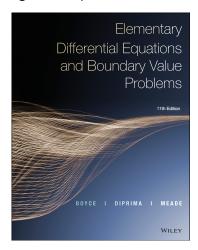
A Solution Manual For

Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade



Nasser M. Abbasi

October 12, 2023

Contents

1	Chapter 4.1, Higher order linear differential equations. General theory. page 173	2
2	Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180	14
3	Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255	26
4	Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268	40
5	Chapter 6.5, The Laplace Transform. Impulse functions. page 273	56

1	Chapter 4.1, Higher order linear differential
	equations. General theory. page 173

1.1	problem 1 .	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
1.2	problem 2 .																															4
1.3	problem 8 .																															5
1.4	problem 9 .																															6
1.5	problem 10																															7
1.6	problem 11																															8
1.7	problem 16																															9
1.8	problem 17																															10
1.9	problem 20																															12
1.10	problem 21																				_											13

1.1 problem 1

Internal problem ID [812]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 1.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$y'''' + 4y''' + 3y - t = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 227

dsolve(diff(y(t),t\$4)+4*diff(y(t),t\$3)+3*y(t)=t,y(t), singsol=all)

$$y(t) = \frac{t}{3} + e^{-t}c_1 + c_2 e^{\frac{\left(\sqrt{2}\left(4+2\sqrt{2}\right)^{\frac{2}{3}} - 2\left(4+2\sqrt{2}\right)^{\frac{2}{3}} - 2\left(4+2\sqrt{2}\right)^{\frac{1}{3}} - 2\right)t}{2}} + c_3 e^{-\frac{\left(\sqrt{2}\left(4+2\sqrt{2}\right)^{\frac{2}{3}} - 2\left(4+2\sqrt{2}\right)^{\frac{1}{3}} + 4\right)t}{4}}{\cos\left(\frac{\sqrt{3}\left(4+2\sqrt{2}\right)^{\frac{1}{3}}\left(\left(4+2\sqrt{2}\right)^{\frac{1}{3}}\sqrt{2} - 2\left(4+2\sqrt{2}\right)^{\frac{1}{3}} + 2\right)t}{4}\right)}{4}} + c_4 e^{-\frac{\left(\sqrt{2}\left(4+2\sqrt{2}\right)^{\frac{2}{3}} - 2\left(4+2\sqrt{2}\right)^{\frac{1}{3}} + 4\right)t}{4}}{\sin\left(\frac{\sqrt{3}\left(4+2\sqrt{2}\right)^{\frac{1}{3}}\left(\left(4+2\sqrt{2}\right)^{\frac{1}{3}}\sqrt{2} - 2\left(4+2\sqrt{2}\right)^{\frac{1}{3}} + 2\right)t}{4}\right)}{4}} \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 100

DSolve[y''''[t]+4*y'''[t]+3*y[t]==t,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_2 \exp\left(t \operatorname{Root}\left[\#1^3 + 3\#1^2 - 3\#1 + 3\&, 2\right]\right) + c_3 \exp\left(t \operatorname{Root}\left[\#1^3 + 3\#1^2 - 3\#1 + 3\&, 3\right]\right) + c_1 \exp\left(t \operatorname{Root}\left[\#1^3 + 3\#1^2 - 3\#1 + 3\&, 1\right]\right) + \frac{t}{3} + c_4 e^{-t}$$

1.2 problem 2

Internal problem ID [813]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 2.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$t(t-1)y'''' + e^t y'' + 4yt^2 = 0$$

X Solution by Maple

 $dsolve(t*(t-1)*diff(y(t),t$4)+exp(t)*diff(y(t),t$2)+4*t^2*y(t)=0,y(t), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[t*(t-1)*y'''[t]+Exp[t]*y''[t]+4*t^2*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

Not solved

1.3 problem 8

Internal problem ID [814]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory, page 173

Problem number: 8.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(t),t\$4)+diff(y(t),t\$2)=0,y(t), singsol=all)

$$y(t) = c_1 + c_2 t + c_3 \sin(t) + c_4 \cos(t)$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 24

DSolve[y'''[t]+y''[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_4 t - c_1 \cos(t) - c_2 \sin(t) + c_3$$

1.4 problem 9

Internal problem ID [815]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 9.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 2y'' - y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(t),t\$3)+2*diff(y(t),t\$2)-diff(y(t),t)-2*y(t)=0,y(t), singsol=all)

$$y(t) = e^{-t}c_1 + e^{-2t}c_2 + c_3e^t$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

 $DSolve[y'''[t]+2*y''[t]-y'[t]-2*y[t] == 0, y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow e^{-2t} (c_2 e^t + c_3 e^{3t} + c_1)$$

1.5 problem 10

Internal problem ID [816]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 10.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$xy''' - y'' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(x*diff(y(x),x\$3)-diff(y(x),x\$2)=0,y(x), singsol=all)

$$y(x) = c_2 x^3 + c_3 x + c_1$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 21

DSolve[x*y'''[x]-y''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1 x^3}{6} + c_3 x + c_2$$

1.6 problem 11

Internal problem ID [817]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 11.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _linear, _homogeneous]]

$$x^3y''' + x^2y'' - 2y'x + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x^3*diff(y(x),x$3)+x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + x^2 c_2 + c_3 x$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

DSolve[x^3*y'''[x]+x^2*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_3 x^2 + c_2 x + \frac{c_1}{x}$$

1.7 problem 16

Internal problem ID [818]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 16.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 2y'' - y' - 3y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 181

dsolve(diff(y(x),x\$3)+2*diff(y(x),x\$2)-diff(y(x),x)-3*y(x)=0,y(x), singsol=all)

$$y(x) = c_{1}e^{-\frac{\left(\left(188+12\sqrt{93}\right)^{\frac{2}{3}}-4\left(188+12\sqrt{93}\right)^{\frac{1}{3}}+28\right)x}{6\left(188+12\sqrt{93}\right)^{\frac{2}{3}}+8\left(188+12\sqrt{93}\right)^{\frac{1}{3}}}}$$

$$-c_{2}e^{-\frac{\left(28+\left(188+12\sqrt{93}\right)^{\frac{2}{3}}+8\left(188+12\sqrt{93}\right)^{\frac{1}{3}}\right)x}{12\left(188+12\sqrt{93}\right)^{\frac{1}{3}}}}\sin\left(\frac{\left(\sqrt{3}\left(188+12\sqrt{93}\right)^{\frac{2}{3}}-28\sqrt{3}\right)x}{12\left(188+12\sqrt{93}\right)^{\frac{1}{3}}}\right)$$

$$+c_{3}e^{-\frac{\left(28+\left(188+12\sqrt{93}\right)^{\frac{2}{3}}+8\left(188+12\sqrt{93}\right)^{\frac{1}{3}}\right)x}{12\left(188+12\sqrt{93}\right)^{\frac{1}{3}}}}\cos\left(\frac{\left(\sqrt{3}\left(188+12\sqrt{93}\right)^{\frac{2}{3}}-28\sqrt{3}\right)x}{12\left(188+12\sqrt{93}\right)^{\frac{2}{3}}-28\sqrt{3}\right)x}\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 87

 $DSolve[y'''[x]+2*y''[x]-y'[x]-3*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_2 \exp\left(x \operatorname{Root}\left[\#1^3 + 2\#1^2 - \#1 - 3\&, 2\right]\right) + c_3 \exp\left(x \operatorname{Root}\left[\#1^3 + 2\#1^2 - \#1 - 3\&, 3\right]\right) + c_1 \exp\left(x \operatorname{Root}\left[\#1^3 + 2\#1^2 - \#1 - 3\&, 1\right]\right)$$

1.8 problem 17

Internal problem ID [819]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 17.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$ty''' + 2y'' - y' + yt = 0$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 183

 $\label{eq:diff} \\ \text{dsolve}(\texttt{t*diff}(\texttt{y(t),t\$3}) + 2*\texttt{diff}(\texttt{y(t),t\$2}) - \texttt{diff}(\texttt{y(t),t}) + \texttt{t*y(t)=0,y(t), singsol=all}) \\$

$$\begin{split} y(t) &= c_1 \operatorname{KummerM} \left(\frac{1}{2} - \frac{i\sqrt{3}}{6}, 1, i\sqrt{3} \, t \right) \operatorname{e}^{-\frac{t\left(i\sqrt{3}-1\right)}{2}} \\ &+ c_2 \operatorname{KummerU} \left(\frac{1}{2} - \frac{i\sqrt{3}}{6}, 1, i\sqrt{3} \, t \right) \operatorname{e}^{-\frac{t\left(i\sqrt{3}-1\right)}{2}} \\ &+ c_3 \operatorname{e}^{-\frac{t\left(i\sqrt{3}-1\right)}{2}} \left(\left(\int \operatorname{KummerU} \left(\frac{1}{2} - \frac{i\sqrt{3}}{6}, 1, i\sqrt{3} \, t \right) \operatorname{e}^{-\frac{t\left(i\sqrt{3}+3\right)}{2}} dt \right) \operatorname{KummerM} \left(\frac{1}{2} - \frac{i\sqrt{3}}{6}, 1, i\sqrt{3} \, t \right) - \operatorname{KummerU} \left(\frac{1}{2} - \frac{i\sqrt{3}}{6}, 1, i\sqrt{3} \, t \right) \operatorname{e}^{-\frac{t\left(i\sqrt{3}+3\right)}{2}} dt \right) \right) \\ &- \frac{i\sqrt{3}}{6}, 1, i\sqrt{3} \, t \right) \left(\int \operatorname{KummerM} \left(\frac{1}{2} - \frac{i\sqrt{3}}{6}, 1, i\sqrt{3} \, t \right) \operatorname{e}^{-\frac{t\left(i\sqrt{3}+3\right)}{2}} dt \right) \right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.631 (sec). Leaf size: 452

DSolve[t*y'''[t]+2*y''[t]-y'[t]+t*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow e^{\frac{1}{2}\left(t-i\sqrt{3}t\right)} \left(\text{HypergeometricU}\left(\frac{1}{6}\left(3-i\sqrt{3}\right),1,i\sqrt{3}t\right) \left(c_3 \int_1^t \frac{1}{K[1]\left(\text{Hypergeometric1F1}\left(\frac{1}{6}\left(9-i\sqrt{3}\right),K\right)\right)}\right) + \text{LaguerreL}\left(\frac{1}{6}i\left(3i+\sqrt{3}\right),i\sqrt{3}t\right) \left(c_3 \int_1^t -\frac{1}{K[2]\left(\text{Hypergeometric1F1}\left(\frac{1}{6}\left(9-i\sqrt{3}\right),2,i\sqrt{3}K[2]\right)\right)}\right) + \text{LaguerreL}\left(\frac{1}{6}i\left(3i+\sqrt{3}\right),i\sqrt{3}t\right) \left(c_3 \int_1^t -\frac{1}{K[2]\left(1+\sqrt{3}\right)}\right) + \text{LaguerreL}\left(\frac{1}{6}i\left(3i+\sqrt{3}\right),2,i\sqrt{3}t\right) \left(c_3 \int_1^t -\frac{1}{4}i\left(3i+\sqrt{3}\right),2,i\sqrt{3}t\right) \right) + \text{LaguerreL}\left(\frac{1}{6}i\left(3i+\sqrt{3}\right),i\sqrt{3}t\right) + \text{LaguerreL}\left(\frac{1}{6}i\left(3i+\sqrt{3}\right),2,i\sqrt{3}t\right) +$$

1.9 problem 20

Internal problem ID [820]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 20.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]] Solve

$$(2-t)y''' + (2t-3)y'' - y't + y = 0$$

Given that one solution of the ode is

$$y_1 = e^t$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve([(2-t)*diff(y(t),t\$3)+(2*t-3)*diff(y(t),t\$2)-t*diff(y(t),t)+y(t)=0,exp(t)],y(t), sings(t)

$$y(t) = c_1 t + c_2 e^t + c_3 e^t t$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 23

DSolve[(2-t)*y'''[t]+(2*t-3)*y''[t]-t*y'[t]+y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 t + e^t (c_2(t-4) + c_3)$$

1.10 problem 21

Internal problem ID [821]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

 ${\bf Section} \colon$ Chapter 4.1, Higher order linear differential equations. General theory. page 173

Problem number: 21.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]] Solve

$$t^{2}(t+3)y''' - 3t(t+2)y'' + 6(1+t)y' - 6y = 0$$

Given that one solution of the ode is

$$y_1 = [t^2, t^3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve([t^2*(t+3)*diff(y(t),t$3)-3*t*(t+2)*diff(y(t),t$2)+6*(1+t)*diff(y(t),t)-6*y(t)=0,[t^2,t^2]$

$$y(t) = c_1 t^2 + t^3 c_2 + c_3 (t+1)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 53

DSolve[t^2*(t+3)*y'''[t]-3*t*(t+2)*y''[t]+6*(1+t)*y'[t]-6*y[t]==0,y[t],t,IncludeSingularSolut

$$y(t) \to \frac{1}{8} \left(-4c_2(t^3 - 3t^2 + t + 1) + c_3(3t + 1)(t - 1)^2 + 2c_1(t((t - 3)t + 3) + 3) \right)$$

2	Chapter 4.2, Higher order li	inear differential
	equations. Constant coefficient	ents. page 180

2.1	problem 8.	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	15
2.2	problem 9 .																										16
2.3	problem 10																										17
2.4	problem 11																										18
2.5	problem 12																										19
2.6	problem 13																										20
2.7	problem 14																										21
2.8	problem 15																										22
2.9	problem 16																										23
2.10	problem 17																										24
2.11	problem 18																										25

2.1 problem 8

Internal problem ID [822]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180 **Problem number**: 8.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y'' - y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)-diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + e^x c_2 + c_3 e^x x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 25

 $DSolve[y'''[x]-y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-x} + e^x (c_3 x + c_2)$$

2.2 problem 9

Internal problem ID [823]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180 **Problem number**: 9.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3y'' + 3y' + y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 61

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{\left(-2^{\frac{1}{3}}+1\right)x} + c_2 \mathrm{e}^{\left(\frac{2^{\frac{1}{3}}}{2}+1\right)x} \sin\left(\frac{\sqrt{3}\,2^{\frac{1}{3}}x}{2}\right) + c_3 \mathrm{e}^{\left(\frac{2^{\frac{1}{3}}}{2}+1\right)x} \cos\left(\frac{\sqrt{3}\,2^{\frac{1}{3}}x}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 87

 $DSolve[y'''[x]-3*y''[x]+3*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \exp \left(x \operatorname{Root} \left[\#1^3 - 3\#1^2 + 3\#1 + 1\&, 1 \right] \right)$$

 $+ c_2 \exp \left(x \operatorname{Root} \left[\#1^3 - 3\#1^2 + 3\#1 + 1\&, 2 \right] \right)$
 $+ c_3 \exp \left(x \operatorname{Root} \left[\#1^3 - 3\#1^2 + 3\#1 + 1\&, 3 \right] \right)$

2.3 problem 10

Internal problem ID [824]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180 **Problem number**: 10.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 4y''' + 4y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$4)-4*diff(y(x),x\$3)+4*diff(y(x),x\$2)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 x + c_3 e^{2x} + c_4 e^{2x} x$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[y'''[x]-4*y'''[x]+4*y'''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(x(c_4x + c_3) + c_2) + c_1$$

2.4 problem 11

Internal problem ID [825]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180 **Problem number**: 11.

ODE order: 6.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(6)} + y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 66

dsolve(diff(y(x),x\$6)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(x) + \cos(x) c_2 + c_3 e^{\frac{\sqrt{3}x}{2}} \sin(\frac{x}{2})$$
$$- c_4 e^{-\frac{\sqrt{3}x}{2}} \sin(\frac{x}{2}) + c_5 e^{\frac{\sqrt{3}x}{2}} \cos(\frac{x}{2}) + c_6 e^{-\frac{\sqrt{3}x}{2}} \cos(\frac{x}{2})$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 74

DSolve[y''''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 \cos(x) + c_5 \sin(x) + e^{-\frac{\sqrt{3}x}{2}} \left(\left(c_1 e^{\sqrt{3}x} + c_3 \right) \cos\left(\frac{x}{2}\right) + \left(c_6 e^{\sqrt{3}x} + c_4 \right) \sin\left(\frac{x}{2}\right) \right)$$

2.5 problem 12

Internal problem ID [826]

 ${f Book}$: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180 **Problem number**: 12.

ODE order: 6. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(6)} - 3y'''' + 3y'' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

dsolve(diff(y(x),x\$6)-3*diff(y(x),x\$4)+3*diff(y(x),x\$2)-y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + c_2e^{-x}x + c_3e^{-x}x^2 + c_4e^x + c_5e^xx + c_6e^xx^2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 41

 $DSolve[y''''[x]-3*y'''[x]+3*y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x} (x(c_3x + c_2) + e^{2x} (x(c_6x + c_5) + c_4) + c_1)$$

2.6 problem 13

Internal problem ID [827]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180 **Problem number**: 13.

ODE order: 6. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(6)} - y'' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$6)-diff(y(x),x\$2)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 x + c_3 e^{-x} + c_4 e^x + c_5 \sin(x) + c_6 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 38

DSolve[y'''''[x]-y''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^x + c_3 e^{-x} + c_6 x - c_2 \cos(x) - c_4 \sin(x) + c_5$$

2.7 problem 14

Internal problem ID [828]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180

Problem number: 14.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(5)} - 3y'''' + 3y''' - 3y'' + 2y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

$$y(x) = c_1 + c_2 e^{2x} + c_3 e^x + c_4 \sin(x) + c_5 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 36

DSolve[y''''[x]-3*y'''[x]+3*y'''[x]-3*y''[x]+2*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \rightarrow c_3 e^x + \frac{1}{2}c_4 e^{2x} - c_2 \cos(x) + c_1 \sin(x) + c_5$$

2.8 problem 15

Internal problem ID [829]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180 **Problem number**: 15.

ODE order: 8. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(8)} + 8y'''' + 16y = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 65

dsolve(diff(y(x),x\$8)+8*diff(y(x),x\$4)+16*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-x} \sin(x) + c_2 e^{-x} \cos(x) + c_3 e^{-x} \sin(x) x + c_4 e^{-x} \cos(x) x + c_5 \sin(x) e^x + c_6 \cos(x) e^x + c_7 \sin(x) e^x x + c_8 \cos(x) e^x x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 238

 $DSolve[D[y[x], \{x, 8\}] + 8*y'''[x] + 3*y'''[x] + 16*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \exp \left(x \operatorname{Root} \left[\#1^8 + 8 \#1^4 + 3 \#1^3 + 16 \&, 1 \right] \right)$$

$$+ c_2 \exp \left(x \operatorname{Root} \left[\#1^8 + 8 \#1^4 + 3 \#1^3 + 16 \&, 2 \right] \right)$$

$$+ c_5 \exp \left(x \operatorname{Root} \left[\#1^8 + 8 \#1^4 + 3 \#1^3 + 16 \&, 5 \right] \right)$$

$$+ c_6 \exp \left(x \operatorname{Root} \left[\#1^8 + 8 \#1^4 + 3 \#1^3 + 16 \&, 6 \right] \right)$$

$$+ c_3 \exp \left(x \operatorname{Root} \left[\#1^8 + 8 \#1^4 + 3 \#1^3 + 16 \&, 3 \right] \right)$$

$$+ c_4 \exp \left(x \operatorname{Root} \left[\#1^8 + 8 \#1^4 + 3 \#1^3 + 16 \&, 4 \right] \right)$$

$$+ c_7 \exp \left(x \operatorname{Root} \left[\#1^8 + 8 \#1^4 + 3 \#1^3 + 16 \&, 7 \right] \right)$$

$$+ c_8 \exp \left(x \operatorname{Root} \left[\#1^8 + 8 \#1^4 + 3 \#1^3 + 16 \&, 7 \right] \right)$$

$$+ c_8 \exp \left(x \operatorname{Root} \left[\#1^8 + 8 \#1^4 + 3 \#1^3 + 16 \&, 8 \right] \right)$$

2.9 problem 16

Internal problem ID [830]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180 **Problem number**: 16.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 2y'' + y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$2)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(x) + \cos(x) c_2 + c_3 \sin(x) x + c_4 \cos(x) x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

 $DSolve[y''''[x]+2*y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to (c_2x + c_1)\cos(x) + (c_4x + c_3)\sin(x)$$

2.10 problem 17

Internal problem ID [831]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180 Problem number: 17.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 5y'' + 6y' + 2y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$3)+5*diff(y(x),x\$2)+6*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}c_1 + c_2e^{(\sqrt{2}-2)x} + c_3e^{-(2+\sqrt{2})x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 43

 $DSolve[y'''[x]+5*y''[x]+6*y'[x]+2*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^{-x} \left(e^{-\left(\left(1+\sqrt{2}\right)x\right)} \left(c_2 e^{2\sqrt{2}x} + c_1\right) + c_3\right)$$

2.11 problem 18

Internal problem ID [832]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180 **Problem number**: 18.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 7y''' + 6y'' + 30y' - 36y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve(diff(y(x),x\$4)-7*diff(y(x),x\$3)+6*diff(y(x),x\$2)+30*diff(y(x),x)-36*y(x)=0,y(x), sings(x)+30*diff(y(x),x)+30*diff(x

$$y(x) = c_1 e^{3x} + c_2 e^{-2x} + c_3 e^{(3+\sqrt{3})x} + c_4 e^{-(-3+\sqrt{3})x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 51

$$y(x) \to c_1 e^{-\left(\left(\sqrt{3}-3\right)x\right)} + c_2 e^{\left(3+\sqrt{3}\right)x} + c_3 e^{-2x} + c_4 e^{3x}$$

3	Chapter 6.2, The Laplace Transform. Solution of	of
	Initial Value Problems. page 255	

3.1	problem 8.	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
3.2	problem 9 .																																					28
3.3	problem 10			•																																		29
3.4	problem 11			•																																		30
3.5	problem 12																																					31
3.6	problem 13																																					32
3.7	problem 14																																					33
3.8	problem 15																																					34
3.9	problem 16																																					35
3.10	problem 17																																					36
3.11	problem 18																																					37
3.12	problem 19															_										_												38

3.1 problem 8

Internal problem ID [833]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 6y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 16

dsolve([diff(y(t),t\$2)-diff(y(t),t)-6*y(t)=0,y(0) = 1, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = \frac{(e^{5t} + 4)e^{-2t}}{5}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 21

 $DSolve[\{y''[t]-y'[t]-6*y[t]==0,\{y[0]==1,y'[0]==-1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{5}e^{-2t} (e^{5t} + 4)$$

3.2 problem 9

Internal problem ID [834]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 3y' + 2y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=0,y(0) = 1, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = 2e^{-t} - e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

DSolve[{y''[t]+3*y'[t]+2*y[t]==0,{y[0]==1,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-2t} \left(2e^t - 1 \right)$$

3.3 problem 10

Internal problem ID [835]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

$$dsolve([diff(y(t),t$2)-2*diff(y(t),t)+2*y(t)=0,y(0) = 0, D(y)(0) = 1],y(t), singsol=all)$$

$$y(t) = \sin(t) e^t$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 11

$$y(t) \to e^t \sin(t)$$

3.4 problem 11

Internal problem ID [836]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 4y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 27

dsolve([diff(y(t),t\$2)-2*diff(y(t),t)+4*y(t)=0,y(0) = 2, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = -\frac{2e^{t}(\sqrt{3}\sin(\sqrt{3}t) - 3\cos(\sqrt{3}t))}{3}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 37

$$y(t) \to -\frac{2}{3}e^t\left(\sqrt{3}\sin\left(\sqrt{3}t\right) - 3\cos\left(\sqrt{3}t\right)\right)$$

3.5 problem 12

Internal problem ID [837]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + 5y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+5*y(t)=0,y(0) = 2, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = \frac{e^{-t}(\sin{(2t)} + 4\cos{(2t)})}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 25

DSolve[{y''[t]+2*y'[t]+5*y[t]==0,{y[0]==2,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to \frac{1}{2}e^{-t}(\sin(2t) + 4\cos(2t))$$

3.6 problem 13

Internal problem ID [838]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 13.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 4y''' + 6y'' - 4y' + y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1, y''(0) = 0, y'''(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

dsolve([diff(y(t),t\$4)-4*diff(y(t),t\$3)+6*diff(y(t),t\$2)-4*diff(y(t),t)+y(t)=0,y(0) = 0, D(y)

$$y(t) = \frac{e^t t(2t^2 - 3t + 3)}{3}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

DSolve[{y''''[t]-4*y'''[t]+6*y''[t]-4*y'[t]+y[t]==0,{y[0]==0,y'[0]==1,y''[0]==0,y''[0]==1}},

$$y(t) \to \frac{1}{3}e^{t}t(t(2t-3)+3)$$

3.7 problem 14

Internal problem ID [839]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 14.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 4y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0, y''(0) = 1, y'''(0) = 0]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 30

dsolve([diff(y(t),t\$4)-4*y(t)=0,y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 1, (D@@3)(y)(0) = 0],y(0)

$$y(t) = \frac{3 e^{t\sqrt{2}}}{8} + \frac{3 e^{-t\sqrt{2}}}{8} + \frac{\cos(t\sqrt{2})}{4}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 28

 $DSolve[\{y''''[t]-4*y[t]==0,\{y[0]==1,y'[0]==0,y''[0]==1,y'''[0]==0\}\},y[t],t,IncludeSingularSolve[\{y''''[t]-4*y[t]==0,\{y[0]==1,y''[0]==0,y''[0]==1,y'''[0]==0\}\},y[t],t,IncludeSingularSolve[\{y''''[t]-4*y[t]==0,\{y[0]==1,y''[0]==0,y'''[0]==1,y'''[0]==0\}\},y[t],t,IncludeSingularSolve[\{y'''''[t]-4*y[t]==0,\{y[0]==1,y''[0]==0,y'''[0]==1,y'''[0]==0\}\},y[t],t,IncludeSingularSolve[\{y'''''[t]-4*y[t]==0,\{y[0]==1,y''[0]==0,y'''[0]==1,y'''[0]==0\}\},y[t],t,IncludeSingularSolve[\{y'''''[t]-4*y[t]==0,\{y[0]==1,y'''[0]==0,y''''[0]==0,y''''[0]==0,y'''[0]==0,$

$$y(t) \to \frac{1}{4} \left(\cos \left(\sqrt{2}t \right) + 3 \cosh \left(\sqrt{2}t \right) \right)$$

3.8 problem 15

Internal problem ID [840]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

 ${f Section}$: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \omega^2 y - \cos(2t) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 31

 $dsolve([diff(y(t),t\$2)+omega^2*y(t)=cos(2*t),y(0) = 1, D(y)(0) = 0],y(t), singsol=all)$

$$y(t) = \frac{\cos(\omega t) \omega^2 - 5\cos(\omega t) + \cos(2t)}{\omega^2 - 4}$$

✓ Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 28

 $DSolve[\{y''[t]+w^2*y[t]==Cos[2*t],\{y[0]==1,y'[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True[\{y''[t]+w^2*y[t]==Cos[2*t],\{y[0]==1,y'[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True[\{y''[t]+w^2*y[t]==Cos[2*t],\{y[0]==1,y'[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True[\{y''[t]+w^2*y[t]==Cos[2*t],\{y[0]==1,y'[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True[\{y''[t]+w^2*y[t]==Cos[2*t],\{y[0]==1,y'[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True[\{y''[t]+w^2*y[t]==Cos[2*t],\{y[0]==1,y'[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True[\{y''[t]+w^2*y[t]==Cos[2*t],\{y[0]==1,y'[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True[\{y''[t]+w''(0]==0\},y[t]=0\}]$

$$y(t) \to \frac{(w^2 - 5)\cos(tw) + \cos(2t)}{w^2 - 4}$$

3.9 problem 16

Internal problem ID [841]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + 2y - e^{-t} = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)-2*diff(y(t),t)+2*y(t)=exp(-t),y(0) = 0, D(y)(0) = 1],y(t), singsol=all(x,y,t) = 0

$$y(t) = \frac{e^{-t}}{5} + \frac{(-\cos(t) + 7\sin(t))e^{t}}{5}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 27

DSolve[{y''[t]-2*y'[t]+2*y[t]==Exp[-t],{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions ->

$$y(t) \to \frac{1}{5} (e^{-t} - e^t(\cos(t) - 7\sin(t)))$$

3.10 problem 17

Internal problem ID [842]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255 Problem number: 17.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - \left(\left\{ \begin{array}{cc} 1 & 0 \le t < \pi \\ 0 & \pi \le t < \infty \end{array} \right) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 30

 $\frac{dsolve([diff(y(t),t\$2)+4*y(t)=piecewise(0<=t and t<Pi,1,Pi<=t and t<infinity,0),y}{(0)} = 1, D(y)$

$$y(t) = \begin{cases} \cos(2t) & t < 0\\ \frac{1}{4} + \frac{3\cos(2t)}{4} & t < \pi\\ \cos(2t) & \pi \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 31

DSolve[{y''[t]+4*y[t]==Piecewise[{{1,0<t<Pi},{0,Pi<=t<Infinity}}],{y[0]==1,y'[0]==0}},y[t],t,

$$y(t) \rightarrow \begin{cases} \cos(2t) & t > \pi \lor t \le 0 \\ \frac{1}{4}(3\cos(2t) + 1) & \text{True} \end{cases}$$

3.11 problem 18

Internal problem ID [843]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$\left| y'' + 4y - \left(\left\{ \begin{array}{cc} 1 & 0 \le t < 1 \\ 0 & 1 \le t < \infty \end{array} \right) = 0 \right. \right|$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 38

dsolve([diff(y(t),t\$2)+4*y(t)=piecewise(0<=t and t<1,1,1<=t and t<infinity,0),y(0) = 0, D(y)(

$$y(t) = \frac{\left(\begin{cases} 0 & t < 0\\ 1 - \cos(2t) & t < 1\\ \cos(2t - 2) - \cos(2t) & 1 \le t \end{cases}\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 39

DSolve[{y''[t]+4*y[t]==Piecewise[{{1,0<t<1},{0,1<=t<Infinity}}],{y[0]==0,y'[0]==0}},y[t],t,In

$$y(t) \rightarrow \begin{cases} 0 & t \leq 0 \\ \frac{\sin^2(t)}{2} & 0 < t \leq 1 \\ -\frac{1}{2}\sin(1)\sin(1-2t) & \text{True} \end{cases}$$

3.12 problem 19

Internal problem ID [844]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - \left(\begin{cases} t & 0 \le t < 1 \\ -t + 2 & 1 \le t < 2 \\ 0 & 2 \le t < \infty \end{cases} \right) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

Solution by Maple

Time used: 0.187 (sec). Leaf size: 59

dsolve([diff(y(t),t\$2)+y(t)=piecewise(0<=t and t<1,t,1<=t and t<2,2-t,2<=t and t<infinity,0),

$$y(t) = \cos(t) + \begin{cases} 0 & t < 0 \\ -\sin(t) + t & t < 1 \\ 2\sin(t-1) - t - \sin(t) + 2 & t < 2 \\ 2\sin(t-1) - \sin(t) - \sin(t-2) & 2 \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 68

DSolve[{y''[t]+y[t]==Piecewise[{{t,0<t<1},{2-t,1<=t<2},{0,2<=t<Infinity}}],{y[0]==1,y'[0]==0}

$$y(t) \rightarrow \begin{cases} \cos(t) & t \leq 0 \\ \cos(t) - 4\sin^2\left(\frac{1}{2}\right)\sin(1-t) & t > 2 \end{cases}$$

$$t + \cos(t) - \sin(t) & 0 < t \leq 1$$

$$-t + \cos(t) - 2\sin(1-t) - \sin(t) + 2 \quad \text{True}$$

4	Chapter 6.4, The Laplace Transform. Differential
	equations with discontinuous forcing functions.
	page 268

4.1	problem 1 .		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	41
4.2	problem 2 .																																					42
4.3	problem 3 .																																					43
4.4	problem 4 .																																					44
4.5	problem 5 .																																					46
4.6	problem 6 .																																					47
4.7	problem 7 .																																					49
4.8	problem 8 .																																			•		50
4.9	problem 11(b) .																																				51
4.10	problem 11(c)) k	=	1/	2																																	52
<i>4</i> 11	problem 12																																					54

4.1 problem 1

Internal problem ID [845]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing

functions. page 268

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - \left(\begin{cases} 1 & 0 \le t < 3\pi \\ 0 & 3\pi \le t < \infty \end{cases} \right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 32

 $\frac{dsolve([diff(y(t),t\$2)+y(t)=piecewise(0<=t and t<3*Pi,1,3*Pi<=t and t<infinity,0)]}{dsolve([diff(y(t),t\$2)+y(t)=piecewise(0<=t and t<3*Pi,1,3*Pi<=t and t<infinity,0)]},y(0) = 0, D$

$$y(t) = \sin(t) - \left(\begin{cases} 0 & t < 0 \\ \cos(t) - 1 & t < 3\pi \\ 2\cos(t) & 3\pi \le t \end{cases} \right)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 34

 $DSolve[\{y''[t]+y[t]==Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],\{y[0]==0,y'[0]==1\}\},y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<Infinity\}\}],y[t]=Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<1*Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<1*Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<1*Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<1*Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<1*Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<1*Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<1*Piecewise[\{\{1,0<=t<3*Pi\},\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<=t<3*Pi],\{0,3*Pi<=t<1*Piecewise[\{1,0<$

$$\sin(t) \qquad t \le 0$$

$$y(t) \to \{ \sin(t) - 2\cos(t) \qquad t > 3\pi$$

$$-\cos(t) + \sin(t) + 1 \quad \text{True}$$

4.2 problem 2

Internal problem ID [846]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing

functions. page 268 **Problem number**: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y - \left(\begin{cases} 1 & \pi \le t < 2\pi \\ 0 & \text{otherwise} \end{cases} \right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.5 (sec). Leaf size: 76

$$y(t) = \begin{cases} e^{-t}\sin(t) & t < \pi \\ \frac{(\cos(t) + \sin(t))e^{\pi - t}}{2} + e^{-t}\sin(t) + \frac{1}{2} & t < 2\pi \\ \frac{e^{-t}((\cos(t) + \sin(t))e^{2\pi} + (\cos(t) + \sin(t))e^{\pi} + 2\sin(t))}{2} & 2\pi \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 82

DSolve[{y''[t]+2*y'[t]+2*y[t]==Piecewise[{{1,Pi<=t<2*Pi},{0,True}}],{y[0]==0,y'[0]==1}},y[t],

4.3 problem 3

Internal problem ID [847]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - \sin(t) + \text{Heaviside}(-2\pi + t)\sin(t) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 20

dsolve([diff(y(t),t\$2)+4*y(t)=sin(t)-Heaviside(t-2*Pi)*sin(t-2*Pi),y(0) = 0, D(y)](0) = 0],y(t)

$$y(t) = \frac{\sin(t)(-1 + \text{Heaviside}(-2\pi + t))(\cos(t) - 1)}{3}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 27

 $DSolve[\{y''[t]+4*y[t]==Sin[t]-UnitStep[t-2*Pi]*Sin[t-2*Pi],\{y[0]==0,y'[0]==0\}\},y[t],t,Include[x,y]=0$

$$y(t) \to \frac{2}{3}\theta(2\pi - t)\sin^2\left(\frac{t}{2}\right)\sin(t)$$

4.4 problem 4

Internal problem ID [848]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 3y' + 2y - \left(\begin{cases} 1 & 0 \le t < 10 \\ 0 & \text{otherwise} \end{cases} \right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

Time used: 0.235 (sec). Leaf size: 56

 $\frac{dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=piecewise(0<=t and t<10,1,true,0),y(0)=0, D(y))}{dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=piecewise(0<=t and t<10,1,true,0),y(0)=0, D(y)}$

$$y(t) = \frac{\left\{ \begin{array}{c} 0 & t < 0 \\ 1 - 2e^{-t} + e^{-2t} & t < 10 \\ 2e^{10-t} - e^{-2t+20} - 2e^{-t} + e^{-2t} & 10 \le t \end{array} \right\}}{2}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 61

DSolve[{y''[t]+3*y'[t]+2*y[t]==Piecewise[{{1,0<=t<10},{0,True}}],{y[0]==0,y'[0]==0}},y[t],t,I

$$y(t) \rightarrow \begin{cases} 0 & t \leq 0 \\ \frac{1}{2}e^{-2t}(-1+e^t)^2 & 0 < t \leq 10 \\ \frac{1}{2}e^{-2t}(-1+e^{10})\left(-1-e^{10}+2e^t\right) & \text{True} \end{cases}$$

4.5 problem 5

Internal problem ID [849]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' + \frac{5y}{4} - t + \text{Heaviside}\left(t - \frac{\pi}{2}\right)\left(t - \frac{\pi}{2}\right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 63

dsolve([diff(y(t),t\$2)+diff(y(t),t)+5/4*y(t)=t-Heaviside(t-Pi/2)*(t-Pi/2),y(0)=0, D(y)(0)=0

$$y(t) = -\frac{16}{25} - \frac{12 \operatorname{Heaviside}\left(t - \frac{\pi}{2}\right) \left(\cos\left(t\right) + \frac{4 \sin(t)}{3}\right) e^{-\frac{t}{2} + \frac{\pi}{4}}}{25} + \frac{2(8 - 10t + 5\pi) \operatorname{Heaviside}\left(t - \frac{\pi}{2}\right)}{25} + \frac{4(4 \cos\left(t\right) - 3 \sin\left(t\right)) e^{-\frac{t}{2}}}{25} + \frac{4t}{5}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 87

 $DSolve[\{y''[t]+y'[t]+5/4*y[t]==t-UnitStep[t-Pi/2]*(t-Pi/2),\{y[0]==0,y'[0]==0\}\},y[t],t,Include[x,y,y]=t,Include[x,y]=t,Include[x,y]$

$$y(t) \to \left\{ \begin{array}{cc} \frac{4}{25} \left(5t + e^{-t/2} (4\cos(t) - 3\sin(t)) - 4\right) & 2t \le \pi \\ \frac{2}{25} e^{-t/2} \left(8\cos(t) - 6\sin(t) - 2e^{\pi/4} (3\cos(t) + 4\sin(t)) + 5e^{t/2}\pi\right) & \text{True} \end{array} \right.$$

4.6 problem 6

Internal problem ID [850]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + y' + \frac{5y}{4} - \left(\begin{cases} \sin(t) & 0 \le t < \pi \\ 0 & \text{otherwise} \end{cases} \right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

Time used: 0.453 (sec). Leaf size: 59

 $dsolve([diff(y(t),t\$2)+diff(y(t),t)+5/4*y(t)=piecewise(0<=t \ and \ t<Pi,sin(t),true,0),y(0)=0,$

$$y(t) = \frac{4 \left\{ \begin{cases} 0 & t < 0 \\ (4\cos(t) + \sin(t)) e^{-\frac{t}{2}} - 4\cos(t) + \sin(t) & t < \pi \\ (4\cos(t) + \sin(t)) \left(e^{-\frac{t}{2}} - e^{-\frac{t}{2} + \frac{\pi}{2}} \right) & \pi \le t \end{cases} \right\}}{17}$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 72

DSolve[{y''[t]+y'[t]+5/4*y[t]==Piecewise[{{Sin[t],0<=t<Pi},{0,True}}],{y[0]==0,y'[0]==0}},y[t

$$\begin{array}{ccc} & 0 & t \leq 0 \\ y(t) \rightarrow & \left\{ & \frac{4}{17} \left(-4\cos(t) + \sin(t) + e^{-t/2} (4\cos(t) + \sin(t)) \right) & 0 < t \leq \pi \\ & & -\frac{4}{17} e^{-t/2} \left(-1 + e^{\pi/2} \right) \left(4\cos(t) + \sin(t) \right) & \text{True} \end{array} \right. \end{array}$$

4.7 problem 7

Internal problem ID [851]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - \text{Heaviside}(-\pi + t) + \text{Heaviside}(-3\pi + t) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

$$dsolve([diff(y(t),t$2)+4*y(t)=Heaviside(t-Pi)-Heaviside(t-3*Pi),y(0)=0,D(y)(0)=0],y(t),$$

$$y(t) = \frac{\left(-1 + \cos\left(2t\right)\right)\left(-\text{Heaviside}\left(-\pi + t\right) + \text{Heaviside}\left(-3\pi + t\right)\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 25

$$y(t)
ightarrow \ \{ egin{array}{ccc} rac{\sin^2(t)}{2} & \pi < t \leq 3\pi \\ 0 & {
m True} \end{array}$$

4.8 problem 8

Internal problem ID [852]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268

Problem number: 8.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 5y'' + 4y - 1 + \text{Heaviside}(-\pi + t) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 0, y'''(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 27

dsolve([diff(y(t),t\$4)+5*diff(y(t),t\$2)+4*y(t)=1-Heaviside(t-Pi),y(0) = 0, D(y)(0) = 0, (D@@2)

$$y(t) = -\frac{(\cos(t) + 1)^2 \text{ Heaviside } (-\pi + t)}{6} + \frac{(\cos(t) - 1)^2}{6}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 29

$$y(t)
ightarrow \begin{cases} \frac{2}{3}\sin^4\left(\frac{t}{2}\right) & t \leq \pi \\ -\frac{2\cos(t)}{3} & \text{True} \end{cases}$$

4.9 problem 11(b)

Internal problem ID [853]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268

Problem number: 11(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$u'' + \frac{u'}{4} + u - k \left(\text{Heaviside} \left(t - \frac{3}{2} \right) - \text{Heaviside} \left(t - \frac{5}{2} \right) \right) = 0$$

With initial conditions

$$[u(0) = 0, u'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 117

$$\frac{dsolve([diff(u(t),t$2)+1/4*diff(u(t),t)+u(t)=k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t$2)+1/4*diff(u(t),t)+u(t)=k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t$2)+1/4*diff(u(t),t)+u(t)=k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)=k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)=k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)=k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)=k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)=k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)=k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)=k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t))+u(t)=k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)-k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)-k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)-k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)-k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)-k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)-k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)-k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)-k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)-k*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)-k*(Heaviside(t-3/2)-Heaviside(t-5/2)-Heaviside(t-5/2)),u(0)=0,}{dsolve([diff(u(t),t)]+u(t)-k*(Heaviside(t-5/2)-Heavisi$$

$$u(t) = \frac{k\left(\text{Heaviside } \left(t - \frac{3}{2}\right)\sqrt{7}\,\mathrm{e}^{-\frac{t}{8} + \frac{3}{16}}\sin\left(\frac{3\sqrt{7}\left(2t - 3\right)}{16}\right) - \text{Heaviside } \left(t - \frac{5}{2}\right)\sqrt{7}\,\mathrm{e}^{-\frac{t}{8} + \frac{5}{16}}\sin\left(\frac{3\sqrt{7}\left(2t - 5\right)}{16}\right) - 21\,\text{Heaviside}}\right)}{2} + \frac{1}{2}\left(\frac{1}{16}\right)\left(\frac{3\sqrt{7}\left(2t - 3\right)}{16}\right) - \frac{1}{2}\left(\frac{3\sqrt{7}\left(2t - 3\right)}{16}\right)}{16}\right) - \frac{1}{2}\left(\frac{3\sqrt{7}\left(2t - 3\right)}{16}\right) - \frac{1}{2}\left(\frac{3\sqrt{7}\left(2t - 3\right)}{16}\right)}{16}\right) - \frac{1}{2}\left(\frac{3\sqrt{7}\left(2t - 3\right)}{16}\right) - \frac{1}{2}\left(\frac{3\sqrt{7}\left(2t - 3\right)}{16}\right) - \frac{1}{2}\left(\frac{3\sqrt{7}\left(2t - 3\right)}{16}\right)}{16}\right) - \frac{1}{2}\left(\frac{3\sqrt{7}\left(2t - 3\right)}{16}\right) - \frac{1}{2}\left(\frac{3\sqrt{7}\left(2t - 3\right)}{16}\right)}{16}\right) - \frac{1}{2}\left(\frac{3\sqrt{7}\left(2t - 3\right)}{16}\right) - \frac{1}{2}\left(\frac{3\sqrt{7}\left(2t -$$

✓ Solution by Mathematica

Time used: 0.105 (sec). Leaf size: 182

$$u(t)$$

$$\qquad \qquad \qquad \frac{\frac{1}{21}e^{\frac{3}{16}-\frac{t}{8}}\left(\sqrt{7}\sin\left(\frac{3}{16}\sqrt{7}(3-2t)\right)-21\cos\left(\frac{3}{16}\sqrt{7}(3-2t)\right)\right)k+k}{\frac{1}{21}e^{\frac{3}{16}-\frac{t}{8}}k\left(-21\cos\left(\frac{3}{16}\sqrt{7}(3-2t)\right)+21\sqrt[8]{e}\cos\left(\frac{3}{16}\sqrt{7}(5-2t)\right)+\sqrt{7}\left(\sin\left(\frac{3}{16}\sqrt{7}(3-2t)\right)-\sqrt[8]{e}\sin\left(\frac{3}{16}\sqrt{7}(3-2t)\right)\right)}$$

4.10 problem 11(c) k=1/2

Internal problem ID [854]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268

Problem number: 11(c) k=1/2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$u'' + \frac{u'}{4} + u - \frac{\text{Heaviside}\left(t - \frac{3}{2}\right)}{2} + \frac{\text{Heaviside}\left(t - \frac{5}{2}\right)}{2} = 0$$

With initial conditions

$$[u(0) = 0, u'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 115

$$dsolve([diff(u(t),t\$2)+1/4*diff(u(t),t)+u(t)=1/2*(Heaviside(t-3/2)-Heaviside(t-5/2)),u(0)=0$$

$$\begin{split} u(t) &= \frac{\text{Heaviside}\left(t - \frac{3}{2}\right)}{2} - \frac{\text{Heaviside}\left(t - \frac{5}{2}\right)}{2} + \frac{\text{Heaviside}\left(t - \frac{5}{2}\right)\sqrt{7}\,\mathrm{e}^{-\frac{t}{8} + \frac{5}{16}}\sin\left(\frac{3\sqrt{7}\,(2t - 5)}{16}\right)}{42} \\ &- \frac{\text{Heaviside}\left(t - \frac{3}{2}\right)\sqrt{7}\,\mathrm{e}^{-\frac{t}{8} + \frac{3}{16}}\sin\left(\frac{3\sqrt{7}\,(2t - 3)}{16}\right)}{42} \\ &+ \frac{\text{Heaviside}\left(t - \frac{5}{2}\right)\mathrm{e}^{-\frac{t}{8} + \frac{5}{16}}\cos\left(\frac{3\sqrt{7}\,(2t - 5)}{16}\right)}{2} \\ &- \frac{\text{Heaviside}\left(t - \frac{3}{2}\right)\mathrm{e}^{-\frac{t}{8} + \frac{3}{16}}\cos\left(\frac{3\sqrt{7}\,(2t - 3)}{16}\right)}{2} \end{split}$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 182

DSolve[{u''[t]+1/4*u'[t]+u[t]==1/2*(UnitStep[t-3/2]-UnitStep[t-5/2]),{u[0]==0,u'[0]==0}},u[t]

$$u(t) \\ \rightarrow \{ \frac{\frac{1}{42}e^{\frac{3}{16}-\frac{t}{8}}\left(\sqrt{7}\sin\left(\frac{3}{16}\sqrt{7}(3-2t)\right)-21\cos\left(\frac{3}{16}\sqrt{7}(3-2t)\right)\right)+\frac{1}{2}}{\frac{1}{42}e^{\frac{3}{16}-\frac{t}{8}}\left(-21\cos\left(\frac{3}{16}\sqrt{7}(3-2t)\right)+21\sqrt[8]{e}\cos\left(\frac{3}{16}\sqrt{7}(5-2t)\right)+\sqrt{7}\left(\sin\left(\frac{3}{16}\sqrt{7}(3-2t)\right)-\sqrt[8]{e}\sin\left(\frac{3}{16}\sqrt{7}(3-2t)\right)\right)} \right) \\ + \frac{1}{42}e^{\frac{3}{16}-\frac{t}{8}}\left(-21\cos\left(\frac{3}{16}\sqrt{7}(3-2t)\right)+21\sqrt[8]{e}\cos\left(\frac{3}{16}\sqrt{7}(5-2t)\right)+\sqrt{7}\left(\sin\left(\frac{3}{16}\sqrt{7}(3-2t)\right)-\sqrt[8]{e}\sin\left(\frac{3}{16}\sqrt{7}(3-2t)\right)\right) \right) \\ + \frac{1}{42}e^{\frac{3}{16}-\frac{t}{8}}\left(-21\cos\left(\frac{3}{16}\sqrt{7}(3-2t)\right)+21\sqrt[8]{e}\cos\left(\frac{3}{16}\sqrt{7}(5-2t)\right)\right) \\ + \frac{1}{42}e^{\frac{3}{16}-\frac{t}{8}}\left(-21\cos\left(\frac{3}{16}\sqrt{7}(3-2t)\right)+21\sqrt[8]{e}\cos\left(\frac{3}{16}\sqrt{7}(3-2t)\right)\right) \\ + \frac{1}{42}e^{\frac{3}}\left(-21\cos\left(\frac{3}{16}\sqrt{7}(3-2t)\right)+21\sqrt[8]{e}\cos\left(\frac{3}{16}\sqrt{7}(3-2t)\right)\right$$

4.11 problem 12

Internal problem ID [855]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$u'' + \frac{u'}{4} + u - \frac{\text{Heaviside}(t-5)(t-5) - \text{Heaviside}(t-5-k)(t-5-k)}{k} = 0$$

With initial conditions

$$[u(0) = 0, u'(0) = 0]$$

✓ Solution by Maple

Time used: 0.453 (sec). Leaf size: 182

$$dsolve([diff(u(t),t\$2)+1/4*diff(u(t),t)+u(t)=1/k*(Heaviside(t-5)*(t-5)-Heaviside(t-(5+k))*(t-5)+u(t)=1/k*(Heaviside(t-5)*(t-5)-Heaviside(t-5)*(t-5)+u(t)=1/k*(Heaviside(t-5)*(t-5)-Heaviside(t-5)*(t-5)-Heaviside(t-5)*(t-5)+u(t)=1/k*(Heaviside(t-5)*(t-5)-Heaviside(t-5)*(t-5)-Heaviside(t-5)*(t-5)-Heaviside(t-5)*(t-5)+u(t)=1/k*(Heaviside(t-5)*(t-5)-Heaviside(t-5)-Heavis$$

$$u(t) = -31(\text{Heaviside}(5+k) + \text{Heaviside}(t-5-k) - 1)\left(\left(\sin\left(\frac{15\sqrt{7}}{8}\right)\sqrt{7} + \frac{21\cos\left(\frac{15\sqrt{7}}{8}\right)}{31}\right)\cos\left(\frac{3\sqrt{7}k}{8}\right) + \sin\left(\frac{15\sqrt{7}}{8}\right)\right)$$

✓ Solution by Mathematica

Time used: 7.337 (sec). Leaf size: 436

$$DSolve[{u''[t]+1/4*u'[t]+u[t]==1/k*(UnitStep[t-5]*(t-5)-UnitStep[t-(5+k)]*(t-(5+k)))), {u[0]==0}$$

$$u(t) \rightarrow \frac{e^{-t/8} \left(-21(4k+21)\cos\left(\frac{3\sqrt{7}t}{8}\right) + e^{\frac{k+5}{8}} \left(21\cos\left(\frac{3}{8}\sqrt{7}(k-t+5)\right) + 31\sqrt{7}\sin\left(\frac{3}{8}\sqrt{7}(k-t+5)\right)\right) + \sqrt{7}(11-4k)\sin\left(\frac{3\sqrt{7}t}{8}\right) + \left(21e^{t/8}(4t-21) + e^{5/8}\left(21\cos\left(\frac{3}{8}\sqrt{7}(k-t+5)\right) + 31\sqrt{7}\sin\left(\frac{3}{8}\sqrt{7}(k-t+5)\right)\right)\right) + \sqrt{7}(11-4k)\sin\left(\frac{3\sqrt{7}t}{8}\right) + \left(21e^{t/8}(4t-21) + e^{5/8}\left(21\cos\left(\frac{3}{8}\sqrt{7}(k-t+5)\right) + 31\sin\left(\frac{3}{8}\sqrt{7}(k-t+5)\right)\right)\right) + \sqrt{7}(11-4k)\sin\left(\frac{3\sqrt{7}t}{8}\right) + \left(21e^{t/8}(4t-21) + e^{5/8}\left(21\cos\left(\frac{3}{8}\sqrt{7}(k-t+5)\right) + 31\sin\left(\frac{3}{8}\sqrt{7}(k-t+5)\right)\right)\right) + \sqrt{7}(11-4k)\sin\left(\frac{3\sqrt{7}t}{8}\right) + \left(21e^{t/8}(4t-21) + e^{5/8}\left(21\cos\left(\frac{3}{8}\sqrt{7}(k-t+5)\right) + 31\sin\left(\frac{3}{8}\sqrt{7}(k-t+5)\right)\right)\right) + \sqrt{7}(11-4k)\sin\left(\frac{3\sqrt{7}t}{8}\right) + \left(21e^{t/8}(4t-21) + e^{5/8}\left(3\sqrt{7}\cos\left(\frac{3}{8}\sqrt{7}(k-t+5)\right)\right)\right) + \left(21e^{t/8}(4t-21) + e^{5/8}\left(3\sqrt{7}\cos\left(\frac{3}{8}\sqrt{7}(k-t+5)\right)\right) + \left(21e^{t/8}(4t-21) + e^{5/8}\left(3\sqrt{7}\cos\left(\frac{3}{8}\sqrt{7}(k-t+5)\right)\right)\right) + \left(21e^{t/8}(4t-21) + e^{5/8}\left(21e^{t/8}(4t-21) + e^{5/8}(4t-21) + e^{5/8}(4t$$

5	Chapter 6.5, The Laplace Transform. Impulse
	functions. page 273

5.1	problem 1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		 ,	57
5.2	problem 2																																			,		58
5.3	problem 3																																			,		59
5.4	problem 4																																			,		60
5.5	problem 5																																					61
5.6	problem 6																																					62
5.7	problem 7																																					63
5.8	problem 8																																					64
5.9	problem 10(a)																																					65
5.10	problem 10(c)																																					66
5.11	problem 12 .																																					67
5.12	problem 19(a)																																					68
5.13	problem 19(b)			_																																		69

5.1 problem 1

Internal problem ID [856]

 $\textbf{Book} \hbox{: } \textbf{Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, and DiPrima, an$

Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y - (\delta(-\pi + t)) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 31

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0) = 1, D(y)(0) = 0],y(t), singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=Dirac(t-Pi),y(0) = 1, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)+2*y(t)+2*y

$$y(t) = -\sin(t) \text{ Heaviside } (-\pi + t) e^{\pi - t} + e^{-t}(\cos(t) + \sin(t))$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 29

DSolve[{y''[t]+2*y'[t]+2*y[t]==DiracDelta[t-Pi],{y[0]==1,y'[0]==0}},y[t],t,IncludeSingularSol

$$y(t) \to e^{-t}(-e^{\pi}\theta(t-\pi)\sin(t) + \sin(t) + \cos(t))$$

5.2 problem 2

Internal problem ID [857]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima,

Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - (\delta(-\pi + t)) + \delta(-2\pi + t) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve([diff(y(t),t\$2)+4*y(t)=Dirac(t-Pi)-Dirac(t-2*Pi),y(0) = 0, D(y)(0) = 0],y(t), singsol=0

$$y(t) = -\frac{(\text{Heaviside}(-2\pi + t) - \text{Heaviside}(-\pi + t))\sin(2t)}{2}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 25

 $DSolve[\{y''[t]+4*y[t]==DiracDelta[t-Pi]-DiracDelta[t-2*Pi],\{y[0]==0,y'[0]==0\}\},y[t],t,Include[t-2*Pi],f(y[0]==0,y'[0]==0)\}$

$$y(t) \to (\theta(t-\pi) - \theta(t-2\pi))\sin(t)\cos(t)$$

5.3 problem 3

Internal problem ID [858]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y - (\delta(t-5)) - \text{Heaviside}(-10+t) = 0$$

With initial conditions

$$\left[y(0) = 0, y'(0) = \frac{1}{2} \right]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 70

$$dsolve([diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=Dirac(t-5)+Heaviside(t-10),y(0)=0, D(y)(0)=1)$$

$$y(t) = -\frac{e^{-2t}}{2} - \text{Heaviside}(t-5) e^{-2t+10} + \text{Heaviside}(t-5) e^{-t+5} + \frac{\text{Heaviside}(-10+t)}{2} - \text{Heaviside}(-10+t) e^{10-t} + \frac{\text{Heaviside}(-10+t) e^{-2t+20}}{2} + \frac{e^{-t}}{2}$$

✓ Solution by Mathematica

Time used: 0.161 (sec). Leaf size: 71

$$y(t) \rightarrow \frac{1}{2}e^{-2t} \Big(2e^5 \big(e^t - e^5 \big) \, \theta(t-5) + \big(e^{10} - e^t \big)^2 \, (-\theta(10-t)) + e^t + e^{2t} - 2e^{t+10} + e^{20} - 1 \Big) + e^{t+10} + e^{t+$$

5.4 problem 4

Internal problem ID [859]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 3y - \sin(t) - (\delta(-3\pi + t)) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 54

$$dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+3*y(t)=sin(t)+Dirac(t-3*Pi),y(0) = 0, D(y)(0) = 0],y(t)$$

$$y(t) = \frac{\mathrm{e}^{-t}\cos\left(t\sqrt{2}\right)}{4} + \frac{\sqrt{2}\,\mathrm{e}^{3\pi - t}\,\mathrm{Heaviside}\left(-3\pi + t\right)\sin\left(\sqrt{2}\left(-3\pi + t\right)\right)}{2} + \frac{\sin\left(t\right)}{4} - \frac{\cos\left(t\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.796 (sec). Leaf size: 80

DSolve[{y''[t]+2*y'[t]+3*y[t]==Sin[t]+DiracDelta[t-3*Pi],{y[0]==0,y'[0]==1/2}},y[t],t,Include

$$y(t) \to \frac{1}{4}e^{-t}\left(-2\sqrt{2}e^{3\pi}\theta(t-3\pi)\sin\left(\sqrt{2}(3\pi-t)\right) + \sqrt{2}\sin\left(\sqrt{2}t\right) + \cos\left(\sqrt{2}t\right) + e^{t}(\sin(t)-\cos(t))\right)$$

5.5 problem 5

Internal problem ID [860]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima,

Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - (\delta(-2\pi + t))\cos(t) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve([diff(y(t),t\$2)+y(t)=Dirac(t-2*Pi)*cos(t),y(0) = 0, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = \sin(t)$$
 (Heaviside $(-2\pi + t) + 1$)

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 16

 $DSolve[\{y''[t]+y[t]==DiracDelta[t-2*Pi]*Cos[t],\{y[0]==0,y'[0]==1\}\},y[t],t,Include\\SingularSolue[\{y''[t]+y[t]==DiracDelta[t-2*Pi]*Cos[t],\{y[0]==0,y'[0]==1\}\},y[t],t,Include\\SingularSolue[\{y''[t]+y[t]==DiracDelta[t-2*Pi]*Cos[t],\{y[0]==0,y'[0]==1\}\},y[t],t,Include\\SingularSolue[\{y''[t]+y[t]==DiracDelta[t-2*Pi]*Cos[t],\{y[0]==0,y'[0]==1\}\},y[t],t,Include\\SingularSolue[\{y'''[t]+y[t]==DiracDelta[t-2*Pi]*Cos[t],\{y[0]==0,y'[0]==1\}\},y[t],t,Include\\SingularSolue[\{y'''[t]==DiracDelta[t-2*Pi]*Cos[t],\{y[0]==0,y''[0]==1\}\},y[t],t,Include\\SingularSolue[\{y'''[t]==DiracDelta[t-2*Pi]*Cos[t],\{y[0]==0,y''[0]==1\}\},y[t],t,Include\\SingularSolue[t],f(y[0]==0,y''[0]==1,y''[0]=1,y''$

$$y(t) \to (\theta(t-2\pi)+1)\sin(t)$$

5.6 problem 6

Internal problem ID [861]

 $\textbf{Book} \hbox{: } \textbf{Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima,}\\$

Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y - 2\left(\delta\left(t - \frac{\pi}{4}\right)\right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve([diff(y(t),t\$2)+4*y(t)=2*Dirac(t-Pi/4),y(0)=0,\ D(y)(0)=0],y(t),\ singsol=all)$

$$y(t) = -\text{Heaviside}\left(t - \frac{\pi}{4}\right)\cos\left(2t\right)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 25

 $DSolve[\{y''[t]+4*y[t]==2*DiracDelta[t-Pi/4],\{y[0]==0,y'[0]==1\}\},y[t],t,IncludeSingularSolution[theorem = 0.5]{theorem = 0.5}{theorem = 0.5}$

$$y(t) \rightarrow \sin(t)\cos(t) - \theta(4t - \pi)\cos(2t)$$

5.7 problem 7

Internal problem ID [862]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y - \cos(t) - \left(\delta\left(t - \frac{\pi}{2}\right)\right) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 47

$$dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=cos(t)+Dirac(t-Pi/2),y(0) = 0, D(y)(0) = 0],y(t)$$

$$y(t) = -\cos(t) \text{ Heaviside } \left(t - \frac{\pi}{2}\right) e^{-t + \frac{\pi}{2}} + \frac{\left(-\cos(t) - 3\sin(t)\right) e^{-t}}{5} + \frac{\cos(t)}{5} + \frac{2\sin(t)}{5}$$

✓ Solution by Mathematica

Time used: 0.08 (sec). Leaf size: 50

$$DSolve[\{y''[t]+2*y'[t]+2*y[t]==Cos[t]+DiracDelta[t-Pi/2],\{y[0]==0,y'[0]==0\}\},y[t],t,IncludeSi(x,y)=0$$

$$y(t) \to \frac{1}{5}e^{-t} \left(\left(-5e^{\pi/2}\theta(2t - \pi) + e^t - 1 \right) \cos(t) + \left(2e^t - 3 \right) \sin(t) \right)$$

5.8 problem 8

Internal problem ID [863]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima,

Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 8.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - y - (\delta(t-1)) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 0, y'''(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 29

dsolve([diff(y(t),t\$4)-y(t)=Dirac(t-1),y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 0, (D@@3)(y)(0)

$$y(t) = \frac{\text{Heaviside}(t-1)(e^{t-1} - e^{-t+1} - 2\sin(t-1))}{4}$$

✓ Solution by Mathematica

Time used: 0.097 (sec). Leaf size: 28

 $DSolve[\{y''''[t]-y[t]==DiracDelta[t-1],\{y[0]==0,y'[0]==0,y''[0]==0,y'''[0]==0\}\},y[t],t,Include (a) = (a) + (b) +$

$$y(t) \to \frac{1}{2}\theta(t-1)(\sin(1-t) - \sinh(1-t))$$

5.9 problem 10(a)

Internal problem ID [864]

 $\textbf{Book} : \textbf{Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, and Divide the problems of the problems$

Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 10(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \frac{y'}{2} + y - (\delta(t-1)) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 28

dsolve([diff(y(t),t\$2)+1/2*diff(y(t),t)+y(t)=Dirac(t-1),y(0) = 0, D(y)(0) = 0],y(t), singsol=0, D(y)(0) = 0, D(y)(0) = 0

$$y(t) = \frac{4 \text{ Heaviside}(t-1) e^{\frac{1}{4} - \frac{t}{4}} \sqrt{15} \sin\left(\frac{\sqrt{15}(t-1)}{4}\right)}{15}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: $40\,$

$$y(t) \to \frac{4e^{\frac{1}{4} - \frac{t}{4}}\theta(t-1)\sin(\frac{1}{4}\sqrt{15}(t-1))}{\sqrt{15}}$$

5.10 problem 10(c)

Internal problem ID [865]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima,

Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 10(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \frac{y'}{4} + y - (\delta(t-1)) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve([diff(y(t),t\$2)+1/4*diff(y(t),t)+y(t)=Dirac(t-1),y(0) = 0, D(y)(0) = 0],y(t), singsol=0

$$y(t) = \frac{8 \text{ Heaviside } (t-1) e^{\frac{1}{8} - \frac{t}{8}} \sqrt{7} \sin \left(\frac{3\sqrt{7}(t-1)}{8}\right)}{21}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: $42\,$

$$y(t) o rac{8e^{rac{1}{8} - rac{t}{8}} \theta(t-1) \sin\left(rac{3}{8}\sqrt{7}(t-1)
ight)}{3\sqrt{7}}$$

5.11 problem 12

Internal problem ID [866]

 $\textbf{Book} : \textbf{Elementary differential equations and boundary value problems}, 11 th \ \text{ed.}, \textbf{Boyce}, \textbf{DiPrima}, \textbf{Prima}, \textbf{Prima},$

Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - \frac{\text{Heaviside}(t - 4 + k) - \text{Heaviside}(t - 4 - k)}{2k} = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 83

$$y(t) = \frac{(\text{Heaviside } (4+k) + \text{Heaviside } (t-4-k) - 1)\cos(-t+4+k) - \text{Heaviside } (t-4-k) + (-\cos(t-4+k) - 1)\cos(-t+4+k) - (-\cos(t-4+k) + 1)\cos(-t+4+k)}{(t-4-k) + (-\cos(t-4+k) - 1)\cos(-t+4+k)}$$

✓ Solution by Mathematica

Time used: 0.676 (sec). Leaf size: 181

$$y(t) \to \left[\begin{array}{c} \frac{(\cos(k-t+4)-1)\theta(-k+t-4)-(\cos(-k-t+4)-1)\theta(k+t-4)}{2k} & \text{if } -4 < k < 4 \end{array}\right]$$

$$y(t) \rightarrow \left| \begin{array}{c} \frac{\cos(-k-t+4)-\cos(t)+(\cos(k-t+4)-1)\theta(-k+t-4)-(\cos(-k-t+4)-1)\theta(k+t-4)}{2k} \end{array} \right| f k > 4$$

$$y(t) \to \left[\begin{array}{c} \frac{-\cos(k-t+4) + \cos(t) + (\cos(k-t+4) - 1)\theta(-k+t-4) - (\cos(-k-t+4) - 1)\theta(k+t-4)}{2k} \text{ if } k < -4 \end{array} \right]$$

5.12 problem 19(a)

Internal problem ID [867]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 19(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y - f(t) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.093 (sec). Leaf size: 43

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=f(t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$\begin{split} y(t) &= \left(\sin\left(t\right) \left(\int_0^t f(_z\mathbf{1}) \cos\left(_z\mathbf{1}\right) \mathrm{e}^{-z\mathbf{1}} d_z\mathbf{1}\right) \\ &- \cos\left(t\right) \left(\int_0^t f(_z\mathbf{1}) \sin\left(_z\mathbf{1}\right) \mathrm{e}^{-z\mathbf{1}} d_z\mathbf{1}\right)\right) \mathrm{e}^{-t} \end{split}$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 98

DSolve[{y''[t]+2*y'[t]+2*y[t]==f[t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> Tr

$$y(t) \to e^{-t} \left(\sin(t) \left(\int_{1}^{t} e^{K[1]} \cos(K[1]) f(K[1]) dK[1] - \int_{1}^{0} e^{K[1]} \cos(K[1]) f(K[1]) dK[1] \right) + \cos(t) \left(\int_{1}^{t} -e^{K[2]} f(K[2]) \sin(K[2]) dK[2] - \int_{1}^{0} -e^{K[2]} f(K[2]) \sin(K[2]) dK[2] \right) \right)$$

5.13 problem 19(b)

Internal problem ID [868]

Book : Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima,

Meade

Section: Chapter 6.5, The Laplace Transform. Impulse functions. page 273

Problem number: 19(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y - (\delta(-\pi + t)) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

$$y(t) = -\sin(t)$$
 Heaviside $(-\pi + t)$ $e^{\pi - t}$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 22

DSolve[{y''[t]+2*y'[t]+2*y[t]==DiracDelta[t-Pi],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSol

$$y(t) \to -e^{\pi - t}\theta(t - \pi)\sin(t)$$