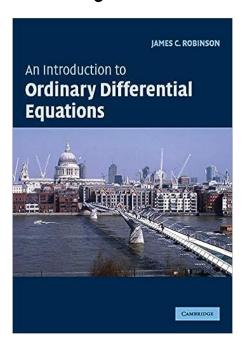
A Solution Manual For

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004



Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 5, Trivial differential equations. Exercises page 33	2
2	Chapter 7, Scalar autonomous ODEs. Exercises page 56	13
3	Chapter 8, Separable equations. Exercises page 72	20
4	Chapter 9, First order linear equations and the integrating factor. Exercises page 86	33
5	Chapter 10, Two tricks for nonlinear equations. Exercises page 97	43
6	Chapter 12, Homogeneous second order linear equations. Exercises page 118	54
7	Chapter 14, Inhomogeneous second order linear equations. Exercises page 140	70
8	Chapter 15, Resonance. Exercises page 148	84
9	Chapter 16, Higher order linear equations with constant coefficients. Exercises page 153	87
10	Chapter 17, Reduction of order. Exercises page 162	92
11	Chapter 18, The variation of constants formula. Exercises page 168	99
12	Chapter 19, CauchyEuler equations. Exercises page 174	106
13	Chapter 20, Series solutions of second order linear equations. Exercises page 195	118
14	Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257	130
15	Chapter 28, Distinct real eigenvalues. Exercises page 282	138
16	Chapter 29, Complex eigenvalues. Exercises page 292	144
17	Chapter 30, A repeated real eigenvalue. Exercises page 299	150

1 Chapter 5, Trivial differential equations. Exercises page 33

1.1	problem	5.1	(i)	•	•		•			•			•					•				3
1.2	problem	5.1	(ii)																			4
1.3	problem	5.1	(iii)																			5
1.4	problem	5.1	(iv)																			6
1.5	problem	5.1	(v)																			7
1.6	problem	5.4	(i)																			8
1.7	problem	5.4	(ii)																			9
1.8	problem	5.4	(iii)																			10
1.9	problem	5.4	(iv)																			11
1.10	problem	5.4	(v)																			12

1.1 problem 5.1 (i)

Internal problem ID [11648]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.1 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' = \cos(t) + \sin(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve(diff(x(t),t)=sin(t)+cos(t),x(t), singsol=all)

$$x(t) = -\cos(t) + \sin(t) + c_1$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 14

DSolve[x'[t]==Sin[t]+Cos[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \sin(t) - \cos(t) + c_1$$

1.2 problem 5.1 (ii)

Internal problem ID [11649]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.1 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$y' = \frac{1}{x^2 - 1}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $dsolve(diff(y(x),x)=1/(x^2-1),y(x), singsol=all)$

$$y(x) = -\arctan(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 26

DSolve[y'[x]==1/(x^2-1),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}(\log(1-x) - \log(x+1) + 2c_1)$$

4

1.3 problem 5.1 (iii)

Internal problem ID [11650]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.1 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$u'=4t\ln\left(t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(u(t),t)=4*t*ln(t),u(t), singsol=all)

$$u(t) = 2t^2 \ln(t) - t^2 + c_1$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 20

DSolve[u'[t]==4*t*Log[t],u[t],t,IncludeSingularSolutions -> True]

$$u(t) \to -t^2 + 2t^2 \log(t) + c_1$$

1.4 problem 5.1 (iv)

Internal problem ID [11651]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.1 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$z' = x e^{-2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(z(x),x)=x*exp(-2*x),z(x), singsol=all)

$$z(x) = -\frac{(2x+1)e^{-2x}}{4} + c_1$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 22

DSolve[z'[x] == x*Exp[-2*x],z[x],x,IncludeSingularSolutions -> True]

$$z(x) \to -\frac{1}{4}e^{-2x}(2x+1) + c_1$$

1.5 problem 5.1 (v)

Internal problem ID [11652]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.1 (v).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$T' = e^{-t} \sin{(2t)}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(T(t),t)=exp(-t)*sin(2*t),T(t), singsol=all)

$$T(t) = -\frac{2e^{-t}\cos(2t)}{5} - \frac{e^{-t}\sin(2t)}{5} + c_1$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: $28\,$

DSolve[T'[t]==Exp[-t]*Sin[2*t],T[t],t,IncludeSingularSolutions -> True]

$$T(t) \to -\frac{1}{5}e^{-t}(\sin(2t) + 2\cos(2t)) + c_1$$

1.6 problem 5.4 (i)

Internal problem ID [11653]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.4 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' = \sec(t)^2$$

With initial conditions

$$\left[x\left(\frac{\pi}{4}\right) = 0\right]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 8

 $dsolve([diff(x(t),t)=sec(t)^2,x(1/4*Pi) = 0],x(t), singsol=all)$

$$x(t) = \tan{(t)} - 1$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 9

DSolve[{x'[t]==Sec[t]^2,{x[Pi/4]==0}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \tan(t) - 1$$

1.7 problem 5.4 (ii)

Internal problem ID [11654]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.4 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = x - \frac{1}{3}x^3$$

With initial conditions

$$[y(-1) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve([diff(y(x),x)=x-1/3*x^3,y(-1) = 1],y(x), singsol=all)$

$$y(x) = -\frac{(x^2 - 3)^2}{12} + \frac{4}{3}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 21

 $DSolve[\{y'[x]==x-1/3*x^3,\{y[-1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{12} (-x^4 + 6x^2 + 7)$$

1.8 problem 5.4 (iii)

Internal problem ID [11655]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.4 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' = 2\sin(t)^2$$

With initial conditions

$$\left[x\Big(\frac{\pi}{4}\Big) = \frac{\pi}{4}\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve([diff(x(t),t)=2*sin(t)^2,x(1/4*Pi) = 1/4*Pi],x(t), singsol=all)$

$$x(t) = t + \frac{1}{2} - \frac{\sin\left(2t\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 16

DSolve[{x'[t]==2*Sin[t]^2,{x[Pi/4]==Pi/4}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to t - \sin(t)\cos(t) + \frac{1}{2}$$

1.9 problem 5.4 (iv)

Internal problem ID [11656]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.4 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$xV' = x^2 + 1$$

With initial conditions

$$[V(1) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve([x*diff(V(x),x)=1+x^2,V(1) = 1],V(x), singsol=all)$

$$V(x) = \frac{x^2}{2} + \ln(x) + \frac{1}{2}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 18

DSolve $[\{x*V'[x]==1+x^2,\{V[1]==1\}\},V[x],x,IncludeSingularSolutions -> True]$

$$V(x) \to \frac{1}{2} (x^2 + 2\log(x) + 1)$$

1.10 problem 5.4 (v)

Internal problem ID [11657]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 5, Trivial differential equations. Exercises page 33

Problem number: 5.4 (v).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$3e^{3t}x + e^{3t}x' = e^{-t}$$

With initial conditions

$$[x(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([diff(x(t)*exp(3*t),t)=exp(-t),x(0) = 3],x(t), singsol=all)

$$x(t) = -(e^{-t} - 4) e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.092 (sec). Leaf size: 18

DSolve[{D[x[t]*Exp[3*t],t]==Exp[-t],{x[0]==3}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-4t} \left(4e^t - 1 \right)$$

2	Chapter 7	', Sc	alar	a	\mathbf{ut}	on	or	nc	u	s (O	Οŀ	2s	•	E	X	e :	rc	is	es
	page 56																			
2.1	problem 7.1 (i)																			14
2.2	problem 7.1 (ii)																			15

16

17

19

2.3

2.1 problem 7.1 (i)

Internal problem ID [11658]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 7, Scalar autonomous ODEs. Exercises page 56

Problem number: 7.1 (i).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' + x = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(x(t),t)=-x(t)+1,x(t), singsol=all)

$$x(t) = 1 + e^{-t}c_1$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 20

DSolve[x'[t]==-x[t]+1,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow 1 + c_1 e^{-t}$$

$$x(t) \to 1$$

2.2 problem 7.1 (ii)

Internal problem ID [11659]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 7, Scalar autonomous ODEs. Exercises page 56

Problem number: 7.1 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - x(-x+2) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(x(t),t)=x(t)*(2-x(t)),x(t), singsol=all)

$$x(t) = \frac{2}{1 + 2e^{-2t}c_1}$$

✓ Solution by Mathematica

Time used: 0.503 (sec). Leaf size: 36

DSolve[x'[t]==x[t]*(2-x[t]),x[t],t,IncludeSingularSolutions -> True]

$$x(t) o rac{2e^{2t}}{e^{2t} + e^{2c_1}}$$

$$x(t) \to 0$$

$$x(t) \rightarrow 2$$

2.3 problem 7.1 (iii)

Internal problem ID [11660]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 7, Scalar autonomous ODEs. Exercises page 56

Problem number: 7.1 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - (x+1)(-x+2)\sin(x) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

dsolve(diff(x(t),t)=(1+x(t))*(2-x(t))*sin(x(t)),x(t), singsol=all)

$$t + \int^{x(t)} \frac{1}{(\underline{a+1})(\underline{a-2})\sin(\underline{a})} d\underline{a} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 15.593 (sec). Leaf size: 52

DSolve[x'[t]==(1+x[t])*(2-x[t])*Sin[x[t]],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \text{InverseFunction} \left[\int_1^{\#1} \frac{\csc(K[1])}{(K[1]-2)(K[1]+1)} dK[1] \& \right] [-t+c_1]$$

$$x(t) \rightarrow -1$$

$$x(t) \to 0$$

$$x(t) \to 2$$

2.4 problem 7.1 (iv)

Internal problem ID [11661]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 7, Scalar autonomous ODEs. Exercises page 56

Problem number: 7.1 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' + x(1-x)(-x+2) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve(diff(x(t),t)=-x(t)*(1-x(t))*(2-x(t)),x(t), singsol=all)

$$x(t) = \frac{e^t c_1}{\sqrt{-1 + e^{2t} c_1^2}} + 1$$

✓ Solution by Mathematica

Time used: 19.885 (sec). Leaf size: 159

DSolve[x'[t]==-x[t]*(1-x[t])*(2-x[t]),x[t],t,IncludeSingularSolutions -> True]

$$x(t) o rac{e^{2t} - \sqrt{e^{4t} + e^{2(t+c_1)}} + e^{2c_1}}{e^{2t} + e^{2c_1}}$$

$$x(t) o rac{e^{2t} + \sqrt{e^{4t} + e^{2(t+c_1)}} + e^{2c_1}}{e^{2t} + e^{2c_1}}$$

$$x(t) \to 0$$

$$x(t) \to 1$$

$$x(t) \to 2$$

$$x(t) \to 1 - e^{-2t} \sqrt{e^{4t}}$$

$$x(t) \to e^{-2t} \sqrt{e^{4t}} + 1$$

2.5 problem 7.1 (v)

Internal problem ID [11662]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 7, Scalar autonomous ODEs. Exercises page 56

Problem number: 7.1 (v).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - x^2 + x^4 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 47

 $dsolve(diff(x(t),t)=x(t)^2-x(t)^4,x(t), singsol=all)$

$$x(t) = \mathrm{e}^{\mathrm{RootOf}(\ln(\mathrm{e}^{-Z} - 2)\mathrm{e}^{-Z} + 2c_1\mathrm{e}^{-Z} - _Z\mathrm{e}^{-Z} + 2t\,\mathrm{e}^{-Z} - \ln(\mathrm{e}^{-Z} - 2) - 2c_1 + _Z - 2t + 2)} - 1$$

✓ Solution by Mathematica

Time used: 0.414 (sec). Leaf size: 53

DSolve[x'[t]==x[t]^2-x[t]^4,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \text{InverseFunction}\left[\frac{1}{\#1} + \frac{1}{2}\log(1 - \#1) - \frac{1}{2}\log(\#1 + 1)\&\right][-t + c_1]$$

$$x(t) \rightarrow -1$$

$$x(t) \to 0$$

$$x(t) \to 1$$

3 Chapter 8, Separable equations. Exercises page 72 3.1 21 3.2 223.3 23 3.4243.5 253.6 26 3.7 27 3.8 28

29

30

31

32

3.9

3.1 problem 8.1 (i)

Internal problem ID [11663]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.1 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - t^3(1-x) = 0$$

With initial conditions

$$[x(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve([diff(x(t),t)=t^3*(1-x(t)),x(0) = 3],x(t), singsol=all)$

$$x(t) = 1 + 2e^{-\frac{t^4}{4}}$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 18

 $DSolve[\{x'[t]==t^3*(1-x[t]),\{x[0]==3\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to 2e^{-\frac{t^4}{4}} + 1$$

3.2 problem 8.1 (ii)

Internal problem ID [11664]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.1 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - (y^2 + 1)\tan(x) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.14 (sec). Leaf size: 12

 $dsolve([diff(y(x),x)=(1+y(x)^2)*tan(x),y(0) = 1],y(x), singsol=all)$

$$y(x) = \cot\left(\frac{\pi}{4} + \ln\left(\cos\left(x\right)\right)\right)$$

✓ Solution by Mathematica

Time used: 0.472 (sec). Leaf size: 15

 $DSolve[\{y'[x]==(1+y[x]^2)*Tan[x],\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \cot\left(\log(\cos(x)) + \frac{\pi}{4}\right)$$

3.3 problem 8.1 (iii)

Internal problem ID [11665]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.1 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - t^2 x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

 $dsolve(diff(x(t),t)=t^2*x(t),x(t), singsol=all)$

$$x(t) = c_1 \mathrm{e}^{\frac{t^3}{3}}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 22

DSolve[x'[t]==t^2*x[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^{\frac{t^3}{3}}$$

$$x(t) \to 0$$

3.4 problem 8.1 (iv)

Internal problem ID [11666]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.1 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' + x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve(diff(x(t),t)=-x(t)^2,x(t), singsol=all)$

$$x(t) = \frac{1}{t + c_1}$$

✓ Solution by Mathematica

Time used: 0.169 (sec). Leaf size: 18

DSolve[x'[t]==-x[t]^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{t - c_1}$$

$$x(t) \to 0$$

3.5 problem 8.1 (v)

Internal problem ID [11667]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.1 (v).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - y^2 e^{-t^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(t),t)=exp(-t^2)*y(t)^2,y(t), singsol=all)$

$$y(t) = -\frac{2}{\sqrt{\pi} \operatorname{erf}(t) - 2c_1}$$

✓ Solution by Mathematica

Time used: 0.347 (sec). Leaf size: 27

DSolve[y'[t]==Exp[-t^2]*y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{2}{\sqrt{\pi} \operatorname{erf}(t) + 2c_1}$$

$$y(t) \to 0$$

3.6 problem 8.2

Internal problem ID [11668]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' + px = q$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(x(t),t)+p*x(t)=q,x(t), singsol=all)

$$x(t) = \frac{q}{p} + e^{-pt}c_1$$

✓ Solution by Mathematica

Time used: 0.063 (sec). Leaf size: 29

DSolve[x'[t]+p*x[t]==q,x[t],t,IncludeSingularSolutions -> True]

$$x(t) o rac{q}{p} + c_1 e^{-pt}$$

$$x(t) o rac{q}{p}$$

3.7 problem 8.3

Internal problem ID [11669]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xy' - ky = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(x*diff(y(x),x)=k*y(x),y(x), singsol=all)

$$y(x) = c_1 x^k$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 16

DSolve[x*y'[x]==k*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x^k$$

$$y(x) \to 0$$

3.8 problem 8.4

Internal problem ID [11670]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$i' - p(t) i = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(i(t),t)=p(t)*i(t),i(t), singsol=all)

$$i(t) = c_1 \mathrm{e}^{\int p(t)dt}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 25

DSolve[i'[t]==p[t]*i[t],i[t],t,IncludeSingularSolutions -> True]

$$i(t) \to c_1 \exp\left(\int_1^t p(K[1])dK[1]\right)$$

 $i(t) \to 0$

3.9 problem 8.5

Internal problem ID [11671]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - \lambda x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(x(t),t)=lambda*x(t),x(t), singsol=all)

$$x(t) = c_1 e^{\lambda t}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 18

 $DSolve[x'[t]==\[Lambda]*x[t],x[t],t,IncludeSingularSolutions -> True]$

$$x(t) \to c_1 e^{\lambda t}$$

$$x(t) \to 0$$

3.10 problem 8.6

Internal problem ID [11672]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$mv' - kv^2 = -mg$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

 $dsolve(m*diff(v(t),t)=-m*g+k*v(t)^2,v(t), singsol=all)$

$$v(t) = -rac{ anh\left(rac{\sqrt{mgk}\,(t+c_1)}{m}
ight)\sqrt{mgk}}{k}$$

Solution by Mathematica

Time used: 14.167 (sec). Leaf size: 87

DSolve[m*v'[t]==-m*g+k*v[t]^2,v[t],t,IncludeSingularSolutions -> True]

$$v(t)
ightarrow rac{\sqrt{g}\sqrt{m} \tanh\left(rac{\sqrt{g}\sqrt{k}(-t+c_1m)}{\sqrt{m}}
ight)}{\sqrt{k}}$$
 $v(t)
ightarrow -rac{\sqrt{g}\sqrt{m}}{\sqrt{k}}$ $v(t)
ightarrow rac{\sqrt{g}\sqrt{m}}{\sqrt{k}}$

$$v(t) \to -\frac{\sqrt{g}\sqrt{m}}{\sqrt{k}}$$

$$v(t) o rac{\sqrt{g}\sqrt{m}}{\sqrt{k}}$$

3.11 problem 8.7

Internal problem ID [11673]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - kx + x^2 = 0$$

With initial conditions

$$[x(0) = x_0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 22

 $dsolve([diff(x(t),t)=k*x(t)-x(t)^2,x(0) = x_0],x(t), singsol=all)$

$$x(t) = \frac{kx_0}{(-x_0 + k)e^{-kt} + x_0}$$

✓ Solution by Mathematica

Time used: 1.052 (sec). Leaf size: 26

 $DSolve[\{x'[t]==k*x[t]-x[t]^2,\{x[0]==x0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{k \times 0e^{kt}}{\times 0 (e^{kt} - 1) + k}$$

3.12problem 8.8

Internal problem ID [11674]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 8, Separable equations. Exercises page 72

Problem number: 8.8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$x' + x\left(k^2 + x^2\right) = 0$$

With initial conditions

$$[x(0) = x_0]$$

Solution by Maple

 $dsolve([diff(x(t),t)=-x(t)*(k^2+x(t)^2),x(0) = x_0],x(t), singsol=all)$

No solution found

Solution by Mathematica

Time used: 1.848 (sec). Leaf size: 62

 $DSolve[\{x'[t]==-x[t]*(k^2+x[t]^2),\{x[0]==x0\}\},x[t],t,IncludeSingularSolutions] -> True]$

$$x(t) \to -\frac{k}{\sqrt{e^{2k^2t} \left(\frac{k^2}{x0^2} + 1\right) - 1}}$$
$$x(t) \to \frac{k}{\sqrt{e^{2k^2t} \left(\frac{k^2}{x0^2} + 1\right) - 1}}$$

$$x(t) \to \frac{k}{\sqrt{e^{2k^2t} \left(\frac{k^2}{\mathbf{x}0^2} + 1\right) - 1}}$$

4 Chapter 9, First order linear equations and the integrating factor. Exercises page 86

4.1	problem 9	9.1 (i)	•														•			34
4.2	problem 9	9.1 (ii)																		35
4.3	problem 9	9.1 (iii) .																	36
4.4	problem 9	9.1 (iv) .																	37
4.5	problem 9	9.1 (v)																		38
4.6	problem 9	9.1 (vi) .																	39
4.7	problem 9	9.1 (vi	i)																	40
4.8	problem 9	9.1 (vi	ii)																	41
4.9	problem 9	9.4																		42

4.1 problem 9.1 (i)

Internal problem ID [11675]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004

 ${\bf Section} :$ Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{x} = x^2$$

With initial conditions

$$[y(0) = y_0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 9

 $dsolve([diff(y(x),x)+y(x)/x=x^2,y(0) = y_0],y(x), singsol=all)$

$$y(x) = \frac{x^3}{4}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y'[x]+y[x]/x==x^2,\{y[0]==y0\}\},y[x],x,IncludeSingularSolutions -> True]$

Not solved

4.2 problem 9.1 (ii)

Internal problem ID [11676]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 9. First order linear equations and the integrating

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$tx + x' = 4t$$

With initial conditions

$$[x(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([diff(x(t),t)+t*x(t)=4*t,x(0) = 2],x(t), singsol=all)

$$x(t) = 4 - 2e^{-\frac{t^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.066 (sec). Leaf size: 18

 $DSolve[\{x'[t]+t*x[t]==4*t,\{x[0]==2\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to 4 - 2e^{-\frac{t^2}{2}}$$

4.3 problem 9.1 (iii)

Internal problem ID [11677]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page

86

Problem number: 9.1 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$z' - z \tan(y) = \sin(y)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(diff(z(y),y)=z(y)*tan(y)+sin(y),z(y), singsol=all)

$$z(y) = \frac{-\frac{\cos(2y)}{4} + c_1}{\cos(y)}$$

✓ Solution by Mathematica

Time used: 0.075 (sec). Leaf size: 17

DSolve[z'[y]==z[y]*Tan[y]+Sin[y],z[y],y,IncludeSingularSolutions -> True]

$$z(y) \to -\frac{\cos(y)}{2} + c_1 \sec(y)$$

4.4 problem 9.1 (iv)

Internal problem ID [11678]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

 ${\bf Section} :$ Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + e^{-x}y = 1$$

With initial conditions

$$[y(0) = e]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 23

dsolve([diff(y(x),x)+exp(-x)*y(x)=1,y(0) = exp(1)],y(x), singsol=all)

$$y(x) = -(-\operatorname{Ei}_{1}(e^{-x}) - 1 + \operatorname{Ei}_{1}(1)) e^{e^{-x}}$$

✓ Solution by Mathematica

Time used: 0.104 (sec). Leaf size: 27

 $DSolve[\{y'[x]+Exp[-x]*y[x]==1,\{y[0]==Exp[1]\}\},y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to e^{e^{-x}} \left(-\text{ExpIntegralEi} \left(-e^{-x} \right) + \text{ExpIntegralEi} (-1) + 1 \right)$$

4.5 problem 9.1 (v)

Internal problem ID [11679]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page

86

Problem number: 9.1 (v).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' + x \tanh(t) = 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(x(t),t)+x(t)*tanh(t)=3,x(t), singsol=all)

$$x(t) = \frac{3\sinh(t) + c_1}{\cosh(t)}$$

✓ Solution by Mathematica

Time used: 0.094 (sec). Leaf size: 15

DSolve[x'[t]+x[t]*Tanh[t]==3,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \operatorname{sech}(t)(3\sinh(t) + c_1)$$

4.6 problem 9.1 (vi)

Internal problem ID [11680]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

 ${f Section}:$ Chapter 9, First order linear equations and the integrating factor. Exercises page

86

Problem number: 9.1 (vi).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2y \cot(x) = 5$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right) = 1\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve([diff(y(x),x)+2*y(x)*cot(x)=5,y(1/2*Pi) = 1],y(x), singsol=all)

$$y(x) = \frac{-10x + 5\sin(2x) - 4 + 5\pi}{-2 + 2\cos(2x)}$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: $27\,$

 $DSolve[\{y'[x]+2*y[x]*Cot[x]==5,\{y[Pi/2]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True] \\$

$$y(x) \to \frac{1}{4}(10x - 5\sin(2x) - 5\pi + 4)\csc^2(x)$$

4.7 problem 9.1 (vii)

Internal problem ID [11681]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004

 ${\bf Section} :$ Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (vii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x' + 5x = t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(x(t),t)+5*x(t)=t,x(t), singsol=all)

$$x(t) = \frac{t}{5} - \frac{1}{25} + e^{-5t}c_1$$

✓ Solution by Mathematica

Time used: 0.071 (sec). Leaf size: 22

DSolve[x'[t]+5*x[t]==t,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \frac{t}{5} + c_1 e^{-5t} - \frac{1}{25}$$

4.8 problem 9.1 (viii)

Internal problem ID [11682]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004

 ${\bf Section} :$ Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.1 (viii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' + \left(a + \frac{1}{t}\right)x = b$$

With initial conditions

$$[x(1) = x_0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 38

 $\label{eq:decomposition} dsolve([diff(x(t),t)+(a+1/t)*x(t)=b,x(1) = x_{_0}],x(t), \; singsol=all)$

$$x(t) = \frac{(x_0 a^2 - ba + b) e^{-a(t-1)} + b(at - 1)}{a^2 t}$$

✓ Solution by Mathematica

Time used: 0.101 (sec). Leaf size: 48

 $DSolve[\{x'[t]+(a+1/t)*x[t]==b,\{x[1]==x0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{e^{-at}(e^a a^2 \times 0 + be^{at}(at - 1) - (a - 1)e^a b)}{a^2 t}$$

4.9 problem 9.4

Internal problem ID [11683]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004

Section: Chapter 9, First order linear equations and the integrating factor. Exercises page 86

Problem number: 9.4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$T' + k(T - \mu - a\cos(\omega(t - \phi))) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 62

dsolve(diff(T(t),t)=-k*(T(t)-(mu+a*cos(omega*(t-phi)))),T(t), singsol=all)

$$T(t) = e^{-kt}c_1 - \frac{\sin(\omega(-t+\phi)) ak\omega - \cos(\omega(-t+\phi)) ak^2 - k^2\mu - \mu\omega^2}{k^2 + \omega^2}$$

✓ Solution by Mathematica

Time used: 0.511 (sec). Leaf size: 60

DSolve[T'[t]==-k*(T[t]- (mu+a*Cos[omega*(t-phi)])),T[t],t,IncludeSingularSolutions -> True]

$$T(t) \rightarrow -\frac{ak\omega\sin(\omega(\phi - t))}{k^2 + \omega^2} + \frac{ak^2\cos(\omega(\phi - t))}{k^2 + \omega^2} + c_1e^{-kt} + \mu$$

5 Chapter 10, Two tricks for nonlinear equations. Exercises page 97

5.1	problem	10.1	(i) .		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	44
5.2	problem	10.1	(ii)																											45
5.3	problem	10.1	(iii)																											46
5.4	problem	10.1	(iv)																											47
5.5	problem	10.2																												48
5.6	problem	10.3	(i) .																											49
5.7	problem	10.3	(ii)																											50
5.8	problem	10.4	(i) .																											51
5.9	problem	10.4	(ii)																											52
5 10	problem	10.5																												53

5.1 problem 10.1 (i)

Internal problem ID [11684]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.1 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x),G(x)]'], [_Abel, '

$$2yx + (x^2 + 2y)y' = \sec(x)^2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

 $dsolve((2*x*y(x)-sec(x)^2)+(x^2+2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{x^2}{2} - \frac{\sqrt{x^4 + 4\tan(x) - 4c_1}}{2}$$

$$y(x) = -\frac{x^2}{2} + \frac{\sqrt{x^4 + 4\tan(x) - 4c_1}}{2}$$

✓ Solution by Mathematica

Time used: 26.886 (sec). Leaf size: 90

$$y(x) \to \frac{1}{2} \left(-x^2 - \sqrt{\sec^2(x)} \sqrt{\cos^2(x) (x^4 + 4\tan(x) + 4c_1)} \right)$$

$$y(x) \to \frac{1}{2} \left(-x^2 + \sqrt{\sec^2(x)} \sqrt{\cos^2(x) (x^4 + 4\tan(x) + 4c_1)} \right)$$

5.2 problem 10.1 (ii)

Internal problem ID [11685]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.1 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y e^x + yx e^x + (x e^x + 2) y' = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve((1+exp(x)*y(x)+x*exp(x)*y(x))+(x*exp(x)+2)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{-x + c_1}{x e^x + 2}$$

✓ Solution by Mathematica

Time used: 0.142 (sec). Leaf size: 21

DSolve[(1+Exp[x]*y[x]+x*Exp[x]*y[x])+(x*Exp[x]+2)*y'[x]==0,y[x],x,IncludeSingularSolutions -

$$y(x) o \frac{-x + c_1}{e^x x + 2}$$

5.3 problem 10.1 (iii)

Internal problem ID [11686]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.1 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$(x\cos(y) + \cos(x))y' + \sin(y) - \sin(x)y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

$$dsolve((x*cos(y(x))+cos(x))*diff(y(x),x)+sin(y(x))-y(x)*sin(x)=0,y(x), singsol=all)$$

$$\cos(x) y(x) + x \sin(y(x)) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.254 (sec). Leaf size: 17

$$Solve[x \sin(y(x)) + y(x) \cos(x) = c_1, y(x)]$$

5.4 problem 10.1 (iv)

Internal problem ID [11687]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.1 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$e^{x} \sin(y) + y + (e^{x} \cos(y) + x + e^{y}) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve(exp(x)*sin(y(x))+y(x)+(exp(x)*cos(y(x))+x+exp(y(x)))*diff(y(x),x)=0,y(x), singsol=al(x)+al(x)

$$y(x) x + e^x \sin(y(x)) + e^{y(x)} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.637 (sec). Leaf size: 22

$$Solve[e^{y(x)} + xy(x) + e^x \sin(y(x)) = c_1, y(x)]$$

5.5 problem 10.2

Internal problem ID [11688]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)]']]

$$e^{-y} \sec(x) - e^{-y}y' = -2\cos(x)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 88

dsolve(exp(-y(x))*sec(x)+2*cos(x)-exp(-y(x))*diff(y(x),x)=0,y(x), singsol=all)

 $y(x) = \ln \left(\frac{\tan\left(\frac{x}{2}\right)^3 + \tan\left(\frac{x}{2}\right)^2 + \tan\left(\frac{x}{2}\right) + 1}{\tan\left(\frac{x}{2}\right)^3 c_1 + 2\tan\left(\frac{x}{2}\right)^3 x - \tan\left(\frac{x}{2}\right)^2 c_1 - 2\tan\left(\frac{x}{2}\right)^2 x + \tan\left(\frac{x}{2}\right) c_1 + 2\tan\left(\frac{x}{2}\right) x - c_1 - 2x - 4\tan\left(\frac{x}{2}\right) c_1 + 2\tan\left(\frac{x}{2}\right) c_1 + 2\tan\left(\frac{x}$

✓ Solution by Mathematica

Time used: 2.559 (sec). Leaf size: 33

$$y(x) o \log \left(\frac{e^{2\operatorname{arctanh}(\tan(\frac{x}{2}))}}{2(-x + \cos(x) - 2c_1)} \right)$$

5.6 problem 10.3 (i)

Internal problem ID [11689]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.3 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2yy' = -V'(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(diff(V(x),x)+2*y(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \sqrt{-V(x) + c_1}$$
$$y(x) = -\sqrt{-V(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.126 (sec). Leaf size: 37

 $DSolve[V'[x]+2*y[x]*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{-V(x) + 2c_1}$$
$$y(x) \to \sqrt{-V(x) + 2c_1}$$

5.7 problem 10.3 (ii)

Internal problem ID [11690]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.3 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$\left| \left(\frac{1}{y} - a \right) y' = -\frac{2}{x} + b \right|$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve((1/y(x)-a)*diff(y(x),x)+2/x-b=0,y(x), singsol=all)

$$y(x) = -\frac{\text{LambertW}\left(-\frac{a e^{bx}c_1}{x^2}\right)}{a}$$

✓ Solution by Mathematica

Time used: 6.296 (sec). Leaf size: 32

 $DSolve[(1/y[x]-a)*y'[x]+2/x-b==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{W\left(-\frac{ae^{bx-c_1}}{x^2}\right)}{a}$$

$$y(x) \to 0$$

5.8 problem 10.4 (i)

Internal problem ID [11691]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.4 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$yx + y^2 - x^2y' = -x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(x*y(x)+y(x)^2+x^2-x^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \tan\left(\ln\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.314 (sec). Leaf size: 13

 $DSolve[x*y[x]+y[x]^2+x^2-x^2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \tan(\log(x) + c_1)$$

5.9 problem 10.4 (ii)

Internal problem ID [11692]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.4 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x' - \frac{x^2 + t\sqrt{x^2 + t^2}}{tx} = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

 $dsolve(diff(x(t),t)=(x(t)^2+t*sqrt(t^2+x(t)^2))/(t*x(t)),x(t), singsol=all)$

$$-\frac{\sqrt{t^{2}+x\left(t\right) ^{2}}}{t}+\ln \left(t\right) -c_{1}=0$$

Solution by Mathematica

Time used: 0.512 (sec). Leaf size: 54

$$x(t) \to -t\sqrt{\log^2(t) + 2c_1 \log(t) - 1 + c_1^2}$$

 $x(t) \to t\sqrt{\log^2(t) + 2c_1 \log(t) - 1 + c_1^2}$

$$x(t) \to t\sqrt{\log^2(t) + 2c_1\log(t) - 1 + c_1^2}$$

5.10 problem 10.5

Internal problem ID [11693]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 10, Two tricks for nonlinear equations. Exercises page 97

Problem number: 10.5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - kx + x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(x(t),t)=k*x(t)-x(t)^2,x(t), singsol=all)$

$$x(t) = \frac{k}{1 + e^{-kt}c_1k}$$

✓ Solution by Mathematica

Time used: 0.963 (sec). Leaf size: 37

DSolve[x'[t]==k*x[t]-x[t]^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{ke^{k(t+c_1)}}{-1 + e^{k(t+c_1)}}$$

$$x(t) \to 0$$

$$x(t) \to k$$

6 Chapter 12, Homogeneous second order linear equations. Exercises page 118

6.1	problem	12.1	(i) .			•		•	•	•		•	•			•		•		•	•	•	•	55
6.2	problem	12.1	(ii)																					56
6.3	problem	12.1	(iii)																					57
6.4	problem	12.1	(iv)																					58
6.5	problem	12.1	(v)																					59
6.6	problem	12.1	(vi)																					60
6.7	problem	12.1	(vii)																				•	61
6.8	problem	12.1	(viii))																				62
6.9	problem	12.1	(ix)																				•	63
6.10	problem	12.1	(x)																					64
6.11	problem	12.1	(xi)																					65
6.12	problem	12.1	(xii)																					66
6.13	problem	12.1	(xiii))																				67
6.14	problem	12.1	(xiv))																				68
6.15	problem	12.1	(xv)																_					69

6.1 problem 12.1 (i)

Internal problem ID [11694]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 3x' + 2x = 0$$

With initial conditions

$$[x(0) = 2, x'(0) = 6]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

$$x(t) = -2e^t + 4e^{2t}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 17

DSolve[{x''[t]-3*x'[t]+2*x[t]==0,{x[0]==2,x'[0]==6}},x[t],t,IncludeSingularSolutions -> True

$$x(t) \rightarrow 2e^t(2e^t - 1)$$

6.2 problem 12.1 (ii)

Internal problem ID [11695]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 4y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

$$y(x) = 3e^{2x}x$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 13

DSolve[{y''[x]-4*y'[x]+4*y[x]==0,{y[0]==0,y'[0]==3}},y[x],x,IncludeSingularSolutions -> True

$$y(x) \to 3e^{2x}x$$

6.3 problem 12.1 (iii)

Internal problem ID [11696]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (iii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$z'' - 4z' + 13z = 0$$

With initial conditions

$$[z(0) = 7, z'(0) = 42]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([diff(z(t),t\$2)-4*diff(z(t),t)+13*z(t)=0,z(0) = 7, D(z)(0) = 42],z(t), singsol=all)

$$z(t) = \frac{7e^{2t}(4\sin(3t) + 3\cos(3t))}{3}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 27

DSolve[{z''[t]-4*z'[t]+13*z[t]==0,{z[0]==7,z'[0]==42}},z[t],t,IncludeSingularSolutions -> Tr

$$z(t) \to \frac{7}{3}e^{2t}(4\sin(3t) + 3\cos(3t))$$

6.4 problem 12.1 (iv)

Internal problem ID [11697]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (iv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + y' - 6y = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 8]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve([diff(y(t),t\$2)+diff(y(t),t)-6*y(t)=0,y(0) = -1, D(y)(0) = 8],y(t), singsol=all)

$$y(t) = \left(e^{5t} - 2\right)e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 18

DSolve[{y''[t]+y'[t]-6*y[t]==0,{y[0]==-1,y'[0]==8}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-3t} (e^{5t} - 2)$$

6.5 problem 12.1 (v)

Internal problem ID [11698]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (v).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' - 4y' = 0$$

With initial conditions

$$[y(0) = 13, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

$$dsolve([diff(y(t),t$2)-4*diff(y(t),t)=0,y(0) = 13, D(y)(0) = 0],y(t), singsol=all)$$

$$y(t) = 13$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 6

$$y(t) \rightarrow 13$$

6.6 problem 12.1 (vi)

Internal problem ID [11699]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (vi).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$\theta'' + 4\theta = 0$$

With initial conditions

$$[\theta(0) = 0, \theta'(0) = 10]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve([diff(theta(t),t\$2)+4*theta(t)=0,theta(0) = 0, D(theta)(0) = 10],theta(t), singsol=al

$$\theta(t) = 5\sin\left(2t\right)$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 11

DSolve[{\[Theta]''[t]+4*\[Theta][t]==0,{\[Theta][0]==0,\[Theta]'[0]==10}},\[Theta][t],t,Inc]

$$\theta(t) \to 5\sin(2t)$$

6.7 problem 12.1 (vii)

Internal problem ID [11700]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (vii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + 10y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

$$y(t) = e^{-t} (3\cos(3t) + \sin(3t))$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 22

DSolve[{y''[t]+2*y'[t]+10*y[t]==0,{y[0]==3,y'[0]==0}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to e^{-t}(\sin(3t) + 3\cos(3t))$$

6.8 problem 12.1 (viii)

Internal problem ID [11701]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (viii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$2z'' + 7z' - 4z = 0$$

With initial conditions

$$[z(0) = 0, z'(0) = 9]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve([2*diff(z(t),t\$2)+7*diff(z(t),t)-4*z(t)=0,z(0) = 0, D(z)(0) = 9],z(t), singsol=all)

$$z(t) = 2\left(e^{\frac{9t}{2}} - 1\right)e^{-4t}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 49

DSolve[{z''[t]+7*z'[t]-4*z[t]==0,{z[0]==3,z'[0]==9}},z[t],t,IncludeSingularSolutions -> True

$$z(t) \to \frac{3}{10} e^{-\frac{1}{2} \left(7 + \sqrt{65}\right)t} \left(\left(5 + \sqrt{65}\right) e^{\sqrt{65}t} + 5 - \sqrt{65} \right)$$

6.9 problem 12.1 (ix)

Internal problem ID [11702]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (ix).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=0,y(0) = 0, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = -t e^{-t}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 13

DSolve[{y''[t]+2*y'[t]+y[t]==0,{y[0]==0,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -e^{-t}t$$

6.10 problem 12.1 (x)

Internal problem ID [11703]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (x).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + 6x' + 10x = 0$$

With initial conditions

$$[x(0) = 3, x'(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

$$dsolve([diff(x(t),t$2)+6*diff(x(t),t)+10*x(t)=0,x(0) = 3, D(x)(0) = 1],x(t), singsol=all)$$

$$x(t) = e^{-3t} (3\cos(t) + 10\sin(t))$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 20

$$x(t) \to e^{-3t} (10\sin(t) + 3\cos(t))$$

6.11 problem 12.1 (xi)

Internal problem ID [11704]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (xi).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$4x'' - 20x' + 21x = 0$$

With initial conditions

$$[x(0) = -4, x'(0) = -12]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve([4*diff(x(t),t\$2)-20*diff(x(t),t)+21*x(t)=0,x(0) = -4, D(x)(0) = -12],x(t), singsol=20,x(t)=0,x(t)

$$x(t) = -3e^{\frac{7t}{2}} - e^{\frac{3t}{2}}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 23

DSolve[{4*x''[t]-20*x'[t]+21*x[t]==0,{x[0]==-4,x'[0]==-12}},x[t],t,IncludeSingularSolutions

$$x(t) \to -e^{3t/2} (3e^{2t} + 1)$$

6.12 problem 12.1 (xii)

Internal problem ID [11705]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (xii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + y' - 2y = 0$$

With initial conditions

$$[y(0) = 4, y'(0) = -4]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve([diff(y(t),t\$2)+diff(y(t),t)-2*y(t)=0,y(0) = 4, D(y)(0) = -4],y(t), singsol=all)

$$y(t) = \frac{4(e^{3t} + 2)e^{-2t}}{3}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 21

DSolve[{y''[t]+y'[t]-2*y[t]==0,{y[0]==4,y'[0]==-4}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{4}{3}e^{-2t}(e^{3t} + 2)$$

6.13 problem 12.1 (xiii)

Internal problem ID [11706]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (xiii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' - 4y = 0$$

With initial conditions

$$[y(0) = 10, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve([diff(y(t),t\$2)-4*y(t)=0,y(0) = 10, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = 5e^{-2t} + 5e^{2t}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 19

 $DSolve[\{y''[t]-4*y[t]==0,\{y[0]==10,y'[0]==0\}\},y[t],t,IncludeSingularSolutions] \rightarrow True]$

$$y(t) \to 5e^{-2t} (e^{4t} + 1)$$

6.14 problem 12.1 (xiv)

Internal problem ID [11707]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (xiv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y' + 4y = 0$$

With initial conditions

$$[y(0) = 27, y'(0) = -54]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

$$y(t) = 27 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 12

DSolve[{y''[t]+4*y'[t]+4*y[t]==0,{y[0]==27,y'[0]==-54}},y[t],t,IncludeSingularSolutions -> T

$$y(t) \rightarrow 27e^{-2t}$$

6.15 problem 12.1 (xv)

Internal problem ID [11708]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 12, Homogeneous second order linear equations. Exercises page 118

Problem number: 12.1 (xv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + \omega^2 y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve([diff(y(t),t$2)+omega^2*y(t)=0,y(0) = 0, D(y)(0) = 1],y(t), singsol=all)$

$$y(t) = \frac{\sin(t\omega)}{\omega}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 13

DSolve[{y''[t]+w^2*y[t]==0,{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{\sin(tw)}{w}$$

7 Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

7.1	problem	14.1	(1) .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7]
7.2	problem	14.1	(ii)																																72
7.3	problem	14.1	(iii)																																73
7.4	$\operatorname{problem}$	14.1	(iv)																																74
7.5	$\operatorname{problem}$	14.1	(v)																															•	75
7.6	$\operatorname{problem}$	14.1	(vi)																																76
7.7	$\operatorname{problem}$	14.1	(vii)																																77
7.8	$\operatorname{problem}$	14.1	(viii))																															78
7.9	$\operatorname{problem}$	14.1	(ix)																																79
7.10	$\operatorname{problem}$	14.1	(x)																																80
7.11	$\operatorname{problem}$	14.1	(xi)																																81
7.12	$\operatorname{problem}$	14.2																																	82
7.13	problem	14.3																_		_						_									83

7.1 problem 14.1 (i)

Internal problem ID [11709]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' - 4x = t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(x(t),t$2)-4*x(t)=t^2,x(t), singsol=all)$

$$x(t) = c_1 e^{2t} + c_2 e^{-2t} - \frac{t^2}{4} - \frac{1}{8}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 32

DSolve[x''[t]-4*x[t]==t^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow -\frac{t^2}{4} + c_1 e^{2t} + c_2 e^{-2t} - \frac{1}{8}$$

7.2 problem 14.1 (ii)

Internal problem ID [11710]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x'' - 4x' = t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(x(t),t$2)-4*diff(x(t),t)=t^2,x(t), singsol=all)$

$$x(t) = -\frac{t^2}{16} - \frac{t^3}{12} + \frac{c_1 e^{4t}}{4} - \frac{t}{32} + c_2$$

✓ Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 36

DSolve[x''[t]-4*x'[t]==t^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{96} \left(-8t^3 - 6t^2 - 3t + 24c_1e^{4t} + 96c_2 \right)$$

7.3 problem 14.1 (iii)

Internal problem ID [11711]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (iii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + x' - 2x = 3e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(x(t),t)^2)+diff(x(t),t)^2*x(t)=3*exp(-t),x(t), singsol=all)$

$$x(t) = c_1 e^t + c_2 e^{-2t} - \frac{3 e^{-t}}{2}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 29

$$x(t) \to -\frac{3e^{-t}}{2} + c_1 e^{-2t} + c_2 e^t$$

7.4 problem 14.1 (iv)

Internal problem ID [11712]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (iv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$x'' + x' - 2x = e^t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(x(t),t)^2)+diff(x(t),t)^2*x(t)=exp(t),x(t), singsol=all)$

$$x(t) = c_1 e^t + c_2 e^{-2t} + \frac{t e^t}{3}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 29

DSolve[x''[t]+x'[t]-2*x[t]==Exp[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^{-2t} + e^t \left(\frac{t}{3} - \frac{1}{9} + c_2\right)$$

7.5 problem 14.1 (v)

Internal problem ID [11713]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (v).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$x'' + 2x' + x = e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(x(t),t\$2)+2*diff(x(t),t)+x(t)=exp(-t),x(t), singsol=all)

$$x(t) = c_1 t e^{-t} + \frac{e^{-t}t^2}{2} + c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 27

DSolve[x''[t]+2*x'[t]+x[t]==Exp[-t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{2}e^{-t}(t^2 + 2c_2t + 2c_1)$$

7.6 problem 14.1 (vi)

Internal problem ID [11714]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (vi).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + \omega^2 x = \sin\left(\alpha t\right)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

 $dsolve(diff(x(t),t$2)+omega^2*x(t)=sin(alpha*t),x(t), singsol=all)$

$$x(t) = \sin(t\omega) c_2 + \cos(t\omega) c_1 - \frac{\sin(\alpha t)}{\alpha^2 - \omega^2}$$

✓ Solution by Mathematica

Time used: 0.359 (sec). Leaf size: 56

DSolve[x''[t]+w^2*x[t]==Sin[a*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{-(c_1(a^2 - w^2)\cos(tw)) + c_2(w^2 - a^2)\sin(tw) + \sin(at)}{(w - a)(a + w)}$$

7.7 problem 14.1 (vii)

Internal problem ID [11715]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (vii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + \omega^2 x = \sin\left(\omega t\right)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

 $dsolve(diff(x(t),t$2)+omega^2*x(t)=sin(omega*t),x(t), singsol=all)$

$$x(t) = \sin(t\omega) c_2 + \cos(t\omega) c_1 + \frac{\sin(t\omega) - \cos(t\omega) \omega t}{2\omega^2}$$

✓ Solution by Mathematica

Time used: 0.081 (sec). Leaf size: 29

DSolve[x''[t]+w^2*x[t]==Sin[w*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \left(-\frac{t}{2w} + c_1\right)\cos(tw) + c_2\sin(tw)$$

7.8 problem 14.1 (viii)

Internal problem ID [11716]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (viii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$x'' + 2x' + 10x = e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(x(t),t\$2)+2*diff(x(t),t)+10*x(t)=exp(-t),x(t), singsol=all)

$$x(t) = e^{-t} \sin(3t) c_2 + e^{-t} \cos(3t) c_1 + \frac{e^{-t}}{9}$$

✓ Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 32

DSolve[x''[t]+2*x'[t]+10*x[t]==Exp[-t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{9}e^{-t}(9c_2\cos(3t) + 9c_1\sin(3t) + 1)$$

7.9 problem 14.1 (ix)

Internal problem ID [11717]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (ix).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 2x' + 10x = e^{-t}\cos(3t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

dsolve(diff(x(t),t\$2)+2*diff(x(t),t)+10*x(t)=exp(-t)*cos(3*t),x(t), singsol=all)

$$x(t) = e^{-t} \sin(3t) c_2 + e^{-t} \cos(3t) c_1 + \frac{e^{-t} (\cos(3t) + 3t \sin(3t))}{18}$$

✓ Solution by Mathematica

Time used: 0.084 (sec). Leaf size: 38

DSolve[x''[t]+2*x'[t]+10*x[t]==Exp[-t]*Cos[3*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{36}e^{-t}((1+36c_2)\cos(3t)+6(t+6c_1)\sin(3t))$$

7.10 problem 14.1 (x)

Internal problem ID [11718]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (x).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 6x' + 10x = e^{-2t}\cos(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

dsolve(diff(x(t),t\$2)+6*diff(x(t),t)+10*x(t)=exp(-2*t)*cos(t),x(t), singsol=all)

$$x(t) = \sin(t) e^{-3t} c_2 + \cos(t) e^{-3t} c_1 + \frac{e^{-2t} (\cos(t) + 2\sin(t))}{5}$$

✓ Solution by Mathematica

Time used: 0.087 (sec). Leaf size: 33

DSolve[x''[t]+6*x'[t]+10*x[t]==Exp[-3*t]*Cos[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{2}e^{-3t}((1+2c_2)\cos(t) + (t+2c_1)\sin(t))$$

7.11 problem 14.1 (xi)

Internal problem ID [11719]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.1 (xi).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + 4x' + 4x = e^{2t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(x(t),t\$2)+4*diff(x(t),t)+4*x(t)=exp(2*t),x(t), singsol=all)

$$x(t) = \frac{e^{2t}}{16} + c_1 t e^{-2t} + c_2 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 28

DSolve[x''[t]+4*x'[t]+4*x[t]==Exp[2*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \frac{e^{2t}}{16} + e^{-2t}(c_2t + c_1)$$

7.12 problem 14.2

Internal problem ID [11720]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$x'' + x' - 2x = 12e^{-t} - 6e^{t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(x(t),t\$2)+diff(x(t),t)-2*x(t)=12*exp(-t)-6*exp(t),x(t), singsol=all)

$$x(t) = c_2 e^{-2t} + c_1 e^t - 6 e^{-t} - 2t e^t + \frac{2 e^t}{3}$$

✓ Solution by Mathematica

Time used: 0.093 (sec). Leaf size: 34

DSolve[x''[t]+x'[t]-2*x[t]==12*Exp[-t]-6*Exp[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-2t} \left(-6e^t + e^{3t} \left(-2t + \frac{2}{3} + c_2 \right) + c_1 \right)$$

7.13 problem 14.3

Internal problem ID [11721]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 14, Inhomogeneous second order linear equations. Exercises page 140

Problem number: 14.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 4x = 289t e^t \sin(2t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 48

dsolve(diff(x(t),t\$2)+4*x(t)=289*t*exp(t)*sin(2*t),x(t), singsol=all)

 $x(t) = c_2 \sin(2t) + c_1 \cos(2t) - e^t (68 \cos(2t)t - 17t \sin(2t) - 76 \cos(2t) + 2\sin(2t))$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 40

DSolve[x''[t]+4*x[t]==289*t*Exp[t]*Sin[2*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to (e^t(76 - 68t) + c_1)\cos(2t) + (e^t(17t - 2) + c_2)\sin(2t)$$

8	Chapter	15, Resonance. Exercises page 148	
8.1	problem 15.1		85
8.2	problem 15.3		86

8.1 problem 15.1

Internal problem ID [11722]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 15, Resonance. Exercises page 148

Problem number: 15.1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$x'' + \omega^2 x = \cos\left(\alpha t\right)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve([diff(x(t),t$2)+omega^2*x(t)=cos(alpha*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)$

$$x(t) = \frac{\cos(t\omega) - \cos(\alpha t)}{\alpha^2 - \omega^2}$$

✓ Solution by Mathematica

Time used: 0.25 (sec). Leaf size: 28

$$x(t) \rightarrow \frac{\cos(tw) - \cos(at)}{a^2 - w^2}$$

8.2 problem 15.3

Internal problem ID [11723]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 15, Resonance. Exercises page 148

Problem number: 15.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + \omega^2 x = \cos(\omega t)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve([diff(x(t),t\$2)+omega^2*x(t)=cos(omega*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)$

$$x(t) = \frac{\sin(t\omega)\,t}{2\omega}$$

✓ Solution by Mathematica

Time used: 0.099 (sec). Leaf size: 17

$$x(t) o rac{t\sin(tw)}{2w}$$

9 Chapter 16, Higher order linear equations with constant coefficients. Exercises page 153

9.1	problem 16.1 (i).	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	88
9.2	problem 16.1 (ii)																										89
9.3	problem 16.1 (iii)																				•				•		90
9.4	problem 16.1 (iv)																									_	91

9.1 problem 16.1 (i)

Internal problem ID [11724]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 16, Higher order linear equations with constant coefficients. Exercises page

153

Problem number: 16.1 (i).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$x''' - 6x'' + 11x' - 6x = e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(x(t),t\$3)-6*diff(x(t),t\$2)+11*diff(x(t),t)-6*x(t)=exp(-t),x(t), singsol=all)

$$x(t) = c_1 e^t + e^{2t} c_2 + c_3 e^{3t} - \frac{e^{-t}}{24}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 37

DSolve[x'''[t]-6*x''[t]+11*x'[t]-6*x[t]==Exp[-t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow -\frac{e^{-t}}{24} + c_1 e^t + c_2 e^{2t} + c_3 e^{3t}$$

9.2 problem 16.1 (ii)

Internal problem ID [11725]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004

 ${f Section}$: Chapter 16, Higher order linear equations with constant coefficients. Exercises page 153

Problem number: 16.1 (ii).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 3y'' + 2y = \sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 59

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)+2*y(x)=sin(x),y(x), singsol=all)

$$y(x) = \frac{-15\sin(x) - 3\cos(x)}{6(5 + 2\sqrt{3})(-5 + 2\sqrt{3})} + e^x c_1 + e^{(1+\sqrt{3})x} c_2 + e^{-(\sqrt{3}-1)x} c_3$$

✓ Solution by Mathematica

Time used: 0.206 (sec). Leaf size: 49

DSolve[y'''[x]-3*y''[x]+2*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{26} \Big(5\sin(x) + \cos(x) + 26e^x \Big(c_1 e^{-\sqrt{3}x} + c_2 e^{\sqrt{3}x} + c_3 \Big) \Big)$$

9.3 problem 16.1 (iii)

Internal problem ID [11726]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 16, Higher order linear equations with constant coefficients. Exercises page

153

Problem number: 16.1 (iii).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$x'''' - 4x''' + 8x'' - 8x' + 4x = \sin(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

dsolve(diff(x(t),t\$4)-4*diff(x(t),t\$3)+8*diff(x(t),t\$2)-8*diff(x(t),t)+4*x(t)=sin(t),x(t),s(t),s(t)=sin(t),x(t)=sin(t),x(

$$x(t) = -\frac{3\sin(t)}{25} + \frac{4\cos(t)}{25} + c_1e^t\cos(t) + c_2e^t\sin(t) + c_3e^t\cos(t) + c_4e^t\sin(t) + c_4e^t\sin(t)$$

✓ Solution by Mathematica

Time used: 0.258 (sec). Leaf size: 42

DSolve[x''''[t]-4*x'''[t]+8*x''[t]-8*x'[t]+4*x[t]==Sin[t],x[t],t,IncludeSingularSolutions ->

$$x(t) o \left(rac{4}{25} + e^t(c_4t + c_3)
ight)\cos(t) + \left(-rac{3}{25} + e^t(c_2t + c_1)
ight)\sin(t)$$

9.4 problem 16.1 (iv)

Internal problem ID [11727]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004

 ${f Section}$: Chapter 16, Higher order linear equations with constant coefficients. Exercises page 153

Problem number: 16.1 (iv).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$x'''' - 5x'' + 4x = e^t$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

dsolve(diff(x(t),t\$4)-5*diff(x(t),t\$2)+4*x(t)=exp(t),x(t), singsol=all)

$$x(t) = -\frac{t e^t}{6} + c_1 e^t + c_2 e^{-2t} + c_3 e^{-t} + e^{2t} c_4$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 45

DSolve[x''''[t]-5*x''[t]+4*x[t]==Exp[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-2t} \left(c_2 e^t + e^{3t} \left(-\frac{t}{6} - \frac{1}{36} + c_3 \right) + c_4 e^{4t} + c_1 \right)$$

10 Chapter 17, Reduction of order. Exercises page 162

10.1	problem 17.1	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	93
10.2	problem 17.2			 																													94
10.3	problem 17.3			 																													95
10.4	problem 17.4			 																													96
10.5	problem 17.5			 																													97
10.6	problem 17.6			 																													98

10.1 problem 17.1

Internal problem ID [11728]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 17, Reduction of order. Exercises page 162

Problem number: 17.1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$t^{2}y'' - (t^{2} + 2t)y' + (t+2)y = 0$$

Given that one solution of the ode is

$$y_1 = t$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

 $dsolve([t^2*diff(y(t),t^2)-(t^2+2*t)*diff(y(t),t)+(t+2)*y(t)=0,t],y(t), singsol=all)$

$$y(t) = c_1 t + c_2 t e^t$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 16

 $DSolve[t^2*y''[t]-(t^2+2*t)*y'[t]+(t+2)*y[t]==0,y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow t(c_2 e^t + c_1)$$

10.2 problem 17.2

Internal problem ID [11729]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 17, Reduction of order. Exercises page 162

Problem number: 17.2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$(x-1)y'' - xy' + y = 0$$

Given that one solution of the ode is

$$y_1 = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([(x-1)*diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,exp(x)],y(x), singsol=all)

$$y(x) = c_1 x + c_2 e^x$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 17

 $DSolve[(x-1)*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1 e^x - c_2 x$$

10.3 problem 17.3

Internal problem ID [11730]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 17, Reduction of order. Exercises page 162

Problem number: 17.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\left(\cos\left(t\right)t - \sin\left(t\right)\right)x'' - x't\sin\left(t\right) - x\sin\left(t\right) = 0$$

Given that one solution of the ode is

$$x_1 = t$$

X Solution by Maple

dsolve([(t*cos(t)-sin(t))*diff(x(t),t\$2)-diff(x(t),t)*t*sin(t)-x(t)*sin(t)=0,t],x(t), singsolve([(t*cos(t)-sin(t))*diff(x(t),t\$2)-diff(x(t),t)*t*sin(t)-x(t)*sin(t)=0,t],x(t),x(t),x(t),x(t),x(t)=0,t],x(t)=0,t]

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[(t*Cos[t]-Sin[t])*x''[t]-x'[t]*t*Sin[t]-x[t]*Sin[t]==0,x[t],t,IncludeSingularSolution

Not solved

10.4 problem 17.4

Internal problem ID [11731]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 17, Reduction of order. Exercises page 162

Problem number: 17.4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(-t^{2}+t) x'' + (-t^{2}+2) x' + (2-t) x = 0$$

Given that one solution of the ode is

$$x_1 = e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve([(t-t^2)*diff(x(t),t$2)+(2-t^2)*diff(x(t),t)+(2-t)*x(t)=0,exp(-t)],x(t), singsol=all)$

$$x(t) = \frac{c_1}{t} + c_2 \mathrm{e}^{-t}$$

✓ Solution by Mathematica

Time used: 0.104 (sec). Leaf size: 42

 $DSolve[(t-t^2)*x''[t]+(2-t^2)*x'[t]+(2-t)*x[t]==0,x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) o rac{e^{-t}\sqrt{1-t}(c_1e^t - c_2t)}{\sqrt{t-1}t}$$

10.5 problem 17.5

Internal problem ID [11732]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 17, Reduction of order. Exercises page 162

Problem number: 17.5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Hermite]

$$y'' - xy' + y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve([diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,x],y(x), singsol=all)

$$y(x) = c_1 x + c_2 \left(i\sqrt{2}\sqrt{\pi} e^{\frac{x^2}{2}} - \pi \operatorname{erf}\left(\frac{i\sqrt{2}x}{2}\right) x \right)$$

✓ Solution by Mathematica

Time used: 0.091 (sec). Leaf size: 61

DSolve[y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\sqrt{\frac{\pi}{2}}c_2\sqrt{x^2} \operatorname{erfi}\left(\frac{\sqrt{x^2}}{\sqrt{2}}\right) + c_2 e^{\frac{x^2}{2}} + \sqrt{2}c_1 x$$

10.6 problem 17.6

Internal problem ID [11733]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 17, Reduction of order. Exercises page 162

Problem number: 17.6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$\tan(t) x'' - 3x' + (\tan(t) + 3\cot(t)) x = 0$$

Given that one solution of the ode is

$$x_1 = \sin\left(t\right)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 15

$$dsolve([tan(t)*diff(x(t),t$2)-3*diff(x(t),t)+(tan(t)+3*cot(t))*x(t)=0,sin(t)], x(t), singsol=0.$$

$$x(t) = c_1 \sin(t) + c_2 \sin(t) \cos(t)$$

✓ Solution by Mathematica

Time used: 0.374 (sec). Leaf size: 24

$$x(t) \to \sqrt{-\sin^2(t)}(c_2\cos(t) + c_1)$$

11 Chapter 18, The variation of constants formula. Exercises page 168

11.1	problem	18.1	(i) .			•		•												•	100
11.2	problem	18.1	(ii)																		101
11.3	problem	18.1	(iii)																		102
11.4	problem	18.1	(iv)																		103
11.5	problem	18.1	(v)																		104
11.6	problem	18.1	(vi)																		105

11.1 problem 18.1 (i)

Internal problem ID [11734]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 18, The variation of constants formula. Exercises page 168

Problem number: 18.1 (i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 6y = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-diff(y(x),x)-6*y(x)=exp(x),y(x), singsol=all)

$$y(x) = c_1 e^{3x} + c_2 e^{-2x} - \frac{e^x}{6}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 29

 $DSolve[y''[x]-y'[x]-6*y[x] == Exp[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{e^x}{6} + c_1 e^{-2x} + c_2 e^{3x}$$

11.2 problem 18.1 (ii)

Internal problem ID [11735]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 18, The variation of constants formula. Exercises page 168

Problem number: 18.1 (ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' - x = \frac{1}{t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(x(t),t\$2)-x(t)=1/t,x(t), singsol=all)

$$x(t) = c_1 e^t + c_2 e^{-t} - \frac{\operatorname{Ei}_1(t) e^t}{2} + \frac{\operatorname{Ei}_1(-t) e^{-t}}{2}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 42

DSolve[x''[t]-x[t]==1/t,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \frac{1}{2}e^{-t}\left(e^{2t}\operatorname{ExpIntegralEi}(-t) - \operatorname{ExpIntegralEi}(t) + 2\left(c_1e^{2t} + c_2\right)\right)$$

11.3 problem 18.1 (iii)

Internal problem ID [11736]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 18, The variation of constants formula. Exercises page 168

Problem number: 18.1 (iii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \cot(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$2)+4*y(x)=cot(2*x),y(x), singsol=all)

$$y(x) = c_1 \cos(2x) + c_2 \sin(2x) + \frac{\sin(2x)\ln(\csc(2x) - \cot(2x))}{4}$$

✓ Solution by Mathematica

Time used: 0.188 (sec). Leaf size: 34

DSolve[y''[x]+4*y[x]==Cot[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cos(2x) + \frac{1}{4} \sin(2x)(\log(\sin(x)) - \log(\cos(x)) + 4c_2)$$

11.4 problem 18.1 (iv)

Internal problem ID [11737]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 18, The variation of constants formula. Exercises page 168

Problem number: 18.1 (iv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$t^2x'' - 2x = t^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(t^2*diff(x(t),t^2)-2*x(t)=t^3,x(t), singsol=all)$

$$x(t) = \frac{t^3}{4} + \frac{c_1}{t} + c_2 t^2$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 25

DSolve[t^2*x''[t]-2*x[t]==t^3,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{t^3}{4} + c_2 t^2 + \frac{c_1}{t}$$

11.5 problem 18.1 (v)

Internal problem ID [11738]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 18, The variation of constants formula. Exercises page 168

Problem number: 18.1 (v).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x'' - 4x' = \tan(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(x(t),t\$2)-4*diff(x(t),t)=tan(t),x(t), singsol=all)

$$x(t) = \int \left(\int \tan(t) e^{-4t} dt + c_1\right) e^{4t} dt + c_2$$

✓ Solution by Mathematica

Time used: 60.232 (sec). Leaf size: 82

DSolve[x''[t]-4*x'[t]==Tan[t],x[t],t,IncludeSingularSolutions -> True]

$$\begin{split} x(t) \to \int_{1}^{t} \left(e^{4K[1]} c_{1} + \frac{1}{20} \left(-5i \, \text{Hypergeometric2F1} \left(2i, 1, 1 + 2i, -e^{2iK[1]} \right) \right. \\ & \left. - \left(2 - 4i \right) e^{2iK[1]} \, \text{Hypergeometric2F1} \left(1, 1 + 2i, 2 + 2i, -e^{2iK[1]} \right) \right) dK[1] + c_{2} \end{split}$$

11.6 problem 18.1 (vi)

Internal problem ID [11739]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 18, The variation of constants formula. Exercises page 168

Problem number: 18.1 (vi).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$(\tan(x)^{2} - 1)y'' - 4\tan(x)^{3}y' + 2y\sec(x)^{4} = (\tan(x)^{2} - 1)(1 - 2\sin(x)^{2})$$

Given that one solution of the ode is

$$y_1 = \sec(x)^2$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 29

$$y(x) = \sec(x)^{2} c_{2} + \sec(x)\sin(x) c_{1} - \frac{\cos(x)^{2}}{4} + \frac{x \tan(x)}{2} + \frac{1}{2}$$

✓ Solution by Mathematica

Time used: 0.764 (sec). Leaf size: 66

 $DSolve[(Tan[x]^2-1)*y''[x]-4*Tan[x]^3*y'[x]+2*y[x]*Sec[x]^4==(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^4=(Tan[x]^2-1)*(1-2*Sin[x]^2),y[x]+2*y[x]^2$

$$y(x) \to \sqrt{\sin^2(x)} \sec(x) \arctan\left(\frac{\cos(x)}{1 - \sqrt{\sin^2(x)}}\right)$$
$$-\frac{1}{4}\cos^2(x) + c_1 \sec^2(x) + c_2 \sqrt{\sin^2(x)} \sec(x) + \frac{1}{2}$$

12 Chapter 19, CauchyEuler equations. Exercises page 174

12.1	problem	19.1	(i) .		•	•	•		•		•	•	•		•			•		•	•			107
12.2	problem	19.1	(ii)																					108
12.3	$\operatorname{problem}$	19.1	(iii)																					109
12.4	$\operatorname{problem}$	19.1	(iv)																					110
12.5	$\operatorname{problem}$	19.1	(v)																					111
12.6	$\operatorname{problem}$	19.1	(vi)																					112
12.7	$\operatorname{problem}$	19.1	(vii)																					113
12.8	$\operatorname{problem}$	19.1	(viii))																				114
12.9	$\operatorname{problem}$	19.1	(ix)																					115
12.10)problem	19.1	(x)																					116
12.11	problem	19.2																						117

12.1 problem 19.1 (i)

Internal problem ID [11740]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' - 4xy' + 6y = 0$$

With initial conditions

$$[y(1) = 0, y'(1) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

 $dsolve([x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=0,y(1) = 0, D(y)(1) = 1],y(x), singsol=al(x)=0$

$$y(x) = x^2(x-1)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 12

$$y(x) \to (x-1)x^2$$

12.2 problem 19.1 (ii)

Internal problem ID [11741]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$4x^2y'' + y = 0$$

With initial conditions

$$[y(1) = 1, y'(1) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 13

 $dsolve([4*x^2*diff(y(x),x$2)+y(x)=0,y(1) = 1, D(y)(1) = 0],y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{x}\left(-2 + \ln\left(x\right)\right)}{2}$$

Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 47

$$y(x) \to -\frac{1}{3}\sqrt{x} \left(\sqrt{3}\sin\left(\frac{1}{2}\sqrt{3}\log(x)\right) - 3\cos\left(\frac{1}{2}\sqrt{3}\log(x)\right)\right)$$

12.3 problem 19.1 (iii)

Internal problem ID [11742]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (iii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$t^2x'' - 5x't + 10x = 0$$

With initial conditions

$$[x(1) = 2, x'(1) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

 $dsolve([t^2*diff(x(t),t\$2)-5*t*diff(x(t),t)+10*x(t)=0,x(1)=2,\ D(x)(1)=1],x(t),\ singsol=3.$

$$x(t) = t^{3}(-5\sin(\ln(t)) + 2\cos(\ln(t)))$$

✓ Solution by Mathematica

Time used: 0.197 (sec). Leaf size: 256

DSolve[{t^2*x''[t]-5*t*x[t]+10*x[t]==0,{x[1]==2,x'[1]==1}},x[t],t,IncludeSingularSolutions -

 $\begin{array}{l} x(t) \\ \rightarrow \frac{2\sqrt{t}\left(\left(\text{BesselI}\left(-1-i\sqrt{39},2\sqrt{5}\right)+\text{BesselI}\left(1-i\sqrt{39},2\sqrt{5}\right)\right)\text{BesselI}\left(i\sqrt{39},2\sqrt{5}\sqrt{t}\right)-\left(\text{BesselI}\left(-1+i\sqrt{39},2\sqrt{5}\right)\right)}{\text{BesselI}\left(i\sqrt{39},2\sqrt{5}\right)\left(\text{BesselI}\left(-1-i\sqrt{39},2\sqrt{5}\right)+\text{BesselI}\left(1-i\sqrt{39},2\sqrt{5}\right)\right)-\text{BesselI}\left(-i\sqrt{39},2\sqrt{5}\right)} \end{array}$

12.4 problem 19.1 (iv)

Internal problem ID [11743]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (iv).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$t^2x'' + x't - x = 0$$

With initial conditions

$$[x(1) = 1, x'(1) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

$$x(t) = t$$

✓ Solution by Mathematica

Time used: 0.119 (sec). Leaf size: 172

$$DSolve[\{t^2*x''[t]+t*x[t]-x[t]==0,\{x[1]==1,x'[1]==1\}\},x[t],t,IncludeSingularSolutions -> True (t) = (t) + (t) +$$

$$\begin{array}{c} x(t) \\ \rightarrow \frac{\sqrt{t} \left(\left(\text{BesselJ} \left(\sqrt{5}, 2 \right) - \text{BesselJ} \left(-1 + \sqrt{5}, 2 \right) + \text{BesselJ} \left(1 + \sqrt{5}, 2 \right) \right) \text{BesselJ} \left(-\sqrt{5}, 2\sqrt{t} \right) - \left(\text{BesselJ} \left(-\sqrt{5}, 2 \right) + \text{BesselJ} \left(-\sqrt{5}, 2 \right) \right) + \text{BesselJ} \left(-\sqrt{5}, 2 \right) + \text{BesselJ}$$

12.5problem 19.1 (v)

Internal problem ID [11744]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (v).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$x^2z'' + 3xz' + 4z = 0$$

With initial conditions

$$[z(1) = 0, z'(1) = 5]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

 $dsolve([x^2*diff(z(x),x$2)+3*x*diff(z(x),x)+4*z(x)=0,z(1)=0,D(z)(1)=5],z(x), singsol=al$

$$z(x) = \frac{5\sqrt{3}\,\sin\left(\sqrt{3}\,\ln\left(x\right)\right)}{3x}$$

Solution by Mathematica

Time used: 0.145 (sec). Leaf size: 220

 $DSolve[\{x^2*z''[x]+3*x*z[x]+4*z[x]==0,\{z[1]==0,z'[1]==5\}\},z[x],x,IncludeSingularSolutions \rightarrow 0$

z(x) $\rightarrow \frac{10\sqrt{x}\left(\text{BesselJ}\left(i\sqrt{15},2\sqrt{3}\right)\text{BesselJ}\left(-i\sqrt{15},2\sqrt{3}\sqrt{x}\right)-\text{BesselJ}\left(-i\sqrt{15},2\sqrt{3}\right)}{\sqrt{3}\left(\text{BesselJ}\left(i\sqrt{15},2\sqrt{3}\right)\left(\text{BesselJ}\left(-i\sqrt{15},2\sqrt{3}\right)-\text{BesselJ}\left(1-i\sqrt{15},2\sqrt{3}\right)\right)+\text{BesselJ}\left(-i\sqrt{15},2\sqrt{3}\right)}\right)}{\sqrt{3}\left(\text{BesselJ}\left(i\sqrt{15},2\sqrt{3}\right)\left(\text{BesselJ}\left(-i\sqrt{15},2\sqrt{3}\right)-\text{BesselJ}\left(-i\sqrt{15},2\sqrt{3}\right)\right)\right)}$

12.6 problem 19.1 (vi)

Internal problem ID [11745]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (vi).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' - xy' - 3y = 0$$

With initial conditions

$$[y(1) = 1, y'(1) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

 $dsolve([x^2*diff(y(x),x$2)-x*diff(y(x),x)-3*y(x)=0,y(1) = 1, D(y)(1) = -1],y(x), singsol=all (x,y) = 0, y = 1, D(y)(1) = 0,$

$$y(x) = \frac{1}{x}$$

✓ Solution by Mathematica

Time used: 0.138 (sec). Leaf size: 169

DSolve $[\{x^2*y''[x]-x*y[x]-3*y[x]==0,\{y[1]==1,y'[1]==-1\}\},y[x],x,IncludeSingularSolutions ->$

 $y(x) \rightarrow \frac{\sqrt{x}(\left(3\operatorname{BesselI}\left(-\sqrt{13},2\right) + \operatorname{BesselI}\left(-1-\sqrt{13},2\right) + \operatorname{BesselI}\left(1-\sqrt{13},2\right))\operatorname{BesselI}\left(\sqrt{13},2\sqrt{x}\right) - \left(3\operatorname{BesselI}\left(\sqrt{13},2\right) + \operatorname{BesselI}\left(\sqrt{13},2\right) + \operatorname{BesselI}\left(1-\sqrt{13},2\right) + \operatorname{BesselI}\left(1-\sqrt{13},2\right) - \operatorname{BesselI}\left(1-\sqrt{13},2\right) + \operatorname{BesselI}\left(1-\sqrt{13},2\right) +$

12.7 problem 19.1 (vii)

Internal problem ID [11746]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (vii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$4t^2x'' + 8x't + 5x = 0$$

With initial conditions

$$[x(1) = 2, x'(1) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

 $dsolve([4*t^2*diff(x(t),t$2)+8*t*diff(x(t),t)+5*x(t)=0,x(1) = 2, D(x)(1) = 0], x(t), singsol=0, x(t), x(t)$

$$x(t) = \frac{\sin(\ln(t)) + 2\cos(\ln(t))}{\sqrt{t}}$$

✓ Solution by Mathematica

Time used: 0.101 (sec). Leaf size: 232

DSolve[{4*t^2*x''[t]+8*t*x[t]+5*x[t]==0,{x[1]==2,x'[1]==0}},x[t],t,IncludeSingularSolutions

 $\xrightarrow{x(t)} \frac{\sqrt{t} \left(\left(2 \operatorname{BesselJ} \left(-1 + 2i, 2\sqrt{2} \right) + \sqrt{2} \operatorname{BesselJ} \left(2i, 2\sqrt{2} \right) - 2 \operatorname{BesselJ} \left(1 + 2i, 2\sqrt{2} \right) \right) \operatorname{BesselJ} \left(-2i, 2\sqrt{2}\sqrt{t} + 2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(-1 + 2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(-2i, 2\sqrt{2} \right) - 2 \operatorname{BesselJ} \left(-1 - 2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(-1 - 2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(-1 - 2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(-1 - 2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(-1 - 2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(-1 - 2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(-1 - 2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(-1 - 2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(-1 - 2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(-1 - 2i, 2\sqrt{2} \right) \operatorname{BesselJ} \left(2i, 2\sqrt{2} \right) \operatorname{B$

12.8 problem 19.1 (viii)

Internal problem ID [11747]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (viii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$x^2y'' - 5xy' + 5y = 0$$

With initial conditions

$$[y(1) = -2, y'(1) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

$$y(x) = \frac{3}{4}x^5 - \frac{11}{4}x$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 17

$$y(x) \to \frac{1}{4}x(3x^4 - 11)$$

12.9 problem 19.1 (ix)

Internal problem ID [11748]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (ix).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, exact, linear, homogeneous]]

$$3x^2z'' + 5xz' - z = 0$$

With initial conditions

$$[z(1) = 2, z'(1) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve([3*x^2*diff(z(x),x$2)+5*x*diff(z(x),x)-z(x)=0,z(1) = 2, D(z)(1) = -1], z(x), singsol=2, z(x), z(x),$

$$z(x) = \frac{3x^{\frac{4}{3}} + 5}{4x}$$

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 21

DSolve[{3*x^2*z''[x]+5*x*z'[x]-z[x]==0,{z[1]==2,z'[1]==-1}},z[x],x,IncludeSingularSolutions

$$z(x) \to \frac{3x^{4/3} + 5}{4x}$$

12.10 problem 19.1 (x)

Internal problem ID [11749]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.1 (x).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$t^2x'' + 3x't + 13x = 0$$

With initial conditions

$$[x(1) = -1, x'(1) = 2]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 32

 $dsolve([t^2*diff(x(t),t)^2)+3*t*diff(x(t),t)+13*x(t)=0,x(1) = -1, D(x)(1) = 2],x(t), singsol=0.$

$$x(t) = \frac{\sqrt{3} \sin \left(2\sqrt{3} \ln (t)\right) - 6\cos \left(2\sqrt{3} \ln (t)\right)}{6t}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 41

$$x(t) o \frac{\sqrt{3}\sin\left(2\sqrt{3}\log(t)\right) - 6\cos\left(2\sqrt{3}\log(t)\right)}{6t}$$

12.11 problem 19.2

Internal problem ID [11750]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 19, CauchyEuler equations. Exercises page 174

Problem number: 19.2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$ay'' + (b - a)y' + cy = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 67

dsolve(a*diff(y(z),z\$2)+(b-a)*diff(y(z),z)+c*y(z)=0,y(z), singsol=all)

$$y(z) = c_1 e^{\frac{\left(-b+a+\sqrt{a^2-2ba-4ca+b^2}
ight)z}{2a}} + c_2 e^{-\frac{\left(b-a+\sqrt{a^2-2ba-4ca+b^2}
ight)z}{2a}}$$

✓ Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 72

DSolve[a*y''[z]+(b-a)*y'[z]+c*y[z]==0,y[z],z,IncludeSingularSolutions -> True]

$$y(z) o \left(c_2 e^{\frac{z\sqrt{a^2 - 2a(b+2c) + b^2}}{a}} + c_1\right) \exp\left(-\frac{z\left(\sqrt{a^2 - 2a(b+2c) + b^2} - a + b\right)}{2a}\right)$$

13 Chapter 20, Series solutions of second order linear equations. Exercises page 195

13.1	problem	20.1																				•	119
13.2	problem	20.2	(i)																				120
13.3	$\operatorname{problem}$	20.2	(ii)																			121
13.4	$\operatorname{problem}$	20.2	(ii	i)											•								122
13.5	$\operatorname{problem}$	20.2	(iv	7)	(k	=	-2	2)															123
13.6	$\operatorname{problem}$	20.2	(iv	7)	(k	=	2))							•								124
13.7	$\operatorname{problem}$	20.3																					125
13.8	$\operatorname{problem}$	20.4																					126
13.9	$\operatorname{problem}$	20.5																					127
13.10)problem	20.7																					128

13.1 problem 20.1

Internal problem ID [11751]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(-x^2 + 1) y'' - 2xy' + n(n+1) y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 101

Order:=6; dsolve((1-x^2)*diff(y(x),x\$2)-2*x*diff(y(x),x)+n*(n+1)*y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= \left(1 - \frac{n(n+1)\,x^2}{2} + \frac{n(n^3 + 2n^2 - 5n - 6)\,x^4}{24}\right)y(0) \\ &\quad + \left(x - \frac{\left(n^2 + n - 2\right)x^3}{6} + \frac{\left(n^4 + 2n^3 - 13n^2 - 14n + 24\right)x^5}{120}\right)D(y)\left(0\right) + O\left(x^6\right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 120

$$y(x) \to c_2 \left(\frac{1}{120} (n^2 + n)^2 x^5 + \frac{7}{60} (-n^2 - n) x^5 + \frac{1}{6} (-n^2 - n) x^3 + \frac{x^5}{5} + \frac{x^3}{3} + x\right) + c_1 \left(\frac{1}{24} (n^2 + n)^2 x^4 + \frac{1}{4} (-n^2 - n) x^4 + \frac{1}{2} (-n^2 - n) x^2 + 1\right)$$

13.2 problem 20.2 (i)

Internal problem ID [11752]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.2 (i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Hermite]

$$y'' - xy' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 - \frac{1}{24}x^4\right)y(0) + xD(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 27

AsymptoticDSolveValue[$y''[x]-x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(-\frac{x^4}{24} - \frac{x^2}{2} + 1 \right) + c_2 x$$

13.3 problem 20.2 (ii)

Internal problem ID [11753]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.2 (ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$(x^2+1)y''+y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

Order:=6; dsolve((1+x^2)*diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{8}x^4\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{7}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$(1+x^2)*y''[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{7x^5}{120} - \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{8} - \frac{x^2}{2} + 1\right)$$

13.4 problem 20.2 (iii)

Internal problem ID [11754]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.2 (iii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$2xy'' + y' - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

Order:=6; dsolve(2*x*diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \sqrt{x} \left(1 + \frac{2}{3}x + \frac{2}{15}x^2 + \frac{4}{315}x^3 + \frac{2}{2835}x^4 + \frac{4}{155925}x^5 + \mathcal{O}\left(x^6\right) \right)$$
$$+ c_2 \left(1 + 2x + \frac{2}{3}x^2 + \frac{4}{45}x^3 + \frac{2}{315}x^4 + \frac{4}{14175}x^5 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 83

AsymptoticDSolveValue $[2*x*y''[x]+y'[x]-2*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \sqrt{x} \left(\frac{4x^5}{155925} + \frac{2x^4}{2835} + \frac{4x^3}{315} + \frac{2x^2}{15} + \frac{2x}{3} + 1 \right)$$
$$+ c_2 \left(\frac{4x^5}{14175} + \frac{2x^4}{315} + \frac{4x^3}{45} + \frac{2x^2}{3} + 2x + 1 \right)$$

13.5 problem 20.2 (iv) (k=-2)

Internal problem ID [11755]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.2 (iv) (k=-2).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2xy' - 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

Order:=6; dsolve(diff(y(x),x\$2)-2*x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + 2x^2 + \frac{4}{3}x^4\right)y(0) + \left(x + x^3 + \frac{1}{2}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 36

AsymptoticDSolveValue[$y''[x]-2*x*y'[x]-4*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^5}{2} + x^3 + x\right) + c_1 \left(\frac{4x^4}{3} + 2x^2 + 1\right)$$

13.6 problem 20.2 (iv) (k=2)

Internal problem ID [11756]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004

 ${f Section}$: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.2 (iv) (k=2).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2xy' + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

Order:=6; dsolve(diff(y(x),x\$2)-2*x*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(-2x^2 + 1\right)y(0) + \left(x - \frac{1}{3}x^3 - \frac{1}{30}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 33

AsymptoticDSolveValue[$y''[x]-2*x*y'[x]+4*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1(1-2x^2) + c_2\left(-\frac{x^5}{30} - \frac{x^3}{3} + x\right)$$

13.7 problem 20.3

Internal problem ID [11757]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195 **Problem number**: 20.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x(1-x)y'' - 3xy' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 60

Order:=6; dsolve(x*(1-x)*diff(y(x),x\$2)-3*x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x (1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + O(x^6))$$

+ $(x + 2x^2 + 3x^3 + 4x^4 + 5x^5 + O(x^6)) \ln(x) c_2$
+ $(1 + 3x + 5x^2 + 7x^3 + 9x^4 + 11x^5 + O(x^6)) c_2$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 63

AsymptoticDSolveValue[$x*(1-x)*y''[x]-3*x*y'[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1(x^4 + x^3 + x^2 + (4x^3 + 3x^2 + 2x + 1) x \log(x) + x + 1) + c_2(5x^5 + 4x^4 + 3x^3 + 2x^2 + x)$$

13.8 problem 20.4

Internal problem ID [11758]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$x^2y'' + xy' - yx^2 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-x^2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = (c_2 \ln(x) + c_1) \left(1 + \frac{1}{4}x^2 + \frac{1}{64}x^4 + O(x^6) \right) + \left(-\frac{1}{4}x^2 - \frac{3}{128}x^4 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 60

AsymptoticDSolveValue[$x^2*y''[x]+x*y'[x]-x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^4}{64} + \frac{x^2}{4} + 1\right) + c_2 \left(-\frac{3x^4}{128} - \frac{x^2}{4} + \left(\frac{x^4}{64} + \frac{x^2}{4} + 1\right)\log(x)\right)$$

13.9 problem 20.5

Internal problem ID [11759]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [Bessel]

$$x^{2}y'' + xy' + (x^{2} - 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1)*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{1}{8} x^2 + \frac{1}{192} x^4 + \mathcal{O}(x^6)\right) + c_2 \left(\ln\left(x\right) \left(x^2 - \frac{1}{8} x^4 + \mathcal{O}(x^6)\right) + \left(-2 + \frac{3}{32} x^4 + \mathcal{O}(x^6)\right)\right)}{x}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 58

$$y(x) \to c_2 \left(\frac{x^5}{192} - \frac{x^3}{8} + x\right) + c_1 \left(\frac{1}{16}x(x^2 - 8)\log(x) - \frac{5x^4 - 16x^2 - 64}{64x}\right)$$

13.10 problem 20.7

Internal problem ID [11760]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 20, Series solutions of second order linear equations. Exercises page 195

Problem number: 20.7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Bessel]

$$x^{2}y'' + xy' + (-n^{2} + x^{2}) y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 77

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-n^2)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x^{-n} \left(1 + \frac{1}{4n - 4} x^2 + \frac{1}{32} \frac{1}{(n - 2)(n - 1)} x^4 + \mathcal{O}\left(x^6\right) \right)$$
$$+ c_2 x^n \left(1 - \frac{1}{4n + 4} x^2 + \frac{1}{32} \frac{1}{(n + 2)(n + 1)} x^4 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 160

AsymptoticDSolveValue[$x^2*y''[x]+x*y'[x]+(x^2-n^2)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^4}{(-n^2 - n + (1-n)(2-n) + 2)(-n^2 - n + (3-n)(4-n) + 4)} - \frac{x^2}{-n^2 - n + (1-n)(2-n) + 2} + 1 \right) x^{-n} + c_1 \left(\frac{x^4}{(-n^2 + n + (n+1)(n+2) + 2)(-n^2 + n + (n+3)(n+4) + 4)} - \frac{x^2}{-n^2 + n + (n+1)(n+2) + 2} + 1 \right) x^n$$

14 Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

14.1	problem	26.1	(i) .			•			•												131
14.2	problem	26.1	(ii)																		132
14.3	problem	26.1	(iii)																		133
14.4	problem	26.1	(iv)																		134
14.5	problem	26.1	(v)																		135
14.6	problem	26.1	(vi)																		136
14.7	problem	26.1	(vii)																		137

14.1 problem 26.1 (i)

Internal problem ID [11761]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (i).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 4x(t) - y(t)$$

 $y'(t) = 2x(t) + y(t) + t^{2}$

With initial conditions

$$[x(0) = 0, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 52

 $\frac{dsolve([diff(x(t),t) = 4*x(t)-y(t), diff(y(t),t) = 2*x(t)+y(t)+t^2, x(0) = 0,}{y(0) = 1],[x(t),t]}$

$$x(t) = -\frac{t^2}{6} + \frac{5e^{2t}}{4} - \frac{29e^{3t}}{27} - \frac{5t}{18} - \frac{19}{108}$$

$$y(t) = \frac{5e^{2t}}{2} - \frac{29e^{3t}}{27} - \frac{2t^2}{3} - \frac{7t}{9} - \frac{23}{54}$$

✓ Solution by Mathematica

Time used: 0.128 (sec). Leaf size: 64

$$x(t) \to \frac{1}{108} (-18t^2 - 30t + 135e^{2t} - 116e^{3t} - 19)$$

$$y(t) \rightarrow \frac{1}{54} \left(-36t^2 - 42t + 135e^{2t} - 58e^{3t} - 23 \right)$$

14.2 problem 26.1 (ii)

Internal problem ID [11762]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (ii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) - 4y(t) + 2\cos(t)^{2} - 1$$

$$y'(t) = x(t) + y(t)$$

With initial conditions

$$[x(0) = 1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 66

$$x(t) = \frac{26 e^{t} \cos(2t)}{17} - \frac{32 e^{t} \sin(2t)}{17} - \frac{9 \cos(2t)}{17} + \frac{2 \sin(2t)}{17}$$

$$y(t) = \frac{13 e^{t} \sin(2t)}{17} + \frac{16 e^{t} \cos(2t)}{17} - \frac{4 \sin(2t)}{17} + \frac{\cos(2t)}{17}$$

✓ Solution by Mathematica

Time used: 0.167 (sec). Leaf size: 90

DSolve
$$[x'[t]==x[t]-4*y[t]+\cos(2*t),y'[t]==x[t]+y[t]\},\{x[0]==1,y[0]==1\},\{x[t],y[t]\},t,Include [x'[t]==x[t]-4*y[t]]$$

$$x(t) \to \frac{1}{25} (2(3-5t)\cos{-e^t}(6\cos{-25})\cos(2t) + 2e^t(4\cos{-25})\sin(2t))$$

$$y(t) \to \frac{1}{50} (4(5t+2)\cos -2e^t(4\cos -25)\cos(2t) - e^t(6\cos -25)\sin(2t))$$

14.3 problem 26.1 (iii)

Internal problem ID [11763]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 2y(t)$$

 $y'(t) = 6x(t) + 3y(t) + e^{t}$

With initial conditions

$$[x(0) = 0, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 42

dsolve([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = 6*x(t)+3*y(t)+exp(t), x(0) = 0, y(0) = 0)

$$x(t) = \frac{12e^{6t}}{35} - \frac{e^{-t}}{7} - \frac{e^t}{5}$$

$$y(t) = \frac{24 e^{6t}}{35} + \frac{3 e^{-t}}{14} + \frac{e^t}{10}$$

✓ Solution by Mathematica

Time used: 0.101 (sec). Leaf size: 58

DSolve[{x'[t]==2*x[t]+2*y[t],y'[t]==6*x[t]+3*y[t]+Exp[t]},{x[0]==0,y[0]==1},{x[t],y[t]},t,Ir

$$x(t) \to \frac{1}{35}e^{-t}(-7e^{2t} + 12e^{7t} - 5)$$

$$y(t) \rightarrow \frac{1}{70}e^{-t}(7e^{2t} + 48e^{7t} + 15)$$

14.4 problem 26.1 (iv)

Internal problem ID [11764]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (iv).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 5x(t) - 4y(t) + e^{3t}$$

 $y'(t) = x(t) + y(t)$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve([diff(x(t),t) = 5*x(t)-4*y(t)+exp(3*t), diff(y(t),t) = x(t)+y(t), x(0) = 1, y(0) = -1

$$x(t) = e^{3t}(t^2 + 7t + 1)$$

$$y(t) = \frac{e^{3t}(t^2 + 6t - 2)}{2}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 39

 $DSolve[\{x'[t] == 5*x[t] - 4*y[t] + Exp[3*t], y'[t] == x[t] + y[t]\}, \{x[0] == 1, y[0] == -1\}, \{x[t], y[t]\}, t, Incomplete the property of the$

$$x(t) \to e^{3t} \left(t^2 + 7t + 1 \right)$$

$$y(t) \to \frac{1}{2}e^{3t}(t^2 + 6t - 2)$$

14.5 problem 26.1 (v)

Internal problem ID [11765]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (v).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 5y(t)$$

$$y'(t) = -2x(t) + 4\cos(t)^{3} - 3\cos(t)$$

With initial conditions

$$[x(0) = 2, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.093 (sec). Leaf size: 66

$$dsolve([diff(x(t),t) = 2*x(t)+5*y(t), diff(y(t),t) = -2*x(t)+cos(3*t), x(0) = 2, y(0) = -1],$$

$$x(t) = -\frac{16 e^{t} \sin(3t)}{111} + \frac{69 e^{t} \cos(3t)}{37} - \frac{30 \sin(3t)}{37} + \frac{5 \cos(3t)}{37}$$

$$y(t) = -\frac{121 e^{t} \sin(3t)}{111} - \frac{17 e^{t} \cos(3t)}{37} - \frac{20 \cos(3t)}{37} + \frac{9 \sin(3t)}{37}$$

✓ Solution by Mathematica

Time used: 0.363 (sec). Leaf size: 70

$$DSolve[\{x'[t]==2*x[t]+5*y[t],y'[t]==-2*x[t]+Cos[3*t]\},\{x[0]==2,y[0]==-1\},\{x[t],y[t]\},t,Inclusting the context of the context$$

$$x(t) \to \frac{1}{111} \left(3\left(69e^t + 5\right)\cos(3t) - 2\left(8e^t + 45\right)\sin(3t) \right)$$
$$y(t) \to \frac{1}{111} \left(-\left(121e^t - 27\right)\sin(3t) - 3\left(17e^t + 20\right)\cos(3t) \right)$$

14.6 problem 26.1 (vi)

Internal problem ID [11766]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (vi).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + y(t) + e^{-t}$$

 $y'(t) = 4x(t) - 2y(t) + e^{2t}$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 60

dsolve([diff(x(t),t) = x(t)+y(t)+exp(-t), diff(y(t),t) = 4*x(t)-2*y(t)+exp(2*t), x(0) = 1, y(t)+exp(-t), x(0) = 1, y(t)+exp(

$$x(t) = \frac{62 e^{2t}}{75} + \frac{e^{2t}t}{5} + \frac{17 e^{-3t}}{50} - \frac{e^{-t}}{6}$$

$$y(t) = \frac{77 e^{2t}}{75} - \frac{34 e^{-3t}}{25} + \frac{e^{2t}t}{5} - \frac{2 e^{-t}}{3}$$

✓ Solution by Mathematica

Time used: 0.69 (sec). Leaf size: 67

 $DSolve[\{x'[t]==x[t]+y[t]+Exp[-t],y'[t]==4*x[t]-2*y[t]+Exp[2*t]\},\{x[0]==1,y[0]==-1\},\{x[t],y[t]=-1\},\{x[t],y[t]==-1\},\{x[t],y[t]=-1\},\{x[t],x[t]=-1\},\{x$

$$x(t) \to \frac{1}{150}e^{-3t} (2e^{5t}(15t + 62) - 25e^{2t} + 51)$$

$$y(t) \to \frac{1}{75}e^{-3t} \left(e^{5t}(15t + 77) - 50e^{2t} - 102\right)$$

14.7 problem 26.1 (vii)

Internal problem ID [11767]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257

Problem number: 26.1 (vii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 8x(t) + 14y(t)$$

$$y'(t) = 7x(t) + y(t)$$

With initial conditions

$$[x(0) = 1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

dsolve([diff(x(t),t) = 8*x(t)+14*y(t), diff(y(t),t) = 7*x(t)+y(t), x(0) = 1, y(0) = 1], [x(t)+y(t), x(0) = 1, y(0) = 1]

$$x(t) = \frac{4e^{15t}}{3} - \frac{e^{-6t}}{3}$$

$$y(t) = \frac{2e^{15t}}{3} + \frac{e^{-6t}}{3}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 44

$$x(t) \to \frac{1}{3}e^{-6t} (4e^{21t} - 1)$$

$$y(t) \to \frac{1}{3}e^{-6t} (2e^{21t} + 1)$$

15 Chapter 28, Distinct real eigenvalues. Exercises page 282

15.1	problem	28.2	(i) .																	139
15.2	$\operatorname{problem}$	28.2	(ii)																	140
15.3	$\operatorname{problem}$	28.2	(iii)																	141
15.4	$\operatorname{problem}$	28.2	(iv)																	142
15.5	problem	28.6	(iii)																	143

15.1 problem 28.2 (i)

Internal problem ID [11777]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 28, Distinct real eigenvalues. Exercises page 282

Problem number: 28.2 (i).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 8x(t) + 14y(t)$$
$$y'(t) = 7x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 36

dsolve([diff(x(t),t)=8*x(t)+14*y(t),diff(y(t),t)=7*x(t)+y(t)],[x(t), y(t)], singsol=all)

$$x(t) = 2c_1 e^{15t} - c_2 e^{-6t}$$

$$y(t) = c_1 e^{15t} + c_2 e^{-6t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 71

DSolve[{x'[t]==8*x[t]+14*y[t],y'[t]==7*x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions ->

$$x(t) \to \frac{1}{3}e^{-6t} \left(c_1 \left(2e^{21t} + 1\right) + 2c_2 \left(e^{21t} - 1\right)\right)$$

$$y(t) \to \frac{1}{3}e^{-6t} (c_1(e^{21t} - 1) + c_2(e^{21t} + 2))$$

15.2 problem 28.2 (ii)

Internal problem ID [11778]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 28, Distinct real eigenvalues. Exercises page 282

Problem number: 28.2 (ii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t)$$

$$y'(t) = -5x(t) - 3y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve([diff(x(t),t)=2*x(t),diff(y(t),t)=-5*x(t)-3*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -c_2 e^{2t}$$

$$y(t) = c_1 e^{-3t} + c_2 e^{2t}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 36

$$x(t) \to c_1 e^{2t}$$

$$y(t) \to e^{-3t} (c_1(-e^{5t}) + c_1 + c_2)$$

15.3 problem 28.2 (iii)

Internal problem ID [11779]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 28, Distinct real eigenvalues. Exercises page 282

Problem number: 28.2 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 11x(t) - 2y(t)$$

 $y'(t) = 3x(t) + 4y(t)$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

 $dsolve([diff(x(t),t)=11*x(t)-2*y(t),diff(y(t),t)=3*x(t)+4*y(t)],[x(t), y(t)],\\ singsol=all)$

$$x(t) = 2c_1 e^{10t} + \frac{c_2 e^{5t}}{3}$$

$$y(t) = c_1 e^{10t} + c_2 e^{5t}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 95

$$x(t) \rightarrow \frac{1}{5}e^{3t} \left(5c_1 \cos\left(\sqrt{5}t\right) - \sqrt{5}(c_1 + 2c_2)\sin\left(\sqrt{5}t\right)\right)$$

$$y(t) \rightarrow \frac{1}{5}e^{3t} \left(5c_2 \cos\left(\sqrt{5}t\right) + \sqrt{5}(3c_1 + c_2)\sin\left(\sqrt{5}t\right)\right)$$

15.4 problem 28.2 (iv)

Internal problem ID [11780]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 28, Distinct real eigenvalues. Exercises page 282

Problem number: 28.2 (iv).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + 20y(t)$$

 $y'(t) = 40x(t) - 19y(t)$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

 $dsolve([diff(x(t),t)=x(t)+20*y(t),diff(y(t),t)=40*x(t)-19*y(t)],[x(t), y(t)],\\ singsol=all)$

$$x(t) = c_1 e^{21t} - \frac{c_2 e^{-39t}}{2}$$

$$y(t) = c_1 e^{21t} + c_2 e^{-39t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 71

 $\textbf{DSolve}[\{x'[t] == x[t] + 20*y[t], y'[t] == 40*x[t] - 19*y[t]\}, \{x[t], y[t]\}, t, IncludeSingularSolutions - 19*y[t], t, IncludeSing$

$$x(t) \to \frac{1}{3}e^{-39t} \left(c_1 \left(2e^{60t} + 1\right) + c_2 \left(e^{60t} - 1\right)\right)$$

$$y(t) \to \frac{1}{3}e^{-39t} (2c_1(e^{60t} - 1) + c_2(e^{60t} + 2))$$

15.5 problem 28.6 (iii)

Internal problem ID [11781]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 28, Distinct real eigenvalues. Exercises page 282

Problem number: 28.6 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + 2y(t)$$

$$y'(t) = x(t) - y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve([diff(x(t),t)=-2*x(t)+2*y(t),diff(y(t),t)=x(t)-y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -2c_2 e^{-3t} + c_1$$

$$y(t) = c_1 + c_2 e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 71

$$x(t) \to \frac{1}{3}e^{-3t} (c_1(e^{3t}+2) + 2c_2(e^{3t}-1))$$

$$y(t) \to \frac{1}{3}e^{-3t} (c_1(e^{3t} - 1) + c_2(2e^{3t} + 1))$$

16 Chapter 29, Complex eigenvalues. Exercises page 292

16.1	problem	29.3	(i) .																145
16.2	problem	29.3	(ii)																147
16.3	$\operatorname{problem}$	29.3	(iii)																148
16.4	problem	29.3	(iv)																149

16.1 problem 29.3 (i)

Internal problem ID [11782]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 29, Complex eigenvalues. Exercises page 292

Problem number: 29.3 (i).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -y(t)$$

$$y'(t) = x(t) - y(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 84

 $dsolve([diff(x(t),t)=-y(t),diff(y(t),t)=x(t)-y(t)],[x(t),y(t)],\ singsol=all)$

$$x(t) = -\frac{e^{-\frac{t}{2}}\left(\sin\left(\frac{\sqrt{3}t}{2}\right)\sqrt{3}c_2 - \cos\left(\frac{\sqrt{3}t}{2}\right)\sqrt{3}c_1 - \sin\left(\frac{\sqrt{3}t}{2}\right)c_1 - \cos\left(\frac{\sqrt{3}t}{2}\right)c_2\right)}{2}$$

$$y(t) = \mathrm{e}^{-rac{t}{2}} \Biggl(\sin \left(rac{\sqrt{3}\,t}{2}
ight) c_1 + \cos \left(rac{\sqrt{3}\,t}{2}
ight) c_2 \Biggr)$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 112

DSolve[{x'[t]==-y[t],y'[t]==x[t]-y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{3}e^{-t/2} \left(3c_1 \cos\left(\frac{\sqrt{3}t}{2}\right) + \sqrt{3}(c_1 - 2c_2) \sin\left(\frac{\sqrt{3}t}{2}\right) \right)$$
$$y(t) \to \frac{1}{3}e^{-t/2} \left(3c_2 \cos\left(\frac{\sqrt{3}t}{2}\right) + \sqrt{3}(2c_1 - c_2) \sin\left(\frac{\sqrt{3}t}{2}\right) \right)$$

16.2 problem 29.3 (ii)

Internal problem ID [11783]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 29, Complex eigenvalues. Exercises page 292

Problem number: 29.3 (ii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + 3y(t)$$

$$y'(t) = -6x(t) + 4y(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 54

dsolve([diff(x(t),t)=-2*x(t)+3*y(t),diff(y(t),t)=-6*x(t)+4*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{e^t(\sin(3t) c_1 + \sin(3t) c_2 - \cos(3t) c_1 + \cos(3t) c_2)}{2}$$

$$y(t) = e^{t}(\sin(3t) c_1 + \cos(3t) c_2)$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 56

DSolve[{x'[t]==-2*x[t]+3*y[t],y'[t]==-6*x[t]+4*y[t]},{x[t],y[t]},t,IncludeSingularSolutions

$$x(t) \to e^t(c_1 \cos(3t) + (c_2 - c_1)\sin(3t))$$

$$y(t) \to e^t(c_2\cos(3t) + (c_2 - 2c_1)\sin(3t))$$

16.3 problem 29.3 (iii)

Internal problem ID [11784]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 29, Complex eigenvalues. Exercises page 292

Problem number: 29.3 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -11x(t) - 2y(t)$$

$$y'(t) = 13x(t) - 9y(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 59

dsolve([diff(x(t),t)=-11*x(t)-2*y(t),diff(y(t),t)=13*x(t)-9*y(t)],[x(t),y(t)], singsol=all)

$$x(t) = -\frac{e^{-10t}(\sin(5t)c_1 + 5\sin(5t)c_2 - 5\cos(5t)c_1 + \cos(5t)c_2)}{13}$$

$$y(t) = e^{-10t} (\sin(5t) c_1 + \cos(5t) c_2)$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 69

 $\textbf{DSolve}[\{x'[t] == -11*x[t] - 2*y[t], y'[t] == 13*x[t] - 9*y[t]\}, \{x[t], y[t]\}, t, \textbf{IncludeSingularSolutions}]$

$$x(t) \to \frac{1}{5}e^{-10t}(5c_1\cos(5t) - (c_1 + 2c_2)\sin(5t))$$

$$y(t) \to \frac{1}{5}e^{-10t}(5c_2\cos(5t) + (13c_1 + c_2)\sin(5t))$$

16.4 problem 29.3 (iv)

Internal problem ID [11785]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 29, Complex eigenvalues. Exercises page 292

Problem number: 29.3 (iv).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 7x(t) - 5y(t)$$

$$y'(t) = 10x(t) - 3y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 58

$$dsolve([diff(x(t),t)=7*x(t)-5*y(t),diff(y(t),t)=10*x(t)-3*y(t)],[x(t), y(t)],\\ singsol=all)$$

$$x(t) = \frac{e^{2t}(\sin(5t) c_1 - \sin(5t) c_2 + \cos(5t) c_1 + \cos(5t) c_2)}{2}$$

$$y(t) = e^{2t} (\sin(5t) c_1 + \cos(5t) c_2)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 62

$$x(t) \to e^{2t}(c_1 \cos(5t) + (c_1 - c_2)\sin(5t))$$

$$y(t) \rightarrow e^{2t}(c_2\cos(5t) + (2c_1 - c_2)\sin(5t))$$

17 Chapter 30, A repeated real eigenvalue. Exercises page 299

17.1	problem	30.1	(i) .																	151
17.2	problem	30.1	(ii)																	152
17.3	problem	30.1	(iii)																	153
17.4	problem	30.1	(iv)																	154
17.5	problem	30.1	(v)																	156
17.6	problem	30.5	(iii)																	157

17.1 problem 30.1 (i)

Internal problem ID [11786]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 30, A repeated real eigenvalue. Exercises page 299

Problem number: 30.1 (i).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 5x(t) - 4y(t)$$

$$y'(t) = x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

dsolve([diff(x(t),t)=5*x(t)-4*y(t),diff(y(t),t)=x(t)+y(t)],[x(t),y(t)], singsol=all)

$$x(t) = e^{3t}(2c_2t + 2c_1 + c_2)$$

$$y(t) = e^{3t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 45

$$x(t) \rightarrow e^{3t}(2c_1t - 4c_2t + c_1)$$

$$y(t) \to e^{3t}((c_1 - 2c_2)t + c_2)$$

17.2 problem 30.1 (ii)

Internal problem ID [11787]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 30, A repeated real eigenvalue. Exercises page 299

Problem number: 30.1 (ii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -6x(t) + 2y(t)$$

$$y'(t) = -2x(t) - 2y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve([diff(x(t),t)=-6*x(t)+2*y(t),diff(y(t),t)=-2*x(t)-2*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{e^{-4t}(2c_2t + 2c_1 - c_2)}{2}$$

$$y(t) = e^{-4t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 46

$$x(t) \to e^{-4t}(-2c_1t + 2c_2t + c_1)$$

$$y(t) \to e^{-4t}(-2c_1t + 2c_2t + c_2)$$

17.3 problem 30.1 (iii)

Internal problem ID [11788]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 30, A repeated real eigenvalue. Exercises page 299

Problem number: 30.1 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - y(t)$$
$$y'(t) = x(t) - 5y(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

dsolve([diff(x(t),t)=-3*x(t)-y(t),diff(y(t),t)=x(t)-5*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = e^{-4t}(c_2t + c_1 + c_2)$$

$$y(t) = e^{-4t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 44

$$x(t) \to e^{-4t}(c_1(t+1) - c_2t)$$

$$y(t) \to e^{-4t}((c_1 - c_2)t + c_2)$$

17.4 problem 30.1 (iv)

Internal problem ID [11789]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 30, A repeated real eigenvalue. Exercises page 299

Problem number: 30.1 (iv).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 13x(t)$$

$$y'(t) = 13y(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve([diff(x(t),t)=13*x(t),diff(y(t),t)=13*y(t)],[x(t),y(t)], singsol=all)

$$x(t) = c_1 e^{13t}$$

$$y(t) = c_2 e^{13t}$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 65

DSolve[{x'[t]==13*x[t],y'[t]==13*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^{13t}$$

$$y(t) \rightarrow c_2 e^{13t}$$

$$x(t) \to c_1 e^{13t}$$

$$y(t) \to 0$$

$$x(t) \to 0$$

$$y(t) \rightarrow c_2 e^{13t}$$

$$x(t) \to 0$$

$$y(t) \to 0$$

17.5 problem 30.1 (v)

Internal problem ID [11790]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 30, A repeated real eigenvalue. Exercises page 299

Problem number: 30.1 (v).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 7x(t) - 4y(t)$$

$$y'(t) = x(t) + 3y(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

dsolve([diff(x(t),t)=7*x(t)-4*y(t),diff(y(t),t)=x(t)+3*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = e^{5t}(2c_2t + 2c_1 + c_2)$$

$$y(t) = e^{5t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 45

$$x(t) \rightarrow e^{5t}(2c_1t - 4c_2t + c_1)$$

$$y(t) \rightarrow e^{5t}((c_1 - 2c_2)t + c_2)$$

17.6 problem 30.5 (iii)

Internal problem ID [11791]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES

C. ROBINSON. Cambridge University Press 2004

Section: Chapter 30, A repeated real eigenvalue. Exercises page 299

Problem number: 30.5 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + y(t)$$

$$y'(t) = -x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve([diff(x(t),t)=-x(t)+y(t),diff(y(t),t)=-x(t)+y(t)],[x(t), y(t)], singsol=all)

$$x(t) = c_1 t - c_1 + c_2$$

$$y(t) = c_1 t + c_2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 32

DSolve[{x'[t]==-x[t]+y[t],y'[t]==-x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1(-t) + c_2t + c_1$$

$$y(t) \to (c_2 - c_1)t + c_2$$