A Solution Manual For

Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Nasser M. Abbasi

October 12, 2023

Contents

1	CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309	2
2	CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314	25
3	CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320	43
4	CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324	81

1	CHAPTER 16. Nonlinear equations. S	Sect:	ion 94.
	Factoring the left member. EXERCIS	ES I	Page 309
1.1	problem 1		3
1.2	problem 2		4
1.3	problem 3		5
1.4	problem 4		6
1.5	problem 5		7
1.6	problem 6		8
1.7	problem 7		9
1.8	problem 8		10
1.9	problem 9		11
1.10	problem 10		12
1.11	problem 11		13
1.12	problem 12		14
1.13	problem 13		15
1.14	problem 14		16
1.15	problem 15		17
1.16	problem 16		19
1.17	problem 17		21
1.18	problem 18		23
1.19	problem 19		24

1.1 problem 1

Internal problem ID [6013]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 1.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_separable]

$$x^2 y'^2 - y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x)^2-y(x)^2=0,y(x), singsol=all)$

$$y(x) = c_1 x$$

$$y(x) = \frac{c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 24

 $DSolve[x^2*(y'[x])^2-y[x]^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{c_1}{x}$$

$$y(x) \to c_1 x$$

$$y(x) \to 0$$

1.2 problem 2

Internal problem ID [6014]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 2.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$xy'^2 - (3y + 2x)y' + 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x*diff(y(x),x)^2-(2*x+3*y(x))*diff(y(x),x)+6*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^3$$
$$y(x) = 2x + c_1$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 26

 $DSolve[x*(y'[x])^2-(2*x+3*y[x])*y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x^3$$
$$y(x) \to 2x + c_1$$
$$y(x) \to 0$$

1.3 problem 3

Internal problem ID [6015]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 3.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_separable]

$$x^2y'^2 - 5xyy' + 6y^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x)^2-5*x*y(x)*diff(y(x),x)+6*y(x)^2=0,y(x), singsol=all)$

$$y(x) = c_1 x^3$$

$$y(x) = c_1 x^2$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 26

 $DSolve[x^2*(y'[x])^2-5*x*y[x]*y'[x]+6*y[x]^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1 x^2$$

$$y(x) \to c_1 x^3$$

$$y(x) \to 0$$

1.4 problem 4

Internal problem ID [6016]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 4.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_separable]

$$x^2y'^2 + y'x - y^2 - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $\label{local-condition} \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x})^2 + \mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x}) - \mbox{y}(\mbox{x})^2 - \mbox{y}(\mbox{x})^2 - \mbox{y}(\mbox{x}) = 0, \\ \mbox{y}(\mbox{x}), \mbox{singsol=all}) \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x})^2 + \mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x}) - \mbox{y}(\mbox{x})^2 - \mbox{y}(\mbox{x}) = 0, \\ \mbox{y}(\mbox{x}), \mbox{singsol=all}) \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x})^2 + \mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x}) - \mbox{y}(\mbox{x}) - \mbox{y}(\mbox{x}) + \mbox{y}(\mbox{x}) - \mbox{y}(\mbox{x}) + \mbox{y}(\mbox{x}) + \mbox{y}(\mbox{x}) - \mbox{y}(\mbox{x}) - \mbox{y}(\mbox{x}) - \mbox{y}(\mbox{x}) - \mbox{y}(\mbox{x}) + \mbox{y}(\mbox{x}) - \mbox{x}(\mbox{x}) - \mbox{y}(\mbox{x}) - \mbox{x}(\mbox{x}) - \mbox{x}(\mbox{x})$

$$y(x) = c_1 x$$
$$y(x) = \frac{-x + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 31

 $DSolve[x^2*(y'[x])^2+x*y'[x]-y[x]^2-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x$$

 $y(x) \to -1 + \frac{c_1}{x}$
 $y(x) \to -1$
 $y(x) \to 0$

1.5 problem 5

Internal problem ID [6017]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 5.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$xy'^{2} + (1 - x^{2}y)y' - xy = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $\label{eq:decomposition} \\ \mbox{dsolve}(x*\mbox{diff}(y(x),x)^2+(1-x^2*y(x))*\mbox{diff}(y(x),x)-x*y(x)=0,\\ y(x), \mbox{ singsol=all}) \\$

$$y(x) = -\ln(x) + c_1$$
$$y(x) = e^{\frac{x^2}{2}}c_1$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 28

 $DSolve[x*(y'[x])^2+(1-x^2*y[x])*y'[x]-x*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{\frac{x^2}{2}}$$
$$y(x) \to -\log(x) + c_1$$

1.6 problem 6

Internal problem ID [6018]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 6.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^{2} - (x^{2}y + 3)y' + 3x^{2}y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $\label{eq:diff} $$ $$ dsolve(diff(y(x),x)^2-(x^2*y(x)+3)*diff(y(x),x)+3*x^2*y(x)=0,y(x), singsol=all)$$

$$y(x) = c_1 e^{\frac{x^3}{3}}$$
$$y(x) = 3x + c_1$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 27

 $DSolve[(y'[x])^2-(x^2*y[x]+3)*y'[x]+3*x^2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{\frac{x^3}{3}}$$
$$y(x) \to 3x + c_1$$

1.7 problem 7

Internal problem ID [6019]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 7.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$xy'^{2} - (xy + 1)y' + y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve(x*diff(y(x),x)^2-(1+x*y(x))*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y(x) = \ln(x) + c_1$$
$$y(x) = e^x c_1$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 20

 $DSolve[x*(y'[x])^2-(1+x*y[x])*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^x$$

 $y(x) \to \log(x) + c_1$

1.8 problem 8

Internal problem ID [6020]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXER-CISES Page 309

Problem number: 8.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_separable]

$$y'^2 - x^2 y^2 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)^2-x^2*y(x)^2=0,y(x), singsol=all)$

$$y(x) = e^{\frac{x^2}{2}} c_1$$

$$y(x) = \mathrm{e}^{-\frac{x^2}{2}} c_1$$

Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 38

DSolve[$(y'[x])^2-x^2*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x)
ightarrow c_1 e^{-rac{x^2}{2}}$$
 $y(x)
ightarrow c_1 e^{rac{x^2}{2}}$

$$y(x) \rightarrow c_1 e^{\frac{x^2}{2}}$$

$$y(x) \to 0$$

1.9 problem 9

Internal problem ID [6021]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 9.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$(y+x)^2 y'^2 - y^2 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 48

 $dsolve((x+y(x))^2*diff(y(x),x)^2=y(x)^2,y(x), singsol=all)$

$$y(x) = e^{\text{LambertW}(x e^{c_1}) - c_1}$$

$$y(x) = -x - \sqrt{x^2 + 2c_1}$$

$$y(x) = -x + \sqrt{x^2 + 2c_1}$$

✓ Solution by Mathematica

Time used: 3.909 (sec). Leaf size: 101

 $DSolve[(x+y[x])^2*(y'[x])^2==y[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x - \sqrt{x^2 + e^{2c_1}}$$

$$y(x) \to -x + \sqrt{x^2 + e^{2c_1}}$$

$$y(x) o rac{x}{W\left(e^{-c_1}x\right)}$$

$$y(x) \to 0$$

$$y(x) \to -\sqrt{x^2} - x$$

$$y(x) \to \sqrt{x^2} - x$$

1.10 problem 10

Internal problem ID [6022]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 10.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$yy'^{2} + (x - y^{2})y' - xy = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $\label{eq:decomposition} \\ \mbox{dsolve}(y(x)*\mbox{diff}(y(x),x)^2+(x-y(x)^2)*\mbox{diff}(y(x),x)-x*y(x)=0,\\ y(x), \mbox{ singsol=all}) \\$

$$y(x) = \sqrt{-x^2 + c_1}$$
$$y(x) = -\sqrt{-x^2 + c_1}$$
$$y(x) = e^x c_1$$

✓ Solution by Mathematica

Time used: 0.133 (sec). Leaf size: 54

 $DSolve[y[x]*(y'[x])^2+(x-y[x]^2)*y'[x]-x*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1 e^x$$

 $y(x) \rightarrow -\sqrt{-x^2 + 2c_1}$
 $y(x) \rightarrow \sqrt{-x^2 + 2c_1}$
 $y(x) \rightarrow 0$

1.11 problem 11

Internal problem ID [6023]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 11.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_separable]

$$y'^{2} - xy(y+x)y' + x^{3}y^{3} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $dsolve(diff(y(x),x)^2-x*y(x)*(x+y(x))*diff(y(x),x)+x^3*y(x)^3=0,y(x), singsol=all)$

$$y(x) = \frac{2}{-x^2 + 2c_1}$$

$$y(x) = c_1 \mathrm{e}^{\frac{x^3}{3}}$$

✓ Solution by Mathematica

Time used: 0.138 (sec). Leaf size: 38

 $DSolve[(y'[x])^2-x*y[x]*(x+y[x])*y'[x]+x^3*y[x]^3==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{\frac{x^3}{3}}$$

$$y(x) \to -\frac{2}{x^2 + 2c_1}$$

$$y(x) \to 0$$

1.12 problem 12

Internal problem ID [6024]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 12.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$(-y+4x) y'^{2} + 6(-y+x) y' + 2x - 5y = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 55

 $dsolve((4*x-y(x))*diff(y(x),x)^2+6*(x-y(x))*diff(y(x),x)+2*x-5*y(x)=0,y(x), singsol=all)$

$$y(x) = -x + c_1$$

$$y(x) = -\frac{4c_1x - \sqrt{-12c_1x + 1} - 1}{2c_1}$$

$$y(x) = -\frac{4c_1x + \sqrt{-12c_1x + 1} - 1}{2c_1}$$

✓ Solution by Mathematica

Time used: 1.115 (sec). Leaf size: 90

$$y(x) o rac{1}{2} \Big(-4x - e^{rac{c_1}{2}} \sqrt{12x + e^{c_1}} - e^{c_1} \Big)$$
 $y(x) o rac{1}{2} \Big(-4x + e^{rac{c_1}{2}} \sqrt{12x + e^{c_1}} - e^{c_1} \Big)$
 $y(x) o -x + c_1$

1.13 problem 13

Internal problem ID [6025]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 13.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$(-y+x)^2 y'^2 - y^2 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 45

 $dsolve((x-y(x))^2*diff(y(x),x)^2=y(x)^2,y(x), singsol=all)$

$$y(x) = x - \sqrt{x^2 - 2c_1}$$

 $y(x) = x + \sqrt{x^2 - 2c_1}$
 $y(x) = e^{\text{LambertW}(-x e^{-c_1}) + c_1}$

✓ Solution by Mathematica

Time used: 4.364 (sec). Leaf size: 99

 $DSolve[(x-y[x])^2*(y'[x])^2==y[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x - \sqrt{x^2 - e^{2c_1}}$$

$$y(x) \to x + \sqrt{x^2 - e^{2c_1}}$$

$$y(x) \to e^{W(-e^{-c_1}x) + c_1}$$

$$y(x) \to 0$$

$$y(x) \to x - \sqrt{x^2}$$

$$y(x) \to \sqrt{x^2} + x$$

1.14 problem 14

Internal problem ID [6026]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 14.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$xyy'^{2} + (xy^{2} - 1)y' - y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

 $\label{eq:dsolve} dsolve(x*y(x)*diff(y(x),x)^2+(x*y(x)^2-1)*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{2 \ln(x) + c_1}$$
$$y(x) = -\sqrt{2 \ln(x) + c_1}$$
$$y(x) = e^{-x} c_1$$

✓ Solution by Mathematica

Time used: 0.106 (sec). Leaf size: 57

 $DSolve[x*y[x]*(y'[x])^2+(x*y[x]^2-1)*y'[x]-y[x]==0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to c_1 e^{-x}$$

$$y(x) \to -\sqrt{2}\sqrt{\log(x) + c_1}$$

$$y(x) \to \sqrt{2}\sqrt{\log(x) + c_1}$$

$$y(x) \to 0$$

1.15 problem 15

Internal problem ID [6027]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 15.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$(y^2 + x^2)^2 y'^2 - 4x^2 y^2 = 0$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 301

 $dsolve((x^2+y(x)^2)^2*diff(y(x),x)^2=4*x^2*y(x)^2,y(x), singsol=all)$

$$\begin{split} y(x) &= -\frac{-1 + \sqrt{4c_1^2x^2 + 1}}{2c_1} \\ y(x) &= \frac{1 + \sqrt{4c_1^2x^2 + 1}}{2c_1} \\ y(x) &= \frac{\frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{2} - \frac{2x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}}{\sqrt{c_1}} \\ &= \frac{-\frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{2} - \frac{2x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}}{\sqrt{c_1}} \\ y(x) &= \frac{-\frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{4} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}} - \frac{i\sqrt{3}\left(\frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{2} + \frac{2x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}\right)}{\sqrt{c_1}} \\ y(x) &= \frac{-\frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{4} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}} + \frac{i\sqrt{3}\left(\frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{2} + \frac{2x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}\right)}{\sqrt{c_1}} \\ y(x) &= \frac{-\frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{4} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}} + \frac{2x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}}{\sqrt{c_1}} \\ y(x) &= \frac{-\frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{4} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}}{\sqrt{c_1}} \\ y(x) &= \frac{-\frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{4} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}}{\sqrt{c_1}} \\ y(x) &= \frac{-\frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{4} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}}{\sqrt{c_1}} \\ y(x) &= \frac{-\frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{4} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}}{\sqrt{c_1}} \\ y(x) &= \frac{-\frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{4} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}}{\sqrt{c_1}} \\ y(x) &= \frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}}{\sqrt{c_1}} \\ y(x) &= \frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}} \\ y(x) &= \frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}} \\ y(x) &= \frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}} \\ y(x) &= \frac{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{x^2c_1}{\left(4 + 4\sqrt{4c_1^3x^6 + 1}\right)^{\frac{1}{3}}}} \\ y(x) &= \frac{\left(4 + 4\sqrt{4c_1^3x^6 +$$

Time used: 16.202 (sec). Leaf size: 306

 $DSolve[(x^2+y[x]^2)^2*(y'[x])^2==4*x^2*y[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2} \left(-\sqrt{4x^2 + e^{2c_1}} - e^{c_1} \right)$$

$$y(x) \to \frac{1}{2} \left(\sqrt{4x^2 + e^{2c_1}} - e^{c_1} \right)$$

$$y(x) \to \frac{\sqrt[3]{4x^6 + e^{6c_1}} + e^{3c_1}}{\sqrt[3]{2}} - \frac{\sqrt[3]{2}x^2}{\sqrt[3]{4x^6 + e^{6c_1}} + e^{3c_1}}$$

$$y(x) \to \frac{2\sqrt[3]{-2}x^2 + (-2)^{2/3} \left(\sqrt{4x^6 + e^{6c_1}} + e^{3c_1} \right)^{2/3}}{2\sqrt[3]{4x^6 + e^{6c_1}} + e^{3c_1}}$$

$$y(x) \to -\frac{2(-1)^{2/3}x^2 + \sqrt[3]{-2} \left(\sqrt{4x^6 + e^{6c_1}} + e^{3c_1} \right)^{2/3}}{2^{2/3}\sqrt[3]{4x^6 + e^{6c_1}} + e^{3c_1}}$$

$$y(x) \to 0$$

1.16 problem 16

Internal problem ID [6028]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 16.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$(y+x)^{2}y'^{2} + (2y^{2} + xy - x^{2})y' + y(y-x) = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 85

$$y(x) = -x - \sqrt{x^2 + 2c_1}$$

$$y(x) = -x + \sqrt{x^2 + 2c_1}$$

$$y(x) = \frac{-c_1x - \sqrt{2c_1^2x^2 + 1}}{c_1}$$

$$y(x) = \frac{-c_1x + \sqrt{2c_1^2x^2 + 1}}{c_1}$$

Time used: 0.65 (sec). Leaf size: 172

 $DSolve[(y[x]+x)^2*(y'[x])^2+(2*y[x]^2+x*y[x]-x^2)*y'[x]+y[x]*(y[x]-x)==0,y[x],x,IncludeSingularity[x]+x,IncludeSingularity[x$

$$y(x)
ightarrow -x - \sqrt{x^2 + e^{2c_1}}$$
 $y(x)
ightarrow -x + \sqrt{x^2 + e^{2c_1}}$
 $y(x)
ightarrow -x - \sqrt{2x^2 + e^{2c_1}}$
 $y(x)
ightarrow -x + \sqrt{2x^2 + e^{2c_1}}$
 $y(x)
ightarrow -\sqrt{x^2} - x$
 $y(x)
ightarrow \sqrt{x^2} - x$

$$y(x) \to -\sqrt{2}\sqrt{x^2} - x$$

$$y(x) \to \sqrt{2}\sqrt{x^2} - x$$

1.17 problem 17

Internal problem ID [6029]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 17.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$xy(y^2 + x^2)(y'^2 - 1) - y'(x^4 + x^2y^2 + y^4) = 0$$

/

Solution by Maple

Time used: 0.594 (sec). Leaf size: 250

 $dsolve(x*y(x)*(x^2+y(x)^2)*(diff(y(x),x)^2-1)=diff(y(x),x)*(x^4+x^2*y(x)^2+y(x)^4),y(x),sing(x,x)=0$

$$y(x) = \frac{\sqrt{x^2 c_1 \left(c_1 x^2 - \sqrt{c_1^2 x^4 + 1}\right)}}{x \left(c_1 x^2 - \sqrt{c_1^2 x^4 + 1}\right) c_1}$$

$$y(x) = \frac{\sqrt{x^2 c_1 \left(c_1 x^2 + \sqrt{c_1^2 x^4 + 1}\right)}}{x \left(c_1 x^2 + \sqrt{c_1^2 x^4 + 1}\right) c_1}$$

$$y(x) = -\frac{\sqrt{x^2 c_1 \left(c_1 x^2 - \sqrt{c_1^2 x^4 + 1}\right)}}{x \left(c_1 x^2 - \sqrt{c_1^2 x^4 + 1}\right) c_1}$$

$$y(x) = -\frac{\sqrt{x^2 c_1 \left(c_1 x^2 + \sqrt{c_1^2 x^4 + 1}\right)}}{x \left(c_1 x^2 + \sqrt{c_1^2 x^4 + 1}\right) c_1}$$

$$y(x) = \sqrt{2 \ln(x) + c_1} x$$

$$y(x) = -\sqrt{2 \ln(x) + c_1} x$$

Time used: 8.924 (sec). Leaf size: 248

$$y(x) \to -\sqrt{-x^2 - \sqrt{x^4 + e^{4c_1}}}$$

$$y(x) \to \sqrt{-x^2 - \sqrt{x^4 + e^{4c_1}}}$$

$$y(x) \to -\sqrt{-x^2 + \sqrt{x^4 + e^{4c_1}}}$$

$$y(x) \to \sqrt{-x^2 + \sqrt{x^4 + e^{4c_1}}}$$

$$y(x) \to -x\sqrt{2\log(x) + c_1}$$

$$y(x) \to x\sqrt{2\log(x) + c_1}$$

$$y(x) \to -\sqrt{-\sqrt{x^4 - x^2}}$$

$$y(x) \to -\sqrt{\sqrt{x^4 - x^2}}$$

$$y(x) \to -\sqrt{\sqrt{x^4 - x^2}}$$

$$y(x) \to \sqrt{\sqrt{x^4 - x^2}}$$

1.18 problem 18

Internal problem ID [6030]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 18.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [_quadrature]

$$xy'^{3} - (x^{2} + x + y)y'^{2} + (x^{2} + xy + y)y' - xy = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(x*diff(y(x),x)^3-(x^2+x+y(x))*diff(y(x),x)^2+(x^2+x*y(x)+y(x))*diff(y(x),x)-x*y(x)=0,y$

$$y(x) = c_1 x$$

$$y(x) = x + c_1$$

$$y(x) = \frac{x^2}{2} + c_1$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 36

$$y(x) \to c_1 x$$

$$y(x) \to x + c_1$$

$$y(x) \to \frac{x^2}{2} + c_1$$

$$y(x) \to 0$$

1.19 problem 19

Internal problem ID [6031]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

Problem number: 19.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$xyy'^{2} + (y+x)y' + 1 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

 $dsolve(x*y(x)*diff(y(x),x)^2+(x+y(x))*diff(y(x),x)+1=0,y(x), singsol=all)$

$$y(x) = -\ln(x) + c_1$$
$$y(x) = \sqrt{-2x + c_1}$$
$$y(x) = -\sqrt{-2x + c_1}$$

✓ Solution by Mathematica

Time used: 0.063 (sec). Leaf size: 53

 $DSolve[x*y[x]*(y'[x])^2+(x+y[x])*y'[x]+1==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{2}\sqrt{-x + c_1}$$
$$y(x) \to \sqrt{2}\sqrt{-x + c_1}$$
$$y(x) \to -\log(x) + c_1$$

2	CHAPTER 16. Nonlinear equations. Section 97.				
	The p-discriminant equation. EXERCISES Page				
	314				
2.1	problem 8	26			
2.2	problem 9	27			
2.3	problem 10	29			
2.4	problem 11	31			
2.5	problem 12	32			
2.6	P	34			
2.7	problem 14	36			
2.8	problem 15	38			
2.9	problem 16	41			

2.1 problem 8

Internal problem ID [6032]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314

Problem number: 8.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'^2 - 2yy' + 4x = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 29

 $dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+4*x=0,y(x), singsol=all)$

$$y(x) = -2x$$

$$y(x) = 2x$$

$$y(x) = -\frac{\left(-\frac{x^2}{c_1^2} - 4\right)c_1}{2}$$

✓ Solution by Mathematica

Time used: 0.282 (sec). Leaf size: 43

DSolve[$x*(y'[x])^2-2*y[x]*y'[x]+4*x==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to -2x \cosh(-\log(x) + c_1)$$

 $y(x) \to -2x \cosh(\log(x) + c_1)$
 $y(x) \to -2x$
 $y(x) \to 2x$

2.2 problem 9

Internal problem ID [6033]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314

Problem number: 9.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$3x^4y'^2 - y'x - y = 0$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 147

 $dsolve(3*x^4*diff(y(x),x)^2-x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = -\frac{1}{12x^2}$$

$$y(x) = \frac{-c_1(-c_1 + 2ix\sqrt{3}) - c_1^2 - 6x^2}{6x^2c_1^2}$$

$$y(x) = \frac{-c_1(-c_1 - 2ix\sqrt{3}) - c_1^2 - 6x^2}{6x^2c_1^2}$$

$$y(x) = \frac{c_1(c_1 + 2ix\sqrt{3}) - 6x^2 - c_1^2}{6c_1^2x^2}$$

$$y(x) = \frac{c_1(c_1 - 2ix\sqrt{3}) - 6x^2 - c_1^2}{6c_1^2x^2}$$

Time used: 0.494 (sec). Leaf size: 123

 $DSolve[3*x^4*(y'[x])^2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[-\frac{x\sqrt{12x^2y(x) + 1}\operatorname{arctanh}\left(\sqrt{12x^2y(x) + 1}\right)}{\sqrt{12x^4y(x) + x^2}} - \frac{1}{2}\log(y(x)) = c_1, y(x) \right]$$
Solve
$$\left[\frac{x\sqrt{12x^2y(x) + 1}\operatorname{arctanh}\left(\sqrt{12x^2y(x) + 1}\right)}{\sqrt{12x^4y(x) + x^2}} - \frac{1}{2}\log(y(x)) = c_1, y(x) \right]$$

$$y(x) \to 0$$

2.3 problem 10

Internal problem ID [6034]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314

Problem number: 10.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$y'^2 - y'x - y = 0$$

/

Solution by Maple

Time used: 0.078 (sec). Leaf size: 77

 $dsolve(diff(y(x),x)^2-x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$\frac{c_1}{\sqrt{2x - 2\sqrt{x^2 + 4y(x)}}} + \frac{2x}{3} + \frac{\sqrt{x^2 + 4y(x)}}{3} = 0$$

$$c_1 \qquad 2x \qquad \sqrt{x^2 + 4y(x)}$$

$$\frac{c_{1}}{\sqrt{2x+2\sqrt{x^{2}+4y\left(x\right)}}}+\frac{2x}{3}-\frac{\sqrt{x^{2}+4y\left(x\right)}}{3}=0$$

Time used: 60.17 (sec). Leaf size: 965

DSolve $[(y'[x])^2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$\begin{split} y(x) & \to \frac{\left(x^2 + \sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}\right)^2 + 8e^{3c_1}x}}{4\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}}} \\ y(x) & \to \frac{1}{8}\left(4x^2 + \frac{\left(-1 - i\sqrt{3}\right)x(x^3 + 8e^{3c_1}\right)}{\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}}} \right. \\ & \quad + i\left(\sqrt{3} + i\right)\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}} \\ y(x) & \to \frac{1}{8}\left(4x^2 + \frac{i(\sqrt{3} + i)x(x^3 + 8e^{3c_1})}{\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}}} \right. \\ & \quad - \left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}} \\ & \quad - \left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}} \right. \\ y(x) & \quad \rightarrow \frac{2\sqrt[3]{2}x^4 + 2^{2/3}\left(-2x^6 - 10e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}\right)}{8\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}} \\ y(x) & \quad \rightarrow \frac{1}{16}\left(8x^2 - \frac{4\sqrt[3]{-2}x(x^3 - 2e^{3c_1})}{\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}} \\ & \quad + 2(-2)^{2/3}\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}} \\ & \quad + 2\left(-1\right)^{2/3}x(x^3 - 2e^{3c_1}\right)} \\ y(x) & \quad \rightarrow \frac{x^2}{2} + \frac{\left(-1\right)^{2/3}x(x^3 - 2e^{3c_1}\right)}{2^{2/3}\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}} \\ & \quad - \frac{1}{4}\sqrt[3]{-\frac{1}{2}\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}}{2^{2/3}\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}} \\ & \quad - \frac{1}{4}\sqrt[3]{-\frac{1}{2}\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}}{2^{2c_1}\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}} \\ & \quad - \frac{1}{4}\sqrt[3]{-\frac{1}{2}\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}}{2^{2c_1}\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}} \\ & \quad - \frac{1}{4}\sqrt[3]{-\frac{1}{2}\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}}{2^{2c_1}\sqrt[3]$$

2.4 problem 11

Internal problem ID [6035]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314

Problem number: 11.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y'^2 - y'x + y = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)^2-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{x^2}{4}$$
$$y(x) = -c_1^2 + c_1 x$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 25

 $DSolve[(y'[x])^2-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1(x - c_1)$$

 $y(x) \to \frac{x^2}{4}$

2.5 problem 12

Internal problem ID [6036]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314

Problem number: 12.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y'^2 + 4x^5y' - 12x^4y = 0$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)^2+4*x^5*diff(y(x),x)-12*x^4*y(x)=0,y(x), singsol=all)$

$$y(x) = -\frac{x^6}{3}$$
$$y(x) = c_1 x^3 + \frac{3}{4} c_1^2$$

Time used: 1.306 (sec). Leaf size: 217

 $DSolve[(y'[x])^2+4*x^5*y'[x]-12*x^4*y[x]==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{1}{6} \left(\log(y(x)) - \frac{x^2 \sqrt{x^6 + 3y(x)} \log(y(x))}{\sqrt{x^4 (x^6 + 3y(x))}} \right) + \frac{x^2 \sqrt{x^6 + 3y(x)} \log\left(\sqrt{x^6 + 3y(x)} + x^3\right)}{3\sqrt{x^4 (x^6 + 3y(x))}} = c_1, y(x) \right]$$
Solve
$$\left[\frac{1}{6} \left(\frac{x^2 \sqrt{x^6 + 3y(x)} \log(y(x))}{\sqrt{x^4 (x^6 + 3y(x))}} + \log(y(x)) \right) - \frac{x^2 \sqrt{x^6 + 3y(x)} \log\left(\sqrt{x^6 + 3y(x)} + x^3\right)}{3\sqrt{x^4 (x^6 + 3y(x))}} = c_1, y(x) \right]$$

$$y(x) \to -\frac{x^6}{3}$$

2.6 problem 13

Internal problem ID [6037]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314

Problem number: 13.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$4y^3y'^2 - 4y'x + y = 0$$

✓ Solution by Maple

Time used: 0.265 (sec). Leaf size: 81

 $dsolve(4*y(x)^3*diff(y(x),x)^2-4*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{-x}$$

$$y(x) = -\sqrt{-x}$$

$$y(x) = \sqrt{x}$$

$$y(x) = -\sqrt{x}$$

$$y(x) = 0$$

$$y(x) = \text{RootOf}\left(-\ln(x) + \int^{-Z} -\frac{2(\underline{a^4 + \sqrt{-\underline{a^4 + 1} - 1}}}{\underline{a}(\underline{a^4 - 1})}d\underline{a} + c_1\right)\sqrt{x}$$

Time used: 0.561 (sec). Leaf size: 282

 $DSolve[4*y[x]^3*(y'[x])^2-4*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) &\to -e^{\frac{c_1}{4}} \sqrt[4]{e^{c_1} - 2ix} \\ y(x) &\to -ie^{\frac{c_1}{4}} \sqrt[4]{e^{c_1} - 2ix} \\ y(x) &\to ie^{\frac{c_1}{4}} \sqrt[4]{e^{c_1} - 2ix} \\ y(x) &\to e^{\frac{c_1}{4}} \sqrt[4]{e^{c_1} - 2ix} \\ y(x) &\to -e^{\frac{c_1}{4}} \sqrt[4]{2ix + e^{c_1}} \\ y(x) &\to -ie^{\frac{c_1}{4}} \sqrt[4]{2ix + e^{c_1}} \\ y(x) &\to ie^{\frac{c_1}{4}} \sqrt[4]{2ix + e^{c_1}} \\ y(x) &\to e^{\frac{c_1}{4}} \sqrt[4]{2ix + e^{c_1}} \\ y(x) &\to 0 \\ y(x) &\to -\sqrt{x} \\ y(x) &\to -i\sqrt{x} \end{split}$$

 $y(x) \to i\sqrt{x}$

 $y(x) \to \sqrt{x}$

2.7 problem 14

Internal problem ID [6038]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314

Problem number: 14.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$4y^3y'^2 + 4y'x + y = 0$$

/

Solution by Maple

Time used: 0.297 (sec). Leaf size: 287

 $dsolve(4*y(x)^3*diff(y(x),x)^2+4*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$\begin{split} y(x) &= 0 \\ \int_{-b}^{x} \frac{-2_a + \sqrt{-y (x)^4 + _a^2}}{2y (x)^4 + 6_a^2} d_a + \int^{y(x)} \left(\frac{__{-f^4}^{\beta} + \sqrt{-__{-f^4}^{\beta} + x^2} \, x - x^2}{-__{-f^4}^{\beta} + \sqrt{-__{-f^4}^{\beta} + 2^2} \, (__{-f^4}^{\beta} + 3_a^2)} - \frac{2 \left(-2_a + \sqrt{-__{-f^4}^{\beta} + 2^2} \right) __{-f^8}^{\beta}}{\left(__{-f^4}^{\beta} + 3_a^2 \right)^2} \right) d_a \right) \right) d_f \\ + c_1 &= 0 \\ \int_{-b}^{x} -\frac{2_a + \sqrt{-y (x)^4 + 2^2}}{2 \left(y (x)^4 + 3_a^2 \right)} d_a + \int^{y(x)} \left(-\frac{__{-f^4}^{\beta} + \sqrt{-__{-f^4}^{\beta} + x^2} \, x + x^2}{-\underbrace{-\int_{-f^4}^{x} + \sqrt{-__{-f^4}^{\beta} + 2^2} \, (__{-f^4}^{\beta} + 3_a^2)} + \frac{2 \left(2_a + \sqrt{-__{-f^4}^{\beta} + 2^2} \right) __{-f^8}^{\beta}}{\left(__{-f^4}^{\beta} + 3_a^2 \right)^2} \right) d_a \right) \right) d_f \\ + c_1 &= 0 \end{split}$$

Time used: 60.319 (sec). Leaf size: 2815

DSolve[4*y[x]^3*(y'[x])^2+4*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

Too large to display

2.8 problem 15

Internal problem ID [6039]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

 ${\bf Section:}\ {\bf CHAPTER}\ {\bf 16.}\ {\bf Nonlinear}\ {\bf equations.}\ {\bf Section}\ {\bf 97.}\ {\bf The}\ {\bf p-discriminant}\ {\bf equation.}\ {\bf EXER-}$

CISES Page 314

Problem number: 15.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [_dAlembert]

$$y'^3 + xy'^2 - y = 0$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 1473

 $dsolve(diff(y(x),x)^3+x*diff(y(x),x)^2-y(x)=0,y(x), singsol=all)$

$$y(x) = 0$$

$$y(x)$$

$$= \left(\frac{\left(-36x^2 - 54x + 108c_1 - 8x^3 + 27 + 6\sqrt{-48c_1x^3 - 216c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162c_1x^2 - 24x^3 + 324c_1x - 108x^2 + 162c_1x - 162c$$

$$= \left(-\frac{\left(-36x^2 - 54x + 108c_1 - 8x^3 + 27 + 6\sqrt{-48c_1x^3 - 216c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 16x^2}}{12}\right) + \frac{\left(-36x^2 - 54x + 108c_1 - 8x^3 + 27 + 6\sqrt{-48c_1x^3 - 216c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 16x^2}\right)}{12}\right)$$

$$y(x) = \begin{pmatrix} -\frac{\left(-36x^2 - 54x + 108c_1 - 8x^3 + 27 + 6\sqrt{-48c_1x^3 - 216c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162x^2 + 162x^2 - 12x^2 + 108c_1 - 8x^3 + 27 + 6\sqrt{-48c_1x^3 - 216c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162x^2 - 12x^2 -$$

$$y(x) = \left(-\frac{\left(-36x^2 - 54x + 108c_1 - 8x^3 + 27 + 6\sqrt{-48c_1x^3 - 216c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162x^2}}{12} \right) - \frac{\left(-36x^2 - 54x + 108c_1 - 8x^3 + 27 + 6\sqrt{-48c_1x^3 - 216c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 162x^2} \right)}{12} \right)$$

$$+x \left(-\frac{\left(-36x^2 - 54x + 108c_1 - 8x^3 + 27 + 6\sqrt{-48c_1x^3 - 216c_1x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 12x^2 - 24x^3 + 324c_1^2 - 324c_1x - 108x^2 + 12x^3 + 324c_1^2 - 324c_1x - 108x^2 + 12x^3 + 324c_1^2 - 324c_1x - 108x^2 + 12x^3 + 12x$$

Time used: 83.056 (sec). Leaf size: 1410

 $DSolve[(y'[x])^3+x*(y'[x])^2-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) & \to \frac{1}{24} \Biggl(-4x^2 + 2x \Biggl(6 \\ & + \sqrt[3]{-2x(2x(2x+9)+27) + 3 \left(2\sqrt{6}\sqrt{-((1+2c_1)(x(2x(2x+9)+27)-27c_1))} + 9 + 36c_1 \right)} \Biggr) \\ & + 3 \Biggl(9 \\ & + \sqrt[3]{-2x(2x(2x+9)+27) + 3 \left(2\sqrt{6}\sqrt{-((1+2c_1)(x(2x(2x+9)+27)-27c_1))} + 9 + 36c_1 \right)} \Biggr) \\ & + 24c_1(2x+3)^3 - (2x+3)^3 \left(-2x(2x(2x+9)+27) + 3 \left(2\sqrt{6}\sqrt{-((1+2c_1)(x(2x(2x+9)+27)-27c_1)} + 9 + 36c_1 \right)} \right) \\ & + \frac{1}{6} \Biggl(2(3-2x)x - 6x \Biggr) \\ & - \frac{i(\sqrt{3}-i) \ x(2x+3)^2}{\sqrt[3]{-2x(2x(2x+9)+27) + 3 \left(2\sqrt{6}\sqrt{-((1+2c_1)(x(2x(2x+9)+27)-27c_1)} + 9 + 36c_1 \right)}} \\ & + \frac{1}{16} \Biggl(-4x \Biggr) \\ & - \frac{i(\sqrt{3}-i) \ (2x+3)^2}{\sqrt[3]{-2x(2x(2x+9)+27) + 3 \left(2\sqrt{6}\sqrt{-((1+2c_1)(x(2x(2x+9)+27)-27c_1)} + 9 + 36c_1 \right)}} \\ & + i \Biggl(\sqrt{3}+i \Biggr) \sqrt[3]{-2x(2x(2x+9)+27) + 3 \left(2\sqrt{6}\sqrt{-((1+2c_1)(x(2x(2x+9)+27)-27c_1)} + 9 + 36c_1 \right)} \\ & + 6 \Biggr)^2 + i \Biggl(\sqrt{3} \Biggr)$$

2.9 problem 16

Internal problem ID [6040]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314

Problem number: 16.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y^4y'^3 - 6y'x + 2y = 0$$

✓ Solution by Maple

Time used: 0.25 (sec). Leaf size: 183

 $dsolve(y(x)^4*diff(y(x),x)^3-6*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{-ix\sqrt{3} - x}$$

$$y(x) = \sqrt{ix\sqrt{3} - x}$$

$$y(x) = -\sqrt{-ix\sqrt{3} - x}$$

$$y(x) = -\sqrt{ix\sqrt{3} - x}$$

$$y(x) = \sqrt{x}\sqrt{2}$$

$$y(x) = -\sqrt{x}\sqrt{2}$$

$$y(x) = 0$$

$$y(x) = \frac{\left(-4c_1^3 + 24c_1x\right)^{\frac{1}{3}}}{2}$$

$$y(x) = -\frac{\left(-4c_1^3 + 24c_1x\right)^{\frac{1}{3}}}{4} - \frac{i\sqrt{3}\left(-4c_1^3 + 24c_1x\right)^{\frac{1}{3}}}{4}$$

$$y(x) = -\frac{\left(-4c_1^3 + 24c_1x\right)^{\frac{1}{3}}}{4} + \frac{i\sqrt{3}\left(-4c_1^3 + 24c_1x\right)^{\frac{1}{3}}}{4}$$

Time used: 69.212 (sec). Leaf size: 22649

 $DSolve[y[x]^4*(y'[x])^3-6*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Too large to display

3	CHAP	ΓEF	R 16	. I	Vo :	nli	in€	ear	e	$\mathbf{q}\mathbf{u}$	\mathbf{at}	ioı	$\mathbf{n}\mathbf{s}$		Se	ct	ic	or.	l '	9	9.	
	Clairau	it's (equa	ati	on	. I	ΞX	\mathbf{E}	RC		SE:	\mathbf{S}	Pa	ag	\mathbf{e}	32	20)				
3.1	problem 3 .																					44
3.2	problem 4 .																					46
3.3	problem 5 .																					48
3.4	problem 6 .																				•	49
3.5	problem 7 .																				•	50
3.6	problem 8 .																					51
3.7	problem 9 .																					53
3.8	problem 10																					55
3.9	problem 11																					56
3.10	problem 12																					58
3.11	problem 13																					59
3.12	problem 14																					60
3.13	problem 15																					61
3.14	problem 16																				•	62
3.15	problem 17																					63
3.16	problem 19																					65
3.17	problem 20																					67
3.18	problem 21																					68
3.19	problem 22																				•	69
3.20	problem 23																					70
3.21	problem 24																					72
3.22	problem 25																					73
3.23	problem 26																					75
3.24	problem 27																					76
3.25	problem 28																					78
3.26	problem 29																					80

3.1 problem 3

Internal problem ID [6041]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 3.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y'^2 + x^3y' - 2yx^2 = 0$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)^2+x^3*diff(y(x),x)-2*x^2*y(x)=0,y(x), singsol=all)$

$$y(x) = -\frac{x^4}{8}$$

 $y(x) = c_1 x^2 + 2c_1^2$

Time used: 1.162 (sec). Leaf size: 209

 $DSolve[(y'[x])^2+x^3*y'[x]-2*x^2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{\sqrt{x^6 + 8x^2y(x)} \log \left(\sqrt{x^4 + 8y(x)} + x^2 \right)}{2x\sqrt{x^4 + 8y(x)}} + \frac{1}{4} \left(1 - \frac{\sqrt{x^6 + 8x^2y(x)}}{x\sqrt{x^4 + 8y(x)}} \right) \log(y(x)) = c_1, y(x) \right]$$
Solve
$$\left[\frac{1}{4} \left(\frac{\sqrt{x^6 + 8x^2y(x)}}{x\sqrt{x^4 + 8y(x)}} + 1 \right) \log(y(x)) - \frac{\sqrt{x^6 + 8x^2y(x)} \log \left(\sqrt{x^4 + 8y(x)} + x^2 \right)}{2x\sqrt{x^4 + 8y(x)}} = c_1, y(x) \right]$$

$$y(x) \to -\frac{x^4}{8}$$

3.2 problem 4

Internal problem ID [6042]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 4.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y'^2 + 4x^5y' - 12x^4y = 0$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)^2+4*x^5*diff(y(x),x)-12*x^4*y(x)=0,y(x), singsol=all)$

$$y(x) = -\frac{x^6}{3}$$
$$y(x) = c_1 x^3 + \frac{3}{4} c_1^2$$

Time used: 0.574 (sec). Leaf size: 217

 $DSolve[(y'[x])^2+4*x^5*y'[x]-12*x^4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$\begin{aligned} & \text{Solve} \left[\frac{1}{6} \left(\log(y(x)) - \frac{x^2 \sqrt{x^6 + 3y(x)} \log(y(x))}{\sqrt{x^4 (x^6 + 3y(x))}} \right) \\ & + \frac{x^2 \sqrt{x^6 + 3y(x)} \log\left(\sqrt{x^6 + 3y(x)} + x^3\right)}{3\sqrt{x^4 (x^6 + 3y(x))}} = c_1, y(x) \right] \\ & \text{Solve} \left[\frac{1}{6} \left(\frac{x^2 \sqrt{x^6 + 3y(x)} \log(y(x))}{\sqrt{x^4 (x^6 + 3y(x))}} + \log(y(x)) \right) \right. \\ & - \frac{x^2 \sqrt{x^6 + 3y(x)} \log\left(\sqrt{x^6 + 3y(x)} + x^3\right)}{3\sqrt{x^4 (x^6 + 3y(x))}} = c_1, y(x) \right] \\ & y(x) \to -\frac{x^6}{3} \end{aligned}$$

3.3 problem 5

Internal problem ID [6043]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 5.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$2xy'^3 - 6yy'^2 + x^4 = 0$$

✓ Solution by Maple

Time used: 0.297 (sec). Leaf size: 56

 $dsolve(2*x*diff(y(x),x)^3-6*y(x)*diff(y(x),x)^2+x^4=0,y(x), singsol=all)$

$$y(x) = rac{\left(-rac{1}{2} - rac{i\sqrt{3}}{2}
ight)x^2}{2}$$
 $y(x) = rac{\left(-rac{1}{2} + rac{i\sqrt{3}}{2}
ight)x^2}{2}$ $y(x) = rac{x^2}{2}$ $y(x) = rac{1}{6c_1^2} + rac{c_1x^3}{3}$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[2*x*(y'[x])^3-6*y[x]*(y'[x])^2+x^4==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Timed out

3.4 problem 6

Internal problem ID [6044]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 6.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y'^2 - y'x + y = 0$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)^2-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{x^2}{4}$$
$$y(x) = -c_1^2 + c_1 x$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 25

 $DSolve[(y'[x])^2-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1(x - c_1)$$

 $y(x) \to \frac{x^2}{4}$

3.5 problem 7

Internal problem ID [6045]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

 ${\bf Section}\colon {\bf CHAPTER}$ 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 7.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y - y'x - ky'^2 = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 24

 $dsolve(y(x)=diff(y(x),x)*x+k*diff(y(x),x)^2,y(x), singsol=all)$

$$y(x) = -\frac{x^2}{4k}$$
$$y(x) = c_1^2 k + c_1 x$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 28

 $DSolve[y[x] == y'[x] * x + k * (y'[x])^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1(x + c_1 k)$$

 $y(x) \to -\frac{x^2}{4k}$

3.6 problem 8

Internal problem ID [6046]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 8.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$x^8y'^2 + 3y'x + 9y = 0$$

Solution by Maple

Time used: 0.079 (sec). Leaf size: 42

 $dsolve(x^8*diff(y(x),x)^2+3*x*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{1}{4x^6}$$
$$y(x) = \frac{-x^3 + c_1}{x^3 c_1^2}$$
$$y(x) = -\frac{x^3 + c_1}{x^3 c_1^2}$$

Time used: 0.537 (sec). Leaf size: 130

 $DSolve[x^8*(y'[x])^2+3*x*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{x\sqrt{4x^6y(x) - 1} \arctan\left(\sqrt{4x^6y(x) - 1}\right)}{3\sqrt{x^2 - 4x^8y(x)}} - \frac{1}{6}\log(y(x)) = c_1, y(x) \right]$$
Solve
$$\left[\frac{\sqrt{x^2 - 4x^8y(x)} \arctan\left(\sqrt{4x^6y(x) - 1}\right)}{3x\sqrt{4x^6y(x) - 1}} - \frac{1}{6}\log(y(x)) = c_1, y(x) \right]$$

$$y(x) \to 0$$

3.7 problem 9

Internal problem ID [6047]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 9.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$x^4y'^2 + 2x^3y'y - 4 = 0$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 49

 $dsolve(x^4*diff(y(x),x)^2+2*x^3*y(x)*diff(y(x),x)-4=0,y(x), singsol=all)$

$$y(x) = -\frac{2i}{x}$$

$$y(x) = \frac{2i}{x}$$

$$y(x) = \frac{2\sinh(-\ln(x) + c_1)}{x}$$

$$y(x) = -\frac{2\sinh(-\ln(x) + c_1)}{x}$$

Time used: 0.642 (sec). Leaf size: 71

 $DSolve[x^4*(y'[x])^2+2*x^3*y[x]*y'[x]-4==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{4e^{c_1}}{x^2} - \frac{e^{-c_1}}{4}$$
$$y(x) \to \frac{e^{-c_1}}{4} - \frac{4e^{c_1}}{x^2}$$
$$y(x) \to -\frac{2i}{x}$$
$$y(x) \to \frac{2i}{x}$$

3.8 problem 10

Internal problem ID [6048]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 10.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'^2 - 2yy' + 4x = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 29

 $dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+4*x=0,y(x), singsol=all)$

$$y(x) = -2x$$

$$y(x) = 2x$$

$$y(x) = -\frac{\left(-\frac{x^2}{c_1^2} - 4\right)c_1}{2}$$

✓ Solution by Mathematica

Time used: 0.249 (sec). Leaf size: 43

DSolve[$x*(y'[x])^2-2*y[x]*y'[x]+4*x==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to -2x \cosh(-\log(x) + c_1)$$

 $y(x) \to -2x \cosh(\log(x) + c_1)$
 $y(x) \to -2x$
 $y(x) \to 2x$

3.9 problem 11

Internal problem ID [6049]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 11.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$3x^4y'^2 - y'x - y = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 147

 $dsolve(3*x^4*diff(y(x),x)^2-x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = -\frac{1}{12x^2}$$

$$y(x) = \frac{-c_1(-c_1 + 2ix\sqrt{3}) - c_1^2 - 6x^2}{6x^2c_1^2}$$

$$y(x) = \frac{-c_1(-c_1 - 2ix\sqrt{3}) - c_1^2 - 6x^2}{6x^2c_1^2}$$

$$y(x) = \frac{c_1(c_1 + 2ix\sqrt{3}) - 6x^2 - c_1^2}{6c_1^2x^2}$$

$$y(x) = \frac{c_1(c_1 - 2ix\sqrt{3}) - 6x^2 - c_1^2}{6c_1^2x^2}$$

Time used: 0.473 (sec). Leaf size: 123

DSolve $[3*x^4*(y'[x])^2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

Solve
$$\left[-\frac{x\sqrt{12x^2y(x) + 1}\operatorname{arctanh}\left(\sqrt{12x^2y(x) + 1}\right)}{\sqrt{12x^4y(x) + x^2}} - \frac{1}{2}\log(y(x)) = c_1, y(x) \right]$$
Solve
$$\left[\frac{x\sqrt{12x^2y(x) + 1}\operatorname{arctanh}\left(\sqrt{12x^2y(x) + 1}\right)}{\sqrt{12x^4y(x) + x^2}} - \frac{1}{2}\log(y(x)) = c_1, y(x) \right]$$

$$y(x) \to 0$$

3.10 problem 12

Internal problem ID [6050]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

 ${\bf Section}\colon {\bf CHAPTER}$ 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 12.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

$$xy'^{2} + (x - y)y' + 1 - y = 0$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 56

 $dsolve(x*diff(y(x),x)^2+(x-y(x))*diff(y(x),x)+1-y(x)=0,y(x), singsol=all)$

$$y(x) = -x - 2\sqrt{x}$$

$$y(x) = -x + 2\sqrt{x}$$

$$y(x) = \frac{(-c_1^2 - c_1)x}{-1 - c_1} - \frac{1}{-1 - c_1}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 46

 $DSolve[x*(y'[x])^2+(x-y[x])*y'[x]+1-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x + \frac{1}{1 + c_1}$$
$$y(x) \to -x - 2\sqrt{x}$$
$$y(x) \to 2\sqrt{x} - x$$

problem 13 3.11

Internal problem ID [6051]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 13.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

$$y'(y'x - y + k) + a = 0$$

Time used: 0.094 (sec). Leaf size: 41

dsolve(diff(y(x),x)*(x*diff(y(x),x)-y(x)+k)+a=0,y(x), singsol=all)

$$y(x) = k - 2\sqrt{ax}$$
$$y(x) = k + 2\sqrt{ax}$$
$$y(x) = c_1x + \frac{c_1k + a}{c_1}$$

Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 58

 $DSolve[y'[x]*(x*y'[x]-y[x]+k)+a==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{a}{c_1} + k + c_1 x$$
 $y(x) \to \text{Indeterminat}$

 $y(x) \to \text{Indeterminate}$

$$y(x) \to k - 2\sqrt{a}\sqrt{x}$$

$$y(x) \to 2\sqrt{a}\sqrt{x} + k$$

3.12 problem 14

Internal problem ID [6052]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 14.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$x^6y'^3 - 3y'x - 3y = 0$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 32

 $dsolve(x^6*diff(y(x),x)^3-3*x*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)$

$$y(x) = -\frac{2}{3x^{\frac{3}{2}}}$$
$$y(x) = \frac{2}{3x^{\frac{3}{2}}}$$
$$c_{3}^{\frac{3}{2}} = c$$

 $y(x) = \frac{c_1^3}{3} - \frac{c_1}{x}$

✓ Solution by Mathematica

Time used: 134.736 (sec). Leaf size: 24834

 $DSolve[x^6*(y'[x])^3-3*x*y'[x]-3*y[x]==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

Too large to display

3.13 problem 15

Internal problem ID [6053]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 15.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y - x^6 y'^3 + y' x = 0$$

/

Solution by Maple

Time used: 0.234 (sec). Leaf size: 36

 $dsolve(y(x)=x^6*diff(y(x),x)^3-x*diff(y(x),x),y(x), singsol=all)$

$$y(x) = -\frac{2\sqrt{3}}{9x^{\frac{3}{2}}}$$

$$y(x) = \frac{2\sqrt{3}}{9x^{\frac{3}{2}}}$$

$$y(x) = c_1^3 - \frac{c_1}{x}$$

X

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y[x] == x^6*(y'[x])^3-x*y'[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

Timed out

3.14 problem 16

Internal problem ID [6054]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 16.

ODE order: 1. ODE degree: 4.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$xy'^4 - 2yy'^3 + 12x^3 = 0$$

✓ Solution by Maple

Time used: 0.297 (sec). Leaf size: 62

 $dsolve(x*diff(y(x),x)^4-2*y(x)*diff(y(x),x)^3+12*x^3=0,y(x), singsol=all)$

$$y(x) = -\frac{2\sqrt{-6x} x}{3}$$

$$y(x) = \frac{2\sqrt{-6x} x}{3}$$

$$y(x) = -\frac{2\sqrt{6} x^{\frac{3}{2}}}{3}$$

$$y(x) = \frac{2\sqrt{6} x^{\frac{3}{2}}}{3}$$

$$y(x) = 6c_1^3 + \frac{x^2}{2c_1}$$

✓ Solution by Mathematica

Time used: 36.401 (sec). Leaf size: 30947

 $DSolve[x*(y'[x])^4-2*y[x]*(y'[x])^3+12*x^3==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Too large to display

3.15 problem 17

Internal problem ID [6055]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 17.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$xy'^3 - yy'^2 + 1 = 0$$

/

Solution by Maple

Time used: 0.125 (sec). Leaf size: 80

 $dsolve(x*diff(y(x),x)^3-y(x)*diff(y(x),x)^2+1=0,y(x), singsol=all)$

$$egin{aligned} y(x) &= rac{3\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{2} \ y(x) &= -rac{3\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{4} - rac{3i\sqrt{3}\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{4} \ y(x) &= -rac{3\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{4} + rac{3i\sqrt{3}\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{4} \ y(x) &= c_1x + rac{1}{c_1^2} \end{aligned}$$

Time used: 0.011 (sec). Leaf size: 69

 $DSolve[x*(y'[x])^3-y[x]*(y'[x])^2+1==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x + \frac{1}{c_1^2}$$

$$y(x) \to 3\left(-\frac{1}{2}\right)^{2/3} x^{2/3}$$

$$y(x) \to \frac{3x^{2/3}}{2^{2/3}}$$

$$y(x) \to -\frac{3\sqrt[3]{-1}x^{2/3}}{2^{2/3}}$$

3.16 problem 19

Internal problem ID [6056]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 19.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$y'^2 - y'x - y = 0$$

/

Solution by Maple

Time used: 0.079 (sec). Leaf size: 77

 $dsolve(diff(y(x),x)^2-x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$\frac{c_1}{\sqrt{2x - 2\sqrt{x^2 + 4y(x)}}} + \frac{2x}{3} + \frac{\sqrt{x^2 + 4y(x)}}{3} = 0$$

$$c_1 \qquad 2x \qquad \sqrt{x^2 + 4y(x)}$$

$$\frac{c_{1}}{\sqrt{2x+2\sqrt{x^{2}+4y\left(x\right)}}}+\frac{2x}{3}-\frac{\sqrt{x^{2}+4y\left(x\right)}}{3}=0$$

Time used: 60.18 (sec). Leaf size: 965

DSolve $[(y'[x])^2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

3.17problem 20

Internal problem ID [6057]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 20.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$2y'^3 + y'x - 2y = 0$$

Solution by Maple

Time used: 0.063 (sec). Leaf size: 79

 $dsolve(2*diff(y(x),x)^3+x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)$

$$y(x) = \left(-\frac{c_1}{12} - \frac{\sqrt{c_1^2 + 24x}}{12}\right)^3 + \frac{\left(-\frac{c_1}{12} - \frac{\sqrt{c_1^2 + 24x}}{12}\right)x}{2}$$

$$y(x) = \left(-\frac{c_1}{12} + \frac{\sqrt{c_1^2 + 24x}}{12}\right)^3 + \frac{\left(-\frac{c_1}{12} + \frac{\sqrt{c_1^2 + 24x}}{12}\right)x}{2}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve $[2*(y'[x])^3+x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

Timed out

3.18 problem 21

Internal problem ID [6058]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 21.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$2y'^2 + y'x - 2y = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 36

 $dsolve(2*diff(y(x),x)^2+x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)$

$$y(x) = e^{2 \operatorname{LambertW}\left(\frac{x e^{\frac{c_1}{4}}}{4}\right) - \frac{c_1}{2}} + \frac{e^{\operatorname{LambertW}\left(\frac{x e^{\frac{c_1}{4}}}{4}\right) - \frac{c_1}{4}}}{2}$$

✓ Solution by Mathematica

Time used: 1.125 (sec). Leaf size: 130

DSolve $[2*(y'[x])^2+x*y'[x]-2*y[x]=0,y[x],x,IncludeSingularSolutions -> True]$

Solve
$$\left[-\frac{\frac{1}{2}x\sqrt{x^2 + 16y(x)} - 8y(x)\log\left(\sqrt{x^2 + 16y(x)} - x\right) + \frac{x^2}{2}}{8y(x)} = c_1, y(x) \right]$$
Solve
$$\left[\frac{\frac{1}{2}x\sqrt{x^2 + 16y(x)} - 8y(x)\log\left(\sqrt{x^2 + 16y(x)} - x\right) - \frac{x^2}{2}}{8y(x)} + \log(y(x)) = c_1, y(x) \right]$$

$$y(x) \to 0$$

3.19 problem 22

Internal problem ID [6059]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 22.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$y'^3 + 2y'x - y = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 173

 $dsolve(diff(y(x),x)^3+2*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\left(-6\sqrt{x^2 + 3c_1} - 6x\right)^{\frac{3}{2}}}{27} - \frac{2\sqrt{-6\sqrt{x^2 + 3c_1} - 6x} x}{3}$$

$$y(x) = \frac{\left(-6\sqrt{x^2 + 3c_1} - 6x\right)^{\frac{3}{2}}}{27} + \frac{2\sqrt{-6\sqrt{x^2 + 3c_1} - 6x} x}{3}$$

$$y(x) = -\frac{\left(6\sqrt{x^2 + 3c_1} - 6x\right)^{\frac{3}{2}}}{27} - \frac{2\sqrt{6\sqrt{x^2 + 3c_1} - 6x} x}{3}$$

$$y(x) = \frac{\left(6\sqrt{x^2 + 3c_1} - 6x\right)^{\frac{3}{2}}}{27} + \frac{2\sqrt{6\sqrt{x^2 + 3c_1} - 6x} x}{3}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(y'[x])^3+2*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

Timed out

3.20 problem 23

Internal problem ID [6060]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 23.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _dAlembert]

$$4xy'^2 - 3yy' + 3 = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 153

 $dsolve(4*x*diff(y(x),x)^2-3*y(x)*diff(y(x),x)+3=0,y(x), singsol=all)$

$$y(x) = -\frac{2\sqrt{x(3+\sqrt{16c_1x+9})}}{3} - \frac{2x}{\sqrt{x(3+\sqrt{16c_1x+9})}}$$

$$y(x) = \frac{2\sqrt{x(3+\sqrt{16c_1x+9})}}{3} + \frac{2x}{\sqrt{x(3+\sqrt{16c_1x+9})}}$$

$$y(x) = -\frac{2\sqrt{-x(-3+\sqrt{16c_1x+9})}}{3} - \frac{2x}{\sqrt{-x(-3+\sqrt{16c_1x+9})}}$$

$$y(x) = \frac{2\sqrt{-x(-3+\sqrt{16c_1x+9})}}{3} + \frac{2x}{\sqrt{-x(-3+\sqrt{16c_1x+9})}}$$

Time used: 23.354 (sec). Leaf size: 187

DSolve $[4*x*(y'[x])^2-3*y[x]*y'[x]+3==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{\sqrt{432x - e^{-\frac{c_1}{2}} \left(-144x + e^{c_1}\right)^{3/2} + e^{c_1}}}{6\sqrt{3}}$$

$$y(x) \to \frac{\sqrt{432x - e^{-\frac{c_1}{2}} \left(-144x + e^{c_1}\right)^{3/2} + e^{c_1}}}{6\sqrt{3}}$$

$$y(x) \to -\frac{\sqrt{432x + e^{-\frac{c_1}{2}} \left(-144x + e^{c_1}\right)^{3/2} + e^{c_1}}}{6\sqrt{3}}$$

$$y(x) \to \frac{\sqrt{432x + e^{-\frac{c_1}{2}} \left(-144x + e^{c_1}\right)^{3/2} + e^{c_1}}}{6\sqrt{3}}$$

3.21 problem 24

Internal problem ID [6061]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 24.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$y'^3 - y'x + 2y = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 83

 $dsolve(diff(y(x),x)^3-x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\left(\frac{c_1}{6} - \frac{\sqrt{c_1^2 - 12x}}{6}\right)^3}{2} + \frac{\left(\frac{c_1}{6} - \frac{\sqrt{c_1^2 - 12x}}{6}\right)x}{2}$$
$$y(x) = -\frac{\left(\frac{c_1}{6} + \frac{\sqrt{c_1^2 - 12x}}{6}\right)^3}{2} + \frac{\left(\frac{c_1}{6} + \frac{\sqrt{c_1^2 - 12x}}{6}\right)x}{2}$$

✓ Solution by Mathematica

Time used: 29.553 (sec). Leaf size: 10134

 $DSolve[(y'[x])^3-x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Too large to display

3.22 problem 25

Internal problem ID [6062]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 25.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$5y'^2 + 6y'x - 2y = 0$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 85

 $dsolve(5*diff(y(x),x)^2+6*x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)$

$$\frac{c_1}{\left(-15x - 5\sqrt{9x^2 + 10y(x)}\right)^{\frac{3}{2}}} + \frac{2x}{5} - \frac{\sqrt{9x^2 + 10y(x)}}{5} = 0$$

$$\frac{c_1}{\left(-15x + 5\sqrt{9x^2 + 10y(x)}\right)^{\frac{3}{2}}} + \frac{2x}{5} + \frac{\sqrt{9x^2 + 10y(x)}}{5} = 0$$

✓ Solution by Mathematica

 $y(x) \to 0$

Time used: 13.202 (sec). Leaf size: 771

DSolve $[5*(y'[x])^2+6*x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$\begin{split} y(x) &\to \operatorname{Root} \left[4\#1^5 + 4\#1^4x^2 + \#1^3x^4 + 1000\#1^2e^{5c_1}x + 900\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 \right. \\ &- 25000e^{10c_1}\&, 1 \right] \\ y(x) &\to \operatorname{Root} \left[4\#1^5 + 4\#1^4x^2 + \#1^3x^4 + 1000\#1^2e^{5c_1}x + 900\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 \right. \\ &- 25000e^{10c_1}\&, 2 \right] \\ y(x) &\to \operatorname{Root} \left[4\#1^5 + 4\#1^4x^2 + \#1^3x^4 + 1000\#1^2e^{5c_1}x + 900\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 \right. \\ &- 25000e^{10c_1}\&, 3 \right] \\ y(x) &\to \operatorname{Root} \left[4\#1^5 + 4\#1^4x^2 + \#1^3x^4 + 1000\#1^2e^{5c_1}x + 900\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 \right. \\ &- 25000e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[4\#1^5 + 4\#1^4x^2 + \#1^3x^4 + 1000\#1^2e^{5c_1}x + 900\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 \right. \\ &- 25000e^{10c_1}\&, 5 \right] \\ y(x) &\to \operatorname{Root} \left[100000\#1^5 + 4\#1^4x^2 + \#1^3x^4 + 1000\#1^2e^{5c_1}x + 900\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 \right. \\ &- 25000e^{10c_1}\&, 5 \right] \\ y(x) &\to \operatorname{Root} \left[100000\#1^5 + 100000\#1^4x^2 + 25000\#1^3x^4 - 1000\#1^2e^{5c_1}x - 900\#1e^{5c_1}x^3 \right. \\ &- 216e^{5c_1}x^5 - e^{10c_1}\&, 2 \right] \\ y(x) &\to \operatorname{Root} \left[100000\#1^5 + 100000\#1^4x^2 + 25000\#1^3x^4 - 1000\#1^2e^{5c_1}x - 900\#1e^{5c_1}x^3 \right. \\ &- 216e^{5c_1}x^5 - e^{10c_1}\&, 3 \right] \\ y(x) &\to \operatorname{Root} \left[100000\#1^5 + 100000\#1^4x^2 + 25000\#1^3x^4 - 1000\#1^2e^{5c_1}x - 900\#1e^{5c_1}x^3 \right. \\ &- 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[100000\#1^5 + 100000\#1^4x^2 + 25000\#1^3x^4 - 1000\#1^2e^{5c_1}x - 900\#1e^{5c_1}x^3 \right. \\ &- 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[100000\#1^5 + 100000\#1^4x^2 + 25000\#1^3x^4 - 1000\#1^2e^{5c_1}x - 900\#1e^{5c_1}x^3 \right. \\ &- 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[100000\#1^5 + 100000\#1^4x^2 + 25000\#1^3x^4 - 1000\#1^2e^{5c_1}x - 900\#1e^{5c_1}x^3 \right. \\ &- 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[100000\#1^5 + 100000\#1^4x^2 + 25000\#1^3x^4 - 1000\#1^2e^{5c_1}x - 900\#1e^{5c_1}x^3 \right. \\ &- 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[100000\#1^5 + 100000\#1^4x^2 + 25000\#1^3x^4 - 1000\#1^2e^{5c_1}x - 900\#1e^{5c_1}x^3 \right. \\ &- 216e^{5c_1}x^5 - e^{10c_1}\&, 5 \right]$$

3.23 problem 26

Internal problem ID [6063]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 26.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_rational, _dAlembert]

$$2xy'^{2} + (-y + 2x)y' + 1 - y = 0$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 146

 $dsolve(2*x*diff(y(x),x)^2+(2*x-y(x))*diff(y(x),x)+1-y(x)=0,y(x), singsol=all)$

$$\begin{split} y(x) &= - \bigg(-2 \Big(\mathrm{e}^{\mathrm{RootOf} \left(-\mathrm{e}^{3-Z}x + 2\,\mathrm{e}^{2-Z}x + c_1\mathrm{e}^{-Z} + _Z\,\mathrm{e}^{-Z} - x\,\mathrm{e}^{-Z} + 1 \right)} - 1 \Big)^2 \\ &\qquad - 2\,\mathrm{e}^{\mathrm{RootOf} \left(-\mathrm{e}^{3-Z}x + 2\,\mathrm{e}^{2-Z}x + c_1\mathrm{e}^{-Z} + _Z\,\mathrm{e}^{-Z} - x\,\mathrm{e}^{-Z} + 1 \right)} \\ &\qquad + 2 \bigg)\,\mathrm{e}^{-\,\mathrm{RootOf} \left(-\mathrm{e}^{3-Z}x + 2\,\mathrm{e}^{2-Z}x + c_1\mathrm{e}^{-Z} + _Z\,\mathrm{e}^{-Z} - x\,\mathrm{e}^{-Z} + 1 \right)} x \\ &\qquad + \mathrm{e}^{-\,\mathrm{RootOf} \left(-\mathrm{e}^{3-Z}x + 2\,\mathrm{e}^{2-Z}x + c_1\mathrm{e}^{-Z} + _Z\,\mathrm{e}^{-Z} - x\,\mathrm{e}^{-Z} + 1 \right)} \end{split}$$

✓ Solution by Mathematica

Time used: 1.344 (sec). Leaf size: 49

 $DSolve[2*x*(y'[x])^2+(2*x-y[x])*y'[x]+1-y[x] ==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\left\{ x = \frac{\frac{1}{K[1]+1} + \log(K[1]+1)}{K[1]^2} + \frac{c_1}{K[1]^2}, y(x) = 2xK[1] + \frac{1}{K[1]+1} \right\}, \{y(x), K[1]\} \right]$$

3.24 problem 27

Internal problem ID [6064]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 27.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$5y'^2 + 3y'x - y = 0$$

/

Solution by Maple

Time used: 0.063 (sec). Leaf size: 85

 $dsolve(5*diff(y(x),x)^2+3*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$\frac{c_1}{\left(-30x - 10\sqrt{9x^2 + 20y(x)}\right)^{\frac{3}{2}}} + \frac{2x}{5} - \frac{\sqrt{9x^2 + 20y(x)}}{5} = 0$$

$$\frac{c_1}{\left(-30x + 10\sqrt{9x^2 + 20y(x)}\right)^{\frac{3}{2}}} + \frac{2x}{5} + \frac{\sqrt{9x^2 + 20y(x)}}{5} = 0$$

✓ Solution by Mathematica

 $y(x) \rightarrow 0$

Time used: 13.45 (sec). Leaf size: 771

DSolve $[5*(y'[x])^2+3*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$\begin{split} y(x) &\to \operatorname{Root} \left[16\#1^5 + 8\#1^4x^2 + \#1^3x^4 + 4000\#1^2e^{5c_1}x + 1800\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 \right. \\ &- 200000e^{10c_1}\&, 1 \right] \\ y(x) &\to \operatorname{Root} \left[16\#1^5 + 8\#1^4x^2 + \#1^3x^4 + 4000\#1^2e^{5c_1}x + 1800\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 \right. \\ &- 200000e^{10c_1}\&, 2 \right] \\ y(x) &\to \operatorname{Root} \left[16\#1^5 + 8\#1^4x^2 + \#1^3x^4 + 4000\#1^2e^{5c_1}x + 1800\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 \right. \\ &- 200000e^{10c_1}\&, 3 \right] \\ y(x) &\to \operatorname{Root} \left[16\#1^5 + 8\#1^4x^2 + \#1^3x^4 + 4000\#1^2e^{5c_1}x + 1800\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 \right. \\ &- 200000e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[16\#1^5 + 8\#1^4x^2 + \#1^3x^4 + 4000\#1^2e^{5c_1}x + 1800\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 \right. \\ &- 200000e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[3200000\#1^5 + 1600000\#1^4x^2 + 200000\#1^3x^4 - 4000\#1^2e^{5c_1}x \right. \\ &- 1800\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 2 \right] \\ y(x) &\to \operatorname{Root} \left[3200000\#1^5 + 1600000\#1^4x^2 + 200000\#1^3x^4 - 4000\#1^2e^{5c_1}x \right. \\ &- 1800\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 2 \right] \\ y(x) &\to \operatorname{Root} \left[3200000\#1^5 + 1600000\#1^4x^2 + 200000\#1^3x^4 - 4000\#1^2e^{5c_1}x \right. \\ &- 1800\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 3 \right] \\ y(x) &\to \operatorname{Root} \left[3200000\#1^5 + 1600000\#1^4x^2 + 200000\#1^3x^4 - 4000\#1^2e^{5c_1}x \right. \\ &- 1800\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[3200000\#1^5 + 1600000\#1^4x^2 + 200000\#1^3x^4 - 4000\#1^2e^{5c_1}x \right. \\ &- 1800\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[3200000\#1^5 + 1600000\#1^4x^2 + 200000\#1^3x^4 - 4000\#1^2e^{5c_1}x \right. \\ &- 1800\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[3200000\#1^5 + 1600000\#1^4x^2 + 200000\#1^3x^4 - 4000\#1^2e^{5c_1}x \right. \\ &- 1800\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[3200000\#1^5 + 1600000\#1^4x^2 + 200000\#1^3x^4 - 4000\#1^2e^{5c_1}x \right. \\ &- 1800\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) &\to \operatorname{Root} \left[3200000\#1^5 + 1600000\#1^4x^2 + 200000\#1^3x^4 - 4000\#1^2e^{5c_1}x \right. \\ &- 1800\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right]$$

3.25 problem 28

Internal problem ID [6065]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 28.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$y'^2 + 3y'x - y = 0$$

/

Solution by Maple

Time used: 0.078 (sec). Leaf size: 85

 $dsolve(diff(y(x),x)^2+3*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$\frac{c_1}{\left(-6x - 2\sqrt{9x^2 + 4y(x)}\right)^{\frac{3}{2}}} + \frac{2x}{5} - \frac{\sqrt{9x^2 + 4y(x)}}{5} = 0$$

$$\frac{c_1}{\left(-6x + 2\sqrt{9x^2 + 4y(x)}\right)^{\frac{3}{2}}} + \frac{2x}{5} + \frac{\sqrt{9x^2 + 4y(x)}}{5} = 0$$

✓ Solution by Mathematica

 $y(x) \to 0$

Time used: 13.436 (sec). Leaf size: 776

$DSolve[(y'[x])^2+3*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \operatorname{Root} \left[16\#1^5 + 40\#1^4x^2 + 25\#1^3x^4 + 160\#1^2e^{5c_1}x + 360\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 - 64e^{10c_1}\&, 1 \right] \\ y(x) \to \operatorname{Root} \left[16\#1^5 + 40\#1^4x^2 + 25\#1^3x^4 + 160\#1^2e^{5c_1}x + 360\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 - 64e^{10c_1}\&, 2 \right] \\ y(x) \to \operatorname{Root} \left[16\#1^5 + 40\#1^4x^2 + 25\#1^3x^4 + 160\#1^2e^{5c_1}x + 360\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 - 64e^{10c_1}\&, 3 \right] \\ y(x) \to \operatorname{Root} \left[16\#1^5 + 40\#1^4x^2 + 25\#1^3x^4 + 160\#1^2e^{5c_1}x + 360\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 - 64e^{10c_1}\&, 4 \right] \\ y(x) \to \operatorname{Root} \left[16\#1^5 + 40\#1^4x^2 + 25\#1^3x^4 + 160\#1^2e^{5c_1}x + 360\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 - 64e^{10c_1}\&, 4 \right] \\ y(x) \to \operatorname{Root} \left[16\#1^5 + 40\#1^4x^2 + 25\#1^3x^4 + 160\#1^2e^{5c_1}x + 360\#1e^{5c_1}x^3 + 216e^{5c_1}x^5 - 64e^{10c_1}\&, 5 \right] \\ y(x) \to \operatorname{Root} \left[1024\#1^5 + 2560\#1^4x^2 + 1600\#1^3x^4 - 160\#1^2e^{5c_1}x - 360\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 2 \right] \\ y(x) \to \operatorname{Root} \left[1024\#1^5 + 2560\#1^4x^2 + 1600\#1^3x^4 - 160\#1^2e^{5c_1}x - 360\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 2 \right] \\ y(x) \to \operatorname{Root} \left[1024\#1^5 + 2560\#1^4x^2 + 1600\#1^3x^4 - 160\#1^2e^{5c_1}x - 360\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 3 \right] \\ y(x) \to \operatorname{Root} \left[1024\#1^5 + 2560\#1^4x^2 + 1600\#1^3x^4 - 160\#1^2e^{5c_1}x - 360\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 3 \right] \\ y(x) \to \operatorname{Root} \left[1024\#1^5 + 2560\#1^4x^2 + 1600\#1^3x^4 - 160\#1^2e^{5c_1}x - 360\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) \to \operatorname{Root} \left[1024\#1^5 + 2560\#1^4x^2 + 1600\#1^3x^4 - 160\#1^2e^{5c_1}x - 360\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) \to \operatorname{Root} \left[1024\#1^5 + 2560\#1^4x^2 + 1600\#1^3x^4 - 160\#1^2e^{5c_1}x - 360\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) \to \operatorname{Root} \left[1024\#1^5 + 2560\#1^4x^2 + 1600\#1^3x^4 - 160\#1^2e^{5c_1}x - 360\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) \to \operatorname{Root} \left[1024\#1^5 + 2560\#1^4x^2 + 1600\#1^3x^4 - 160\#1^2e^{5c_1}x - 360\#1e^{5c_1}x^3 - 216e^{5c_1}x^5 - e^{10c_1}\&, 4 \right] \\ y(x) \to \operatorname{Root} \left[1024\#1^5 + 2560\#1^4x^2 + 1600\#1^3x^4 - 160\#1^2e^{5c_1}x - 360\#1e^{5c_1}x^3 - 216e^{5c$$

3.26 problem 29

Internal problem ID [6066]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

Problem number: 29.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y - y'x - x^3y'^2 = 0$$

X Solution by Maple

 $dsolve(y(x)=x*diff(y(x),x)+x^3*diff(y(x),x)^2,y(x), singsol=all)$

No solution found

✓ Solution by Mathematica

Time used: 105.583 (sec). Leaf size: 7052

 $DSolve[y[x] == x*y'[x] + x^3*(y'[x])^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

Too large to display

4	CHAPTER 16. Nonlinear equations. Section 101.
	Independent variable missing. EXERCISES Page
	324

4.1	problem 1.			•			•			•	•				•	•					•	•	8	3
4.2	problem 2 .															•							. 84	4
4.3	problem 3 .						•																8	5
4.4	problem 4 .						•																80	6
4.5	problem 5 .												 										. 8	7
4.6	problem 6 .						•																88	8
4.7	problem 7 .																						89	9
4.8	problem 9 .		•									•			•	•						•	90	0
4.9	problem 10															•							. 9	1
4.10	problem 11															•							9:	2
4.11	problem 12		•	•			•					•										•	9,	5
4.12	problem 13															•							90	6
4.13	problem 14		•									•			•	•						•	. 9	7
4.14	problem 15	•																					98	8
4.15	problem 16	•																					99	9
4.16	problem 17	•											 										100	0
4.17	problem 18						•										•						. 10	1
4.18	problem 19	•											 										103	2
4.19	problem 20	•											 										10	3
4.20	problem 21																						. 104	4
4.21	problem 23																						10	5
4.22	problem 24												 										100	6
4.23	problem 25												 										. 10	7
4.24	problem 26												 										108	8
4.25	problem 27																						110	0
4.26	problem 28																						. 11	1
4.27	problem 30												 										11:	2
4.28	problem 31																						113	3
4.29	problem 32																						. 114	4
4.30	problem 33																							
4.31	problem 34												 										. 11	7
4.32	problem 35												 										118	8
4.33	problem 36												 						 •				119	9
4.34	problem 37												 										120	0
4.35	problem 38												 										. 12	1
4.36	problem 39												 										125	2
4.37	problem 40																						123	3

4.38	problem 41																		.]	124
4.39	problem 42]	126
4.40	problem 43								 											127

4.1 problem 1

Internal problem ID [6067]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

$$y'' - xy'^3 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 37

 $dsolve(diff(y(x),x$2)=x*(diff(y(x),x))^3,y(x), singsol=all)$

$$y(x) = \arctan\left(\frac{x}{\sqrt{-x^2 + c_1}}\right) + c_2$$
$$y(x) = -\arctan\left(\frac{x}{\sqrt{-x^2 + c_1}}\right) + c_2$$

✓ Solution by Mathematica

Time used: 10.872 (sec). Leaf size: 57

DSolve[y''[x]==x*(y'[x])^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 - \arctan\left(\frac{x}{\sqrt{-x^2 - 2c_1}}\right)$$

 $y(x) \to \arctan\left(\frac{x}{\sqrt{-x^2 - 2c_1}}\right) + c_2$
 $y(x) \to c_2$

4.2 problem 2

Internal problem ID [6068]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x^2y'' + y'^2 - 2y'x = 0$$

With initial conditions

$$[y(2) = 5, y'(2) = -4]$$

✓ Solution by Maple

Time used: 0.171 (sec). Leaf size: 24

 $dsolve([x^2*diff(y(x),x$2)+diff(y(x),x)^2-2*x*diff(y(x),x)=0,y(2) = 5, D(y)(2) = -4],y(x), single ([x^2*diff(y(x),x$2)+diff(y(x),x)^2-2*x*diff(y(x),x)=0,y(2) = 5, D(y)(2) = -4],y(x), single ([x^2*diff(y(x),x$2]+diff(y(x),x)^2-2*x*diff(y(x),x)=0,y(2) = 5, D(y)(2) = -4],y(x), single ([x^2*diff(y(x),x)]+([x^2*diff(y(x),x)]+([x^2*diff(y(x),x)]+([x^2*diff(y(x),x)]+([x^2*diff(x),x)]+([x^2*diff(x),x)) = -4],y(x), single ([x^2*diff(x),x]+($

$$y(x) = \frac{x^2}{2} + 3x + 9\ln(x - 3) - 3 - 9i\pi$$

✓ Solution by Mathematica

Time used: 0.49 (sec). Leaf size: 26

 $DSolve[\{x^2*y''[x]+(y'[x])^2-2*x*y'[x]==0,\{y[2]==5,y'[2]==-4\}\},y[x],x,IncludeSingularSolution]$

$$y(x) \to \frac{1}{2}x(x+6) + 9\log(x-3) - 9i\pi - 3$$

4.3 problem 3

Internal problem ID [6069]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x^2y'' + y'^2 - 2y'x = 0$$

With initial conditions

$$[y(2) = 5, y'(2) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

 $dsolve([x^2*diff(y(x),x$2)+diff(y(x),x)^2-2*x*diff(y(x),x)=0,y(2) = 5, D(y)(2) = 2],y(x), sin(x) = 0$

$$y(x) = \frac{x^2}{2} + 3$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 14

 $DSolve[\{x^2*y''[x]+(y'[x])^2-2*x*y'[x]==0,\{y[2]==5,y'[2]==2\}\},y[x],x,IncludeSingularSolutions] \\$

$$y(x) \to \frac{1}{2} \left(x^2 + 6 \right)$$

4.4 problem 4

Internal problem ID [6070]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _L

$$yy'' + y'^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

 $dsolve(y(x)*diff(y(x),x$2)+diff(y(x),x)^2=0,y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = \sqrt{2c_1x + 2c_2}$$

$$y(x) = -\sqrt{2c_1x + 2c_2}$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 20

 $DSolve[y[x]*y''[x]+(y'[x])^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_2 \sqrt{2x - c_1}$$

4.5 problem 5

Internal problem ID [6071]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],

$$y^2y'' + y'^3 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 34

 $dsolve(y(x)^2*diff(y(x),x$2)+diff(y(x),x)^3=0,y(x), singsol=all)$

$$y(x) = 0$$

 $y(x) = c_1$
 $y(x) = e^{-\text{LambertW}(-c_1e^{-c_2}e^{-x}) - c_2 - x}$

✓ Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 37

 $DSolve[y[x]^2*y''[x]+(y'[x])^3==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_2 \left(1 + \frac{1}{\text{InverseFunction} \left[-\frac{1}{\#1} - \log(\#1) + \log(\#1 + 1) \& \right] [-x + c_1]} \right)$$

4.6 problem 6

Internal problem ID [6072]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,

$$(1+y)y'' - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $dsolve((y(x)+1)*diff(y(x),x$2)=diff(y(x),x)^2,y(x), singsol=all)$

$$y(x) = -1$$
$$y(x) = e^{c_1 x} c_2 - 1$$

✓ Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 21

 $DSolve[(y[x]+1)*y''[x]==(y'[x])^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -1 + \frac{e^{c_1(x+c_2)}}{c_1}$$

4.7 problem 7

Internal problem ID [6073]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

$$2ay'' + y'^3 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 29

 $dsolve(2*a*diff(y(x),x$2)+diff(y(x),x)^3=0,y(x), singsol=all)$

$$y(x) = 2\sqrt{(x+c_1) a} + c_2$$

$$y(x) = -2\sqrt{(x+c_1) a} + c_2$$

✓ Solution by Mathematica

Time used: 0.303 (sec). Leaf size: 51

DSolve[2*a*y''[x]+(y'[x])^3==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 - 2\sqrt{a}\sqrt{x - 2ac_1}$$

$$y(x) \to 2\sqrt{a}\sqrt{x - 2ac_1} + c_2$$

4.8 problem 9

Internal problem ID [6074]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - y' - x^5 = 0$$

With initial conditions

$$\left[y(1) = \frac{1}{2}, y'(1) = 1 \right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $dsolve([x*diff(y(x),x$2)=diff(y(x),x)+x^5,y(1) = 1/2, D(y)(1) = 1],y(x), singsol=all)$

$$y(x) = \frac{1}{24}x^6 + \frac{3}{8}x^2 + \frac{1}{12}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 19

DSolve[{x*y''[x]==y'[x]+x^5,{y[1]==1/2,y'[1]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{24} (x^6 + 9x^2 + 2)$$

4.9 problem 10

Internal problem ID [6075]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' + y' + x = 0$$

With initial conditions

$$\left[y(2) = -1, y'(2) = -\frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve([x*diff(y(x),x\$2)+diff(y(x),x)+x=0,y(2) = -1, D(y)(2) = -1/2],y(x), singsol=all)

$$y(x) = -\frac{x^2}{4} + \ln(x) - \ln(2)$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 19

DSolve[{x*y''[x]+y'[x]+x==0,{y[2]==-1,y'[2]==-1/2}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \log\left(\frac{x}{2}\right) - \frac{x^2}{4}$$

4.10 problem 11

Internal problem ID [6076]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

 ${\bf Section:}\ {\bf CHAPTER}\ 16.\ {\bf Nonlinear}\ {\bf equations.}\ {\bf Section}\ 101.\ {\bf Independent}\ {\bf variable}\ {\bf missing.}\ {\bf EXER-}$

CISES Page 324

Problem number: 11.

ODE order: 2. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [\ [_2nd_order\ ,\ _missing_x]\ ,\ [\ _2nd_order\ ,\ _reducible\ ,\ _mu_x_y1]\ ,}$

$$y'' - 2yy'^3 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 386

$dsolve(diff(y(x),x$2)=2*y(x)*diff(y(x),x)^3,y(x), singsol=all)$

$$\begin{split} y(x) &= c_1 \\ y(x) &= \frac{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}{2c_1} \\ &+ \frac{2}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}} \\ y(x) &= -\frac{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}{4c_1} \\ &- \frac{i\sqrt{3}\left(\frac{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}{2} - \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}\right)} \\ y(x) &= -\frac{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}{4c_1} \\ &- \frac{4}{c_1} \\ &- \frac{1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}{2} - \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}{2} - \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}}\right)} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}{2} - \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}}\right)} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}{2} - \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}\right)} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}{2} - \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}\right)} \\ &+ \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}} \\ &+ \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}} \\ &+ \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}} \\ &+ \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}} \\ &+ \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}} \\ &+ \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 18xc_2 + 9x^2}\right)^{\frac{1}{3}}}} \\ &+ \frac{2c_1}{\left(-12c_2 - 12x + 4\sqrt{-4c_1^3 + 9c_2^2 + 1$$

✓ Solution by Mathematica

Time used: 0.299 (sec). Leaf size: 346

 $DSolve[y''[x] == 2*y[x]*(y'[x])^3, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{\sqrt[3]{2}c_1}{\sqrt[3]{\sqrt{9x^2 + 18c_2x + 4c_1^3 + 9c_2^2} + 3x + 3c_2}} - \frac{\sqrt[3]{\sqrt{9x^2 + 18c_2x + 4c_1^3 + 9c_2^2} + 3x + 3c_2}}{\sqrt[3]{2}}$$

$$y(x) \rightarrow \frac{2^{2/3}(1 - i\sqrt{3})(\sqrt{9x^2 + 18c_2x + 4c_1^3 + 9c_2^2} + 3x + 3c_2)^{2/3} + \sqrt[3]{2}(-2 - 2i\sqrt{3})c_1}{4\sqrt[3]{\sqrt{9x^2 + 18c_2x + 4c_1^3 + 9c_2^2} + 3x + 3c_2}}$$

$$y(x) \rightarrow \frac{2^{2/3}(1 + i\sqrt{3})(\sqrt{9x^2 + 18c_2x + 4c_1^3 + 9c_2^2} + 3x + 3c_2)^{2/3} + 2i\sqrt[3]{2}(\sqrt{3} + i)c_1}{4\sqrt[3]{\sqrt{9x^2 + 18c_2x + 4c_1^3 + 9c_2^2} + 3x + 3c_2}}$$

4.11 problem 12

Internal problem ID [6077]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],

$$yy'' + y'^3 - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 44

 $dsolve(y(x)*diff(y(x),x$2)+diff(y(x),x)^3-diff(y(x),x)^2=0,y(x), singsol=all)$

$$y(x) = 0$$
 $y(x) = c_1$ $y(x) = e^{-\frac{c_1 \operatorname{LambertW}\left(\frac{c_2}{c_1} \frac{x}{c_1}\right) - c_2 - x}{c_1}}$

✓ Solution by Mathematica

Time used: 0.108 (sec). Leaf size: 29

 $DSolve[y[x]*y''[x]+(y'[x])^3-(y'[x])^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{c_1} W \Big(e^{e^{-c_1}(x+c_2)-c_1} \Big)$$

4.12 problem 13

Internal problem ID [6078]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + \beta^2 y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

 $dsolve(diff(y(x),x$2)+beta^2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \sin(\beta x) + c_2 \cos(\beta x)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 20

 $DSolve[y''[x]+\\[Beta]^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow c_1 \cos(\beta x) + c_2 \sin(\beta x)$$

4.13 problem 14

Internal problem ID [6079]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],

$$yy'' + y'^3 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

 $dsolve(y(x)*diff(y(x),x$2)+diff(y(x),x)^3=0,y(x), singsol=all)$

$$y(x) = 0$$

 $y(x) = c_1$
 $y(x) = e^{\operatorname{LambertW}((c_2 + x)e^{c_1}e^{-1}) - c_1 + 1}$

✓ Solution by Mathematica

Time used: 0.093 (sec). Leaf size: 25

 $DSolve[y[x]*y''[x]+(y'[x])^3==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{W(e^{-1-c_1}(x+c_2))+1+c_1}$$

4.14 problem 15

Internal problem ID [6080]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y''\cos(x) - y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)*cos(x)=diff(y(x),x),y(x), singsol=all)

$$y(x) = c_1 + \left(\ln\left(\sec\left(x\right) + \tan\left(x\right)\right) - \ln\left(\cos\left(x\right)\right)\right)c_2$$

✓ Solution by Mathematica

Time used: 0.158 (sec). Leaf size: 25

DSolve[y''[x]*Cos[x]==y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \log \left(e^{4 \operatorname{arctanh}(\tan(\frac{x}{2}))} + 1 \right) + c_2$$

4.15 problem 16

Internal problem ID [6081]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

$$y'' - xy'^2 = 0$$

With initial conditions

$$\[y(2) = \frac{\pi}{4}, y'(2) = -\frac{1}{4}\]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 8

 $dsolve([diff(y(x),x$2)=x*diff(y(x),x)^2,y(2) = 1/4*Pi, D(y)(2) = -1/4],y(x), singsol=all)$

$$y(x) = \operatorname{arccot}\left(\frac{x}{2}\right)$$

✓ Solution by Mathematica

Time used: 1.165 (sec). Leaf size: 19

DSolve[{y''[x]==x*(y'[x])^2,{y[2]==1/4*Pi,y'[2]==-1/4}},y[x],x,IncludeSingularSolutions -> Tr

$$y(x) o rac{1}{2} \Big(\pi - 2 \arctan\left(rac{x}{2}
ight) \Big)$$

4.16 problem 17

Internal problem ID [6082]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

$$y'' - xy'^2 = 0$$

With initial conditions

$$\left[y(0) = 1, y'(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 10

 $dsolve([diff(y(x),x$2)=x*diff(y(x),x)^2,y(0) = 1, D(y)(0) = 1/2],y(x), singsol=all)$

$$y(x) = \operatorname{arctanh}\left(\frac{x}{2}\right) + 1$$

✓ Solution by Mathematica

Time used: 0.217 (sec). Leaf size: 13

 $DSolve[\{y''[x]==x*(y'[x])^2,\{y[0]==1,y'[0]==1/2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \operatorname{arctanh}\left(\frac{x}{2}\right) + 1$$

4.17 problem 18

Internal problem ID [6083]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$y'' + e^{-2y} = 0$$

With initial conditions

$$[y(3) = 0, y'(3) = 1]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 12

dsolve([diff(y(x),x\$2)=-exp(-2*y(x)),y(3) = 0, D(y)(3) = 1],y(x), singsol=all)

$$y(x) = \frac{\ln\left((x-2)^2\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.147 (sec). Leaf size: 9

 $DSolve[\{y''[x] == -Exp[-2*y[x]], \{y[3] == 0, y'[3] == 1\}\}, y[x], x, IncludeSingularSolutions] \rightarrow True]$

$$y(x) \to \log(x-2)$$

4.18 problem 19

Internal problem ID [6084]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$y'' + e^{-2y} = 0$$

With initial conditions

$$[y(3) = 0, y'(3) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve([diff(y(x),x\$2)=-exp(-2*y(x)),y(3) = 0, D(y)(3) = -1],y(x), singsol=all)

$$y(x) = \frac{\ln\left((x-4)^2\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.133 (sec). Leaf size: 11

 $DSolve[\{y''[x]=-Exp[-2*y[x]],\{y[3]==0,y'[3]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \log(4-x)$$

4.19 problem 20

Internal problem ID [6085]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

 ${\bf Section}\colon {\bf CHAPTER}$ 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$2y'' - \sin(2y) = 0$$

With initial conditions

$$[y(0) = \frac{\pi}{2}, y'(0) = 1]$$

Solution by Maple

Time used: 134.11 (sec). Leaf size: 1495

dsolve([2*diff(y(x),x\$2)=sin(2*y(x)),y(0) = 1/2*Pi, D(y)(0) = 1],y(x), singsol=all)

Expression too large to display

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{2*y''[x]==Sin[2*y[x]],\{y[0]==Pi/2,y'[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

{}

4.20 problem 21

Internal problem ID [6086]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$2y'' - \sin(2y) = 0$$

With initial conditions

$$\left[y(0) = -\frac{\pi}{2}, y'(0) = 1 \right]$$

✓ Solution by Maple

Time used: 98.39 (sec). Leaf size: 1490

dsolve([2*diff(y(x),x\$2)=sin(2*y(x)),y(0) = -1/2*Pi, D(y)(0) = 1],y(x), singsol=all)

Expression too large to display

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

{}

4.21 problem 23

Internal problem ID [6087]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x^3y'' - x^2y' + x^2 - 3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(x^3*diff(y(x),x$2)-x^2*diff(y(x),x)=3-x^2,y(x), singsol=all)$

$$y(x) = \frac{c_1 x^2}{2} + \frac{1}{x} + x + c_2$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 21

 $DSolve[x^3*y''[x]-x^2*y'[x]==3-x^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1 x^2}{2} + x + \frac{1}{x} + c_2$$

4.22 problem 24

Internal problem ID [6088]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,

$$y'' - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve(diff(y(x),x$2)=diff(y(x),x)^2,y(x), singsol=all)$

$$y(x) = -\ln\left(-c_1x - c_2\right)$$

Solution by Mathematica

Time used: 0.186 (sec). Leaf size: 15

DSolve[y''[x]==(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 - \log(x + c_1)$$

4.23 problem 25

Internal problem ID [6089]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - e^x y'^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

 $dsolve(diff(y(x),x$2)=exp(x)*diff(y(x),x)^2,y(x), singsol=all)$

$$y(x) = \frac{\ln(e^x)}{c_1} - \frac{\ln(e^x - c_1)}{c_1} + c_2$$

✓ Solution by Mathematica

Time used: 0.902 (sec). Leaf size: 37

 $DSolve[y''[x] == Exp[x](y'[x])^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{-x + \log(e^x + c_1) + c_1 c_2}{c_1}$$

 $y(x) \to \text{Indeterminate}$

$$y(x) \rightarrow c_2$$

4.24 problem 26

Internal problem ID [6090]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXER-CISES Page 324

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

$$2y'' - y'^3 \sin\left(2x\right) = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 78

 $dsolve(2*diff(y(x),x$2)=diff(y(x),x)^3*sin(2*x),y(x), singsol=all)$

$$y(x) = \frac{\sqrt{-\left(\sin(x)^{2} - \frac{1}{c_{1}^{2}}\right)c_{1}^{2}} \text{ InverseJacobiAM } (x, c_{1})}{\sqrt{-\sin(x)^{2} + \frac{1}{c_{1}^{2}}}} + c_{2}$$

$$y(x) = -\frac{\sqrt{-\left(\sin(x)^{2} - \frac{1}{c_{1}^{2}}\right)c_{1}^{2}} \text{ InverseJacobiAM } (x, c_{1})}{\sqrt{-\sin(x)^{2} + \frac{1}{c_{1}^{2}}}} + c_{2}$$

$$y(x) = -\frac{\sqrt{-\left(\sin(x)^{2} - \frac{1}{c_{1}^{2}}\right)c_{1}^{2}} \text{ InverseJacobiAM } (x, c_{1})}{\sqrt{-\sin(x)^{2} + \frac{1}{c_{1}^{2}}}} + c_{2}$$

✓ Solution by Mathematica

Time used: 5.916 (sec). Leaf size: 118

 $DSolve[2*y''[x] == (y'[x])^3*Sin[2*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_2 - \frac{\sqrt{\frac{\cos(2x) + 1 - 4c_1}{1 - 2c_1}} \text{ EllipticF}\left(x, \frac{1}{1 - 2c_1}\right)}{\sqrt{\cos(2x) + 1 - 4c_1}}$$
$$y(x) \to \frac{\sqrt{\frac{\cos(2x) + 1 - 4c_1}{1 - 2c_1}} \text{ EllipticF}\left(x, \frac{1}{1 - 2c_1}\right)}{\sqrt{\cos(2x) + 1 - 4c_1}} + c_2$$
$$y(x) \to c_2$$

4.25 problem 27

Internal problem ID [6091]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

$$x^2y'' + y'^2 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

 $dsolve(x^2*diff(y(x),x$2)+diff(y(x),x)^2=0,y(x), singsol=all)$

$$y(x) = \frac{x}{c_1} + \frac{\ln(c_1 x - 1)}{c_1^2} + c_2$$

✓ Solution by Mathematica

Time used: 0.533 (sec). Leaf size: 47

DSolve[x^2*y''[x]+(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{x}{c_1} + \frac{\log(1 + c_1 x)}{c_1^2} + c_2$$

 $y(x) \to c_2$
 $y(x) \to -\frac{x^2}{2} + c_2$

4.26 problem 28

Internal problem ID [6092]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

$$y'' - 1 - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

 $dsolve(diff(y(x),x$2)=1+diff(y(x),x)^2,y(x), singsol=all)$

$$y(x) = -\ln\left(\frac{-c_2 + \tan(x) c_1}{\sec(x)}\right)$$

✓ Solution by Mathematica

Time used: 1.769 (sec). Leaf size: 16

DSolve[$y''[x] == 1 + (y'[x])^2, y[x], x$, IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 - \log(\cos(x + c_1))$$

4.27 problem 30

Internal problem ID [6093]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 30.

ODE order: 2. ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - \left(1 + y'^2\right)^{\frac{3}{2}} = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 51

 $\label{eq:diff} $$\operatorname{dsolve}(\operatorname{diff}(y(x),x\$2)=(1+\operatorname{diff}(y(x),x)^2)^(3/2),y(x),$ singsol=all)$$

$$y(x) = -ix + c_1$$

 $y(x) = ix + c_1$
 $y(x) = (c_1 + x + 1) (c_1 + x - 1) \sqrt{-\frac{1}{c_1^2 + 2c_1x + x^2 - 1}} + c_2$

✓ Solution by Mathematica

Time used: 0.258 (sec). Leaf size: 53

 $DSolve[y''[x] == (1+(y'[x])^2)^(3/2), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_2 - i\sqrt{(x-1+c_1)(x+1+c_1)}$$

 $y(x) \to i\sqrt{(x-1+c_1)(x+1+c_1)} + c_2$

4.28 problem 31

Internal problem ID [6094]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

$$yy'' - y'^{2}(1 - y'\sin(y) - yy'\cos(y)) = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 24

 $dsolve(y(x)*diff(y(x),x$2)=diff(y(x),x)^2*(1-diff(y(x),x)*sin(y(x))-y(x)*diff(y(x),x)*cos(y(x))+diff(y(x),x)*diff(y(x),x$

$$y(x) = c_1 - \cos(y(x)) + c_1 \ln(y(x)) - x - c_2 = 0$$

✓ Solution by Mathematica

Time used: 0.181 (sec). Leaf size: 23

 $DSolve[y[x]*y''[x] == (y'[x])^2*(1-y'[x]*Sin[y[x]]-y[x]*y'[x]*Cos[y[x]]), y[x], x, IncludeSingula = (y'[x])^2*(1-y'[x])^2*(1$

$$y(x) \rightarrow \text{InverseFunction}[-\cos(\#1) + c_1 \log(\#1)\&][x + c_2]$$

4.29 problem 32

Internal problem ID [6095]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$(1+y^2)y'' + y'^3 + y' = 0$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 130

$$\label{linear_decomposition} \\ \mbox{dsolve((1+y(x)^2)*diff(y(x),x$)+diff(y(x),x)^3+diff(y(x),x)=0,y(x), singsol=all)} \\ \mbox{dsolve((1+y(x)^2)*diff(y(x),x)^3+diff(y(x),x)=0,y(x), singsol=all)} \\ \mbox{dsolve((1+y(x)^2)*diff(y(x)^2)+diff(y(x$$

$$\begin{split} y(x) &= -i \\ y(x) &= i \\ y(x) &= c_1 \\ y(x) &= \frac{i(c_1 - 1)}{1 + c_1} \\ &= \frac{-\frac{c_1^2 + 2c_1 + c_1^2 c_2 + x c_1^2 - 1 + 4 \operatorname{LambertW} \left(-\frac{ie^{-\frac{c_1 c_2}{4}} e^{-\frac{c_1 x}{4}} e^{\frac{c_1}{4}} e^{-\frac{c_2}{2}} e^{-\frac{x}{2}} e^{-\frac{1}{2}} e^{-\frac{c_2}{4c_1}} e^{-\frac{x}{4c_1}} e^{\frac{1}{4c_1}(c_1 - 1)} \right) c_1 + 2c_1 c_2 + 2c_1 x + c_2 + x}{1 + c_1} \\ &= \frac{e^{-\frac{c_1^2 + 2c_1 + c_1^2 c_2 + x c_1^2 - 1 + 4 \operatorname{LambertW} \left(-\frac{ie^{-\frac{c_1 c_2}{4}} e^{-\frac{c_1 x}{4}} e^{\frac{c_1}{4}} e^{-\frac{c_2}{2}} e^{-\frac{x}{2}} e^{-\frac{1}{2}} e^{-\frac{c_2}{4c_1}} e^{-\frac{1}{4c_1}(c_1 - 1)} \right) c_1 + 2c_1 c_2 + 2c_1 x + c_2 + x}{1 + c_1}}{1 + c_1} \end{split}$$

✓ Solution by Mathematica

Time used: 0.194 (sec). Leaf size: 42

 $DSolve[(1+y[x]^2)*y''[x]+(y'[x])^3+y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \csc(c_1)\sec(c_1)W\Big(\sin(c_1)e^{-((x+c_2)\cos^2(c_1))-\sin^2(c_1)}\Big) + \tan(c_1)$$

4.30 problem 33

Internal problem ID [6096]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 33.

ODE order: 2. ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$(yy'' + 1 + y'^2)^2 - (1 + y'^2)^3 = 0$$

✓ Solution by Maple

Time used: 0.14 (sec). Leaf size: 131

 $dsolve((y(x)*diff(y(x),x$2)+1+diff(y(x),x)^2)^2=(1+diff(y(x),x)^2)^3,y(x), singsol=all)$

$$y(x) = -ix + c_1$$

$$y(x) = ix + c_1$$

$$y(x) = 0$$

$$y(x) = -c_1 - \sqrt{c_1^2 - c_2^2 - 2xc_2 - x^2}$$

$$y(x) = -c_1 + \sqrt{c_1^2 - c_2^2 - 2xc_2 - x^2}$$

$$y(x) = c_1 - \sqrt{c_1^2 - c_2^2 - 2xc_2 - x^2}$$

$$y(x) = c_1 + \sqrt{c_1^2 - c_2^2 - 2xc_2 - x^2}$$

✓ Solution by Mathematica

Time used: 6.299 (sec). Leaf size: 121

 $DSolve[(y[x]*y''[x]+1+(y'[x])^2)^2==(1+(y'[x])^2)^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o -\sqrt{e^{2c_1} - (x + c_2)^2} - e^{c_1}$$
 $y(x) o e^{c_1} - \sqrt{e^{2c_1} - (x + c_2)^2}$
 $y(x) o \sqrt{e^{2c_1} - (x + c_2)^2} - e^{c_1}$
 $y(x) o \sqrt{e^{2c_1} - (x + c_2)^2} + e^{c_1}$

4.31 problem 34

Internal problem ID [6097]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x^2y'' - y'(2x - y') = 0$$

With initial conditions

$$[y(-1) = 5, y'(-1) = 1]$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 20

$$y(x) = \frac{x^2}{2} - 2x + 4\ln(x+2) + \frac{5}{2}$$

✓ Solution by Mathematica

Time used: 0.49 (sec). Leaf size: 22

DSolve[{x^2*y''[x]==y'[x]*(2*x-y'[x]),{y[-1]==5,y'[-1]==1}},y[x],x,IncludeSingularSolutions -

$$y(x) \to \frac{1}{2}((x-4)x + 8\log(x+2) + 5)$$

4.32 problem 35

Internal problem ID [6098]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x^2y'' - y'(3x - 2y') = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 22

 $dsolve(x^2*diff(y(x),x$2)=diff(y(x),x)*(3*x-2*diff(y(x),x)),y(x), singsol=all)$

$$y(x) = \frac{x^2}{2} + \frac{c_1 \ln(x^2 - c_1)}{2} + c_2$$

✓ Solution by Mathematica

Time used: 0.327 (sec). Leaf size: 28

 $DSolve[x^2*y''[x] == y'[x]*(3*x-2*y'[x]), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{1}{2} (x^2 - c_1 \log (x^2 + c_1) + 2c_2)$$

4.33 problem 36

Internal problem ID [6099]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 36.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible,

$$xy'' - y'(2 - 3y'x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve(x*diff(y(x),x\$2)=diff(y(x),x)*(2-3*x*diff(y(x),x)),y(x), singsol=all)

$$y(x) = \frac{\ln(c_1 x^3 + 3c_2)}{3}$$

✓ Solution by Mathematica

Time used: 0.255 (sec). Leaf size: 19

DSolve [x*y''[x]==y'[x]*(2-3*x*y'[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{3} \log (x^3 + c_1) + c_2$$

4.34 problem 37

Internal problem ID [6100]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 37.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x^{4}y'' - y'(y' + x^{3}) = 0$$

With initial conditions

$$[y(1) = 2, y'(1) = 1]$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 25

 $dsolve([x^4*diff(y(x),x$2)=diff(y(x),x)*(diff(y(x),x)+x^3),y(1) = 2, D(y)(1) = 1],y(x), sings(x)$

$$y(x) = x^2 - \ln(-x^2 - 1) + 1 + \ln(2) + i\pi$$

✓ Solution by Mathematica

Time used: 0.891 (sec). Leaf size: 20

 $DSolve[\{x^4*y''[x]==y'[x]*(y'[x]+x^3),\{y[1]==2,y'[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow \\ (x^4*y''[x]==y'[x]*(y'[x]+x^3),\{y[1]==2,y'[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow \\ (x^4*y''[x]==y'[x]*(y'[x]+x^3),\{y[1]==2,y'[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow \\ (x^4*y''[x]==y'[x]*(y'[x]+x^3),\{y[1]==2,y'[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow \\ (x^4*y''[x]==y'[x]*(y'[x]+x^3),\{y[1]==2,y'[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow \\ (x^4*y''[x]==y'[x]+x''(y'[x]+x''(y'[x]+x''(y'[x]+x''(y'[x]+x''(y'[x]+x''(y'[x]+x''(y'[x]+x''(y'[x]+x''(y'[x]+x''(y'[x]+x''(x)+$

$$y(x) \to x^2 - \log(x^2 + 1) + 1 + \log(2)$$

4.35 problem 38

Internal problem ID [6101]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

$$y'' - 2x - (x^2 - y')^2 = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 20

 $dsolve(diff(y(x),x$2)=2*x+(x^2-diff(y(x),x))^2,y(x), singsol=all)$

$$y(x) = \frac{x^3}{3} - \ln(xc_2 - c_1)$$

✓ Solution by Mathematica

Time used: 0.312 (sec). Leaf size: 24

 $DSolve[y''[x] == 2*x + (x^2-y'[x])^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^3}{3} - \log(-x + c_1) + c_2$$

4.36 problem 39

Internal problem ID [6102]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 39.

ODE order: 2. ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y''^2 - 2y'' + y'^2 - 2xy' + x^2 = 0$$

With initial conditions

$$y(0) = \frac{1}{2}, y'(0) = 1$$

✓ Solution by Maple

Time used: 0.313 (sec). Leaf size: 23

 $dsolve([diff(y(x),x$2)^2-2*diff(y(x),x$2)+diff(y(x),x)^2-2*x*diff(y(x),x)+x^2=0,y](0) = 1/2, D$

$$y(x) = \frac{(x+1)^2}{2}$$
$$y(x) = \frac{x^2}{2} + \sin(x) + \frac{1}{2}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

Not solved

4.37 problem 40

Internal problem ID [6103]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 40.

ODE order: 2. ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y''^2 - xy'' + y' = 0$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 28

 $dsolve(diff(y(x),x$2)^2-x*diff(y(x),x$2)+diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = rac{x^3}{12} + c_1$$
 $y(x) = rac{1}{2}c_1x^2 - x c_1^2 + c_2$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 21

 $DSolve[(y''[x])^2-x*y''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}c_1x(x-2c_1) + c_2$$

4.38 problem 41

Internal problem ID [6104]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

 ${\bf Section:}\ {\bf CHAPTER}\ 16.\ {\bf Nonlinear}\ {\bf equations.}\ {\bf Section}\ 101.\ {\bf Independent}\ {\bf variable}\ {\bf missing.}\ {\bf EXER-}$

CISES Page 324

Problem number: 41.

ODE order: 2. ODE degree: 3.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y''^3 - 12y'(xy'' - 2y') = 0$$

✓ Solution by Maple

Time used: 0.344 (sec). Leaf size: 174

 $dsolve(diff(y(x),x\$2)^3=12*diff(y(x),x)*(x*diff(y(x),x\$2)-2*diff(y(x),x)),y(x), singsol=all)$

$$y(x) = \frac{x^4}{9} + c_1$$
$$y(x) = c_1$$

$$y(x) = \int \text{RootOf} \left(-6\ln(x)\right)$$

$$-\left(\int_{-Z}^{Z} \frac{3_f\sqrt{\frac{1}{_f(9_f-4)}}}{2^{\frac{1}{3}}} 2^{\frac{1}{3}} \left(\left(3\sqrt{\frac{1}{_f(9_f-4)}}_f+1\right)^2 (9_f-4)^4\right)^{\frac{1}{3}} - 2 2^{\frac{2}{3}} \left(\left(3\sqrt{\frac{1}{_f(9_f-4)}}_f+1\right)^2 (9_f-4)^{\frac{1}{3}} \right)^{\frac{1}{3}} - 2 2^{\frac{2}{3}} \left(\left(3\sqrt{\frac{1}{_f(9_f-4)}}_f+1\right)^{\frac{1}{3}} \right)^{\frac{2}{3}} \left(\left(3\sqrt{\frac{1}{_f(9_f-4)}}-f+1\right)^2 (9_f-4)^{\frac{1}{3}} \right)^{\frac{1}{3}} - 2 2^{\frac{2}{3}} \left(\left(3\sqrt{\frac{1}{_f(9_f-4)}}-f+1\right)^{\frac{1}{3}} \right)^{\frac{1}{3}} - 2 2^{\frac{2}{3}} \left(\left(3\sqrt{\frac{1}{_f(9_f-4)}}$$

$$+6c_1$$
 $x^3dx + c_2$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(y''[x])^3 == 12*y'[x]*(x*y''[x]-2*y'[x]),y[x],x,IncludeSingularSolutions \rightarrow True]$

Not solved

4.39 problem 42

Internal problem ID [6105]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 42.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$3yy'y'' - y'^3 + 1 = 0$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 87

 $dsolve(3*y(x)*diff(y(x),x)*diff(y(x),x$2)=diff(y(x),x)^3-1,y(x), singsol=all)$

$$\frac{3(c_1y(x)+1)^{\frac{2}{3}}}{2c_1} - x - c_2 = 0$$

$$\frac{3(c_1y(x)+1)^{\frac{2}{3}}}{c_1(-1+i\sqrt{3})} - x - c_2 = 0$$

$$-\frac{3(c_1y(x)+1)^{\frac{2}{3}}}{c_1(1+i\sqrt{3})} - x - c_2 = 0$$

✓ Solution by Mathematica

Time used: 0.174 (sec). Leaf size: 126

DSolve $[3*y[x]*y'[x]*y''[x] == (y'[x])^3-1,y[x],x$, IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{9}e^{-3c_1} \left(-9 + 2\sqrt{6} \left(e^{3c_1} (x + c_2) \right)^{3/2} \right)$$
$$y(x) \to \frac{1}{9}e^{-3c_1} \left(-9 + 2\sqrt{6} \left(-\sqrt[3]{-1}e^{3c_1} (x + c_2) \right)^{3/2} \right)$$
$$y(x) \to \frac{1}{9}e^{-3c_1} \left(-9 + 2\sqrt{6} \left((-1)^{2/3}e^{3c_1} (x + c_2) \right)^{3/2} \right)$$

4.40 problem 43

Internal problem ID [6106]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

Problem number: 43.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$4yy'^2y'' - y'^4 - 3 = 0$$

✓ Solution by Maple

Time used: 0.14 (sec). Leaf size: 91

 $dsolve(4*y(x)*diff(y(x),x)^2*diff(y(x),x$)=diff(y(x),x)^4+3,y(x), singsol=all)$

$$-\frac{4(c_1y(x)-3)^{\frac{3}{4}}}{3c_1} - x - c_2 = 0$$

$$\frac{4(c_1y(x)-3)^{\frac{3}{4}}}{3c_1} - x - c_2 = 0$$

$$-\frac{4i(c_1y(x)-3)^{\frac{3}{4}}}{3c_1} - x - c_2 = 0$$

$$\frac{4i(c_1y(x)-3)^{\frac{3}{4}}}{3c_1} - x - c_2 = 0$$

✓ Solution by Mathematica

Time used: 0.241 (sec). Leaf size: 156

 $DSolve[4*y[x]*(y'[x])^2*y''[x] == (y'[x])^4+3, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{3}{8}e^{-4c_1} \left(8 + \sqrt[3]{6} \left(-e^{4c_1} (x + c_2) \right)^{4/3} \right)$$

$$y(x) \to \frac{3}{8}e^{-4c_1} \left(8 + \sqrt[3]{6} \left(-ie^{4c_1} (x + c_2) \right)^{4/3} \right)$$

$$y(x) \to \frac{3}{8}e^{-4c_1} \left(8 + \sqrt[3]{6} \left(ie^{4c_1} (x + c_2) \right)^{4/3} \right)$$

$$y(x) \to \frac{3}{8}e^{-4c_1} \left(8 + \sqrt[3]{6} \left(e^{4c_1} (x + c_2) \right)^{4/3} \right)$$