A Solution Manual For

Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Nasser M. Abbasi

October 12, 2023

Contents

1	Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290	2
2	Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobe-	
	nius. Exercises. page 300	15

1	Chapter 7. POWER SERIES METHODS. 7.2.1
	Exercises. page 290

1.1	problem	7.2.1			•	•	•	•	•	•		•	•	•	•	•	•	•			•	•	•	•		3
1.2	${\bf problem}$	7.2.2																								4
1.3	${\bf problem}$	7.2.3																								5
1.4	${\bf problem}$	7.2.4																								6
1.5	${\rm problem}$	7.2.5											•													7
1.6	${\rm problem}$	7.2.6											•													8
1.7	${\bf problem}$	7.2.7																								9
1.8	${\bf problem}$	7.2.8	part	(a)																 •						10
1.9	$\operatorname{problem}$	7.2.8	part	(b)																						11
1.10	${\bf problem}$	7.2.10	01.																							12
1.11	${\rm problem}$	7.2.10	02 .										•													13
1.12	problem	7.2.10	03.																							14

1.1 problem 7.2.1

Internal problem ID [4749]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + y = 0$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=1);

$$y(x) = \left(1 - \frac{\left(x - 1\right)^2}{2} + \frac{\left(x - 1\right)^4}{24}\right)y(1) + \left(x - 1 - \frac{\left(x - 1\right)^3}{6} + \frac{\left(x - 1\right)^5}{120}\right)D(y)\left(1\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 51

AsymptoticDSolveValue[$y''[x]+y[x]==0,y[x],\{x,1,5\}$]

$$y(x) \to c_1 \left(\frac{1}{24}(x-1)^4 - \frac{1}{2}(x-1)^2 + 1\right) + c_2 \left(\frac{1}{120}(x-1)^5 - \frac{1}{6}(x-1)^3 + x - 1\right)$$

1.2 problem 7.2.2

Internal problem ID [4750]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$y'' + 4xy = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+4*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{2x^3}{3}\right)y(0) + \left(x - \frac{1}{3}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+4*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{3} \right) + c_1 \left(1 - \frac{2x^3}{3} \right)$$

1.3 problem 7.2.3

Internal problem ID [4751]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$y'' - xy = 0$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve(diff(y(x),x\$2)-x*y(x)=0,y(x),type='series',x=1);

$$y(x) = \left(1 + \frac{(x-1)^2}{2} + \frac{(x-1)^3}{6} + \frac{(x-1)^4}{24} + \frac{(x-1)^5}{30}\right)y(1) + \left(x - 1 + \frac{(x-1)^3}{6} + \frac{(x-1)^4}{12} + \frac{(x-1)^5}{120}\right)D(y)(1) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 78

 $AsymptoticDSolveValue[y''[x]-x*y[x]==0,y[x],\{x,1,5\}]$

$$y(x) \to c_1 \left(\frac{1}{30} (x-1)^5 + \frac{1}{24} (x-1)^4 + \frac{1}{6} (x-1)^3 + \frac{1}{2} (x-1)^2 + 1 \right)$$
$$+ c_2 \left(\frac{1}{120} (x-1)^5 + \frac{1}{12} (x-1)^4 + \frac{1}{6} (x-1)^3 + x - 1 \right)$$

1.4 problem 7.2.4

Internal problem ID [4752]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$y'' + x^2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x^2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^4}{12}\right)y(0) + \left(x - \frac{1}{20}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^5}{20} \right) + c_1 \left(1 - \frac{x^4}{12} \right)$$

1.5 problem 7.2.5

Internal problem ID [4753]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - xy = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

Order:=6; dsolve(diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{8}x^4\right)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 22

AsymptoticDSolveValue[$y'[x]-x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^4}{8} + \frac{x^2}{2} + 1 \right)$$

1.6 problem 7.2.6

Internal problem ID [4754]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer, [_2nd_order, _linear, '_with_symmetry_[0,F(x)]']]

$$(-x^2 + 1) y'' - y'x + p^2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 71

Order:=6; $dsolve((1-x^2)*diff(y(x),x$2)-x*diff(y(x),x)+p^2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{p^2 x^2}{2} + \frac{p^2 (p^2 - 4) x^4}{24}\right) y(0) + \left(x - \frac{(p^2 - 1) x^3}{6} + \frac{(p^4 - 10p^2 + 9) x^5}{120}\right) D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 88

AsymptoticDSolveValue[$(1-x^2)*y''[x]-x*y'[x]+p^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_2 \left(rac{p^4 x^5}{120} - rac{p^2 x^5}{12} - rac{p^2 x^3}{6} + rac{3 x^5}{40} + rac{x^3}{6} + x
ight) + c_1 \left(rac{p^4 x^4}{24} - rac{p^2 x^4}{6} - rac{p^2 x^2}{2} + 1
ight)$$

1.7 problem 7.2.7

Internal problem ID [4755]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 1) y'' - 2y'x + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

Order:=6; $dsolve((1+x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0); \\$

$$y(x) = y(0) + D(y)(0)x - x^2y(0)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 18

AsymptoticDSolveValue[$(1+x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1(1-x^2) + c_2x$$

1.8 problem 7.2.8 part(a)

Internal problem ID [4756]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.8 part(a).

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$\left(x^2+1\right)y''+y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; $dsolve((x^2+1)*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{8}x^4\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{7}{120}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$(x^2+1)*y''[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{7x^5}{120} - \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{8} - \frac{x^2}{2} + 1\right)$$

1.9 problem 7.2.8 part(b)

Internal problem ID [4757]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.8 part(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$xy'' + y = 0$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve(x*diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=1);

$$y(x) = \left(1 - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{6} - \frac{(x-1)^4}{24} + \frac{(x-1)^5}{60}\right)y(1) + \left(x - 1 - \frac{(x-1)^3}{6} + \frac{(x-1)^4}{12} - \frac{(x-1)^5}{24}\right)D(y)(1) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 78

 $AsymptoticDSolveValue[x*y''[x]+y[x]==0,y[x],\{x,1,5\}]$

$$y(x) \to c_1 \left(\frac{1}{60} (x-1)^5 - \frac{1}{24} (x-1)^4 + \frac{1}{6} (x-1)^3 - \frac{1}{2} (x-1)^2 + 1 \right)$$
$$+ c_2 \left(-\frac{1}{24} (x-1)^5 + \frac{1}{12} (x-1)^4 - \frac{1}{6} (x-1)^3 + x - 1 \right)$$

1.10 problem 7.2.101

Internal problem ID [4758]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.101.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$y'' + 2yx^3 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

Order:=6; dsolve(diff(y(x),x\$2)+2*x^3*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^5}{10}\right)y(0) + D(y)(0)x + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 20

AsymptoticDSolveValue[$y''[x]+2*x^3*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(1 - \frac{x^5}{10} \right) + c_2 x$$

1.11 problem 7.2.102

Internal problem ID [4759]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.102.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - xy - \frac{1}{1-x} = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

Order:=6; dsolve([diff(y(x),x\$2)-x*y(x)=1/(1-x),y(0) = 0, D(y)(0) = 0],y(x),type='series',x=0);

$$y(x) = \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{3}{40}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 56

AsymptoticDSolveValue[$\{y''[x]-x*y[x]==1/(1-x),\{\}\},y[x],\{x,0,5\}$]

$$y(x) o \frac{3x^5}{40} + \frac{x^4}{12} + c_2\left(\frac{x^4}{12} + x\right) + \frac{x^3}{6} + c_1\left(\frac{x^3}{6} + 1\right) + \frac{x^2}{2}$$

1.12 problem 7.2.103

Internal problem ID [4760]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.103.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$x^2y'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

Order:=6; dsolve(x^2*diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \sqrt{x} \left(x^{-\frac{\sqrt{5}}{2}} c_1 + x^{\frac{\sqrt{5}}{2}} c_2 \right) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 38

AsymptoticDSolveValue $[x^2*y''[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 x^{\frac{1}{2}(1+\sqrt{5})} + c_2 x^{\frac{1}{2}(1-\sqrt{5})}$$

2	Chapter 7. POWER SERIES METHODS. 7.3.2	
	The method of Frobenius. Exercises. page 300	
2.1	problem 7.3.3	16
2.2	problem 7.3.4	17
2.3	problem 7.3.5	18
2.4	problem 7.3.6	19
2.5	problem 7.3.7	20
2.6	problem 7.3.8 (a)	21
2.7	problem 7.3.8 (b)	22
2.8	problem 7.3.8 (c)	23
2.9	problem 7.3.8 (d)	24
2.10	problem 7.3.8 (e)	25
2.11	problem 7.3.101 (a)	26
2.12	problem 7.3.101 (b)	27
2.13	problem 7.3.101 (c)	28
2.14	problem 7.3.101 (d)	29
2.15	problem 7.3.101 (e)	30
	problem 7.3.102	31
	problem 7.3.103	32
	oroblom 7 3 104 (d)	22

2.1 problem 7.3.3

Internal problem ID [4761]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300

Problem number: 7.3.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + (x+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 69

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);$

$$\begin{split} y(x) &= c_1 x^{-i} \left(1 + \left(-\frac{1}{5} - \frac{2i}{5} \right) x + \left(-\frac{1}{40} + \frac{3i}{40} \right) x^2 + \left(\frac{3}{520} - \frac{7i}{1560} \right) x^3 + \left(-\frac{1}{2496} + \frac{i}{12480} \right) x^4 \right. \\ &\quad + \left(\frac{9}{603200} + \frac{i}{361920} \right) x^5 + \mathcal{O}\left(x^6 \right) \right) + c_2 x^i \left(1 + \left(-\frac{1}{5} + \frac{2i}{5} \right) x + \left(-\frac{1}{40} - \frac{3i}{40} \right) x^2 \right. \\ &\quad + \left(\frac{3}{520} + \frac{7i}{1560} \right) x^3 + \left(-\frac{1}{2496} - \frac{i}{12480} \right) x^4 + \left(\frac{9}{603200} - \frac{i}{361920} \right) x^5 + \mathcal{O}\left(x^6 \right) \right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 90

AsymptoticDSolveValue[$x^2*y''[x]+x*y'[x]+(1+x)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to \left(\frac{1}{12480} + \frac{i}{2496}\right) c_2 x^{-i} \left(ix^4 - (8+16i)x^3 + (168+96i)x^2 - (1056-288i)x + (480-2400i)\right) - \left(\frac{1}{2496} + \frac{i}{12480}\right) c_1 x^i \left(x^4 - (16+8i)x^3 + (96+168i)x^2 + (288-1056i)x - (2400-480i)\right)$$

2.2 problem 7.3.4

Internal problem ID [4762]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

 ${\bf Section} :$ Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

 $page\ 300$

Problem number: 7.3.4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

Order:=6; dsolve(x^2*diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \sqrt{x} \left(x^{-\frac{\sqrt{5}}{2}} c_1 + x^{\frac{\sqrt{5}}{2}} c_2 \right) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 38

AsymptoticDSolveValue[$x^2*y''[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 x^{\frac{1}{2}(1+\sqrt{5})} + c_2 x^{\frac{1}{2}(1-\sqrt{5})}$$

2.3 problem 7.3.5

Internal problem ID [4763]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

page 300

Problem number: 7.3.5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + \frac{y'}{x} - xy = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; dsolve(diff(y(x),x\$2)+1/x*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);

$$y(x) = (\ln(x) c_2 + c_1) \left(1 + \frac{1}{9}x^3 + O(x^6)\right) + \left(-\frac{2}{27}x^3 + O(x^6)\right) c_2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 39

AsymptoticDSolveValue[$y''[x]+1/x*y'[x]-x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^3}{9} + 1\right) + c_2 \left(\left(\frac{x^3}{9} + 1\right) \log(x) - \frac{2x^3}{27}\right)$$

2.4 problem 7.3.6

Internal problem ID [4764]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

page 300

Problem number: 7.3.6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$2xy'' + y' - x^2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

Order:=6; $dsolve(2*x*diff(y(x),x$2)+diff(y(x),x)-x^2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 \sqrt{x} \left(1 + \frac{1}{21} x^3 + O(x^6) \right) + c_2 \left(1 + \frac{1}{15} x^3 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 33

AsymptoticDSolveValue[$2*x*y''[x]+y'[x]-x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \sqrt{x} \left(\frac{x^3}{21} + 1 \right) + c_2 \left(\frac{x^3}{15} + 1 \right)$$

2.5 problem 7.3.7

Internal problem ID [4765]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

 $page\ 300$

Problem number: 7.3.7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y'x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 37

Order:=6; $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);$

$$y(x) = x\left(x^{-\sqrt{2}}c_1 + x^{\sqrt{2}}c_2\right) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 30

AsymptoticDSolveValue $[x^2*y''[x]-x*y'[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 x^{1+\sqrt{2}} + c_2 x^{1-\sqrt{2}}$$

2.6 problem 7.3.8 (a)

Internal problem ID [4766]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

page 300

Problem number: 7.3.8 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}(x^{2}+1)y'' + xy = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 58

Order:=6; dsolve(x^2*(1+x^2)*diff(y(x),x\$2)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 - \frac{1}{2} x + \frac{1}{12} x^2 + \frac{11}{144} x^3 - \frac{83}{2880} x^4 - \frac{2557}{86400} x^5 + O(x^6) \right)$$

$$+ c_2 \left(\ln(x) \left(-x + \frac{1}{2} x^2 - \frac{1}{12} x^3 - \frac{11}{144} x^4 + \frac{83}{2880} x^5 + O(x^6) \right)$$

$$+ \left(1 - \frac{3}{4} x^2 + \frac{13}{36} x^3 + \frac{25}{1728} x^4 - \frac{8743}{86400} x^5 + O(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 87

AsymptoticDSolveValue[$x^2*(1+x^2)*y''[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{157x^4 + 768x^3 - 2160x^2 + 1728x + 1728}{1728} - \frac{1}{144}x \left(11x^3 + 12x^2 - 72x + 144 \right) \log(x) \right) + c_2 \left(-\frac{83x^5}{2880} + \frac{11x^4}{144} + \frac{x^3}{12} - \frac{x^2}{2} + x \right)$$

2.7 problem 7.3.8 (b)

Internal problem ID [4767]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

page 300

Problem number: 7.3.8 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + y' + y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6; dsolve(x^2*diff(y(x),x\$2)+diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

No solution found

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 84

 $A symptotic DSolve Value [x^2*y''[x]+y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 e^{\frac{1}{x}} \left(\frac{59241x^5}{40} + \frac{1911x^4}{8} + \frac{91x^3}{2} + \frac{21x^2}{2} + 3x + 1 \right) x^2 + c_1 \left(-\frac{91x^5}{40} + \frac{7x^4}{8} - \frac{x^3}{2} + \frac{x^2}{2} - x + 1 \right)$$

2.8 problem 7.3.8 (c)

Internal problem ID [4768]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

page 300

Problem number: 7.3.8 (c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' + x^3y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 58

Order:=6; $dsolve(x*diff(y(x),x$2)+x^3*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x \left(1 - \frac{1}{2} x + \frac{1}{12} x^2 - \frac{13}{144} x^3 + \frac{157}{2880} x^4 - \frac{877}{86400} x^5 + O(x^6) \right)$$

$$+ c_2 \left(\ln(x) \left(-x + \frac{1}{2} x^2 - \frac{1}{12} x^3 + \frac{13}{144} x^4 - \frac{157}{2880} x^5 + O(x^6) \right)$$

$$+ \left(1 - \frac{3}{4} x^2 + \frac{7}{36} x^3 + \frac{25}{1728} x^4 + \frac{6377}{86400} x^5 + O(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 87

 $\label{eq:local_asymptotic_DSolveValue} A symptotic DSolveValue [x*y''[x]+x^3*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{1}{144} x \left(13x^3 - 12x^2 + 72x - 144 \right) \log(x) + \frac{-131x^4 + 480x^3 - 2160x^2 + 1728x + 1728}{1728} \right) + c_2 \left(\frac{157x^5}{2880} - \frac{13x^4}{144} + \frac{x^3}{12} - \frac{x^2}{2} + x \right)$$

2.9 problem 7.3.8 (d)

Internal problem ID [4769]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

page 300

Problem number: 7.3.8 (d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' + y'x - e^x y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 54

Order:=6; dsolve(x*diff(y(x),x\$2)+x*diff(y(x),x)-exp(x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 + \frac{1}{6} x^2 + \frac{1}{72} x^3 + \frac{7}{480} x^4 + \frac{29}{10800} x^5 + O\left(x^6\right) \right)$$
$$+ c_2 \left(\ln\left(x\right) \left(x + \frac{1}{6} x^3 + \frac{1}{72} x^4 + \frac{7}{480} x^5 + O\left(x^6\right) \right) + \left(1 - x - \frac{2}{9} x^3 - \frac{11}{864} x^4 - \frac{109}{4800} x^5 + O\left(x^6\right) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 70

AsymptoticDSolveValue $[x*y''[x]+x*y'[x]-Exp[x]*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\frac{7x^5}{480} + \frac{x^4}{72} + \frac{x^3}{6} + x \right)$$

+ $c_1 \left(\frac{1}{864} \left(-23x^4 - 336x^3 - 1728x + 864 \right) + \frac{1}{72} x \left(x^3 + 12x^2 + 72 \right) \log(x) \right)$

2.10 problem 7.3.8 (e)

Internal problem ID [4770]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

page 300

Problem number: 7.3.8 (e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x^2y'' + x^2y' + x^2y = 0$$

With the expansion point for the power series method at x = 0.

Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 44

 $dsolve(x^2*diff(y(x),x$2)+x^2*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{120}x^5\right)y(0) + \left(x - \frac{1}{2}x^2 + \frac{1}{24}x^4 - \frac{1}{120}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[$x^2*y''[x]+x^2*y'[x]+x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(-\frac{x^5}{120} + \frac{x^4}{24} - \frac{x^2}{2} + x \right) + c_1 \left(-\frac{x^5}{120} + \frac{x^3}{6} - \frac{x^2}{2} + 1 \right)$$

2.11 problem 7.3.101 (a)

Internal problem ID [4771]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

 $page\ 300$

Problem number: 7.3.101 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(\frac{1}{24}x^4 - \frac{1}{2}x^2 + 1\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{120} - \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{24} - \frac{x^2}{2} + 1\right)$$

2.12 problem 7.3.101 (b)

Internal problem ID [4772]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

page 300

Problem number: 7.3.101 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{3}y'' + (x+1)y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

```
Order:=6;
dsolve(x^3*diff(y(x),x$2)+(1+x)*y(x)=0,y(x),type='series',x=0);
```

No solution found

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 222

 $\label{eq:local_asymptotic_DSolveValue} Asymptotic_DSolveValue[x^3*y''[x]+(1+x)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_{1}e^{-\frac{2i}{\sqrt{x}}}x^{3/4} \left(\frac{520667425699057ix^{9/2}}{131941395333120} - \frac{21896102683ix^{7/2}}{21474836480} + \frac{19100991ix^{5/2}}{41943040} \right)$$

$$-\frac{3367ix^{3/2}}{8192} - \frac{194208949785748261x^{5}}{21110623253299200} + \frac{5189376335871x^{4}}{2748779069440} - \frac{846810601x^{3}}{1342177280} + \frac{205387x^{2}}{524288} - \frac{273x}{512} + \frac{13i\sqrt{x}}{16} + 1 \right) + c_{2}e^{\frac{2i}{\sqrt{x}}}x^{3/4} \left(-\frac{520667425699057ix^{9/2}}{131941395333120} + \frac{21896102683ix^{7/2}}{21474836480} - \frac{19100991ix^{5/2}}{41943040} + \frac{3367ix^{3/2}}{8192} - \frac{19420894x^{2}}{21110682} + \frac{3367ix^{3/2}}{21110682} \right)$$

2.13 problem 7.3.101 (c)

Internal problem ID [4773]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

page 300

Problem number: 7.3.101 (c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' + y'x^5 + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 58

Order:=6;

 $dsolve(x*diff(y(x),x$2)+x^5*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);$

$$y(x) = c_1 x \left(1 - \frac{1}{2} x + \frac{1}{12} x^2 - \frac{1}{144} x^3 + \frac{1}{2880} x^4 - \frac{2881}{86400} x^5 + O(x^6) \right)$$

$$+ c_2 \left(\ln(x) \left(-x + \frac{1}{2} x^2 - \frac{1}{12} x^3 + \frac{1}{144} x^4 - \frac{1}{2880} x^5 + O(x^6) \right)$$

$$+ \left(1 - \frac{3}{4} x^2 + \frac{7}{36} x^3 - \frac{35}{1728} x^4 + \frac{101}{86400} x^5 + O(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 85

$$y(x) \to c_1 \left(\frac{1}{144} x \left(x^3 - 12x^2 + 72x - 144 \right) \log(x) + \frac{-47x^4 + 480x^3 - 2160x^2 + 1728x + 1728}{1728} \right) + c_2 \left(\frac{x^5}{2880} - \frac{x^4}{144} + \frac{x^3}{12} - \frac{x^2}{2} + x \right)$$

2.14 problem 7.3.101 (d)

Internal problem ID [4774]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

page 300

Problem number: 7.3.101 (d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\sin\left(x\right)y'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 58

Order:=6;

dsolve(sin(x)*diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 + \frac{1}{2} x + \frac{1}{12} x^2 + \frac{1}{48} x^3 + \frac{1}{192} x^4 + \frac{37}{28800} x^5 + O(x^6) \right)$$
$$+ c_2 \left(\ln(x) \left(x + \frac{1}{2} x^2 + \frac{1}{12} x^3 + \frac{1}{48} x^4 + \frac{1}{192} x^5 + O(x^6) \right) + \left(1 - \frac{3}{4} x^2 - \frac{1}{6} x^3 - \frac{5}{192} x^4 - \frac{257}{28800} x^5 + O(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 85

 $AsymptoticDSolveValue[Sin[x]*y''[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{1}{48} x \left(x^3 + 4x^2 + 24x + 48 \right) \log(x) + \frac{1}{64} \left(-3x^4 - 16x^3 - 80x^2 - 64x + 64 \right) \right)$$
$$+ c_2 \left(\frac{x^5}{192} + \frac{x^4}{48} + \frac{x^3}{12} + \frac{x^2}{2} + x \right)$$

2.15 problem 7.3.101 (e)

Internal problem ID [4775]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

 $page\ 300$

Problem number: 7.3.101 (e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\cos(x)y'' - y\sin(x) = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

Order:=6;

dsolve(cos(x)*diff(y(x),x\$2)-sin(x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{6}x^3 + \frac{1}{60}x^5\right)y(0) + \left(x + \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 35

AsymptoticDSolveValue[$Cos[x]*y''[x]-Sin[x]*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_2 \left(rac{x^4}{12} + x
ight) + c_1 \left(rac{x^5}{60} + rac{x^3}{6} + 1
ight)$$

2.16 problem 7.3.102

Internal problem ID [4776]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

 ${\bf Section} :$ Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

 $page\ 300$

Problem number: 7.3.102.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

Order:=6; dsolve(x^2*diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \sqrt{x} \left(x^{-\frac{\sqrt{5}}{2}} c_1 + x^{\frac{\sqrt{5}}{2}} c_2 \right) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 38

AsymptoticDSolveValue[$x^2*y''[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 x^{\frac{1}{2}(1+\sqrt{5})} + c_2 x^{\frac{1}{2}(1-\sqrt{5})}$$

2.17 problem 7.3.103

Internal problem ID [4777]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

page 300

Problem number: 7.3.103.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + \left(x - \frac{3}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 65

Order:=6; $dsolve(x^2*diff(y(x),x$2)+(x-3/4)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{1}{3}x + \frac{1}{24}x^2 - \frac{1}{360}x^3 + \frac{1}{8640}x^4 - \frac{1}{302400}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(x^2 - \frac{1}{3}x^3 + \frac{1}{24}x^4 - \frac{1}{360}x^5 + \mathcal{O}\left(x^6\right)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 101

 $\label{eq:local_asymptotic_DSolveValue} Asymptotic_DSolveValue[x^2*y''[x]+(x-3/4)*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\frac{x^{11/2}}{8640} - \frac{x^{9/2}}{360} + \frac{x^{7/2}}{24} - \frac{x^{5/2}}{3} + x^{3/2} \right) + c_1 \left(\frac{31x^4 - 176x^3 + 144x^2 + 576x + 576}{576\sqrt{x}} - \frac{1}{48}x^{3/2} (x^2 - 8x + 24) \log(x) \right)$$

2.18 problem 7.3.104 (d)

Internal problem ID [4778]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises.

page 300

Problem number: 7.3.104 (d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y'x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

Order:=6; $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);$

$$y(x) = x(\ln(x) c_2 + c_1) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 14

AsymptoticDSolveValue[$x^2*y''[x]-x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 x + c_2 x \log(x)$$