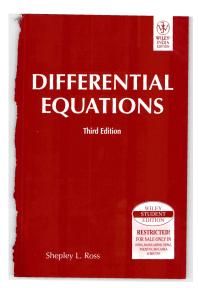
A Solution Manual For

Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.



Nasser M. Abbasi

October 12, 2023

Contents

1	Chapter 1, Differential equations and their solutions. Exercises page 13	2
2	Chapter 1, section 1.3. Exercises page 22	18
3	Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37	30
4	Chapter 2, section 2.2 (Separable equations). Exercises page 47	49

1	Chapter 1, Differential equations and their
	solutions. Exercises page 13

1.1	problem 1(a)						•														3
1.2	problem 1(b)																				4
1.3	problem 1(c)																				5
1.4	problem 1(d)																				6
1.5	problem 2(a)																				7
1.6	problem 2(b)																				8
1.7	problem 3(a)																				9
1.8	problem 3(b)]	10
1.9	problem 4(a)																				11
1.10	problem 4(b)]	12
1.11	problem 5(a)]	13
1.12	problem 5(b)																				14
1.13	problem 6(a)]	15
1.14	problem 6(b)]	16
1.15	problem 7(a)																			-	17

1.1 problem 1(a)

Internal problem ID [10552]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 1(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y - x - 1 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x)+y(x)=1+x,y(x), singsol=all)

$$y(x) = x + e^{-x}c_1$$

Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 15

DSolve[y'[x]+y[x]==1+x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + c_1 e^{-x}$$

1.2 problem 1(b)

Internal problem ID [10553]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 7y' + 12y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-7*diff(y(x),x)+12*y(x)=0,y(x), singsol=all)

$$y(x) = e^{3x}c_1 + c_2e^{4x}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 20

DSolve[y''[x]-7*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{3x}(c_2e^x + c_1)$$

1.3 problem 1(c)

Internal problem ID [10554]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 3y' + 2y - 4x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=4*x^2,y(x), singsol=all)$

$$y(x) = e^{2x}c_1 + c_2e^x + 2x^2 + 6x + 7$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 26

DSolve[$y''[x]-3*y'[x]+2*y[x]==4*x^2,y[x],x$,IncludeSingularSolutions -> True]

$$y(x) \rightarrow 2x(x+3) + e^{x}(c_{2}e^{x} + c_{1}) + 7$$

1.4 problem 1(d)

Internal problem ID [10555]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^2 + 1)y'' + 4y'x + 2y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

 $dsolve((1+x^2)*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{xc_1 + c_2}{x^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 20

$$y(x) \to \frac{c_2 x + c_1}{x^2 + 1}$$

1.5 problem 2(a)

Internal problem ID [10556]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 2(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _Bernoulli]

$$2yxy' + x^2 + y^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

 $dsolve(2*x*y(x)*diff(y(x),x)+x^2+y(x)^2=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{3}\sqrt{x(-x^3 + 3c_1)}}{3x}$$

$$y(x) = \frac{\sqrt{3}\sqrt{x(-x^3 + 3c_1)}}{3x}$$

✓ Solution by Mathematica

Time used: 0.24 (sec). Leaf size: 60

DSolve[2*x*y[x]*y'[x]+x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sqrt{-x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$

$$y(x) \to \frac{\sqrt{-x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$

1.6 problem 2(b)

Internal problem ID [10557]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 2(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y'x + y - x^3y^3 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 30

 $dsolve(x*diff(y(x),x)+y(x)=x^3*y(x)^3,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{-2x + c_1} x}$$
$$y(x) = -\frac{1}{\sqrt{-2x + c_1} x}$$

✓ Solution by Mathematica

Time used: 0.369 (sec). Leaf size: 44

DSolve[x*y'[x]+y[x]==x^3*y[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{\sqrt{x^2(-2x+c_1)}}$$
$$y(x) \to \frac{1}{\sqrt{x^2(-2x+c_1)}}$$
$$y(x) \to 0$$

1.7 problem 3(a)

Internal problem ID [10558]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 3(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 3y - 3x^2 e^{-3x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)+3*y(x)=3*x^2*exp(-3*x),y(x), singsol=all)$

$$y(x) = (x^3 + c_1) e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 17

DSolve[y'[x]+3*y[x]==3*x^2*Exp[-3*x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$y(x) \to e^{-3x} (x^3 + c_1)$$

1.8 problem 3(b)

Internal problem ID [10559]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 3(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + 4xy - 8x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)+4*x*y(x)=8*x,y(x), singsol=all)

$$y(x) = 2 + e^{-2x^2} c_1$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 22

DSolve[y'[x]+4*x*y[x]==8*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2 + c_1 e^{-2x^2}$$

$$y(x) \to 2$$

1.9 problem 4(a)

Internal problem ID [10560]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 4(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{4x} + c_2 e^{-2x}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

 $DSolve[y''[x]-2*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-2x} (c_2 e^{6x} + c_1)$$

1.10 problem 4(b)

Internal problem ID [10561]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 4(b).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 2y'' - 4y' + 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $\label{eq:diff} dsolve(diff(y(x),x\$3)-2*diff(y(x),x\$2)-4*diff(y(x),x)+8*y(x)=0,y(x), singsol=all)$

$$y(x) = e^{-2x}c_1 + c_2e^{2x} + c_3e^{2x}x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 27

 $DSolve[y'''[x]-2*y''[x]-4*y'[x]+8*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-2x} (e^{4x} (c_3 x + c_2) + c_1)$$

1.11 problem 5(a)

Internal problem ID [10562]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 5(a).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3y'' - 4y' + 12y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)-4*diff(y(x),x)+12*y(x)=0,y(x), singsol=all)

$$y(x) = e^{3x}c_1 + c_2e^{-2x} + c_3e^{2x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 29

DSolve[y'''[x]-3*y''[x]-4*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{-2x} (e^{4x} (c_3 e^x + c_2) + c_1)$$

1.12 problem 5(b)

Internal problem ID [10563]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 5(b).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _fully, _exact, _linear]]

$$x^3y''' + 2x^2y'' - 10y'x - 8y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve(x^3*diff(y(x),x\$3)+2*x^2*diff(y(x),x\$2)-10*x*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + c_2 x^4 + \frac{c_3}{x^2}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

DSolve[x^3*y'''[x]+2*x^2*y''[x]-10*x*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_3 x^6 + c_2 x + c_1}{x^2}$$

1.13 problem 6(a)

Internal problem ID [10564]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 6(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + 2y - 6e^x - 4xe^{-2x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x)+2*y(x)=6*exp(x)+4*x*exp(-2*x),y(x), singsol=all)

$$y(x) = (2x^2 + 2e^{3x} + c_1)e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 25

DSolve[y'[x]+2*y[x]==6*Exp[x]+4*x*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2e^x + e^{-2x}(2x^2 + c_1)$$

1.14 problem 6(b)

Internal problem ID [10565]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 6(b).

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 4y + 8\sin(2x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=-8*sin(2*x),y(x), singsol=all)

$$y(x) = c_2 e^{2x} + x e^{2x} c_1 - \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 25

DSolve[y''[x]-4*y'[x]+4*y[x]==-8*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\cos(2x) + e^{2x}(c_2x + c_1)$$

1.15 problem 7(a)

Internal problem ID [10566]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13

Problem number: 7(a).

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 - 4y = 0$$

✓ Solution by Maple

Time used: 0.171 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)^2-4*y(x)=0,y(x), singsol=all)$

$$y(x) = 0$$

 $y(x) = c_1^2 - 2xc_1 + x^2$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 38

 $DSolve[(y'[x])^2-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{1}{4}(-2x + c_1)^2$$
$$y(x) \to \frac{1}{4}(2x + c_1)^2$$
$$y(x) \to 0$$

2	Chapter	1	L,	:	S	90	ct	i	O	n	 1	.3	3.]	\mathbf{E}	X	e	r	C	is	SC	S	p	\mathbf{a}	g	e	2	22	2					
2.1	problem 1																																	19
2.2	problem 2(a)																																	20
2.3	problem 2(b)																																	21
2.4	problem 3(a)																																	22
2.5	problem 4(a)																																	23
2.6	problem 4(b)																																	24
2.7	problem 4(c)																																	25
2.8	problem 5																																	26
2.9	problem 6(a)																																	27
2.10	problem 6(b)																																	28
2.11	problem 8					_						_											_									_		29

2.1 problem 1

Internal problem ID [10567]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 6y = 0$$

With initial conditions

$$[y(0) = 6, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve([diff(y(x),x\$2)+diff(y(x),x)-6*y(x)=0,y(0) = 6, D(y)(0) = 2],y(x), singsol=all)

$$y(x) = (4e^{5x} + 2)e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 20

 $DSolve[\{y''[x]+y'[x]-6*y[x]==0,\{y[0]==6,y'[0]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-3x} (4e^{5x} + 2)$$

2.2 problem 2(a)

Internal problem ID [10568]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 2(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y - 2e^{-x}x = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(x),x)+y(x)=2*x*exp(-x),y(0) = 2],y(x), singsol=all)

$$y(x) = \left(x^2 + 2\right) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: $16\,$

 $DSolve[\{y'[x]+y[x]==2*x*Exp[-x],\{y[0]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x}(x^2 + 2)$$

2.3 problem 2(b)

Internal problem ID [10569]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 2(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y - 2e^{-x}x = 0$$

With initial conditions

$$[y(-1) = e + 3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 17

dsolve([diff(y(x),x)+y(x)=2*x*exp(-x),y(-1) = exp(1)+3],y(x), singsol=all)

$$y(x) = (x^2 + 3e^{-1})e^{-x}$$

✓ Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 20

$$y(x) \to e^{-x-1}(ex^2+3)$$

2.4 problem 3(a)

Internal problem ID [10570]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 3(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 12y = 0$$

With initial conditions

$$[y(0) = 5, y'(0) = 6]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(x),x\$2)-diff(y(x),x)-12*y(x)=0,y(0) = 5, D(y)(0) = 6],y(x), singsol=all)

$$y(x) = (3e^{7x} + 2)e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 20

$$y(x) \to e^{-3x} (3e^{7x} + 2)$$

2.5 problem 4(a)

Internal problem ID [10571]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 4(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With initial conditions

$$\left[y(0) = 0, y'\left(\frac{\pi}{2}\right) = 1\right]$$

X Solution by Maple

dsolve([diff(y(x),x\$2)+y(x)=0,y(0) = 0, D(y)(1/2*Pi) = 1],y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y''[x]+y[x]==0,\{y[0]==0,y'[Pi/2]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

{}

2.6 problem 4(b)

Internal problem ID [10572]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 4(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With initial conditions

$$\left[y(0)=0,y'\Big(\frac{\pi}{2}\Big)=-1\right]$$

X Solution by Maple

dsolve([diff(y(x),x\$2)+y(x)=0,y(0) = 0, D(y)(1/2*Pi) = -1],y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y''[x]+y[x]==0,\{y[0]==0,y'[Pi/2]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

{}

2.7 problem 4(c)

Internal problem ID [10573]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 4(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With initial conditions

$$[y(0) = 0, y'(\pi) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

dsolve([diff(y(x),x\$2)+y(x)=0,y(0) = 0, D(y)(Pi) = 1],y(x), singsol=all)

$$y(x) = -\sin\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 9

 $DSolve[\{y''[x]+y[x]==0,\{y[0]==0,y'[Pi]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sin(x)$$

2.8 problem 5

Internal problem ID [10574]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 5.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$x^3y''' - 3x^2y'' + 6y'x - 6y = 0$$

With initial conditions

$$[y(2) = 0, y'(2) = 2, y''(2) = 6]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

$$y(x) = x^3 - 3x^2 + 2x$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 13

$$y(x) \to (x-2)(x-1)x$$

2.9 problem 6(a)

Internal problem ID [10575]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 6(a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - x^2 \sin(y) = 0$$

With initial conditions

$$[y(1) = -2]$$

✓ Solution by Maple

Time used: 2.719 (sec). Leaf size: 97

 $\label{eq:decomposition} \\ \mbox{dsolve([diff(y(x),x)=x^2*sin(y(x)),y(1) = -2],y(x), singsol=all)} \\$

$$y(x) = \arctan\left(\frac{2\sin\left(2\right)e^{\frac{(x-1)\left(x^{2}+x+1\right)}{3}}}{\left(-1+\cos\left(2\right)\right)e^{\frac{2(x-1)\left(x^{2}+x+1\right)}{3}}-\cos\left(2\right)-1}, \frac{\left(-\cos\left(2\right)+1\right)e^{\frac{2(x-1)\left(x^{2}+x+1\right)}{3}}-\cos\left(2\right)-1}{\left(-1+\cos\left(2\right)\right)e^{\frac{2(x-1)\left(x^{2}+x+1\right)}{3}}-\cos\left(2\right)-1}\right)$$

✓ Solution by Mathematica

Time used: 6.739 (sec). Leaf size: 24

 $\label{eq:DSolve} DSolve[\{y'[x]==x^2*Sin[y[x]],\{y[1]==-2\}\},y[x],x,IncludeSingularSolutions \ -> \ True]$

$$y(x) \to -2 \cot^{-1} \left(e^{\frac{1}{3} - \frac{x^3}{3}} \cot(1) \right)$$

2.10 problem 6(b)

Internal problem ID [10576]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 6(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y^2}{x - 2} = 0$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=y(x)^2/(x-2),y(1) = 0],y(x), singsol=all)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: $6\,$

 $DSolve[\{y'[x]==y[x]^2/(x-2),\{y[1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

2.11 problem 8

Internal problem ID [10577]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22

Problem number: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^{\frac{1}{3}} = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=y(x)^(1/3),y(0) = 0],y(x), singsol=all)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 21 $\,$

 $DSolve[\{y'[x]==y[x]^(1/3),\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{3} \sqrt{\frac{2}{3}} x^{3/2}$$

3	Chapter 2, section 2.1 (Exact differential equat	ions	3
	and integrating factors). Exercises page 37		
3.1	oroblem 1	3	1
3.2	problem $2 \ldots \ldots \ldots \ldots$. 32	2
3.3	problem 3	. 33	3
3.4	problem 4	34	4
3.5	problem 5	. 35	ō
3.6	problem 7	. 36	ô
3.7	problem 8	37	7
3.8	problem 9	. 38	3
3.9	problem 10	. 39	9
3.10	problem 11	. 40	J
3.11	problem 12	4	1
3.12	problem 13	. 42	2
3.13	problem 14	. 43	3
3.14	problem 15	44	4
3.15	problem 16	. 45	5
3.16	problem 21	. 46	ô
	problem 22		7
3.18	problem 24	. 48	8

3.1 problem 1

Internal problem ID [10578]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises

page 37

Problem number: 1.

ODE order: 1. ODE degree: 1.

$$3x + 2y + (y + 2x)y' = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 49

dsolve((3*x+2*y(x))+(2*x+y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{-2xc_1 - \sqrt{c_1^2x^2 + 1}}{c_1}$$

$$y(x) = \frac{-2xc_1 + \sqrt{c_1^2 x^2 + 1}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.538 (sec). Leaf size: 79

 $DSolve[(3*x+2*y[x])+(2*x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -2x - \sqrt{x^2 + e^{2c_1}}$$

$$y(x) \to -2x + \sqrt{x^2 + e^{2c_1}}$$

$$y(x) \to -\sqrt{x^2} - 2x$$

$$y(x) \to \sqrt{x^2} - 2x$$

3.2 problem 2

Internal problem ID [10579]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${f Section}:$ Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises

page 37

Problem number: 2.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]'

$$y^2 + 3 + (2xy - 4)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 37

 $dsolve((y(x)^2+3)+(2*x*y(x)-4)*diff(y(x),x)=0,y(x), singsol=all)$

$$c_{1} + \frac{1}{\left(i\sqrt{3} - y\left(x\right)\right)\left(i\left(xy\left(x\right) - 4\right)\sqrt{3} - 3x\right)} = 0$$

✓ Solution by Mathematica

Time used: 0.392 (sec). Leaf size: 77

 $DSolve[(y[x]^2+3)+(2*x*y[x]-4)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2 - \sqrt{4 + x(-3x + c_1)}}{x}$$
$$y(x) \to \frac{2 + \sqrt{4 + x(-3x + c_1)}}{x}$$
$$y(x) \to -i\sqrt{3}$$
$$y(x) \to i\sqrt{3}$$

3.3 problem 3

Internal problem ID [10580]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x),G(x)]'],

$$2xy + 1 + (x^2 + 4y)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

 $dsolve((2*x*y(x)+1)+(x^2+4*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{x^2}{4} - \frac{\sqrt{x^4 - 8c_1 - 8x}}{4}$$
$$y(x) = -\frac{x^2}{4} + \frac{\sqrt{x^4 - 8c_1 - 8x}}{4}$$

✓ Solution by Mathematica

Time used: 0.133 (sec). Leaf size: 61

 $DSolve[(2*x*y[x]+1)+(x^2+4*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{1}{4} \Big(-x^2 - \sqrt{x^4 - 8x + 16c_1} \Big)$$

$$y(x) \to \frac{1}{4} \left(-x^2 + \sqrt{x^4 - 8x + 16c_1} \right)$$

3.4 problem 4

Internal problem ID [10581]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004. **Section**: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class A']]

$$3x^{2}y + 2 - (x^{3} + y)y' = 0$$

X Solution by Maple

 $dsolve((3*x^2*y(x)+2)-(x^3+y(x))*diff(y(x),x)=0,y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(3*x^2+2)-(x^3+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Not solved

3.5 problem 5

Internal problem ID [10582]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_Abel, '2nd type', 'class B']]

$$6xy + 2y^2 - 5 + (3x^2 + 4xy - 6)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 67

 $\label{eq:dsolve} $$ dsolve((6*x*y(x)+2*y(x)^2-5)+(3*x^2+4*x*y(x)-6)*diff(y(x),x)=0,y(x), singsol=all) $$ dsolve((6*x*y(x)+2*y(x)^2-5)+(3*x^2+4*x*y(x)^2-6)*diff(y(x),x)=0,y(x), singsol=all) $$ dsolve((6*x*y(x)+2*y(x)^2-6)*diff(y(x),x)=0,y(x), singsol=all) $$ dsolve((6*x*y(x)+2*y(x)^2-6)*diff(y(x),x)=0,y(x), singsol=all) $$ dsolve((6*x*y(x)+2*y(x)^2-6)*diff(x)=0, singsol=all) $$ dsolve$

$$y(x) = \frac{-3x^2 + 6 + \sqrt{9x^4 - 8xc_1 + 4x^2 + 36}}{4x}$$
$$y(x) = -\frac{3x^2 + \sqrt{9x^4 - 8xc_1 + 4x^2 + 36} - 6}{4x}$$

✓ Solution by Mathematica

Time used: 0.471 (sec). Leaf size: 79

$$y(x) \to -\frac{3x^2 + \sqrt{9x^4 + 4x^2 + 16c_1x + 36} - 6}{4x}$$

$$y(x) \to \frac{-3x^2 + \sqrt{9x^4 + 4x^2 + 16c_1x + 36} + 6}{4x}$$

3.6 problem 7

Internal problem ID [10583]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004. **Section**: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises

page 37

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_Abel, '2nd type', 'class A']]

$$y \sec(x)^{2} + \sec(x)\tan(x) + (\tan(x) + 2y)y' = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 63

 $dsolve((y(x)*sec(x)^2+sec(x)*tan(x))+(tan(x)+2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\sin(x) - \sqrt{-4\cos(x)^2 c_1 + \sin(x)^2 - 4\cos(x)}}{2\cos(x)}$$
$$y(x) = -\frac{\sin(x) + \sqrt{-4\cos(x)^2 c_1 + \sin(x)^2 - 4\cos(x)}}{2\cos(x)}$$

✓ Solution by Mathematica

Time used: 1.148 (sec). Leaf size: 96

$$y(x) \to \frac{1}{4} \left(-2\tan(x) - \sqrt{\sec^2(x)} \sqrt{-16\cos(x) + (-2 + 8c_1)\cos(2x) + 2 + 8c_1} \right)$$
$$y(x) \to \frac{1}{4} \left(-2\tan(x) + \sqrt{\sec^2(x)} \sqrt{-16\cos(x) + (-2 + 8c_1)\cos(2x) + 2 + 8c_1} \right)$$

3.7 problem 8

Internal problem ID [10584]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004. **Section**: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises

page 37

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$\frac{x}{y^2} + x + \left(\frac{x^2}{y^3} + y\right)y' = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 47

 $dsolve((x/y(x)^2+x)+(x^2/y(x)^3+y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$\frac{y(x)^{2} x^{2}}{2y(x)^{2} + 2} + \frac{y(x)^{2}}{2} - \frac{1}{2(y(x)^{2} + 1)} - \ln(y(x)^{2} + 1) + c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.284 (sec). Leaf size: 55

 $DSolve[(x/y[x]^2+x)+(x^2/y[x]^3+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{x^2y(x)^2}{2(y(x)^2+1)} + \frac{y(x)^2}{2} - \frac{1}{2(y(x)^2+1)} - \log(y(x)^2+1) = c_1, y(x)\right]$$

3.8 problem 9

Internal problem ID [10585]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises

page 37

Problem number: 9.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\frac{(2s-1)\,s'}{t} + \frac{s-s^2}{t^2} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 31

 $dsolve((2*s(t)-1)/t*diff(s(t),t)+(s(t)-s(t)^2)/t^2=0,s(t), singsol=all)$

$$s(t) = \frac{1}{2} - \frac{\sqrt{4c_1t + 1}}{2}$$

$$s(t) = \frac{1}{2} + \frac{\sqrt{4c_1t + 1}}{2}$$

✓ Solution by Mathematica

Time used: 0.407 (sec). Leaf size: 59

 $DSolve[(2*s[t]-1)/t*s'[t]+(s[t]-s[t]^2)/t^2==0,s[t],t,IncludeSingularSolutions \rightarrow True]$

$$s(t) \rightarrow \frac{1}{2} \left(1 - \sqrt{1 - 4e^{c_1}t}\right)$$

$$s(t) \rightarrow \frac{1}{2} \left(1 + \sqrt{1 - 4e^{c_1}t} \right)$$

$$s(t) \to 0$$

$$s(t) \to 1$$

3.9 problem 10

Internal problem ID [10586]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004. **Section**: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$\frac{2y^{\frac{3}{2}} + 1}{x^{\frac{1}{3}}} + (3\sqrt{x}\sqrt{y} - 1)y' = 0$$

X Solution by Maple

 $dsolve((2*y(x)^{(3/2)+1)/x^{(1/3)}+(3*x^{(1/2)}*y(x)^{(1/2)-1})*diff(y(x),x)=0,y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(2*y[x]^(3/2)+1)/x^(1/3)+(3*x^(1/2)*y[x]^(1/2)-1)*y'[x]==0,y[x],x,IncludeSingularSolut]$

Timed out

3.10 problem 11

Internal problem ID [10587]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

 ${f Section}$: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises

page 37

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x),G(x)]'],

$$2xy - 3 + (x^2 + 4y) y' = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 22

 $dsolve([(2*x*y(x)-3)+(x^2+4*y(x))*diff(y(x),x)=0,y(1) = 2],y(x), singsol=all)$

$$y(x) = -\frac{x^2}{4} + \frac{\sqrt{x^4 + 24x + 56}}{4}$$

✓ Solution by Mathematica

Time used: 0.137 (sec). Leaf size: 27

$$y(x) \to \frac{1}{4} \Big(\sqrt{x^4 + 24x + 56} - x^2 \Big)$$

3.11 problem 12

Internal problem ID [10588]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004. **Section**: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$3y^2x^2 - y^3 + 2x + (2x^3y - 3y^2x + 1)y' = 0$$

With initial conditions

$$[y(-2) = 1]$$

X Solution by Maple

No solution found

✓ Solution by Mathematica

Time used: 56.288 (sec). Leaf size: 250

$$DSolve[{(3*x^2*y[x]^2-y[x]^3+2*x)+(2*x^3*y[x]-3*x*y[x]^2+1)*y'[x]==0,{y[-2]==1}},y[x],x,Inclustice[{(3*x^2*y[x]^2-y[x]^3+2*x}]$$

$$y(x) \longrightarrow \frac{2\sqrt[3]{2}\left(1 - i\sqrt{3}\right)x^{6} + 4\sqrt[3]{-2x^{9} - 36x^{4} - 27x^{2} + 3\sqrt{3}\sqrt{x^{3}\left(4x^{10} + 4x^{8} + 44x^{5} + 72x^{3} + 27x - 4\right)}x^{3} + \left(1 - i\sqrt{3}\right)x^{6}}{12x\sqrt[3]{-2x^{9} - 36x^{4} - 27x^{2} + 3\sqrt{3}\sqrt{x^{3}}}}$$

3.12 problem 13

Internal problem ID [10589]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004. **Section**: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_Abel, '2nd type', 'class B']]

$$2y\sin(x)\cos(x) + y^{2}\sin(x) + (\sin(x)^{2} - 2y\cos(x))y' = 0$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.359 (sec). Leaf size: 24

 $dsolve([(2*y(x)*sin(x)*cos(x)+y(x)^2*sin(x))+(sin(x)^2-2*y(x)*cos(x))*diff(y(x),x)=0,y(0)=3$

$$y(x) = \frac{\left(\sin(x)^2 + \sqrt{\sin(x)^4 + 36\cos(x)}\right)\sec(x)}{2}$$

✓ Solution by Mathematica

Time used: 1.267 (sec). Leaf size: 32

 $DSolve[{(2*y[x]*Sin[x]*Cos[x]+y[x]^2*Sin[x])+(Sin[x]^2-2*y[x]*Cos[x])*y'[x]==0,{y[0]==3}},y[x]=0$

$$y(x) \to \frac{1}{2}\sec(x)\left(-\cos^2(x) + \sqrt{\sin^4(x) + 36\cos(x)} + 1\right)$$

3.13 problem 14

Internal problem ID [10590]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004. **Section**: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_Abel, '2nd type', 'class B']]

$$e^{x}y + 2e^{x} + y^{2} + (e^{x} + 2xy)y' = 0$$

With initial conditions

$$[y(0) = 6]$$

✓ Solution by Maple

Time used: 0.437 (sec). Leaf size: 29

$$y(x) = \frac{-e^x + \sqrt{e^{2x} - 8x e^x + 32x}}{2x}$$

✓ Solution by Mathematica

Time used: 31.602 (sec). Leaf size: 37

 $DSolve[\{(y[x]*Exp[x]+2*Exp[x]+y[x]^2)+(Exp[x]+2*x*y[x])*y'[x]==0,\{y[0]==6\}\},y[x],x,IncludeSin(x)=0$

$$y(x) \to \frac{\sqrt{-8e^x x + 32x + e^{2x}} - e^x}{2x}$$

3.14 problem 15

Internal problem ID [10591]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004. **Section**: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises

page 37

Problem number: 15.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [_exact,\ _rational,\ [_1st_order,\ `_with_symmetry_[F(x)*G(y),0]'}$

$$\frac{3-y}{x^2} + \frac{(y^2 - 2x)y'}{y^2x} = 0$$

With initial conditions

$$[y(-1) = 2]$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 21

 $dsolve([(3-y(x))/x^2+((y(x)^2-2*x)/(x*y(x)^2))*diff(y(x),x)=0,y(-1)=2],y(x), singsol=all)$

$$y(x) = x + \frac{3}{2} + \frac{\sqrt{4x^2 + 4x + 9}}{2}$$

✓ Solution by Mathematica

Time used: 1.216 (sec). Leaf size: 26

 $DSolve[{(3-y[x])/x^2+((y[x]^2-2*x)/(x*y[x]^2))*y'[x]==0, {y[-1]==2}}, y[x], x, IncludeSingularSolve[{(3-y[x])/x^2+((y[x]^2-2*x)/(x*y[x]^2))*y'[x]==0, {y[-1]==2}}, y[x], x, IncludeSingularSolve[{(3-y[x])/x^2+((y[x]^2-2*x)/(x*y[x]^2)))*y'[x]==0, {y[-1]==2}}, y[x], y[x], x, IncludeSingularSolve[{(3-y[x])/x^2+((y[x])/x^2))}, y[x], y[x],$

$$y(x) \to \frac{1}{2} \Big(2x + \sqrt{4x(x+1) + 9} + 3 \Big)$$

3.15 problem 16

Internal problem ID [10592]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004. **Section**: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact, _rational]

$$\boxed{\frac{1+8xy^{\frac{2}{3}}}{x^{\frac{2}{3}}y^{\frac{1}{3}}} + \frac{\left(2x^{\frac{4}{3}}y^{\frac{2}{3}} - x^{\frac{1}{3}}\right)y'}{y^{\frac{4}{3}}} = 0}$$

With initial conditions

$$[y(1) = 8]$$

Solution by Maple

Time used: 0.25 (sec). Leaf size: 55

 $dsolve([(1+8*x*y(x)^{(2/3)})/(x^{(2/3)*y(x)^{(1/3)}}+((2*x^{(4/3)*y(x)^{(2/3)}-x^{(1/3)}})/(y(x)^{(4/3)})))$

$$y(x) = \text{RootOf}\left(64 _Z_{3}^{\frac{7}{3}}x^{4} + 96 _Z_{3}^{\frac{5}{3}}x^{3} - 729 _Z_{3}^{\frac{4}{3}} + 48x^{2} _Z + 8x _Z_{3}^{\frac{1}{3}}\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[{(1+8*x*y[x]^(2/3))/(x^(2/3)*y[x]^(1/3))+((2*x^(4/3)*y[x]^(2/3)-x^(1/3))/(y[x]^(4/3)))}$

{}

3.16 problem 21

Internal problem ID [10593]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$4x + 3y^2 + 2yxy' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

 $dsolve((4*x+3*y(x)^2)+(2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{x\left(-x^4 + c_1\right)}}{x^2}$$

$$y(x) = -\frac{\sqrt{x(-x^4 + c_1)}}{x^2}$$

✓ Solution by Mathematica

Time used: 0.228 (sec). Leaf size: 46

 $DSolve[(4*x+3*y[x]^2)+(2*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{-x^4 + c_1}}{x^{3/2}}$$

$$y(x) o rac{\sqrt{-x^4 + c_1}}{x^{3/2}}$$

3.17 problem 22

Internal problem ID [10594]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004. **Section**: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 + 2xy - x^2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((y(x)^2+2*x*y(x))-x^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x^2}{-x + c_1}$$

✓ Solution by Mathematica

Time used: 0.144 (sec). Leaf size: 22

DSolve[$(y[x]^2+2*x*y[x])-x^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to \frac{x^2}{-x + c_1}$$

$$y(x) \to 0$$

3.18 problem 24

Internal problem ID [10595]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004. **Section**: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises

page 37

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$y + x(x^2 + y^2)^2 + (y(x^2 + y^2)^2 - x)y' = 0$$

✓ Solution by Maple

Time used: 0.218 (sec). Leaf size: 39

 $dsolve((y(x)+x*(x^2+y(x)^2)^2)+(y(x)*(x^2+y(x)^2)^2-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\tan \left(\text{RootOf} \left(-\tan \left(-Z \right)^4 x^4 - 2\tan \left(-Z \right)^2 x^4 - x^4 + 4c_1 - 4 - Z \right) \right) x$$

✓ Solution by Mathematica

Time used: 0.097 (sec). Leaf size: 40

Solve
$$\left[\arctan\left(\frac{x}{y(x)}\right) + \frac{x^4}{4} + \frac{1}{2}x^2y(x)^2 + \frac{y(x)^4}{4} = c_1, y(x)\right]$$

4	Chapter 2, section 2.2 (Separable equations).
	Exercises page 47

4.1	problem 1		•	•	•	•	•	 	•	•	•	•	•			•	•	•			•		•	•		•		50
4.2	problem 2							 																				51
4.3	problem 3							 																				52
4.4	problem 4							 																				53
4.5	problem 5							 																				54
4.6	problem 6							 																				55
4.7	problem 7							 																				56
4.8	problem 8							 																				58
4.9	problem 9				•			 																				59
4.10	problem 10							 																				60
4.11	problem 11				•			 																				61
4.12	problem 12							 																				62
4.13	problem 13							 																				64
4.14	problem 14				•			 																				65
4.15	problem 15							 																				66
4.16	problem 16							 																				67
4.17	problem 17							 																				68
4.18	problem 18							 																				69
4.19	problem 19							 																				70
4.20	problem 20							 																				71
4.21	problem 22	(a)						 																				72
4.22	problem 22	(b)						 																				73
4.23	problem 23	(a)						 																				74
4.24	problem 23	(b)						 																				76

4.1 problem 1

Internal problem ID [10596]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$4xy + \left(x^2 + 1\right)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve((4*x*y(x))+(x^2+1)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{(x^2 + 1)^2}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 20

DSolve[(4*x*y[x])+(x^2+1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1}{(x^2+1)^2}$$

$$y(x) \to 0$$

4.2 problem 2

Internal problem ID [10597]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$xy + 2x + y + 2 + (x^{2} + 2x)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve((x*y(x)+2*x+y(x)+2)+(x^2+2*x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -2 + \frac{c_1}{\sqrt{x(x+2)}}$$

✓ Solution by Mathematica

Time used: 0.095 (sec). Leaf size: 27

 $DSolve[(x*y[x]+2*x+y[x]+2)+(x^2+2*x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -2 + \frac{c_1}{\sqrt{x}\sqrt{x+2}}$$

$$y(x) \rightarrow -2$$

4.3 problem 3

Internal problem ID [10598]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 3.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$2r(s^2+1) + (r^4+1) s' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve(2*r*(s(r)^2+1)+(r^4+1)*diff(s(r),r)=0,s(r), singsol=all)$

$$s(r) = -\tan\left(\arctan\left(r^2\right) + 2c_1\right)$$

✓ Solution by Mathematica

Time used: 0.316 (sec). Leaf size: 31

 $DSolve[2*r*(s[r]^2+1)+(r^4+1)*s'[r]==0,s[r],r,IncludeSingularSolutions \rightarrow True]$

$$s(r) \to -\tan\left(\arctan\left(r^2\right) - c_1\right)$$

$$s(r) \rightarrow -i$$

$$s(r) \rightarrow i$$

4.4 problem 4

Internal problem ID [10599]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$\csc(y) + y'\sec(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(csc(y(x))+sec(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \arccos\left(\sin\left(x\right) + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.443 (sec). Leaf size: 27

 $DSolve[Csc[y[x]] + Sec[x]*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\arccos(\sin(x) - c_1)$$

$$y(x) \to \arccos(\sin(x) - c_1)$$

4.5 problem 5

Internal problem ID [10600]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$\tan\left(\theta\right) + 2r\theta' = 0$$

✓ Solution by Maple

Time used: 0.469 (sec). Leaf size: 21

dsolve(tan(theta(r))+2*r*diff(theta(r),r)=0,theta(r), singsol=all)

$$\theta(r) = \arcsin\left(\frac{1}{\sqrt{c_1 r}}\right)$$

$$\theta(r) = -\arcsin\left(\frac{1}{\sqrt{c_1 r}}\right)$$

✓ Solution by Mathematica

Time used: 8.404 (sec). Leaf size: 21

DSolve[Tan[theta[r]]+2*r*theta'[r]==0,theta[r],r,IncludeSingularSolutions -> True]

$$heta(r) o rcsin \left(rac{e^{c_1}}{\sqrt{r}}
ight)$$

$$\theta(r) \to 0$$

4.6 problem 6

Internal problem ID [10601]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 6.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$(e^{v} + 1)\cos(u) + e^{v}(1 + \sin(u))v' = 0$$

✓ Solution by Maple

Time used: 0.922 (sec). Leaf size: 28

dsolve((exp(v(u))+1)*cos(u) + exp(v(u))*(1+sin(u))*diff(v(u),u)=0,v(u), singsol=all)

$$v(u) = -\ln\left(-\frac{1+\sin(u)}{-1+\sin(u)e^{c_1}+e^{c_1}}\right) - c_1$$

✓ Solution by Mathematica

Time used: 4.67 (sec). Leaf size: 28

DSolve[(Exp[v[u]]+1)*Cos[u] + Exp[v[u]]*(1+Sin[u])*v'[u]==0,v[u],u,IncludeSingularSolutions -

$$v(u) \to \log\left(-1 + \frac{e^{c_1}}{\sin(u) + 1}\right)$$

 $v(u) \to i\pi$

4.7 problem 7

Internal problem ID [10602]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 7.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$(x+4)(y^2+1) + y(x^2+3x+2)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 122

$$dsolve((x+4)*(y(x)^2+1) + y(x)*(x^2+3*x+2)*diff(y(x),x)=0,y(x), singsol=all)$$

$$y(x) = \frac{\sqrt{-x^6 + c_1 x^4 - 6x^5 + 8c_1 x^3 + 24x^2 c_1 + 100x^3 + 32x c_1 + 345x^2 + 16c_1 + 474x + 239}}{(x+1)^3}$$

$$y(x) = -\frac{\sqrt{-x^6 + c_1 x^4 - 6x^5 + 8c_1 x^3 + 24x^2 c_1 + 100x^3 + 32x c_1 + 345x^2 + 16c_1 + 474x + 239}}{(x+1)^3}$$

✓ Solution by Mathematica

Time used: 4.966 (sec). Leaf size: 126

 $DSolve[(x+4)*(y[x]^2+1) + y[x]*(x^2+3*x+2)*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{-(x+1)^6 + e^{2c_1}(x+2)^4}}{(x+1)^3}$$

$$y(x) \to \frac{\sqrt{-(x+1)^6 + e^{2c_1}(x+2)^4}}{(x+1)^3}$$

$$y(x) \to -i$$

$$y(x) \to i$$

$$y(x) \to \frac{(x+1)^3}{\sqrt{-(x+1)^6}}$$

$$y(x) \to \frac{\sqrt{-(x+1)^6}}{(x+1)^3}$$

4.8 problem 8

Internal problem ID [10603]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x + y - y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve((x+y(x))-x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (\ln(x) + c_1) x$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 12

DSolve[(x+y[x])- x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(\log(x) + c_1)$$

4.9 problem 9

Internal problem ID [10604]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 9.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$2xy + 3y^2 - (2xy + x^2)y' = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 35

 $dsolve((2*x*y(x)+3*y(x)^2)-(2*x*y(x)+x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \left(-\frac{1}{2} - \frac{\sqrt{4xc_1 + 1}}{2}\right)x$$

$$y(x) = \left(-\frac{1}{2} + \frac{\sqrt{4xc_1 + 1}}{2}\right)x$$

✓ Solution by Mathematica

Time used: 0.406 (sec). Leaf size: 61

$$y(x) \to -\frac{1}{2}x \Big(1 + \sqrt{1 + 4e^{c_1}x}\Big)$$

$$y(x) \to \frac{1}{2}x \Big(-1 + \sqrt{1 + 4e^{c_1}x}\Big)$$

$$y(x) \to 0$$

$$y(x) \to -x$$

4.10 problem 10

Internal problem ID [10605]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 10.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$v^{3} + (u^{3} - uv^{2})v' = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 21

 $dsolve(v(u)^3+ (u^3-u*v(u)^2)*diff(v(u),u)=0,v(u), singsol=all)$

$$v(u) = \mathrm{e}^{-rac{\mathrm{LambertW}\left(-rac{\mathrm{e}^{-2c_1}}{u^2}
ight)}{2}-c_1}$$

✓ Solution by Mathematica

Time used: 5.391 (sec). Leaf size: 56

 $DSolve[v[u]^3 + (u^3 - u * v[u]^2) * v'[u] == 0, v[u], u, Include Singular Solutions \rightarrow True]$

$$v(u)
ightarrow -iu \sqrt{W\left(-rac{e^{-2c_1}}{u^2}
ight)}$$

$$v(u) o iu \sqrt{W\left(-rac{e^{-2c_1}}{u^2}
ight)}$$

$$v(u) \to 0$$

4.11 problem 11

Internal problem ID [10606]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x\tan\left(\frac{y}{x}\right) + y - y'x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

dsolve((x*tan(y(x)/x)+y(x))-x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \arcsin(xc_1) x$$

✓ Solution by Mathematica

Time used: 5.033 (sec). Leaf size: 19

 $DSolve[(x*Tan[y[x]/x]+y[x])- x*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \arcsin\left(e^{c_1}x\right)$$

$$y(x) \to 0$$

4.12 problem 12

Internal problem ID [10607]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 12.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$(2s^{2} + 2st + t^{2}) s' + s^{2} + 2st - t^{2} = 0$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 421

 $\label{eq:dsolve} \\ \text{dsolve}((2*s(t)^2+2*s(t)*t+t^2)*diff(s(t),t)+(s(t)^2+2*s(t)*t-t^2)=0,\\ s(t), \text{ singsol=all}) \\$

$$s(t) = \frac{\frac{\left(4t^3c_1^3 + 2 + \sqrt{17c_1^6t^6 + 16t^3c_1^3 + 4}\right)^{\frac{1}{3}}}{2} - \frac{t^2c_1^2}{2\left(4t^3c_1^3 + 2 + \sqrt{17c_1^6t^6 + 16t^3c_1^3 + 4}\right)^{\frac{1}{3}}} - \frac{c_1t}{2}}{c_1}$$

s(t)

$$= \frac{-\frac{\left(4t^3c_1^3 + 2 + \sqrt{17c_1^6t^6 + 16t^3c_1^3 + 4}\right)^{\frac{1}{3}}}{4}}{4} + \frac{t^2c_1^2}{4\left(4t^3c_1^3 + 2 + \sqrt{17c_1^6t^6 + 16t^3c_1^3 + 4}\right)^{\frac{1}{3}}} - \frac{c_1t}{2} - \frac{i\sqrt{3}\left(\frac{\left(4t^3c_1^3 + 2 + \sqrt{17c_1^6t^6 + 16t^3c_1^3 + 4}\right)^{\frac{1}{3}}}{2} + \frac{c_1t}{2\left(4t^3c_1^3 + 2 + \sqrt{17c_1^6t^6 + 16t^3c_1^3 + 4}\right)^{\frac{1}{3}}}}{2} + \frac{c_1t}{2} - \frac{c_1$$

s(t)

$$=\frac{-\frac{\left(4t^3c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}}{4}}{4}+\frac{t^2c_1^2}{4\left(4t^3c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}}-\frac{c_1t}{2}}{4\left(4t^3c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}}-\frac{c_1t}{2}}{2}+\frac{i\sqrt{3}\left(\frac{\left(4t^3c_1^3+2+\sqrt{17c_1^6t^6+16t^3c_1^3+4}\right)^{\frac{1}{3}}}{2}+\frac{c_1t}{2}+$$

 c_1

✓ Solution by Mathematica

Time used: 43.63 (sec). Leaf size: 613

$$\begin{split} s(t) & \to \frac{1}{2} \left(\sqrt[3]{4t^3 + \sqrt{17t^6 + 16e^{3c_1}t^3 + 4e^{6c_1}}} + 2e^{3c_1} \right. \\ & - \frac{t^2}{\sqrt[3]{4t^3 + \sqrt{17t^6 + 16e^{3c_1}t^3 + 4e^{6c_1}}} + 2e^{3c_1}} - t \right) \\ s(t) & \to \frac{1}{8} \left(2i \left(\sqrt{3} + i \right) \sqrt[3]{4t^3 + \sqrt{17t^6 + 16e^{3c_1}t^3 + 4e^{6c_1}}} + 2e^{3c_1} \right. \\ & + \frac{\left(2 + 2i\sqrt{3} \right)t^2}{\sqrt[3]{4t^3 + \sqrt{17t^6 + 16e^{3c_1}t^3 + 4e^{6c_1}}} + 2e^{3c_1}} - 4t \right) \\ s(t) & \to \frac{1}{8} \left(\left(-2 - 2i\sqrt{3} \right) \sqrt[3]{4t^3 + \sqrt{17t^6 + 16e^{3c_1}t^3 + 4e^{6c_1}}} + 2e^{3c_1} \right. \\ & + \frac{\left(2 - 2i\sqrt{3} \right)t^2}{\sqrt[3]{4t^3 + \sqrt{17t^6 + 16e^{3c_1}t^3 + 4e^{6c_1}}} + 2e^{3c_1}} \right. \\ s(t) & \to \frac{1}{2} \left(\sqrt[3]{\sqrt{17}\sqrt{t^6} + 4t^3} - \frac{t^2}{\sqrt[3]{\sqrt{17}\sqrt{t^6} + 4t^3}} - t \right) \\ s(t) & \to \frac{1}{4} \left(\left(-1 - i\sqrt{3} \right) \sqrt[3]{\sqrt{17}\sqrt{t^6} + 4t^3} + \frac{\left(1 - i\sqrt{3} \right)t^2}{\sqrt[3]{\sqrt{17}\sqrt{t^6} + 4t^3}} - 2t \right) \\ s(t) & \to \frac{1}{4} \left(i \left(\sqrt{3} + i \right) \sqrt[3]{\sqrt{17}\sqrt{t^6} + 4t^3} + \frac{\left(1 + i\sqrt{3} \right)t^2}{\sqrt[3]{\sqrt{17}\sqrt{t^6} + 4t^3}} - 2t \right) \\ \end{split}$$

4.13 problem 13

Internal problem ID [10608]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x^{3} + y^{2}\sqrt{y^{2} + x^{2}} - xy\sqrt{y^{2} + x^{2}}y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve((x^3+y(x)^2*sqrt(x^2+y(x)^2))-x*y(x)*sqrt(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all(x^3+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all(x^3+y(x)^2)*diff($

$$-\frac{(y(x)^2 + x^2)^{\frac{3}{2}}}{r^3} + 3\ln(x) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 19.618 (sec). Leaf size: 265

$$y(x) \to -\sqrt{-x^2 - \frac{1}{2}\sqrt[6]{3}\left(\sqrt{3} + 3i\right)\sqrt[3]{x^6(\log(x) + c_1)^2}}$$

$$y(x) \to \sqrt{-x^2 - \frac{1}{2}\sqrt[6]{3}\left(\sqrt{3} + 3i\right)\sqrt[3]{x^6(\log(x) + c_1)^2}}$$

$$y(x) \to -\sqrt{-x^2 - \frac{1}{2}\sqrt[6]{3}\left(\sqrt{3} - 3i\right)\sqrt[3]{x^6(\log(x) + c_1)^2}}$$

$$y(x) \to \sqrt{-x^2 - \frac{1}{2}\sqrt[6]{3}\left(\sqrt{3} - 3i\right)\sqrt[3]{x^6(\log(x) + c_1)^2}}$$

$$y(x) \to -\sqrt{-x^2 + 3^{2/3}\sqrt[3]{x^6(\log(x) + c_1)^2}}$$

$$y(x) \to \sqrt{-x^2 + 3^{2/3}\sqrt[3]{x^6(\log(x) + c_1)^2}}$$

4.14 problem 14

Internal problem ID [10609]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$\sqrt{x+y} + \sqrt{x-y} + \left(\sqrt{x-y} - \sqrt{x+y}\right)y' = 0$$

✓ Solution by Maple

Time used: 3.781 (sec). Leaf size: 32

 $\frac{\text{dsolve}((\text{sqrt}(x+y(x))+\text{sqrt}(x-y(x)))+(\text{sqrt}(x-y(x))-\text{sqrt}(x+y(x)))*\text{diff}(y(x),x)=0,y(x))}{\text{singsol}}, \text{ singsol}=a$

$$\ln(x) + \ln\left(\frac{y(x)}{x}\right) - \operatorname{arctanh}\left(\frac{1}{\sqrt{-\frac{y(x)^2}{x^2} + 1}}\right) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 1.717 (sec). Leaf size: 66

DSolve[(Sqrt[x+y[x]]+Sqrt[x-y[x]])+(Sqrt[x-y[x]]-Sqrt[x+y[x]])*y'[x]==0,y[x],x,IncludeSingula]

$$y(x) \to -\frac{1}{4}e^{\frac{c_1}{2}}\sqrt{e^{c_1} - 8ix}$$

 $y(x) \to \frac{1}{4}e^{\frac{c_1}{2}}\sqrt{e^{c_1} - 8ix}$

$$y(x) \to 0$$

4.15 problem 15

Internal problem ID [10610]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 15.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$y + 2 + y(x+4)y' = 0$$

With initial conditions

$$[y(-3) = -1]$$

Solution by Maple

Time used: 0.219 (sec). Leaf size: 18

dsolve([(y(x)+2)+(y(x)*(x+4))*diff(y(x),x)=0,y(-3) = -1],y(x), singsol=all)

$$y(x) = -2 \operatorname{LambertW}\left(-\frac{\sqrt{x+4} e^{-\frac{1}{2}}}{2}\right) - 2$$

✓ Solution by Mathematica

Time used: 9.319 (sec). Leaf size: 26

 $DSolve[\{(y[x]+2)+(y[x]*(x+4))*y'[x]==0,\{y[-3]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -2\left(W\left(-\frac{\sqrt{x+4}}{2\sqrt{e}}\right) + 1\right)$$

4.16 problem 16

Internal problem ID [10611]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 16.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$8\cos(y)^{2} + \csc(x)^{2}y' = 0$$

With initial conditions

$$\left[y\Big(\frac{\pi}{12}\Big) = \frac{\pi}{4}\right]$$

✓ Solution by Maple

Time used: 0.234 (sec). Leaf size: 20

 $dsolve([(8*cos(y(x))^2)+csc(x)^2*diff(y(x),x)=0,y(1/12*Pi) = 1/4*Pi],y(x), singsol=all)$

$$y(x) = -\arctan\left(-\frac{\pi}{3} + 4x - 2\sin(2x)\right)$$

✓ Solution by Mathematica

Time used: 0.752 (sec). Leaf size: 21

 $DSolve[\{(8*Cos[y[x]]^2)+Csc[x]^2*y'[x]==0,\{y[Pi/12]==Pi/4\}\},y[x],x,IncludeSingularSolutions-1,x,Incl$

$$y(x) \to \arctan\left(-4x + 2\sin(2x) + \frac{\pi}{3}\right)$$

4.17 problem 17

Internal problem ID [10612]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$(3x+8)(y^2+4) - 4y(x^2+5x+6)y' = 0$$

With initial conditions

$$[y(1) = 2]$$

Solution by Maple

Time used: 0.062 (sec). Leaf size: 21

 $dsolve([(3*x+8)*(y(x)^2+4)-4*y(x)*(x^2+5*x+6)*diff(y(x),x)=0,y(1) = 2],y(x), singsol=all)$

$$y(x) = \frac{2\sqrt{-9 + (3x+6)\sqrt{3+x}}}{3}$$

✓ Solution by Mathematica

Time used: 4.372 (sec). Leaf size: 36

 $DSolve[{(3*x+8)*(y[x]^2+4)-4*y[x]*(x^2+5*x+6)*y'[x]==0, {y[1]==2}}, y[x], x, IncludeSingularSolut]$

$$y(x) \to \frac{2\sqrt{\sqrt{x+3}x + 2\sqrt{x+3} - 3}}{\sqrt{3}}$$

4.18 problem 18

Internal problem ID [10613]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$x^2 + 3y^2 - 2yxy' = 0$$

With initial conditions

$$[y(2) = 6]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 13

 $dsolve([(x^2+3*y(x)^2)-2*x*y(x)*diff(y(x),x)=0,y(2) = 6],y(x), singsol=all)$

$$y(x) = \sqrt{5x - 1} x$$

✓ Solution by Mathematica

Time used: 0.275 (sec). Leaf size: 16

$$y(x) \to x\sqrt{5x-1}$$

4.19 problem 19

Internal problem ID [10614]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 19.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A']

$$2x - 5y + (4x - y)y' = 0$$

With initial conditions

$$[y(1) = 4]$$

✓ Solution by Maple

Time used: 0.297 (sec). Leaf size: 35

dsolve([(2*x-5*y(x))+(4*x-y(x))*diff(y(x),x)=0,y(1) = 4],y(x), singsol=all)

$$y(x) = 6 - 2x - 6\sqrt{1 - x}$$

$$y(x) = 6 - 2x + 6\sqrt{1 - x}$$

✓ Solution by Mathematica

Time used: 1.302 (sec). Leaf size: 41

DSolve[{(2*x-5*y[x])+(4*x-y[x])*y'[x]==0,{y[1]==4}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -2x - 6i\sqrt{x - 1} + 6$$

$$y(x) \to -2x + 6i\sqrt{x - 1} + 6$$

4.20 problem 20

Internal problem ID [10615]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 20.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'class A'],

$$3x^{2} + 9xy + 5y^{2} - (6x^{2} + 4xy)y' = 0$$

With initial conditions

$$[y(2) = -6]$$

✓ Solution by Maple

Time used: 0.329 (sec). Leaf size: 21

 $dsolve([(3*x^2+9*x*y(x)+5*y(x)^2)-(6*x^2+4*x*y(x))*diff(y(x),x)=0,y(2) = -6],y(x)], singsol=al(x,y)=0$

$$y(x) = -\frac{\left(3 + \sqrt{-3 + 6\sqrt{x}\sqrt{2}}\right)x}{2}$$

✓ Solution by Mathematica

Time used: 21.827 (sec). Leaf size: 30

 $DSolve[{(3*x^2+9*x*y[x]+5*y[x]^2)-(6*x^2+4*x*y[x])*y'[x]==0, {y[2]==-6}}, y[x], x, IncludeSingula]$

$$y(x) \rightarrow -\frac{1}{2} \left(\sqrt{6\sqrt{2}\sqrt{x} - 3} + 3 \right) x$$

4.21 problem 22(a)

Internal problem ID [10616]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 22(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd type

$$x + 2y + (2x - y)y' = 0$$

Solution by Maple

Time used: 0.093 (sec). Leaf size: 51

dsolve((x+2*y(x))+(2*x-y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{2xc_1 - \sqrt{5c_1^2x^2 + 1}}{c_1}$$

$$y(x) = \frac{2xc_1 - \sqrt{5c_1^2x^2 + 1}}{c_1}$$
$$y(x) = \frac{2xc_1 + \sqrt{5c_1^2x^2 + 1}}{c_1}$$

Solution by Mathematica

Time used: 0.458 (sec). Leaf size: 94

 $DSolve[(x+2*y[x])+(2*x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 2x - \sqrt{5x^2 + e^{2c_1}}$$

$$y(x) \to 2x + \sqrt{5x^2 + e^{2c_1}}$$

$$y(x) \to 2x - \sqrt{5}\sqrt{x^2}$$

$$y(x) \rightarrow \sqrt{5}\sqrt{x^2} + 2x$$

4.22 problem 22(b)

Internal problem ID [10617]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 22(b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd type

$$3x - y - (x+y)y' = 0$$

Time used: 0.078 (sec). Leaf size: 51

dsolve((3*x-y(x))-(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{-xc_1 - \sqrt{4c_1^2x^2 + 1}}{c_1}$$

$$y(x) = \frac{-xc_1 + \sqrt{4c_1^2x^2 + 1}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.445 (sec). Leaf size: 85

 $DSolve[(3*x-y[x])-(x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x - \sqrt{4x^2 + e^{2c_1}}$$

$$y(x) \to -x + \sqrt{4x^2 + e^{2c_1}}$$

$$y(x) \to -2\sqrt{x^2} - x$$

$$y(x) \to 2\sqrt{x^2} - x$$

4.23 problem 23(a)

Internal problem ID [10618]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 23(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$x^{2} + 2y^{2} + (4xy - y^{2})y' = 0$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 441

$$dsolve((x^2+2*y(x)^2)+(4*x*y(x)-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$$

$$y(x) = \frac{\frac{\left(4+68x^3c_1^3+4\sqrt{33c_1^6x^6+34x^3c_1^3+1}\right)^{\frac{1}{3}}}{2} + \frac{8c_1^2x^2}{\left(4+68x^3c_1^3+4\sqrt{33c_1^6x^6+34x^3c_1^3+1}\right)^{\frac{1}{3}}} + 2xc_1}{c_1}$$

y(x)

$$=\frac{-\frac{\left(4+68x^3c_1^3+4\sqrt{33c_1^6x^6+34x^3c_1^3+1}\right)^{\frac{1}{3}}}{4}-\frac{4c_1^2x^2}{\left(4+68x^3c_1^3+4\sqrt{33c_1^6x^6+34x^3c_1^3+1}\right)^{\frac{1}{3}}}+2xc_1-\frac{i\sqrt{3}\left(\frac{\left(4+68x^3c_1^3+4\sqrt{33c_1^6x^6+34x^3c_1^3+1}\right)^{\frac{1}{3}}}{2}-\frac{4c_1^2x^2}{\left(4+68x^3c_1^3+4\sqrt{33c_1^6x^6+34x^3c_1^3+1}\right)^{\frac{1}{3}}}+2xc_1-\frac{i\sqrt{3}\left(\frac{\left(4+68x^3c_1^3+4\sqrt{33c_1^6x^6+34x^3c_1^3+1}\right)^{\frac{1}{3}}}{2}-\frac{2c_1^2x^2}{2}-\frac{2c_1^2x$$

y(x)

$$=\frac{-\frac{\left(4+68x^3c_1^3+4\sqrt{33c_1^6x^6+34x^3c_1^3+1}\right)^{\frac{1}{3}}}{4}-\frac{4c_1^2x^2}{\left(4+68x^3c_1^3+4\sqrt{33c_1^6x^6+34x^3c_1^3+1}\right)^{\frac{1}{3}}}+2xc_1+\frac{i\sqrt{3}\left(\frac{\left(4+68x^3c_1^3+4\sqrt{33c_1^6x^6+34x^3c_1^3+1}\right)^{\frac{1}{3}}}{2}-\frac{4c_1^2x^2}{\left(4+68x^3c_1^3+4\sqrt{33c_1^6x^6+34x^3c_1^3+1}\right)^{\frac{1}{3}}}-\frac{2c_1^2x^2}{2}-\frac{2c_$$

✓ Solution by Mathematica

Time used: 31.117 (sec). Leaf size: 564

 $DSolve[(x^2+2*y[x]^2)+(4*x*y[x]-y[x]^2)*y'[x] ==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) & \to \frac{\sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}{\sqrt[3]{2}} \\ & + \frac{4\sqrt[3]{2}x^2}{\sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}} + 2x \\ y(x) & \to \frac{1}{2} \left((-2)^{2/3} \sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}} \right. \\ & - \frac{8\sqrt[3]{-2}x^2}{\sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}} + 4x \right) \\ y(x) & \to x \left(2 + \frac{4(-1)^{2/3}\sqrt[3]{2}x}{\sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}} \right) \\ & - \sqrt[3]{-\frac{1}{2}}\sqrt[3]{17x^3 + \sqrt{33x^6 + 34e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}} \\ y(x) & \to \frac{\sqrt[3]{\sqrt{33}\sqrt{x^6} + 17x^3}}{\sqrt[3]{2}} + \frac{4\sqrt[3]{2}x^2}{\sqrt[3]{\sqrt{33}\sqrt{x^6} + 17x^3}} + 2x \\ y(x) & \to -\sqrt[3]{-\frac{1}{2}}\sqrt[3]{\sqrt{33}\sqrt{x^6} + 17x^3} + \frac{4(-1)^{2/3}\sqrt[3]{2}x^2}{\sqrt[3]{\sqrt{33}\sqrt{x^6} + 17x^3}} + 2x \\ y(x) & \to \frac{1}{2} \left((-2)^{2/3}\sqrt[3]{\sqrt{33}\sqrt{x^6} + 17x^3} - \frac{8\sqrt[3]{-2}x^2}{\sqrt[3]{\sqrt{33}\sqrt{x^6} + 17x^3}} + 4x \right) \\ \end{split}$$

4.24 problem 23(b)

Internal problem ID [10619]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47

Problem number: 23(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd type

$$2x^{2} + 2xy + y^{2} + (2xy + x^{2})y' = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 73

 $dsolve((2*x^2+2*x*y(x)+y(x)^2)+(x^2+2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{3c_1^2x^2 - \sqrt{-15x^4c_1^4 + 12xc_1}}{6xc_1^2}$$

$$y(x) = -\frac{3c_1^2x^2 + \sqrt{-15x^4c_1^4 + 12xc_1}}{6xc_1^2}$$

✓ Solution by Mathematica

Time used: 0.789 (sec). Leaf size: 150

$$y(x) \to \frac{1}{6} \left(-3x - \frac{\sqrt{3}\sqrt{-5x^3 + 4e^{3c_1}}}{\sqrt{x}} \right)$$

$$y(x) \to \frac{1}{6} \left(-3x + \frac{\sqrt{3}\sqrt{-5x^3 + 4e^{3c_1}}}{\sqrt{x}} \right)$$

$$y(x) \to \frac{1}{6} x \left(\frac{\sqrt{15}x^{3/2}}{\sqrt{-x^3}} - 3 \right)$$

$$y(x) \to \frac{\sqrt{\frac{5}{3}}\sqrt{-x^3}}{2\sqrt{x}} - \frac{x}{2}$$