Internal problem ID [1926]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(d).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - e^{x^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x)=exp(x^2),y(x), singsol=all)

$$y(x) = rac{\sqrt{\pi} \, \operatorname{erfi} \left(x
ight)}{2} + c_1$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 16

DSolve[y'[x]==Exp[x^2],y[x],x,IncludeSingularSolutions -> True]

 $y(x) \to e^{x^2} \operatorname{DawsonF}(x) + c_1$

1.5 problem 2(e)

Internal problem ID [1927]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961 Section: Exercis 2, page 5 Problem number: 2(e). ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - x \operatorname{e}^{x^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve(diff(y(x),x)=x*exp(x^2),y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^{x^2}}{2} + c_1$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 17

DSolve[y'[x]==x*Exp[x^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{x^2}}{2} + c_1$$

1.6 problem 2(a)

Internal problem ID [1928]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(a).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \arcsin(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x)=arcsin(x),y(x), singsol=all)

$$y(x) = x \arcsin(x) + \sqrt{-x^2 + 1} + c_1$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 23

DSolve[y'[x]==ArcSin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x \arcsin(x) + \sqrt{1 - x^2} + c_1$$

1.7 problem 3(a)

Internal problem ID [1929]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(a).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$-yx + y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve(diff(y(x),x)=y(x)*x,y(x), singsol=all)

$$y(x) = \mathrm{e}^{\frac{x^2}{2}} c_1$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 22

DSolve[y'[x]==y[x]*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o c_1 e^{rac{x^2}{2}}$$

 $y(x) o 0$

1.8 problem 3(b)

Internal problem ID [1930]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(b).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - x^2 y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(x),x)=y(x)^2*x^2,y(x), singsol=all)$

$$y(x) = \frac{3}{-x^3 + 3c_1}$$

✓ Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 22

DSolve[y'[x]==y[x]^2*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{3}{x^3 + 3c_1}$$

 $y(x) \rightarrow 0$

1.9 problem 3(c)

Internal problem ID [1931]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(c).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + e^y x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve(diff(y(x),x)=-x*exp(y(x)),y(x), singsol=all)

$$y(x) = \ln\left(\frac{2}{x^2 + 2c_1}\right)$$

Solution by Mathematica

Time used: 0.287 (sec). Leaf size: 19

DSolve[y'[x]==-x*Exp[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \log(2) - \log(x^2 - 2c_1)$$

1.10 problem 3(d)

Internal problem ID [1932]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(d).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'\sin\left(y\right) - x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x)*sin(y(x))=x^2,y(x), singsol=all)

$$y(x) = \pi - \arccos\left(rac{x^3}{3} + c_1
ight)$$

Solution by Mathematica

Time used: 0.448 (sec). Leaf size: 37

DSolve[y'[x]*Sin[y[x]]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\arccos\left(-rac{x^3}{3} - c_1
ight)$$

 $y(x) \rightarrow \arccos\left(-rac{x^3}{3} - c_1
ight)$

1.11 problem 3(e)

Internal problem ID [1933]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(e).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x - \sqrt{1 - y^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(diff(y(x),x)*x=sqrt(1-y(x)^2),y(x), singsol=all)

 $y(x) = \sin\left(\ln\left(x\right) + c_1\right)$

✓ Solution by Mathematica

Time used: 0.198 (sec). Leaf size: 29

DSolve[y'[x]*x==Sqrt[1-y[x]^2],y[x],x,IncludeSingularSolutions -> True]

 $y(x) \to \cos(\log(x) + c_1)$ $y(x) \to -1$ $y(x) \to 1$ $y(x) \to \text{Interval}[\{-1, 1\}]$

1.12 problem 3(f)

Internal problem ID [1934]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961 Section: Exercis 2, page 5 Problem number: 3(f). ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 - y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve((diff(y(x),x))^2-y(x)^2=0,y(x), singsol=all)$

$$egin{aligned} y(x) &= c_1 \mathrm{e}^x \ y(x) &= \mathrm{e}^{-x} c_1 \end{aligned}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 28

DSolve[(y'[x])^2-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \to c_1 e^{-x}$ $y(x) \to c_1 e^x$ $y(x) \to 0$

1.13 problem 3(g)

Internal problem ID [1935]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(g).
ODE order: 1.
ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 - 3y' + 2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)^2-3*diff(y(x),x)+2=0,y(x), singsol=all)$

$$y(x) = 2x + c_1$$
$$y(x) = c_1 + x$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 19

DSolve[(y'[x])^2-3*y'[x]+2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + c_1$$

 $y(x) \to 2x + c_1$

1.14 problem 3(h)

Internal problem ID [1936]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(h).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\left(x^2+1\right)y'-1=0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

dsolve((1+x^2)*diff(y(x),x)=1,y(x), singsol=all)

 $y(x) = \arctan\left(x\right) + c_1$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 10

DSolve[(1+x^2)*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \rightarrow \arctan(x) + c_1$

1.15 problem 3(i)

Internal problem ID [1937]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961 Section: Exercis 2, page 5 Problem number: 3(i). ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\sin\left(x\right)y'-1=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)*sin(x)=1,y(x), singsol=all)

$$y(x) = -\ln\left(\csc\left(x\right) + \cot\left(x\right)\right) + c_1$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 24

DSolve[y'[x]*Sin[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \log\left(\sin\left(\frac{x}{2}\right)\right) - \log\left(\cos\left(\frac{x}{2}\right)\right) + c_1$$