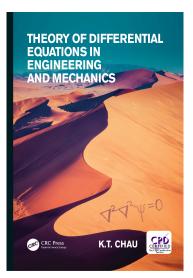
A Solution Manual For

THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018



Nasser M. Abbasi

October 12, 2023

Contents

1	Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page 114	2
2	Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE. Page 147	23
3	Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page 181	32
4	Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page 218	51
5	Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems, Page 360	79

1	Chapter 3. Ordinary Differential Equations.
	Section 3.2 FIRST ORDER ODE. Page 114
1.1	problem Example 3.1
1.2	problem Example 3.2
1.3	problem Example 3.3
1.4	problem Example 3.4
1.5	problem Example 3.5
1.6	problem Example 3.6
1.7	problem Example 3.7
1.8	problem Example 3.8
1.9	problem Example 3.9
1.10	problem Example 3.10
1.11	problem Example 3.11
1.12	problem Example 3.12
1.13	problem Example 3.14
1.14	problem Example 3.15
1.15	problem Example 3.16

1.1 problem Example 3.1

Internal problem ID [5080]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - x^2 \left(1 + y^2\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(x),x)=x^2*(y(x)^2+1),y(x), singsol=all)$

$$y(x) = \tan\left(\frac{x^3}{3} + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.179 (sec). Leaf size: 30

DSolve[y'[x]== $x^2*(y[x]^2+1),y[x],x$,IncludeSingularSolutions -> True]

$$y(x) \to \tan\left(\frac{x^3}{3} + c_1\right)$$

 $y(x) \to -i$
 $y(x) \to i$

1.2 problem Example 3.2

Internal problem ID [5081]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{x^2}{1 - y^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 357

 $dsolve(diff(y(x),x)=x^2/(1-y(x)^2),y(x), singsol=all)$

$$\begin{split} y(x) &= \frac{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}} \\ y(x) &= -\frac{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}{4} \\ &- \frac{1}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &- \frac{i\sqrt{3}\left(\frac{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}{2} - \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}\right)} \\ y(x) &= -\frac{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}{4} \\ &- \frac{1}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}{2} - \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}}\right)} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3 + 9c_1^2 - 4}\right)^{\frac{1}{3}}}} \\ &+ \frac{2}{\left(-4x^3 - 12c_1 + 4\sqrt{x^6 + 6c_1x^3$$

✓ Solution by Mathematica

Time used: 2.399 (sec). Leaf size: 320

DSolve[y'[x]== $x^2/(1-y[x]^2)$,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) & \to \frac{\sqrt[3]{-x^3 + \sqrt{x^6 - 6c_1x^3 - 4 + 9c_1^2} + 3c_1}}{\sqrt[3]{2}} + \frac{\sqrt[3]{2}}{\sqrt[3]{-x^3 + \sqrt{x^6 - 6c_1x^3 - 4 + 9c_1^2} + 3c_1}} \\ y(x) & \to \frac{i(\sqrt{3} + i)\sqrt[3]{-x^3 + \sqrt{x^6 - 6c_1x^3 - 4 + 9c_1^2} + 3c_1}}{2\sqrt[3]{2}} \\ & - \frac{1 + i\sqrt{3}}{2^{2/3}\sqrt[3]{-x^3 + \sqrt{x^6 - 6c_1x^3 - 4 + 9c_1^2} + 3c_1}} \\ y(x) & \to \frac{i(\sqrt{3} + i)}{2^{2/3}\sqrt[3]{-x^3 + \sqrt{x^6 - 6c_1x^3 - 4 + 9c_1^2} + 3c_1}} \\ & - \frac{(1 + i\sqrt{3})\sqrt[3]{-x^3 + \sqrt{x^6 - 6c_1x^3 - 4 + 9c_1^2} + 3c_1}}{2\sqrt[3]{2}} \end{split}$$

1.3 problem Example 3.3

Internal problem ID [5082]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{3x^2 + 4x + 2}{2y - 2} = 0$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

 $\label{eq:decomposition} $$ $ dsolve([diff(y(x),x)=(3*x^2+4*x+2)/(2*(y(x)-1)),y(0) = -1],y(x), $$ singsol=all) $$ $ $ dsolve([diff(y(x),x)=(3*x^2+4*x+2)/(2*(y(x)-1)),y(0) = -1],y(x), $$ $$ $ dsolve([diff(y(x),x)=(3*x^2+4*x+2)/(2*(y(x)-1)),y(0) = -1],y(x), $$ $ dsolve([diff(y(x),x)=(3*x^2+4*x+2)/(2*(y(x)-2*x+2)),y(0), $$ $ dsolve([diff(y(x),x)=(3*x^2+4*x+2)/(2*(x)-2*x+2)),y(0), $$ $ dsolve([diff(x),x)=(3*x^2+4*x+2)/(2*(x)-2*x+2),y(0), $$ $ dsolve([diff(x),x)=(3*x^2+4*x+2)/(2*x+2),y(0), $$ $ dsolve([diff(x),x)=(3*x^2+4*x+2)/(2*x+2),y(0), $$ $ dsolve([diff(x),x)=(3*x^2+4*x+2)/(2*x^2+4*x+2)/(2*x^2+4*x+2)/(2*x^2+4*x+2)/(2*x^2+4*x+2)/(2*x^2+4*x+2)/(2*x^2+4*x+2)/(2*x^2+4*x+2)/(2*x^$

$$y(x) = 1 - \sqrt{(x+2)(x^2+2)}$$

✓ Solution by Mathematica

Time used: 0.128 (sec). Leaf size: 22

 $DSolve[\{y'[x] == (3*x^2+4*x+2)/(2*(y[x]-1)), \{y[0] == -1\}\}, y[x], x, IncludeSingularSolutions \rightarrow True$

$$y(x) \to 1 - \sqrt{(x+2)(x^2+2)}$$

1.4 problem Example 3.4

Internal problem ID [5083]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'x - 2\sqrt{xy} - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(x*diff(y(x),x)-2*sqrt(x*y(x))=y(x),y(x), singsol=all)

$$-\frac{y(x)}{\sqrt{y(x) x}} + \ln(x) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.174 (sec). Leaf size: 19

DSolve[x*y'[x]-2*Sqrt[x*y[x]]==y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}x(2\log(x) + c_1)^2$$

1.5 problem Example 3.5

Internal problem ID [5084]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'class C']

$$y' - \frac{y + x - 1}{x - y + 3} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 31

dsolve(diff(y(x),x)=(x+y(x)-1)/(x-y(x)+3),y(x), singsol=all)

$$y(x) = 2 - \tan\left(\text{RootOf}\left(2_Z + \ln\left(\frac{1}{\cos\left(_Z\right)^2}\right) + 2\ln(x+1) + 2c_1\right)\right)(x+1)$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 59

 $DSolve[y'[x] == (x+y[x]-1)/(x-y[x]+3), y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[2 \arctan \left(1 - \frac{2(x+1)}{-y(x) + x + 3} \right) + \log \left(\frac{x^2 + y(x)^2 - 4y(x) + 2x + 5}{2(x+1)^2} \right) + 2 \log(x+1) + c_1 = 0, y(x) \right]$$

1.6 problem Example 3.6

Internal problem ID [5085]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$e^{x} + y + (x - 2\sin(y))y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve((exp(x)+y(x))+(x-2*sin(y(x)))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) x + e^x + 2\cos(y(x)) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.236 (sec). Leaf size: 19

 $DSolve[(Exp[x]+y[x])+(x-2*Sin[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$[xy(x) + 2\cos(y(x)) + e^x = c_1, y(x)]$$

1.7 problem Example 3.7

Internal problem ID [5086]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$3x + \frac{6}{y} + \left(\frac{x^2}{y} + \frac{3y}{x}\right)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 430

 $dsolve((3*x+6/y(x))+(x^2/y(x)+3*y(x)/x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\left(-324x^2 - 108c_1 + 12\sqrt{12x^9 + 729x^4 + 486c_1x^2 + 81c_1^2}\right)^{\frac{1}{3}}}{6} - \frac{2x^3}{\left(-324x^2 - 108c_1 + 12\sqrt{12x^9 + 729x^4 + 486c_1x^2 + 81c_1^2}\right)^{\frac{1}{3}}}}{12}$$

$$y(x) = -\frac{\left(-324x^2 - 108c_1 + 12\sqrt{12x^9 + 729x^4 + 486c_1x^2 + 81c_1^2}\right)^{\frac{1}{3}}}{12} + \frac{2x^3}{\left(-324x^2 - 108c_1 + 12\sqrt{12x^9 + 729x^4 + 486c_1x^2 + 81c_1^2}\right)^{\frac{1}{3}}}}$$

$$-\frac{i\sqrt{3}\left(\frac{\left(-324x^2 - 108c_1 + 12\sqrt{12x^9 + 729x^4 + 486c_1x^2 + 81c_1^2}\right)^{\frac{1}{3}}}{6} + \frac{2x^3}{\left(-324x^2 - 108c_1 + 12\sqrt{12x^9 + 729x^4 + 486c_1x^2 + 81c_1^2}\right)^{\frac{1}{3}}}}\right)}{2}$$

$$y(x) = -\frac{\left(-324x^2 - 108c_1 + 12\sqrt{12x^9 + 729x^4 + 486c_1x^2 + 81c_1^2}\right)^{\frac{1}{3}}}{12} + \frac{2x^3}{\left(-324x^2 - 108c_1 + 12\sqrt{12x^9 + 729x^4 + 486c_1x^2 + 81c_1^2}\right)^{\frac{1}{3}}}}$$

$$i\sqrt{3}\left(\frac{\left(-324x^2 - 108c_1 + 12\sqrt{12x^9 + 729x^4 + 486c_1x^2 + 81c_1^2}\right)^{\frac{1}{3}}}{6} + \frac{2x^3}{\left(-324x^2 - 108c_1 + 12\sqrt{12x^9 + 729x^4 + 486c_1x^2 + 81c_1^2}\right)^{\frac{1}{3}}}}$$

$$+ \frac{1\sqrt{3}\left(\frac{\left(-324x^2 - 108c_1 + 12\sqrt{12x^9 + 729x^4 + 486c_1x^2 + 81c_1^2}\right)^{\frac{1}{3}}}{6} + \frac{2x^3}{\left(-324x^2 - 108c_1 + 12\sqrt{12x^9 + 729x^4 + 486c_1x^2 + 81c_1^2}\right)^{\frac{1}{3}}}}$$

✓ Solution by Mathematica

Time used: 4.479 (sec). Leaf size: 331

 $DSolve[(3*x+6/y[x])+(x^2/y[x]+3*y[x]/x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{\sqrt[3]{-81x^2 + \sqrt{108x^9 + 729(-3x^2 + c_1)^2} + 27c_1}}{3\sqrt[3]{2}x^3} - \frac{\sqrt[3]{2}x^3}{\sqrt[3]{-81x^2 + \sqrt{108x^9 + 729(-3x^2 + c_1)^2} + 27c_1}}$$

$$y(x) \rightarrow \frac{(-1 + i\sqrt{3})\sqrt[3]{-81x^2 + \sqrt{108x^9 + 729(-3x^2 + c_1)^2} + 27c_1}}{6\sqrt[3]{2}} + \frac{(1 + i\sqrt{3})x^3}{2^{2/3}\sqrt[3]{-81x^2 + \sqrt{108x^9 + 729(-3x^2 + c_1)^2} + 27c_1}}}{(1 - i\sqrt{3})x^3}$$

$$y(x) \rightarrow \frac{(1 - i\sqrt{3})x^3}{2^{2/3}\sqrt[3]{-81x^2 + \sqrt{108x^9 + 729(-3x^2 + c_1)^2} + 27c_1}} - \frac{(1 + i\sqrt{3})\sqrt[3]{-81x^2 + \sqrt{108x^9 + 729(-3x^2 + c_1)^2} + 27c_1}}{6\sqrt[3]{2}}$$

1.8 problem Example 3.8

Internal problem ID [5087]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 - xy + x^2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve((y(x)^2-x*y(x))+x^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x}{\ln(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.147 (sec). Leaf size: 19

 $DSolve[(y[x]^2-x*y[x])+x^2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x}{\log(x) + c_1}$$

$$y(x) \to 0$$

1.9 problem Example 3.9

Internal problem ID [5088]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$x + y - (-y + x)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve((x+y(x))-(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \tan \left(\operatorname{RootOf} \left(-2 Z + \ln \left(\frac{1}{\cos \left(Z \right)^2} \right) + 2 \ln \left(x \right) + 2 c_1 \right) \right) x$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 36

DSolve[(x+y[x])-(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\frac{1}{2}\log\left(\frac{y(x)^2}{x^2}+1\right) - \arctan\left(\frac{y(x)}{x}\right) = -\log(x) + c_1, y(x)\right]$$

1.10 problem Example 3.10

Internal problem ID [5089]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y' - \frac{y}{2x} - \frac{x^2}{2y} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

 $dsolve(diff(y(x),x)=y(x)/(2*x)+x^2/(2*y(x)),y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{2x^3 + 4c_1x}}{2}$$
$$y(x) = \frac{\sqrt{2x^3 + 4c_1x}}{2}$$

✓ Solution by Mathematica

Time used: 0.197 (sec). Leaf size: 56

DSolve[y'[x]==y[x]/(2*x)+x^2/(2*y[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sqrt{x}\sqrt{x^2 + 2c_1}}{\sqrt{2}}$$

$$y(x) o rac{\sqrt{x}\sqrt{x^2 + 2c_1}}{\sqrt{2}}$$

1.11 problem Example 3.11

Internal problem ID [5090]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + \frac{2}{t} - \frac{y}{t} - \frac{y^2}{t} = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 23

 $\label{eq:diff} $$ dsolve(diff(y(t),t)=-2/t+1/t*y(t)+1/t*y(t)^2,y(t), singsol=all)$$

$$y(t) = -\frac{2c_1t^3 + 1}{c_1t^3 - 1}$$

✓ Solution by Mathematica

Time used: 1.269 (sec). Leaf size: 43

DSolve[y'[t]==-2/t+1/t*y[t]+1/t*y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1 - 2e^{3c_1}t^3}{1 + e^{3c_1}t^3}$$

$$y(t) \rightarrow -2$$

$$y(t) \to 1$$

1.12 problem Example 3.12

Internal problem ID [5091]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, _Riccati]

$$y' + \frac{y}{t} + 1 + y^2 = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 36

 $dsolve(diff(y(t),t)=-y(t)/t-1-y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{2 \operatorname{BesselK}(1, it) c_1 - \operatorname{BesselJ}(1, t)}{2i \operatorname{BesselK}(0, it) c_1 + \operatorname{BesselJ}(0, t)}$$

✓ Solution by Mathematica

Time used: 0.185 (sec). Leaf size: 43

DSolve[y'[t]==-y[t]/t-1-y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\frac{Y_1(t) + c_1 \operatorname{BesselJ}(1, t)}{Y_0(t) + c_1 \operatorname{BesselJ}(0, t)}$$
BesselJ(1, t)

$$y(t) \rightarrow -\frac{\text{BesselJ}(1,t)}{\text{BesselJ}(0,t)}$$

1.13 problem Example 3.14

Internal problem ID [5092]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.14.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_dAlembert]

$$x + yy' - ay'^2 = 0$$

/

Solution by Maple

Time used: 0.063 (sec). Leaf size: 264

 $dsolve(x+y(x)*diff(y(x),x)=a*(diff(y(x),x))^2,y(x), singsol=all)$

$$\frac{c_{1}\left(y(x) + \sqrt{4ax + y\left(x\right)^{2}}\right)}{\sqrt{\frac{y(x)\sqrt{4ax + y(x)^{2} + 2a^{2} + 2ax + y(x)^{2}}}{a^{2}}}} + x$$

$$-\frac{\sqrt{2}\left(y(x) + \sqrt{4ax + y\left(x\right)^{2}}\right) \operatorname{arcsinh}\left(\frac{y(x) + \sqrt{4ax + y(x)^{2}}}{2a}\right)}{2\sqrt{\frac{y(x)\sqrt{4ax + y(x)^{2} + 2a^{2} + 2ax + y(x)^{2}}}{a^{2}}}} = 0$$

$$\frac{c_{1}\left(-y(x) + \sqrt{4ax + y\left(x\right)^{2}}\right)}{\sqrt{-\frac{2\left(y(x)\sqrt{4ax + y(x)^{2} - 2a^{2} - 2ax - y(x)^{2}}\right)}{a^{2}}}} + x$$

$$-\frac{\left(-y(x) + \sqrt{4ax + y\left(x\right)^{2}}\right) \operatorname{arcsinh}\left(\frac{-y(x) + \sqrt{4ax + y(x)^{2}}}{2a}\right)}{\sqrt{-\frac{2\left(y(x)\sqrt{4ax + y(x)^{2} - 2a^{2} - 2ax - y(x)^{2}}\right)}{a^{2}}}} = 0$$

✓ Solution by Mathematica

Time used: 1.307 (sec). Leaf size: 71

 $DSolve[x+y[x]*y'[x] == a*(y'[x])^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$\begin{aligned} & \text{Solve} \left[\left\{ x = -\frac{aK[1]\log\left(\sqrt{K[1]^2 + 1} - K[1]\right)}{\sqrt{K[1]^2 + 1}} \right. \\ & + \frac{c_1K[1]}{\sqrt{K[1]^2 + 1}}, y(x) = aK[1] - \frac{x}{K[1]} \right\}, \left\{ y(x), K[1] \right\} \right] \end{aligned}$$

1.14 problem Example 3.15

Internal problem ID [5093]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.15.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 - y^2 a^2 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(x),x)^2-a^2*y(x)^2=0,y(x), singsol=all)$

$$y(x) = c_1 e^{ax}$$

$$y(x) = c_1 e^{ax}$$
$$y(x) = c_1 e^{-ax}$$

Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 31

DSolve[(y'[x])^2-a^2*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-ax}$$

$$y(x) \to c_1 e^{ax}$$

$$y(x) \to 0$$

1.15 problem Example 3.16

Internal problem ID [5094]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page

114

Problem number: Example 3.16.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 - 4x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)^2=4*x^2,y(x), singsol=all)$

$$y(x) = x^2 + c_1$$

$$y(x) = -x^2 + c_1$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 23

DSolve[(y'[x])^2==4*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x^2 + c_1$$

$$y(x) \rightarrow x^2 + c_1$$

2	Chapter 3. Ordinary Differential Equations.														
	Section 3.3 SECOND ORDER ODE. Page 147														
2.1	problem Example 3.17	4													
2.2	problem Example 3.18	5													
2.3	problem Example 3.19 $\dots \dots \dots$	6													
2.4	$ problem \ Example \ 3.21 \ \dots $	7													
2.5	$ problem \ Example \ 3.22 \ \dots \dots$	8													
2.6	problem Example 3.23	9													
2.7	problem Example 3.24	0													
2.8	problem Example 3.26	1													

2.1 problem Example 3.17

Internal problem ID [5095]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE. Page

147

Problem number: Example 3.17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' - 3y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{3x} + c_2 e^{-x}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

 $DSolve[y''[x]-2*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x} \left(c_2 e^{4x} + c_1 \right)$$

2.2 problem Example 3.18

Internal problem ID [5096]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE. Page

147

Problem number: Example 3.18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$s'' + 2s' + s = 0$$

With initial conditions

$$[s(0) = 4, s'(0) = -2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

dsolve([diff(s(t),t\$2)+2*diff(s(t),t)+s(t)=0,s(0) = 4, D(s)(0) = -2],s(t), singsol=all)

$$s(t) = 2e^{-t}(t+2)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 15

DSolve[{s''[t]+2*s'[t]+s[t]==0,{s[0]==4,s'[0]==-2}},s[t],t,IncludeSingularSolutions -> True]

$$s(t) \to 2e^{-t}(t+2)$$

2.3 problem Example 3.19

Internal problem ID [5097]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE. Page

147

Problem number: Example 3.19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 5y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x \sin(2x) + c_2 e^x \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 24

DSolve[y''[x]-2*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(c_2\cos(2x) + c_1\sin(2x))$$

2.4 problem Example 3.21

Internal problem ID [5098]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE. Page

147

Problem number: Example 3.21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' - 3y - 1 - 3x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-3*y(x)=3*x+1,y(x), singsol=all)

$$y(x) = e^{3x}c_2 + e^{-x}c_1 - x + \frac{1}{3}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

 $DSolve[y''[x]-2*y'[x]-3*y[x]==3*x+1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x + c_1 e^{-x} + c_2 e^{3x} + \frac{1}{3}$$

2.5 problem Example 3.22

Internal problem ID [5099]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE. Page

147

Problem number: Example 3.22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3y' + 2y - e^{2x}x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=x*exp(2*x),y(x), singsol=all)

$$y(x) = \left(\frac{e^x x^2}{2} - e^x x + e^x + e^x c_1 + c_2\right) e^x$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 33

 $DSolve[y''[x]-3*y'[x]+2*y[x] == x*Exp[2*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}e^x (e^x (x^2 - 2x + 2 + 2c_2) + 2c_1)$$

2.6 problem Example 3.23

Internal problem ID [5100]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE. Page

147

Problem number: Example 3.23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y - 4\sin(x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+y(x)=4*sin(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + \cos(x) c_1 + 2\sin(x) - 2\cos(x) x$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 20

DSolve[y''[x]+y[x]==4*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (-2x + c_1)\cos(x) + c_2\sin(x)$$

2.7 problem Example 3.24

Internal problem ID [5101]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE. Page

147

Problem number: Example 3.24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2x^{2}y' + (x^{4} + 2x - 1)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(diff(y(x),x$2)+2*x^2*diff(y(x),x)+(x^4+2*x-1)*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 e^{-\frac{x(x^2-3)}{3}} + c_2 e^{-\frac{x(x^2+3)}{3}}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 34

 $DSolve[y''[x]+2*x^2*y'[x]+(x^4+2*x-1)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}e^{-\frac{1}{3}x(x^2+3)}(c_2e^{2x}+2c_1)$$

2.8 problem Example 3.26

Internal problem ID [5102]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE. Page

147

Problem number: Example 3.26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$p x^2 u'' + qxu' + ru - f(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 222

 $dsolve(p*x^2*diff(u(x),x$2)+q*x*diff(u(x),x)+r*u(x)=f(x),u(x), singsol=all)$

$$u(x) = x^{\frac{-q+p+\sqrt{p^2-2qp-4rp+q^2}}{2p}} c_2 + x^{-\frac{q-p+\sqrt{p^2-2qp-4rp+q^2}}{2p}} c_1 \\ -x^{-\frac{q-p+\sqrt{p^2+(-2q-4r)p+q^2}}{2p}} \left(\int x^{\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}}{2p}} \left(\int x^{-\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}}{2p}} \left(\int x^{-\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}}{2p}} \left(\int x^{-\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} \left(\int x^{-\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} \left(\int x^{-\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} \left(\int x^{-\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} \left(\int x^{-\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} \left(\int x^{-\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} \left(\int x^{-\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} \left(\int x^{-\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} \left(\int x^{-\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} \left(\int x^{-\frac{\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} f(x) \, dx \right) + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}}{2p}} f(x) \, dx + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}} f(x) \, dx + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q^2}-3p+q}} f(x) \, dx + x^{\frac{-q+p+\sqrt{p^2+q-2q-q}-3p+q}}{2p} f(x) \, dx + x^{\frac{-q+p+\sqrt{p^2+(-2q-4r)p+q}-3p+q}} f(x) \, dx + x^{\frac{-q+p+\sqrt{p^2+q-2q-q}-3p+q}} f(x) \, dx + x^{\frac{-q+p+\sqrt{p^2+q-2q-q}-3p+q}}{2p} f(x) \, dx + x^{\frac{-q+p+\sqrt{p^2+q-2q-q}-3p+q}}{2p} f(x) \, dx + x^{\frac{-q+p+\sqrt{p^2+q-2q-q}-3p+q$$

✓ Solution by Mathematica

Time used: 0.65 (sec). Leaf size: 267

DSolve[p*x^2*u''[x]+q*x*u'[x]+r*u[x]==f[x],u[x],x,IncludeSingularSolutions -> True]

$$u(x) \to x^{-\frac{\sqrt{p}\sqrt{r}\sqrt{\frac{(p-q)^2}{pr}} - 4 - p + q}{2p}} \left(x^{\frac{\sqrt{r}\sqrt{\frac{(p-q)^2}{pr}} - 4}{\sqrt{p}}} \left(\int_1^x \frac{f(K[2])K[2]^{\frac{-3p - \sqrt{\frac{(p-q)^2}{pr}} - 4}\sqrt{r}\sqrt{p} + q}{\sqrt{p}\sqrt{\frac{(p-q)^2}{pr}} - 4\sqrt{r}}} dK[2] + c_2 \right) + \int_1^x -\frac{f(K[1])K[1]^{\frac{-3p + \sqrt{\frac{(p-q)^2}{pr}} - 4}\sqrt{r}\sqrt{p} + q}}{\sqrt{p}\sqrt{\frac{(p-q)^2}{pr}} - 4\sqrt{r}}} dK[1] + c_1 \right)$$

3	Chapter 3. Or	di	na	ar	\mathbf{y}	L)i	H	eı	e:	n	ti	\mathbf{a}	L.	E	\mathbf{q}	u	at	ti	0	n	S	,			
	Section 3.5 H	[G]	H	\mathbf{E}	\mathbf{R}		0	R	\mathbf{L}	E	CI	R	() [)	E	•	P	a	g	\mathbf{e}	1	L 8	31	L	
3.1	problem Example 3.29																									33
3.2	problem Example 3.30																									 34
3.3	problem Example 3.32																									35
3.4	problem Example 3.33																									36
3.5	problem Example 3.34																									 37
3.6	problem Example 3.35																									38
3.7	problem Example 3.36																									39
3.8	problem Example 3.37																									40
3.9	problem Example 3.38																									 41
3.10	problem Example 3.39																									42
3.11	problem Example 3.40																									43
3.12	problem Example 3.41																									 44
3.13	problem Example 3.42																									45
3.14	problem Example 3.43																									46
3.15	problem Example 3.44																									 47
3.16	problem Example 3.45																									48
3.17	problem Example 3.46																									49
3.18	problem Example 3.47																									50

3.1 problem Example 3.29

Internal problem ID [5103]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$\sin(x) u'' + 2\cos(x) u' + \sin(x) u = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(sin(x)*diff(u(x),x\$2)+2*cos(x)*diff(u(x),x)+sin(x)*u(x)=0,u(x), singsol=all)

$$u(x) = c_1 \csc(x) \sin(\sqrt{2}x) + c_2 \csc(x) \cos(\sqrt{2}x)$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 51

DSolve[Sin[x]*u''[x]+2*Cos[x]*u'[x]+Sin[x]*u[x]==0,u[x],x,IncludeSingularSolutions -> True]

$$u(x) \rightarrow \frac{1}{4}e^{-i\sqrt{2}x} \left(4c_1 - i\sqrt{2}c_2e^{2i\sqrt{2}x}\right)\csc(x)$$

3.2 problem Example 3.30

Internal problem ID [5104]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.30.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order
Solve

$$3(y'')^{2} - y'y''' - y''(y')^{2} = 0$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 42

$$y(x) = c_1$$

$$y(x) = \frac{\operatorname{LambertW}\left(-\frac{\mathrm{e}^{\frac{c_3}{c_1}}\mathrm{e}^{\frac{x}{c_1}}}{c_2c_1}\right)c_1 - c_3 - x}{c_1}$$

✓ Solution by Mathematica

Time used: 0.156 (sec). Leaf size: 79

DSolve[3*(y''[x])^2-y'[x]*y'''[x]-y''[x]*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True

$$\begin{split} y(x) &\to \log \left(\text{InverseFunction} \left[-\frac{1}{\#1} - c_1 \log(\#1) + c_1 \log(1 + \#1c_1) \& \right] [x + c_2] \right) \\ &- \log \left(1 + c_1 \text{InverseFunction} \left[-\frac{1}{\#1} - c_1 \log(\#1) + c_1 \log(1 + \#1c_1) \& \right] [x + c_2] \right) + c_3 \end{split}$$

3.3 problem Example 3.32

Internal problem ID [5105]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer, [_2nd_order, _linear, '_with_symmetry_[0,F(x)]']]

$$y'' - \frac{xy'}{-x^2 + 1} + \frac{y}{-x^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $\label{eq:diff} $$ $$ dsolve(diff(y(x),x$2)-x/(1-x^2)*diff(y(x),x)+y(x)/(1-x^2)=0,y(x), singsol=all)$$

$$y(x) = c_1 x + c_2 \sqrt{x-1} \sqrt{x+1}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 93

 $DSolve[y''[x]-x/(1-x^2)*y'[x]+y[x]/(1-x^2)==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \cosh\left(\frac{2\sqrt{1-x^2}\cot^{-1}\left(\frac{x+1}{\sqrt{1-x^2}}\right)}{\sqrt{x^2-1}}\right) - ic_2 \sinh\left(\frac{2\sqrt{1-x^2}\cot^{-1}\left(\frac{x+1}{\sqrt{1-x^2}}\right)}{\sqrt{x^2-1}}\right)$$

3.4 problem Example 3.33

Internal problem ID [5106]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible

$$x^2yy'' - x^2{y'}^2 + y^2 = 0$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 19

 $dsolve(x^2*y(x)*diff(y(x),x$2)=x^2*(diff(y(x),x))^2-y(x)^2,y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = e^{-c_1 x} c_2 e x$$

✓ Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 15

 $DSolve[x^2*y[x]*y''[x] == x^2*(y'[x])^2-y[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_2 x e^{c_1 x}$$

3.5 problem Example 3.34

Internal problem ID [5107]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.34.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - 3y'' + 3y' - y - 4e^t = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve(diff(y(t),t\$3)-3*diff(y(t),t\$2)+3*diff(y(t),t)-y(t)=4*exp(t),y(t), singsol=all)

$$y(t) = \frac{2t^3 e^t}{3} + c_1 e^t + c_2 e^t t + c_3 e^t t^2$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 34

 $DSolve[y'''[t]-3*y''[t]+3*y'[t]-y[t]==4*Exp[t],y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{3}e^t(2t^3 + 3c_3t^2 + 3c_2t + 3c_1)$$

3.6 problem Example 3.35

Internal problem ID [5108]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.35.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 2y'' + y - 3\sin(t) + 5\cos(t) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

 $\label{eq:diff} $$ $dsolve(diff(y(t),t\$4)+2*diff(y(t),t\$2)+y(t)=3*sin(t)-5*cos(t),y(t), singsol=all)$$

$$y(t) = \left(-\frac{5}{4} - \frac{3}{4}t + \frac{5}{8}t^2\right)\cos(t) + \left(\frac{3}{4} - \frac{5}{4}t - \frac{3}{8}t^2\right)\sin(t) + \cos(t)c_1 + c_2\sin(t) + c_3t\cos(t) + c_4t\sin(t)$$

✓ Solution by Mathematica

Time used: 0.119 (sec). Leaf size: 51

DSolve[y'''[t]+2*y''[t]+y[t]==3*Sin[t]-5*Cos[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \frac{1}{16}((2t(5t-3+8c_2)-25+16c_1)\cos(t)+(-6t(t+5)+16c_4t+3+16c_3)\sin(t))$$

3.7 problem Example 3.36

Internal problem ID [5109]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.36.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - y'' - y' + y - g(t) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 66

dsolve(diff(y(t),t\$3)-diff(y(t),t\$2)-diff(y(t),t)+y(t)=g(t),y(t), singsol=all)

$$y(t) = -\left(\int \frac{(2t+1)g(t)e^{-t}}{4}dt\right)e^{t} + \left(\int \frac{e^{t}g(t)}{4}dt\right)e^{-t} + \left(\int \frac{e^{-t}g(t)}{2}dt\right)e^{t} + c_{1}e^{t} + c_{2}e^{-t} + c_{3}e^{t}t$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 92

DSolve[y'''[t]-y''[t]+y[t]==g[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t} \left(\int_1^t \frac{1}{4} e^{K[1]} g(K[1]) dK[1] + c_1 \right)$$

$$+ e^t \left(t \int_1^t \frac{1}{2} e^{-K[3]} g(K[3]) dK[3] + \int_1^t -\frac{1}{4} e^{-K[2]} g(K[2]) (2K[2] + 1) dK[2] + c_3 t + c_2 \right)$$

3.8 problem Example 3.37

Internal problem ID [5110]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.37.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y^{(5)} - \frac{y''''}{t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(t),t\$5)-1/t*diff(y(t),t\$4)=0,y(t), singsol=all)

$$y(t) = c_4 t^5 + c_3 t^3 + c_2 t^2 + c_5 t + c_1$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 33

DSolve[y''''[t]-1/t*y''''[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \frac{c_1 t^5}{120} + c_5 t^3 + c_4 t^2 + c_3 t + c_2$$

3.9 problem Example 3.38

Internal problem ID [5111]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,

$$xx'' - x'^2 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 14

 $dsolve(x(t)*diff(x(t),t$2)-diff(x(t),t)^2=0,x(t), singsol=all)$

$$x(t) = 0$$

$$x(t) = e^{c_1 t} c_2$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 14

DSolve[x[t]*x''[t]-(x'[t])^2==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow c_2 e^{c_1 t}$$

3.10 problem Example 3.39

Internal problem ID [5112]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.39.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 4y''' + 3y'' - 4y' - 4y - f(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 91

dsolve(diff(y(x),x\$4)+4*diff(y(x),x\$3)+3*diff(y(x),x\$2)-4*diff(y(x),x)-4*y(x)=f(x),y(x), sing(x),x

$$y(x) = \left(\int \frac{f(x) e^{-x}}{18} dx \right) e^{x} + \left(\int -\frac{f(x) (3x - 4) e^{2x}}{9} dx \right) e^{-2x} - \left(\int \frac{f(x) e^{x}}{2} dx \right) e^{-x} + \left(\int \frac{f(x) e^{2x}}{3} dx \right) e^{-2x} x + e^{x} c_{1} + c_{2} e^{-2x} + c_{3} e^{-x} + c_{4} e^{-2x} x$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 120

$$y(x) \to e^{-2x} \left(x \int_{1}^{x} \frac{1}{3} e^{2K[2]} f(K[2]) dK[2] + \int_{1}^{x} -\frac{1}{9} e^{2K[1]} f(K[1]) (3K[1] - 4) dK[1] \right)$$

$$+ e^{x} \left(\int_{1}^{x} -\frac{1}{2} e^{K[3]} f(K[3]) dK[3] + c_{3} \right) + e^{3x} \left(\int_{1}^{x} \frac{1}{18} e^{-K[4]} f(K[4]) dK[4] + c_{4} \right)$$

$$+ c_{2}x + c_{1}$$

3.11 problem Example 3.40

Internal problem ID [5113]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.40.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$u'' - (1+2x)u' + (x^2 + x - 1)u = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(diff(u(x),x$2)-(2*x+1)*diff(u(x),x)+(x^2+x-1)*u(x)=0,u(x), singsol=all)$

$$u(x) = e^{\frac{x^2}{2}}c_1 + c_2 e^{\frac{x(x+2)}{2}}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 24

 $DSolve[u''[x]-(2*x+1)*u'[x]+(x^2+x-1)*u[x] == 0, u[x], x, IncludeSingularSolutions \rightarrow True]$

$$u(x) \to e^{\frac{x^2}{2}}(c_2e^x + c_1)$$

3.12 problem Example 3.41

Internal problem ID [5114]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.41.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 9y - 50e^{2x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+9*y(x)=50*exp(2*x),y(x), singsol=all)

$$y(x) = e^{-3x}c_2 + e^{-3x}xc_1 + 2e^{2x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 25

 $DSolve[y''[x]+6*y'[x]+9*y[x] == 50*Exp[2*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-3x} (2e^{5x} + c_2x + c_1)$$

3.13 problem Example 3.42

Internal problem ID [5115]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.42.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y' + 4y - 50 e^{2x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=50*exp(2*x),y(x), singsol=all)

$$y(x) = e^{2x}c_2 + e^{2x}xc_1 + 25e^{2x}x^2$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 22

DSolve[y''[x]-4*y'[x]+4*y[x] == 50*Exp[2*x], y[x], x, Include Singular Solutions -> True]

$$y(x) \to e^{2x}(x(25x+c_2)+c_1)$$

3.14 problem Example 3.43

Internal problem ID [5116]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.43.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y - \cos(2x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=cos(2*x),y(x), singsol=all)

$$y(x) = -e^{-2x}c_1 + c_2e^{-x} - \frac{\cos(2x)}{20} + \frac{3\sin(2x)}{20}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 37

DSolve[y''[x]+3*y'[x]+2*y[x]==Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{3}{20}\sin(2x) - \frac{1}{20}\cos(2x) + e^{-2x}(c_2e^x + c_1)$$

3.15 problem Example 3.44

Internal problem ID [5117]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.44.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + 6y'' + 11y' + 6y - 2\sin(3x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$3)+6*diff(y(x),x\$2)+11*diff(y(x),x)+6*y(x)=2*sin(3*x),y(x), singsol=all)

$$y(x) = -\frac{\cos(3x)}{195} - \frac{8\sin(3x)}{195} + c_1 e^{-3x} + c_2 e^{-2x} + c_3 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 44

DSolve[y'''[x]+6*y''[x]+11*y'[x]+6*y[x]==2*Sin[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{8}{195}\sin(3x) - \frac{1}{195}\cos(3x) + e^{-3x}(e^x(c_3e^x + c_2) + c_1)$$

3.16 problem Example 3.45

Internal problem ID [5118]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.45.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y - x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(x),x$2)+4*y(x)=x^2,y(x), singsol=all)$

$$y(x) = \sin(2x) c_2 + \cos(2x) c_1 + \frac{x^2}{4} - \frac{1}{8}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

DSolve[y''[x]+4*y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^2}{4} + c_1 \cos(2x) + c_2 \sin(2x) - \frac{1}{8}$$

3.17 problem Example 3.46

Internal problem ID [5119]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.46.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 3y - x^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(diff(y(x),x$2)-4*diff(y(x),x)+3*y(x)=x^3,y(x), singsol=all)$

$$y(x) = e^{3x}c_2 + e^xc_1 + \frac{x^3}{3} + \frac{4x^2}{3} + \frac{26x}{9} + \frac{80}{27}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 36

DSolve[$y''[x]-4*y'[x]+3*y[x]==x^3,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to \frac{1}{9}x(3x(x+4)+26) + c_1e^x + c_2e^{3x} + \frac{80}{27}$$

3.18 problem Example 3.47

Internal problem ID [5120]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE. Page

181

Problem number: Example 3.47.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + \left(1 + \frac{2}{(1+3x)^2}\right)y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 31

 $dsolve(diff(y(x),x$2)+2*diff(y(x),x)+(1+2/(1+3*x)^2)*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1(3x+1)^{\frac{1}{3}} e^{-x} + c_2(3x+1)^{\frac{2}{3}} e^{-x}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 35

 $DSolve[y''[x]+2*y'[x]+(1+2/(1+3*x)^2)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x} \sqrt[3]{3x+1} \left(c_2 \sqrt[3]{3x+1} + c_1\right)$$

4	Chapter 3. Ordinary Differential Equations.
	Section 3.6 Summary and Problems. Page 218
4.1	problem Problem 3.1
4.2	problem Problem 3.2
4.3	problem Problem 3.3
4.4	problem Problem 3.4
4.5	problem Problem 3.6
4.6	problem Problem 3.7
4.7	problem Problem 3.8
4.8	problem Problem 3.11
4.9	problem Problem 3.12
4.10	problem Problem 3.14
4.11	problem Problem 3.18
4.12	problem Problem 3.19
4.13	problem Problem 3.20
4.14	problem Problem 3.21
4.15	problem Problem 3.22
4.16	problem Problem 3.23
4.17	problem Problem 3.24
4.18	problem Problem 3.31
4.19	problem Problem 3.32
4.20	problem Problem 3.33
	problem Problem 3.34
4.22	problem Problem 3.35

4.1 problem Problem 3.1

Internal problem ID [5121]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y + \sqrt{y^2 + x^2} - y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(y(x)+sqrt(x^2+y(x)^2)-x*diff(y(x),x)=0,y(x), singsol=all)$

$$\frac{y(x)}{x^{2}} + \frac{\sqrt{x^{2} + y(x)^{2}}}{x^{2}} - c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.339 (sec). Leaf size: 27

 $DSolve[y[x]+Sqrt[x^2+y[x]^2]-x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{1}{2}e^{-c_1} \left(-1 + e^{2c_1}x^2\right)$$

4.2 problem Problem 3.2

Internal problem ID [5122]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.2.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 + y^2 - a^2 = 0$$

/

Solution by Maple

Time used: 0.094 (sec). Leaf size: 68

 $dsolve(diff(y(x),x)^2=a^2-y(x)^2,y(x), singsol=all)$

$$y(x) = -a$$

$$y(x) = a$$

$$y(x) = -\tan(-x + c_1) \sqrt{\frac{a^2}{\tan(-x + c_1)^2 + 1}}$$

$$y(x) = \tan(-x + c_1) \sqrt{\frac{a^2}{\tan(-x + c_1)^2 + 1}}$$

✓ Solution by Mathematica

Time used: 3.384 (sec). Leaf size: 111

 $DSolve[(y'[x])^2 = a^2 - y[x]^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{a \tan(x - c_1)}{\sqrt{\sec^2(x - c_1)}}$$

$$y(x) \to \frac{a \tan(x - c_1)}{\sqrt{\sec^2(x - c_1)}}$$

$$y(x) \to -\frac{a \tan(x + c_1)}{\sqrt{\sec^2(x + c_1)}}$$

$$y(x) \to \frac{a \tan(x + c_1)}{\sqrt{\sec^2(x + c_1)}}$$

$$y(x) \to -a$$

$$y(x) \to a$$

4.3 problem Problem 3.3

Internal problem ID [5123]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - 2y'x + (x^{2} + 2)y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+(x^2+2)*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \sin(x) x + c_2 \cos(x) x$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 33

 $DSolve[x^2*y''[x]-2*x*y'[x]+(x^2+2)*y[x] ==0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to c_1 e^{-ix} x - \frac{1}{2} i c_2 e^{ix} x$$

4.4 problem Problem 3.4

Internal problem ID [5124]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{2y'}{x} - \frac{2y}{(1+x)^2} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 30

 $dsolve(diff(y(x),x$2)+2/x*diff(y(x),x)-2/(1+x)^2*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x(x+1)} + \frac{c_2(x^2 + 3x + 3)}{x+1}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 33

 $DSolve[y''[x]+2/x*y'[x]-2/(1+x)^2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_2 x(x(x+3)+3)+3c_1}{3x(x+1)}$$

4.5 problem Problem 3.6

Internal problem ID [5125]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y(x^{2}y^{2} + 1) + (x^{2}y^{2} - 1)xy' = 0$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

 $dsolve((x^2*y(x)^2+1)*y(x)+(x^2*y(x)^2-1)*x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \mathrm{e}^{-rac{\mathrm{LambertW}\left(-x^4\mathrm{e}^{-4c_1}
ight)}{2}-2c_1}x$$

Solution by Mathematica

Time used: 5.026 (sec). Leaf size: 60

 $DSolve[(x^2*y[x]^2+1)*y[x]+(x^2*y[x]^2-1)*x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow -rac{i\sqrt{W\left(-e^{-2c_1}x^4
ight)}}{x}$$
 $y(x)
ightarrow rac{i\sqrt{W\left(-e^{-2c_1}x^4
ight)}}{x}$

$$y(x) o rac{i\sqrt{W\left(-e^{-2c_1}x^4
ight)}}{r}$$

$$y(x) \to 0$$

4.6 problem Problem 3.7

Internal problem ID [5126]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$2y^{2}x^{3} - y + (2y^{3}x^{2} - x)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 522

 $dsolve((2*x^3*y(x)^2-y(x))+(2*x^2*y(x)^3-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$\begin{split} y(x) &= \frac{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}{6x} \\ &- \frac{6\left(\frac{x^2}{3} - \frac{c_1}{3}\right)x}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}} \\ y(x) &= -\frac{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}{3(\frac{x^2}{3} - \frac{c_1}{3})x} \\ &+ \frac{12x}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}} \\ &- \frac{i\sqrt{3}\left(\frac{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}} \\ &+ \frac{12x}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}} \\ &+ \frac{3\left(\frac{x^2}{3} - \frac{c_1}{3}\right)x}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}} \\ &+ \frac{3\left(\frac{x^2}{3} - \frac{c_1}{3}\right)x}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}} \\ &+ \frac{3\left(\frac{x^2}{3} - \frac{c_1}{3}\right)x}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}} \\ &+ \frac{3\left(\frac{x^2}{3} - \frac{c_1}{3}\right)x}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}} \\ &+ \frac{3\left(\frac{x^2}{3} - \frac{c_1}{3}\right)x}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}} \\ &+ \frac{3\left(\frac{x^2}{3} - \frac{c_1}{3}\right)x}{\left(\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}}{\left(-108 + 12\sqrt{12x^8 - 36c_1x^6 + 36c_1^2x^4 - 12c_1^3x^2 + 81}\right)x^2\right)^{\frac{1}{3}}}} \\ &+ \frac{3\left(\frac{x^2}{3} - \frac{c_1}{3}\right)x}{\left(\left(-108 + 12\sqrt$$

✓ Solution by Mathematica

Time used: 38.553 (sec). Leaf size: 358

 $DSolve[(2*x^3*y[x]^2-y[x])+(2*x^2*y[x]^3-x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{\sqrt[3]{2}(-x^3 + c_1 x)}{\sqrt[3]{-27x^2 + \sqrt{729x^4 + 108x^3 (x^3 - c_1 x)^3}}} + \frac{\sqrt[3]{-27x^2 + \sqrt{729x^4 + 108x^3 (x^3 - c_1 x)^3}}}{3\sqrt[3]{2x}}$$

$$y(x) \to \frac{\left(1 + i\sqrt{3}\right) (x^3 - c_1 x)}{2^{2/3} \sqrt[3]{-27x^2 + \sqrt{729x^4 + 108x^3 (x^3 - c_1 x)^3}}} - \frac{\left(1 - i\sqrt{3}\right) \sqrt[3]{-27x^2 + \sqrt{729x^4 + 108x^3 (x^3 - c_1 x)^3}}}{6\sqrt[3]{2x}}$$

$$y(x) \to \frac{\left(1 - i\sqrt{3}\right) (x^3 - c_1 x)}{2^{2/3} \sqrt[3]{-27x^2 + \sqrt{729x^4 + 108x^3 (x^3 - c_1 x)^3}}} - \frac{\left(1 + i\sqrt{3}\right) \sqrt[3]{-27x^2 + \sqrt{729x^4 + 108x^3 (x^3 - c_1 x)^3}}}{6\sqrt[3]{2x}}$$

4.7 problem Problem 3.8

Internal problem ID [5127]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D']]

$$\frac{1}{y} + \sec\left(\frac{y}{x}\right) - \frac{xy'}{y^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve((1/y(x)+sec(y(x)/x))-x/y(x)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \text{RootOf}\left(\underline{Z} \text{Si}\left(\underline{Z}\right) + \underline{Z}c_1 + \underline{Z}x + \cos\left(\underline{Z}\right)\right) x$$

✓ Solution by Mathematica

Time used: 0.137 (sec). Leaf size: 32

 $DSolve[(1/y[x]+Sec[y[x]/x])-x/y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[-\operatorname{Si}\left(\frac{y(x)}{x}\right) - \frac{x\cos\left(\frac{y(x)}{x}\right)}{y(x)} = x + c_1, y(x) \right]$$

4.8 problem Problem 3.11

Internal problem ID [5128]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$\phi' - \frac{\phi^2}{2} - \phi \cot(\theta) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(phi(theta),theta)-1/2*phi(theta)^2-phi(theta)*cot(theta)=0,phi(theta), singsol=al

$$\phi(\theta) = \frac{2\sin(\theta)}{\cos(\theta) + 2c_1}$$

✓ Solution by Mathematica

Time used: 0.285 (sec). Leaf size: 23

 $DSolve[\[Phi]'[\[Theta]]-1/2*\[Phi][\[Theta]]^2-\[Phi][\[Theta]]*Cot[\[Theta]]==0], \[Phi][\[Theta]] ==0], \[Ph$

$$\phi(\theta) \to \frac{2\sin(\theta)}{\cos(\theta) + 2c_1}$$
 $\phi(\theta) \to 0$

4.9 problem Problem 3.12

Internal problem ID [5129]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$u'' - \cot(\theta) u' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(u(theta),theta\$2)-cot(theta)*diff(u(theta),theta)=0,u(theta), singsol=all)

$$u(\theta) = c_1 + \cos(\theta) c_2$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 13

 $DSolve[u''[\[Theta]]-Cot[\[Theta]]*u'[\[Theta]]==0,u[\[Theta]],\[Theta]],\[Theta]], \\ [Theta]] = 0,u[\[Theta]],\[Theta]] = 0,u[\[Theta]],\[Theta]], \\ [Theta]] = 0,u[\[Theta]],\[Theta]],\[Theta]] = 0,u[\[Theta]],\[Theta]],\[Theta]], \\ [Theta]] = 0,u[\[Theta]],\[Theta]],\[Theta]],\[Theta]] = 0,u[\[Theta]],\[Theta]],\[Theta]],\[Theta]],\[Theta]] = 0,u[\[Theta]],\[Theta]],\[Theta]],\[Theta]],\[Theta]],\[Theta]],\[Theta]]$

$$u(\theta) \rightarrow c_2 \cos(\theta) + c_1$$

4.10 problem Problem 3.14

Internal problem ID [5130]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)]'], _Riccati]

$$\left(\phi' - \frac{\phi^2}{2}\right)\sin(\theta)^2 - \phi\sin(\theta)\cos(\theta) - \frac{\cos(2\theta)}{2} - 1 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

dsolve((diff(phi(theta),theta)-1/2*phi(theta)^2)*sin(theta)^2-phi(theta)*sin(theta)*cos(theta

$$\phi(\theta) = -\frac{\sinh\left(\frac{\theta}{2}\right)c_1 + \cosh\left(\frac{\theta}{2}\right)}{\cosh\left(\frac{\theta}{2}\right)c_1 + \sinh\left(\frac{\theta}{2}\right)} - \frac{\cos\left(\theta\right)}{\sin\left(\theta\right)}$$

✓ Solution by Mathematica

Time used: 0.623 (sec). Leaf size: 35

 $DSolve[(\[Phi]'[\[Theta]]-1/2\[Phi][\[Theta]]^2)*Sin[\[Theta]]^2-\[Phi][\[Theta]]*Sin[\[Theta]]^2-\[Phi][$

$$\phi(\theta) \to -\cot(\theta) + \frac{1}{-\frac{1}{2} + c_1 e^{-\theta}} + 1$$
$$\phi(\theta) \to 1 - \cot(\theta)$$

4.11 problem Problem 3.18

Internal problem ID [5131]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.18.

ODE order: 3. ODE degree: 1.

$$ay''y''' - \sqrt{1 + (y'')^2} = 0$$

✓ Solution by Maple

Time used: 0.218 (sec). Leaf size: 237

 $dsolve(a*diff(y(x),x$2)*diff(y(x),x$3)=sqrt(1+diff(y(x),x$2)^2),y(x), singsol=all)$

$$\begin{split} y(x) &= -\frac{1}{2}ix^2 + c_1x + c_2 \\ y(x) &= \frac{1}{2}ix^2 + c_1x + c_2 \\ y(x) &= \frac{\left(-a^2 + c_1^2 + 2c_1x + x^2\right)^{\frac{3}{2}}}{6a} - \frac{a\ln\left(c_1 + x + \sqrt{-a^2 + c_1^2 + 2c_1x + x^2}\right)x}{2} \\ &\quad - \frac{a\ln\left(c_1 + x + \sqrt{-a^2 + c_1^2 + 2c_1x + x^2}\right)c_1}{2} + \frac{a\sqrt{-a^2 + c_1^2 + 2c_1x + x^2}}{2} + xc_2 + c_3 \\ y(x) &= -\frac{\left(-a^2 + c_1^2 + 2c_1x + x^2\right)^{\frac{3}{2}}}{6a} + \frac{a\ln\left(c_1 + x + \sqrt{-a^2 + c_1^2 + 2c_1x + x^2}\right)x}{2} \\ &\quad + \frac{a\ln\left(c_1 + x + \sqrt{-a^2 + c_1^2 + 2c_1x + x^2}\right)c_1}{2} - \frac{a\sqrt{-a^2 + c_1^2 + 2c_1x + x^2}} + xc_2 + c_3 \end{split}$$

✓ Solution by Mathematica

Time used: 12.255 (sec). Leaf size: 193

DSolve[a*y''[x]*y'''[x]==Sqrt[1+ y''[x]^2],y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) & \to \frac{\sqrt{(x+a(-1+c_1))(a+ac_1+x)}(a^2(2+c_1^2)+2ac_1x+x^2)}{6a} \\ & -\frac{1}{2}a(x+ac_1)\log\left(\sqrt{(x+a(-1+c_1))(a+ac_1+x)}+ac_1+x\right)+c_3x+c_2 \\ y(x) & \to -\frac{\sqrt{(x+a(-1+c_1))(a+ac_1+x)}(a^2(2+c_1^2)+2ac_1x+x^2)}{6a} \\ & +\frac{1}{2}a(x+ac_1)\log\left(\sqrt{(x+a(-1+c_1))(a+ac_1+x)}+ac_1+x\right)+c_3x+c_2 \end{split}$$

4.12 problem Problem 3.19

Internal problem ID [5132]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.19.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$a^2y'''' - y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(a^2*diff(y(x),x$4)=diff(y(x),x$2),y(x), singsol=all)$

$$y(x) = c_1 + xc_2 + c_3 e^{\frac{x}{a}} + c_4 e^{-\frac{x}{a}}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 38

DSolve[a^2*y''''[x]==y''[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to a^2 e^{-\frac{x}{a}} \left(c_1 e^{\frac{2x}{a}} + c_2 \right) + c_4 x + c_3$$

4.13 problem Problem 3.20

Internal problem ID [5133]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y e^{xy} + x e^{xy} y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 9

dsolve(y(x)*exp(x*y(x))+x*exp(x*y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 16

DSolve[y[x]*Exp[x*y[x]]+x*Exp[x*y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{c_1}{x}$$

$$y(x) \to 0$$

4.14 problem Problem 3.21

Internal problem ID [5134]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$x - 2xy + e^y + (y - x^2 + x e^y) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $dsolve((x-2*x*y(x)+exp(y(x)))+(y(x)-x^2+x*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$-x^{2}y(x) + x e^{y(x)} + \frac{x^{2}}{2} + \frac{y(x)^{2}}{2} + c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.349 (sec). Leaf size: 35

 $\textbf{DSolve}[(x-2*x*y[x]+\textbf{Exp}[y[x]])+(y[x]-x^2+x*\textbf{Exp}[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions]$

Solve
$$\left[x^2(-y(x)) + \frac{x^2}{2} + xe^{y(x)} + \frac{y(x)^2}{2} = c_1, y(x) \right]$$

4.15 problem Problem 3.22

Internal problem ID [5135]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - \frac{y'}{\sqrt{x}} + \frac{(x + \sqrt{x} - 8)y}{4x^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-1/x^(1/2)*diff(y(x),x)+1/(4*x^2)*(x+x^(1/2)-8)*y(x)=0,y(x), singsol=all

 $y(x) = \frac{c_1 e^{\sqrt{x}}}{r} + c_2 e^{\sqrt{x}} x^2$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 30

 $DSolve[y''[x]-1/x^{(1/2)*y'}[x]+1/(4*x^2)*(x+x^{(1/2)}-8)*y[x] == 0, y[x], x, IncludeSingular Solutions]$

$$y(x) o rac{e^{\sqrt{x}}(c_2 x^3 + 3c_1)}{3x}$$

4.16 problem Problem 3.23

Internal problem ID [5136]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(-x^2 + 1)z'' + (1 - 3x)z' + kz = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 99

 $dsolve((1-x^2)*diff(z(x),x$2)+(1-3*x)*diff(z(x),x)+k*z(x)=0,z(x), singsol=all)$

$$z(x) = c_1(x+1)^{-1-\sqrt{k+1}} \operatorname{hypergeom} \left(\left[\sqrt{k+1}, 1 + \sqrt{k+1} \right], \left[1 + 2\sqrt{k+1} \right], \frac{2}{x+1} \right) + c_2(x+1)^{-1+\sqrt{k+1}} \operatorname{hypergeom} \left(\left[-\sqrt{k+1}, 1 - \sqrt{k+1} \right], \left[1 - 2\sqrt{k+1} \right], \frac{2}{x+1} \right)$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 77

 $DSolve[(1-x^2)*z''[x]+(1-3*x)*z'[x]+k*z[x]==0, z[x], x, Include Singular Solutions \rightarrow True]$

$$\begin{split} z(x) &\to c_2 G_{2,2}^{2,0} \Bigg(\frac{1-x}{2} \big| \begin{array}{c} -\sqrt{k+1}, \sqrt{k+1} \\ 0, 0 \\ \Bigg) \\ &+ c_1 \, \text{Hypergeometric} \\ 2\text{F1} \left(1 - \sqrt{k+1}, \sqrt{k+1} + 1, 1, \frac{1-x}{2} \right) \end{split}$$

4.17 problem Problem 3.24

Internal problem ID [5137]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(-x^{2}+1) \eta'' - (1+x) \eta' + (k+1) \eta = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 95

 $dsolve((1-x^2)*diff(eta(x),x$2)-(1+x)*diff(eta(x),x)+(k+1)*eta(x)=0,eta(x), singsol=all)$

$$\eta(x) = c_1(x+1)^{\sqrt{k+1}} \text{ hypergeom } \left(\left[-\sqrt{k+1}, 1 - \sqrt{k+1} \right], \left[1 - 2\sqrt{k+1} \right], \frac{2}{x+1} \right) \\
+ c_2(x+1)^{-\sqrt{k+1}} \text{ hypergeom } \left(\left[\sqrt{k+1}, 1 + \sqrt{k+1} \right], \left[1 + 2\sqrt{k+1} \right], \frac{2}{x+1} \right)$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 77

 $DSolve[(1-x^2)*z''[x]-(1+x)*z'[x]+(k+1)*z[x]==0, z[x], x, IncludeSingularSolutions \rightarrow True]$

$$z(x) \to c_2 G_{2,2}^{2,0} \left(\frac{1-x}{2} | \begin{array}{c} 1 - \sqrt{k+1}, \sqrt{k+1} + 1 \\ 0, 0 \end{array} \right) + c_1 \, \text{Hypergeometric2F1} \left(-\sqrt{k+1}, \sqrt{k+1}, 1, \frac{1-x}{2} \right)$$

4.18 problem Problem 3.31

Internal problem ID [5138]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$-2xyy' + y^2 + x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve((x^2+y(x)^2)-2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{c_1 x + x^2}$$

$$y(x) = -\sqrt{c_1 x + x^2}$$

✓ Solution by Mathematica

Time used: 0.187 (sec). Leaf size: 38

 $DSolve[(x^2+y[x]^2)-2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{x}\sqrt{x+c_1}$$

$$y(x) \to \sqrt{x}\sqrt{x+c_1}$$

4.19 problem Problem 3.32

Internal problem ID [5139]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.32.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$x^2 - y^2 + 2xyy' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve((x^2-y(x)^2)+2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{c_1 x - x^2}$$

$$y(x) = -\sqrt{c_1 x - x^2}$$

✓ Solution by Mathematica

Time used: 0.334 (sec). Leaf size: 35

 $DSolve[(x^2-y[x]^2)+2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{x(-x+c_1)}$$

$$y(x) \to \sqrt{x(-x+c_1)}$$

4.20 problem Problem 3.33

Internal problem ID [5140]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.33.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Riccati]

$$-y + y'x - y^2 - x^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

 $dsolve(x*diff(y(x),x)-y(x)=(x^2+y(x)^2),y(x), singsol=all)$

$$y(x) = \tan(x + c_1) x$$

✓ Solution by Mathematica

Time used: 0.171 (sec). Leaf size: 12

 $DSolve[x*y'[x]-y[x]==(x^2+y[x]^2),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x \tan(x + c_1)$$

4.21 problem Problem 3.34

Internal problem ID [5141]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.34.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$-y + y'x - x\sqrt{x^2 - y^2} \, y' = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 27

 $dsolve(x*diff(y(x),x)-y(x)=x*sqrt(x^2-y(x)^2)*diff(y(x),x),y(x), singsol=all)$

$$y(x) - \arctan\left(rac{y(x)}{\sqrt{x^2 - y(x)^2}}
ight) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.509 (sec). Leaf size: 29

DSolve[x*y'[x]-y[x]==x*Sqrt[x^2-y[x]^2]*y'[x],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\arctan\left(\frac{\sqrt{x^2-y(x)^2}}{y(x)}\right)+y(x)=c_1,y(x)\right]$$

4.22 problem Problem 3.35

Internal problem ID [5142]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.35.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A']

$$x + yy' + y - y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(x+y(x)*diff(y(x),x)+y(x)-x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \tan \left(\operatorname{RootOf} \left(-2 Z + \ln \left(\frac{1}{\cos (Z)^2} \right) + 2 \ln (x) + 2c_1 \right) \right) x$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 36

DSolve [x+y[x]*y'[x]+y[x]-x*y'[x]==0,y[x],x, IncludeSingularSolutions -> True]

Solve
$$\left[\frac{1}{2}\log\left(\frac{y(x)^2}{x^2}+1\right) - \arctan\left(\frac{y(x)}{x}\right) = -\log(x) + c_1, y(x)\right]$$

4.23 problem Problem 3.38

Internal problem ID [5143]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page

218

Problem number: Problem 3.38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetr

$$yy'' - y'^2 - y^2y' = 0$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 32

 $dsolve(y(x)*diff(y(x),x$2)-(diff(y(x),x))^2-y(x)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = 0$$
$$y(x) = -\frac{c_1 e^{c_1 c_2} e^{c_1 x}}{-1 + e^{c_1 c_2} e^{c_1 x}}$$

✓ Solution by Mathematica

Time used: 0.116 (sec). Leaf size: 25

 $DSolve[y[x]*y''[x]-(y'[x])^2-y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \left(-1 + \frac{1}{1 - e^{c_1(x + c_2)}} \right)$$

5	Chapter 5. Systems of First Order Differential		
	Equations. Section 5.11 Problems. Page 360		
5.1	problem Problem 5.1	80	
5.2	problem Problem 5.2	81	
5.3	problem Problem 5.3	82	
5.4	problem Problem 5.4	83	
5.5	problem Problem 5.6	84	
5.6	problem Problem 5.7	85	
5.7	problem Problem 5.8	86	
5.8	problem Problem 5.9	87	
5.9	problem Problem 5.10	88	
5.10	problem Problem 5.11	89	
5.11	problem Problem 5.12	90	
5.12	problem Problem 5.13	91	
5.13	problem Problem 5.15 part 1	92	
5.14	problem Problem 5.15 part 3	93	

5.1 problem Problem 5.1

Internal problem ID [5144]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.1.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = 3x_1(t) - 18x_2(t)$$

$$x_2'(t) = 2x_1(t) - 9x_2(t)$$

With initial conditions

$$[x_1(0) = 2, x_2(0) = 1]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 29

 $dsolve([diff(x_1(t),t) = 3*x_1(t)-18*x_2(t), diff(x_2(t),t) = 2*x_1(t)-9*x_2(t), x_1(t)$

$$x_1(t) = \frac{e^{-3t}(-12t+4)}{2}$$

$$x_2(t) = e^{-3t}(-2t+1)$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 30

 $DSolve[{x1'[t] == 3*x1[t] - 18*x2[t], x2'[t] == 2*x1[t] - 9*x2[t]}, {x1[0] == 2, x2[0] == 1}, {x1[t], x2[t]}, t= 2*x1[t] - 9*x2[t]}, {x1[0] == 2, x2[0] == 1}, {x1[t], x2[t]}, {x2[t]}, {x2[t]}, {x3[t], x2[t]}, {x3[t], x3[t]}, {x3[t], x3[$

$$x1(t) \to e^{-3t}(2-6t)$$

$$x2(t) \to e^{-3t}(1-2t)$$

5.2 problem Problem 5.2

Internal problem ID [5145]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.2.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_1(t) + 3x_2(t)$$

$$x'_2(t) = 5x_1(t) + 3x_2(t)$$

Time used: 0.047 (sec). Leaf size: 36

$$dsolve([diff(x_1(t),t)=x_1(t)+3*x_2(t),diff(x_2(t),t)=5*x_1(t)+3*x_2(t)],[x_1(t),x_2(t),x_3(t)]$$

$$x_1(t) = \frac{3c_1 e^{6t}}{5} - e^{-2t} c_2$$

$$x_2(t) = c_1 e^{6t} + e^{-2t} c_2$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 68

DSolve[{x1'[t]==x1[t]+3*x2[t],x2'[t]==5*x1[t]+3*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutio

$$x1(t) \rightarrow \frac{1}{8}e^{-2t}(3(c_1+c_2)e^{8t}+5c_1-3c_2)$$

$$x2(t) \rightarrow \frac{1}{8}e^{-2t} (5(c_1 + c_2)e^{8t} - 5c_1 + 3c_2)$$

5.3 problem Problem 5.3

Internal problem ID [5146]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.3.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -x_1(t) + 3x_2(t)$$

$$x'_2(t) = -3x_1(t) + 5x_2(t)$$

With initial conditions

$$[x_1(0) = 1, x_2(0) = 2]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 29

 $dsolve([diff(x_1(t),t) = -x_1(t)+3*x_2(t), diff(x_2(t),t) = -3*x_1(t)+5*x_2(t), x_1(0))$

$$x_1(t) = \frac{e^{2t}(9t+3)}{3}$$

$$x_2(t) = e^{2t}(3t+2)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

DSolve[{x1'[t]==-x1[t]+3*x2[t],x2'[t]==-3*x1[t]+5*x2[t]},{x1[0]==1,x2[0]==2},{x1[t],x2[t]},t,

$$x1(t) \to e^{2t}(3t+1)$$

$$x2(t) \to e^{2t}(3t+2)$$

5.4 problem Problem 5.4

Internal problem ID [5147]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.4.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 4x_1(t) - x_2(t)$$

$$x'_2(t) = 5x_1(t) + 2x_2(t)$$

Time used: 0.063 (sec). Leaf size: 59

$$dsolve([diff(x_1(t),t)=4*x_1(t)-x_2(t),diff(x_2(t),t)=5*x_1(t)+2*x_2(t)],[x_1(t),x_2(t),x_3(t)]$$

$$x_1(t) = \frac{e^{3t}(\sin(2t)c_1 - 2\sin(2t)c_2 + 2\cos(2t)c_1 + \cos(2t)c_2)}{5}$$

$$x_2(t) = e^{3t} (\sin(2t) c_1 + \cos(2t) c_2)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 70

$$x1(t) \to \frac{1}{2}e^{3t}(2c_1\cos(2t) + (c_1 - c_2)\sin(2t))$$

$$x2(t) \rightarrow \frac{1}{2}e^{3t}(2c_2\cos(2t) + (5c_1 - c_2)\sin(2t))$$

5.5 problem Problem 5.6

Internal problem ID [5148]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

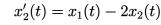
360

Problem number: Problem 5.6.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = -2x_1(t) + x_2(t)$$



Time used: 0.046 (sec). Leaf size: 35

$$x_1(t) = c_1 e^{-t} - c_2 e^{-3t}$$

$$x_2(t) = c_1 e^{-t} + c_2 e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 42

 $DSolve[\{x1'[t] = -2*x1[t] + x2[t], x2'[t] = -x1[t] - 2*x2[t]\}, \{x1[t], x2[t]\}, t, IncludeSingularSolution]$

$$x1(t) \rightarrow e^{-2t}(c_1 \cosh(t) + c_2 \sinh(t))$$

$$x2(t) \rightarrow e^{-2t}(c_2 \cosh(t) + c_1 \sinh(t))$$

5.6 problem Problem 5.7

Internal problem ID [5149]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.7.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -2x_1(t) + x_2(t) + 2e^{-t}$$

$$x'_2(t) = x_1(t) - 2x_2(t) + 3t$$

Time used: 0.078 (sec). Leaf size: 65

$$x_1(t) = c_2 e^{-t} - c_1 e^{-3t} + e^{-t}t + \frac{e^{-t}}{2} - \frac{4}{3} + t$$

$$x_2(t) = c_2 e^{-t} + c_1 e^{-3t} + e^{-t}t + 2t - \frac{5}{3} - \frac{e^{-t}}{2}$$

✓ Solution by Mathematica

Time used: 0.08 (sec). Leaf size: 90

 $DSolve[{x1'[t] == -2*x1[t] + x2[t] + 2*Exp[-t], x2'[t] == x1[t] - 2*x2[t] + 3*t}, {x1[t], x2[t]}, t, IncludeSi]$

$$x1(t) \to t + \frac{1}{2}e^{-3t} \left(e^{2t} (2t + 1 + c_1 + c_2) + c_1 - c_2 \right) - \frac{4}{3}$$
$$x2(t) \to \frac{1}{6}e^{-3t} \left(2e^{3t} (6t - 5) + 3e^{2t} (2t - 1 + c_1 + c_2) - 3c_1 + 3c_2 \right)$$

5.7 problem Problem 5.8

Internal problem ID [5150]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.8.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 3x_1(t) - x_2(t)$$

$$x'_2(t) = 16x_1(t) - 5x_2(t)$$

With initial conditions

$$[x_1(0) = 1, x_2(0) = 1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 29

$$dsolve([diff(x_1(t),t) = 3*x_1(t)-x_2(t), diff(x_2(t),t) = 16*x_1(t)-5*x_2(t), x_1(0))$$

$$x_1(t) = \frac{e^{-t}(48t + 16)}{16}$$

$$x_2(t) = e^{-t}(12t+1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

$$DSolve[{x1'[t] == 3*x1[t] - x2[t], x2'[t] == 16*x1[t] - 5*x2[t]}, {x1[0] == 1, x2[0] == 1}, {x1[t], x2[t]}, t, I[t], x2[t], t, I[t], x2[t], x2[t],$$

$$x1(t) \to e^{-t}(3t+1)$$

$$x2(t) \to e^{-t}(12t+1)$$

5.8 problem Problem 5.9

Internal problem ID [5151]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.9.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = x_1(t) - 2x_2(t)$$

$$x_2'(t) = 3x_1(t) - 4x_2(t)$$

With initial conditions

$$[x_1(0) = 1, x_2(0) = 0]$$

Time used: 0.047 (sec). Leaf size: 34

 $dsolve([diff(x_1(t),t) = x_1(t)-2*x_2(t), diff(x_2(t),t) = 3*x_1(t)-4*x_2(t), x_1(0) = 3*x_1(t)-4*x_1$

$$x_1(t) = -2e^{-2t} + 3e^{-t}$$

$$x_2(t) = -3e^{-2t} + 3e^{-t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 33

 $DSolve[{x1'[t] == x1[t] - 2*x2[t], x2'[t] == 3*x1[t] - 4*x2[t]}, {x1[0] == 1, x2[0] == 0}, {x1[t], x2[t]}, t, Institute of the context of t$

$$x1(t) \to e^{-2t}(3e^t - 2)$$

$$x2(t) \to 3e^{-2t} \left(e^t - 1 \right)$$

5.9 problem Problem 5.10

Internal problem ID [5152]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.10.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = 3x_1(t) - 18x_2(t)$$

$$x_2'(t) = 2x_1(t) - 9x_2(t)$$

With initial conditions

$$[x_1(0) = 1, x_2(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

$$x_1(t) = \frac{e^{-3t}(-60t+2)}{2}$$

$$x_2(t) = e^{-3t}(-10t + 2)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

DSolve[{x1'[t]==3*x1[t]-18*x2[t],x2'[t]==2*x1[t]-9*x2[t]},{x1[0]==1,x2[0]==2},{x1[t],x2[t]},t

$$x1(t) \to e^{-3t}(1 - 30t)$$

$$x2(t) \to e^{-3t}(2-10t)$$

5.10 problem Problem 5.11

Internal problem ID [5153]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.11.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -x_1(t) + 3x_2(t)$$

$$x'_2(t) = -3x_1(t) + 5x_2(t)$$

With initial conditions

$$[x_1(0) = 1, x_2(0) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

 $dsolve([diff(x_1(t),t) = -x_1(t)+3*x_2(t), diff(x_2(t),t) = -3*x_1(t)+5*x_2(t), x_1(0))$

$$x_1(t) = \frac{e^{2t}(9t+3)}{3}$$

$$x_2(t) = e^{2t}(3t+2)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

DSolve[{x1'[t]==-x1[t]+3*x2[t],x2'[t]==-3*x1[t]+5*x2[t]},{x1[0]==1,x2[0]==2},{x1[t],x2[t]},t,

$$x1(t) \to e^{2t}(3t+1)$$

$$x2(t) \to e^{2t}(3t+2)$$

5.11 problem Problem 5.12

Internal problem ID [5154]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.12.

ODE order: 1. ODE degree: 1.

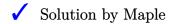
Solve

$$x_1'(t) = 3x_1(t) - 18x_2(t)$$

$$x_2'(t) = 2x_1(t) - 9x_2(t)$$

With initial conditions

$$[x_1(0) = 2, x_2(0) = 1]$$



Time used: 0.0 (sec). Leaf size: 29

$$x_1(t) = \frac{e^{-3t}(-12t+4)}{2}$$

$$x_2(t) = e^{-3t}(-2t+1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

 $DSolve[{x1'[t] == 3*x1[t] - 18*x2[t], x2'[t] == 2*x1[t] - 9*x2[t]}, {x1[0] == 2, x2[0] == 1}, {x1[t], x2[t]}, t= 2*x1[t] - 9*x2[t]}, {x1[0] == 2, x2[0] == 1}, {x1[t], x2[t]}, {x2[t]}, {x2[t]}, {x3[t], x2[t]}, {x3[t], x3[t]}, {x3[t], x3[$

$$x1(t) \to e^{-3t}(2-6t)$$

$$x2(t) \to e^{-3t}(1-2t)$$

5.12 problem Problem 5.13

Internal problem ID [5155]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.13.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = 3x_1(t) - x_2(t)$$

$$x_2'(t) = 4x_1(t) - 2x_2(t)$$

With initial conditions

$$[x_1(0) = 1, x_2(0) = 1]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 16

$$x_1(t) = e^{2t}$$

$$x_2(t) = e^{2t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

 $DSolve[{x1'[t] == 3*x1[t] - x2[t], x2'[t] == 4*x1[t] - 2*x2[t]}, {x1[0] == 1, x2[0] == 1}, {x1[t], x2[t]}, t, Institute of the context of t$

$$\mathbf{x}\mathbf{1}(t) \to e^{2t}$$

$$x2(t) \to e^{2t}$$

5.13 problem Problem 5.15 part 1

Internal problem ID [5156]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.15 part 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_1(t) + x_2(t) - 8$$

 $x'_2(t) = x_1(t) + x_2(t) + 3$

Time used: 0.047 (sec). Leaf size: 35

 $dsolve([diff(x_1(t),t)=x_1(t)+x_2(t)-8,diff(x_2(t),t)=x_1(t)+x_2(t)+3],[x_1(t),x_2(t)+3]$

$$x_1(t) = \frac{c_1 e^{2t}}{2} + \frac{5}{2} - \frac{11t}{2} - c_2$$

$$x_2(t) = \frac{c_1 e^{2t}}{2} + \frac{11t}{2} + c_2$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 66

DSolve[{x1'[t]==x1[t]+x2[t]-8,x2'[t]==x1[t]+x2[t]+3},{x1[t],x2[t]},t,IncludeSingularSolutions

$$x1(t) \rightarrow \frac{1}{4} \left(-22t + 2(c_1 + c_2)e^{2t} + 5 + 2c_1 - 2c_2 \right)$$

$$x2(t) \rightarrow \frac{1}{4} (22t + 2(c_1 + c_2)e^{2t} + 5 - 2c_1 + 2c_2)$$

5.14 problem Problem 5.15 part 3

Internal problem ID [5157]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS.

K.T. CHAU, CRC Press. Boca Raton, FL. 2018

 ${f Section}$: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page

360

Problem number: Problem 5.15 part 3.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = x_1(t) + x_2(t) - 8$$

$$x_2'(t) = x_1(t) + x_2(t) + 3$$

With initial conditions

$$[x_1(0) = 1, x_2(0) = 2]$$

Time used: 0.015 (sec). Leaf size: 30

 $dsolve([diff(x_{1}(t),t) = x_{1}(t)+x_{2}(t)-8, diff(x_{2}(t),t) = x_{1}(t)+x_{2}(t)+3, x_{1}(0) = 1)$

$$x_1(t) = \frac{e^{2t}}{4} + \frac{3}{4} - \frac{11t}{2}$$

$$x_2(t) = \frac{e^{2t}}{4} + \frac{11t}{2} + \frac{7}{4}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 36

 $DSolve[{x1'[t] == x1[t] + x2[t] - 8, x2'[t] == x1[t] + x2[t] + 3}, {x1[0] == 1, x2[0] == 2}, {x1[t], x2[t]}, t, Inclear = x1[t] + x2[t] + x2$

$$x1(t) \to \frac{1}{4} (-22t + e^{2t} + 3)$$

$$x2(t) \to \frac{1}{4}(22t + e^{2t} + 7)$$