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1.1 problem First order with homogeneous Coefficients.
Exercise 7.2, page 61

Internal problem ID [3918]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.2, page 61.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2xy +
(
y2 + x2) y′ = 0

3 Solution by Maple

Time used: 0.031 (sec). Leaf size: 257� �
dsolve(2*x*y(x)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

(
4+4

√
4x6c31+1

) 1
3

2 − 2x2c1(
4+4

√
4x6c31+1

) 1
3

√
c1

y(x) =

−

(
4+4

√
4x6c31+1

) 1
3

4 + x2c1(
4+4

√
4x6c31+1

) 1
3
−

i
√
3


(
4+4

√
4x6c31+1

) 1
3

2 + 2x2c1(
4+4

√
4x6c31+1

) 1
3


2

√
c1

y(x) =

−

(
4+4

√
4x6c31+1

) 1
3

4 + x2c1(
4+4

√
4x6c31+1

) 1
3
+

i
√
3


(
4+4

√
4x6c31+1

) 1
3

2 + 2x2c1(
4+4

√
4x6c31+1

) 1
3


2

√
c1
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3 Solution by Mathematica

Time used: 15.691 (sec). Leaf size: 362� �
DSolve[2*x*y[x]+(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√√

4x6 + e6c1 + e3c1

3
√
2

−
3
√
2x2

3
√√

4x6 + e6c1 + e3c1

y(x) →
2 3
√
−2x2 + (−2)2/3

(√
4x6 + e6c1 + e3c1

) 2/3

2 3
√√

4x6 + e6c1 + e3c1

y(x) → −
2(−1)2/3x2 + 3

√
−2
(√

4x6 + e6c1 + e3c1
) 2/3

22/3 3
√√

4x6 + e6c1 + e3c1

y(x) → 0

y(x) → 1
2

6√
x6

((
1− i

√
3
)
(x6)2/3

x4 − i
√
3− 1

)

y(x) → 1
2

6√
x6

((
1 + i

√
3
)
(x6)2/3

x4 + i
√
3− 1

)

y(x) → 6√
x6 − (x6)5/6

x4
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1.2 problem First order with homogeneous Coefficients.
Exercise 7.3, page 61

Internal problem ID [3919]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.3, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

(
x+

√
y2 − xy

)
y′ − y = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 27� �
dsolve((x+sqrt(y(x)^2-x*y(x)))*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

ln (y(x)) + 2
√

y (x) (y (x)− x)
y (x) − c1 = 0

3 Solution by Mathematica

Time used: 0.301 (sec). Leaf size: 43� �
DSolve[(x+Sqrt[y[x]^2-x*y[x]])*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

2
√

y(x)
x

− 1√
y(x)
x

+ log
(
y(x)
x

)
= − log(x) + c1, y(x)
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1.3 problem First order with homogeneous Coefficients.
Exercise 7.4, page 61

Internal problem ID [3920]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.4, page 61.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

x+ y − (−y + x) y′ = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 24� �
dsolve((x+y(x))-(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
−2_Z+ ln

(
1

cos (_Z)2
)
+ 2 ln (x) + 2c1

))
x

3 Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 36� �
DSolve[(x+y[x])-(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
2 log

(
y(x)2
x2 + 1

)
− arctan

(
y(x)
x

)
= − log(x) + c1, y(x)

]
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1.4 problem First order with homogeneous Coefficients.
Exercise 7.5, page 61

Internal problem ID [3921]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.5, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

y′x− y − x sin
(y
x

)
= 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 44� �
dsolve(x*diff(y(x),x)-y(x)-x*sin(y(x)/x)=0,y(x), singsol=all)� �

y(x) = arctan
(

2xc1
c21x

2 + 1 ,−
c21x

2 − 1
c21x

2 + 1

)
x

3 Solution by Mathematica

Time used: 2.772 (sec). Leaf size: 33� �
DSolve[x*y'[x]-y[x]-x*Sin[y[x]/x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x arctan (ec1x)

y(x) → 0

y(x) → π
√
x2
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1.5 problem First order with homogeneous Coefficients.
Exercise 7.6, page 61

Internal problem ID [3922]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.6, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

2x2y + y3 +
(
xy2 − 2x3) y′ = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 19� �
dsolve((2*x^2*y(x)+y(x)^3)+(x*y(x)^2-2*x^3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√

− 2
LambertW (−2c1x4) x

3 Solution by Mathematica

Time used: 6.133 (sec). Leaf size: 66� �
DSolve[(2*x^2*y[x]+y[x]^3)+(x*y[x]^2-2*x^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − i
√
2x√

W (−2e−2c1x4)

y(x) → i
√
2x√

W (−2e−2c1x4)

y(x) → 0
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1.6 problem First order with homogeneous Coefficients.
Exercise 7.7, page 61

Internal problem ID [3923]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.7, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _dAlembert]

y2 +
(
x
√

y2 − x2 − xy
)
y′ = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 30� �
dsolve(y(x)^2+(x*sqrt(y(x)^2-x^2)-x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

√
y (x)2 − x2

xy (x) + 1
x
− c1 = 0

3 Solution by Mathematica

Time used: 2.257 (sec). Leaf size: 111� �
DSolve[y[x]^2+(x*Sqrt[y[x]^2-x^2]-x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−
√

y(x)2
x2 − 1

(
log
(√

y(x)
x

+ 1− 1
)
+ log

(√
y(x)
x

+ 1 + 1
))

√
y(x)
x

− 1
√

y(x)
x

+ 1

− 2 log
(√

y(x)
x

− 1−
√

y(x)
x

+ 1
)

= log(x) + c1, y(x)
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1.7 problem First order with homogeneous Coefficients.
Exercise 7.8, page 61

Internal problem ID [3924]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.8, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

y cos
(
y
x

)
x

−

(
x sin

(
y
x

)
y

+ cos
(y
x

))
y′ = 0

3 Solution by Maple

Time used: 0.047 (sec). Leaf size: 15� �
dsolve(y(x)/x*cos(y(x)/x)-(x/y(x)*sin(y(x)/x)+cos(y(x)/x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = RootOf (_Zxc1 sin (_Z)− 1)x

3 Solution by Mathematica

Time used: 0.267 (sec). Leaf size: 35� �
DSolve[y[x]/x*Cos[y[x]/x]-(x/y[x]*Sin[y[x]/x]+Cos[y[x]/x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
log
(
y(x)
x

)
+ log

(
tan

(
y(x)
x

))
+ log

(
cos
(
y(x)
x

))
= − log(x) + c1, y(x)

]
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1.8 problem First order with homogeneous Coefficients.
Exercise 7.9, page 61

Internal problem ID [3925]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.9, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

y + x ln
(y
x

)
y′ − 2y′x = 0

3 Solution by Maple

Time used: 0.031 (sec). Leaf size: 18� �
dsolve(y(x)+x*ln(y(x)/x)*diff(y(x),x)-2*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−LambertW(−exc1)+1x

3 Solution by Mathematica

Time used: 5.57 (sec). Leaf size: 35� �
DSolve[y[x]+x*Log[y[x]/x]*y'[x]-2*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ec1W
(
−e1−c1x

)
y(x) → 0

y(x) → ex
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1.9 problem First order with homogeneous Coefficients.
Exercise 7.10, page 61

Internal problem ID [3926]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.10, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

2 e
x
y y +

(
y − 2x e

x
y

)
y′ = 0

3 Solution by Maple

Time used: 0.078 (sec). Leaf size: 23� �
dsolve(2*y(x)*exp(x/y(x))+(y(x)-2*x*exp(x/y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x

RootOf
(_Z e−2 e_Z

c1
− x
)

3 Solution by Mathematica

Time used: 0.254 (sec). Leaf size: 29� �
DSolve[2*y[x]*Exp[x/y[x]]+(y[x]-2*x*Exp[x/y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−2e

x
y(x) − log

(
y(x)
x

)
= log(x) + c1, y(x)

]
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1.10 problem First order with homogeneous Coefficients.
Exercise 7.11, page 61

Internal problem ID [3927]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.11, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

x e
y
x − y sin

(y
x

)
+ x sin

(y
x

)
y′ = 0

3 Solution by Maple

Time used: 0.031 (sec). Leaf size: 63� �
dsolve((x*exp(y(x)/x)-y(x)*sin(y(x)/x))+x*sin(y(x)/x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = RootOf
(
e2_Z(4 ln (x)2 e2_Z + 8 ln (x) e2_Zc1 + 4c21e2_Z − 4 ln (x) sin (_Z) e_Z

− 4 sin (_Z) e_Zc1 + 2 sin (_Z)2 − 1
))

x

3 Solution by Mathematica

Time used: 0.33 (sec). Leaf size: 39� �
DSolve[(x*Exp[y[x]/x]-y[x]*Sin[y[x]/x])+x*Sin[y[x]/x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−1
2e

− y(x)
x

(
sin
(
y(x)
x

)
+ cos

(
y(x)
x

))
= − log(x) + c1, y(x)

]
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1.11 problem First order with homogeneous Coefficients.
Exercise 7.12, page 61

Internal problem ID [3928]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.12, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

−2xyy′ + y2 + x2 = 0

With initial conditions

[y(−1) = 0]

3 Solution by Maple

Time used: 0.047 (sec). Leaf size: 23� �
dsolve([(x^2+y(x)^2)=2*x*y(x)*diff(y(x),x),y(-1) = 0],y(x), singsol=all)� �

y(x) =
√
x (x+ 1)

y(x) = −
√

x (x+ 1)

3 Solution by Mathematica

Time used: 0.194 (sec). Leaf size: 36� �
DSolve[{(x^2+y[x]^2)==2*x*y[x]*y'[x],y[-1]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x
√
x+ 1

y(x) →
√
x
√
x+ 1
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1.12 problem First order with homogeneous Coefficients.
Exercise 7.13, page 61

Internal problem ID [3929]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.13, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

x e
y
x + y − y′x = 0

With initial conditions

[y(1) = 0]

3 Solution by Maple

Time used: 0.031 (sec). Leaf size: 15� �
dsolve([(x*exp(y(x)/x)+y(x))=x*diff(y(x),x),y(1) = 0],y(x), singsol=all)� �

y(x) = ln
(
− 1
ln (x)− 1

)
x

3 Solution by Mathematica

Time used: 0.321 (sec). Leaf size: 15� �
DSolve[{(x*Exp[y[x]/x]+y[x])==x*y'[x],y[1]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x log(1− log(x))
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1.13 problem First order with homogeneous Coefficients.
Exercise 7.14, page 61

Internal problem ID [3930]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.14, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

y′ − y

x
+ csc

(y
x

)
= 0

With initial conditions

[y(1) = 0]

3 Solution by Maple

Time used: 0.047 (sec). Leaf size: 16� �
dsolve([diff(y(x),x)-y(x)/x+csc(y(x)/x)=0,y(1) = 0],y(x), singsol=all)� �

y(x) = x(1− 2_B21) arccos (ln (x) + 1)

3 Solution by Mathematica

Time used: 0.399 (sec). Leaf size: 24� �
DSolve[{y'[x]-y[x]/x+Csc[y[x]/x]==0,y[1]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x arccos(log(x) + 1)

y(x) → x arccos(log(x) + 1)
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1.14 problem First order with homogeneous Coefficients.
Exercise 7.15, page 61

Internal problem ID [3931]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.15, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

xy − y2 − x2y′ = 0

With initial conditions

[y(1) = 1]

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 12� �
dsolve([(x*y(x)-y(x)^2)-x^2*diff(y(x),x)=0,y(1) = 1],y(x), singsol=all)� �

y(x) = x

ln (x) + 1

3 Solution by Mathematica

Time used: 0.143 (sec). Leaf size: 13� �
DSolve[{(x*y[x]-y[x]^2)-x^2*y'[x]==0,y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

log(x) + 1



18

2 Chapter 2. Special types of differential equations of
the first kind. Lesson 8

2.1 problem Differential equations with Linear Coefficients. Exercise 8.1, page 69 . 19
2.2 problem Differential equations with Linear Coefficients. Exercise 8.2, page 69 . 20
2.3 problem Differential equations with Linear Coefficients. Exercise 8.3, page 69 . . 21
2.4 problem Differential equations with Linear Coefficients. Exercise 8.4, page 69 . 22
2.5 problem Differential equations with Linear Coefficients. Exercise 8.5, page 69 . 23
2.6 problem Differential equations with Linear Coefficients. Exercise 8.6, page 69 . . 24
2.7 problem Differential equations with Linear Coefficients. Exercise 8.7, page 69 . 25
2.8 problem Differential equations with Linear Coefficients. Exercise 8.8, page 69 . 26
2.9 problem Differential equations with Linear Coefficients. Exercise 8.9, page 69 . . 27
2.10 problem Differential equations with Linear Coefficients. Exercise 8.10, page 69 28
2.11 problem Differential equations with Linear Coefficients. Exercise 8.11, page 69 29
2.12 problem Differential equations with Linear Coefficients. Exercise 8.12, page 69 30
2.13 problem Differential equations with Linear Coefficients. Exercise 8.13, page 69 . 31
2.14 problem Differential equations with Linear Coefficients. Exercise 8.14, page 69 32



19

2.1 problem Differential equations with Linear Coefficients.
Exercise 8.1, page 69

Internal problem ID [3932]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.1, page 69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

x+ 2y − 4− (2x− 4y) y′ = 0

3 Solution by Maple

Time used: 0.031 (sec). Leaf size: 31� �
dsolve((x+2*y(x)-4)-(2*x-4*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 1−
tan

(
RootOf

(
2_Z+ ln

(
1

cos
(
_Z

)2
)

+ 2 ln (x− 2) + 2c1

))
(x− 2)

2

3 Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 63� �
DSolve[(x+2*y[x]-4)-(2*x-4*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2 arctan

(
−2y(x)− x+ 4

x− 2y(x)

)
+ log

(
x2 + 4y(x)2 − 8y(x)− 4x+ 8

2(x− 2)2

)
+ 2 log(x− 2) + c1 = 0, y(x)

]
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2.2 problem Differential equations with Linear Coefficients.
Exercise 8.2, page 69

Internal problem ID [3933]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.2, page 69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3x+ 2y + 1− (3x+ 2y − 1) y′ = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 21� �
dsolve((3*x+2*y(x)+1)-(3*x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −3x
2 −

2 LambertW
(
− e

1
4 e−

25x
4 c1

4

)
5 + 1

10

3 Solution by Mathematica

Time used: 5.314 (sec). Leaf size: 43� �
DSolve[(3*x+2*y[x]+1)-(3*x+2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
10

(
−4W

(
−e−

25x
4 −1+c1

)
− 15x+ 1

)
y(x) → 1

10 − 3x
2
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2.3 problem Differential equations with Linear Coefficients.
Exercise 8.3, page 69

Internal problem ID [3934]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.3, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

x+ y + 1 + (2x+ 2y + 2) y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 17� �
dsolve((x+y(x)+1)+(2*x+2*y(x)+2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −x− 1

y(x) = −x

2 + c1

3 Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22� �
DSolve[(x+y[x]+1)+(2*x+2*y[x]+2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x− 1

y(x) → −x

2 + c1
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2.4 problem Differential equations with Linear Coefficients.
Exercise 8.4, page 69

Internal problem ID [3935]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.4, page 69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

x+ y − 1 + (2x+ 2y − 3) y′ = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 29� �
dsolve((x+y(x)-1)+(2*x+2*y(x)-3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−LambertW
(
2 exe−4e−c1

)
+x−4−c1 + 2− x

3 Solution by Mathematica

Time used: 5.111 (sec). Leaf size: 33� �
DSolve[(x+y[x]-1)+(2*x+2*y[x]-3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
W
(
−ex−1+c1

)
− 2x+ 4

)
y(x) → 2− x
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2.5 problem Differential equations with Linear Coefficients.
Exercise 8.5, page 69

Internal problem ID [3936]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.5, page 69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

x+ y − 1− (x− y − 1) y′ = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 29� �
dsolve((x+y(x)-1)-(x-y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − tan
(
RootOf

(
2_Z+ ln

(
1

cos (_Z)2
)
+ 2 ln (x− 1) + 2c1

))
(x− 1)

3 Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 48� �
DSolve[(x+y[x]-1)-(x-y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2 arctan

(
y(x) + x− 1
−y(x) + x− 1

)
= log

(
1
2

(
y(x)2

(x− 1)2 + 1
))

+ 2 log(x− 1) + c1, y(x)
]
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2.6 problem Differential equations with Linear Coefficients.
Exercise 8.6, page 69

Internal problem ID [3937]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.6, page 69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

x+ y + (2x+ 2y − 1) y′ = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 29� �
dsolve((x+y(x))+(2*x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−LambertW
(
2 exe−2e−c1

)
+x−2−c1 − x+ 1

3 Solution by Mathematica

Time used: 1.661 (sec). Leaf size: 33� �
DSolve[(x+y[x])+(2*x+2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
W
(
−ex−1+c1

)
− 2x+ 2

)
y(x) → 1− x
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2.7 problem Differential equations with Linear Coefficients.
Exercise 8.7, page 69

Internal problem ID [3938]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.7, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

7y − 3 + (2x+ 1) y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 15� �
dsolve((7*y(x)-3)+(2*x+1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 3
7 + c1

(1 + 2x)
7
2

3 Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 28� �
DSolve[(7*y[x]-3)+(2*x+1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3
7 + c1

(2x+ 1)7/2

y(x) → 3
7
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2.8 problem Differential equations with Linear Coefficients.
Exercise 8.8, page 69

Internal problem ID [3939]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.8, page 69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

x+ 2y + (3x+ 6y + 3) y′ = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 35� �
dsolve((x+2*y(x))+(3*x+6*y(x)+3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e
−LambertW

(
− e−

x
6 e−

3
2 e

c1
6

2

)
−x

6−
3
2+

c1
6

2 − 3
2 − x

2

3 Solution by Mathematica

Time used: 5.235 (sec). Leaf size: 43� �
DSolve[(x+2*y[x])+(3*x+6*y[x]+3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
−2W

(
−e−

x
6−1+c1

)
− x− 3

)
y(x) → 1

2(−x− 3)
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2.9 problem Differential equations with Linear Coefficients.
Exercise 8.9, page 69

Internal problem ID [3940]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.9, page 69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

x+ 2y + (y − 1) y′ = 0

3 Solution by Maple

Time used: 0.234 (sec). Leaf size: 27� �
dsolve((x+2*y(x))+(y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 1− (2 + x) (LambertW (c1(2 + x)) + 1)
LambertW (c1 (2 + x))

3 Solution by Mathematica

Time used: 1.176 (sec). Leaf size: 143� �
DSolve[(x+2*y[x])+(y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−(−2)2/3
(
−
(
(x+ 1) log

(
−3(−2)2/3(x+2)

y(x)−1

))
+ x log

(
3(−2)2/3(y(x)+x+1)

y(x)−1

)
+ log

(
3(−2)2/3(y(x)+x+1)

y(x)−1

)
+ y(x)

(
− log

(
−3(−2)2/3(x+2)

y(x)−1

)
+ log

(
3(−2)2/3(y(x)+x+1)

y(x)−1

)
− 1
)
+ 1
)

9(y(x) + x+ 1) = 1
9(−2)2/3 log(x+2)+c1, y(x)
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2.10 problem Differential equations with Linear Coefficients.
Exercise 8.10, page 69

Internal problem ID [3941]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.10, page 69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3x− 2y + 4− (2x+ 7y − 1) y′ = 0

3 Solution by Maple

Time used: 0.531 (sec). Leaf size: 38� �
dsolve((3*x-2*y(x)+4)-(2*x+7*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 11
25 −

2(25x+26)c1
7 +

√
25(25x+26)2c21+7

7
25c1

3 Solution by Mathematica

Time used: 0.126 (sec). Leaf size: 63� �
DSolve[(3*x-2*y[x]+4)-(2*x+7*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
7

(
−2x−

√
x(25x+ 52) + 1 + 49c1 + 1

)
y(x) → 1

7

(
−2x+

√
x(25x+ 52) + 1 + 49c1 + 1

)
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2.11 problem Differential equations with Linear Coefficients.
Exercise 8.11, page 69

Internal problem ID [3942]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.11, page 69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

x+ y + (3x+ 3y − 4) y′ = 0

With initial conditions

[y(1) = 0]

3 Solution by Maple

Time used: 0.172 (sec). Leaf size: 19� �
dsolve([(x+y(x))+(3*x+3*y(x)-4)*diff(y(x),x)=0,y(1) = 0],y(x), singsol=all)� �

y(x) =
2LambertW

(
−1,−3 ex−

5
2

2

)
3 + 2− x

7 Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{(x+y[x])+(3*x+3*y[x]-4)*y'[x]==0,y[1]==0},y[x],x,IncludeSingularSolutions -> True]� �
{}
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2.12 problem Differential equations with Linear Coefficients.
Exercise 8.12, page 69

Internal problem ID [3943]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.12, page 69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3x+ 2y + 3− (x+ 2y − 1) y′ = 0

3 Solution by Maple

Time used: 0.422 (sec). Leaf size: 46� �
dsolve((3*x+2*y(x)+3)-(x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 9
2 −

RootOf
(
(2x+ 4)5 c1_Z25 − 5(2x+ 4)5 c1_Z20 − 2

)5 (2x+ 4)
4 + 3x

2

3 Solution by Mathematica

Time used: 60.093 (sec). Leaf size: 3081� �
DSolve[(3*x+2*y[x]+3)-(x+2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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2.13 problem Differential equations with Linear Coefficients.
Exercise 8.13, page 69

Internal problem ID [3944]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.13, page 69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

y + 7 + (2x+ y + 3) y′ = 0

With initial conditions

[y(0) = 1]

3 Solution by Maple

Time used: 0.156 (sec). Leaf size: 87� �
dsolve([(y(x)+7)+(2*x+y(x)+3)*diff(y(x),x)=0,y(0) = 1],y(x), singsol=all)� �

y(x) =
(
−x3 + 6x2 − 12x+ 72 + 8

√
−2x3 + 12x2 − 24x+ 80

) 1
3

+ (x− 2)2(
−x3 + 6x2 − 12x+ 72 + 8

√
−2x3 + 12x2 − 24x+ 80

) 1
3
− x− 5

3 Solution by Mathematica

Time used: 6.83 (sec). Leaf size: 158� �
DSolve[{(y[x]+7)+(2*x+y[x]+3)*y'[x]==0,y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
x2 −

(
3

√
8
(√

80− 2x((x− 6)x+ 12) + 9
)
− x((x− 6)x+ 12) + 4

)
x+

(
8
(√

80− 2x((x− 6)x+ 12) + 9
)
− x((x− 6)x+ 12)

)2/3
− 5 3

√
8
(√

80− 2x((x− 6)x+ 12) + 9
)
− x((x− 6)x+ 12) + 4

3

√
8
(√

80− 2x((x− 6)x+ 12) + 9
)
− x((x− 6)x+ 12)
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2.14 problem Differential equations with Linear Coefficients.
Exercise 8.14, page 69

Internal problem ID [3945]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.14, page 69.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

x+ y + 2− (x− y − 4) y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 31� �
dsolve((x+y(x)+2)-(x-y(x)-4)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −3− tan
(
RootOf

(
2_Z+ ln

(
1

cos (_Z)2
)
+ 2 ln (x− 1) + 2c1

))
(x− 1)

3 Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 58� �
DSolve[(x+y[x]+2)-(x-y[x]-4)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2 arctan

(
y(x) + x+ 2
y(x)− x+ 4

)
+ log

(
x2 + y(x)2 + 6y(x)− 2x+ 10

2(x− 1)2

)
+ 2 log(x− 1) + c1 = 0, y(x)

]
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3 Chapter 2. Special types of differential equations of
the first kind. Lesson 9

3.1 problem Exact Differential equations. Exercise 9.4, page 79 . . . . . . . . . . . . 34
3.2 problem Exact Differential equations. Exercise 9.5, page 79 . . . . . . . . . . . . 37
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3.1 problem Exact Differential equations. Exercise 9.4, page 79
Internal problem ID [3946]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.4, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

3x2y + 8xy2 +
(
x3 + 8x2y + 12y2

)
y′ = 0
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3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 597� �
dsolve((3*x^2*y(x)+8*x*y(x)^2)+(x^3+8*x^2*y(x)+12*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

(
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 1
3

6

−
6
( 1
12x

3 − 1
9x

4)(
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 1
3
− x2

3

y(x) = −

(
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 1
3

12

+
1
4x

3 − 1
3x

4(
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 1
3
− x2

3

−

i
√
3

(
9x5−27c1−8x6+3

√
−3x10+3x9+48c1x6−54c1x5+81c21

) 1
3

6 +
1
2x

3− 2
3x

4(
9x5−27c1−8x6+3

√
−3x10+3x9+48c1x6−54c1x5+81c21

) 1
3


2

y(x) = −

(
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 1
3

12

+
1
4x

3 − 1
3x

4(
9x5 − 27c1 − 8x6 + 3

√
−3x10 + 3x9 + 48c1x6 − 54c1x5 + 81c21

) 1
3
− x2

3

+

i
√
3

(
9x5−27c1−8x6+3

√
−3x10+3x9+48c1x6−54c1x5+81c21

) 1
3

6 +
1
2x

3− 2
3x

4(
9x5−27c1−8x6+3

√
−3x10+3x9+48c1x6−54c1x5+81c21

) 1
3


2
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3 Solution by Mathematica

Time used: 1.708 (sec). Leaf size: 431� �
DSolve[(3*x^2*y[x]+8*x*y[x]^2)+(x^3+8*x^2*y[x]+12*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6

−2x2 + 3

√
(9− 8x)x5 + 3

(√
−3(x− 1)x9 + 6c1(9− 8x)x5 + 81c12 + 9c1

)

+ (4x− 3)x3

3

√
(9− 8x)x5 + 3

(√
−3(x− 1)x9 + 6c1(9− 8x)x5 + 81c12 + 9c1

)


y(x) → 1
48

−16x2

+ 4i
(√

3 + i
)

3

√
(9− 8x)x5 + 3

(√
−3(x− 1)x9 + 6c1(9− 8x)x5 + 81c12 + 9c1

)

+
(
−4− 4i

√
3
)
(4x− 3)x3

3

√
(9− 8x)x5 + 3

(√
−3(x− 1)x9 + 6c1(9− 8x)x5 + 81c12 + 9c1

)


y(x) → 1
48

−16x2

− 4
(
1 + i

√
3
)

3

√
(9− 8x)x5 + 3

(√
−3(x− 1)x9 + 6c1(9− 8x)x5 + 81c12 + 9c1

)

+
4i
(√

3 + i
)
(4x− 3)x3

3

√
(9− 8x)x5 + 3

(√
−3(x− 1)x9 + 6c1(9− 8x)x5 + 81c12 + 9c1

)
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3.2 problem Exact Differential equations. Exercise 9.5, page 79
Internal problem ID [3947]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.5, page 79.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2xy + 1
y

+ (y − x) y′
y2

= 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 18� �
dsolve((2*x*y(x)+1)/y(x)+(y(x)-x)/y(x)^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − x

LambertW (−ex2c1x)

3 Solution by Mathematica

Time used: 6.22 (sec). Leaf size: 29� �
DSolve[(2*x*y[x]+1)/y[x]+(y[x]-x)/y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

W (x (−ex2−c1))

y(x) → 0
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3.3 problem Exact Differential equations. Exercise 9.6, page 79
Internal problem ID [3948]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.6, page 79.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2xy +
(
y2 + x2) y′ = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 257� �
dsolve(2*x*y(x)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

(
4+4

√
4x6c31+1

) 1
3

2 − 2x2c1(
4+4

√
4x6c31+1

) 1
3

√
c1

y(x) =

−

(
4+4

√
4x6c31+1

) 1
3

4 + x2c1(
4+4

√
4x6c31+1

) 1
3
−

i
√
3


(
4+4

√
4x6c31+1

) 1
3

2 + 2x2c1(
4+4

√
4x6c31+1

) 1
3


2

√
c1

y(x) =

−

(
4+4

√
4x6c31+1

) 1
3

4 + x2c1(
4+4

√
4x6c31+1

) 1
3
+

i
√
3


(
4+4

√
4x6c31+1

) 1
3

2 + 2x2c1(
4+4

√
4x6c31+1

) 1
3


2

√
c1
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3 Solution by Mathematica

Time used: 15.759 (sec). Leaf size: 362� �
DSolve[2*x*y[x]+(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√√

4x6 + e6c1 + e3c1

3
√
2

−
3
√
2x2

3
√√

4x6 + e6c1 + e3c1

y(x) →
2 3
√
−2x2 + (−2)2/3

(√
4x6 + e6c1 + e3c1

) 2/3

2 3
√√

4x6 + e6c1 + e3c1

y(x) → −
2(−1)2/3x2 + 3

√
−2
(√

4x6 + e6c1 + e3c1
) 2/3

22/3 3
√√

4x6 + e6c1 + e3c1

y(x) → 0

y(x) → 1
2

6√
x6

((
1− i

√
3
)
(x6)2/3

x4 − i
√
3− 1

)

y(x) → 1
2

6√
x6

((
1 + i

√
3
)
(x6)2/3

x4 + i
√
3− 1

)

y(x) → 6√
x6 − (x6)5/6

x4
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3.4 problem Exact Differential equations. Exercise 9.7, page 79
Internal problem ID [3949]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.7, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

ex sin (y) + e−y −
(
x e−y − ex cos (y)

)
y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 18� �
dsolve((exp(x)*sin(y(x))+exp(-y(x)))-(x*exp(-y(x))-exp(x)*cos(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

ex sin (y(x)) + x e−y(x) + c1 = 0

3 Solution by Mathematica

Time used: 0.411 (sec). Leaf size: 24� �
DSolve[(Exp[x]*Sin[y[x]]+Exp[-y[x]])-(x*Exp[-y[x]]-Exp[x]*Cos[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x
(
−e−y(x))− ex sin(y(x)) = c1, y(x)

]
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3.5 problem Exact Differential equations. Exercise 9.8, page 79
Internal problem ID [3950]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.8, page 79.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

cos (y)−
(
x sin (y)− y2

)
y′ = 0

3 Solution by Maple

Time used: 0.032 (sec). Leaf size: 20� �
dsolve(cos(y(x))-(x*sin(y(x))-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

x−
−y(x)3

3 + c1
cos (y (x)) = 0

3 Solution by Mathematica

Time used: 0.129 (sec). Leaf size: 23� �
DSolve[Cos[y[x]]-(x*Sin[y[x]]-y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x = −1

3y(x)
3 sec(y(x)) + c1 sec(y(x)), y(x)

]
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3.6 problem Exact Differential equations. Exercise 9.9, page 79
Internal problem ID [3951]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.9, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

x− 2xy + ey +
(
y − x2 + x ey

)
y′ = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 28� �
dsolve((x-2*x*y(x)+exp(y(x)))+(y(x)-x^2+x*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

−y(x)x2 + x ey(x) + x2

2 + y(x)2

2 + c1 = 0

3 Solution by Mathematica

Time used: 0.323 (sec). Leaf size: 35� �
DSolve[(x-2*x*y[x]+Exp[y[x]])+(y[x]-x^2+x*Exp[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x2(−y(x)) + x2

2 + xey(x) + y(x)2
2 = c1, y(x)

]
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3.7 problem Exact Differential equations. Exercise 9.10, page 79
Internal problem ID [3952]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.10, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

x2 − x+ y2 − (ey − 2xy) y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 26� �
dsolve((x^2-x+y(x)^2)-(exp(y(x))-2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

x3

3 + y(x)2 x− x2

2 − ey(x) + c1 = 0

3 Solution by Mathematica

Time used: 0.209 (sec). Leaf size: 32� �
DSolve[(x^2-x+y[x]^2)-(Exp[y[x]]-2*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−x3

3 + x2

2 − xy(x)2 + ey(x) = c1, y(x)
]
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3.8 problem Exact Differential equations. Exercise 9.11, page 79
Internal problem ID [3953]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.11, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

2x+ y cos (x) + (2y + sin (x)− sin (y)) y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 20� �
dsolve((2*x+y(x)*cos(x))+(2*y(x)+sin(x)-sin(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) sin (x) + x2 + y(x)2 + cos (y(x)) + c1 = 0

3 Solution by Mathematica

Time used: 0.203 (sec). Leaf size: 22� �
DSolve[(2*x+y[x]*Cos[x])+(2*y[x]+Sin[x]-Sin[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x2 + y(x)2 + y(x) sin(x) + cos(y(x)) = c1, y(x)

]
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3.9 problem Exact Differential equations. Exercise 9.12, page 79
Internal problem ID [3954]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.12, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _exact, _dAlembert]

x
√

y2 + x2 − x2yy′

y −
√
y2 + x2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x*sqrt(x^2+y(x)^2)-(x^2*y(x))/(y(x)- sqrt(x^2+y(x)^2))*diff(y(x),x)=0,y(x), singsol=all)� �

c1 +
(
x2 + y(x)2

) 3
2 + y(x)3 = 0
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3 Solution by Mathematica

Time used: 60.268 (sec). Leaf size: 2125� �
DSolve[x*Sqrt[x^2+y[x]^2]-(x^2*y[x])/(y[x]- Sqrt[x^2+y[x]^2])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−

x2

√√√√√ e6c1
x4 − 6x2 + 3

(
5x6−4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3

3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 + x2

√√√√√√√√√
2e6c1
x4 − 12x2 + 3

(
−5x6+4e6c1

)
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

−
3

3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 −

2e3c1
(
−9+ e6c1

x6

)
√√√√√√√√ e6c1

x4 −6x2+
3
(
5x6−4e6c1

)
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

x2

− e3c1

6x2

y(x)

→

x2

−

√√√√√ e6c1
x4 − 6x2 + 3

(
5x6−4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3

3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2

+ x2

√√√√√√√√√
2e6c1
x4 − 12x2 + 3

(
−5x6+4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

−
3

3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 −

2e3c1
(
−9+ e6c1

x6

)
√√√√√√√√ e6c1

x4 −6x2+
3
(
5x6−4e6c1

)
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

x2

+ e3c1

6x2

y(x)

→

x2

√√√√√ e6c1
x4 − 6x2 + 3

(
5x6−4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
+

3
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 − x2

√√√√√√√√√
2e6c1
x4 − 12x2 + 3

(
−5x6+4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

−
3

3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 +

2e3c1
(
−9+ e6c1

x6

)
√√√√√√√√ e6c1

x4 −6x2+
3
(
5x6−4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

x2

+ e3c1

6x2

y(x)

→

x2

√√√√√ e6c1
x4 − 6x2 + 3

(
5x6−4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
+

3
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 + x2

√√√√√√√√√
2e6c1
x4 − 12x2 + 3

(
−5x6+4e6c1

)
3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

−
3

3
√

−11x12 + 14e6c1x6 + 2
√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2 +

2e3c1
(
−9+ e6c1

x6

)
√√√√√√√√ e6c1

x4 −6x2+
3
(
5x6−4e6c1

)
3
√
−11x12 + 14e6c1x6 + 2

√
(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1

+
3
3
√

−11x12 + 14e6c1x6 + 2
√

(−x6 + e6c1) (x6 + e6c1) 3 − 2e12c1
x2

+ e3c1

6x2
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3.10 problem Exact Differential equations. Exercise 9.13, page
79

Internal problem ID [3955]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.13, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

4x3 − sin (x) + y3 −
(
y2 + 1− 3xy2

)
y′ = 0
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3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 1162� �
dsolve((4*x^3-sin(x)+y(x)^3)-(y(x)^2+1-3*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

=

((
−12x4 + 4

√
27x9−9x8+54 cos(x)x5+54c1x5−18 cos(x)x4−18c1x4+27x cos(x)2+54c1x cos(x)+27c21x−9 cos(x)2−18c1 cos(x)−9c21−4

3x−1 − 12 cos (x)− 12c1
)
(3x− 1)2

) 1
3

6x− 2
+ 2((

−12x4 + 4
√

27x9−9x8+54 cos(x)x5+54c1x5−18 cos(x)x4−18c1x4+27x cos(x)2+54c1x cos(x)+27c21x−9 cos(x)2−18c1 cos(x)−9c21−4
3x−1 − 12 cos (x)− 12c1

)
(3x− 1)2

) 1
3

y(x) =

−

((
−12x4 + 4

√
27x9−9x8+54 cos(x)x5+54c1x5−18 cos(x)x4−18c1x4+27x cos(x)2+54c1x cos(x)+27c21x−9 cos(x)2−18c1 cos(x)−9c21−4

3x−1 − 12 cos (x)− 12c1
)
(3x− 1)2

) 1
3

4 (3x− 1)

− 1((
−12x4 + 4

√
27x9−9x8+54 cos(x)x5+54c1x5−18 cos(x)x4−18c1x4+27x cos(x)2+54c1x cos(x)+27c21x−9 cos(x)2−18c1 cos(x)−9c21−4

3x−1 − 12 cos (x)− 12c1
)
(3x− 1)2

) 1
3

−

i
√
3


((

−12x4+4
√

27x9−9x8+54 cos(x)x5+54c1x5−18 cos(x)x4−18c1x4+27x cos(x)2+54c1x cos(x)+27c21x−9 cos(x)2−18c1 cos(x)−9c21−4
3x−1 −12 cos(x)−12c1

)
(3x−1)2

) 1
3

6x−2 − 2((
−12x4+4

√
27x9−9x8+54 cos(x)x5+54c1x5−18 cos(x)x4−18c1x4+27x cos(x)2+54c1x cos(x)+27c21x−9 cos(x)2−18c1 cos(x)−9c21−4

3x−1 −12 cos(x)−12c1

)
(3x−1)2

) 1
3


2

y(x) =

−

((
−12x4 + 4

√
27x9−9x8+54 cos(x)x5+54c1x5−18 cos(x)x4−18c1x4+27x cos(x)2+54c1x cos(x)+27c21x−9 cos(x)2−18c1 cos(x)−9c21−4

3x−1 − 12 cos (x)− 12c1
)
(3x− 1)2

) 1
3

4 (3x− 1)

− 1((
−12x4 + 4

√
27x9−9x8+54 cos(x)x5+54c1x5−18 cos(x)x4−18c1x4+27x cos(x)2+54c1x cos(x)+27c21x−9 cos(x)2−18c1 cos(x)−9c21−4

3x−1 − 12 cos (x)− 12c1
)
(3x− 1)2

) 1
3

+

i
√
3


((

−12x4+4
√

27x9−9x8+54 cos(x)x5+54c1x5−18 cos(x)x4−18c1x4+27x cos(x)2+54c1x cos(x)+27c21x−9 cos(x)2−18c1 cos(x)−9c21−4
3x−1 −12 cos(x)−12c1

)
(3x−1)2

) 1
3

6x−2 − 2((
−12x4+4

√
27x9−9x8+54 cos(x)x5+54c1x5−18 cos(x)x4−18c1x4+27x cos(x)2+54c1x cos(x)+27c21x−9 cos(x)2−18c1 cos(x)−9c21−4

3x−1 −12 cos(x)−12c1

)
(3x−1)2

) 1
3


2
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3 Solution by Mathematica

Time used: 60.211 (sec). Leaf size: 567� �
DSolve[(4*x^3-Sin[x]+y[x]^3)-(y[x]^2+1-3*x*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
3
√
2
(
−3(1− 3x)2 (x4 − c1) + 1

27

√
4(9− 27x)3 + 6561(1− 3x)4 (x4 + cos(x)− c1) 2 − 3(1− 3x)2 cos(x)

)
2/3 + 6x− 2

22/3(3x− 1) 3

√
−3(1− 3x)2 (x4 − c1) +

1
27
√
4(9− 27x)3 + 6561(1− 3x)4 (x4 + cos(x)− c1) 2 − 3(1− 3x)2 cos(x)

y(x)

→
9i 3
√
2
(√

3 + i
) (

−3(1− 3x)2 (x4 − c1) + 1
27

√
4(9− 27x)3 + 6561(1− 3x)4 (x4 + cos(x)− c1) 2 − 3(1− 3x)2 cos(x)

)
2/3 +

(
2 + 2i

√
3
)
(9− 27x)

18 22/3(3x− 1) 3

√
−3(1− 3x)2 (x4 − c1) +

1
27
√

4(9− 27x)3 + 6561(1− 3x)4 (x4 + cos(x)− c1) 2 − 3(1− 3x)2 cos(x)

y(x)

→
i

(
2
(√

3 + i
)
−

3
√
2
(√

3−i
)(

−3(1−3x)2
(
x4−c1

)
+ 1

27
√

4(9−27x)3+6561(1−3x)4(x4+cos(x)−c1)2−3(1−3x)2 cos(x)
)
2/3

3x−1

)

2 22/3 3

√
−3(1− 3x)2 (x4 − c1) +

1
27
√

4(9− 27x)3 + 6561(1− 3x)4 (x4 + cos(x)− c1) 2 − 3(1− 3x)2 cos(x)
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3.11 problem Exact Differential equations. Exercise 9.15, page
79

Internal problem ID [3956]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.15, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _Bernoulli]

ex
(
y3 + y3x+ 1

)
+ 3y2(exx− 6) y′ = 0

With initial conditions

[y(0) = 1]

3 Solution by Maple

Time used: 0.141 (sec). Leaf size: 38� �
dsolve([exp(x)*(y(x)^3+x*y(x)^3+1)+3*y(x)^2*(x*exp(x)-6)*diff(y(x),x)=0,y(0) = 1],y(x), singsol=all)� �

y(x) =
(
−1 + i

√
3
) (

−(ex + 5) (exx− 6)2
) 1

3

2 exx− 12

3 Solution by Mathematica

Time used: 1.149 (sec). Leaf size: 28� �
DSolve[{Exp[x]*(y[x]^3+x*y[x]^3+1)+3*y[x]^2*(x*Exp[x]-6)*y'[x]==0,y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√
−ex − 5

3
√
exx− 6
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3.12 problem Exact Differential equations. Exercise 9.16, page
79

Internal problem ID [3957]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.16, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

sin (x) cos (y) + cos (x) sin (y) y′ = 0

With initial conditions [
y
(π
4

)
= π

4

]
3 Solution by Maple

Time used: 0.328 (sec). Leaf size: 11� �
dsolve([sin(x)*cos(y(x))+cos(x)*sin(y(x))*diff(y(x),x)=0,y(1/4*Pi) = 1/4*Pi],y(x), singsol=all)� �

y(x) = arccos
(
sec (x)

2

)
3 Solution by Mathematica

Time used: 6.213 (sec). Leaf size: 10� �
DSolve[{Sin[x]*Cos[y[x]]+Cos[x]*Sin[y[x]]*y'[x]==0,y[Pi/4]==Pi/4},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sec−1(2 cos(x))
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3.13 problem Exact Differential equations. Exercise 9.17, page
79

Internal problem ID [3958]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.17, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

y2exy2 + 4x3 +
(
2xy exy2 − 3y2

)
y′ = 0

With initial conditions

[y(1) = 0]

3 Solution by Maple

Time used: 0.063 (sec). Leaf size: 23� �
dsolve([(y(x)^2*exp(x*y(x)^2)+4*x^3)+(2*x*y(x)*exp(x*y(x)^2)-3*y(x)^2)*diff(y(x),x)=0,y(1) = 0],y(x), singsol=all)� �

y(x) = RootOf
(
−e_Z2x − x4 + _Z3 + 2

)
3 Solution by Mathematica

Time used: 0.34 (sec). Leaf size: 23� �
DSolve[{(y[x]^2*Exp[x*y[x]^2]+4*x^3)+(2*x*y[x]*Exp[x*y[x]^2]-3*y[x]^2)*y'[x]==0,y[1]==0},y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x4 + exy(x)

2 − y(x)3 = 2, y(x)
]
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4 Chapter 2. Special types of differential equations of
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4.1 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.51, page 90

Internal problem ID [3959]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exam-
ple 10.51, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y2 + y − y′x = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 13� �
dsolve((y(x)^2+y(x))-x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x

c1 − x

3 Solution by Mathematica

Time used: 0.275 (sec). Leaf size: 28� �
DSolve[(y[x]^2+y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1 + 1
1− ec1x

y(x) → −1

y(x) → 0
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4.2 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.52, page 90

Internal problem ID [3960]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exam-
ple 10.52, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y sec (x) + y′ sin (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 10� �
dsolve((y(x)*sec(x))+sin(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1
tan (x)

3 Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 15� �
DSolve[(y[x]*Sec[x])+Sin[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cot(x)

y(x) → 0
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4.3 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.661, page 90

Internal problem ID [3961]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exam-
ple 10.661, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [‘y=_G(x,y’)‘]

ex − sin (y) + cos (y) y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 13� �
dsolve((exp(x)-sin(y(x)))+cos(y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − arcsin ((x+ c1) ex)

3 Solution by Mathematica

Time used: 11.785 (sec). Leaf size: 16� �
DSolve[(Exp[x]-Sin[y[x]])+Cos[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arcsin (ex(x+ c1))
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4.4 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.701, page 90

Internal problem ID [3962]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exam-
ple 10.701, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

xy +
(
x2 + 1

)
y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 13� �
dsolve((x*y(x))+(1+x^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1√
x2 + 1

3 Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 22� �
DSolve[(x*y[x])+(1+x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1√
x2 + 1

y(x) → 0
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4.5 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.741, page 90

Internal problem ID [3963]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exam-
ple 10.741, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

y3 + xy2 + y +
(
x3 + x2y + x

)
y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 118� �
dsolve((y(x)^3+x*y(x)^2+y(x))+(x^3+x^2*y(x)+x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x4 + 2x2 + 1

x
(√

c1x4+c1x2−1
x2(x2+1) (x2 + 1)

3
2 − x2 − 1

)
y(x) = − x4 + 2x2 + 1

x
(
x2 +

√
c1x4+c1x2−1
x2(x2+1) (x2 + 1)

3
2 + 1

)
3 Solution by Mathematica

Time used: 3.753 (sec). Leaf size: 96� �
DSolve[(y[x]^3+x*y[x]^2+y[x])+(x^3+x^2*y[x]+x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + 1

x
(
−1 +

√
1
x3x
√
− 1

x
+ c1x (x2 + 1)

)
y(x) → − x2 + 1

x+
√

1
x3x2

√
− 1

x
+ c1x (x2 + 1)

y(x) → 0
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4.6 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.781, page 90

Internal problem ID [3964]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exam-
ple 10.781, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

3y − y′x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 9� �
dsolve((3*y(x))-(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1x
3

3 Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 16� �
DSolve[(3*y[x])-(x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
3

y(x) → 0
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4.7 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.81, page 90

Internal problem ID [3965]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exam-
ple 10.81, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y − 3y′x = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 9� �
dsolve((y(x))-(3*x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1x
1
3

3 Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 18� �
DSolve[(y[x])-(3*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
3
√
x

y(x) → 0
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4.8 problem Recognizable Exact Differential equations.
Integrating factors. Example 10.83, page 90

Internal problem ID [3966]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exam-
ple 10.83, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rational]

y
(
2y3x2 + 3

)
+ x
(
y3x2 − 1

)
y′ = 0

3 Solution by Maple

Time used: 0.046 (sec). Leaf size: 39� �
dsolve((y(x)*(2*x^2*y(x)^3+3))+(x*(x^2*y(x)^3-1))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−
11c1
3 x3

RootOf
(
11 e11c1_Z15 − e11c1_Z11 + 4x11

)5
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3 Solution by Mathematica

Time used: 10.637 (sec). Leaf size: 1081� �
DSolve[(y[x]*(2*x^2*y[x]^3+3))+(x*(x^2*y[x]^3-1))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → Root

[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 1
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 2
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 3
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 4
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 5
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 6
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 7
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 8
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 9
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 10
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 11
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 12
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 13
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 14
]

y(x) → Root
[
1024#115x22 + 14080#112x20 + 77440#19x18 + 212960#16x16 −#14e

44c1
3

+ 292820#13x14 + 161051x12&, 15
]
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4.9 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.1, page 90

Internal problem ID [3967]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.1, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2xy + x2 +
(
y2 + x2) y′ = 0
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3 Solution by Maple

Time used: 0.047 (sec). Leaf size: 417� �
dsolve((2*x*y(x)+x^2)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

(
4−4x3c

3
2
1 +4

√
5x6c31−2x3c

3
2
1 +1

) 1
3

2 − 2x2c1(
4−4x3c

3
2
1 +4

√
5x6c31−2x3c

3
2
1 +1

) 1
3

√
c1

y(x)

=

−

(
4−4x3c

3
2
1 +4

√
5x6c31−2x3c

3
2
1 +1

) 1
3

4 + x2c1(
4−4x3c

3
2
1 +4

√
5x6c31−2x3c

3
2
1 +1

) 1
3
−

i
√
3



4−4x3c
3
2
1 +4

√
5x6c31−2x3c

3
2
1 +1


1
3

2 + 2x2c14−4x3c
3
2
1 +4

√
5x6c31−2x3c

3
2
1 +1


1
3


2

√
c1

y(x)

=

−

(
4−4x3c

3
2
1 +4

√
5x6c31−2x3c

3
2
1 +1

) 1
3

4 + x2c1(
4−4x3c

3
2
1 +4

√
5x6c31−2x3c

3
2
1 +1

) 1
3
+

i
√
3



4−4x3c
3
2
1 +4

√
5x6c31−2x3c

3
2
1 +1


1
3

2 + 2x2c14−4x3c
3
2
1 +4

√
5x6c31−2x3c

3
2
1 +1


1
3


2

√
c1
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3 Solution by Mathematica

Time used: 23.479 (sec). Leaf size: 544� �
DSolve[(2*x*y[x]+x^2)+(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

−x3 +
√
5x6 − 2e3c1x3 + e6c1 + e3c1

3
√
2

−
3
√
2x2

3
√
−x3 +

√
5x6 − 2e3c1x3 + e6c1 + e3c1

y(x) →
2 3
√
−2x2 + (−2)2/3

(
−x3 +

√
5x6 − 2e3c1x3 + e6c1 + e3c1

) 2/3

2 3
√

−x3 +
√
5x6 − 2e3c1x3 + e6c1 + e3c1

y(x) → −
2(−1)2/3x2 + 3

√
−2
(
−x3 +

√
5x6 − 2e3c1x3 + e6c1 + e3c1

) 2/3

22/3 3
√

−x3 +
√
5x6 − 2e3c1x3 + e6c1 + e3c1

y(x) →
2 3
√
−2x2 + (−2)2/3

(√
5
√
x6 − x3

)2/3
2 3
√√

5
√
x6 − x3

y(x) →

(
2
√
5
√
x6 − 2x3

)2/3
− 2 3

√
2x2

2 3
√√

5
√
x6 − x3

y(x) → −
2(−1)2/3x2 + 3

√
−2
(√

5
√
x6 − x3

)2/3
22/3 3

√√
5
√
x6 − x3
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4.10 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.2, page 90

Internal problem ID [3968]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.2, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

x2 + y cos (x) +
(
y3 + sin (x)

)
y′ = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 21� �
dsolve((x^2+y(x)*cos(x))+(y(x)^3+sin(x))*diff(y(x),x)=0,y(x), singsol=all)� �

x3

3 + y(x) sin (x) + y(x)4

4 + c1 = 0
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3 Solution by Mathematica

Time used: 60.206 (sec). Leaf size: 1119� �
DSolve[(x^2+y[x]*Cos[x])+(y[x]^3+Sin[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√√√√√ 4x3+
(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

√
6

− 1
2

√√√√√√√√√
− 8 (x3 − 3c1)

3 3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

− 2
3

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3 − 4

√
6 sin(x)√√√√√ 4x3+

(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

y(x) →

√√√√√ 4x3+
(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

√
6

+1
2

√√√√√√√√√
− 8 (x3 − 3c1)

3 3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

− 2
3

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3 − 4

√
6 sin(x)√√√√√ 4x3+

(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

y(x) → −

√√√√√ 4x3+
(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

√
6

− 1
2

√√√√√√√√√
− 8 (x3 − 3c1)

3 3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

− 2
3

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3 + 4

√
6 sin(x)√√√√√ 4x3+

(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

y(x)

→ 1
2

√√√√√√√√√
− 8 (x3 − 3c1)

3 3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

− 2
3

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3 + 4

√
6 sin(x)√√√√√ 4x3+

(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

−

√√√√√ 4x3+
(
27 sin2(x)+

√
729 sin4(x)−64(x3−3c1)3

)
2/3−12c1

3

√
27 sin2(x) +

√
729 sin4(x)− 64 (x3 − 3c1) 3

√
6
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4.11 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.3, page 90

Internal problem ID [3969]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.3, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

x2 + y2 + x+ xyy′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 49� �
dsolve((x^2+y(x)^2+x)+(x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −
√
−18x4 − 24x3 + 36c1

6x

y(x) =
√
−18x4 − 24x3 + 36c1

6x

3 Solution by Mathematica

Time used: 0.262 (sec). Leaf size: 56� �
DSolve[(x^2+y[x]^2+x)+(x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−1

6x
3(3x+ 4) + c1

x

y(x) →

√
−1

6x
3(3x+ 4) + c1

x
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4.12 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.4, page 90

Internal problem ID [3970]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.4, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

x− 2xy + ey +
(
y − x2 + x ey

)
y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 28� �
dsolve((x-2*x*y(x)+exp(y(x)))+(y(x)-x^2+x*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

−y(x)x2 + x ey(x) + x2

2 + y(x)2

2 + c1 = 0

3 Solution by Mathematica

Time used: 0.334 (sec). Leaf size: 35� �
DSolve[(x-2*x*y[x]+Exp[y[x]])+(y[x]-x^2+x*Exp[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x2(−y(x)) + x2

2 + xey(x) + y(x)2
2 = c1, y(x)

]
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4.13 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.5, page 90

Internal problem ID [3971]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.5, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

ex sin (y) + e−y −
(
x e−y − ex cos (y)

)
y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 18� �
dsolve((exp(x)*sin(y(x))+exp(-y(x)))-(x*exp(-y(x))-exp(x)*cos(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

ex sin (y(x)) + x e−y(x) + c1 = 0

3 Solution by Mathematica

Time used: 0.373 (sec). Leaf size: 24� �
DSolve[(Exp[x]*Sin[y[x]]+Exp[-y[x]])-(x*Exp[-y[x]]-Exp[x]*Cos[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x
(
−e−y(x))− ex sin(y(x)) = c1, y(x)

]
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4.14 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.6, page 90

Internal problem ID [3972]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.6, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

x2 − y2 − y −
(
x2 − y2 − x

)
y′ = 0

3 Solution by Maple

Time used: 0.125 (sec). Leaf size: 28� �
dsolve((x^2-y(x)^2-y(x))-(x^2-y(x)^2-x)*diff(y(x),x)=0,y(x), singsol=all)� �

−2y(x) + ln (x+ y(x))− ln (y(x)− x) + 2x− c1 = 0

3 Solution by Mathematica

Time used: 0.243 (sec). Leaf size: 32� �
DSolve[(x^2-y[x]^2-y[x])-(x^2-y[x]^2-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−e2x−2y(x)(y(x) + x)

2(x− y(x)) = c1, y(x)
]
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4.15 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.7, page 90

Internal problem ID [3973]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.7, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational]

x4y2 − y +
(
x2y4 − x

)
y′ = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 25� �
dsolve((x^4*y(x)^2-y(x))+(x^2*y(x)^4-x)*diff(y(x),x)=0,y(x), singsol=all)� �

−x3

3 − 1
xy (x) −

y(x)3

3 + c1 = 0
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3 Solution by Mathematica

Time used: 60.13 (sec). Leaf size: 1427� �
DSolve[(x^4*y[x]^2-y[x])+(x^2*y[x]^4-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4


√
2

√√√√√8 3
√
2x+ 22/3

(
x3 (x3 − 3c1) 2 +

√
x3 (−256 + x3 (x3 − 3c1) 4)

)
2/3

x
3
√

x3 (x3 − 3c1) 2 +
√

x3 (−256 + x3 (x3 − 3c1) 4)

−2

√√√√√√√√− 2
√
2 (x3 − 3c1)√√√√ 8

3
√
2x+22/3

(
x3(x3−3c1)2+

√
x3(−256+x3(x3−3c1)4)

)
2/3

x
3
√

x3 (x3 − 3c1) 2 +
√
x3 (−256 + x3 (x3 − 3c1) 4)

− 4 3
√
2

3
√

x3 (x3 − 3c1) 2 +
√
x3 (−256 + x3 (x3 − 3c1) 4)

−
3
√
x (x4 − 3c1x) 2 +

√
x2 (−256x+ (x4 − 3c1x) 4)
3
√
2x



y(x) → 1
4


√
2

√√√√√8 3
√
2x+ 22/3

(
x3 (x3 − 3c1) 2 +

√
x3 (−256 + x3 (x3 − 3c1) 4)

)
2/3

x
3
√

x3 (x3 − 3c1) 2 +
√

x3 (−256 + x3 (x3 − 3c1) 4)

+2

√√√√√√√√− 2
√
2 (x3 − 3c1)√√√√ 8

3
√
2x+22/3

(
x3(x3−3c1)2+

√
x3(−256+x3(x3−3c1)4)

)
2/3

x
3
√

x3 (x3 − 3c1) 2 +
√

x3 (−256 + x3 (x3 − 3c1) 4)

− 4 3
√
2

3
√

x3 (x3 − 3c1) 2 +
√

x3 (−256 + x3 (x3 − 3c1) 4)
−

3
√

x (x4 − 3c1x) 2 +
√

x2 (−256x+ (x4 − 3c1x) 4)
3
√
2x



y(x) → 1
4

−
√
2

√√√√√8 3
√
2x+ 22/3

(
x3 (x3 − 3c1) 2 +

√
x3 (−256 + x3 (x3 − 3c1) 4)

)
2/3

x
3
√

x3 (x3 − 3c1) 2 +
√
x3 (−256 + x3 (x3 − 3c1) 4)

−2

√√√√√√√√
2
√
2 (x3 − 3c1)√√√√ 8

3
√
2x+22/3

(
x3(x3−3c1)2+

√
x3(−256+x3(x3−3c1)4)

)
2/3

x
3
√

x3 (x3 − 3c1) 2 +
√

x3 (−256 + x3 (x3 − 3c1) 4)

− 4 3
√
2

3
√

x3 (x3 − 3c1) 2 +
√

x3 (−256 + x3 (x3 − 3c1) 4)
−

3
√

x (x4 − 3c1x) 2 +
√
x2 (−256x+ (x4 − 3c1x) 4)
3
√
2x


y(x)

→ 1
4

2

√√√√√√√√
2
√
2 (x3 − 3c1)√√√√ 8

3
√
2x+22/3

(
x3(x3−3c1)2+

√
x3(−256+x3(x3−3c1)4)

)
2/3

x
3
√

x3 (x3 − 3c1) 2 +
√
x3 (−256 + x3 (x3 − 3c1) 4)

− 4 3
√
2

3
√

x3 (x3 − 3c1) 2 +
√

x3 (−256 + x3 (x3 − 3c1) 4)
−

3
√

x (x4 − 3c1x) 2 +
√

x2 (−256x+ (x4 − 3c1x) 4)
3
√
2x

−
√
2

√√√√√8 3
√
2x+ 22/3

(
x3 (x3 − 3c1) 2 +

√
x3 (−256 + x3 (x3 − 3c1) 4)

)
2/3

x
3
√

x3 (x3 − 3c1) 2 +
√

x3 (−256 + x3 (x3 − 3c1) 4)
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4.16 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.8, page 90

Internal problem ID [3974]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.8, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rational]

y
(
2x+ y3

)
− x
(
2x− y3

)
y′ = 0
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3 Solution by Maple

Time used: 0.062 (sec). Leaf size: 420� �
dsolve((y(x)*(2*x+y(x)^3))-(x*(2*x-y(x)^3))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

(
−108x4 + 8c31 + 12

√
81x4 − 12c31 x2

) 1
3

6x
+ 2c21

3x
(
−108x4 + 8c31 + 12

√
81x4 − 12c31 x2

) 1
3
+ c1

3x

y(x) = −

(
−108x4 + 8c31 + 12

√
81x4 − 12c31 x2

) 1
3

12x
− c21

3x
(
−108x4 + 8c31 + 12

√
81x4 − 12c31 x2

) 1
3
+ c1

3x

−

i
√
3

(
−108x4+8c31+12

√
81x4−12c31 x2

) 1
3

6x − 2c21

3x
(
−108x4+8c31+12

√
81x4−12c31 x2

) 1
3


2

y(x) = −

(
−108x4 + 8c31 + 12

√
81x4 − 12c31 x2

) 1
3

12x
− c21

3x
(
−108x4 + 8c31 + 12

√
81x4 − 12c31 x2

) 1
3
+ c1

3x

+

i
√
3

(
−108x4+8c31+12

√
81x4−12c31 x2

) 1
3

6x − 2c21

3x
(
−108x4+8c31+12

√
81x4−12c31 x2

) 1
3


2
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3 Solution by Mathematica

Time used: 13.382 (sec). Leaf size: 371� �
DSolve[(y[x]*(2*x+y[x]^3))-(x*(2*x-y[x]^3))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ −

2
3
√
2c12

3
√

27x4 + 3
√

81x8 + 12c13x4 + 2c13
+ 22/3 3

√
27x4 + 3

√
81x8 + 12c13x4 + 2c13 + 2c1

6x
y(x)

→

2
3
√
2
(
1+i

√
3
)
c12

3
√

27x4 + 3
√
81x8 + 12c13x4 + 2c13

+ 22/3
(
1− i

√
3
) 3
√
27x4 + 3

√
81x8 + 12c13x4 + 2c13 − 4c1

12x
y(x)

→

2
3
√
2
(
1−i

√
3
)
c12

3
√

27x4 + 3
√
81x8 + 12c13x4 + 2c13

+ 22/3
(
1 + i

√
3
) 3
√
27x4 + 3

√
81x8 + 12c13x4 + 2c13 − 4c1

12x
y(x) → 0
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4.17 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.9, page 90

Internal problem ID [3975]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.9, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

arctan (xy) + xy − 2xy2
x2y2 + 1 + (x2 − 2x2y) y′

x2y2 + 1 = 0

3 Solution by Maple

Time used: 0.093 (sec). Leaf size: 24� �
dsolve((arctan(x*y(x))+(x*y(x)-2*x*y(x)^2)/(1+x^2*y(x)^2))+((x^2-2*x^2*y(x))/(1+x^2*y(x)^2))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
tan

(
RootOf

(
_Zx− ln

(
tan (_Z)2 + 1

)
+ c1

))
x

3 Solution by Mathematica

Time used: 0.192 (sec). Leaf size: 26� �
DSolve[(ArcTan[x*y[x]]+(x*y[x]-2*x*y[x]^2)/(1+x^2*y[x]^2))+((x^2-2*x^2*y[x])/(1+x^2*y[x]^2))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
log
(
x2y(x)2 + 1

)
− x arctan(xy(x)) = c1, y(x)

]
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4.18 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.10, page 90

Internal problem ID [3976]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.10, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [‘y=_G(x,y’)‘]

ex(x+ 1) + (y ey − exx) y′ = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 20� �
dsolve((exp(x)*(x+1))+(y(x)*exp(y(x))-x*exp(x))*diff(y(x),x)=0,y(x), singsol=all)� �

x e−y(x)+x + y(x)2

2 + c1 = 0

3 Solution by Mathematica

Time used: 0.305 (sec). Leaf size: 26� �
DSolve[(Exp[x]*(x+1))+(y[x]*Exp[y[x]]-x*Exp[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−1
2y(x)

2 − xex−y(x) = c1, y(x)
]
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4.19 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.11, page 90

Internal problem ID [3977]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.11, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

xy + 1
y

+ (2y − x) y′
y2

= 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 20� �
dsolve(((x*y(x)+1)/y(x))+((2*y(x)-x)/y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − x

2 LambertW
(
− e

x2
4 c1x
2

)
3 Solution by Mathematica

Time used: 4.469 (sec). Leaf size: 37� �
DSolve[((x*y[x]+1)/y[x])+((2*y[x]-x)/y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

2W
(
−1

2xe
1
4 (x2−2c1)

)
y(x) → 0
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4.20 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.12, page 90

Internal problem ID [3978]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.12, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

y2 − 3xy − 2x2 +
(
xy − x2) y′ = 0

3 Solution by Maple

Time used: 0.031 (sec). Leaf size: 59� �
dsolve((y(x)^2-3*x*y(x)-2*x^2)+(x*y(x)-x^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1x
2 −

√
2c21x4 + 1

c1x

y(x) = c1x
2 +

√
2c21x4 + 1

c1x

3 Solution by Mathematica

Time used: 0.682 (sec). Leaf size: 99� �
DSolve[(y[x]^2-3*x*y[x]-2*x^2)+(x*y[x]-x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x−
√
2x4 + e2c1

x

y(x) → x+
√
2x4 + e2c1

x

y(x) → x−
√
2
√
x4

x

y(x) →
√
2
√
x4

x
+ x
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4.21 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.13, page 90

Internal problem ID [3979]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.13, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

y(y + 2x+ 1)− x(x+ 2y − 1) y′ = 0
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3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 493� �
dsolve((y(x)*(y(x)+2*x+1))-(x*(2*y(x)+x-1))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
3 5 1

3

(
x
(√

5
√

80c1x2−160c1x+80c1−x
c1

+ 20x− 20
)
c21

) 1
3

40c1

+ 3x5 2
3

40
(
x
(√

5
√

80c1x2−160c1x+80c1−x
c1

+ 20x− 20
)
c21

) 1
3
+ x− 1

y(x) = −
3 5 1

3

(
x
(√

5
√

80c1x2−160c1x+80c1−x
c1

+ 20x− 20
)
c21

) 1
3

80c1

− 3x5 2
3

80
(
x
(√

5
√

80c1x2−160c1x+80c1−x
c1

+ 20x− 20
)
c21

) 1
3
+ x− 1

−

i
√
3

3 5
1
3

(
x

(
√
5
√

80c1x2−160c1x+80c1−x
c1

+20x−20
)
c21

) 1
3

40c1 − 3x5
2
3

40
(
x

(
√
5
√

80c1x2−160c1x+80c1−x
c1

+20x−20
)
c21

) 1
3


2

y(x) = −
3 5 1

3

(
x
(√

5
√

80c1x2−160c1x+80c1−x
c1

+ 20x− 20
)
c21

) 1
3

80c1

− 3x5 2
3

80
(
x
(√

5
√

80c1x2−160c1x+80c1−x
c1

+ 20x− 20
)
c21

) 1
3
+ x− 1

+

i
√
3

3 5
1
3

(
x

(
√
5
√

80c1x2−160c1x+80c1−x
c1

+20x−20
)
c21

) 1
3

40c1 − 3x5
2
3

40
(
x

(
√
5
√

80c1x2−160c1x+80c1−x
c1

+20x−20
)
c21

) 1
3


2
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3 Solution by Mathematica

Time used: 38.706 (sec). Leaf size: 463� �
DSolve[(y[x]*(y[x]+2*x+1))-(x*(2*y[x]+x-1))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
3
√
2x

3
√

−27c12x2 +
√

108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

+
3
√

−27c12x2 +
√

108c13x3 + (27c12x− 27c12x2) 2 + 27c12x
3 3
√
2c1

+ x− 1

y(x) →
(
1 + i

√
3
)
x

22/3 3
√

−27c12x2 +
√

108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

−
(
1− i

√
3
) 3
√

−27c12x2 +
√
108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

6 3
√
2c1

+ x− 1

y(x) →
(
1− i

√
3
)
x

22/3 3
√

−27c12x2 +
√

108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

−
(
1 + i

√
3
) 3
√

−27c12x2 +
√
108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

6 3
√
2c1

+ x− 1

y(x) → Indeterminate

y(x) → x− 1
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4.22 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.14, page 90

Internal problem ID [3980]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.14, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

y(2x− y − 1) + x(2y − x− 1) y′ = 0
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3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 499� �
dsolve((y(x)*(2*x-y(x)-1))+(x*(2*y(x)-x-1))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
3 5 1

3

(
x
(√

5
√

80c1x2+160c1x+80c1−x
c1

− 20x− 20
)
c21

) 1
3

40c1

+ 3x5 2
3

40
(
x
(√

5
√

80c1x2+160c1x+80c1−x
c1

− 20x− 20
)
c21

) 1
3
− x− 1

y(x) = −
3 5 1

3

(
x
(√

5
√

80c1x2+160c1x+80c1−x
c1

− 20x− 20
)
c21

) 1
3

80c1

− 3x5 2
3

80
(
x
(√

5
√

80c1x2+160c1x+80c1−x
c1

− 20x− 20
)
c21

) 1
3
− x− 1

−

i
√
3

3 5
1
3

(
x

(
√
5
√

80c1x2+160c1x+80c1−x
c1

−20x−20
)
c21

) 1
3

40c1 − 3x5
2
3

40
(
x

(
√
5
√

80c1x2+160c1x+80c1−x
c1

−20x−20
)
c21

) 1
3


2

y(x) = −
3 5 1

3

(
x
(√

5
√

80c1x2+160c1x+80c1−x
c1

− 20x− 20
)
c21

) 1
3

80c1

− 3x5 2
3

80
(
x
(√

5
√

80c1x2+160c1x+80c1−x
c1

− 20x− 20
)
c21

) 1
3
− x− 1

+

i
√
3

3 5
1
3

(
x

(
√
5
√

80c1x2+160c1x+80c1−x
c1

−20x−20
)
c21

) 1
3

40c1 − 3x5
2
3

40
(
x

(
√
5
√

80c1x2+160c1x+80c1−x
c1

−20x−20
)
c21

) 1
3


2
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3 Solution by Mathematica

Time used: 41.115 (sec). Leaf size: 448� �
DSolve[(y[x]*(2*x-y[x]-1))+(x*(2*y[x]-x-1))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
3

√
2
3x

3
√√

3
√
c13x2 (−4x+ 27c1(x+ 1)2) + 9c12x(x+ 1)

−
3
√√

3
√

c13x2 (−4x+ 27c1(x+ 1)2) + 9c12x(x+ 1)
3
√
232/3c1

− x− 1

y(x) →
(
1− i

√
3
) 3
√√

3
√

c13x2 (−4x+ 27c1(x+ 1)2) + 9c12x(x+ 1)
2 3
√
232/3c1

+ x+ i
√
3x

22/3 3
√
3 3
√√

3
√

c13x2 (−4x+ 27c1(x+ 1)2) + 9c12x(x+ 1)
− x− 1

y(x) →
(
1 + i

√
3
) 3
√√

3
√

c13x2 (−4x+ 27c1(x+ 1)2) + 9c12x(x+ 1)
2 3
√
232/3c1

+ x− i
√
3x

22/3 3
√
3 3
√√

3
√

c13x2 (−4x+ 27c1(x+ 1)2) + 9c12x(x+ 1)
− x− 1

y(x) → Indeterminate

y(x) → −x− 1
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4.23 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.15, page 90

Internal problem ID [3981]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.15, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

y2 + 12x2y +
(
2xy + 4x3) y′ = 0

3 Solution by Maple

Time used: 0.047 (sec). Leaf size: 50� �
dsolve((y(x)^2+12*x^2*y(x))+(2*x*y(x)+4*x^3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −2x3 +
√
4x6 + c1x

x

y(x) = −2x3 +
√
4x6 + c1x

x

3 Solution by Mathematica

Time used: 0.451 (sec). Leaf size: 58� �
DSolve[(y[x]^2+12*x^2*y[x])+(2*x*y[x]+4*x^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
2x3 +

√
x (4x5 + c1)
x

y(x) → −2x3 +
√
x (4x5 + c1)
x
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4.24 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.16, page 90

Internal problem ID [3982]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.16, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3(y + x)2 + x(3y + 2x) y′ = 0

3 Solution by Maple

Time used: 0.031 (sec). Leaf size: 63� �
dsolve((3*(y(x)+x)^2)+(x*(3*y(x)+2*x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
−2c1x2

3 −
√

−2c21x4+6
6

c1x

y(x) =
−2c1x2

3 +
√

−2c21x4+6
6

c1x
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3 Solution by Mathematica

Time used: 1.774 (sec). Leaf size: 135� �
DSolve[(3*(y[x]+x)^2)+(x*(3*y[x]+2*x))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4x2 +
√
−2x4 + 6e4c1
6x

y(x) → −4x2 +
√
−2x4 + 6e4c1
6x

y(x) → −
√
2
√
−x4 + 4x2

6x

y(x) →
√
2
√
−x4 − 4x2

6x
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4.25 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.17, page 90

Internal problem ID [3983]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.17, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational]

y −
(
x2 + y2 + x

)
y′ = 0

3 Solution by Maple

Time used: 0.047 (sec). Leaf size: 30� �
dsolve((y(x))-(y(x)^2+x^2+x)*diff(y(x),x)=0,y(x), singsol=all)� �

c1 +
e−2iy(x)(ix+ y(x))

2iy (x) + 2x = 0

3 Solution by Mathematica

Time used: 0.107 (sec). Leaf size: 18� �
DSolve[(y[x])-(y[x]^2+x^2+x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)− arctan

(
x

y(x)

)
= c1, y(x)

]
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4.26 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.18, page 90

Internal problem ID [3984]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.18, page 90.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2xy +
(
x2 + y2 + a

)
y′ = 0
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3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 470� �
dsolve((2*x*y(x))+(x^2+y(x)^2+a)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

(
−12c1 + 4

√
4x6 + 12a x4 + 12a2x2 + 4a3 + 9c21

) 1
3

2
− 2(x2 + a)(

−12c1 + 4
√

4x6 + 12a x4 + 12a2x2 + 4a3 + 9c21
) 1

3

y(x)

= −

(
−12c1 + 4

√
4x6 + 12a x4 + 12a2x2 + 4a3 + 9c21

) 1
3

4
+ x2 + a(

−12c1 + 4
√

4x6 + 12a x4 + 12a2x2 + 4a3 + 9c21
) 1

3

−

i
√
3

(
−12c1+4

√
4x6+12a x4+12a2x2+4a3+9c21

) 1
3

2 + 2x2+2a(
−12c1+4

√
4x6+12a x4+12a2x2+4a3+9c21

) 1
3


2

y(x) = −

(
−12c1 + 4

√
4x6 + 12a x4 + 12a2x2 + 4a3 + 9c21

) 1
3

4
+ x2 + a(

−12c1 + 4
√

4x6 + 12a x4 + 12a2x2 + 4a3 + 9c21
) 1

3

+

i
√
3

(
−12c1+4

√
4x6+12a x4+12a2x2+4a3+9c21

) 1
3

2 + 2x2+2a(
−12c1+4

√
4x6+12a x4+12a2x2+4a3+9c21

) 1
3


2
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3 Solution by Mathematica

Time used: 4.365 (sec). Leaf size: 299� �
DSolve[(2*x*y[x])+(x^2+y[x]^2+a)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

3
√
2
(√

4 (a+ x2)3 + 9c12 + 3c1
)

2/3 − 2a− 2x2

22/3 3

√√
4 (a+ x2)3 + 9c12 + 3c1

y(x) →
(
1 + i

√
3
)
(a+ x2)

22/3 3

√√
4 (a+ x2)3 + 9c12 + 3c1

+
i
(√

3 + i
) 3

√√
4 (a+ x2)3 + 9c12 + 3c1
2 3
√
2

y(x) →
(
1− i

√
3
)
(a+ x2)

22/3 3

√√
4 (a+ x2)3 + 9c12 + 3c1

−
i
(√

3− i
) 3

√√
4 (a+ x2)3 + 9c12 + 3c1
2 3
√
2

y(x) → 0
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4.27 problem Recognizable Exact Differential equations.
Integrating factors. Exercise 10.19, page 90

Internal problem ID [3985]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise
10.19, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

2xy + x2 + b+
(
x2 + y2 + a

)
y′ = 0
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3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 810� �
dsolve((2*x*y(x)+x^2+b)+(y(x)^2+x^2+a)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

=

(
−4x3 − 12xb− 12c1 + 4

√
5x6 + 12a x4 + 6b x4 + 12a2x2 + 9b2x2 + 6c1x3 + 4a3 + 18bc1x+ 9c21

) 1
3

2
− 2(x2 + a)(

−4x3 − 12xb− 12c1 + 4
√

5x6 + 12a x4 + 6b x4 + 12a2x2 + 9b2x2 + 6c1x3 + 4a3 + 18bc1x+ 9c21
) 1

3

y(x) =

−

(
−4x3 − 12xb− 12c1 + 4

√
5x6 + 12a x4 + 6b x4 + 12a2x2 + 9b2x2 + 6c1x3 + 4a3 + 18bc1x+ 9c21

) 1
3

4
+ x2 + a(

−4x3 − 12xb− 12c1 + 4
√

5x6 + 12a x4 + 6b x4 + 12a2x2 + 9b2x2 + 6c1x3 + 4a3 + 18bc1x+ 9c21
) 1

3

−

i
√
3

(
−4x3−12xb−12c1+4

√
5x6+12a x4+6b x4+12a2x2+9b2x2+6c1x3+4a3+18bc1x+9c21

) 1
3

2 + 2x2+2a(
−4x3−12xb−12c1+4

√
5x6+12a x4+6b x4+12a2x2+9b2x2+6c1x3+4a3+18bc1x+9c21

) 1
3


2

y(x) =

−

(
−4x3 − 12xb− 12c1 + 4

√
5x6 + 12a x4 + 6b x4 + 12a2x2 + 9b2x2 + 6c1x3 + 4a3 + 18bc1x+ 9c21

) 1
3

4
+ x2 + a(

−4x3 − 12xb− 12c1 + 4
√

5x6 + 12a x4 + 6b x4 + 12a2x2 + 9b2x2 + 6c1x3 + 4a3 + 18bc1x+ 9c21
) 1

3

+

i
√
3

(
−4x3−12xb−12c1+4

√
5x6+12a x4+6b x4+12a2x2+9b2x2+6c1x3+4a3+18bc1x+9c21

) 1
3

2 + 2x2+2a(
−4x3−12xb−12c1+4

√
5x6+12a x4+6b x4+12a2x2+9b2x2+6c1x3+4a3+18bc1x+9c21

) 1
3


2
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3 Solution by Mathematica

Time used: 6.645 (sec). Leaf size: 396� �
DSolve[(2*x*y[x]+x^2+b)+(y[x]^2+x^2+a)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

3
√
2
(√

4 (a+ x2)3 + (3bx+ x3 − 3c1) 2 − 3bx− x3 + 3c1
)

2/3 − 2a− 2x2

22/3 3

√√
4 (a+ x2)3 + (3bx+ x3 − 3c1) 2 − 3bx− x3 + 3c1

y(x) →
(
1 + i

√
3
)
(a+ x2)

22/3 3

√√
4 (a+ x2)3 + (3bx+ x3 − 3c1) 2 − 3bx− x3 + 3c1

+
i
(√

3 + i
) 3

√√
4 (a+ x2)3 + (3bx+ x3 − 3c1) 2 − 3bx− x3 + 3c1

2 3
√
2

y(x) →
(
1− i

√
3
)
(a+ x2)

22/3 3

√√
4 (a+ x2)3 + (3bx+ x3 − 3c1) 2 − 3bx− x3 + 3c1

−
i
(√

3− i
) 3

√√
4 (a+ x2)3 + (3bx+ x3 − 3c1) 2 − 3bx− x3 + 3c1

2 3
√
2
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5 Chapter 2. Special types of differential equations of
the first kind. Lesson 11, Bernoulli Equations

5.1 problem Exercise 11.1, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 problem Exercise 11.2, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 problem Exercise 11.3, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 problem Exercise 11.4, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5 problem Exercise 11.5, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6 problem Exercise 11.6, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
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5.8 problem Exercise 11.8, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . 106
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5.10 problem Exercise 11.11, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . 108
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5.13 problem Exercise 11.14, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.14 problem Exercise 11.15, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.15 problem Exercise 11.16, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.16 problem Exercise 11.17, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.17 problem Exercise 11.18, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.18 problem Exercise 11.19, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.19 problem Exercise 11.20, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.20 problem Exercise 11.21, page 97 . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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5.1 problem Exercise 11.1, page 97
Internal problem ID [3986]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.1, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

y′x+ y − x3 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x*diff(y(x),x)+y(x)=x^3,y(x), singsol=all)� �

y(x) =
x4

4 + c1
x

3 Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 19� �
DSolve[x*y'[x]+y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

4 + c1
x
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5.2 problem Exercise 11.2, page 97
Internal problem ID [3987]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.2, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

y′ + ya− b = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)+a*y(x)=b,y(x), singsol=all)� �

y(x) = b

a
+ e−axc1

3 Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 29� �
DSolve[y'[x]+a*y[x]==b,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → b

a
+ c1e

−ax

y(x) → b

a
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5.3 problem Exercise 11.3, page 97
Internal problem ID [3988]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.3, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

y′x+ y − y2 ln (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 13� �
dsolve(x*diff(y(x),x)+y(x)=y(x)^2*ln(x),y(x), singsol=all)� �

y(x) = 1
1 + c1x+ ln (x)

3 Solution by Mathematica

Time used: 0.157 (sec). Leaf size: 20� �
DSolve[x*y'[x]+y[x]==y[x]^2*Log[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
log(x) + c1x+ 1

y(x) → 0
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5.4 problem Exercise 11.4, page 97
Internal problem ID [3989]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.4, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

x′ + 2yx− e−y2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(x(y),y)+2*y*x(y)=exp(-y^2),x(y), singsol=all)� �

x(y) = (y + c1) e−y2

3 Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 17� �
DSolve[x'[y]+2*y*x[y]==Exp[-y^2],x[y],y,IncludeSingularSolutions -> True]� �

x(y) → e−y2(y + c1)
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5.5 problem Exercise 11.5, page 97
Internal problem ID [3990]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.5, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

r′ −
(
r + e−θ

)
tan (θ) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(r(theta),theta)=(r(theta)+exp(-theta))*tan(theta),r(theta), singsol=all)� �

r(θ) = c1
cos (θ) −

e−θ(cos (θ) + sin (θ))
2 cos (θ)

3 Solution by Mathematica

Time used: 0.094 (sec). Leaf size: 24� �
DSolve[r'[\[Theta]]==(r[\[Theta]]+Exp[-\[Theta]])*Tan[\[Theta]],r[\[Theta]],\[Theta],IncludeSingularSolutions -> True]� �

r(θ) → −1
2e

−θ(tan(θ) + 1) + c1 sec(θ)
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5.6 problem Exercise 11.6, page 97
Internal problem ID [3991]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.6, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

y′ − 2xy
x2 + 1 − 1 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)-(2*x*y(x))/(x^2+1)=1,y(x), singsol=all)� �

y(x) = (arctan (x) + c1)
(
x2 + 1

)
3 Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 16� �
DSolve[y'[x]-2*x*y[x]/(x^2+1)==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
x2 + 1

)
(arctan(x) + c1)
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5.7 problem Exercise 11.7, page 97
Internal problem ID [3992]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.7, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

y′ + y − y3x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 39� �
dsolve(diff(y(x),x)+y(x)=x*y(x)^3,y(x), singsol=all)� �

y(x) = − 2√
2 + 4c1e2x + 4x

y(x) = 2√
2 + 4c1e2x + 4x

3 Solution by Mathematica

Time used: 2.855 (sec). Leaf size: 50� �
DSolve[y'[x]+y[x]==x*y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
x+ c1e2x + 1

2

y(x) → 1√
x+ c1e2x + 1

2

y(x) → 0
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5.8 problem Exercise 11.8, page 97
Internal problem ID [3993]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.8, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

(
−x3 + 1

)
y′ − 2(x+ 1) y − y

5
2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 45� �
dsolve((1-x^3)*diff(y(x),x)-2*(1+x)*y(x)=y(x)^(5/2),y(x), singsol=all)� �

− c1
x2

(x−1)2 +
x

(x−1)2 +
1

(x−1)2
+ 1

y (x)
3
2
+ 3

4 (x2 + x+ 1) = 0

3 Solution by Mathematica

Time used: 3.048 (sec). Leaf size: 41� �
DSolve[(1-x^3)*y'[x]-2*(1+x)*y[x]==y[x]^(5/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 3
√
2(

−3+4c1(x−1)2
x2+x+1

)
2/3

y(x) → 0
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5.9 problem Exercise 11.9, page 97
Internal problem ID [3994]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.9, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

tan (θ) r′ − r − tan (θ)2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 15� �
dsolve(tan(theta)*diff(r(theta),theta)-r(theta)=tan(theta)^2,r(theta), singsol=all)� �

r(θ) = (ln (sec (θ) + tan (θ)) + c1) sin (θ)

3 Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 14� �
DSolve[Tan[\[Theta]]*r'[\[Theta]]-r[\[Theta]]==Tan[\[Theta]]^2,r[\[Theta]],\[Theta],IncludeSingularSolutions -> True]� �

r(θ) → sin(θ)(arctanh(sin(θ)) + c1)
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5.10 problem Exercise 11.11, page 97
Internal problem ID [3995]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.11, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y′ + 2y − 3 e−2x = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)+2*y(x)=3*exp(-2*x),y(x), singsol=all)� �

y(x) = (3x+ c1) e−2x

3 Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 17� �
DSolve[y'[x]+2*y[x]==3*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(3x+ c1)
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5.11 problem Exercise 11.12, page 97
Internal problem ID [3996]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.12, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y′ + 2y − 3 e−2x

4 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)+2*y(x)=3/4*exp(-2*x),y(x), singsol=all)� �

y(x) =
(
3x
4 + c1

)
e−2x

3 Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 22� �
DSolve[y'[x]+2*y[x]==3/4*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

−2x(3x+ 4c1)
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5.12 problem Exercise 11.11, page 97
Internal problem ID [3997]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.11, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y′ + 2y − sin (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)+2*y(x)=sin(x),y(x), singsol=all)� �

y(x) = −cos (x)
5 + 2 sin (x)

5 + c1e−2x

3 Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 26� �
DSolve[y'[x]+2*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 sin(x)
5 − cos(x)

5 + c1e
−2x
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5.13 problem Exercise 11.14, page 97
Internal problem ID [3998]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.14, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

y′ + y cos (x)− e2x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)+y(x)*cos(x)=exp(2*x),y(x), singsol=all)� �

y(x) =
(∫

e2x+sin(x)dx+ c1

)
e− sin(x)

3 Solution by Mathematica

Time used: 0.747 (sec). Leaf size: 32� �
DSolve[y'[x]+y[x]*Cos[x]==Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e− sin(x)
(∫ x

1
e2K[1]+sin(K[1])dK[1] + c1

)
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5.14 problem Exercise 11.15, page 97
Internal problem ID [3999]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.15, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

y′ + y cos (x)− sin (2x)
2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)+y(x)*cos(x)=1/2*sin(2*x),y(x), singsol=all)� �

y(x) = sin (x)− 1 + e− sin(x)c1

3 Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 18� �
DSolve[y'[x]+y[x]*Cos[x]==1/2*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x) + c1e
− sin(x) − 1
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5.15 problem Exercise 11.16, page 97
Internal problem ID [4000]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.16, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

y′x+ y − sin (x)x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x)+y(x)=x*sin(x),y(x), singsol=all)� �

y(x) = −x cos (x) + sin (x) + c1
x

3 Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 19� �
DSolve[x*y'[x]+y[x]==x*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x)− x cos(x) + c1
x
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5.16 problem Exercise 11.17, page 97
Internal problem ID [4001]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.17, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

−y + y′x− sin (x)x2 = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)-y(x)=x^2*sin(x),y(x), singsol=all)� �

y(x) = (− cos (x) + c1)x

3 Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 14� �
DSolve[x*y'[x]-y[x]==x^2*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(− cos(x) + c1)
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5.17 problem Exercise 11.18, page 97
Internal problem ID [4002]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.18, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class D‘], _rational, _Bernoulli]

y′x+ xy2 − y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x)+x*y(x)^2-y(x)=0,y(x), singsol=all)� �

y(x) = 2x
x2 + 2c1

3 Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 23� �
DSolve[x*y'[x]+x*y[x]^2-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x
x2 + 2c1

y(x) → 0
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5.18 problem Exercise 11.19, page 97
Internal problem ID [4003]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.19, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

y′x− y(2 ln (x) y − 1) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x*diff(y(x),x)-y(x)*(2*y(x)*ln(x)-1)=0,y(x), singsol=all)� �

y(x) = 1
2 + c1x+ 2 ln (x)

3 Solution by Mathematica

Time used: 0.138 (sec). Leaf size: 22� �
DSolve[x*y'[x]-y[x]*(2*y[x]*Log[x]-1)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2 log(x) + c1x+ 2

y(x) → 0
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5.19 problem Exercise 11.20, page 97
Internal problem ID [4004]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.20, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class D‘], _rational, _Bernoulli]

x2(x− 1) y′ − y2 − x(x− 2) y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x^2*(x-1)*diff(y(x),x)-y(x)^2-x*(x-2)*y(x)=0,y(x), singsol=all)� �

y(x) = x2

c1x− c1 + 1

3 Solution by Mathematica

Time used: 0.191 (sec). Leaf size: 25� �
DSolve[x^2*(x-1)*y'[x]-y[x]^2-x*(x-2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

c1(−x) + 1 + c1

y(x) → 0
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5.20 problem Exercise 11.21, page 97
Internal problem ID [4005]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.21, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y′ − y − ex = 0

With initial conditions

[y(0) = 1]

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 10� �
dsolve([diff(y(x),x)-y(x)=exp(x),y(0) = 1],y(x), singsol=all)� �

y(x) = ex(x+ 1)

3 Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 12� �
DSolve[{y'[x]-y[x]==Exp[x],{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(x+ 1)
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5.21 problem Exercise 11.22, page 97
Internal problem ID [4006]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.22, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y′ + y

x
− y2

x
= 0

With initial conditions

[y(−1) = 1]

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 5� �
dsolve([diff(y(x),x)+y(x)/x=y(x)^2/x,y(-1) = 1],y(x), singsol=all)� �

y(x) = 1

3 Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 6� �
DSolve[{y'[x]+y[x]/x==y[x]^2/x,{y[-1]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
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5.22 problem Exercise 11.23, page 97
Internal problem ID [4007]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.23, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

2 cos (x) y′ − y sin (x) + y3 = 0

With initial conditions

[y(0) = 1]

3 Solution by Maple

Time used: 0.36 (sec). Leaf size: 33� �
dsolve([2*cos(x)*diff(y(x),x)=y(x)*sin(x)-y(x)^3,y(0) = 1],y(x), singsol=all)� �

y(x) =

√(
2 cos (x)2 − 1

)
(cos (x)− sin (x))

2 cos (x)2 − 1

3 Solution by Mathematica

Time used: 0.375 (sec). Leaf size: 14� �
DSolve[{2*Cos[x]*y'[x]==y[x]*Sin[x]-y[x]^3,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1√
sin(x) + cos(x)
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5.23 problem Exercise 11.24, page 97
Internal problem ID [4008]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.24, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

(x− cos (y)) y′ + tan (y) = 0

With initial conditions [
y(1) = π

6

]
3 Solution by Maple

Time used: 1.235 (sec). Leaf size: 29� �
dsolve([(x-cos(y(x)))*diff(y(x),x)+tan(y(x))=0,y(1) = 1/6*Pi],y(x), singsol=all)� �

y(x) = RootOf
(
24x sin (_Z) + 3

√
3− 6 sin (2_Z) + 2π − 12_Z− 12

)
3 Solution by Mathematica

Time used: 0.221 (sec). Leaf size: 45� �
DSolve[{(x-Cos[y[x]])*y'[x]+Tan[y[x]]==0,{y[1]==Pi/6}},y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x = 1

24

(
12− 3

√
3− 2π

)
csc(y(x)) +

(
y(x)
2 + 1

4 sin(2y(x))
)
csc(y(x)), y(x)

]
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5.24 problem Exercise 11.26, page 97
Internal problem ID [4009]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.26, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Riccati]

y′ − x3 − 2y
x

+ y2

x
= 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)=x^3+2/x*y(x)-1/x*y(x)^2,y(x), singsol=all)� �

y(x) = i tan
(
−ix2

2 + c1

)
x2

3 Solution by Mathematica

Time used: 0.163 (sec). Leaf size: 75� �
DSolve[y'[x]==x^3+2/x*y[x]-1/x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
x2
(
i cosh

(
x2

2

)
+ c1 sinh

(
x2

2

))
i sinh

(
x2

2

)
+ c1 cosh

(
x2

2

)
y(x) → x2 tanh

(
x2

2

)
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5.25 problem Exercise 11.27, page 97
Internal problem ID [4010]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.27, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Riccati]

y′ − 2 sec (x) tan (x) + sin (x) y2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 41� �
dsolve(diff(y(x),x)=2*tan(x)*sec(x)-y(x)^2*sin(x),y(x), singsol=all)� �

y(x) = sec (x) tan (x)
sin (x)

(
c1 cos (x)2 + sec (x)

) − 2c1 cos (x)
c1 cos (x)2 + sec (x)

3 Solution by Mathematica

Time used: 0.534 (sec). Leaf size: 29� �
DSolve[y'[x]==2*Tan[x]*Sec[x]-y[x]^2*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sec(x)− 3 cos2(x)
cos3(x) + c1

y(x) → sec(x)
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5.26 problem Exercise 11.28, page 97
Internal problem ID [4011]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.28, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rational, _Riccati]

y′ − 1
x2 + y

x
+ y2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)=1/x^2-y(x)/x-y(x)^2,y(x), singsol=all)� �

y(x) = −tanh (− ln (x) + c1)
x

3 Solution by Mathematica

Time used: 1.185 (sec). Leaf size: 61� �
DSolve[y'[x]==1/x^2-y[x]/x-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → i tan(c1 − i log(x))
x

y(x) → x2 − e2iInterval[{0,π}]

x3 + xe2iInterval[{0,π}]
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5.27 problem Exercise 11.29, page 97
Internal problem ID [4012]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli
Equations
Problem number: Exercise 11.29, page 97.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Riccati]

y′ − 1− y

x
+ y2

x2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)=1+y(x)/x-y(x)^2/x^2,y(x), singsol=all)� �

y(x) = tanh (ln (x) + c1)x

3 Solution by Mathematica

Time used: 0.526 (sec). Leaf size: 38� �
DSolve[y'[x]==1+y[x]/x-y[x]^2/x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ 2x3

x2 + e2c1

y(x) → −x

y(x) → x
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6.1 problem Exercise 12.1, page 103
Internal problem ID [4013]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.1, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

2xyy′ + y2(x+ 1)− ex = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 59� �
dsolve(2*x*y(x)*diff(y(x),x)+(1+x)*y(x)^2=exp(x),y(x), singsol=all)� �

y(x) = −
e−x

√
2
√
exx (e2x + 2c1)
2x

y(x) = e−x
√
2
√

exx (e2x + 2c1)
2x

3 Solution by Mathematica

Time used: 7.339 (sec). Leaf size: 66� �
DSolve[2*x*y[x]*y'[x]+(1+x)*y[x]^2==Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
ex + 2c1e−x

√
2
√
x

y(x) →
√
ex + 2c1e−x

√
2
√
x
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6.2 problem Exercise 12.2, page 103
Internal problem ID [4014]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.2, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [‘y=_G(x,y’)‘]

cos (y) y′ + sin (y)− x2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 29� �
dsolve(cos(y(x))*diff(y(x),x)+sin(y(x))=x^2,y(x), singsol=all)� �

y(x) = arcsin
((
exx2 − 2 exx+ 2 ex − c1

)
e−x
)

3 Solution by Mathematica

Time used: 14.177 (sec). Leaf size: 22� �
DSolve[Cos[y[x]]*y'[x]+Sin[y[x]]==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arcsin
(
(x− 2)x− 2c1e−x + 2

)
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6.3 problem Exercise 12.3, page 103
Internal problem ID [4015]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.3, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

(x+ 1) y′ − 1− y − (x+ 1)
√
1 + y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 160� �
dsolve((x+1)*diff(y(x),x)-(y(x)+1)=(x+1)*sqrt(y(x)+1),y(x), singsol=all)� �

√
y (x) + 1 x

(−x2 − 2x+ y (x))
(√

y (x) + 1− 1− x
)

+ 2x
(−x2 − 2x+ y (x))

(√
y (x) + 1− 1− x

)
+ x2

(−x2 − 2x+ y (x))
(√

y (x) + 1− 1− x
)

+
√

y (x) + 1
(−x2 − 2x+ y (x))

(√
y (x) + 1− 1− x

)
+ 1

(−x2 − 2x+ y (x))
(√

y (x) + 1− 1− x
) − c1 = 0



131

3 Solution by Mathematica

Time used: 0.248 (sec). Leaf size: 60� �
DSolve[(x+1)*y'[x]-(y[x]+1)==(x+1)*Sqrt[y[x]+1],y[x],x,IncludeSingularSolutions -> True]� �

Solve

2√y(x) + 1 arctan
(

x+1√
−y(x)−1

)
√

−y(x)− 1
+ log

(
y(x)− (x+ 1)2 + 1

)
− log(x+ 1) = c1, y(x)
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6.4 problem Exercise 12.4, page 103
Internal problem ID [4016]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.4, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _dAlembert]

ey(1 + y′)− ex = 0

3 Solution by Maple

Time used: 0.063 (sec). Leaf size: 16� �
dsolve(exp(y(x))*(diff(y(x),x)+1)=exp(x),y(x), singsol=all)� �

y(x) = x+ ln
(
c1e−2x

2 + 1
2

)
3 Solution by Mathematica

Time used: 1.335 (sec). Leaf size: 22� �
DSolve[Exp[y[x]]*(y'[x]+1)==Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ log
(
e2x

2 + c1

)
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6.5 problem Exercise 12.5, page 103
Internal problem ID [4017]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.5, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y′ sin (y) + sin (x) cos (y)− sin (x) = 0

3 Solution by Maple

Time used: 0.141 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)*sin(y(x))+sin(x)*cos(y(x))=sin(x),y(x), singsol=all)� �

y(x) = arccos
(
e− cos(x)c1 + 1

)
3 Solution by Mathematica

Time used: 7.863 (sec). Leaf size: 31� �
DSolve[y'[x]*Sin[y[x]]+Sin[x]*Cos[y[x]]==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0

y(x) → 2 arcsin
(
e

1
4 (−2 cos(x)+c1)

)
y(x) → 0
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6.6 problem Exercise 12.6, page 103
Internal problem ID [4018]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.6, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _dAlembert]

(−y + x)2 y′ − 4 = 0

3 Solution by Maple

Time used: 0.125 (sec). Leaf size: 27� �
dsolve((x-y(x))^2*diff(y(x),x)=4,y(x), singsol=all)� �

y(x)− ln (y(x)− x+ 2) + ln (y(x)− x− 2)− c1 = 0

3 Solution by Mathematica

Time used: 0.211 (sec). Leaf size: 36� �
DSolve[(x-y[x])^2*y'[x]==4,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)− 4

(
1
4 log(y(x)− x+ 2)− 1

4 log(−y(x) + x+ 2)
)

= c1, y(x)
]
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6.7 problem Exercise 12.7, page 103
Internal problem ID [4019]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.7, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

−y + y′x−
√

y2 + x2 = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 27� �
dsolve(x*diff(y(x),x)-y(x)=sqrt(x^2+y(x)^2),y(x), singsol=all)� �

y(x)
x2 +

√
x2 + y (x)2

x2 − c1 = 0

3 Solution by Mathematica

Time used: 0.336 (sec). Leaf size: 27� �
DSolve[x*y'[x]-y[x]==Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−c1
(
−1 + e2c1x2)
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6.8 problem Exercise 12.8, page 103
Internal problem ID [4020]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.8, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

(3x+ 2y + 1) y′ + 4x+ 3y + 2 = 0

3 Solution by Maple

Time used: 0.312 (sec). Leaf size: 33� �
dsolve((3*x+2*y(x)+1)*diff(y(x),x)+(4*x+3*y(x)+2)=0,y(x), singsol=all)� �

y(x) = −2−
3c1(x−1)

2 +
√

(x−1)2c21+4
2

c1

3 Solution by Mathematica

Time used: 0.119 (sec). Leaf size: 57� �
DSolve[(3*x+2*y[x]+1)*y'[x]+(4*x+3*y[x]+2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−3x−

√
(x− 1)2 + 4c1 − 1

)
y(x) → 1

2

(
−3x+

√
(x− 1)2 + 4c1 − 1

)
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6.9 problem Exercise 12.9, page 103
Internal problem ID [4021]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.9, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

(
x2 − y2

)
y′ − 2xy = 0

3 Solution by Maple

Time used: 0.032 (sec). Leaf size: 45� �
dsolve((x^2-y(x)^2)*diff(y(x),x)=2*x*y(x),y(x), singsol=all)� �

y(x) = −−1 +
√

−4c21x2 + 1
2c1

y(x) = 1 +
√
−4c21x2 + 1
2c1

3 Solution by Mathematica

Time used: 0.98 (sec). Leaf size: 66� �
DSolve[(x^2-y[x]^2)*y'[x]==2*x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
ec1 −

√
−4x2 + e2c1

)
y(x) → 1

2

(√
−4x2 + e2c1 + ec1

)
y(x) → 0
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6.10 problem Exercise 12.10, page 103
Internal problem ID [4022]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.10, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

y +
(
1 + y2e2x

)
y′ = 0

3 Solution by Maple

Time used: 0.031 (sec). Leaf size: 18� �
dsolve(y(x)+(1+y(x)^2*exp(2*x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−x√
LambertW (c1e−2x)

3 Solution by Mathematica

Time used: 3.361 (sec). Leaf size: 57� �
DSolve[y[x]+(1+y[x]^2*Exp[2*x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − e−x√
W (e−2x+2c1)

y(x) → e−x√
W (e−2x+2c1)

y(x) → 0
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6.11 problem Exercise 12.11, page 103
Internal problem ID [4023]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.11, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rational, _Bernoulli]

x2y + y2 + x3y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 19� �
dsolve((x^2*y(x)+y(x)^2)+x^3*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 3x2

3c1x3 − 1

3 Solution by Mathematica

Time used: 0.149 (sec). Leaf size: 26� �
DSolve[(x^2*y[x]+y[x]^2)+x^3*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3x2

−1 + 3c1x3

y(x) → 0
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6.12 problem Exercise 12.12, page 103
Internal problem ID [4024]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.12, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

y2exy2 + 4x3 +
(
2xy exy2 − 3y2

)
y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 21� �
dsolve((y(x)^2*exp(x*y(x)^2)+4*x^3)+(2*x*y(x)*exp(x*y(x)^2)-3*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

ey(x)
2x + x4 − y(x)3 + c1 = 0

3 Solution by Mathematica

Time used: 0.285 (sec). Leaf size: 24� �
DSolve[(y[x]^2*Exp[x*y[x]^2]+4*x^3)+(2*x*y[x]*Exp[x*y[x]^2]-3*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x4 + exy(x)

2 − y(x)3 = c1, y(x)
]
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6.13 problem Exercise 12.13, page 103
Internal problem ID [4025]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.13, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

y′ −
(
x2 + 2y − 1

) 2
3 + x = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)=(x^2+2*y(x)-1)^(2/3)-x,y(x), singsol=all)� �

x− 3(x2 + 2y(x)− 1)
1
3

2 − c1 = 0

3 Solution by Mathematica

Time used: 0.224 (sec). Leaf size: 40� �
DSolve[y'[x]==(x^2+2*y[x]-1)^(2/3)-x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
54
(
8x3 − 3(9 + 8c1)x2 + 24c12x+ 27− 8c13

)
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6.14 problem Exercise 12.14, page 103
Internal problem ID [4026]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.14, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

y′x+ y − x2(ex + 1) y2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x*diff(y(x),x)+y(x)=x^2*(1+exp(x))*y(x)^2,y(x), singsol=all)� �

y(x) = − 1
(x+ ex − c1)x

3 Solution by Mathematica

Time used: 0.257 (sec). Leaf size: 55� �
DSolve[x*y'[x]+y[x]==x^2*(1+exp[x])*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
−x
∫ x

1 (exp(K[1]) + 1)dK[1] + c1x

y(x) → 0

y(x) → − 1
x
∫ x

1 (exp(K[1]) + 1)dK[1]



143

6.15 problem Exercise 12.15, page 103
Internal problem ID [4027]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.15, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

2y − xy ln (x)− 2y′x ln (x) = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 12� �
dsolve((2*y(x)-x*y(x)*ln(x))-2*x*ln(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1e−
x
2 ln (x)

3 Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 22� �
DSolve[(2*y[x]-x*y[x]*Log[x])-2*x*Log[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x/2 log(x)

y(x) → 0
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6.16 problem Exercise 12.16, page 103
Internal problem ID [4028]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.16, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y′ + ya− k ebx = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x)+a*y(x)=k*exp(b*x),y(x), singsol=all)� �

y(x) =
(
k ex(a+b)

a+ b
+ c1

)
e−ax

3 Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 33� �
DSolve[y'[x]+a*y[x]==k*Exp[b*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
e−ax

(
kex(a+b) + c1(a+ b)

)
a+ b
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6.17 problem Exercise 12.17, page 103
Internal problem ID [4029]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.17, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _Riccati]

y′ − (y + x)2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)=(x+y(x))^2,y(x), singsol=all)� �

y(x) = −x− tan (c1 − x)

3 Solution by Mathematica

Time used: 0.473 (sec). Leaf size: 14� �
DSolve[y'[x]==(x+y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ tan(x+ c1)



146

6.18 problem Exercise 12.18, page 103
Internal problem ID [4030]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.18, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

y′ + 8x3y3 + 2xy = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 43� �
dsolve(diff(y(x),x)+8*x^3*y(x)^3+2*x*y(x)=0,y(x), singsol=all)� �

y(x) = 1√
e2x2c1 − 4x2 − 2

y(x) = − 1√
e2x2c1 − 4x2 − 2

3 Solution by Mathematica

Time used: 7.049 (sec). Leaf size: 58� �
DSolve[y'[x]+8*x^3*y[x]^3+2*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
−4x2 + c1e2x

2 − 2

y(x) → 1√
−4x2 + c1e2x

2 − 2
y(x) → 0
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6.19 problem Exercise 12.19, page 103
Internal problem ID [4031]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.19, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [NONE]

(
xy
√

x2 − y2 + x
)
y′ − y + x2

√
x2 − y2 = 0

3 Solution by Maple

Time used: 0.031 (sec). Leaf size: 34� �
dsolve((x*y(x)*sqrt(x^2-y(x)^2)+x)*diff(y(x),x)=y(x)-x^2*sqrt(x^2-y(x)^2),y(x), singsol=all)� �

y(x)2

2 + arctan

 y(x)√
x2 − y (x)2

+ x2

2 − c1 = 0

3 Solution by Mathematica

Time used: 1.811 (sec). Leaf size: 44� �
DSolve[(x*y[x]*Sqrt[x^2-y[x]^2]+x)*y'[x]==y[x]-x^2*Sqrt[x^2-y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
− arctan

(√
x2 − y(x)2
y(x)

)
+ x2

2 + y(x)2
2 = c1, y(x)

]
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6.20 problem Exercise 12.20, page 103
Internal problem ID [4032]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.20, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y′ + ya− b sin (kx) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 38� �
dsolve(diff(y(x),x)+a*y(x)=b*sin(k*x),y(x), singsol=all)� �

y(x) = e−axc1 −
b(k cos (kx)− sin (kx) a)

a2 + k2

3 Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 40� �
DSolve[y'[x]+a*y[x]==b*Sin[k*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → b(a sin(kx)− k cos(kx))
a2 + k2 + c1e

−ax
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6.21 problem Exercise 12.21, page 103
Internal problem ID [4033]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.21, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y′x− y2 + 1 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 11� �
dsolve(x*diff(y(x),x)-y(x)^2+1=0,y(x), singsol=all)� �

y(x) = − tanh (ln (x) + c1)

3 Solution by Mathematica

Time used: 0.48 (sec). Leaf size: 33� �
DSolve[x*y'[x]-y[x]^2+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1 + 2
1 + e2c1x2

y(x) → −1

y(x) → 1
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6.22 problem Exercise 12.22, page 103
Internal problem ID [4034]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.22, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

(
y2 + a sin (x)

)
y′ − cos (x) = 0

3 Solution by Maple

Time used: 0.031 (sec). Leaf size: 41� �
dsolve((y(x)^2+a*sin(x))*diff(y(x),x)=cos(x),y(x), singsol=all)� �

−e−ay(x) sin (x)−
(
a2y(x)2 + 2ay(x) + 2

)
e−ay(x)

a3
+ c1 = 0

3 Solution by Mathematica

Time used: 0.196 (sec). Leaf size: 45� �
DSolve[(y[x]^2+a*Sin[x])*y'[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
sin(x)

(
−e−ay(x))− e−ay(x)(a2y(x)2 + 2ay(x) + 2)

a3
= c1, y(x)

]
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6.23 problem Exercise 12.23, page 103
Internal problem ID [4035]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.23, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

y′x− x e
y
x − x− y = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 20� �
dsolve(x*diff(y(x),x)=x*exp(y(x)/x)+x+y(x),y(x), singsol=all)� �

y(x) =
(
ln
(
− x

x ec1 − 1

)
+ c1

)
x

3 Solution by Mathematica

Time used: 4.547 (sec). Leaf size: 30� �
DSolve[x*y'[x]==x*Exp[y[x]/x]+x+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x log
(
−1 + 1

1 + ec1x

)
y(x) → iπx
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6.24 problem Exercise 12.24, page 103
Internal problem ID [4036]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.24, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

y′ + y cos (x)− e− sin(x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)+y(x)*cos(x)=exp(-sin(x)),y(x), singsol=all)� �

y(x) = (x+ c1) e− sin(x)

3 Solution by Mathematica

Time used: 0.123 (sec). Leaf size: 16� �
DSolve[y'[x]+y[x]*Cos[x]==Exp[-Sin[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x+ c1)e− sin(x)
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6.25 problem Exercise 12.25, page 103
Internal problem ID [4037]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.25, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘]]

y′x− y(ln (xy)− 1) = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 14� �
dsolve(x*diff(y(x),x)-y(x)*(ln(x*y(x))-1)=0,y(x), singsol=all)� �

y(x) = e
x
c1

x

3 Solution by Mathematica

Time used: 0.196 (sec). Leaf size: 24� �
DSolve[x*y'[x]-y[x]*(Log[x*y[x]]-1)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ee
c1x

x

y(x) → 1
x
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6.26 problem Exercise 12.26, page 103
Internal problem ID [4038]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.26, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class D‘], _rational, _Bernoulli]

x3y′ − y2 − x2y = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 15� �
dsolve(x^3*diff(y(x),x)-y(x)^2-x^2*y(x)=0,y(x), singsol=all)� �

y(x) = x2

c1x+ 1

3 Solution by Mathematica

Time used: 0.132 (sec). Leaf size: 22� �
DSolve[x^3*y'[x]-y[x]^2-x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

1 + c1x

y(x) → 0
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6.27 problem Exercise 12.27, page 103
Internal problem ID [4039]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.27, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

y′x+ ya+ b xn = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 23� �
dsolve(x*diff(y(x),x)+a*y(x)+b*x^n=0,y(x), singsol=all)� �

y(x) = − b xn

a+ n
+ x−ac1

3 Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 25� �
DSolve[x*y'[x]+a*y[x]+b*x^n==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − bxn

a+ n
+ c1x

−a
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6.28 problem Exercise 12.28, page 103
Internal problem ID [4040]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.28, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

y′x− x sin
(y
x

)
− y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 44� �
dsolve(x*diff(y(x),x)-x*sin(y(x)/x)-y(x)=0,y(x), singsol=all)� �

y(x) = arctan
(

2xc1
c21x

2 + 1 ,−
c21x

2 − 1
c21x

2 + 1

)
x

3 Solution by Mathematica

Time used: 2.767 (sec). Leaf size: 33� �
DSolve[x*y'[x]-x*Sin[y[x]/x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x arctan (ec1x)

y(x) → 0

y(x) → π
√
x2
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6.29 problem Exercise 12.29, page 103
Internal problem ID [4041]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.29, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

y2 − 3xy − 2x2 +
(
xy − x2) y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 59� �
dsolve((x*y(x)-x^2)*diff(y(x),x)+y(x)^2-3*x*y(x)-2*x^2=0,y(x), singsol=all)� �

y(x) = c1x
2 −

√
2c21x4 + 1

c1x

y(x) = c1x
2 +

√
2c21x4 + 1

c1x

3 Solution by Mathematica

Time used: 0.697 (sec). Leaf size: 99� �
DSolve[(x*y[x]-x^2)*y'[x]+y[x]^2-3*x*y[x]-2*x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x−
√
2x4 + e2c1

x

y(x) → x+
√
2x4 + e2c1

x

y(x) → x−
√
2
√
x4

x

y(x) →
√
2
√
x4

x
+ x
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6.30 problem Exercise 12.30, page 103
Internal problem ID [4042]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.30, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

(
6xy + x2 + 3

)
y′ + 3y2 + 2xy + 2x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 71� �
dsolve((6*x*y(x)+x^2+3)*diff(y(x),x)+3*y(x)^2+2*x*y(x)+2*x=0,y(x), singsol=all)� �

y(x) = −x2 − 3 +
√
x4 − 12x3 − 12c1x+ 6x2 + 9

6x

y(x) = −x2 +
√
x4 − 12x3 − 12c1x+ 6x2 + 9 + 3

6x

3 Solution by Mathematica

Time used: 0.5 (sec). Leaf size: 79� �
DSolve[(6*x*y[x]+x^2+3)*y'[x]+3*y[x]^2+2*x*y[x]+2*x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
x2 +

√
9 + x(x((x− 12)x+ 6) + 36c1) + 3

6x

y(x) → −x2 +
√

9 + x(x((x− 12)x+ 6) + 36c1)− 3
6x



159

6.31 problem Exercise 12.31, page 103
Internal problem ID [4043]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.31, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Riccati]

x2y′ + y2 + xy + x2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x^2*diff(y(x),x)+y(x)^2+x*y(x)+x^2=0,y(x), singsol=all)� �

y(x) = −x(ln (x) + c1 − 1)
ln (x) + c1

3 Solution by Mathematica

Time used: 0.146 (sec). Leaf size: 25� �
DSolve[x^2*y'[x]+y[x]^2+x*y[x]+x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

(
−1 + 1

log(x)− c1

)
y(x) → −x
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6.32 problem Exercise 12.32, page 103
Internal problem ID [4044]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.32, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

(
x2 − 1

)
y′ + 2xy − cos (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 19� �
dsolve((x^2-1)*diff(y(x),x)+2*x*y(x)-cos(x)=0,y(x), singsol=all)� �

y(x) = sin (x) + c1
(x− 1) (x+ 1)

3 Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 18� �
DSolve[(x^2-1)*y'[x]+2*x*y[x]-Cos[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x) + c1
x2 − 1
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6.33 problem Exercise 12.33, page 103
Internal problem ID [4045]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.33, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

(
x2y − 1

)
y′ + xy2 − 1 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 50� �
dsolve((x^2*y(x)-1)*diff(y(x),x)+x*y(x)^2-1=0,y(x), singsol=all)� �

y(x) = 1 +
√
−2c1x2 + 2x3 + 1

x2

y(x) = −−1 +
√
−2c1x2 + 2x3 + 1

x2

3 Solution by Mathematica

Time used: 0.518 (sec). Leaf size: 55� �
DSolve[(x^2*y[x]-1)*y'[x]+x*y[x]^2-1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1−
√
1 + x2(2x+ c1)

x2

y(x) → 1 +
√
1 + x2(2x+ c1)

x2



162

6.34 problem Exercise 12.34, page 103
Internal problem ID [4046]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.34, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

(
x2 − 1

)
y′ + xy − 3xy2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 20� �
dsolve((x^2-1)*diff(y(x),x)+x*y(x)-3*x*y(x)^2=0,y(x), singsol=all)� �

y(x) = 1
3 +

√
x− 1

√
x+ 1 c1

3 Solution by Mathematica

Time used: 2.27 (sec). Leaf size: 35� �
DSolve[(x^2-1)*y'[x]+x*y[x]-3*x*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3 + ec1

√
x2 − 1

y(x) → 0

y(x) → 1
3
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6.35 problem Exercise 12.35, page 103
Internal problem ID [4047]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.35, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

(
x2 − 1

)
y′ − 2xy ln (y) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 13� �
dsolve((x^2-1)*diff(y(x),x)-2*x*y(x)*ln(y(x))=0,y(x), singsol=all)� �

y(x) = ec1(x+1)(x−1)

3 Solution by Mathematica

Time used: 0.225 (sec). Leaf size: 22� �
DSolve[(x^2-1)*y'[x]-2*x*y[x]*Log[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ee
c1
(
x2−1

)
y(x) → 1
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6.36 problem Exercise 12.36, page 103
Internal problem ID [4048]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.36, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

(
1 + x2 + y2

)
y′ + 2xy + x2 + 3 = 0
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3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 570� �
dsolve((x^2+y(x)^2+1)*diff(y(x),x)+2*x*y(x)+x^2+3=0,y(x), singsol=all)� �

y(x) =

(
−4x3 − 12c1 − 36x+ 4

√
5x6 + 6c1x3 + 30x4 + 9c21 + 54c1x+ 93x2 + 4

) 1
3

2
− 2(x2 + 1)(

−4x3 − 12c1 − 36x+ 4
√

5x6 + 6c1x3 + 30x4 + 9c21 + 54c1x+ 93x2 + 4
) 1

3

y(x) = −

(
−4x3 − 12c1 − 36x+ 4

√
5x6 + 6c1x3 + 30x4 + 9c21 + 54c1x+ 93x2 + 4

) 1
3

4
+ x2 + 1(

−4x3 − 12c1 − 36x+ 4
√

5x6 + 6c1x3 + 30x4 + 9c21 + 54c1x+ 93x2 + 4
) 1

3

−

i
√
3

(
−4x3−12c1−36x+4

√
5x6+6c1x3+30x4+9c21+54c1x+93x2+4

) 1
3

2 + 2x2+2(
−4x3−12c1−36x+4

√
5x6+6c1x3+30x4+9c21+54c1x+93x2+4

) 1
3


2

y(x) = −

(
−4x3 − 12c1 − 36x+ 4

√
5x6 + 6c1x3 + 30x4 + 9c21 + 54c1x+ 93x2 + 4

) 1
3

4
+ x2 + 1(

−4x3 − 12c1 − 36x+ 4
√

5x6 + 6c1x3 + 30x4 + 9c21 + 54c1x+ 93x2 + 4
) 1

3

+

i
√
3

(
−4x3−12c1−36x+4

√
5x6+6c1x3+30x4+9c21+54c1x+93x2+4

) 1
3

2 + 2x2+2(
−4x3−12c1−36x+4

√
5x6+6c1x3+30x4+9c21+54c1x+93x2+4

) 1
3


2
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3 Solution by Mathematica

Time used: 5.478 (sec). Leaf size: 411� �
DSolve[(x^2+y[x]^2+1)*y'[x]+2*x*y[x]+x^2+3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3

√
−27x3 +

√
4 (9x2 + 9)3 + 729 (x3 + 9x− 3c1) 2 − 243x+ 81c1

3 3
√
2

− 3 3
√
2(x2 + 1)

3

√
−27x3 +

√
4 (9x2 + 9)3 + 729 (x3 + 9x− 3c1) 2 − 243x+ 81c1

y(x) →
3
(
1 + i

√
3
)
(x2 + 1)

22/3 3

√
−27x3 +

√
4 (9x2 + 9)3 + 729 (x3 + 9x− 3c1) 2 − 243x+ 81c1

+

(
−1 + i

√
3
) 3

√
−27x3 +

√
4 (9x2 + 9)3 + 729 (x3 + 9x− 3c1) 2 − 243x+ 81c1

6 3
√
2

y(x) →
3
(
1− i

√
3
)
(x2 + 1)

22/3 3

√
−27x3 +

√
4 (9x2 + 9)3 + 729 (x3 + 9x− 3c1) 2 − 243x+ 81c1

−

(
1 + i

√
3
) 3

√
−27x3 +

√
4 (9x2 + 9)3 + 729 (x3 + 9x− 3c1) 2 − 243x+ 81c1

6 3
√
2
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6.37 problem Exercise 12.37, page 103
Internal problem ID [4049]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.37, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

cos (x) y′ + y + (sin (x) + 1) cos (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x)*cos(x)+y(x)+(1+sin(x))*cos(x)=0,y(x), singsol=all)� �

y(x) = −2 ln (sec (x) + tan (x)) + 2 ln (cos (x)) + sin (x) + c1
sec (x) + tan (x)

3 Solution by Mathematica

Time used: 0.687 (sec). Leaf size: 40� �
DSolve[y'[x]*Cos[x]+y[x]+(1+Sin[x])*Cos[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2arctanh
(
tan
(
x
2
))(

sin(x) + 4 log
(
cos
(x
2

)
− sin

(x
2

))
+ c1

)
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6.38 problem Exercise 12.38, page 103
Internal problem ID [4050]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.38, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

(
2xy + 4x3) y′ + y2 + 12x2y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 50� �
dsolve((2*x*y(x)+4*x^3)*diff(y(x),x)+y(x)^2+12*x^2*y(x)=0,y(x), singsol=all)� �

y(x) = −2x3 +
√
4x6 + c1x

x

y(x) = −2x3 +
√
4x6 + c1x

x

3 Solution by Mathematica

Time used: 0.449 (sec). Leaf size: 58� �
DSolve[(2*x*y[x]+4*x^3)*y'[x]+y[x]^2+12*x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
2x3 +

√
x (4x5 + c1)
x

y(x) → −2x3 +
√
x (4x5 + c1)
x
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6.39 problem Exercise 12.39, page 103
Internal problem ID [4051]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.39, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

(
x2 − y

)
y′ + x = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 23� �
dsolve((x^2-y(x))*diff(y(x),x)+x=0,y(x), singsol=all)� �

y(x) = x2 +
LambertW

(
4c1e−2x2−1

)
2 + 1

2

3 Solution by Mathematica

Time used: 5.491 (sec). Leaf size: 40� �
DSolve[(x^2-y[x])*y'[x]+x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + 1
2

(
1 +W

(
−e−2x2−1+c1

))
y(x) → x2 + 1

2
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6.40 problem Exercise 12.40, page 103
Internal problem ID [4052]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.40, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

(
x2 − y

)
y′ − 4xy = 0

3 Solution by Maple

Time used: 0.062 (sec). Leaf size: 53� �
dsolve((x^2-y(x))*diff(y(x),x)-4*x*y(x)=0,y(x), singsol=all)� �

y(x) =
c1
(
c1 −

√
c21 − 4x2

)
2 − x2

y(x) =
c1
(
c1 +

√
c21 − 4x2

)
2 − x2
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3 Solution by Mathematica

Time used: 2.466 (sec). Leaf size: 206� �
DSolve[(x^2-y[x])*y'[x]-4*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

1 + 2− 2i
i
√
2√

e
2c1
9 x2−i

− (1− i)



y(x) → x2

1 + 2− 2i
(−1 + i)− i

√
2√

e
2c1
9 x2−i



y(x) → x2

1 + 2− 2i
(−1 + i)−

√
2√

e
2c1
9 x2+i



y(x) → x2

1 + 2− 2i
√
2√

e
2c1
9 x2+i

− (1− i)


y(x) → 0

y(x) → −x2
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6.41 problem Exercise 12.41, page 103
Internal problem ID [4053]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.41, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

xyy′ + x2 + y2 = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 39� �
dsolve(x*y(x)*diff(y(x),x)+x^2+y(x)^2=0,y(x), singsol=all)� �

y(x) = −
√
−2x4 + 4c1

2x

y(x) =
√
−2x4 + 4c1

2x

3 Solution by Mathematica

Time used: 0.222 (sec). Leaf size: 46� �
DSolve[x*y[x]*y'[x]+x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−x4

2 + c1

x

y(x) →

√
−x4

2 + c1

x
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6.42 problem Exercise 12.42, page 103
Internal problem ID [4054]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.42, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2xyy′ + 3x2 − y2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 31� �
dsolve(2*x*y(x)*diff(y(x),x)+3*x^2-y(x)^2=0,y(x), singsol=all)� �

y(x) =
√

c1x− 3x2

y(x) = −
√
c1x− 3x2

3 Solution by Mathematica

Time used: 0.313 (sec). Leaf size: 35� �
DSolve[2*x*y[x]*y'[x]+3*x^2-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

x(−3x+ c1)

y(x) →
√
x(−3x+ c1)
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6.43 problem Exercise 12.43, page 103
Internal problem ID [4055]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.43, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

(
2y3x− x4) y′ + 2yx3 − y4 = 0
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3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 447� �
dsolve((2*x*y(x)^3-x^4)*diff(y(x),x)+2*x^3*y(x)-y(x)^4=0,y(x), singsol=all)� �

y(x) =
12 1

3

(
x

(
−9c1x2 +

√
3
√

x
(
27c31x3−4

)
c1

)
c21

) 1
3

6c1
+ x12 2

3

6
(
x

(
−9c1x2 +

√
3
√

x
(
27c31x3−4

)
c1

)
c21

) 1
3

y(x) = −
12 1

3

(
x

(
−9c1x2 +

√
3
√

x
(
27c31x3−4

)
c1

)
c21

) 1
3

12c1

− x12 2
3

12
(
x

(
−9c1x2 +

√
3
√

x
(
27c31x3−4

)
c1

)
c21

) 1
3

−

i
√
3

12
1
3

(
x

(
−9c1x2+

√
3

√
x
(
27c31x

3−4
)

c1

)
c21

) 1
3

6c1 − x12
2
3

6
(
x

(
−9c1x2+

√
3

√
x
(
27c31x

3−4
)

c1

)
c21

) 1
3


2

y(x) = −
12 1

3

(
x

(
−9c1x2 +

√
3
√

x
(
27c31x3−4

)
c1

)
c21

) 1
3

12c1

− x12 2
3

12
(
x

(
−9c1x2 +

√
3
√

x
(
27c31x3−4

)
c1

)
c21

) 1
3

+

i
√
3

12
1
3

(
x

(
−9c1x2+

√
3

√
x
(
27c31x

3−4
)

c1

)
c21

) 1
3

6c1 − x12
2
3

6
(
x

(
−9c1x2+

√
3

√
x
(
27c31x

3−4
)

c1

)
c21

) 1
3


2
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3 Solution by Mathematica

Time used: 60.226 (sec). Leaf size: 294� �
DSolve[(2*x*y[x]^3-x^4)*y'[x]+2*x^3*y[x]-y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√
2
(
−9x3 +

√
81x6 − 12e3c1x3

) 2/3 + 2 3
√
3ec1x

62/3 3
√

−9x3 +
√
81x6 − 12e3c1x3

y(x) →
(−1)2/3 3

√
2
(
−9x3 +

√
81x6 − 12e3c1x3

) 2/3 − 2 3
√
−3ec1x

62/3 3
√

−9x3 +
√
81x6 − 12e3c1x3

y(x) →
− 3
√
−2 6

√
3
(
−9x3 +

√
81x6 − 12e3c1x3

) 2/3 −
((√

3− 3i
)
ec1x

)
22/335/6 3

√
−9x3 +

√
81x6 − 12e3c1x3
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6.44 problem Exercise 12.44, page 103
Internal problem ID [4056]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.44, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rational]

(xy − 1)2 xy′ + y
(
x2y2 + 1

)
= 0

3 Solution by Maple

Time used: 0.094 (sec). Leaf size: 34� �
dsolve((x*y(x)-1)^2*x*diff(y(x),x)+(x^2*y(x)^2+1)*y(x)=0,y(x), singsol=all)� �

y(x) = eRootOf
(
−2 e_Z ln(x)−e2_Z+2 e_Zc1+2_Z e_Z+1

)
x

3 Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 25� �
DSolve[(x*y[x]-1)^2*x*y'[x]+(x^2*y[x]^2+1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
xy(x)− 1

xy(x) − 2 log(y(x)) = c1, y(x)
]
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6.45 problem Exercise 12.45, page 103
Internal problem ID [4057]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.45, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

(
y2 + x2) y′ + 2x(y + 2x) = 0

3 Solution by Maple

Time used: 0.047 (sec). Leaf size: 417� �
dsolve((x^2+y(x)^2)*diff(y(x),x)+2*x*(2*x+y(x))=0,y(x), singsol=all)� �

y(x) =

(
4−16x3c

3
2
1 +4

√
20x6c31−8x3c

3
2
1 +1

) 1
3

2 − 2x2c1(
4−16x3c

3
2
1 +4

√
20x6c31−8x3c

3
2
1 +1

) 1
3

√
c1

y(x)

=

−

(
4−16x3c

3
2
1 +4

√
20x6c31−8x3c

3
2
1 +1

) 1
3

4 + x2c1(
4−16x3c

3
2
1 +4

√
20x6c31−8x3c

3
2
1 +1

) 1
3
−

i
√
3



4−16x3c
3
2
1 +4

√
20x6c31−8x3c

3
2
1 +1


1
3

2 + 2x2c14−16x3c
3
2
1 +4

√
20x6c31−8x3c

3
2
1 +1


1
3


2

√
c1

y(x)

=

−

(
4−16x3c

3
2
1 +4

√
20x6c31−8x3c

3
2
1 +1

) 1
3

4 + x2c1(
4−16x3c

3
2
1 +4

√
20x6c31−8x3c

3
2
1 +1

) 1
3
+

i
√
3



4−16x3c
3
2
1 +4

√
20x6c31−8x3c

3
2
1 +1


1
3

2 + 2x2c14−16x3c
3
2
1 +4

√
20x6c31−8x3c

3
2
1 +1


1
3


2

√
c1
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3 Solution by Mathematica

Time used: 19.158 (sec). Leaf size: 554� �
DSolve[(x^2+y[x]^2)*y'[x]+2*x*(2*x+y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

−4x3 +
√
20x6 − 8e3c1x3 + e6c1 + e3c1

3
√
2

−
3
√
2x2

3
√

−4x3 +
√
20x6 − 8e3c1x3 + e6c1 + e3c1

y(x) →
2 3
√
−2x2 + (−2)2/3

(
−4x3 +

√
20x6 − 8e3c1x3 + e6c1 + e3c1

) 2/3

2 3
√

−4x3 +
√
20x6 − 8e3c1x3 + e6c1 + e3c1

y(x) → −
2(−1)2/3x2 + 3

√
−2
(
−4x3 +

√
20x6 − 8e3c1x3 + e6c1 + e3c1

) 2/3

22/3 3
√

−4x3 +
√
20x6 − 8e3c1x3 + e6c1 + e3c1

y(x) → 3
√√

5
√
x6 − 2x3 − x2

3
√√

5
√
x6 − 2x3

y(x) →

(
1− i

√
3
)
x2 +

(
−1− i

√
3
) (√

5
√
x6 − 2x3

)2/3
2 3
√√

5
√
x6 − 2x3

y(x) →

(
1 + i

√
3
)
x2 + i

(√
3 + i

) (√
5
√
x6 − 2x3

)2/3
2 3
√√

5
√
x6 − 2x3
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6.46 problem Exercise 12.46, page 103
Internal problem ID [4058]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.46, page 103.
ODE order: 1.
ODE degree: 1.

CASMaple gives this as type [[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

3xy2y′ + y3 − 2x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 99� �
dsolve(3*x*y(x)^2*diff(y(x),x)+y(x)^3-2*x=0,y(x), singsol=all)� �

y(x) = ((x2 + c1)x2)
1
3

x

y(x) = −((x2 + c1)x2)
1
3

2x − i
√
3 ((x2 + c1)x2)

1
3

2x

y(x) = −((x2 + c1)x2)
1
3

2x + i
√
3 ((x2 + c1)x2)

1
3

2x

3 Solution by Mathematica

Time used: 0.235 (sec). Leaf size: 72� �
DSolve[3*x*y[x]^2*y'[x]+y[x]^3-2*x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

x2 + c1
3
√
x

y(x) → −
3
√
−1 3
√

x2 + c1
3
√
x

y(x) → (−1)2/3 3
√

x2 + c1
3
√
x
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6.47 problem Exercise 12.47, page 103
Internal problem ID [4059]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.47, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _dAlembert]

2y3y′ + xy2 − x3 = 0
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3 Solution by Maple

Time used: 0.453 (sec). Leaf size: 711� �
dsolve(2*y(x)^3*diff(y(x),x)+x*y(x)^2-x^3=0,y(x), singsol=all)� �

y(x) = −

√√√√2
(
2 + x6c31 + 2

√
x6c31 + 1

) 1
3 + 2x4c21(

2+x6c31+2
√

x6c31+1
) 1

3
− 2c1x2

2√c1

y(x) =

√√√√2
(
2 + x6c31 + 2

√
x6c31 + 1

) 1
3 + 2x4c21(

2+x6c31+2
√

x6c31+1
) 1

3
− 2c1x2

2√c1

y(x) =

−

√√√√√−
(
2 + x6c31 + 2

√
x6c31 + 1

) 1
3 − x4c21(

2+x6c31+2
√

x6c31+1
) 1

3
− 2c1x2 − 2i

√
3

(
2+x6c31+2

√
x6c31+1

) 1
3

2 − x4c21

2
(
2+x6c31+2

√
x6c31+1

) 1
3


2√c1

y(x)

=

√√√√√−
(
2 + x6c31 + 2

√
x6c31 + 1

) 1
3 − x4c21(

2+x6c31+2
√

x6c31+1
) 1

3
− 2c1x2 − 2i

√
3

(
2+x6c31+2

√
x6c31+1

) 1
3

2 − x4c21

2
(
2+x6c31+2

√
x6c31+1

) 1
3


2√c1

y(x) =

−

√√√√√−
(
2 + x6c31 + 2

√
x6c31 + 1

) 1
3 − x4c21(

2+x6c31+2
√

x6c31+1
) 1

3
− 2c1x2 + 2i

√
3

(
2+x6c31+2

√
x6c31+1

) 1
3

2 − x4c21

2
(
2+x6c31+2

√
x6c31+1

) 1
3


2√c1

y(x)

=

√√√√√−
(
2 + x6c31 + 2

√
x6c31 + 1

) 1
3 − x4c21(

2+x6c31+2
√

x6c31+1
) 1

3
− 2c1x2 + 2i

√
3

(
2+x6c31+2

√
x6c31+1

) 1
3

2 − x4c21

2
(
2+x6c31+2

√
x6c31+1

) 1
3


2√c1
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3 Solution by Mathematica

Time used: 60.132 (sec). Leaf size: 714� �
DSolve[2*y[x]^3*y'[x]+x*y[x]^2-x^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√√√√ 3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − x2 + x4

3
√
x6 + 2

√
e24c1 − e12c1x6 − 2e12c1

√
2

y(x) →

√√√√ 3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − x2 + x4

3
√
x6 + 2

√
e24c1 − e12c1x6 − 2e12c1

√
2

y(x) →

−1
2

√√√√(−1− i
√
3
)

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − 2x2 +

i
(√

3 + i
)
x4

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1

y(x)

→ 1
2

√√√√(−1− i
√
3
)

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − 2x2 +

i
(√

3 + i
)
x4

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1

y(x) →

−1
2

√√√√i
(√

3 + i
)

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − 2x2 +

(
−1− i

√
3
)
x4

3
√
x6 + 2

√
e24c1 − e12c1x6 − 2e12c1

y(x)

→ 1
2

√√√√i
(√

3 + i
)

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − 2x2 +

(
−1− i

√
3
)
x4

3
√
x6 + 2

√
e24c1 − e12c1x6 − 2e12c1
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6.48 problem Exercise 12.48, page 103
Internal problem ID [4060]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.48, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational]

(
2y3x+ xy + x2) y′ − xy + y2 = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 29� �
dsolve((2*x*y(x)^3+x*y(x)+x^2)*diff(y(x),x)-x*y(x)+y(x)^2=0,y(x), singsol=all)� �

y(x) = eRootOf
(
−e3_Z−e_Z ln(x)+e_Zc1−_Z e_Z+x

)

3 Solution by Mathematica

Time used: 0.225 (sec). Leaf size: 23� �
DSolve[(2*x*y[x]^3+x*y[x]+x^2)*y'[x]-x*y[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)2 − x

y(x) + log(y(x)) + log(x) = c1, y(x)
]
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6.49 problem Exercise 12.49, page 103
Internal problem ID [4061]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.49, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

(
2y3 + y

)
y′ − 2x3 − x = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 113� �
dsolve((2*y(x)^3+y(x))*diff(y(x),x)-2*x^3-x=0,y(x), singsol=all)� �

y(x) = −
√

−2− 2
√
4x4 + 4x2 + 8c1 + 1

2

y(x) =
√

−2− 2
√
4x4 + 4x2 + 8c1 + 1

2

y(x) = −
√

−2 + 2
√
4x4 + 4x2 + 8c1 + 1

2

y(x) =
√

−2 + 2
√
4x4 + 4x2 + 8c1 + 1

2
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3 Solution by Mathematica

Time used: 2.324 (sec). Leaf size: 143� �
DSolve[(2*y[x]^3+y[x])*y'[x]-2*x^3-x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−1−

√
(2x2 + 1)2 + 8c1
√
2

y(x) →

√
−1−

√
(2x2 + 1)2 + 8c1
√
2

y(x) → −

√
−1 +

√
(2x2 + 1)2 + 8c1
√
2

y(x) →

√
−1 +

√
(2x2 + 1)2 + 8c1
√
2
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6.50 problem Exercise 12.50, page 103
Internal problem ID [4062]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscella-
neous Methods
Problem number: Exercise 12.50, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

y′ − e−y+x + ex = 0

3 Solution by Maple

Time used: 0.125 (sec). Leaf size: 20� �
dsolve(diff(y(x),x)-exp(x-y(x))+exp(x)=0,y(x), singsol=all)� �

y(x) = −ex + ln
(
−1 + eex+c1

)
− c1

3 Solution by Mathematica

Time used: 2.145 (sec). Leaf size: 23� �
DSolve[y'[x]-Exp[x-y[x]]+Exp[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log
(
1 + e−ex+c1

)
y(x) → 0
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7.1 problem Exercise 20.1, page 220
Internal problem ID [4063]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.1, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ + 2y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1 + c2e−2x

3 Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 19� �
DSolve[y''[x]+2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 −
1
2c1e

−2x
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7.2 problem Exercise 20.2, page 220
Internal problem ID [4064]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.2, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 3y′ + 2y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)� �

y(x) = c1ex + c2e2x

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18� �
DSolve[y''[x]-3*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(c2ex + c1)
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7.3 problem Exercise 20.3, page 220
Internal problem ID [4065]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.3, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x$2)-y(x)=0,y(x), singsol=all)� �

y(x) = c1ex + c2e−x

3 Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 20� �
DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x + c2e

−x
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7.4 problem Exercise 20.5, page 220
Internal problem ID [4066]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.5, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

6y′′ − 11y′ + 4y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 17� �
dsolve(6*diff(y(x),x$2)-11*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)� �

y(x) = c1e
4x
3 + c2e

x
2

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 35� �
DSolve[y''[x]-11*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
− 1

2

(√
105−11

)
x
(
c2e

√
105x + c1

)
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7.5 problem Exercise 20.6, page 220
Internal problem ID [4067]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.6, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ + 2y′ − y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = c1e
(√

2−1
)
x + c2e−

(
1+

√
2
)
x

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 34� �
DSolve[y''[x]+2*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
−
((

1+
√
2
)
x
)(

c2e
2
√
2x + c1

)
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7.6 problem Exercise 20.7, page 220
Internal problem ID [4068]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.7, page 220.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

y′′′ + y′′ − 10y′ − 6y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 32� �
dsolve(diff(y(x),x$3)+diff(y(x),x$2)-10*diff(y(x),x)-6*y(x)=0,y(x), singsol=all)� �

y(x) = e3xc1 + c2e
(
−2+

√
2
)
x + c3e−

(
2+

√
2
)
x

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 43� �
DSolve[y'''[x]+y''[x]-10*y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−
((

2+
√
2
)
x
)
+ c2e

(√
2−2

)
x + c3e

3x



195

7.7 problem Exercise 20.8, page 220
Internal problem ID [4069]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.8, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ − y′′′ − 4y′′ + 4y′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 22� �
dsolve(diff(y(x),x$4)-diff(y(x),x$3)-4*diff(y(x),x$2)+4*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1 + exc2 + c3e−2x + c4e2x

3 Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 36� �
DSolve[y''''[x]-y'''[x]-4*y''[x]+4*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2c1e

−2x + c2e
x + 1

2c3e
2x + c4
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7.8 problem Exercise 20.9, page 220
Internal problem ID [4070]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.9, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ + 4y′′′ + y′′ − 4y′ − 2y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 36� �
dsolve(diff(y(x),x$4)+4*diff(y(x),x$3)+diff(y(x),x$2)-4*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)� �

y(x) = c1ex + c2e−x + c3e
(
−2+

√
2
)
x + c4e−

(
2+

√
2
)
x

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 49� �
DSolve[y''''[x]+4*y'''[x]+y''[x]-4*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−
((

2+
√
2
)
x
)
+ c2e

(√
2−2

)
x + c3e

−x + c4e
x
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7.9 problem Exercise 20.10, page 220
Internal problem ID [4071]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.10, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ − ya2 = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 38� �
dsolve(diff(y(x),x$4)-a^2*y(x)=0,y(x), singsol=all)� �

y(x) = c1e
√
a x + c2e−

√
a x + c3 sin

(√
a x
)
+ c4 cos

(√
a x
)

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 53� �
DSolve[y''''[x]-a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2e
−
√
ax + c4e

√
ax + c1 cos

(√
ax
)
+ c3 sin

(√
ax
)
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7.10 problem Exercise 20.11, page 220
Internal problem ID [4072]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.11, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 2ky′ − 2y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 35� �
dsolve(diff(y(x),x$2)-2*k*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)� �

y(x) = c1e
(
k+

√
k2+2

)
x + c2e

(
k−

√
k2+2

)
x

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 44� �
DSolve[y''[x]-2*k*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e

(
k−

√
k2+2

)
x + c2e

(√
k2+2+k

)
x



199

7.11 problem Exercise 20.12, page 220
Internal problem ID [4073]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.12, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ + 4ky′ − 12k2y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)+4*k*diff(y(x),x)-12*k^2*y(x)=0,y(x), singsol=all)� �

y(x) = c1e−6kx + c2e2kx

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 24� �
DSolve[y''[x]+4*k*y'[x]-12*k^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−6kx(c2e8kx + c1
)
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7.12 problem Exercise 20.13, page 220
Internal problem ID [4074]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.13, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _quadrature]]

y′′′′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$4)=0,y(x), singsol=all)� �

y(x) = 1
6c1x

3 + 1
2c2x

2 + c3x+ c4

3 Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22� �
DSolve[y''''[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(x(c4x+ c3) + c2) + c1
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7.13 problem Exercise 20.14, page 220
Internal problem ID [4075]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.14, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ + 4y′ + 4y = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 18� �
dsolve(diff(y(x),x$2)+4*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)� �

y(x) = c1e−2x + c2e−2xx

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18� �
DSolve[y''[x]+4*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(c2x+ c1)
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7.14 problem Exercise 20.15, page 220
Internal problem ID [4076]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.15, page 220.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

3y′′′ + 5y′′ + y′ − y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 24� �
dsolve(3*diff(y(x),x$3)+5*diff(y(x),x$2)+diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = c1e
x
3 + c2e−x + c3e−xx

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28� �
DSolve[3*y'''[x]+5*y''[x]+y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
c1e

4x/3 + c3x+ c2
)
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7.15 problem Exercise 20.16, page 220
Internal problem ID [4077]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.16, page 220.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

y′′′ − 6y′′ + 12y′ − 8y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$3)-6*diff(y(x),x$2)+12*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)� �

y(x) = c1e2x + c2e2xx+ c3e2xx2

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 23� �
DSolve[y'''[x]-6*y''[x]+12*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2x(x(c3x+ c2) + c1)
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7.16 problem Exercise 20.17, page 220
Internal problem ID [4078]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.17, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 2ay′ + ya2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x$2)-2*a*diff(y(x),x)+a^2*y(x)=0,y(x), singsol=all)� �

y(x) = c1eax + c2eaxx

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18� �
DSolve[y''[x]-2*a*y'[x]+a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → eax(c2x+ c1)
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7.17 problem Exercise 20.18, page 220
Internal problem ID [4079]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.18, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ + 3y′′′ = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$4)+3*diff(y(x),x$3)=0,y(x), singsol=all)� �

y(x) = c1 + c2x+ c3x
2 + c4e−3x

3 Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 28� �
DSolve[y''''[x]+3*y'''[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
27c1e

−3x + x(c4x+ c3) + c2
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7.18 problem Exercise 20.19, page 220
Internal problem ID [4080]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.19, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ − 2y′′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$4)-2*diff(y(x),x$2)=0,y(x), singsol=all)� �

y(x) = c1 + c2x+ c3e
√
2x + c4e−

√
2x

3 Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 42� �
DSolve[y''''[x]-2*y''[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−
√
2x
(
c1e

2
√
2x + c2

)
+ c4x+ c3
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7.19 problem Exercise 20.20, page 220
Internal problem ID [4081]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.20, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ + 2y′′′ − 11y′′ − 12y′ + 36y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 31� �
dsolve(diff(y(x),x$4)+2*diff(y(x),x$3)-11*diff(y(x),x$2)-12*diff(y(x),x)+36*y(x)=0,y(x), singsol=all)� �

y(x) = c1e−3x + c2e−3xx+ c3e2x + c4e2xx

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 31� �
DSolve[y''''[x]+2*y'''[x]-11*y''[x]-12*y'[x]+36*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−3x(c2x+ e5x(c4x+ c3) + c1
)



208

7.20 problem Exercise 20.21, page 220
Internal problem ID [4082]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.21, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

36y′′′′ − 37y′′ + 4y′ + 5y = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 29� �
dsolve(36*diff(y(x),x$4)-37*diff(y(x),x$2)+4*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)� �

y(x) = c1e−x + c2e
x
2 + c3e−

x
3 + c4e

5x
6

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 44� �
DSolve[36*y''''[x]-37*y''[x]+4*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
c1e

11x/6 + c2e
2x/3 + c3e

3x/2 + c4
)
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7.21 problem Exercise 20.22, page 220
Internal problem ID [4083]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.22, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ − 8y′′ + 36y = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 48� �
dsolve(diff(y(x),x$4)-8*diff(y(x),x$2)+36*y(x)=0,y(x), singsol=all)� �

y(x) = c1e
√
5x sin (x)− c2e−

√
5x sin (x) + c3e

√
5x cos (x) + c4e−

√
5x cos (x)

3 Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 49� �
DSolve[y''''[x]-8*y''[x]+36*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−
√
5x
(
c2 cos(x) + c4 sin(x) + e2

√
5x(c3 cos(x) + c1 sin(x))

)
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7.22 problem Exercise 20.23, page 220
Internal problem ID [4084]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.23, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 2y′ + 5y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)� �

y(x) = c1ex sin (2x) + c2ex cos (2x)

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 24� �
DSolve[y''[x]-2*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(c2 cos(2x) + c1 sin(2x))
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7.23 problem Exercise 20.24, page 220
Internal problem ID [4085]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.24, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − y′ + y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 31� �
dsolve(diff(y(x),x$2)-diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = c1e
x
2 sin

(√
3x
2

)
+ c2e

x
2 cos

(√
3x
2

)

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 42� �
DSolve[y''[x]-y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex/2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
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7.24 problem Exercise 20.25, page 220
Internal problem ID [4086]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.25, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ + 5y′′ + 6y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 37� �
dsolve(diff(y(x),x$4)+5*diff(y(x),x$2)+6*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin
(√

2x
)
+ c2 cos

(√
2x
)
+ c3 sin

(√
3x
)
+ c4 cos

(√
3x
)

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 50� �
DSolve[y''''[x]+5*y''[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c3 cos
(√

2x
)
+ c1 cos

(√
3x
)
+ c4 sin

(√
2x
)
+ c2 sin

(√
3x
)
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7.25 problem Exercise 20.26, page 220
Internal problem ID [4087]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.26, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 4y′ + 20y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x$2)-4*diff(y(x),x)+20*y(x)=0,y(x), singsol=all)� �

y(x) = c1e2x sin (4x) + c2e2x cos (4x)

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26� �
DSolve[y''[x]-4*y'[x]+20*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2x(c2 cos(4x) + c1 sin(4x))
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7.26 problem Exercise 20.27, page 220
Internal problem ID [4088]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.27, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ + 4y′′ + 4y = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 39� �
dsolve(diff(y(x),x$4)+4*diff(y(x),x$2)+4*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin
(√

2x
)
+ c2 cos

(√
2x
)
+ c3 sin

(√
2x
)
x+ c4 cos

(√
2x
)
x

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 38� �
DSolve[y''''[x]+4*y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (c2x+ c1) cos
(√

2x
)
+ (c4x+ c3) sin

(√
2x
)
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7.27 problem Exercise 20.28, page 220
Internal problem ID [4089]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.28, page 220.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

y′′′ + 8y = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 31� �
dsolve(diff(y(x),x$3)+8*y(x)=0,y(x), singsol=all)� �

y(x) = c1e−2x + c2ex sin
(√

3x
)
+ c3ex cos

(√
3x
)

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 41� �
DSolve[y'''[x]+8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−2x + ex

(
c3 cos

(√
3x
)
+ c2 sin

(√
3x
))
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7.28 problem Exercise 20.29, page 220
Internal problem ID [4090]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.29, page 220.
ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y′′′′ + 4y′′ = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$4)+4*diff(y(x),x$2)=0,y(x), singsol=all)� �

y(x) = c1 + c2x+ c3 sin (2x) + c4 cos (2x)

3 Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 32� �
DSolve[y''''[x]+4*y''[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c4x− 1
4c1 cos(2x)−

1
4c2 sin(2x) + c3
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7.29 problem Exercise 20.30, page 220
Internal problem ID [4091]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20.30, page 220.
ODE order: 5.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y(5) + 2y′′′ + y′ = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$5)+2*diff(y(x),x$3)+diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1 + c2 sin (x) + c3 cos (x) + c4 sin (x)x+ c5 cos (x)x

3 Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 35� �
DSolve[y'''''[x]+2*y'''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (−c4x+ c2 − c3) cos(x) + (c2x+ c1 + c4) sin(x) + c5
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7.30 problem Exercise 20, problem 31, page 220
Internal problem ID [4092]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20, problem 31, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

y′′ = 0

With initial conditions

[y(1) = 2, y′(1) = −1]

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 9� �
dsolve([diff(y(x),x$2)=0,y(1) = 2, D(y)(1) = -1],y(x), singsol=all)� �

y(x) = 3− x

3 Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 10� �
DSolve[{y''[x]==0,{y[1]==2,y'[1]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3− x
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7.31 problem Exercise 20, problem 32, page 220
Internal problem ID [4093]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20, problem 32, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ + 4y′ + 4y = 0

With initial conditions

[y(0) = 1, y′(0) = 1]

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 14� �
dsolve([diff(y(x),x$2)+4*diff(y(x),x)+4*y(x)=0,y(0) = 1, D(y)(0) = 1],y(x), singsol=all)� �

y(x) = e−2x(3x+ 1)

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 16� �
DSolve[{y''[x]+4*y'[x]+4*y[x]==0,{y[0]==1,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(3x+ 1)
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7.32 problem Exercise 20, problem 33, page 220
Internal problem ID [4094]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20, problem 33, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 2y′ + 5y = 0

With initial conditions

[y(0) = 2, y′(0) = 1]

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 21� �
dsolve([diff(y(x),x$2)-2*diff(y(x),x)+5*y(x)=0,y(0) = 2, D(y)(0) = 1],y(x), singsol=all)� �

y(x) = ex(− sin (2x) + 4 cos (2x))
2

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 25� �
DSolve[{y''[x]-2*y'[x]+5*y[x]==0,{y[0]==2,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

x(4 cos(2x)− sin(2x))
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7.33 problem Exercise 20, problem 34, page 220
Internal problem ID [4095]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20, problem 34, page 220.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ − 4y′ + 20y = 0

With initial conditions [
y
(π
2

)
= 1, y′

(π
2

)
= 1
]

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 27� �
dsolve([diff(y(x),x$2)-4*diff(y(x),x)+20*y(x)=0,y(1/2*Pi) = 1, D(y)(1/2*Pi) = 1],y(x), singsol=all)� �

y(x) = (− sin (4x) + 4 cos (4x)) e2x−π

4

3 Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 31� �
DSolve[{y''[x]-4*y'[x]+20*y[x]==0,{y[Pi/2]==1,y'[Pi/2]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

2x−π(4 cos(4x)− sin(4x))
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7.34 problem Exercise 20, problem 35, page 220
Internal problem ID [4096]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number: Exercise 20, problem 35, page 220.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

3y′′′ + 5y′′ + y′ − y = 0

With initial conditions

[y(0) = 0, y′(0) = 1, y′′(0) = −1]

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 21� �
dsolve([3*diff(y(x),x$3)+5*diff(y(x),x$2)+diff(y(x),x)-y(x)=0,y(0) = 0, D(y)(0) = 1, (D@@2)(y)(0) = -1],y(x), singsol=all)� �

y(x) =

(
9 e 4x

3 + 4x− 9
)
e−x

16

3 Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 28� �
DSolve[{3*y'''[x]+5*y''[x]+y'[x]-y[x]==0,{y[0]==0,y'[0]==1,y''[0]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
16e

−x
(
4x+ 9e4x/3 − 9

)
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8.1 problem Exercise 21.3, page 231
Internal problem ID [4097]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.3, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

y′′ + 3y′ + 2y − 4 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=4,y(x), singsol=all)� �

y(x) = −c1e−2x + c2e−x + 2

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22� �
DSolve[y''[x]+3*y'[x]+2*y[x]==4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 + e−2x(c2ex + c1)
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8.2 problem Exercise 21.4, page 231
Internal problem ID [4098]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.4, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ + 3y′ + 2y − 12 ex = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 22� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=12*exp(x),y(x), singsol=all)� �

y(x) = −c1e−2x + 2 ex + c2e−x

3 Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 27� �
DSolve[y''[x]+3*y'[x]+2*y[x]==12*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(2e3x + c2e
x + c1

)
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8.3 problem Exercise 21.5, page 231
Internal problem ID [4099]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.5, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ + 3y′ + 2y − eix = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=exp(I*x),y(x), singsol=all)� �

y(x) =
((

1
10 − 3i

10

)
eix+x − c1e−x + c2

)
e−x

3 Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 37� �
DSolve[y''[x]+3*y'[x]+2*y[x]==Exp[I*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(

1
10 − 3i

10

)
eix + c1e

−2x + c2e
−x
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8.4 problem Exercise 21.6, page 231
Internal problem ID [4100]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.6, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 3y′ + 2y − sin (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=sin(x),y(x), singsol=all)� �

y(x) = −c1e−2x − 3 cos (x)
10 + sin (x)

10 + c2e−x

3 Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 32� �
DSolve[y''[x]+3*y'[x]+2*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
10
(
sin(x)− 3 cos(x) + 10e−2x(c2ex + c1)

)
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8.5 problem Exercise 21.7, page 231
Internal problem ID [4101]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.7, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 3y′ + 2y − cos (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=cos(x),y(x), singsol=all)� �

y(x) = −c1e−2x + cos (x)
10 + 3 sin (x)

10 + c2e−x

3 Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 32� �
DSolve[y''[x]+3*y'[x]+2*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
10
(
3 sin(x) + cos(x) + 10e−2x(c2ex + c1)

)
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8.6 problem Exercise 21.8, page 231
Internal problem ID [4102]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.8, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 3y′ + 2y − 8− 6 ex − 2 sin (x) = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=8+6*exp(x)+2*sin(x),y(x), singsol=all)� �

y(x) = −c1e−2x + 4 + ex − 3 cos (x)
5 + sin (x)

5 + c2e−x

3 Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 38� �
DSolve[y''[x]+3*y'[x]+2*y[x]==8+6*Exp[x]+2*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex + sin(x)
5 − 3 cos(x)

5 + c1e
−2x + c2e

−x + 4
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8.7 problem Exercise 21.9, page 231
Internal problem ID [4103]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.9, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ + y′ + y − x2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 37� �
dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=x^2,y(x), singsol=all)� �

y(x) = e−x
2 sin

(√
3x
2

)
c2 + e−x

2 cos
(√

3x
2

)
c1 + x2 − 2x

3 Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 48� �
DSolve[y''[x]+y'[x]+y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x− 2)x+ e−x/2

(
c2 cos

(√
3x
2

)
+ c1 sin

(√
3x
2

))
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8.8 problem Exercise 21.10, page 231
Internal problem ID [4104]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.10, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − 2y′ − 8y − 9 exx− 10 e−x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 28� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)-8*y(x)=9*x*exp(x)+10*exp(-x),y(x), singsol=all)� �

y(x) = e4xc2 + c1e−2x − exx− 2 e−x

3 Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 35� �
DSolve[y''[x]-2*y'[x]-8*y[x]==9*x*Exp[x]+10*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(−e3xx− 2ex + c2e
6x + c1

)
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8.9 problem Exercise 21.11, page 231
Internal problem ID [4105]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.11, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

y′′ − 3y′ − 2 e2x sin (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$2)-3*diff(y(x),x)=2*exp(2*x)*sin(x),y(x), singsol=all)� �

y(x) = e3xc1
3 − e2x cos (x)

5 − 3 e2x sin (x)
5 + c2

3 Solution by Mathematica

Time used: 0.249 (sec). Leaf size: 33� �
DSolve[y''[x]-3*y'[x]==2*Exp[2*x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
15e

2x(−9 sin(x)− 3 cos(x) + 5c1ex) + c2
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8.10 problem Exercise 21.13, page 231
Internal problem ID [4106]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.13, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

y′′ + y′ − x2 − 2x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=x^2+2*x,y(x), singsol=all)� �

y(x) = x3

3 − c1e−x + c2

3 Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 24� �
DSolve[y''[x]+y'[x]==x^2+2*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

3 − c1e
−x + c2
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8.11 problem Exercise 21.14, page 231
Internal problem ID [4107]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.14, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

y′′ + y′ − x− sin (2x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 33� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=x+sin(2*x),y(x), singsol=all)� �

y(x) = x2

2 − c1e−x − sin (2x)
5 − cos (2x)

10 − x+ c2

3 Solution by Mathematica

Time used: 0.367 (sec). Leaf size: 41� �
DSolve[y''[x]+y'[x]==x+Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2(x− 2)x− 1

5 sin(2x)− 1
10 cos(2x)− c1e

−x + c2
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8.12 problem Exercise 21.15, page 231
Internal problem ID [4108]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.15, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y − 4 sin (x)x = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 25� �
dsolve(diff(y(x),x$2)+y(x)=4*x*sin(x),y(x), singsol=all)� �

y(x) = c2 sin (x) + c1 cos (x)− x(x cos (x)− sin (x))

3 Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 27� �
DSolve[y''[x]+y[x]==4*x*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
−x2 + 1

2 + c1

)
cos(x) + (x+ c2) sin(x)
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8.13 problem Exercise 21.16, page 231
Internal problem ID [4109]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.16, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 4y − x sin (2x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 33� �
dsolve(diff(y(x),x$2)+4*y(x)=x*sin(2*x),y(x), singsol=all)� �

y(x) = sin (2x) c2 + c1 cos (2x) +
sin (2x)x

16 − x2 cos (2x)
8

3 Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 38� �
DSolve[y''[x]+4*y[x]==x*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
64
((
−8x2 + 1 + 64c1

)
cos(2x) + 4(x+ 16c2) sin(2x)

)
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8.14 problem Exercise 21.17, page 231
Internal problem ID [4110]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.17, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 2y′ + y − x2e−x = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=x^2*exp(-x),y(x), singsol=all)� �

y(x) = c2e−x + e−xc1x+ x4e−x

12

3 Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 27� �
DSolve[y''[x]+2*y'[x]+y[x]==x^2*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
12e

−x
(
x4 + 12c2x+ 12c1

)
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8.15 problem Exercise 21.19, page 231
Internal problem ID [4111]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.19, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 3y′ + 2y − e−2x − x2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 40� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=exp(-2*x)+x^2,y(x), singsol=all)� �

y(x) = −c1e−2x − 3x
2 + 7

4 − x e−2x − e−2x + x2

2 + c2e−x

3 Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 38� �
DSolve[y''[x]+3*y'[x]+2*y[x]==Exp[-2*x]+x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2(x− 3)x+ e−2x(−x− 1 + c1) + c2e

−x + 7
4
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8.16 problem Exercise 21.20, page 231
Internal problem ID [4112]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.20, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − 3y′ + 2y − e−xx = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=x*exp(-x),y(x), singsol=all)� �

y(x) =
(
c1ex +

5 e−2x

36 + x e−2x

6 + c2

)
ex

3 Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 34� �
DSolve[y''[x]-3*y'[x]+2*y[x]==x*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
36e

−x(6x+ 5) + c1e
x + c2e

2x
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8.17 problem Exercise 21.21, page 231
Internal problem ID [4113]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.21, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ + y′ − 6y − x− e2x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 32� �
dsolve(diff(y(x),x$2)+diff(y(x),x)-6*y(x)=x+exp(2*x),y(x), singsol=all)� �

y(x) = e−3xc2 + c1e2x −
1
36 + (−1 + 5x) e2x

25 − x

6

3 Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 40� �
DSolve[y''[x]+y'[x]-6*y[x]==x+Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
36(−6x− 1) + c1e

−3x + e2x
(
x

5 − 1
25 + c2

)
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8.18 problem Exercise 21.22, page 231
Internal problem ID [4114]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.22, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y − sin (x)− e−x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$2)+y(x)=sin(x)+exp(-x),y(x), singsol=all)� �

y(x) = c2 sin (x) + c1 cos (x) +
e−x

2 − x cos (x)
2

3 Solution by Mathematica

Time used: 0.169 (sec). Leaf size: 36� �
DSolve[y''[x]+y[x]==Sin[x]+Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4
(
2e−x + sin(x)− 2x cos(x) + 4c1 cos(x) + 4c2 sin(x)

)
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8.19 problem Exercise 21.24, page 231
Internal problem ID [4115]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.24, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y − sin (x)2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)+y(x)=sin(x)^2,y(x), singsol=all)� �

y(x) = c2 sin (x) + c1 cos (x) +
1
2 + cos (2x)

6

3 Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 27� �
DSolve[y''[x]+y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6(cos(2x) + 6c1 cos(x) + 6c2 sin(x) + 3)



243

8.20 problem Exercise 21.27, page 231
Internal problem ID [4116]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.27, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y − sin (2x) sin (x) = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 25� �
dsolve(diff(y(x),x$2)+y(x)=sin(2*x)*sin(x),y(x), singsol=all)� �

y(x) = c2 sin (x) + c1 cos (x) +
sin (x) (− cos (x) sin (x) + x)

4

3 Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 33� �
DSolve[y''[x]+y[x]==Sin[2*x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
16(cos(3x) + (−1 + 16c1) cos(x) + 4(x+ 4c2) sin(x))



244

8.21 problem Exercise 21.28, page 231
Internal problem ID [4117]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.28, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ − 5y′ − 6y − e3x = 0

With initial conditions

[y(0) = 2, y′(0) = 1]

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 23� �
dsolve([diff(y(x),x$2)-5*diff(y(x),x)-6*y(x)=exp(3*x),y(0) = 2, D(y)(0) = 1],y(x), singsol=all)� �

y(x) = 45 e−x

28 + 10 e6x
21 − e3x

12

3 Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 30� �
DSolve[{y''[x]-5*y'[x]-6*y[x]==Exp[3*x],{y[0]==2,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
84e

−x
(
−7e4x + 40e7x + 135

)
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8.22 problem Exercise 21.29, page 231
Internal problem ID [4118]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.29, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − y′ − 2y − 5 sin (x) = 0

With initial conditions

[y(0) = 1, y′(0) = −1]

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 25� �
dsolve([diff(y(x),x$2)-diff(y(x),x)-2*y(x)=5*sin(x),y(0) = 1, D(y)(0) = -1],y(x), singsol=all)� �

y(x) = e−x

6 + e2x
3 + cos (x)

2 − 3 sin (x)
2

3 Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 30� �
DSolve[{y''[x]-y'[x]-2*y[x]==5*Sin[x],{y[0]==1,y'[0]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6
(
e−x + 2e2x − 9 sin(x) + 3 cos(x)

)
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8.23 problem Exercise 21.31, page 231
Internal problem ID [4119]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.31, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 9y − 8 cos (x) = 0

With initial conditions [
y
(π
2

)
= −1, y′

(π
2

)
= 1
]

3 Solution by Maple

Time used: 0.031 (sec). Leaf size: 17� �
dsolve([diff(y(x),x$2)+9*y(x)=8*cos(x),y(1/2*Pi) = -1, D(y)(1/2*Pi) = 1],y(x), singsol=all)� �

y(x) = sin (3x) + 2 cos (3x)
3 + cos (x)

3 Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 20� �
DSolve[{y''[x]+9*y[x]==8*Cos[x],{y[Pi/2]==-1,y'[Pi/2]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(3x) + cos(x) + 2
3 cos(3x)
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8.24 problem Exercise 21.32, page 231
Internal problem ID [4120]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.32, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − 5y′ + 6y − ex(2x− 3) = 0

With initial conditions

[y(0) = 1, y′(0) = 3]

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 13� �
dsolve([diff(y(x),x$2)-5*diff(y(x),x)+6*y(x)=exp(x)*(2*x-3),y(0) = 1, D(y)(0) = 3],y(x), singsol=all)� �

y(x) = e2x + exx

3 Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 35� �
DSolve[{y''[x]-5*y'[x]-6*y[x]==Exp[x]*(2*x-3),{y[0]==1,y'[0]==3}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
175e

−x
(
−7e2x(5x− 9) + 87e7x + 25

)
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8.25 problem Exercise 21.33, page 231
Internal problem ID [4121]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coeffi-
cients
Problem number: Exercise 21.33, page 231.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ − 3y′ + 2y − e−x = 0

With initial conditions

[y(0) = 1, y′(0) = −1]

3 Solution by Maple

Time used: 0.031 (sec). Leaf size: 21� �
dsolve([diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=exp(-x),y(0) = 1, D(y)(0) = -1],y(x), singsol=all)� �

y(x) = −5 e2x
3 + 5 ex

2 + e−x

6

3 Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 30� �
DSolve[{y''[x]-3*y'[x]+2*y[x]==Exp[-x],{y[0]==1,y'[0]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3(7 sinh(x)− 5 sinh(2x) + 8 cosh(x)− 5 cosh(2x))
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9.1 problem Exercise 22.1, page 240
Internal problem ID [4122]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.1, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y − sec (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$2)+y(x)=sec(x),y(x), singsol=all)� �

y(x) = c2 sin (x) + c1 cos (x) + x sin (x)− ln (sec (x)) cos (x)

3 Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 22� �
DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x+ c2) sin(x) + cos(x)(log(cos(x)) + c1)
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9.2 problem Exercise 22.2, page 240
Internal problem ID [4123]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.2, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y − cot (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$2)+y(x)=cot(x),y(x), singsol=all)� �

y(x) = c2 sin (x) + c1 cos (x) + sin (x) ln (csc (x)− cot (x))

3 Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 33� �
DSolve[y''[x]+y[x]==Cot[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos(x) + sin(x)
(
log
(
sin
(x
2

))
− log

(
cos
(x
2

))
+ c2

)
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9.3 problem Exercise 22.3, page 240
Internal problem ID [4124]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.3, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y − sec (x)2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$2)+y(x)=sec(x)^2,y(x), singsol=all)� �

y(x) = c2 sin (x) + c1 cos (x) + ln (sec (x) + tan (x)) sin (x)− 1

3 Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 27� �
DSolve[y''[x]+y[x]==Sec[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x)
(
2arctanh

(
tan

(x
2

))
+ c2

)
+ c1 cos(x)− 1
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9.4 problem Exercise 22.4, page 240
Internal problem ID [4125]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.4, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − y − sin (x)2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 22� �
dsolve(diff(y(x),x$2)-y(x)=sin(x)^2,y(x), singsol=all)� �

y(x) = exc2 + c1e−x + cos (x)2

5 − 3
5

3 Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 30� �
DSolve[y''[x]-y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
10(cos(2x)− 5) + c1e

x + c2e
−x
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9.5 problem Exercise 22.5, page 240
Internal problem ID [4126]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.5, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y − sin (x)2 = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)+y(x)=sin(x)^2,y(x), singsol=all)� �

y(x) = c2 sin (x) + c1 cos (x) +
1
2 + cos (2x)

6

3 Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 27� �
DSolve[y''[x]+y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6(cos(2x) + 6c1 cos(x) + 6c2 sin(x) + 3)
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9.6 problem Exercise 22.6, page 240
Internal problem ID [4127]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.6, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y′′ + 3y′ + 2y − 12 ex = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 22� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=12*exp(x),y(x), singsol=all)� �

y(x) = −c1e−2x + 2 ex + c2e−x

3 Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 27� �
DSolve[y''[x]+3*y'[x]+2*y[x]==12*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(2e3x + c2e
x + c1

)
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9.7 problem Exercise 22.7, page 240
Internal problem ID [4128]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.7, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 2y′ + y − x2e−x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=x^2*exp(-x),y(x), singsol=all)� �

y(x) = c2e−x + e−xc1x+ x4e−x

12

3 Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 27� �
DSolve[y''[x]+2*y'[x]+y[x]==x^2*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
12e

−x
(
x4 + 12c2x+ 12c1

)
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9.8 problem Exercise 22.8, page 240
Internal problem ID [4129]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.8, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y − 4 sin (x)x = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 25� �
dsolve(diff(y(x),x$2)+y(x)=4*x*sin(x),y(x), singsol=all)� �

y(x) = c2 sin (x) + c1 cos (x)− x(x cos (x)− sin (x))

3 Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 27� �
DSolve[y''[x]+y[x]==4*x*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
−x2 + 1

2 + c1

)
cos(x) + (x+ c2) sin(x)
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9.9 problem Exercise 22.9, page 240
Internal problem ID [4130]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.9, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 2y′ + y − e−x ln (x) = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 33� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=exp(-x)*ln(x),y(x), singsol=all)� �

y(x) = c2e−x + e−xc1x+ x2(2 ln (x)− 3) e−x

4

3 Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 36� �
DSolve[y''[x]+2*y'[x]+y[x]==Exp[-x]*Log[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

−x
(
−3x2 + 2x2 log(x) + 4c2x+ 4c1

)
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9.10 problem Exercise 22.10, page 240
Internal problem ID [4131]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.10, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y − csc (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x$2)+y(x)=csc(x),y(x), singsol=all)� �

y(x) = c2 sin (x) + c1 cos (x)− ln (csc (x)) sin (x)− x cos (x)

3 Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 27� �
DSolve[y''[x]+y[x]==Csc[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (−x+ c1) cos(x) + sin(x)(log(tan(x)) + log(cos(x)) + c2)
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9.11 problem Exercise 22.11, page 240
Internal problem ID [4132]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.11, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y − tan (x)2 = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$2)+y(x)=tan(x)^2,y(x), singsol=all)� �

y(x) = c2 sin (x) + c1 cos (x)− 2 + ln (sec (x) + tan (x)) sin (x)

3 Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 21� �
DSolve[y''[x]+y[x]==Tan[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x)(arctanh(sin(x)) + c2) + c1 cos(x)− 2
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9.12 problem Exercise 22.12, page 240
Internal problem ID [4133]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.12, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + 2y′ + y − e−x

x
= 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 28� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=exp(-x)/x,y(x), singsol=all)� �

y(x) = c2e−x + e−xc1x+ x(ln (x)− 1) e−x

3 Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 24� �
DSolve[y''[x]+2*y'[x]+y[x]==Exp[-x]/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x(x log(x) + (−1 + c2)x+ c1)
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9.13 problem Exercise 22.13, page 240
Internal problem ID [4134]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.13, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ + y − sec (x) csc (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 34� �
dsolve(diff(y(x),x$2)+y(x)=sec(x)*csc(x),y(x), singsol=all)� �
y(x) = c2 sin (x) + c1 cos (x) + sin (x) ln (csc (x)− cot (x))− ln (sec (x) + tan (x)) cos (x)

3 Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 39� �
DSolve[y''[x]+y[x]==Sec[x]*Csc[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos(x)(−arctanh(sin(x)) + c1) + sin(x)
(
log
(
sin
(x
2

))
− log

(
cos
(x
2

))
+ c2

)
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9.14 problem Exercise 22.14, page 240
Internal problem ID [4135]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.14, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − 2y′ + y − ex ln (x) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=exp(x)*ln(x),y(x), singsol=all)� �

y(x) = exc2 + exc1x+ exx2(2 ln (x)− 3)
4

3 Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 34� �
DSolve[y''[x]-2*y'[x]+y[x]==Exp[x]*Log[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

x
(
−3x2 + 2x2 log(x) + 4c2x+ 4c1

)
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9.15 problem Exercise 22.15, page 240
Internal problem ID [4136]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22.15, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y′′ − 3y′ + 2y − cos
(
e−x
)
= 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=cos(exp(-x)),y(x), singsol=all)� �

y(x) =
(
c1ex − ex − ex cos

(
e−x
)
+ c2

)
ex

3 Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 27� �
DSolve[y''[x]-3*y'[x]+2*y[x]==Cos[Exp[-x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
(
ex
(
− cos

(
e−x
)
+ c2

)
+ c1

)
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9.16 problem Exercise 22, problem 16, page 240
Internal problem ID [4137]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22, problem 16, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

x2y′′ − y′x+ y − x = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 20� �
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=x,y(x), singsol=all)� �

y(x) = c2x+ x ln (x) c1 +
ln (x)2 x

2

3 Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 25� �
DSolve[x^2*y''[x]-x*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2x
(
log2(x) + 2c2 log(x) + 2c1

)
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9.17 problem Exercise 22, problem 17, page 240
Internal problem ID [4138]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22, problem 17, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

y′′ − 2y′
x

+ 2y
x2 − ln (x)x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$2)-2/x*diff(y(x),x)+2/x^2*y(x)=x*ln(x),y(x), singsol=all)� �

y(x) = c1x+ c2x
2 + x3(2 ln (x)− 3)

4

3 Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 32� �
DSolve[y''[x]-2/x*y'[x]+2/x^2*y[x]==x*Log[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4x
(
−3x2 + 2x2 log(x) + 4c2x+ 4c1

)
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9.18 problem Exercise 22, problem 18, page 240
Internal problem ID [4139]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22, problem 18, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

x2y′′ + y′x− 4y − x3 = 0

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 20� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=x^3,y(x), singsol=all)� �

y(x) = c2
x2 + c1x

2 + x3

5

3 Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 25� �
DSolve[x^2*y''[x]+x*y'[x]-4*y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

5 + c2x
2 + c1

x2
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9.19 problem Exercise 22, problem 19, page 240
Internal problem ID [4140]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22, problem 19, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

x2y′′ + y′x− y − x2e−x = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 24� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=x^2*exp(-x),y(x), singsol=all)� �

y(x) = c1
x
+ c2x+ e−x(x+ 1)

x

3 Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 27� �
DSolve[x^2*y''[x]+x*y'[x]-y[x]==x^2*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x
2 + e−x(x+ 1) + c1

x
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9.20 problem Exercise 22, problem 20, page 240
Internal problem ID [4141]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number: Exercise 22, problem 20, page 240.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

2x2y′′ + 3y′x− y − 1
x
= 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 26� �
dsolve(2*x^2*diff(y(x),x$2)+3*x*diff(y(x),x)-y(x)=1/x,y(x), singsol=all)� �

y(x) = c1
x
+ c2

√
x− 3 ln (x) + 2

9x

3 Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 31� �
DSolve[2*x^2*y''[x]+3*x*y'[x]-y[x]==1/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 9c2x3/2 − 3 log(x)− 2 + 9c1
9x
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10.1 problem Exercise 35.1, page 504
Internal problem ID [4142]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.1, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

y′′ − 2yy′ = 0

3 Solution by Maple

Time used: 0.078 (sec). Leaf size: 16� �
dsolve(diff(y(x),x$2)=2*y(x)*diff(y(x),x),y(x), singsol=all)� �

y(x) =
tan

(
c2+x
c1

)
c1

3 Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 24� �
DSolve[y''[x]==2*y[x]*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → √
c1 tan (

√
c1(x+ c2))
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10.2 problem Exercise 35.2, page 504
Internal problem ID [4143]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.2, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

y3y′′ − k = 0

3 Solution by Maple

Time used: 0.141 (sec). Leaf size: 70� �
dsolve(y(x)^3*diff(y(x),x$2)=k,y(x), singsol=all)� �

y(x) =
√

c1 (c21c22 + 2c21c2x+ c21x
2 + k)

c1

y(x) = −
√
c1 (c21c22 + 2c21c2x+ c21x

2 + k)
c1

3 Solution by Mathematica

Time used: 0.986 (sec). Leaf size: 58� �
DSolve[y[x]^3*y''[x]==k,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
k + c12(x+ c2)2√

c1

y(x) →
√
k + c12(x+ c2)2√

c1
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10.3 problem Exercise 35.3, page 504
Internal problem ID [4144]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.3, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

yy′′ − y′
2 + 1 = 0

3 Solution by Maple

Time used: 0.14 (sec). Leaf size: 79� �
dsolve(y(x)*diff(y(x),x$2)=(diff(y(x),x))^2-1,y(x), singsol=all)� �

y(x) =
c1
(
e−

2c2
c1 e−

2x
c1 − 1

)
e

c2
c1 e

x
c1

2

y(x) =
c1
(
e

2c2
c1 e

2x
c1 − 1

)
e−

c2
c1 e−

x
c1

2

3 Solution by Mathematica

Time used: 0.197 (sec). Leaf size: 85� �
DSolve[y[x]*y''[x]==(y'[x])^2-1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ie−c1 tanh (ec1(x+ c2))√
−sech2 (ec1(x+ c2))

y(x) → ie−c1 tanh (ec1(x+ c2))√
−sech2 (ec1(x+ c2))
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10.4 problem Exercise 35.4, page 504
Internal problem ID [4145]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.4, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

x2y′′ + y′x− 1 = 0

3 Solution by Maple

Time used: 0.015 (sec). Leaf size: 16� �
dsolve(x^2*diff(y(x),x$2)+x*(diff(y(x),x))=1,y(x), singsol=all)� �

y(x) = ln (x)2

2 + c1 ln (x) + c2

3 Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 21� �
DSolve[x^2*y''[x]+x*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log2(x)
2 + c1 log(x) + c2
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10.5 problem Exercise 35.5, page 504
Internal problem ID [4146]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.5, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

xy′′ − y′ − x2 = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x$2)-diff(y(x),x)=x^2,y(x), singsol=all)� �

y(x) = 1
3x

3 + 1
2c1x

2 + c2

3 Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 23� �
DSolve[x*y''[x]-y'[x]==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6x

2(2x+ 3c1) + c2
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10.6 problem Exercise 35.6, page 504
Internal problem ID [4147]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.6, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

(1 + y) y′′ − 3y′2 = 0

3 Solution by Maple

Time used: 0.063 (sec). Leaf size: 59� �
dsolve((y(x)+1)*diff(y(x),x$2)=3*(diff(y(x),x))^2,y(x), singsol=all)� �

y(x) = −1

y(x) = −
√
−2c1x− 2c2 − 1√
−2c1x− 2c2

y(x) = −
√
−2c1x− 2c2 + 1√
−2c1x− 2c2

3 Solution by Mathematica

Time used: 0.092 (sec). Leaf size: 58� �
DSolve[(y[x]+1)*y''[x]==3*(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−2 +

√
2√

−c1(x+ c2)

)

y(x) → 1
2

(
−2−

√
2√

−c1(x+ c2)

)
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10.7 problem Exercise 35.7, page 504
Internal problem ID [4148]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.7, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

r′′ + k

r2
= 0

3 Solution by Maple

Time used: 0.062 (sec). Leaf size: 369� �
dsolve(diff(r(t),t$2)=-k/(r(t)^2),r(t), singsol=all)� �
r(t)

=
c1

(
c21k

2 − 2kc1eRootOf
(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21−2 csgn

(
1
c1

)
e_Zc2−2 csgn

(
1
c1

)
e_Zt

)
+ e2RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21−2 csgn

(
1
c1

)
e_Zc2−2 csgn

(
1
c1

)
e_Zt

))
e−RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21−2 csgn

(
1
c1

)
e_Zc2−2 csgn

(
1
c1

)
e_Zt

)

2
r(t)

=
c1

(
c21k

2 − 2kc1eRootOf
(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+2 csgn

(
1
c1

)
e_Zc2+2 csgn

(
1
c1

)
e_Zt

)
+ e2RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+2 csgn

(
1
c1

)
e_Zc2+2 csgn

(
1
c1

)
e_Zt

))
e−RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+2 csgn

(
1
c1

)
e_Zc2+2 csgn

(
1
c1

)
e_Zt

)

2

3 Solution by Mathematica

Time used: 0.165 (sec). Leaf size: 65� �
DSolve[r''[t]==-k/(r[t]^2),r[t],t,IncludeSingularSolutions -> True]� �

Solve


r(t)

√
2k
r(t) + c1

c1
−

2karctanh
(√

2k
r(t)+c1
√
c1

)
c13/2

 2 = (t+ c2)2, r(t)
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10.8 problem Exercise 35.8, page 504
Internal problem ID [4149]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.8, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

y′′ − 3ky2
2 = 0

3 Solution by Maple

Time used: 0.047 (sec). Leaf size: 15� �
dsolve(diff(y(x),x$2)=3/2*k*y(x)^2,y(x), singsol=all)� �

y(x) = 4WeierstrassP (x+ c1, 0, c2)
k

3 Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 36� �
DSolve[y''[x]==3/2*(k*y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
22/3℘

(
3√
k(x+c1)
22/3 ; 0, c2

)
3√
k
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10.9 problem Exercise 35.9, page 504
Internal problem ID [4150]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.9, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

y′′ − 2ky3 = 0

3 Solution by Maple

Time used: 0.032 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)=2*k*y(x)^3,y(x), singsol=all)� �

y(x) = c2 JacobiSN
((√

−k x+ c1
)
c2, i

)
3 Solution by Mathematica

Time used: 1.122 (sec). Leaf size: 115� �
DSolve[y''[x]==2*k*y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
isn
(
(−1)3/4

√√
k
√
c1(x+ c2)2

∣∣∣∣− 1
)

√
i
√
k√
c1

y(x) →
isn
(
(−1)3/4

√√
k
√
c1(x+ c2)2

∣∣∣∣− 1
)

√
i
√
k√
c1
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10.10 problem Exercise 35.10, page 504
Internal problem ID [4151]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.10, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

yy′′ + y′
2 − y′ = 0

3 Solution by Maple

Time used: 0.125 (sec). Leaf size: 37� �
dsolve(y(x)*diff(y(x),x$2)+(diff(y(x),x))^2-diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0

y(x) = −c1

(
LambertW

(
−e−1e−

c2
c1 e−

x
c1

c1

)
+ 1
)

3 Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 32� �
DSolve[y[x]*y''[x]+(y'[x])^2-y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −c1

(
1 +W

(
−e

−x+c1+c2
c1

c1

))
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10.11 problem Exercise 35.11, page 504
Internal problem ID [4152]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.11, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

r′′ − h2

r3
+ k

r2
= 0

3 Solution by Maple

Time used: 0.047 (sec). Leaf size: 441� �
dsolve(diff(r(t),t$2)= h^2/r(t)^3-k/r(t)^2,r(t), singsol=all)� �
r(t)

=
c1

(
c21k

2 − 2kc1eRootOf
(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+csgn

(
1
c1

)
c21h

2−2 csgn
(

1
c1

)
e_Zc2−2 csgn

(
1
c1

)
e_Zt

)
+ e2RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+csgn

(
1
c1

)
c21h

2−2 csgn
(

1
c1

)
e_Zc2−2 csgn

(
1
c1

)
e_Zt

)
+ h2

)
e−RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+csgn

(
1
c1

)
c21h

2−2 csgn
(

1
c1

)
e_Zc2−2 csgn

(
1
c1

)
e_Zt

)

2
r(t)

=
c1

(
c21k

2 − 2kc1eRootOf
(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+csgn

(
1
c1

)
c21h

2+2 csgn
(

1
c1

)
e_Zc2+2 csgn

(
1
c1

)
e_Zt

)
+ e2RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+csgn

(
1
c1

)
c21h

2+2 csgn
(

1
c1

)
e_Zc2+2 csgn

(
1
c1

)
e_Zt

)
+ h2

)
e−RootOf

(
csgn

(
1
c1

)
c41k

2+2_Z c31k e_Z−csgn
(

1
c1

)
e2_Zc21+csgn

(
1
c1

)
c21h

2+2 csgn
(

1
c1

)
e_Zc2+2 csgn

(
1
c1

)
e_Zt

)

2

3 Solution by Mathematica

Time used: 1.074 (sec). Leaf size: 130� �
DSolve[r''[t]==h^2/r[t]^3-k/r[t]^2,r[t],t,IncludeSingularSolutions -> True]� �

Solve


(√

c1(−h2 + r(t)(2k + c1r(t)))− k
√
−h2 + r(t)(2k + c1r(t))arctanh

(
k+c1r(t)√

c1
√

−h2+r(t)(2k+c1r(t))

))
2

c13r(t)2
(
− h2

r(t)2 +
2k
r(t) + c1

) =(t

+ c2)2, r(t)
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10.12 problem Exercise 35.12, page 504
Internal problem ID [4153]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.12, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

yy′′ + y′
3 − y′

2 = 0

3 Solution by Maple

Time used: 0.125 (sec). Leaf size: 44� �
dsolve(y(x)*diff(y(x),x$2)+(diff(y(x),x))^3-diff(y(x),x)^2=0,y(x), singsol=all)� �

y(x) = 0

y(x) = c1

y(x) = e−
c1 LambertW

 e
c2
c1 e

x
c1

c1

−c2−x

c1

3 Solution by Mathematica

Time used: 0.11 (sec). Leaf size: 29� �
DSolve[y[x]*y''[x]+(y'[x])^3-(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ec1W
(
ee

−c1 (x+c2)−c1
)
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10.13 problem Exercise 35.13, page 504
Internal problem ID [4154]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.13, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

yy′′ − 3y′2 = 0

3 Solution by Maple

Time used: 0.11 (sec). Leaf size: 33� �
dsolve(y(x)*diff(y(x),x$2)-3*(diff(y(x),x))^2=0,y(x), singsol=all)� �

y(x) = 0

y(x) = 1√
−2c1x− 2c2

y(x) = − 1√
−2c1x− 2c2

3 Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 14� �
DSolve[y[x]*y''[x]-(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2e
c1x
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10.14 problem Exercise 35.14, page 504
Internal problem ID [4155]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.14, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

(
x2 + 1

)
y′′ + y′

2 + 1 = 0

3 Solution by Maple

Time used: 0.047 (sec). Leaf size: 29� �
dsolve((1+x^2)*diff(y(x),x$2)+(diff(y(x),x))^2+1=0,y(x), singsol=all)� �

y(x) = x

c1
− (−c21 − 1) ln (c1x− 1)

c21
+ c2

3 Solution by Mathematica

Time used: 7.102 (sec). Leaf size: 33� �
DSolve[(1+x^2)*y''[x]+(y'[x])^2+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x cot(c1) + csc2(c1) log(−x sin(c1)− cos(c1)) + c2
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10.15 problem Exercise 35.15, page 504
Internal problem ID [4156]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.15, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

(
x2 + 1

)
y′′ + 2x(y′ + 1) = 0

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 15� �
dsolve((1+x^2)*diff(y(x),x$2)+2*x*(diff(y(x),x)+1)=0,y(x), singsol=all)� �

y(x) = −x+ (c1 + 1) arctan (x) + c2

3 Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 18� �
DSolve[(1+x^2)*y''[x]+2*x*(y'[x]+1)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (1 + c1) arctan(x)− x+ c2
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10.16 problem Exercise 35.16, page 504
Internal problem ID [4157]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.16, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

(1 + y) y′′ − 3y′2 = 0

With initial conditions [
y(1) = 0, y′(1) = −1

2

]

3 Solution by Maple

Time used: 0.375 (sec). Leaf size: 15� �
dsolve([(y(x)+1)*diff(y(x),x$2)=3*(diff(y(x),x))^2,y(1) = 0, D(y)(1) = -1/2],y(x), singsol=all)� �

y(x) = −x+
√
x

x

7 Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{(y[x]+1)*y''[x]==3*(y'[x])^3,{y[1]==0,y'[0]==-1/2}},y[x],x,IncludeSingularSolutions -> True]� �
{}
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10.17 problem Exercise 35.17, page 504
Internal problem ID [4158]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.17, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

y′′ − y′ey = 0

With initial conditions

[y(3) = 0, y′(3) = 1]

3 Solution by Maple

Time used: 0.078 (sec). Leaf size: 12� �
dsolve([diff(y(x),x$2)=diff(y(x),x)*exp(y(x)),y(3) = 0, D(y)(3) = 1],y(x), singsol=all)� �

y(x) = − ln (−x+ 4)

7 Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{y''[x]==y'[x]*Exp[y[x]],{y[3]==0,y'[3]==1}},y[x],x,IncludeSingularSolutions -> True]� �
{}
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10.18 problem Exercise 35.18, page 504
Internal problem ID [4159]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.18, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

y′′ − 2yy′ = 0

With initial conditions

[y(0) = 1, y′(0) = 2]

3 Solution by Maple

Time used: 0.109 (sec). Leaf size: 10� �
dsolve([diff(y(x),x$2)=2*y(x)*diff(y(x),x),y(0) = 1, D(y)(0) = 2],y(x), singsol=all)� �

y(x) = tan
(
x+ π

4

)
7 Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{y''[x]==2*y[x]*y'[x],{y[0]==1,y'[0]==2}},y[x],x,IncludeSingularSolutions -> True]� �
{}
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10.19 problem Exercise 35.19, page 504
Internal problem ID [4160]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.19, page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2y′′ − ey = 0

With initial conditions

[y(0) = 0, y′(0) = 1]

3 Solution by Maple

Time used: 0.062 (sec). Leaf size: 15� �
dsolve([2*diff(y(x),x$2)=exp(y(x)),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)� �

y(x) = 2 ln (2) + ln
(

1
(x− 2)2

)
3 Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 15� �
DSolve[{2*y''[x]==Exp[y[x]],{y[0]==0,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2 log
(
1− x

2

)
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10.20 problem Exercise 35.20, page 504
Internal problem ID [4161]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.20, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

x2y′′ + y′x− 1 = 0

With initial conditions

[y(1) = 1, y′(1) = 2]

3 Solution by Maple

Time used: 0.0 (sec). Leaf size: 16� �
dsolve([x^2*diff(y(x),x$2)+x*diff(y(x),x)=1,y(1) = 1, D(y)(1) = 2],y(x), singsol=all)� �

y(x) = ln (x)2

2 + 2 ln (x) + 1

3 Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 17� �
DSolve[{x^2*y''[x]+x*y'[x]==1,{y[1]==1,y'[1]==2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2 log(x)(log(x) + 4) + 1
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10.21 problem Exercise 35.21, page 504
Internal problem ID [4162]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.21, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

xy′′ − y′ − x2 = 0

With initial conditions

[y(1) = 0, y′(1) = −1]

3 Solution by Maple

Time used: 0.016 (sec). Leaf size: 16� �
dsolve([x*diff(y(x),x$2)-diff(y(x),x)=x^2,y(1) = 0, D(y)(1) = -1],y(x), singsol=all)� �

y(x) = 1
3x

3 − x2 + 2
3

3 Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 18� �
DSolve[{x*y''[x]-y'[x]==x^2,{y[1]==0,y'[1]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3
(
(x− 3)x2 + 2

)
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10.22 problem Exercise 35.23(a), page 504
Internal problem ID [4163]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(a), page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

xyy′′ − 2xy′2 + yy′ = 0

3 Solution by Maple

Time used: 0.125 (sec). Leaf size: 18� �
dsolve(x*y(x)*diff(y(x),x$2)-2*x*(diff(y(x),x))^2+y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0

y(x) = − 1
c1 ln (x) + c2

3 Solution by Mathematica

Time used: 0.119 (sec). Leaf size: 17� �
DSolve[x*y[x]*y''[x]-2*x*(y'[x])^2+y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2
− log(x) + c1
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10.23 problem Exercise 35.23(b), page 504
Internal problem ID [4164]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(b), page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

xyy′′ + xy′
2 − yy′ = 0

3 Solution by Maple

Time used: 0.11 (sec). Leaf size: 35� �
dsolve(x*y(x)*diff(y(x),x$2)+x*(diff(y(x),x))^2-y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0

y(x) =
√

c1x2 + 2c2

y(x) = −
√
c1x2 + 2c2

3 Solution by Mathematica

Time used: 0.097 (sec). Leaf size: 18� �
DSolve[x*y[x]*y''[x]+x*(y'[x])^2-y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2
√

x2 + c1
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10.24 problem Exercise 35.23(c), page 504
Internal problem ID [4165]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(c), page 504.
ODE order: 2.
ODE degree: 1.

CASMaple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

xyy′′ − 2xy′2 + (1 + y) y′ = 0

3 Solution by Maple

Time used: 0.204 (sec). Leaf size: 22� �
dsolve(x*y(x)*diff(y(x),x$2)-2*x*(diff(y(x),x))^2+(1+y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0

y(x) = c1 tanh
(
ln (x)− c2

2c1

)
3 Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 37� �
DSolve[x*y[x]*y''[x]-2*x*(y'[x])^2+(1+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
tan

(√
c1(log(x)−c2)√

2

)
√
2√c1
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