A Solution Manual For

Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Nasser M. Abbasi

October 12, 2023

Contents

1	Program 24. First order differential equations. Test excercise 24. page 1067	2
2	Program 24. First order differential equations. Further problems 24. page 1068	15
3	Program 25. Second order differential equations. Test Excercise 25. page 1093	72
4	Program 25. Second order differential equations. Further problems 25. page 1094	81

1	Program	24.	First	order	${\bf differential}$	equations.	Test
	excercise	24.	page	1067			
1.1	problem 1						. 3
1.2	problem 2						4
1.3	problem 3						. 5
1.4	problem 4						. 6
1.5	problem 5						7
1.6	problem 6						. 8
1.7	problem 7						. 9
1.8	problem 8						. 10
1.9	problem 9						11
1.10	problem 10 .						. 12
1.11	problem 11 .						. 13

1.1 problem 1

Internal problem ID [4566]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'x - x^2 - 2x + 3 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x*diff(y(x),x)=x^2+2*x-3,y(x), singsol=all)$

$$y(x) = \frac{x^2}{2} + 2x - 3\ln(x) + c_1$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 20

DSolve[x*y'[x] == x^2+2*x-3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}x(x+4) - 3\log(x) + c_1$$

1.2 problem 2

Internal problem ID [4567]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$(x+1)^2 y' - 1 - y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve((1+x)^2*diff(y(x),x)=1+y(x)^2,y(x), singsol=all)$

$$y(x) = \tan\left(\frac{c_1x + c_1 - 1}{x + 1}\right)$$

✓ Solution by Mathematica

Time used: 0.28 (sec). Leaf size: 32

DSolve[(1+x)^2*y'[x]==1+y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\tan\left(\frac{1}{x+1} - c_1\right)$$

$$y(x) \to -i$$

$$y(x) \to i$$

1.3 problem 3

Internal problem ID [4568]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + 2y - e^{3x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)+2*y(x)=exp(3*x),y(x), singsol=all)

$$y(x) = \left(\frac{\mathrm{e}^{5x}}{5} + c_1\right) \mathrm{e}^{-2x}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 23

DSolve[y'[x]+2*y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{3x}}{5} + c_1 e^{-2x}$$

1.4 problem 4

Internal problem ID [4569]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-y + y'x - x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve(x*diff(y(x),x)-y(x)=x^2,y(x), singsol=all)$

$$y(x) = (x + c_1) x$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 11

DSolve[x*y'[x]-y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x(x+c_1)$$

1.5 problem 5

Internal problem ID [4570]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x^2y' - x^3\sin(3x) - 4 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(x^2*diff(y(x),x)=x^3*sin(3*x)+4,y(x), singsol=all)$

$$y(x) = \frac{\sin(3x)}{9} - \frac{x\cos(3x)}{3} - \frac{4}{x} + c_1$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 30

 $DSolve[x^2*y'[x] == x^3*Sin[3*x] + 4, y[x], x, IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{4}{x} + \frac{1}{9}\sin(3x) - \frac{1}{3}x\cos(3x) + c_1$$

1.6 problem 6

Internal problem ID [4571]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x\cos(y)y' - \sin(y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

dsolve(x*cos(y(x))*diff(y(x),x)-sin(y(x))=0,y(x), singsol=all)

$$y(x) = \arcsin(c_1 x)$$

Solution by Mathematica

Time used: 6.183 (sec). Leaf size: 17

 $DSolve[x*Cos[y[x]]*y'[x]-Sin[y[x]] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \arcsin\left(e^{c_1}x\right)$$

$$y(x) \to 0$$

1.7 problem 7

Internal problem ID [4572]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 7.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$(x^3 + xy^2) y' - 2y^3 = 0$$

/

Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

 $dsolve((x^3+x*y(x)^2)*diff(y(x),x)=2*y(x)^3,y(x), singsol=all)$

$$y(x) = \left(\frac{c_1 x}{2} - \frac{\sqrt{c_1^2 x^2 + 4}}{2}\right) x$$

$$y(x) = \left(\frac{c_1 x}{2} + \frac{\sqrt{c_1^2 x^2 + 4}}{2}\right) x$$

/

Solution by Mathematica

Time used: 1.238 (sec). Leaf size: 83

 $DSolve[(x^3+x*y[x]^2)*y'[x]==2*y[x]^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{2}x \Big(\sqrt{4 + e^{2c_1}x^2} + e^{c_1}x\Big)$$

$$y(x) \to \frac{1}{2}x \Big(\sqrt{4 + e^{2c_1}x^2} - e^{c_1}x\Big)$$

$$y(x) \to 0$$

$$y(x) \to -x$$

$$y(x) \to x$$

1.8 problem 8

Internal problem ID [4573]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x^2 - 1) y' + 2xy - x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve((x^2-1)*diff(y(x),x)+2*x*y(x)=x,y(x), singsol=all)$

$$y(x) = \frac{\frac{x^2}{2} + c_1}{(x-1)(x+1)}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 31

 $DSolve[(x^2-1)*y'[x]+2*x*y[x]==x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^2 + 2c_1}{2(x^2 - 1)}$$

$$y(x) \to \frac{1}{2}$$

1.9 problem 9

Internal problem ID [4574]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 9.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' + y \tanh(x) - 2\sinh(x) = 0$$

/ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)+y(x)*tanh(x)=2*sinh(x),y(x), singsol=all)

$$y(x) = \frac{\frac{\cosh(2x)}{2} + c_1}{\cosh(x)}$$

✓ Solution by Mathematica

Time used: 0.097 (sec). Leaf size: 20

DSolve[y'[x]+y[x]*Tanh[x]==2*Sinh[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} \operatorname{sech}(x) (\cosh(2x) + 2c_1)$$

1.10 problem 10

Internal problem ID [4575]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x - 2y - \cos(x) x^3 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve(x*diff(y(x),x)-2*y(x)=x^3*cos(x),y(x), singsol=all)$

$$y(x) = \left(\sin\left(x\right) + c_1\right)x^2$$

Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 14

DSolve[x*y'[x]-2*y[x]==x^3*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x^2(\sin(x) + c_1)$$

1.11 problem 11

Internal problem ID [4576]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y' + \frac{y}{x} - y^3 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(diff(y(x),x)+y(x)/x=y(x)^3,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{c_1 x^2 + 2x}}$$

$$y(x) = -\frac{1}{\sqrt{c_1 x^2 + 2x}}$$

/

Solution by Mathematica

Time used: 0.38 (sec). Leaf size: 40

 $DSolve[y'[x]+y[x]/x==y[x]^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{\sqrt{x(2+c_1x)}}$$

$$y(x) o rac{1}{\sqrt{x(2+c_1x)}}$$

$$y(x) \to 0$$

1.12 problem 12

Internal problem ID [4577]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Test excercise 24. page 1067

Problem number: 12.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y'x + 3y - x^2y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x*diff(y(x),x)+3*y(x)=x^2*y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{1}{x^2 \left(c_1 x + 1\right)}$$

✓ Solution by Mathematica

Time used: 0.141 (sec). Leaf size: 22

 $DSolve[x*y'[x]+3*y[x]==x^2*y[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{x^2 + c_1 x^3}$$

$$y(x) \to 0$$

2	Program 24. First order differential equations.
	Further problems 24. page 1068
ว 1	problem 1

2.1	problem 1		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		•				 			17
2.2	problem 2																		 					 		,	18
2.3	problem 3																		 					 		,	19
2.4	problem 4																							 	 		20
2.5	problem 5																		 					 	 		21
2.6	problem 6																							 	 		22
2.7	problem 7																							 	 		23
2.8	problem 8																		 					 			24
2.9	problem 9																		 					 			25
2.10	problem 10																		 					 			27
2.11	problem 11																		 					 		,	29
2.12	problem 12																							 	 		30
2.13	problem 13																							 	 		31
2.14	problem 14																							 	 		32
2.15	problem 15																		 					 	 	,	33
2.16	problem 16																		 					 	 		34
2.17	problem 17																							 	 		35
2.18	problem 18																		 					 	 	,	36
2.19	problem 19																							 	 		37
2.20	problem 20																		 					 		,	38
2.21	$problem\ 21$,	39
2.22	problem 22																		 					 		,	40
2.23	problem 23																		 					 		,	42
2.24	problem 24																		 					 		,	43
2.25	problem 25																		 					 			44
2.26	problem 26																							 	 		45
2.27	problem 27																							 	 		46
2.28	problem 28																		 					 	 	,	48
2.29	problem 29																							 	 		49
2.30	problem 30	,																	 					 	 		50
2.31	problem 31	,																	 					 	 		51
2.32	problem 32																		 					 	 		52
2.33	problem 33	,																	 					 	 		55
2.34	problem 34	,																	 					 	 		56
2.35	problem 35																		 					 	 		57
2.36	problem 36																		 					 	 		58
2.37	problem 37																		 					 	 		59
2.38	problem 38																		 					 	 		60

2.39	problem 39												•								61
2.40	problem 40																				62
2.41	problem 41																				63
2.42	problem 42																				64
2.43	problem 43																				65
2.44	problem 44																				66
2.45	problem 45																				67
2.46	problem 46																				68
2.47	problem 47																				69
2.48	problem 48																				70
2.49	problem 49																				71

2.1 problem 1

Internal problem ID [4578]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$x(y-3)y'-4y=0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

dsolve(x*(y(x)-3)*diff(y(x),x)=4*y(x),y(x), singsol=all)

$$y(x) = e^{-\text{LambertW}\left(-rac{e^{-rac{4c_1}{3}}}{rac{4}{3x^{rac{3}{3}}}}
ight) - rac{4\ln(x)}{3} - rac{4c_1}{3}}$$

✓ Solution by Mathematica

Time used: 15.382 (sec). Leaf size: 94

DSolve [x*(y[x]-3)*y'[x]==4*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -3W \left(\frac{1}{3} \sqrt[3]{ -\frac{e^{-c_1}}{x^4}} \right)$$

$$y(x) \to -3W \left(-\frac{1}{3} \sqrt[3]{ -1} \sqrt[3]{ -\frac{e^{-c_1}}{x^4}} \right)$$

$$y(x) \to -3W \left(\frac{1}{3} (-1)^{2/3} \sqrt[3]{ -\frac{e^{-c_1}}{x^4}} \right)$$

$$y(x) \to 0$$

2.2 problem 2

Internal problem ID [4579]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$(x^3 + 1) y' - x^2 y = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve([(1+x^3)*diff(y(x),x)=x^2*y(x),y(1) = 2],y(x), singsol=all)$

$$y(x) = 2^{\frac{2}{3}} (x^3 + 1)^{\frac{1}{3}}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 20

 $DSolve[{(1+x^3)*y'[x]==x^2*y[x], {y[1]==2}}, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 2^{2/3} \sqrt[3]{x^3 + 1}$$

2.3 problem 3

Internal problem ID [4580]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 3.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^3 + (1+y)^2 y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 89

 $dsolve(x^3+(y(x)+1)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\left(-6x^4 - 24c_1\right)^{\frac{1}{3}}}{2} - 1$$

$$y(x) = -\frac{\left(-6x^4 - 24c_1\right)^{\frac{1}{3}}}{4} - \frac{i\sqrt{3}\left(-6x^4 - 24c_1\right)^{\frac{1}{3}}}{4} - 1$$

$$y(x) = -\frac{\left(-6x^4 - 24c_1\right)^{\frac{1}{3}}}{4} + \frac{i\sqrt{3}\left(-6x^4 - 24c_1\right)^{\frac{1}{3}}}{4} - 1$$

✓ Solution by Mathematica

Time used: 0.493 (sec). Leaf size: 89

DSolve $[x^3+(y[x]+1)^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -1 + \frac{\sqrt[3]{-3x^4 + 4 + 12c_1}}{2^{2/3}}$$
$$y(x) \to -1 + \left(-\frac{1}{2}\right)^{2/3} \sqrt[3]{-3x^4 + 4 + 12c_1}$$
$$y(x) \to \frac{1}{2}\left(-2 - \sqrt[3]{-2}\sqrt[3]{-3x^4 + 4 + 12c_1}\right)$$

2.4 problem 4

Internal problem ID [4581]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\cos(y) + (e^{-x} + 1)\sin(y)y' = 0$$

With initial conditions

$$\left[y(0) = \frac{\pi}{4}\right]$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 14

dsolve([cos(y(x))+(1+exp(-x))*sin(y(x))*diff(y(x),x)=0,y(0) = 1/4*Pi],y(x), singsol=all)

$$y(x) = \arccos\left(\frac{\sqrt{2}(e^x + 1)}{4}\right)$$

✓ Solution by Mathematica

Time used: 49.806 (sec). Leaf size: 20

$$y(x) \to \arccos\left(\frac{e^x + 1}{2\sqrt{2}}\right)$$

2.5 problem 5

Internal problem ID [4582]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 5.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^{2}(1+y) + y^{2}(x-1)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

 $dsolve(x^2*(y(x)+1)+y(x)^2*(x-1)*diff(y(x),x)=0,y(x), singsol=all)$

$$\frac{x^2}{2} + x + \ln(x - 1) + \frac{y(x)^2}{2} - y(x) + \ln(y(x) + 1) + c_1 = 0$$

✓ Solution by Mathematica

 $y(x) \rightarrow -1$

Time used: 0.427 (sec). Leaf size: 54

 $DSolve[x^2*(y[x]+1)+y[x]^2*(x-1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \text{InverseFunction} \left[\frac{1}{2} (\#1+1)^2 - 2(\#1+1) + \log(\#1+1) \& \right] \left[-\frac{1}{2} x(x+2) - \log(x-1) + \frac{3}{2} + c_1 \right]$$

2.6 problem 6

Internal problem ID [4583]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 6.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd type

$$(2y - x)y' - y - 2x = 0$$

/

Solution by Maple

Time used: 0.031 (sec). Leaf size: 53

dsolve((2*y(x)-x)*diff(y(x),x)=2*x+y(x),y(x), singsol=all)

$$y(x) = \frac{\frac{c_1 x}{2} - \frac{\sqrt{5c_1^2 x^2 + 4}}{2}}{c_1}$$

$$y(x) = \frac{\frac{c_1 x}{2} + \frac{\sqrt{5c_1^2 x^2 + 4}}{2}}{c_1}$$

/

Solution by Mathematica

Time used: 0.458 (sec). Leaf size: 102

DSolve[(2*y[x]-x)*y'[x]==2*x+y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{2} \Big(x - \sqrt{5x^2 - 4e^{c_1}} \Big)$$

$$y(x) \to \frac{1}{2} \Big(x + \sqrt{5x^2 - 4e^{c_1}} \Big)$$

$$y(x) \to \frac{1}{2} \left(x - \sqrt{5} \sqrt{x^2} \right)$$

$$y(x) o rac{1}{2} \Big(\sqrt{5} \sqrt{x^2} + x \Big)$$

2.7 problem 7

Internal problem ID [4584]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 7.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$xy + y^2 + (x^2 - xy)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $dsolve((x*y(x)+y(x)^2)+(x^2-x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = rac{\mathrm{e}^{-\mathrm{LambertW}\left(-rac{\mathrm{e}^{-2c_1}}{x^2}
ight) - 2c_1}}{x}$$

✓ Solution by Mathematica

Time used: 3.251 (sec). Leaf size: 25

 $DSolve[(x*y[x]+y[x]^2)+(x^2-x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -xW\left(-\frac{e^{-c_1}}{x^2}\right)$$

 $y(x) \to 0$

2.8 problem 8

Internal problem ID [4585]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^3 + x^3 - 3xy^2y' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 90

 $dsolve((x^3+y(x)^3)=3*x*y(x)^2*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \frac{(4x^3 + 8c_1x)^{\frac{1}{3}}}{2}$$

$$y(x) = -\frac{(4x^3 + 8c_1x)^{\frac{1}{3}}}{4} - \frac{i\sqrt{3}(4x^3 + 8c_1x)^{\frac{1}{3}}}{4}$$

$$y(x) = -\frac{(4x^3 + 8c_1x)^{\frac{1}{3}}}{4} + \frac{i\sqrt{3}(4x^3 + 8c_1x)^{\frac{1}{3}}}{4}$$

Solution by Mathematica

Time used: 0.21 (sec). Leaf size: 90

 $DSolve[(x^3+y[x]^3)==3*x*y[x]^2*y'[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\sqrt[3]{-\frac{1}{2}}\sqrt[3]{x}\sqrt[3]{x^2 + 2c_1}$$
$$y(x) \to \frac{\sqrt[3]{x}\sqrt[3]{x^2 + 2c_1}}{\sqrt[3]{2}}$$
$$y(x) \to \frac{(-1)^{2/3}\sqrt[3]{x}\sqrt[3]{x^2 + 2c_1}}{\sqrt[3]{2}}$$

2.9 problem 9

Internal problem ID [4586]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 9.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `2nd\ type$

$$y - 3x + (4y + 3x)y' = 0$$

Solution by Maple

Time used: 0.25 (sec). Leaf size: 278

dsolve(y(x)-3*x+(4*y(x)+3*x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \\ -\frac{3x^8c_1\operatorname{RootOf}\left(_Z^{64}c_1x^8 + 12_Z^{56}c_1x^8 + 48_Z^{48}c_1x^8 + 64_Z^{40}c_1x^8 - 1\right)^{56} + 24x^8c_1\operatorname{RootOf}\left(_Z^{64}c_1x^8 + 12_Z^{56}c_1x^8 + 48_Z^{48}c_1x^8 + 64_Z^{40}c_1x^8 - 1\right)^{40}\left(\operatorname{RootOf}\left(_Z^{64}c_1x^8 + 12_Z^{66}c_1x^8 + 48_Z^{64}c_1x^8 + 64_Z^{66}c_1x^8 + 64$$

✓ Solution by Mathematica

Time used: 5.306 (sec). Leaf size: 673

DSolve[y[x]-3*x+(4*y[x]+3*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 1 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 2 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 3 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 4 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 5 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 6 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 6 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 6 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 7 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 7 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 7 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 7 \right] \\ y(x) \rightarrow \operatorname{Root} \left[256\#1^8 + 512\#1^7x - 512\#1^6x^2 - 896\#1^5x^3 + 800\#1^4x^4 + 352\#1^3x^5 - 576\#1^2x^6 + 216\#1x^7 - 27x^8 + e^{8c_1}\&, 7 \right]$$

 $-576 \# 1^2 x^6 + 216 \# 1 x^7 - 27 x^8 + e^{8c_1} \&.8$

2.10 problem 10

Internal problem ID [4587]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$(x^3 + 3xy^2)y' - y^3 - 3x^2y = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 23

 $dsolve((x^3+3*x*y(x)^2)*diff(y(x),x)=y(x)^3+3*x^2*y(x),y(x), singsol=all)$

$$y(x) = \text{RootOf}\left(\underline{Z}^4 c_1 x - c_1 x - \underline{Z}\right)^2 x$$

✓ Solution by Mathematica

Time used: 60.145 (sec). Leaf size: 1659

$$\rightarrow \frac{1}{6} \left(-\sqrt{3} \sqrt{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} + \frac{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}{\sqrt[3]{28x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} + \frac{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}{\sqrt[3]{28x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} + \frac{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}{\sqrt[3]{28x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} + \frac{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}}{\sqrt[3]{28x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} + \frac{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}}{\sqrt[3]{28x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}} + \frac{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}}{\sqrt[3]{28x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}}$$

$$-3\sqrt{\frac{8x^2}{3} - \frac{16\sqrt[3]{2}x^4}{3\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} - \frac{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^2}}}$$

$$\rightarrow \frac{1}{6} \left(3 \sqrt{\frac{8x^2}{3} - \frac{16\sqrt[3]{2}x^4}{3\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} - \sqrt{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{4c_1}x^4}}}} \right)$$

$$-\sqrt{3}\sqrt{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} + \frac{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}{\sqrt[3]{2}}$$

$$\rightarrow \frac{1}{6} \sqrt{3} \sqrt{4x^2 + \frac{16\sqrt[3]{2}x^4}{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}} + \frac{\sqrt[3]{128x^6 + 27e^{2c_1}x^2 + 3\sqrt{768e^{2c_1}x^8 + 81e^{4c_1}x^4}}}{\sqrt[3]{2}}$$

2.11 problem 11

Internal problem ID [4588]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y + y'x - x^3 - 3x^2 + 2x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(x*diff(y(x),x)-y(x)=x^3+3*x^2-2*x,y(x), singsol=all)$

$$y(x) = \left(\frac{x^2}{2} + 3x - 2\ln(x) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 22

DSolve $[x*y'[x]-y[x]==x^3+3*x^2-2*x,y[x],x,IncludeSingularSolutions -> True]$

$$y(x)
ightarrow x \left(rac{1}{2} x(x+6) - 2\log(x) + c_1
ight)$$

2.12 problem 12

Internal problem ID [4589]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y\tan(x) - \sin(x) = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)+y(x)*tan(x)=sin(x),y(x), singsol=all)

$$y(x) = (-\ln(\cos(x)) + c_1)\cos(x)$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 16

 $DSolve[y'[x]+y[x]*Tan[x] == Sin[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \cos(x)(-\log(\cos(x)) + c_1)$$

2.13 problem 13

Internal problem ID [4590]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$-y + y'x - \cos(x) x^3 = 0$$

With initial conditions

$$[y(\pi) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve([x*diff(y(x),x)-y(x)=x^3*cos(x),y(Pi) = 0],y(x), singsol=all)$

$$y(x) = (\cos(x) + \sin(x) x + 1) x$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 15

 $DSolve[\{x*y'[x]-y[x]==x^3*Cos[x],\{y[Pi]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x(x\sin(x) + \cos(x) + 1)$$

2.14 problem 14

Internal problem ID [4591]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 14.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$(x^2 + 1) y' + 3xy - 5x = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $dsolve([(1+x^2)*diff(y(x),x)+3*x*y(x)=5*x,y(1) = 2],y(x), singsol=all)$

$$y(x) = \frac{5}{3} + \frac{2\sqrt{2}}{3(x^2+1)^{\frac{3}{2}}}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 27

 $DSolve[\{(1+x^2)*y'[x]+3*x*y[x]==5*x,\{y[1]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2\sqrt{2}}{3(x^2+1)^{3/2}} + \frac{5}{3}$$

2.15 problem 15

Internal problem ID [4592]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 15.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' + y \cot(x) - 5 e^{\cos(x)} = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right) = -4\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $\label{local_diff} \\ \text{dsolve}([\text{diff}(y(x),x)+y(x)*\cot(x)=5*\exp(\cos(x)),y(1/2*\text{Pi}) = -4],y(x), \text{ singsol=all}) \\$

$$y(x) = -5 e^{\cos(x)} \csc(x) + \csc(x)$$

✓ Solution by Mathematica

Time used: 0.103 (sec). Leaf size: 16

 $DSolve[\{y'[x]+y[x]*Cot[x]==5*Exp[Cos[x]], \{y[Pi/2]==-4\}\}, y[x], x, IncludeSingularSolutions \rightarrow Track (a) = 1.0 a to the content of the cont$

$$y(x) \to (1 - 5e^{\cos(x)})\csc(x)$$

2.16 problem 16

Internal problem ID [4593]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 16.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ C'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class',\ `2nd\ type',\ `class',\ `2nd\ type',\ `class',\ `2nd\ type',\ `2nd\$

$$(3x + 3y - 4) y' + x + y = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve((3*x+3*y(x)-4)*diff(y(x),x)=-(x+y(x)),y(x), singsol=all)

$$y(x) = e^{-\text{LambertW}\left(\frac{3e^xe^{-3}e^{-c_1}}{2}\right) + x - 3 - c_1} + 2 - x$$

Solution by Mathematica

Time used: 3.767 (sec). Leaf size: 33

 $DSolve[(3*x+3*y[x]-4)*y'[x]=-(x+y[x]),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{3}W\left(-e^{x-1+c_1}\right) - x + 2$$
$$y(x) \to 2 - x$$

$$y(x) \to 2 - x$$

2.17 problem 17

Internal problem ID [4594]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 17.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]'], [_Abe

$$x - xy^2 - (x + x^2y) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 56

 $dsolve((x-x*y(x)^2)=(x+x^2*y(x))*diff(y(x),x),y(x), singsol=all)$

$$x + \frac{\sqrt{(y(x) - 1)(y(x) + 1)} \ln \left(y(x) + \sqrt{y(x)^{2} - 1}\right)}{(y(x) - 1)(y(x) + 1)} - \frac{c_{1}}{\sqrt{y(x) - 1}\sqrt{y(x) + 1}} = 0$$

✓ Solution by Mathematica

Time used: 0.132 (sec). Leaf size: 55

 $DSolve[(x-x*y[x]^2)==(x+x^2*y[x])*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$x = -\frac{2 \arctan\left(\frac{\sqrt{1-y(x)^2}}{y(x)+1}\right)}{\sqrt{1-y(x)^2}} + \frac{c_1}{\sqrt{1-y(x)^2}}, y(x)$$

2.18 problem 18

Internal problem ID [4595]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 18.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$x-y-1+(4y+x-1)y'=0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve((x-y(x)-1)+(4*y(x)+x-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\frac{\tan\left(\operatorname{RootOf}\left(\ln\left(\frac{1}{\cos\left(\underline{Z}\right)^{2}}\right) - \underline{Z} + 2\ln\left(x - 1\right) + 2c_{1}\right)\right)(x - 1)}{2}$$

✓ Solution by Mathematica

Time used: 0.062 (sec). Leaf size: 58

 $DSolve[(x-y[x]-1)+(4*y[x]+x-1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[2\arctan\left(\frac{2y(x)-2x+2}{4y(x)+x-1}\right)+2\log\left(\frac{4}{5}\left(\frac{4y(x)^2}{(x-1)^2}+1\right)\right)+4\log(x-1)+5c_1=0, y(x)\right]$$

2.19 problem 19

Internal problem ID [4596]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 19.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$3y - 7x + 7 + (7y - 3x + 3)y' = 0$$

✓ Solution by Maple

Time used: 0.187 (sec). Leaf size: 706

dsolve((3*y(x)-7*x+7)+(7*y(x)-3*x+3)*diff(y(x),x)=0,y(x), singsol=all)

Expression too large to display

✓ Solution by Mathematica

Time used: 60.692 (sec). Leaf size: 7785

 $DSolve[(3*y[x]-7*x+7)+(7*y[x]-3*x+3)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Too large to display

2.20 problem 20

Internal problem ID [4597]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y(xy+1) + x(1 + xy + x^2y^2)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

 $dsolve(y(x)*(x*y(x)+1)+x*(1+x*y(x)+x^2*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = rac{\mathrm{e}^{\mathrm{RootOf}(-2\ln(x)\mathrm{e}^2 - Z} + 2c_1\mathrm{e}^2 - Z} + 2\sum_{z=2}^{Z} 2^{z-z} - 2e^{-z} - 1)}{x}$$

✓ Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 30

 $DSolve[y[x]*(x*y[x]+1)+x*(1+x*y[x]+x^2*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> Translations -> T$

Solve
$$\left[\frac{-\frac{1}{2x^2} - \frac{y(x)}{x}}{y(x)^2} + \log(y(x)) = c_1, y(x)\right]$$

2.21 problem 21

Internal problem ID [4598]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + y - y^3 x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

 $dsolve(diff(y(x),x)+y(x)=x*y(x)^3,y(x), singsol=all)$

$$y(x) = -\frac{2}{\sqrt{2 + 4e^{2x}c_1 + 4x}}$$

$$y(x) = \frac{2}{\sqrt{2 + 4e^{2x}c_1 + 4x}}$$

✓ Solution by Mathematica

Time used: 3.015 (sec). Leaf size: 50

DSolve[y'[x]+y[x]==x*y[x]^3,y[x],x,IncludeSingularSolutions \rightarrow True]

$$y(x) \to -\frac{1}{\sqrt{x + c_1 e^{2x} + \frac{1}{2}}}$$

$$y(x) \to \frac{1}{\sqrt{x + c_1 e^{2x} + \frac{1}{2}}}$$

$$y(x) \to 0$$

2.22 problem 22

Internal problem ID [4599]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 22.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Bernoulli]

$$y' + y - y^4 e^x = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 194

 $dsolve(diff(y(x),x)+y(x)=y(x)^4*exp(x),y(x), singsol=all)$

$$y(x) = \frac{2^{\frac{1}{3}} \left(\left(2c_1 e^{3x} + 3 e^x \right)^2 \right)^{\frac{1}{3}}}{2c_1 e^{3x} + 3 e^x}$$

$$y(x) = -\frac{2^{\frac{1}{3}} \left(\left(2c_1 e^{3x} + 3 e^x \right)^2 \right)^{\frac{1}{3}}}{2 \left(2c_1 e^{3x} + 3 e^x \right)} - \frac{i\sqrt{3} \, 2^{\frac{1}{3}} \left(\left(2c_1 e^{3x} + 3 e^x \right)^2 \right)^{\frac{1}{3}}}{2 \left(2c_1 e^{3x} + 3 e^x \right)}$$

$$y(x) = -\frac{2^{\frac{1}{3}} \left(\left(2c_1 e^{3x} + 3 e^x \right)^2 \right)^{\frac{1}{3}}}{2 \left(2c_1 e^{3x} + 3 e^x \right)} + \frac{i\sqrt{3} \, 2^{\frac{1}{3}} \left(\left(2c_1 e^{3x} + 3 e^x \right)^2 \right)^{\frac{1}{3}}}{4c_1 e^{3x} + 6 e^x}$$

✓ Solution by Mathematica

Time used: 4.724 (sec). Leaf size: 90

 $DSolve[y'[x]+y[x]==y[x]^4*Exp[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{\sqrt[3]{-2}}{\sqrt[3]{e^x (3 + 2c_1 e^{2x})}}$$
$$y(x) \to \frac{1}{\sqrt[3]{\frac{3e^x}{2} + c_1 e^{3x}}}$$
$$y(x) \to \frac{(-1)^{2/3}}{\sqrt[3]{\frac{3e^x}{2} + c_1 e^{3x}}}$$
$$y(x) \to 0$$

2.23 problem 23

Internal problem ID [4600]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 23.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$2y' + y - y^3(x - 1) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(2*diff(y(x),x)+y(x)=y(x)^3*(x-1),y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{e^x c_1 + x}}$$

$$y(x) = -\frac{1}{\sqrt{e^x c_1 + x}}$$

✓ Solution by Mathematica

Time used: 2.971 (sec). Leaf size: 40

 $DSolve[2*y'[x]+y[x]==y[x]^3*(x-1),y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{1}{\sqrt{x+c_1e^x}}$$

$$y(x) o rac{1}{\sqrt{x + c_1 e^x}}$$

$$y(x) \to 0$$

2.24 problem 24

Internal problem ID [4601]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' - 2y \tan(x) - y^2 \tan(x)^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(x),x)-2*y(x)*tan(x)=y(x)^2*tan(x)^2,y(x), singsol=all)$

$$y(x) = -\frac{3}{\cos(x)^{2} (\tan(x)^{3} - 3c_{1})}$$

✓ Solution by Mathematica

Time used: 0.517 (sec). Leaf size: 30

DSolve[y'[x]-2*y[x]*Tan[x]==y[x]^2*Tan[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{-\frac{1}{3}\sin^2(x)\tan(x) + c_1\cos^2(x)}$$
$$y(x) \to 0$$

2.25 problem 25

Internal problem ID [4602]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [Bernoulli]

$$y' + y \tan(x) - y^3 \sec(x)^4 = 0$$

Solution by Maple

Time used: 0.032 (sec). Leaf size: 92

 $dsolve(diff(y(x),x)+y(x)*tan(x)=y(x)^3*sec(x)^4,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{\cos(x)(c_1\cos(x) - 2\sin(x))(\sin(x)^4 + 2\cos(x)^2 - 1)}}{\cos(x)(c_1\cos(x) - 2\sin(x))}$$
$$y(x) = -\frac{\sqrt{\cos(x)(c_1\cos(x) - 2\sin(x))(\sin(x)^4 + 2\cos(x)^2 - 1)}}{\cos(x)(c_1\cos(x) - 2\sin(x))}$$

Solution by Mathematica

Time used: 4.06 (sec). Leaf size: 48

DSolve[y'[x]+y[x]*Tan[x]==y[x]^3*Sec[x]^4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{\sqrt{\sec^2(x)(-2\tan(x) + c_1)}}$$
$$y(x) \to \frac{1}{\sqrt{\sec^2(x)(-2\tan(x) + c_1)}}$$
$$y(x) \to 0$$

2.26 problem 26

Internal problem ID [4603]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$(-x^2 + 1) y' - xy - 1 = 0$$

/ Solution by Maple

Time used: 0.0 (sec). Leaf size: 48

 $dsolve((1-x^2)*diff(y(x),x)=1+x*y(x),y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{(x-1)(x+1)} \ln(x+\sqrt{x^2-1})}{(x-1)(x+1)} + \frac{c_1}{\sqrt{x-1}\sqrt{x+1}}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 32

 $DSolve[(1-x^2)*y'[x]==1+x*y[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) o rac{-\operatorname{arctanh}\left(rac{x}{\sqrt{x^2-1}}
ight) + c_1}{\sqrt{x^2-1}}$$

2.27 problem 27

Internal problem ID [4604]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xyy' - (x+1)\sqrt{y-1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(x*y(x)*diff(y(x),x)-(1+x)*sqrt(y(x)-1)=0,y(x), singsol=all)

$$x + \ln(x) - \frac{2\sqrt{y(x) - 1}(y(x) + 2)}{3} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 5.484 (sec). Leaf size: 475

DSolve[x*y[x]*y'[x]-(1+x)*Sqrt[y[x]-1]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) & \to \frac{1}{2}\sqrt[3]{9(x+c_1)^2 + 9\log(x)(\log(x) + 2(x+c_1)) + 3\sqrt{(x+\log(x)+c_1)^2(9(x+c_1)^2 + 9\log(x)(\log(x) + 2(x+c_1)))} \\ & + \frac{2}{\sqrt[3]{9(x+c_1)^2 + 9\log(x)(\log(x) + 2(x+c_1)) + 3\sqrt{(x+\log(x)+c_1)^2(9(x+c_1)^2 + 9\log(x)(\log(x) + 2(x+c_1)))} \\ & - 1 \\ y(x) & \to \frac{1}{4}i\left(\sqrt{3} + i\right)\sqrt[3]{9(x+c_1)^2 + 9\log(x)(\log(x) + 2(x+c_1)) + 3\sqrt{(x+\log(x)+c_1)^2(9(x+c_1)^2 + 9\log(x)(\log(x) + 2(x+c_1)))} \\ & + \frac{-1 - i\sqrt{3}}{\sqrt[3]{9(x+c_1)^2 + 9\log(x)(\log(x) + 2(x+c_1)) + 3\sqrt{(x+\log(x)+c_1)^2(9(x+c_1)^2 + 9\log(x)(\log(x) + 2(x+c_1)))} \\ & - 1 \\ y(x) & \to -\frac{1}{4}i\left(\sqrt{3} - i\right)\sqrt[3]{9(x+c_1)^2 + 9\log(x)(\log(x) + 2(x+c_1)) + 3\sqrt{(x+\log(x)+c_1)^2(9(x+c_1)^2 + 9\log(x)(\log(x) + 2(x+c_1)))} \\ & + \frac{i(\sqrt{3}+i)}{\sqrt[3]{9(x+c_1)^2 + 9\log(x)(\log(x) + 2(x+c_1)) + 3\sqrt{(x+\log(x)+c_1)^2(9(x+c_1)^2 + 9\log(x)(\log(x) + 2(x+c_1)))} \\ & - 1 \\ y(x) & \to 1 \end{split}$$

2.28 problem 28

Internal problem ID [4605]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 28.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$x^{2} - 2xy + 5y^{2} - (y^{2} + 2xy + x^{2})y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

 $dsolve((x^2-2*x*y(x)+5*y(x)^2)=(x^2+2*x*y(x)+y(x)^2)*diff(y(x),x),y(x), singsol=all)$

$$y(x) = e^{\text{RootOf}(\ln(x)e^2 - Z + c_1e^2 - Z + -Ze^2 - Z - 4e^{-Z} - 2)}x + x$$

✓ Solution by Mathematica

Time used: 0.346 (sec). Leaf size: 41

 $DSolve[(x^2-2*x*y[x]+5*y[x]^2) == (x^2+2*x*y[x]+y[x]^2)*y'[x],y[x],x,IncludeSingularSolutions - (x^2+2*x*y[x]+y[x]^2)*y'[x],x,IncludeSingularSolutions - (x^2+2*x*y[x]+y[x]^2)*y'[x],x,IncludeSingularSolutions - (x^2+2*x*y[x]^2)*y'[x],x,IncludeSingularSolutions - (x^2+2*x*y[x]^2)*y'[x]^2)*y'[x]^2)*y'[x]^2$

$$\operatorname{Solve}\left[\frac{2-\frac{4y(x)}{x}}{\left(\frac{y(x)}{x}-1\right)^2} + \log\left(\frac{y(x)}{x}-1\right) = -\log(x) + c_1, y(x)\right]$$

2.29 problem 29

Internal problem ID [4606]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 29.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' - y \cot(x) - y^2 \sec(x)^2 = 0$$

With initial conditions

$$\left[y\Big(\frac{\pi}{4}\Big) = -1\right]$$

✓ Solution by Maple

Time used: 0.469 (sec). Leaf size: 18

 $dsolve([diff(y(x),x)-y(x)*cot(x)=y(x)^2*sec(x)^2,y(1/4*Pi) = -1],y(x), singsol=all)$

$$y(x) = \frac{2\sin(x)}{\sqrt{2} - 2\sec(x)}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y'[x]-y[x]*Cot[x]==y[x]^2*Sec[x]^2,\{y[Pi/2]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow \{x,y,y,y\}\}$

{}

2.30 problem 30

Internal problem ID [4607]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y + \left(x^2 - 4x\right)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(y(x)+(x^2-4*x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1 x^{\frac{1}{4}}}{(x-4)^{\frac{1}{4}}}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 27

 $DSolve[y[x]+(x^2-4*x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1 \sqrt[4]{x}}{\sqrt[4]{4-x}}$$

$$y(x) \to 0$$

2.31 problem 31

Internal problem ID [4608]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 31.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - y \tan(x) - \cos(x) + 2\sin(x) x = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{6}\right) = 0\right]$$

/ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve([diff(y(x),x)-y(x)*tan(x)=cos(x)-2*x*sin(x),y(1/6*Pi) = 0],y(x), singsol=all)

$$y(x) = \frac{(4x\cos(2x) - \pi + 4x)\sec(x)}{8}$$

✓ Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 17

$$y(x) \to x \cos(x) - \frac{1}{8}\pi \sec(x)$$

2.32 problem 32

Internal problem ID [4609]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 32.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$y' - \frac{2xy + y^2}{x^2 + 2xy} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 380

 $dsolve(diff(y(x),x)=(2*x*y(x)+y(x)^2)/(x^2+2*x*y(x)),y(x), singsol=all)$

$$\begin{split} y(x) &= \frac{12^{\frac{1}{3}} \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}}{6c_1} + \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} + x} \\ y(x) &= -\frac{12^{\frac{1}{3}} \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}}{12c_1} - \frac{x12^{\frac{2}{3}}}{12 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6c_1} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{12 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{12 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{12 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6c_1} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}}} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}}} - \frac{x12^{\frac{2}{3}}}}{6 \left(x \left(\sqrt{3} \sqrt{\frac{x(27c_1x-4)}{c_1}} + 9x \right) c_1^2 \right)^{\frac{1}{3}}}} - \frac$$

Solution by Mathematica

Time used: 44.505 (sec). Leaf size: 404

 $DSolve[y'[x] == (2*x*y[x]+y[x]^2)/(x^2+2*x*y[x]),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) & \to -\frac{\sqrt[3]{\frac{2}{3}}e^{c_1}x}{\sqrt[3]{\sqrt{3}\sqrt{e^{2c_1}x^3\left(27x+4e^{c_1}\right)}} - 9e^{c_1}x^2}}{\sqrt[3]{\sqrt{3}\sqrt{e^{2c_1}x^3\left(27x+4e^{c_1}\right)}} - 9e^{c_1}x^2}} + x \\ y(x) & \to \frac{\left(1+i\sqrt{3}\right)e^{c_1}x}{2^{2/3}\sqrt[3]{\sqrt{3}\sqrt{e^{2c_1}x^3\left(27x+4e^{c_1}\right)}} - 27e^{c_1}x^2}}{2^{\sqrt[3]{2}3^{2/3}}} \\ & + \frac{i\left(\sqrt{3}+i\right)\sqrt[3]{\sqrt{3}\sqrt{e^{2c_1}x^3\left(27x+4e^{c_1}\right)}} - 9e^{c_1}x^2}}{2\sqrt[3]{2}3^{2/3}} + x \\ y(x) & \to \frac{\left(1-i\sqrt{3}\right)e^{c_1}x}{2^{2/3}\sqrt[3]{\sqrt{3}\sqrt{e^{2c_1}x^3\left(27x+4e^{c_1}\right)}} - 27e^{c_1}x^2}}{2\sqrt[3]{2}3^{2/3}} \\ & - \frac{\left(1+i\sqrt{3}\right)\sqrt[3]{\sqrt{3}\sqrt{e^{2c_1}x^3\left(27x+4e^{c_1}\right)}} - 9e^{c_1}x^2}}{2\sqrt[3]{2}3^{2/3}} + x \end{split}$$

2.33 problem 33

Internal problem ID [4610]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 33.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x^2 + 1) y' - x(1 + y) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve((1+x^2)*diff(y(x),x)=x*(1+y(x)),y(x), singsol=all)$

$$y(x) = c_1 \sqrt{x^2 + 1} - 1$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 24

 $DSolve[(1+x^2)*y'[x] == x*(1+y[x]), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -1 + c_1 \sqrt{x^2 + 1}$$

 $y(x) \rightarrow -1$

2.34 problem 34

Internal problem ID [4611]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 34.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + 2y - 3x + 1 = 0$$

With initial conditions

$$[y(2) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

dsolve([x*diff(y(x),x)+2*y(x)=3*x-1,y(2) = 1],y(x), singsol=all)

$$y(x) = x - \frac{1}{2} - \frac{2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 15

 $DSolve[\{x*y'[x]+2*y[x]==3*x-1,\{y[2]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{2}{x^2} + x - \frac{1}{2}$$

2.35 problem 35

Internal problem ID [4612]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 35.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `2nd\ type$

$$x^2y' - y^2 + xyy' = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.187 (sec). Leaf size: 13

 $dsolve([x^2*diff(y(x),x)=y(x)^2-x*y(x)*diff(y(x),x),y(1) = 1],y(x), singsol=all)$

$$y(x) = \text{LambertW}\left(\frac{e}{x}\right)x$$

✓ Solution by Mathematica

Time used: 2.205 (sec). Leaf size: 13

 $DSolve[\{x^2*y'[x]==y[x]^2-x*y[x]*y'[x],\{y[1]==1\}\},y[x],x,IncludeSingularSolutions] \rightarrow True]$

$$y(x) \to xW\left(\frac{e}{x}\right)$$

2.36 problem 36

Internal problem ID [4613]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 36.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - e^{3x - 2y} = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 15

dsolve([diff(y(x),x)=exp(3*x-2*y(x)),y(0) = 0],y(x), singsol=all)

$$y(x) = -\frac{\ln(3)}{2} + \frac{\ln(1+2e^{3x})}{2}$$

✓ Solution by Mathematica

Time used: 0.845 (sec). Leaf size: 23

 $DSolve[\{y'[x] == Exp[3*x-2*y[x]], \{y[0] == 0\}\}, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{1}{2} \log \left(\frac{1}{3} \left(2e^{3x} + 1 \right) \right)$$

2.37 problem 37

Internal problem ID [4614]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 37.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' + \frac{y}{x} - \sin(2x) = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{4}\right) = 2\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

dsolve([diff(y(x),x)+1/x*y(x)=sin(2*x),y(1/4*Pi) = 2],y(x), singsol=all)

$$y(x) = \frac{-2x\cos(2x) + 2\pi + \sin(2x) - 1}{4x}$$

✓ Solution by Mathematica

Time used: 0.091 (sec). Leaf size: 28

 $DSolve[\{y'[x]+1/x*y[x]==Sin[2*x],\{y[Pi/4]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{\sin(2x) - 2x\cos(2x) + 2\pi - 1}{4x}$$

2.38 problem 38

Internal problem ID [4615]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 38.

ODE order: 1.
ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `2nd\ type$

$$y^2 + x^2y' - xyy' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(y(x)^2+x^2*diff(y(x),x)=x*y(x)*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \mathrm{e}^{-\operatorname{LambertW}\left(-rac{\mathrm{e}^{-c_1}}{x}
ight) - c_1}$$

✓ Solution by Mathematica

Time used: 1.993 (sec). Leaf size: 25

 $DSolve[y[x]^2+x^2*y'[x]==x*y[x]*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -xW\left(-\frac{e^{-c_1}}{x}\right)$$

 $y(x) \to 0$

2.39 problem 39

Internal problem ID [4616]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 39.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _Bernoulli]

$$2xyy' - x^2 + y^2 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

 $dsolve(2*x*y(x)*diff(y(x),x)=x^2-y(x)^2,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{3}\sqrt{x(x^3 + 3c_1)}}{3x}$$

$$y(x) = \frac{\sqrt{3}\sqrt{x(x^3 + 3c_1)}}{3x}$$

Solution by Mathematica

Time used: 0.188 (sec). Leaf size: 56

DSolve[2*x*y[x]*y'[x]==x^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sqrt{x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$
$$y(x) \to \frac{\sqrt{x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$

$$y(x) \to \frac{\sqrt{x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$

2.40 problem 40

Internal problem ID [4617]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 40.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ C'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class',\ `2nd\ type',\ `class',\ `2nd\ type',\ `class',\ `2nd\ type',\ `2nd\$

$$y' - \frac{-2y + x + 1}{2x - 4y} = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 17

dsolve([diff(y(x),x)=(x-2*y(x)+1)/(2*x-4*y(x)),y(1) = 1],y(x), singsol=all)

$$y(x) = \frac{x}{2} + \frac{\sqrt{-2x+3}}{2}$$

✓ Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 24

 $DSolve[\{y'[x]==(x-2*y[x]+1)/(2*x-4*y[x]),\{y[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2} \left(x - i\sqrt{2x - 3} \right)$$

2.41 problem 41

Internal problem ID [4618]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 41.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$(-x^3+1)y' + x^2y - x^2(-x^3+1) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve((1-x^3)*diff(y(x),x)+x^2*y(x)=x^2*(1-x^3),y(x), singsol=all)$

$$y(x) = \frac{x^3}{2} - \frac{1}{2} + (x^3 - 1)^{\frac{1}{3}} c_1$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 27

 $DSolve[(1-x^3)*y'[x]+x^2*y[x]==x^2*(1-x^3),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2} \left(x^3 + 2c_1 \sqrt[3]{x^3 - 1} - 1 \right)$$

2.42 problem 42

Internal problem ID [4619]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 42.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' + \frac{y}{x} - \sin(x) = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right) = 0\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve([diff(y(x),x)+y(x)/x=sin(x),y(1/2*Pi) = 0],y(x), singsol=all)

$$y(x) = \frac{\sin(x) - \cos(x)x - 1}{x}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 18

 $DSolve[\{y'[x]+y[x]/x==Sin[x],\{y[Pi/2]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{\sin(x) - x\cos(x) - 1}{x}$$

2.43 problem 43

Internal problem ID [4620]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 43.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' + x + xy^2 = 0$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve([diff(y(x),x)+x+x*y(x)^2=0,y(1) = 0],y(x), singsol=all)$

$$y(x) = -\tan\left(\frac{x^2}{2} - \frac{1}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.209 (sec). Leaf size: 17

 $DSolve[\{y'[x]+x+x*y[x]^2==0,\{y[1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \tan\left(\frac{1}{2}(1-x^2)\right)$$

2.44 problem 44

Internal problem ID [4621]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 44.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' + \left(\frac{1}{x} - \frac{2x}{-x^2 + 1}\right)y - \frac{1}{-x^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(diff(y(x),x)+(1/x-(2*x)/(1-x^2))*y(x)=1/(1-x^2),y(x), singsol=all)$

$$y(x) = rac{-rac{x^2}{2} + c_1}{x(x^2 - 1)}$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 25

 $DSolve[y'[x]+(1/x-(2*x)/(1-x^2))*y[x]==1/(1-x^2),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^2 + 2c_1}{2x - 2x^3}$$

2.45 problem 45

Internal problem ID [4622]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 45.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$(x^{2}+1) y' + xy - (x^{2}+1)^{\frac{3}{2}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve((1+x^2)*diff(y(x),x)+x*y(x)=(1+x^2)^(3/2),y(x), singsol=all)$

$$y(x) = \frac{\frac{1}{3}x^3 + x + c_1}{\sqrt{x^2 + 1}}$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 29

 $DSolve[(1+x^2)*y'[x]+x*y[x]==(1+x^2)^(3/2),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^3 + 3x + 3c_1}{3\sqrt{x^2 + 1}}$$

2.46 problem 46

Internal problem ID [4623]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 46.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$x(1+y^2) - y(x^2+1)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(x*(1+y(x)^2)-y(x)*(1+x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{c_1 x^2 + c_1 - 1}$$
$$y(x) = -\sqrt{c_1 x^2 + c_1 - 1}$$

✓ Solution by Mathematica

Time used: 0.472 (sec). Leaf size: 61

 $DSolve[x*(1+y[x]^2)-y[x]*(1+x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\sqrt{-1 + e^{2c_1}(x^2 + 1)}$$

$$y(x) \to \sqrt{-1 + e^{2c_1}(x^2 + 1)}$$

$$y(x) \to -i$$

$$y(x) \to i$$

2.47 problem 47

Internal problem ID [4624]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 47.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left| \frac{r \tan \left(\theta \right) r'}{a^2 - r^2} - 1 = 0 \right|$$

With initial conditions

$$\left[r\left(\frac{\pi}{4}\right) = 0\right]$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 37

 $dsolve([r(theta)*tan(theta)/(a^2-r(theta)^2)*diff(r(theta),theta)=1,r(1/4*Pi)=0],r(theta),$

$$r(\theta) = -\frac{a\sqrt{-4\cos(\theta)^2 + 2}\csc(\theta)}{2}$$
$$r(\theta) = \frac{a\sqrt{-4\cos(\theta)^2 + 2}\csc(\theta)}{2}$$

✓ Solution by Mathematica

Time used: 0.153 (sec). Leaf size: 51

 $DSolve[{r[\[Theta]]*Tan[\[Theta]]/(a^2-r[\[Theta]]^2)*r'[\[Theta]]==1,{r[Pi/4]==0}},r[\[Theta]]$

$$r(\theta) \to -\sqrt{rac{a^2\cos(2\theta)}{\cos(2\theta) - 1}}$$

$$r(\theta) \to \sqrt{\frac{a^2 \cos(2\theta)}{\cos(2\theta) - 1}}$$

2.48 problem 48

Internal problem ID [4625]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 48.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' + y \cot(x) - \cos(x) = 0$$

With initial conditions

$$[y(0) = 0]$$

Solution by Maple

Time used: 0.094 (sec). Leaf size: 8

dsolve([diff(y(x),x)+y(x)*cot(x)=cos(x),y(0) = 0],y(x), singsol=all)

$$y(x) = \frac{\sin(x)}{2}$$

✓ Solution by Mathematica

Time used: 0.125 (sec). Leaf size: 11

$$y(x) \to \frac{\sin(x)}{2}$$

2.49 problem 49

Internal problem ID [4626]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 24. First order differential equations. Further problems 24. page 1068

Problem number: 49.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y' + \frac{y}{x} - xy^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)+y(x)/x=x*y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{1}{(-x + c_1)x}$$

✓ Solution by Mathematica

Time used: 0.122 (sec). Leaf size: 22

DSolve[y'[x]+y[x]/x==x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{x(-x+c_1)}$$
$$y(x) \to 0$$

78

79

80

3	Program 25. Second order differential equations.														
	Test Excercise 25. page 1093														
3.1	problem 1	3													
3.2	problem 2	4													
3.3	problem 3	5													
3.4	problem 4	6													
3.5	problem 5	7													

3.6

3.7

3.8

3.1 problem 1

Internal problem ID [4627]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 2y - 8 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=8,y(x), singsol=all)

$$y(x) = e^{2x}c_2 + e^{-x}c_1 - 4$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 23

DSolve[y''[x]-y'[x]-2*y[x]==8,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^{-x} + c_2 e^{2x} - 4$$

3.2 problem 2

Internal problem ID [4628]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y - 10e^{3x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-4*y(x)=10*exp(3*x),y(x), singsol=all)

$$y(x) = e^{2x}c_2 + e^{-2x}c_1 + 2e^{3x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 28

DSolve[y''[x]-4*y[x]==10*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} \left(e^{4x} (2e^x + c_1) + c_2 \right)$$

3.3 problem 3

Internal problem ID [4629]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + y - e^{-2x} = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=exp(-2*x),y(x), singsol=all)

$$y(x) = c_2 e^{-x} + e^{-x} x c_1 + e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 24

 $DSolve[y''[x]+2*y'[x]+y[x]==Exp[-2*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-2x}(1 + e^x(c_2x + c_1))$$

3.4 problem 4

Internal problem ID [4630]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 25y - 5x^2 - x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(x),x$2)+25*y(x)=5*x^2+x,y(x), singsol=all)$

$$y(x) = \sin(5x) c_2 + \cos(5x) c_1 + \frac{x^2}{5} + \frac{x}{25} - \frac{2}{125}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: $34\,$

DSolve[y''[x]+25*y[x]==5*x^2+x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{125}(5x-1)(5x+2) + c_1\cos(5x) + c_2\sin(5x)$$

3.5 problem 5

Internal problem ID [4631]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y - 4\sin(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=4*sin(x),y(x), singsol=all)

$$y(x) = e^x c_2 + e^x x c_1 + 2\cos(x)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 21

 $DSolve[y''[x]-2*y'[x]+y[x]==4*Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow 2\cos(x) + e^x(c_2x + c_1)$$

3.6 problem 6

Internal problem ID [4632]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 5y - 2e^{-2x} = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(x),x\$2)+4*diff(y(x),x)+5*y(x)=2*exp(-2*x),y(0) = 1, D(y)(0) = -2],y(x), singso(x) = 0

$$y(x) = -e^{-2x}(\cos(x) - 2)$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 16

$$y(x) \to -e^{-2x}(\cos(x) - 2)$$

3.7 problem 7

Internal problem ID [4633]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3y'' - 2y' - y - 2x + 3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(3*diff(y(x),x\$2)-2*diff(y(x),x)-y(x)=2*x-3,y(x), singsol=all)

$$y(x) = e^{-\frac{x}{3}}c_2 + e^x c_1 - 2x + 7$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

DSolve [3*y''[x]-2*y'[x]-y[x]==2*x-3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -2x + c_1 e^{-x/3} + c_2 e^x + 7$$

3.8 problem 8

Internal problem ID [4634]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Test Excercise 25. page 1093

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 6y' + 8y - 8e^{4x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-6*diff(y(x),x)+8*y(x)=8*exp(4*x),y(x), singsol=all)

$$y(x) = \left(\frac{e^{2x}(8x + c_1 - 4)}{2} + c_2\right)e^{2x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 27

DSolve[y''[x]-6*y'[x]+8*y[x]==8*Exp[4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{2x} + e^{4x} (4x - 2 + c_2)$$

4	Program 25. Second order differential equations.
	Further problems 25. page 1094

4.1	problem 1.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		8	2
4.2	problem 2 .																																		8	3
4.3	problem 3 .																																		8	4
4.4	problem 4 .																																		8	5
4.5	problem 5 .																																		8	6
4.6	problem 6 .																																		8	7
4.7	problem 7 .																																		8	8
4.8	problem 8 .																																		8	9
4.9	problem 9 .																																		9	0
4.10	problem 10																																		9	1
4.11	problem 12																																		9	2
4.12	problem 13																																		9	3
4.13	problem 14																																		9	4
4.14	problem 15																																	,	9	5
4.15	problem 16																																		9	6
4.16	problem 17																																		9	7
4.17	problem 18																																	,	9	8
4.18	problem 19																																		9	9
4.19	problem 20																																		10	0

4.1 problem 1

Internal problem ID [4635]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2y'' - 7y' - 4y - e^{3x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(2*diff(y(x),x\$2)-7*diff(y(x),x)-4*y(x)=exp(3*x),y(x), singsol=all)

$$y(x) = c_2 e^{4x} + e^{-\frac{x}{2}} c_1 - \frac{e^{3x}}{7}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 33

 $DSolve[2*y''[x]-7*y'[x]-4*y[x] == Exp[3*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{e^{3x}}{7} + c_1 e^{-x/2} + c_2 e^{4x}$$

4.2 problem 2

Internal problem ID [4636]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 6y' + 9y - 54x - 18 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)-6*diff(y(x),x)+9*y(x)=54*x+18,y(x), singsol=all)

$$y(x) = e^{3x}c_2 + e^{3x}xc_1 + 6x + 6$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 24

DSolve[y''[x]-6*y'[x]+9*y[x]==54*x+18,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 6(x+1) + e^{3x}(c_2x + c_1)$$

4.3 problem 3

Internal problem ID [4637]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 5y' + 6y - 100\sin(4x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)-5*diff(y(x),x)+6*y(x)=100*sin(4*x),y(x), singsol=all)

$$y(x) = e^{2x}c_2 + c_1e^{3x} - 2\sin(4x) + 4\cos(4x)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 33

DSolve[y''[x]-5*y'[x]+6*y[x]==100*Sin[4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -2\sin(4x) + 4\cos(4x) + e^{2x}(c_2e^x + c_1)$$

4.4 problem 4

Internal problem ID [4638]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y - 4\sinh(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

 $\label{eq:diff} $$ $ dsolve(diff(y(x),x)+2*diff(y(x),x)+y(x)=4*sinh(x),y(x), singsol=all)$ $$ $ dsolve(diff(y(x),x)+2*diff(y(x),x)+y(x)=4*sinh(x),y(x), singsol=all). $$$

$$y(x) = c_2 e^{-x} + e^{-x} x c_1 + \frac{(-2x^2 + 2x + 1) e^{-x}}{2} + \frac{e^x}{2}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: $30\,$

DSolve[y''[x]+2*y'[x]+y[x]==4*Sinh[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^x}{2} + e^{-x}(x(-x+c_2) + c_1)$$

4.5 problem 5

Internal problem ID [4639]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 2y - 2\cosh(2x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

 $\label{eq:diff} \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) - 2*\mbox{y}(\mbox{x}) = 2*\mbox{cosh}(2*\mbox{x}),\mbox{y}(\mbox{x}),\mbox{y}(\mbox{x}),\mbox{singsol=all}) \\ \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) - 2*\mbox{y}(\mbox{x}) = 2*\mbox{cosh}(2*\mbox{x}),\mbox{y}(\mbox{x}),\mbox{y}(\mbox{x}),\mbox{y}(\mbox{x}),\mbox{y}(\mbox{x}) + \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{y}(\mbox{x})) + \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{diff}(\mbox{x}) + \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{diff}(\mbox{x}) + \mbox{diff}$

$$y(x) = e^x c_2 + e^{-2x} c_1 + \frac{(-12x - 7)e^{-2x}}{36} + \frac{e^{2x}}{4}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: $38\,$

 $DSolve[y''[x]+y'[x]-2*y[x]==2*Cosh[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o \frac{e^{2x}}{4} + e^{-2x} \left(-\frac{x}{3} - \frac{1}{9} + c_1 \right) + c_2 e^x$$

4.6 problem 6

Internal problem ID [4640]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' + 10y - 20 + e^{2x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve(diff(y(x),x\$2)-diff(y(x),x)+10*y(x)=20-exp(2*x),y(x), singsol=all)

$$y(x) = e^{\frac{x}{2}} \sin\left(\frac{\sqrt{39}x}{2}\right) c_2 + e^{\frac{x}{2}} \cos\left(\frac{\sqrt{39}x}{2}\right) c_1 + 2 - \frac{e^{2x}}{12}$$

✓ Solution by Mathematica

Time used: 0.486 (sec). Leaf size: 53

 $\label{eq:DSolve} DSolve[y''[x]-y'[x]+10*y[x]==20-Exp[2*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{e^{2x}}{12} + e^{x/2} \left(c_2 \cos \left(\frac{\sqrt{39}x}{2} \right) + c_1 \sin \left(\frac{\sqrt{39}x}{2} \right) \right) + 2$$

4.7 problem 7

Internal problem ID [4641]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 4y - 2\cos(x)^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$2)+4*\text{diff}(y(x),x)+4*y(x)=2*\cos(x)^2,y(x), \text{ singsol=all}) \\$

$$y(x) = c_2 e^{-2x} + e^{-2x} x c_1 + \frac{1}{4} + \frac{\sin(2x)}{8}$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 29

 $DSolve[y''[x]+4*y'[x]+4*y[x]==2*Cos[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{8} (\sin(2x) + 8e^{-2x}(c_2x + c_1) + 2)$$

4.8 problem 8

Internal problem ID [4642]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y' + 3y - x - e^{2x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+3*y(x)=x+exp(2*x),y(x), singsol=all)

$$y(x) = e^x c_2 + c_1 e^{3x} - e^{2x} + \frac{x}{3} + \frac{4}{9}$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 34

 $DSolve[y''[x]-4*y'[x]+3*y[x] == x+Exp[2*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{9}(3x+4) + e^x(e^x(-1+c_2e^x)+c_1)$$

4.9 problem 9

Internal problem ID [4643]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + 3y - x^2 + 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve(diff(y(x),x$2)-2*diff(y(x),x)+3*y(x)=x^2-1,y(x), singsol=all)$

$$y(x) = e^x \sin(\sqrt{2}x) c_2 + e^x \cos(\sqrt{2}x) c_1 + \frac{x^2}{3} + \frac{4x}{9} - \frac{7}{27}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 46

 $DSolve[y''[x]-2*y'[x]+3*y[x]==x^2-1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{9}x(3x+4) + e^x(c_2\cos(\sqrt{2}x) + c_1\sin(\sqrt{2}x)) - \frac{7}{27}$$

4.10 problem 10

Internal problem ID [4644]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 9y - e^{3x} - \sin(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$2)-9*y(x)=exp(3*x)+sin(x),y(x), singsol=all)

$$y(x) = e^{-3x}c_2 + c_1e^{3x} + \frac{(-1+6x)e^{3x}}{36} - \frac{\sin(x)}{10}$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 37

 $DSolve[y''[x]-9*y[x]==Exp[3*x]+Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{\sin(x)}{10} + e^{3x} \left(\frac{x}{6} - \frac{1}{36} + c_1\right) + c_2 e^{-3x}$$

4.11 problem 12

Internal problem ID [4645]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + 4x' + 3x - e^{-3t} = 0$$

With initial conditions

$$\left[x(0) = \frac{1}{2}, x'(0) = -2 \right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

dsolve([diff(x(t),t\$2)+4*diff(x(t),t)+3*x(t)=exp(-3*t),x(0) = 1/2, D(x)(0) = -2],x(t), singso

$$x(t) = -\frac{e^{-3t}(t-1)}{2}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 17

$$x(t) \to -\frac{1}{2}e^{-3t}(t-1)$$

4.12 problem 13

Internal problem ID [4646]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 5y - 6\sin(t) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+5*y(t)=6*sin(t),y(t), singsol=all)

$$y(t) = e^{-2t} \sin(t) c_2 + e^{-2t} \cos(t) c_1 - \frac{3\cos(t)}{4} + \frac{3\sin(t)}{4}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 34

 $DSolve[y''[t]+4*y'[t]+5*y[t]==6*Sin[t],y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\frac{3}{4}(\cos(t) - \sin(t)) + e^{-2t}(c_2 \cos(t) + c_1 \sin(t))$$

4.13 problem 14

Internal problem ID [4647]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' - 3x' + 2x - \sin(t) = 0$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve([diff(x(t),t\$2)-3*diff(x(t),t)+2*x(t)=sin(t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = \frac{e^{2t}}{5} + \frac{3\cos(t)}{10} + \frac{\sin(t)}{10} - \frac{e^t}{2}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 27

 $DSolve[\{x''[t]-3*x'[t]+2*x[t]==Sin[t],\{x[0]==0,x'[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow \{x''[t]-3*x'[t]+2*x[t]==Sin[t],\{x[0]==0,x'[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow \{x''[t]-3*x'[t]+2*x[t]==Sin[t],\{x[0]==0,x'[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow \{x''[t]-3*x'[t]+2*x[t]==Sin[t],\{x[0]==0,x'[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow \{x''[t]-3*x'[t]+2*x[t]==Sin[t],\{x''[t]==0,x''[t]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow \{x''[t]-3*x'[t]+2*x[t]==Sin[t],\{x''[t]==0,x''[t]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow \{x''[t]-3*x'[t]=x''[t]=$

$$x(t) \to \frac{1}{10} (e^t (2e^t - 5) + \sin(t) + 3\cos(t))$$

4.14 problem 15

Internal problem ID [4648]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y - 3\sin(x) = 0$$

With initial conditions

$$\left[y(0) = -\frac{9}{10}, y'(0) = -\frac{7}{10}\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve([diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=3*sin(x),y(0) = -9/10, D(y)(0) = -7/10],y(x), sin(x)=0

$$y(x) = e^{-2x} - \frac{9\cos(x)}{10} + \frac{3\sin(x)}{10} - e^{-x}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 29

 $DSolve[\{y''[x]+3*y'[x]+2*y[x]==3*Sin[x],\{y[0]==-9/10,y'[0]==-7/10\}\},y[x],x,IncludeSingularSolve[\{y''[x]+3*y'[x]+2*y[x]==3*Sin[x],\{y[0]==-9/10,y'[0]==-7/10\}\},y[x],x,IncludeSingularSolve[\{y''[x]+3*y'[x]+2*y[x]==3*Sin[x],\{y[0]==-9/10,y'[0]==-7/10\}\},y[x],x,IncludeSingularSolve[\{y''[x]+3*y'[x]+2*y[x]==3*Sin[x],\{y[0]==-9/10,y'[0]==-7/10\}\},y[x],x,IncludeSingularSolve[\{y''[x]+3*y'[x]+2*y[x]==3*Sin[x],\{y[0]==-9/10,y'[0]==-7/10\}\},y[x],x,IncludeSingularSolve[\{y''[x]+3*y'[x]+2*y[x]==3*Sin[x],\{y[0]==-9/10,y'[0]==-7/10\}\},y[x],x,IncludeSingularSolve[\{y''[x]+3*y'[x]+2*y[x]==3*Sin[x],\{y[0]==-9/10,y'[0]==-7/10\}\},y[x],x,IncludeSingularSolve[\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''[x]+3*y'[x]=3*Sin[x],\{y''(x)+3*y'(x)=3*Sin[x],\{y''(x)+3*y'(x)=3*Sin[x],\{y''(x)+3*y'(x)=3*Sin[x],\{y''(x)+3*y'(x)=3*Sin[x],\{y''(x)+3*y'(x)=3*Sin[x],\{y''(x)+3*y'(x)=3*Sin[x],\{y''(x)+3*y'(x)=3*Sin[x],\{y''(x)+3*y'(x)=3*Sin[x],\{y''(x)+3*y'(x)=3*Sin[x],\{y''(x)+3*y'(x)=3*Sin[x],\{y''(x)+3*y'(x)=3*Sin[x],\{y''(x)+3*y'(x$

$$y(x) \to e^{-2x} + \frac{3\sin(x)}{10} - \frac{9\cos(x)}{10} + \sinh(x) - \cosh(x)$$

4.15 problem 16

Internal problem ID [4649]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 10y - 50x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+10*y(x)=50*x,y(x), singsol=all)

$$y(x) = e^{-3x} \sin(x) c_2 + e^{-3x} \cos(x) c_1 + 5x - 3$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 27

DSolve[y''[x]+6*y'[x]+10*y[x]==50*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 5x + e^{-3x}(c_2\cos(x) + c_1\sin(x)) - 3$$

4.16 problem 17

Internal problem ID [4650]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 2x' + 2x - 85\sin(3t) = 0$$

With initial conditions

$$[x(0) = 0, x'(0) = -20]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

 $\frac{dsolve([diff(x(t),t\$2)+2*diff(x(t),t)+2*x(t)=85*sin(3*t),x(0) = 0, D(x)(0) = -20]}{(x(t),t\$2)+2*diff(x(t),t)+2*x(t)=85*sin(3*t),x(0) = 0, D(x)(0) = -20]},x(t),sings(t)$

$$x(t) = (7\sin(t) + 6\cos(t))e^{-t} - 6\cos(3t) - 7\sin(3t)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 33

$$x(t) \to -7\sin(3t) - 6\cos(3t) + e^{-t}(7\sin(t) + 6\cos(t))$$

4.17 problem 18

Internal problem ID [4651]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3\sin(x) + 4y = 0$$

With initial conditions

$$\left[y(0) = 0, y'\left(\frac{\pi}{2}\right) = 1\right]$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

dsolve([diff(y(x),x\$2)=3*sin(x)-4*y(x),y(0) = 0, D(y)(1/2*Pi) = 1],y(x), singsol=all)

$$y(x) = -\frac{\sin(2x)}{2} + \sin(x)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 13

$$y(x) \rightarrow -(\sin(x)(\cos(x) - 1))$$

4.18 problem 19

Internal problem ID [4652]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$\boxed{\frac{x''}{2} + 48x = 0}$$

With initial conditions

$$\left[x(0) = \frac{1}{6}, x'(0) = 0 \right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

dsolve([1/2*diff(x(t),t\$2)=-48*x(t),x(0) = 1/6, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = \frac{\cos\left(4\sqrt{6}\,t\right)}{6}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

DSolve[{1/2*x''[t]==-48*x[t],{x[0]==1/6,x'[0]==0}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) o rac{1}{6} \cos\left(4\sqrt{6}t\right)$$

4.19 problem 20

Internal problem ID [4653]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001

Section: Program 25. Second order differential equations. Further problems 25. page 1094

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$x'' + 5x' + 6x - \cos(t) = 0$$

With initial conditions

$$\left[x(0) = \frac{1}{10}, x'(0) = 0\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

dsolve([diff(x(t),t\$2)+5*diff(x(t),t)+6*x(t)=cos(t),x(0) = 1/10, D(x)(0) = 0],x(t), singsol=a

$$x(t) = \frac{e^{-3t}}{10} - \frac{e^{-2t}}{10} + \frac{\cos(t)}{10} + \frac{\sin(t)}{10}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 26

$$x(t) \to \frac{1}{10} \left(e^{-3t} - e^{-2t} + \sin(t) + \cos(t) \right)$$