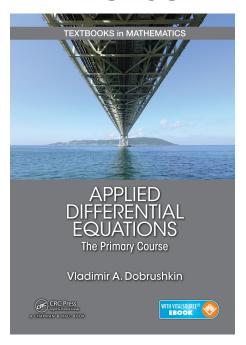
A Solution Manual For

APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015



Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 2, First Order Equations. Problems page 149	2
2	Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221	13
3	Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357	82
4	Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368	109
5	Chapter 6. Introduction to Systems of ODEs. Problems page 408	163
6	Chapter 6.4 Reduction to a single ODE. Problems page 415	187
7	Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Problems page 514	195
8	Chapter 8.4 Systems of Linear Differential Equations (Method of Undetermined Coefficients). Problems page 520	223

1 Chapter 2, First Order Equations. Problems page 149

1.1	problem	Problem	1(a)	•	•			•	•	•			•		•	•	•	•	•	•	•	3
1.2	$\operatorname{problem}$	${\bf Problem}$	1(b)																			4
1.3	$\operatorname{problem}$	${\bf Problem}$	1(c)																			5
1.4	$\operatorname{problem}$	${\bf Problem}$	1(d)																			6
1.5	${\bf problem}$	${\bf Problem}$	1(e)															•		•		7
1.6	${\bf problem}$	${\bf Problem}$	1(f)															•		•		8
1.7	${\bf problem}$	${\bf Problem}$	1(g)															•		•		9
1.8	${\bf problem}$	${\bf Problem}$	1(h)															•		•		10
1.9	$\operatorname{problem}$	${\bf Problem}$	1(i).																			11
1.10	$\operatorname{problem}$	Problem	2(a)																			12

1.1 problem Problem 1(a)

Internal problem ID [11892]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - y e^{x+y} (x^2 + 1) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(x),x)=y(x)*exp(x+y(x))*(x^2+1),y(x), singsol=all)$

$$(x^2 - 2x + 3) e^x + \text{Ei}_1(y(x)) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.859 (sec). Leaf size: 32

DSolve[y'[x]==y[x]*Exp[x+y[x]]*(x^2+1),y[x],x,IncludeSingularSolutions -> True]

 $y(x) \rightarrow \text{InverseFunction}[\text{ExpIntegralEi}(-\#1)\&] \left[e^x(x^2 - 2x + 3) + c_1\right]$

 $y(x) \to 0$

1.2 problem Problem 1(b)

Internal problem ID [11893]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^2y' - y^2 = 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve(x^2*diff(y(x),x)=1+y(x)^2,y(x), singsol=all)$

$$y(x) = \tan\left(\frac{c_1 x - 1}{x}\right)$$

✓ Solution by Mathematica

Time used: 0.354 (sec). Leaf size: 30

DSolve $[x^2*y'[x]==1+y[x]^2,y[x],x$, IncludeSingularSolutions -> True]

$$y(x) \to \tan\left(\frac{-1+c_1x}{x}\right)$$

$$y(x) \to -i$$

$$y(x) \to i$$

1.3 problem Problem 1(c)

Internal problem ID [11894]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$y' - \sin(yx) = 0$$

X Solution by Maple

dsolve(diff(y(x),x)=sin(x*y(x)),y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]==Sin[x*y[x]],y[x],x,IncludeSingularSolutions -> True]

Not solved

1.4 problem Problem 1(d)

Internal problem ID [11895]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x(e^y + 4) - e^{x+y}y' = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 24

dsolve(x*(exp(y(x))+4)=exp(x+y(x))*diff(y(x),x),y(x), singsol=all)

$$y(x) = \ln\left(-4 + c_1 e^{-x e^{-x} - e^{-x}}\right)$$

✓ Solution by Mathematica

Time used: 4.746 (sec). Leaf size: 51

DSolve[x*(Exp[y[x]]+4)==Exp[x+y[x]]*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \log\left(-4 + e^{e^{-x}(-x + c_1 e^x - 1)}\right)$$

$$y(x) \to \log(4) + i\pi$$

$$y(x) \to \log(4) + i\pi$$

1.5 problem Problem 1(e)

Internal problem ID [11896]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \cos(x + y) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve(diff(y(x),x)=cos(x+y(x)),y(x), singsol=all)

$$y(x) = -x - 2\arctan(-x + c_1)$$

✓ Solution by Mathematica

Time used: 1.551 (sec). Leaf size: 59

DSolve[y'[x] == Cos[x+y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x + 2 \arctan\left(x + \frac{c_1}{2}\right)$$

$$y(x) \to -x + 2 \arctan\left(x + \frac{c_1}{2}\right)$$

$$y(x) \to -x - \pi$$

$$y(x) \to \pi - x$$

1.6 problem Problem 1(f)

Internal problem ID [11897]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$xy' + y - y^2x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x*diff(y(x),x)+y(x)=x*y(x)^2,y(x), singsol=all)$

$$y(x) = -\frac{1}{\left(\ln\left(x\right) - c_1\right)x}$$

✓ Solution by Mathematica

Time used: 0.228 (sec). Leaf size: 22

DSolve[x*y'[x]+y[x]==x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{1}{-x \log(x) + c_1 x}$$

$$y(x) \to 0$$

1.7 problem Problem 1(g)

Internal problem ID [11898]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(g).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$y' - t \ln\left(y^{2t}\right) = t^2$$

X Solution by Maple

 $dsolve(diff(y(t),t)=t*ln(y(t)^(2*t))+t^2,y(t), singsol=all)$

No solution found

✓ Solution by Mathematica

Time used: 0.47 (sec). Leaf size: 43

 $DSolve[y'[t] == t*Log[y[t]^(2*t)] + t^2, y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) o ext{InverseFunction} \left\lceil rac{ ext{ExpIntegralEi} \left(\log(\#1) + rac{1}{2}
ight)}{2\sqrt{e}} \&
ight
ceil \left[rac{t^3}{3} + c_1
ight]$$

$$y(t) o rac{1}{\sqrt{e}}$$

1.8 problem Problem 1(h)

Internal problem ID [11899]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(h).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - x e^{-x+y^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $dsolve(diff(y(x),x)=x*exp(y(x)^2-x),y(x), singsol=all)$

$$-(x+1)e^{-x} - \frac{\sqrt{\pi} \operatorname{erf}(y(x))}{2} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 1.288 (sec). Leaf size: 28

DSolve[y'[x] == x*Exp[y[x]^2-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \text{erf}^{-1} \left(-\frac{2e^{-x}(x - c_1 e^x + 1)}{\sqrt{\pi}} \right)$$

1.9 problem Problem 1(i)

Internal problem ID [11900]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 1(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$y' - \ln\left(yx\right) = 0$$

X Solution by Maple

dsolve(diff(y(x),x)=ln(x*y(x)),y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]==Log[x*y[x]],y[x],x,IncludeSingularSolutions -> True]

Not solved

1.10 problem Problem 2(a)

Internal problem ID [11901]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 2, First Order Equations. Problems page 149

Problem number: Problem 2(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x(y+1)^2 - (x^2+1) y e^y y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(x*(y(x)+1)^2=(x^2+1)*y(x)*exp(y(x))*diff(y(x),x),y(x), singsol=all)$

$$y(x) = -\operatorname{LambertW}\left(-\frac{\mathrm{e}^{-1}}{\frac{\ln(x^2+1)}{2} + c_1}\right) - 1$$

✓ Solution by Mathematica

Time used: 1.003 (sec). Leaf size: 33

 $DSolve[x*(y[x]+1)^2==(x^2+1)*y[x]*Exp[y[x]]*y'[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -1 - W\left(-\frac{2}{e\log(x^2 + 1) + 2ec_1}\right)$$
$$y(x) \to -1$$

2 Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221

2.1	problem Problem 1(a)												 				15
2.2	problem Problem 1(b)												 				16
2.3	problem Problem 1(c)												 				17
2.4	problem Problem 1(d)												 				18
2.5	problem Problem 1(e)												 				20
2.6	problem Problem 1(f)												 				21
2.7	problem Problem 1(g)									 •			 				22
2.8	problem Problem 1(h)									 •			 				23
2.9	problem Problem $1(i)$.												 				24
2.10	problem Problem 1(j)									 •			 				25
2.11	problem Problem 1(k)												 				28
2.12	problem Problem $1(L)$									 •			 				29
2.13	problem Problem 1(m)									 •			 				30
2.14	problem Problem 1(n)												 				32
2.15	problem Problem 1(o)									 •			 				33
2.16	problem Problem 2(a)									 •			 				34
2.17	problem Problem 2(b)									 •			 				35
2.18	problem Problem 2(c)			•				•	•			•	 				36
2.19	problem Problem 2(d)			•				•	•			•	 				37
2.20	problem Problem 2(e)									 •			 				38
2.21	problem Problem 2(f)									 •			 				39
2.22	problem Problem 2(h)									 •			 				40
2.23	problem Problem 3(a)									 •			 				41
2.24	problem Problem 3(b)									 •			 				42
2.25	problem Problem 3(c)												 				44
2.26	problem Problem 3(d)									 •			 				45
2.27	problem Problem 5(a)												 				46
2.28	problem Problem 5(b)									 •			 				47
2.29	problem Problem 5(c)									 •			 				48
2.30	problem Problem 5(d)									 •			 				49
2.31	problem Problem 5(e)												 				50
2.32	problem Problem 5(f)												 				51
2.33	problem Problem 10 .								•	 •		•	 				52
2.34	problem Problem 13 .												 				53
2.35	problem Problem 15 .												 				54

2.36	problem	Problem	18(a)) .														55
		Problem																56
2.38	problem	Problem	18(c)) .														57
		Problem																58
		Problem																59
2.41	problem	Problem	18(f)															60
2.42	problem	Problem	18(g)) .														62
2.43	problem	${\bf Problem}$	18(h) .														63
2.44	problem	${\bf Problem}$	18(i)															64
2.45	problem	${\bf Problem}$	18(j)															65
2.46	problem	${\bf Problem}$	18(k)) .														66
2.47	problem	${\bf Problem}$	18(L)														67
2.48	problem	${\bf Problem}$	19(a)) .														68
2.49	problem	Problem	19(b) .														69
2.50	problem	${\bf Problem}$	19(c)) .														70
2.51	problem	Problem	19(d) .														71
2.52	problem	${\bf Problem}$	19(e)) .														72
2.53	problem	${\bf Problem}$	19(f)															73
2.54	problem	Problem	20(a)) .														74
2.55	problem	${\bf Problem}$	20(b) .														75
2.56	problem	${\bf Problem}$	20(c)) .														76
2.57	problem	${\bf Problem}$	20(d) .														77
2.58	problem	${\bf Problem}$	20(e)) .														78
2.59	$\operatorname{problem}$	${\bf Problem}$	20(f)															79
2.60	problem	Problem	20(g)) .														80
2 61	problem	Problem	20(h))														Ω1

2.1 problem Problem 1(a)

Internal problem ID [11902]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + yx^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(diff(y(x),x$2)+x^2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \sqrt{x} \text{ BesselJ}\left(\frac{1}{4}, \frac{x^2}{2}\right) + c_2 \sqrt{x} \text{ BesselY}\left(\frac{1}{4}, \frac{x^2}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 30

DSolve[$y''[x]+x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) o c_2$$
 Parabolic Cylinder D $\left(-\frac{1}{2}, (-1+i)x\right) + c_1$ Parabolic Cylinder D $\left(-\frac{1}{2}, (1+i)x\right) + c_1$ Parabolic Cylinder D $\left(-\frac{1}{2}, (1+i)x\right)$

2.2 problem Problem 1(b)

Internal problem ID [11903]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(b).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + xy = \sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 2002

dsolve(diff(y(x),x\$3)+x*y(x)=sin(x),y(x), singsol=all)

Expression too large to display

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'''[x]+x*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

Timed out

2.3 problem Problem 1(c)

Internal problem ID [11904]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [

$$y'' + yy' = 1$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 60

dsolve(diff(y(x),x\$2)+y(x)*diff(y(x),x)=1,y(x), singsol=all)

 $\frac{2\,2^{\frac{2}{3}}}{2^{\frac{2}{3}}_a^2-4\,\mathrm{RootOf}\left(2^{\frac{1}{3}}\,\mathrm{AiryBi}\left(_Z\right)c_1_a+2^{\frac{1}{3}}_a\,\mathrm{AiryAi}\left(_Z\right)-2\,\mathrm{AiryBi}\left(1,_Z\right)c_1-2\,\mathrm{AiryAi}\left(1,_Z\right)\right)}$ $-x-c_2=0$

Solution by Mathematica

Time used: 71.741 (sec). Leaf size: 73

DSolve[y''[x]+y[x]*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2^{2/3} \left(c_2 \operatorname{AiryAiPrime}\left(\frac{x - c_1}{\sqrt[3]{2}}\right) + \operatorname{AiryBiPrime}\left(\frac{x - c_1}{\sqrt[3]{2}}\right) \right)}{c_2 \operatorname{AiryAi}\left(\frac{x - c_1}{\sqrt[3]{2}}\right) + \operatorname{AiryBi}\left(\frac{x - c_1}{\sqrt[3]{2}}\right)}$$

2.4 problem Problem 1(d)

Internal problem ID [11905]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(d).

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y^{(5)} - y'''' + y' = 2x^2 + 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 154

 $dsolve(diff(y(x),x$5)-diff(y(x),x$4) + diff(y(x),x)=2*x^2+3,y(x), singsol=all)$

$$\begin{split} y(x) &= \frac{c_1 \mathrm{e}^{\mathrm{RootOf}(_Z^4 - _Z^3 + 1, \mathrm{index} = 1)x}}{\mathrm{RootOf}\left(_Z^4 - _Z^3 + 1, \mathrm{index} = 1\right)} + \frac{c_2 \mathrm{e}^{\mathrm{RootOf}(_Z^4 - _Z^3 + 1, \mathrm{index} = 2)x}}{\mathrm{RootOf}\left(_Z^4 - _Z^3 + 1, \mathrm{index} = 2\right)} \\ &+ \frac{c_3 \mathrm{e}^{\mathrm{RootOf}(_Z^4 - _Z^3 + 1, \mathrm{index} = 3)x}}{\mathrm{RootOf}\left(_Z^4 - _Z^3 + 1, \mathrm{index} = 3\right)} \\ &+ \frac{c_4 \mathrm{e}^{\mathrm{RootOf}(_Z^4 - _Z^3 + 1, \mathrm{index} = 4)x}}{\mathrm{RootOf}\left(_Z^4 - _Z^3 + 1, \mathrm{index} = 4\right)} + \frac{2x^3}{3} + 3x + c_5 \end{split}$$

✓ Solution by Mathematica

Time used: 0.093 (sec). Leaf size: 182

$$DSolve[y''''[x]-y''''[x] + y'[x] == 2*x^2+3, y[x], x, IncludeSingularSolutions \rightarrow True]$$

$$y(x) \to \frac{c_2 \exp\left(x \operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 2\right]\right)}{\operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 2\right]} + \frac{c_1 \exp\left(x \operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 1\right]\right)}{\operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 1\right]} + \frac{c_4 \exp\left(x \operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 4\right]\right)}{\operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 4\right]} + \frac{c_3 \exp\left(x \operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 4\right]\right)}{\operatorname{Root}\left[\#1^4 - \#1^3 + 1\&, 3\right]} + \frac{2x^3}{3} + 3x + c_5$$

2.5 problem Problem 1(e)

Internal problem ID [11906]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x], [_high_order, _with_linear_symmetre

X Solution by Maple

dsolve(diff(y(x),x\$2)+y(x)*diff(y(x),x\$4)=1,y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y''[x]+y[x]*y''''[x]==1,y[x],x,IncludeSingularSolutions -> True]

Not solved

2.6 problem Problem 1(f)

Internal problem ID [11907]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(f).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + xy = \cosh\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 2003

dsolve(diff(y(x),x\$3)+x*y(x)=cosh(x),y(x), singsol=all)

Expression too large to display

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'''[x]+x*y[x]==Cosh[x],y[x],x,IncludeSingularSolutions -> True]

Timed out

2.7 problem Problem 1(g)

Internal problem ID [11908]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(g).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'\cos(x) + ye^{x^2} = \sinh(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $dsolve(cos(x)*diff(y(x),x)+y(x)*exp(x^2)=sinh(x),y(x), singsol=all)$

$$y(x) = \left(\int \mathrm{e}^{\int \mathrm{e}^{x^2} \sec(x) dx} \sinh\left(x\right) \sec\left(x\right) dx + c_1\right) \mathrm{e}^{\int -\mathrm{e}^{x^2} \sec(x) dx}$$

✓ Solution by Mathematica

Time used: 1.562 (sec). Leaf size: 66

DSolve[Cos[x]*y'[x]+y[x]*Exp[x^2]==Sinh[x],y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) \to \exp\left(\int_{1}^{x} -e^{K[1]^{2}} \sec(K[1]) dK[1]\right) \left(\int_{1}^{x} \exp\left(-\int_{1}^{K[2]} -e^{K[1]^{2}} \sec(K[1]) dK[1]\right) \sec(K[2]) \sinh(K[2]) dK[2] + c_{1}\right) \end{split}$$

2.8 problem Problem 1(h)

Internal problem ID [11909]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(h).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + xy = \cosh\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 2003

dsolve(diff(y(x),x\$3)+x*y(x)=cosh(x),y(x), singsol=all)

Expression too large to display

✓ Solution by Mathematica

Time used: 91.544 (sec). Leaf size: 2230

DSolve[y'''[x]+x*y[x]==Cosh[x],y[x],x,IncludeSingularSolutions -> True]

Too large to display

2.9 problem Problem 1(i)

Internal problem ID [11910]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$yy'=1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(y(x)*diff(y(x),x)=1,y(x), singsol=all)

$$y(x) = \sqrt{2x + c_1}$$

$$y(x) = -\sqrt{2x + c_1}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 38

DSolve[y[x]*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\sqrt{2}\sqrt{x+c_1}$$

$$y(x) \to \sqrt{2}\sqrt{x+c_1}$$

2.10 problem Problem 1(j)

Internal problem ID [11911]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(j).

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$\sinh\left(x\right){y'}^2 + 3y = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 799

 $dsolve(sinh(x)*diff(y(x),x)^2+3*y(x)=0,y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) =$$

$$\frac{\mathrm{e}^{-x}\mathrm{RootOf}\left(-\mathrm{JacobiSN}\left(\frac{\left(-\frac{3\,\mathrm{e}^{3x}c_1}{\sqrt{-6\,\mathrm{e}^{3x}+6\,\mathrm{e}^x}}+\frac{3\,\mathrm{e}^xc_1}{\sqrt{-6\,\mathrm{e}^{3x}+6\,\mathrm{e}^x}}-\underline{Z}\right)\sqrt{-\mathrm{e}^x+1}\,\mathrm{RootOf}\left(\underline{Z}^2-2\,\mathrm{e}^x-2,\mathrm{index}=1\right)\mathrm{RootOf}\left(\underline{Z}^2-2\,\mathrm{e}^x-2,\mathrm{index}=1\right)}{6(\mathrm{e}^x-1)(\mathrm{e}^x+1)}$$

$$y(x) =$$

$${\rm e}^{-x} {\rm RootOf}\left(-\operatorname{JacobiSN}\left(\frac{\left(\frac{3\,{\rm e}^{3x}\,c_1}{\sqrt{-6\,{\rm e}^{3x}+6\,{\rm e}^x}}-\frac{3\,{\rm e}^x\,c_1}{\sqrt{-6\,{\rm e}^{3x}+6\,{\rm e}^x}}-\underline{Z}\right)\sqrt{-{\rm e}^x+1}\,\operatorname{RootOf}\left(\underline{Z}^2-2\,{\rm e}^x-2,\operatorname{index}=1\right)\operatorname{RootOf}\left(\underline{Z}^2-2\,{\rm e}^x\right)\right)}{6({\rm e}^x-1)({\rm e}^x+1)}$$

$$6(e^{2x}-1)$$

$$y(x) =$$

$$e^{-x} RootOf\left(-JacobiSN\left(\frac{\left(3 e^{3x} RootOf\left((6 e^{3x}-6 e^{x})_Z^{2}+1\right) c_{1}-3 e^{x} RootOf\left((6 e^{3x}-6 e^{x})_Z^{2}+1\right) c_{1}-_Z\right) \sqrt{-e^{x}+1} RootOf\left(\frac{1}{2} e^{3x} RootOf\left((6 e^{3x}-6 e^{x})_Z^{2}+1\right) c_{1}-Z^{2}+1\right) c_{1}-Z^{2}+1\right) c_{1}-Z^{2}+1 RootOf\left(\frac{1}{2} e^{3x} RootOf\left((6 e^{3x}-6 e^{x})_Z^{2}+1\right) c_{1}-Z^{2}+1\right) c_{1}-Z^{2}+1\right) c_{1}-Z^{2}+1 RootOf\left(\frac{1}{2} e^{3x} RootOf\left((6 e^{3x}-6 e^{x})_Z^{2}+1\right) c_{1}-Z^{2}+1\right) c_{1}-Z^{2}+1 RootOf\left((6 e^{3x}-6 e^{x})_Z^{2}+1\right) c_{1}-Z^{2}+1\right) c_{1}-Z^{2}+1 RootOf\left((6 e^{3x}-6 e^{x})_Z^{2}+1\right) c_{1}-Z^{2}+1 RootOf\left((6 e^{3x}-6 e^{x})_{1}-2 e^{x}\right) c_{1}-2 RootOf\left((6 e^{3$$

$$6(e^{2x}-1)$$

$$y(x) =$$

$$e^{-x} \text{RootOf}\left(\text{JacobiSN}\left(\frac{\left(-\frac{3\,\mathrm{e}^{3x}c_1}{\sqrt{-6\,\mathrm{e}^{3x}+6\,\mathrm{e}^x}}+\frac{3\,\mathrm{e}^xc_1}{\sqrt{-6\,\mathrm{e}^{3x}+6\,\mathrm{e}^x}}-\underline{Z}\right)\sqrt{-\mathrm{e}^x+1}\,\operatorname{RootOf}\left(\underline{Z}^2-2\,\mathrm{e}^x-2,\operatorname{index}=1\right)\operatorname{RootOf}\left(\underline{Z}^2-2\,\mathrm{e}^x\right)}{6(\mathrm{e}^x-1)(\mathrm{e}^x+1)}\right)\right)$$

$$6(e^{2x}-1)$$

$$y(x) =$$

$$e^{-x} \text{RootOf} \left(\text{JacobiSN} \left(\frac{\left(\frac{3 e^{3x} c_1}{\sqrt{-6 e^{3x} + 6 e^x}} - \frac{3 e^x c_1}{\sqrt{-6 e^{3x} + 6 e^x}} - \underline{Z} \right) \sqrt{-e^x + 1} \ \text{RootOf} \left(\underline{Z}^2 - 2 e^x - 2, \text{index} = 1 \right) \text{RootOf} \left(\underline{Z}^2 - e^x, \frac{1}{\sqrt{-6 e^{3x} + 6 e^x}} - \frac{1}{\sqrt{-6 e^{3x} + 6 e^x}}} - \frac{1}{\sqrt{-6 e^{3x} + 6 e^x}} - \frac{1}{\sqrt{-6 e^{3x} + 6 e^x}}} - \frac{1}{\sqrt{-6 e^{3x} + 6 e^x}} - \frac{1}{\sqrt{-6 e^{3x} + 6 e^x}}} - \frac{1}{\sqrt{-6 e^{3x} + 6 e^$$

$$6(e^{2x}-1)$$

$$y(x) =$$

$$e^{-x} RootOf \left(JacobiSN \left(\frac{\left(3\,e^{3x}\,RootOf\left((6\,e^{3x} - 6\,e^{x}) \underline{\hspace{0.2cm}} Z^2 + 1\right) c_1 - 3\,e^{x}\,RootOf\left((6\,e^{3x} - 6\,e^{x}) \underline{\hspace{0.2cm}} Z^2 + 1\right) c_1 - \underline{\hspace{0.2cm}} Z\right) \sqrt{-e^{x} + 1}\,RootOf\left((6\,e^{3x} - 6\,e^{x}) \underline{\hspace{0.2cm}} Z^2 + 1\right) c_1 - \underline{\hspace{0.2cm}} Z\right) \sqrt{-e^{x} + 1}\,RootOf\left((6\,e^{3x} - 6\,e^{x}) \underline{\hspace{0.2cm}} Z^2 + 1\right) c_1 - \underline{\hspace{0.2cm}} Z\right) \sqrt{-e^{x} + 1}\,RootOf\left((6\,e^{3x} - 6\,e^{x}) \underline{\hspace{0.2cm}} Z^2 + 1\right) c_1 - \underline{\hspace{0.2cm}} Z\right) \sqrt{-e^{x} + 1}\,RootOf\left((6\,e^{3x} - 6\,e^{x}) \underline{\hspace{0.2cm}} Z^2 + 1\right) c_1 - \underline{\hspace{0.2cm}} Z\right) \sqrt{-e^{x} + 1}\,RootOf\left((6\,e^{3x} - 6\,e^{x}) \underline{\hspace{0.2cm}} Z\right) \sqrt{-e^{x}$$

$$6\left(e^{2x}-1\right)$$

✓ Solution by Mathematica

Time used: 0.648 (sec). Leaf size: 145

DSolve[Sinh[x]*y'[x]^2+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 3i \text{ EllipticF} \left(\frac{1}{4}(\pi - 2ix), 2\right)^{2}$$

$$-\sqrt{3}c_{1}\sqrt{i \sinh(x)}\sqrt{\operatorname{csch}(x)} \text{ EllipticF} \left(\frac{1}{4}(\pi - 2ix), 2\right) + \frac{c_{1}^{2}}{4}$$

$$y(x) \to 3i \text{ EllipticF} \left(\frac{1}{4}(\pi - 2ix), 2\right)^{2}$$

$$+\sqrt{3}c_{1}\sqrt{i \sinh(x)}\sqrt{\operatorname{csch}(x)} \text{ EllipticF} \left(\frac{1}{4}(\pi - 2ix), 2\right) + \frac{c_{1}^{2}}{4}$$

$$y(x) \to 0$$

2.11 problem Problem 1(k)

Internal problem ID [11912]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(k).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$5y' - yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(5*diff(y(x),x)-x*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{\frac{x^2}{10}}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 22

DSolve[5*y'[x]-x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{\frac{x^2}{10}}$$

$$y(x) \to 0$$

2.12 problem Problem 1(L)

Internal problem ID [11913]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(L).

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$y'^2 \sqrt{y} = \sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 58

 $dsolve(diff(y(x),x)^2*sqrt(y(x))=sin(x),y(x), singsol=all)$

$$rac{4y(x)^{rac{5}{4}}}{5} + \int^{x} -rac{\sqrt{\sqrt{y(x)}\,\sin{(_a)}}}{y(x)^{rac{1}{4}}}d_a + c_{1} = 0 \ rac{4y(x)^{rac{5}{4}}}{5} + \int^{x} rac{\sqrt{\sqrt{y(x)}\,\sin{(_a)}}}{y(x)^{rac{1}{4}}}d_a + c_{1} = 0$$

✓ Solution by Mathematica

Time used: 0.436 (sec). Leaf size: 77

DSolve[y'[x]^2*Sqrt[y[x]]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{5^{4/5} \left(-2E\left(rac{1}{4}(\pi - 2x) | 2\right) + c_1\right) {}^{4/5}}{2 \; 2^{3/5}}$$

$$y(x) o rac{5^{4/5} \left(2E\left(rac{1}{4}(\pi - 2x)|2\right) + c_1\right){}^{4/5}}{2\;2^{3/5}}$$

2.13 problem Problem 1(m)

Internal problem ID [11914]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(m).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$2y'' + 3y' + 4x^2y = 1$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 385

 $dsolve(2*diff(y(x),x$2)+3*diff(y(x),x)+4*x^2*y(x)=1,y(x), singsol=all)$

$$y(x) = x \operatorname{KummerM} \left(\frac{3}{4} - \frac{9i\sqrt{2}}{128}, \frac{3}{2}, i\sqrt{2} \, x^2 \right) e^{-\frac{x\left(i\sqrt{2}\,x + \frac{3}{2}\right)}{2}} c_2$$

$$+ x \operatorname{KummerU} \left(\frac{3}{4} - \frac{9i\sqrt{2}}{128}, \frac{3}{2}, i\sqrt{2} \, x^2 \right) e^{-\frac{x\left(i\sqrt{2}\,x + \frac{3}{2}\right)}{2}} c_1 - 32x \left(\operatorname{KummerU} \left(\frac{3}{4} - \frac{9i\sqrt{2}\,x^2}{2} + \frac{3x}{4} \operatorname{KummerM} \right) \right) \left(\int \frac{e^{\frac{i\sqrt{2}\,x^2}{2} + \frac{3x}{4}} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128} - \frac{1}{4}, \frac{3}{2}, i\sqrt{2} x^2 \right) \operatorname{KummerM} \left(-\frac{9i\sqrt{2}}{128} - \frac{1}{4}, \frac{3}{2}, i\sqrt{2} x^2 \right) \right) \right) \left(\int \frac{e^{\frac{i\sqrt{2}\,x^2}{2} + \frac{3x}{4}} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128}, \frac{3}{2}, i\sqrt{2} x^2 \right) \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128} - \frac{1}{4}, \frac{3}{2}, i\sqrt{2} x^2 \right) \right) \right) \left(\int \frac{e^{\frac{i\sqrt{2}\,x^2}{2} + \frac{3x}{4}} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128} - \frac{1}{4}, \frac{3}{2}, i\sqrt{2} x^2 \right) \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128} - \frac{1}{4}, \frac{3}{2}, i\sqrt{2} x^2 \right) + 128 \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128}, \frac{3}{2}, i\sqrt{2} x^2 \right) \right) \right) \left(\int \frac{e^{-\frac{x(i\sqrt{2}\,x + \frac{3}{2})}{2}} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128} - \frac{1}{4}, \frac{3}{2}, i\sqrt{2} x^2 \right) + 128 \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128}, \frac{3}{2}, i\sqrt{2} x^2 \right) \right) \right) \left(\int \frac{e^{-\frac{x(i\sqrt{2}\,x + \frac{3}{2})}{2}} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128} - \frac{1}{4}, \frac{3}{2}, i\sqrt{2} x^2 \right) + 128 \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128}, \frac{3}{2}, i\sqrt{2} x^2 \right) \right) \right) \left(\int \frac{e^{-\frac{x(i\sqrt{2}\,x + \frac{3}{2})}{2}} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128} - \frac{1}{4}, \frac{3}{2}, i\sqrt{2} x^2 \right) + 128 \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128}, \frac{3}{2}, i\sqrt{2} x^2 \right) \right) \right) \left(\int \frac{e^{-\frac{x(i\sqrt{2}\,x + \frac{3}{2})}} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x^2}{128} - \frac{1}{4}, \frac{3}{2}, i\sqrt{2} x^2 \right) + 128 \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x + \frac{3}{2}} \right) \right) \left(\int \frac{e^{-\frac{x(i\sqrt{2}\,x + \frac{3}{2})}} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x + \frac{3}{2}} \right) \left(-\frac{1}{2} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x + \frac{3}{2}} \right) + \frac{1}{2} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x + \frac{3}{2}} \right) \right) \right) \left(-\frac{1}{2} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x + \frac{3}{2}} \right) + \frac{1}{2} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x + \frac{3}{2}} \right) \right) \left(-\frac{1}{2} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x + \frac{3}{2}} \right) + \frac{1}{2} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x + \frac{3}{2}} \right) \right) \right) \left(-\frac{1}{2} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x + \frac{3}{2}} \right) + \frac{1}{2} \operatorname{KummerM} \left(-\frac{9i\sqrt{2}\,x +$$

✓ Solution by Mathematica

Time used: 11.093 (sec). Leaf size: 553

DSolve[2*y''[x]+3*y'[x]+4*x^2*y[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\rightarrow e^{\frac{1}{4}x\left(-3-2i\sqrt{2}x\right)} \left(\text{Hypergeometric1F1}\left(\frac{1}{4}\right) \\ &-\frac{9i}{64\sqrt{2}}, \frac{1}{2}, i\sqrt{2}x^2 \right) \int_{1}^{x} \frac{\left(8+8i\right)e^{\frac{1}{4}K}\right)}{\left(9+16i\sqrt{2}\right) \left(\sqrt[4]{2} \text{ HermiteH}\left(-\frac{3}{2}+\frac{9i}{32\sqrt{2}}, \frac{(1+i)K[2]}{\sqrt[4]{2}}\right) \text{ Hypergeometric1F1}\left(\frac{1}{4}-\frac{9i}{32\sqrt{2}}, \sqrt[4]{-2x}\right) \int_{1}^{x} \frac{16e^{\frac{1}{4}K[1]\left(2i+3-2i\sqrt{2}\right)}}{\sqrt[4]{-2}\left(-32+9i\sqrt{2}\right) \text{ HermiteH}\left(-\frac{3}{2}+\frac{9i}{32\sqrt{2}}, \sqrt[4]{-2}K[1]\right) \text{ Hypergeometric1F1}\left(\frac{1}{4}-\frac{1}{2}+\frac{9i}{32\sqrt{2}}, \sqrt[4]{-2x}\right) \\ &+c_{1} \text{ HermiteH}\left(-\frac{1}{2}+\frac{9i}{32\sqrt{2}}, \sqrt[4]{-2x}\right) \\ &+c_{2} \text{ Hypergeometric1F1}\left(\frac{1}{4}-\frac{9i}{64\sqrt{2}}, \frac{1}{2}, i\sqrt{2}x^{2}\right) \end{split}$$

2.14 problem Problem 1(n)

Internal problem ID [11915]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(n).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _quadrature]]

$$y'''=1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$3)=1,y(x), singsol=all)

$$y(x) = \frac{1}{6}x^3 + \frac{1}{2}c_1x^2 + xc_2 + c_3$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 25

DSolve[y'''[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^3}{6} + c_3 x^2 + c_2 x + c_1$$

2.15 problem Problem 1(o)

Internal problem ID [11916]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 1(o).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^2y'' - y = \sin\left(x\right)^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 147

 $dsolve(x^2*diff(y(x),x$2)-y(x)=sin(x)^2,y(x), singsol=all)$

$$y(x) = c_2 x^{\frac{\sqrt{5}}{2} + \frac{1}{2}} + c_1 x^{-\frac{\sqrt{5}}{2} + \frac{1}{2}} + \frac{x^2 \left(3 \text{ hypergeom} \left(\left[1, -\frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} - \frac{\sqrt{5}}{4}\right], -x^2\right) \sqrt{5} - 3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right], -x^2\right) \sqrt{5} - 3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right], -x^2\right) \sqrt{5} - 3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right], -x^2\right) \sqrt{5} - 3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right], -x^2\right) \sqrt{5} - 3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right], -x^2\right) \sqrt{5} - 3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right], -x^2\right) \sqrt{5} - 3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right], -x^2\right) \sqrt{5} - 3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right], -x^2\right) \sqrt{5} - 3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right], -x^2\right) \sqrt{5} - 3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right] \right) \sqrt{5} - 3 \text{ hypergeom} \left(\left[1, \frac{\sqrt{5}}{4} + \frac{3}{4}\right], \left[\frac{3}{2}, 2, \frac{7}{4} + \frac{\sqrt{5}}{4}\right]\right)$$

✓ Solution by Mathematica

Time used: 1.679 (sec). Leaf size: 445

 $DSolve[x^2*y''[x]-y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]$

 $y(x) \xrightarrow{10\sqrt{5}c_{1}x^{\frac{1}{2}-\frac{\sqrt{5}}{2}} + 10c_{1}x^{\frac{1}{2}-\frac{\sqrt{5}}{2}} + 10\sqrt{5}c_{2}x^{\frac{1}{2}\left(1+\sqrt{5}\right)} + 10c_{2}x^{\frac{1}{2}\left(1+\sqrt{5}\right)} + 2^{\frac{1}{2}\left(\sqrt{5}-1\right)}\left(5+\sqrt{5}\right)\left(-ix\right)^{\frac{1}{2}\left(1+\sqrt{5}\right)}\Gamma\left(-ix\right)^{\frac{1}{2}\left(1+\sqrt{5}$

2.16 problem Problem 2(a)

Internal problem ID [11917]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 2(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x$2)=x^2+y(x),y(x), singsol=all)$

$$y(x) = c_2 e^x + c_1 e^{-x} - x^2 - 2$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 26

DSolve[y''[x]==x^2+y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x^2 + c_1 e^x + c_2 e^{-x} - 2$$

2.17 problem Problem 2(b)

Internal problem ID [11918]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 2(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [NONE]

X Solution by Maple

 $dsolve(diff(y(x),x\$3)+x*diff(y(x),x\$2)-y(x)^2=sin(x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'''[x]+x*y''[x]-y[x]^2==Sin[x],y[x],x,IncludeSingularSolutions -> True]

Not solved

2.18 problem Problem 2(c)

Internal problem ID [11919]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 2(c).

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type ['y=G(x,y')']

$$y'^2 + yy'^2x = \ln\left(x\right)$$

X Solution by Maple

 $dsolve(diff(y(x),x)^2+y(x)*diff(y(x),x)^2*x=ln(x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]^2+y[x]*y'[x]^2*x==Log[x],y[x],x,IncludeSingularSolutions -> True]

2.19 problem Problem 2(d)

Internal problem ID [11920]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 2(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x], [_high_order, _with_linear_symmetre

X Solution by Maple

dsolve(sin(diff(y(x),x\$2))+y(x)*diff(y(x),x\$4)=1,y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[Sin[y''[x]]+y[x]*y''''[x]==1,y[x],x,IncludeSingularSolutions \rightarrow True] \\$

2.20 problem Problem 2(e)

Internal problem ID [11921]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 2(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [NONE]

$$\sinh\left(x\right){y'}^2 + y'' - yx = 0$$

X Solution by Maple

 $dsolve(sinh(x)*diff(y(x),x)^2+diff(y(x),x$2)=x*y(x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[Sinh[x]*y'[x]^2+y''[x]==x*y[x],y[x],x,IncludeSingularSolutions -> True]

2.21 problem Problem 2(f)

Internal problem ID [11922]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 2(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$yy''=1$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 51

dsolve(y(x)*diff(y(x),x\$2)=1,y(x), singsol=all)

$$\int_{-\sqrt{2\ln(a)-c_1}}^{y(x)} \frac{1}{\sqrt{2\ln(a)-c_1}} d_a - x - c_2 = 0$$

$$\int_{-\sqrt{2\ln(a)-c_1}}^{y(x)} d_a - x - c_2 = 0$$

✓ Solution by Mathematica

Time used: 60.104 (sec). Leaf size: 93

DSolve[y[x]*y''[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o \exp\left(-\text{erf}^{-1}\left(-i\sqrt{\frac{2}{\pi}}\sqrt{e^{c_1}(x+c_2)^2}\right)^2 - \frac{c_1}{2}\right)$$

$$y(x) \to \exp\left(-\text{erf}^{-1}\left(i\sqrt{\frac{2}{\pi}}\sqrt{e^{c_1}(x+c_2)^2}\right)^2 - \frac{c_1}{2}\right)$$

2.22 problem Problem 2(h)

Internal problem ID [11923]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 2(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [NONE]

X Solution by Maple

 $dsolve(diff(y(x),x$3)^2+sqrt(y(x))=sin(x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'''[x]^2+Sqrt[y[x]]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

2.23 problem Problem 3(a)

Internal problem ID [11924]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 3(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{(-2+\sqrt{3})x} + c_2 e^{-(2+\sqrt{3})x}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 34

DSolve[y''[x]+4*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{-\left(\left(2+\sqrt{3}\right)x\right)}\left(c_2 e^{2\sqrt{3}x} + c_1\right)$$

2.24 problem Problem 3(b)

Internal problem ID [11925]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 3(b).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 5y'' + y' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 181

dsolve(diff(y(x),x\$3)-5*diff(y(x),x\$2)+diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y(x) = c_{1}e^{-\frac{\left(\left(116+6\sqrt{78}\right)^{\frac{2}{3}}+5\left(116+6\sqrt{78}\right)^{\frac{1}{3}}+22\right)x}{3\left(116+6\sqrt{78}\right)^{\frac{1}{3}}}}$$

$$-c_{2}e^{-\frac{\left(22+\left(116+6\sqrt{78}\right)^{\frac{2}{3}}-10\left(116+6\sqrt{78}\right)^{\frac{1}{3}}\right)x}{6\left(116+6\sqrt{78}\right)^{\frac{1}{3}}}}\sin\left(\frac{\left(\sqrt{3}\left(116+6\sqrt{78}\right)^{\frac{2}{3}}-22\sqrt{3}\right)x}{6\left(116+6\sqrt{78}\right)^{\frac{2}{3}}}-22\sqrt{3}\right)x}{6\left(116+6\sqrt{78}\right)^{\frac{2}{3}}-10\left(116+6\sqrt{78}\right)^{\frac{1}{3}}\right)x}$$

$$+c_{3}e^{-\frac{\left(22+\left(116+6\sqrt{78}\right)^{\frac{2}{3}}-10\left(116+6\sqrt{78}\right)^{\frac{1}{3}}\right)x}{6\left(116+6\sqrt{78}\right)^{\frac{1}{3}}}}\cos\left(\frac{\left(\sqrt{3}\left(116+6\sqrt{78}\right)^{\frac{2}{3}}-22\sqrt{3}\right)x}{6\left(116+6\sqrt{78}\right)^{\frac{1}{3}}}\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 81

DSolve[y'''[x]-5*y''[x]+y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow c_2 \exp \left(x \text{Root} \left[\#1^3 - 5\#1^2 + \#1 - 1\&, 2\right]\right)$$

 $+ c_3 \exp \left(x \text{Root} \left[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\right]\right)$
 $+ c_1 \exp \left(x \text{Root} \left[\#1^3 - 5\#1^2 + \#1 - 1\&, 1\right]\right)$

2.25 problem Problem 3(c)

Internal problem ID [11926]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 3(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$2y'' - 3y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(2*diff(y(x),x\$2)-3*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-\frac{x}{2}}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 24

DSolve [2*y''[x]-3*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-x/2} + c_2 e^{2x}$$

2.26 problem Problem 3(d)

Internal problem ID [11927]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 3(d).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$3y'''' - 2y'' + y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve(3*diff(y(x),x\$4)-2*diff(y(x),x\$2)+diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{-x} + c_3 e^{\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{6}\right) + c_4 e^{\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{6}\right)$$

✓ Solution by Mathematica

Time used: 1.175 (sec). Leaf size: 87

DSolve [3*y'''[x]-2*y''[x]+y'[x]==0,y[x],x, Include Singular Solutions -> True

$$y(x) \to c_3 \left(-e^{-x} \right) - \frac{1}{2} \left(\sqrt{3}c_1 - 3c_2 \right) e^{x/2} \cos \left(\frac{x}{2\sqrt{3}} \right) + \frac{1}{2} \left(3c_1 + \sqrt{3}c_2 \right) e^{x/2} \sin \left(\frac{x}{2\sqrt{3}} \right) + c_4$$

2.27 problem Problem 5(a)

Internal problem ID [11928]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 5(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$(x-3)y'' + y \ln(x) = x^2$$

With initial conditions

$$[y(1) = 1, y'(1) = 2]$$

X Solution by Maple

 $dsolve([(x-3)*diff(y(x),x$2)+ln(x)*y(x)=x^2,y(1) = 1, D(y)(1) = 2],y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{(x-3)*y''[x]+log[x]*y[x]==x^2,{y[1]==1,y'[1]==2}},y[x],x,IncludeSingularSolutions ->

2.28 problem Problem 5(b)

Internal problem ID [11929]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 5(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' \tan(x) + \cot(x) y = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{4}\right) = 1, y'\left(\frac{\pi}{4}\right) = 0\right]$$

✓ Solution by Maple

Time used: 3.828 (sec). Leaf size: 46436

$$dsolve([diff(y(x),x$2)+tan(x)*diff(y(x),x)+cot(x)*y(x)=0,y(1/4*Pi) = 1, D(y)(1/4*Pi) = 0],y(1/4*Pi) = 0$$

Expression too large to display

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

2.29 problem Problem 5(c)

Internal problem ID [11930]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 5(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2}+1) y'' + (x-1) y' + y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.375 (sec). Leaf size: 157

y(x)

$$=\frac{-20\,\mathrm{e}^{(\frac{1}{4}-\frac{i}{4})\pi}\,\mathrm{hypergeom}\left(\left[i,-i\right],\left[\frac{1}{2}-\frac{i}{2}\right],\frac{1}{2}\right)\left(i+x\right)^{\frac{1}{2}+\frac{i}{2}}\,\mathrm{hypergeom}\left(\left[\frac{1}{2}-\frac{i}{2},\frac{1}{2}+\frac{3i}{2}\right],\left[\frac{3}{2}+\frac{3i}{2}\right]}{\left(10-10i\right)\left(\mathrm{hypergeom}\left(\left[1-i,1+i\right],\left[\frac{3}{2}-\frac{i}{2}\right],\frac{1}{2}\right)-\mathrm{hypergeom}\left(\left[i,-i\right],\left[\frac{1}{2}-\frac{i}{2}\right],\frac{1}{2}\right)\right)\,\mathrm{hypergeom}\left(\left[\frac{1}{2}-\frac{i}{2}\right],\frac{1}{2}\right)}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

2.30 problem Problem 5(d)

Internal problem ID [11931]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 5(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$xy'' + 2x^2y' + \sin(x)y = \sinh(x)$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

X Solution by Maple

$$dsolve([x*diff(y(x),x$2)+2*x^2*diff(y(x),x)+y(x)*sin(x)=sinh(x),y(0) = 1, D(y)(0) = 1],y(x),$$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

$$DSolve[\{x^2*y''[x]+2*x^2*y'[x]+y[x]*Sin[x]==Sinh[x],\{y[0]==1,y'[0]==1\}\},y[x],x,IncludeSingularity$$

2.31 problem Problem 5(e)

Internal problem ID [11932]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 5(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\sin(x)y'' + xy' + 7y = 1$$

With initial conditions

$$[y(1) = 1, y'(1) = 0]$$

X Solution by Maple

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

2.32 problem Problem 5(f)

Internal problem ID [11933]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 5(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - (x - 1)y' + x^2y = \tan(x)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.328 (sec). Leaf size: 528

$$dsolve([diff(y(x),x$2)-(x-1)*diff(y(x),x)+x^2*y(x)=tan(x),y(0) = 0, D(y)(0) = 0],y(x), sings(x)$$

Expression too large to display

✓ Solution by Mathematica

Time used: 90.104 (sec). Leaf size: 4228

$$DSolve[\{y''[x]-(x-1)*y'[x]+x^2*y[x]==Tan[x],\{y[0]==0,y'[0]==1\}\},y[x],x,IncludeSingularSoluti]$$

Too large to display

2.33 problem Problem 10

Internal problem ID [11934]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x-1)y'' - xy' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve((x-1)*diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 x + c_2 e^x$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 17

 $DSolve[(x-1)*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1 e^x - c_2 x$$

2.34 problem Problem 13

Internal problem ID [11935]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - 4x^{2}y' + (x^{2} + 1)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

 $dsolve(x^2*diff(y(x),x$2)-4*x^2*diff(y(x),x)+(x^2+1)*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 e^{2x} \sqrt{x} \text{ BesselI}\left(\frac{i\sqrt{3}}{2}, \sqrt{3}x\right) + c_2 e^{2x} \sqrt{x} \text{ BesselK}\left(\frac{i\sqrt{3}}{2}, \sqrt{3}x\right)$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 67

 $DSolve[x^2*y''[x]-4*x^2*y'[x]+(x^2+1)*y[x]==0,y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to e^{2x} \sqrt{x} \left(c_1 \operatorname{BesselJ} \left(\frac{i\sqrt{3}}{2}, -i\sqrt{3}x \right) + c_2 \operatorname{BesselY} \left(\frac{i\sqrt{3}}{2}, -i\sqrt{3}x \right) \right)$$

2.35 problem Problem 15

Internal problem ID [11936]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{kx}{y^4} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 91

 $dsolve(diff(y(x),x$2)+k*x/(y(x)^4)=0,y(x), singsol=all)$

$$y(x) = \text{RootOf}\left(-15\left(\int^{-Z} \frac{\sqrt{-3c_1} f^4 + 150 fk}{c_1 f^3 - 50k} d f\right) x + 5xc_2 + 3\right) x$$

$$y(x) = \text{RootOf}\left(15\left(\int^{-Z} \frac{\sqrt{-3c_1_f^4 + 150_fk}_f}{c_1_f^3 - 50k}d_f\right)x + 5xc_2 + 3\right)x$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[$y''[x]+k*x/(y[x]^4)==0,y[x],x,IncludeSingularSolutions -> True$]

2.36 problem Problem 18(a)

Internal problem ID [11937]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 18(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + 2xy' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+2*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = \text{erfi}(x) e^{-x^2} c_1 + c_2 e^{-x^2}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 31

DSolve[y''[x]+2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{2}e^{-x^2} \left(\sqrt{\pi}c_1 \operatorname{erfi}(x) + 2c_2\right)$$

2.37 problem Problem 18(b)

Internal problem ID [11938]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 18(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$xy'' + \sin(x)y' + y\cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(x*diff(y(x),x\$2)+sin(x)*diff(y(x),x)+cos(x)*y(x)=0,y(x), singsol=all)

$$y(x) = \left(c_1 \left(\int rac{\mathrm{e}^{\mathrm{Si}(x)}}{x^2} dx
ight) + c_2
ight) x \, \mathrm{e}^{-\,\mathrm{Si}(x)}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[x*y''[x]+Sin[x]*y'[x]+Cos[x]*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

2.38 problem Problem 18(c)

Internal problem ID [11939]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 18(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$y'' + 2x^2y' + 4yx = 2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 63

 $dsolve(diff(y(x),x$2)+2*x^2*diff(y(x),x)+4*x*y(x)=2*x,y(x), singsol=all)$

$$y(x) = \frac{e^{-\frac{2x^3}{3}}x\left(2\sqrt{3}\pi - 3\Gamma\left(\frac{1}{3}, -\frac{2x^3}{3}\right)\Gamma\left(\frac{2}{3}\right)\right)c_1}{\left(-x^3\right)^{\frac{1}{3}}} + e^{-\frac{2x^3}{3}}c_2 + \frac{\left(-1 + e^{\frac{2x^3}{3}}\right)e^{-\frac{2x^3}{3}}}{2}$$

✓ Solution by Mathematica

Time used: 0.063 (sec). Leaf size: 66

 $DSolve[y''[x]+2*x^2*y'[x]+4*x*y[x]==2*x,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) o c_2 e^{-\frac{2x^3}{3}} + \frac{c_1 e^{-\frac{2x^3}{3}} (-x^3)^{2/3} \Gamma(\frac{1}{3}, -\frac{2x^3}{3})}{\sqrt[3]{2}3^{2/3}x^2} + \frac{1}{2}$$

2.39 problem Problem 18(d)

Internal problem ID [11940]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

 ${f Section}$: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 18(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$(-x^{2}+1)y'' + (1-x)y' + y = -2x+1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 54

 $dsolve((1-x^2)*diff(y(x),x$2)+(1-x)*diff(y(x),x)+y(x)=1-2*x,y(x), singsol=all)$

$$y(x) = \left(-\frac{\ln(x+1)x}{4} + \frac{\ln(x+1)}{4} + \frac{1}{2} + \frac{\ln(x-1)x}{4} - \frac{\ln(x-1)}{4}\right)c_1 + (x-1)c_2 + \frac{(\ln(x+1) + \ln(x-1))(x-1)}{2}$$

✓ Solution by Mathematica

Time used: 0.198 (sec). Leaf size: 74

$$y(x) \to \frac{1}{4}((x-1)\log(1-x) + 2x\log(x+1) - 2\log(x+1) - 4c_1x + (1+c_2)(x-1)\log(x-1) - c_2x\log(x+1) + c_2\log(x+1) + 4c_1 + 2c_2)$$

2.40 problem Problem 18(e)

Internal problem ID [11941]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 18(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4xy' + (4x^2 + 2)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(diff(y(x),x$2)+4*x*diff(y(x),x)+(2+4*x^2)*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 e^{-x^2} + c_2 x e^{-x^2}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 20

DSolve[$y''[x]+4*x*y'[x]+(2+4*x^2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to e^{-x^2}(c_2x + c_1)$$

2.41 problem Problem 18(f)

Internal problem ID [11942]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 18(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + x^2y' + 2(1-x)y = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 123

 $dsolve(x^2*diff(y(x),x$2)+x^2*diff(y(x),x)+2*(1-x)*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \sqrt{x} e^{-\frac{x}{2}} \left((x^2 + 2x) \operatorname{BesselI} \left(\frac{i\sqrt{7}}{2} + 1, \frac{x}{2} \right) + \left(-2 + i(x+2)\sqrt{7} + x^2 + 3x \right) \operatorname{BesselI} \left(\frac{i\sqrt{7}}{2}, \frac{x}{2} \right) \right) + c_2 \left((-x^2 - 2x) \operatorname{BesselK} \left(\frac{i\sqrt{7}}{2} + 1, \frac{x}{2} \right) + \left(-2 + i(x+2)\sqrt{7} + x^2 + 3x \right) \operatorname{BesselK} \left(\frac{i\sqrt{7}}{2}, \frac{x}{2} \right) \right) \sqrt{x} e^{-\frac{x}{2}}$$

✓ Solution by Mathematica

Time used: 0.085 (sec). Leaf size: 89

 $DSolve[x^2*y''[x]+x^2*y'[x]+2*(1-x)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o e^{-x} x^{rac{1}{2} + rac{i\sqrt{7}}{2}} \left(c_1 \operatorname{HypergeometricU}\left(rac{5}{2} + rac{i\sqrt{7}}{2}, 1 + i\sqrt{7}, x
ight) + c_2 L_{-rac{1}{2}i\left(-5i + \sqrt{7}
ight)}^{i\sqrt{7}}(x)
ight)$$

2.42 problem Problem 18(g)

Internal problem ID [11943]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 18(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$y'' + x^2y' + 2yx = 2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 62

 $dsolve(diff(y(x),x$2)+x^2*diff(y(x),x)+2*x*y(x)=2*x,y(x), singsol=all)$

$$y(x) = \frac{x\left(2\sqrt{3}\pi - 3\Gamma\left(\frac{1}{3}, -\frac{x^3}{3}\right)\Gamma\left(\frac{2}{3}\right)\right)e^{-\frac{x^3}{3}}c_1}{\left(-x^3\right)^{\frac{1}{3}}} + e^{-\frac{x^3}{3}}c_2 + \left(-1 + e^{\frac{x^3}{3}}\right)e^{-\frac{x^3}{3}}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 59

 $\textbf{DSolve}[y''[x]+x^2*y'[x]+2*x*y[x] == 2*x,y[x],x, \textbf{IncludeSingularSolutions} \rightarrow \textbf{True}]$

$$y(x) o c_2 e^{-\frac{x^3}{3}} + \frac{c_1 e^{-\frac{x^3}{3}} (-x^3)^{2/3} \Gamma\left(\frac{1}{3}, -\frac{x^3}{3}\right)}{3^{2/3} x^2} + 1$$

2.43 problem Problem 18(h)

Internal problem ID [11944]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 18(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

X Solution by Maple

 $dsolve(ln(1+x^2)*diff(y(x),x$2)+4*x/(1+x^2)*diff(y(x),x)+(1-x^2)/(1+x^2)^2*y(x)=0,y(x), sing(x)=0,y(x), sing(x)=0,y(x)=$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve [Log[1+x^2]*y''[x]+4*x/(1+x^2)*y'[x]+(1-x^2)/(1+x^2)^2*y[x]==0,y[x],x,IncludeSingularS

2.44 problem Problem 18(i)

Internal problem ID [11945]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 18(i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$xy'' + x^2y' + 2yx = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 42

 $dsolve(x*diff(y(x),x$2)+x^2*diff(y(x),x)+2*x*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x e^{-\frac{x^2}{2}} + c_2 \left(i e^{-\frac{x^2}{2}} \operatorname{erf} \left(\frac{i\sqrt{2} x}{2} \right) \sqrt{2} \sqrt{\pi} x + 2 \right)$$

✓ Solution by Mathematica

Time used: 0.118 (sec). Leaf size: 69

$$y(x) \to -\sqrt{\frac{\pi}{2}} c_2 e^{-\frac{x^2}{2}} \sqrt{x^2} \operatorname{erfi}\left(\frac{\sqrt{x^2}}{\sqrt{2}}\right) + \sqrt{2} c_1 e^{-\frac{x^2}{2}} x + c_2$$

2.45 problem Problem 18(j)

Internal problem ID [11946]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 18(j).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$y'' + \sin(x)y' + y\cos(x) = \cos(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+sin(x)*diff(y(x),x)+cos(x)*y(x)=cos(x),y(x), singsol=all)

$$y(x) = \left(c_2 + \int \left(c_1 + \sin\left(x\right)\right) e^{-\cos(x)} dx\right) e^{\cos(x)}$$

✓ Solution by Mathematica

Time used: 1.199 (sec). Leaf size: 34

DSolve[y''[x]+Sin[x]*y'[x]+Cos[x]*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{\cos(x)} \left(\int_1^x e^{-\cos(K[1])} (c_1 + \sin(K[1])) dK[1] + c_2 \right)$$

2.46 problem Problem 18(k)

Internal problem ID [11947]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 18(k).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \cot(x) y' - \csc(x)^2 y = \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(diff(y(x),x\$2)+cot(x)*diff(y(x),x)-csc(x)^2*y(x)=cos(x),y(x), singsol=all)$

$$y(x) = (\cot(x) + \csc(x)) c_2 + \frac{c_1}{\cot(x) + \csc(x)} - \frac{\cos(x)}{2} + \frac{\csc(x) x}{2}$$

✓ Solution by Mathematica

Time used: 0.349 (sec). Leaf size: 45

DSolve[y''[x]+Cot[x]*y'[x]-Csc[x]^2*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} \left(x \csc(x) + \frac{2c_1}{\sqrt{\sin^2(x)}} + \cos(x) \left(-1 - \frac{2ic_2}{\sqrt{\sin^2(x)}} \right) \right)$$

2.47 problem Problem 18(L)

Internal problem ID [11948]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 18(L).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x \ln(x) y'' + 2y' - \frac{y}{x} = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(x*ln(x)*diff(y(x),x\$2)+2*diff(y(x),x)-y(x)/x=1,y(x), singsol=all)

$$y(x) = \frac{c_1}{\ln(x)} + x + \frac{c_2 x}{\ln(x)}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 23

DSolve[x*Log[x]*y''[x]+2*y'[x]-y[x]/x==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x \log(x) + (-1 + c_2)x + c_1}{\log(x)}$$

2.48 problem Problem 19(a)

Internal problem ID [11949]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 19(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _m

$$xy'' + (6y^2x + 1)y' + 2y^3 = -1$$

X Solution by Maple

 $dsolve(x*diff(y(x),x$2)+(6*x*y(x)^2+1)*diff(y(x),x)+2*y(x)^3+1=0,y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[x*y''[x]+(6*x*y[x]^2+1)*y'[x]+2*y[x]^3+1==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

2.49 problem Problem 19(b)

Internal problem ID [11950]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 19(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_s

$$xy'' / y + 1 + \frac{yy' - xy'^2 + y'}{(y+1)^2} = x\sin(x)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 27

 $dsolve(x*diff(y(x),x$2)/(1+y(x))+(y(x)*diff(y(x),x)-x*diff(y(x),x)^2+diff(y(x),x))/(1+y(x))$

$$y(x) = e^{-\frac{\pi \operatorname{csgn}(x)}{2}} x^{-c_2} e^{-\sin(x)} e^{\operatorname{Si}(x)} c_1 - 1$$

✓ Solution by Mathematica

Time used: 1.681 (sec). Leaf size: 28

DSolve[x*y''[x]/(1+y[x])+(y[x]*y'[x]-x* y'[x]^2+y'[x])/(1+y[x])^2==x*Sin[x],y[x],x,Include

$$y(x) \to -1 + x^{c_2} e^{\operatorname{Si}(x) - \sin(x) + c_1}$$

$$y(x) \rightarrow -1$$

2.50 problem Problem 19(c)

Internal problem ID [11951]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 19(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _m

$$(x\cos(y) + \sin(x))y'' - xy'^{2}\sin(y) + 2(\cos(y) + \cos(x))y' - \sin(x)y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

 $dsolve((x*cos(y(x))+sin(x))*diff(y(x),x$2)-x*diff(y(x),x)^2*sin(y(x))+2*(cos(y(x))+cos(x))+cos(x)+$

$$-y(x)\sin(x) - x\sin(y(x)) - c_1x + c_2 = 0$$

✓ Solution by Mathematica

Time used: 0.292 (sec). Leaf size: $25\,$

 $DSolve[(x*Cos[y[x]]+Sin[x])*y''[x]-x*y'[x]^2*Sin[y[x]]+2*(Cos[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+2*(Cos[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[x])*y'[x]==y[x]*Sin[y[x]]+Cos[x])*y'[x]==y[x]*Sin[x]+Cos[x])*y'[x]==y[x]*Sin[x]+Cos[x]+Co$

Solve
$$\left[\sin(y(x)) + \frac{y(x)\sin(x)}{x} - \frac{c_1}{x} = c_2, y(x)\right]$$

2.51problem Problem 19(d)

Internal problem ID [11952]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 19(d).

ODE order: 2. **ODE** degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _m

$$yy'' \sin(x) + (y\cos(x) + \sin(x)y')y' = \cos(x)$$

Solution by Maple

Time used: 0.094 (sec). Leaf size: 119

$$dsolve(y(x)*diff(y(x),x$2)*sin(x)+ (diff(y(x),x)*sin(x)+y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*diff(y(x),x$2)*sin(x)+ (diff(y(x),x)*sin(x)+y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*diff(y(x),x)*sin(x)+y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*sin(x)+y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*sin(x)+y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*sin(x)+y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*sin(x)+y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*sin(x)+y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*sin(x)+y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*sin(x)+y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*sin(x)+y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*cos(x))*diff(y(x),x)=cos(x),y(x)*cos(x))*diff(x)*cos(x)*cos(x))*diff(x)*cos(x)$$

$$y(x) = \sqrt{\sqrt{2} \operatorname{csgn} (\sin (x)) \operatorname{arctanh} (\cos (x)) c_2 - \sqrt{2} \operatorname{csgn} (\sin (x)) \operatorname{csgn} (\cos (x)) c_1 + 2 \operatorname{csgn} (\sin (x)) \left(\int \operatorname{csgn} (\sin (x)) \cos (x) \right) c_1 + 2 \operatorname{csgn} (\sin (x)) \left(\int \operatorname{csgn} (\sin (x)) \cos (x) \cos (x) \right) c_1 + 2 \operatorname{csgn} (\sin (x)) \left(\int \operatorname{csgn} (\sin (x)) \cos (x) \cos (x) \right) c_1 + 2 \operatorname{csgn} (\sin (x)) \left(\int \operatorname{csgn} (\sin (x)) \cos (x) \cos (x) \right) c_1 + 2 \operatorname{csgn} (\sin (x)) \left(\int \operatorname{csgn} (\sin (x)) \cos (x) \cos (x) \right) c_1 + 2 \operatorname{csgn} (\sin (x)) \cos (x) + 2 \operatorname{csgn} (\sin (x)) + 2 \operatorname{csgn} (\cos (x)) + 2 \operatorname{csgn} (\cos$$

$$y(x) =$$

$$-\sqrt{\sqrt{2}\,\operatorname{csgn}\left(\sin\left(x\right)\right)\operatorname{arctanh}\left(\cos\left(x\right)\right)c_{2}}-\sqrt{2}\,\operatorname{csgn}\left(\sin\left(x\right)\right)\operatorname{csgn}\left(\cos\left(x\right)\right)c_{1}+2\,\operatorname{csgn}\left(\sin\left(x\right)\right)\left(\int\operatorname{csgn}\left(\sin\left(x\right)\right)c_{2}\right)$$

Solution by Mathematica

Time used: 0.159 (sec). Leaf size: 50

DSolve[y[x]*y''[x]*Sin[x]+ (y'[x]*Sin[x]+y[x]*Cos[x])*y'[x] == Cos[x], y[x], x, IncludeSingular

$$y(x) \rightarrow -\sqrt{2}\sqrt{c_1 \operatorname{arctanh}(\cos(x)) + x + c_2}$$

$$y(x) \to \sqrt{2}\sqrt{c_1 \operatorname{arctanh}(\cos(x)) + x + c_2}$$

2.52 problem Problem 19(e)

Internal problem ID [11953]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 19(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _

$$(1 - y)y'' - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

 $dsolve((1-y(x))*diff(y(x),x$2)-diff(y(x),x)^2=0,y(x), singsol=all)$

$$y(x) = 1$$

$$y(x) = 1 - \sqrt{2c_1x + 2c_2 + 1}$$

$$y(x) = 1 + \sqrt{2c_1x + 2c_2 + 1}$$

✓ Solution by Mathematica

Time used: 0.881 (sec). Leaf size: 49

DSolve[(1-y[x])*y''[x]- y'[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 1 - \sqrt{-2c_1x + 1 - 2c_2c_1}$$

$$y(x) \to 1 + \sqrt{-2c_1x + 1 - 2c_2c_1}$$

2.53 problem Problem 19(f)

Internal problem ID [11954]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 19(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _m

$$(\cos(y) - y\sin(y))y'' - y'^{2}(2\sin(y) + \cos(y)y) = \sin(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

$$dsolve((cos(y(x))-y(x)*sin(y(x)))*diff(y(x),x$2)- diff(y(x),x)^2* (2*sin(y(x))+y(x)*cos(y(x))$$

$$-y(x)\cos(y(x)) - c_1x - \sin(x) + c_2 = 0$$

✓ Solution by Mathematica

Time used: 0.531 (sec). Leaf size: 28

$$DSolve[(Cos[y[x]]-y[x]*Sin[y[x]])*y''[x]-y'[x]^2*(2*Sin[y[x]]+y[x]*Cos[y[x]])==Sin[x],y[x]$$

Solve
$$\left[\frac{y(x)\cos(y(x))}{x} + \frac{\sin(x)}{x} + \frac{c_1}{x} = c_2, y(x)\right]$$

2.54 problem Problem 20(a)

Internal problem ID [11955]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 20(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{2xy'}{2x - 1} - \frac{4xy}{(2x - 1)^2} = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 43

$$y(x) = \frac{c_1 \operatorname{WhittakerM} \left(-\frac{5}{4}, -\frac{3}{4}, x - \frac{1}{2} \right) e^{-\frac{x}{2}}}{\left(2x - 1 \right)^{\frac{1}{4}}} + \frac{c_2 \operatorname{WhittakerW} \left(-\frac{5}{4}, -\frac{3}{4}, x - \frac{1}{2} \right) e^{-\frac{x}{2}}}{\left(2x - 1 \right)^{\frac{1}{4}}}$$

✓ Solution by Mathematica

Time used: 0.508 (sec). Leaf size: 64

$$y(x)
ightarrow c_1(2x-1) + rac{1}{6}c_2\Biggl(rac{4e^{rac{1}{2}-x}(x-1)}{\sqrt{2x-1}} + \sqrt{2}(1-2x)\Gamma\Biggl(rac{1}{2},x-rac{1}{2}\Biggr)\Biggr)$$

2.55 problem Problem 20(b)

Internal problem ID [11956]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 20(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2} + 2x)y'' + (x^{2} + x + 10)y' - (25 - 6x)y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 113

$$dsolve((2*x+x^2)*diff(y(x),x$2)+ (10+x+x^2)*diff(y(x),x)=(25-6*x)*y(x),y(x), singsol=all)$$

$$y(x) = c_1(x+2)^7 e^{-x} + \frac{c_2(88447(x+2)^7 x^4 e^{-x-2} \operatorname{Ei}_1(-x-2) - 11970 e^{-x} x^4 (x+2)^7 \operatorname{Ei}_1(-x) + 76477 x^{10} + 970261 x^9 + 5176 x^{10})}{c_2(88447(x+2)^7 x^4 e^{-x-2} \operatorname{Ei}_1(-x-2) - 11970 e^{-x} x^4 (x+2)^7 \operatorname{Ei}_1(-x) + 76477 x^{10} + 970261 x^9 + 5176 x^{10})}$$

✓ Solution by Mathematica

Time used: 1.158 (sec). Leaf size: 217

$$DSolve[(2*x+x^2)*y''[x] + (10+x+x^2)*y'[x] == (25-6*x)*y[x], y[x], x, IncludeSingular Solutions -> (25-6*x)*y[x] = (25-6*x)$$

$$y(x) \to \frac{e^{-x-2}(11970e^2c_2x^4(x+2)^7 \text{ ExpIntegralEi}(x) - 88447c_2x^4(x+2)^7 \text{ ExpIntegralEi}(x+2) + e^2(322560c_2x^4(x+2)^7)}{e^{-x-2}(11970e^2c_2x^4(x+2)^7)} = \frac{e^{-x-2}(11970e^2c_2x^4(x+2)^7)}{e^{-x-2}(11970e^2c_2x^4(x+2)^7)} = \frac{e^{-x-2}(11970e^2c_2x^4(x+2)^7)}{e^{-x-2}(11970e^2c_2x^4(x+2)^7)}$$

2.56 problem Problem 20(c)

Internal problem ID [11957]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 20(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{y'}{x+1} - \frac{(x+2)y}{x^2(x+1)} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x$2)+diff(y(x),x)/(1+x)-(2+x)/(x^2*(1+x))*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + \frac{c_2(x^2 + 2\ln(x+1) - 2x)}{x}$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 34

$$y(x) \to \frac{c_2(x^2 - 2x + 2\log(x+1) - 3) + 2c_1}{2x}$$

2.57 problem Problem 20(d)

Internal problem ID [11958]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 20(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2} - x) y'' + (2x^{2} + 4x - 3) y' + 8yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve((x^2-x)*diff(y(x),x$2)+(2*x^2+4*x-3)*diff(y(x),x)+8*x*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x^2 (x-1)^2} + \frac{c_2 e^{-2x}}{(x-1)^2}$$

✓ Solution by Mathematica

Time used: 0.148 (sec). Leaf size: 30

$$y(x) o rac{rac{2c_1}{x^2} + c_2 e^{-2x}}{2(x-1)^2}$$

2.58 problem Problem 20(e)

Internal problem ID [11959]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 20(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$\frac{(x^2 - x)y''}{x} + \frac{(3x + 1)y'}{x} + \frac{y}{x} = 3x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 52

 $dsolve((x^2-x)/x*diff(y(x),x$2)+(3*x+1)/x*diff(y(x),x)+y(x)/x=3*x,y(x), singsol=all)$

$$y(x) = \frac{c_2(2\ln(x)x^2 + 4x - 1)}{(x - 1)^3} + \frac{c_1x^2}{(x - 1)^3} + \frac{x^3(x^2 - 3x + 3)}{3(x - 1)^3}$$

✓ Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 55

 $DSolve[(x^2-x)/x*y''[x]+(3*x+1)/x*y'[x]+y[x]/x=-3*x,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{2x^5 - 6x^4 + 6x^3 - 6c_1x^2 - 6c_2x^2\log(x) - 12c_2x + 3c_2}{6(x-1)^3}$$

2.59 problem Problem 20(f)

Internal problem ID [11960]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 20(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(2\sin(x) - \cos(x))y'' + (7\sin(x) + 4\cos(x))y' + 10\cos(x)y = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 100

$$dsolve((2*sin(x)-cos(x))*diff(y(x),x$2)+(7*sin(x)+4*cos(x))*diff(y(x),x)+10*y(x)*cos(x)=0,y(x)+10*y($$

$$y(x) = c_1 e^{-\left(\int \frac{5\cos(x)\cot(x) - 6\csc(x)}{-2\sin(x) + \cos(x)} dx\right)} + c_2 e^{-\left(\int \frac{5\cos(x)\cot(x) - 6\csc(x)}{-2\sin(x) + \cos(x)} dx\right)} \left(\int -\frac{\csc(x) e^{\int \frac{5\cos(x)\cot(x) - 6\csc(x)}{-2\sin(x) + \cos(x)} dx}}{-2\sin(x) + \cos(x)} dx\right)$$

✓ Solution by Mathematica

Time used: 3.823 (sec). Leaf size: 112

$$DSolve[(2*Sin[x]-Cos[x])*y''[x]+(7*Sin[x]+4*Cos[x])*y'[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x],x,IncludeSin[x]+10*y[x]*Cos[x]==0,y[x]*Cos[x]==0,y[x]*Cos[$$

$$y(x) \to \frac{e^{2ix} \left(c_2 \int_1^{e^{ix}} \frac{e^{\frac{3i \arctan\left(\frac{2-2K[1]^2}{K[1]^2+1}\right)} K[1]^{-2+2i} \left((1+2i)K[1]^2+(1-2i)\right)^4}{(5K[1]^4-6K[1]^2+5)^{3/2}} dK[1] + c_1 \right)}{\left((1+2i)e^{2ix} + (1-2i)\right)^2}$$

2.60 problem Problem 20(g)

Internal problem ID [11961]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 20(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \frac{(x-1)y'}{x} + \frac{y}{x^3} = \frac{e^{-\frac{1}{x}}}{x^3}$$

X Solution by Maple

 $dsolve(diff(y(x),x\$2)+(x-1)/x*diff(y(x),x)+y(x)/x^3=1/x^3*exp(-1/x),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y''[x]+(x-1)/x*y'[x]+y[x]/x^3==1/x^3*Exp[-1/x],y[x],x,IncludeSingularSolutions -> True (x-1)/x*y'[x]+y[x]+y[x]/x^3==1/x^3*Exp[-1/x],y[x],x,IncludeSingularSolutions -> True (x-1)/x*y'[x]+y[x]+y[x]/x^3==1/x^3*Exp[-1/x],y[x],x,IncludeSingularSolutions -> True (x-1)/x*y'[x]+y[x]+y[x]/x^3==1/x^3*Exp[-1/x],y[x],x,IncludeSingularSolutions -> True (x-1)/x*y'[x]+y[x]+y[x]/x^3==1/x^3*Exp[-1/x],y[x],x,IncludeSingularSolutions -> True (x-1)/x*y'[x]+y[x]/x^3==1/x^3*Exp[-1/x],y[x]/x^3=1/x^3*Exp[-1/x],y[x]/x^3=1/x^3*Exp[-1/x$

Not solved

2.61 problem Problem 20(h)

Internal problem ID [11962]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page

221

Problem number: Problem 20(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + (2x+5)y' + (4x+8)y = e^{-2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(x),x\$2)+(2*x+5)*diff(y(x),x)+(4*x+8)*y(x)=exp(-2*x),y(x), singsol=all)

$$y(x) = e^{-x(x+3)}c_2 + e^{-x(x+3)} \operatorname{erf}\left(ix + \frac{1}{2}i\right)c_1 + \frac{e^{-2x}}{2}$$

✓ Solution by Mathematica

Time used: 0.333 (sec). Leaf size: 61

$$y(x) \to \frac{1}{4}e^{-x(x+3)-\frac{1}{4}} \left(\sqrt{\pi}(-1+2c_2)\operatorname{erfi}\left(x+\frac{1}{2}\right) + 2\left(e^{(x+\frac{1}{2})^2} + 2\sqrt[4]{e}c_1\right)\right)$$

3 Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

3.1	problem Problem 2	. 83
3.2	problem Problem 3	. 84
3.3	problem Problem 4	. 85
3.4	problem Problem 5	. 86
3.5	problem Problem 6	. 87
3.6	problem Problem 7	. 88
3.7	problem Problem 8	. 89
3.8	problem Problem 9	. 90
3.9	problem Problem 10	. 91
3.10	problem Problem 11	. 92
3.11	problem Problem 12	. 93
3.12	problem Problem 13	. 94
3.13	problem Problem 14	. 95
3.14	problem Problem 15	. 96
3.15	problem Problem 16	. 97
3.16	problem Problem 17	. 98
3.17	problem Problem 18	. 99
3.18	problem Problem 19	. 100
3.19	problem Problem 20	. 101
3.20	problem Problem 21	. 102
3.21	problem Problem 22	. 103
3.22	problem Problem 23	. 104
3.23	problem Problem 24	. 105
3.24	problem Problem 25	. 106
	problem Problem 26	. 107
3.26	problem Problem 27	. 108

3.1 problem Problem 2

Internal problem ID [11963]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 9y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

dsolve([diff(y(t),t\$2)+9*y(t)=0,y(0) = 2, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = 2\cos\left(3t\right)$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 11

DSolve[{y''[t]+9*y[t]==0,{y[0]==2,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 2\cos(3t)$$

3.2 problem Problem 3

Internal problem ID [11964]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$4y'' - 4y' + 5y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

$$y(t) = 2e^{\frac{t}{2}}(\cos(t) + \sin(t))$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 19

DSolve[{4*y''[t]-4*y'[t]+5*y[t]==0,{y[0]==2,y'[0]==3}},y[t],t,IncludeSingularSolutions -> Tr

$$y(t) \to 2e^{t/2}(\sin(t) + \cos(t))$$

3.3 problem Problem 4

Internal problem ID [11965]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 2y' + y = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=0,y(0) = -1, D(y)(0) = 2],y(t), singsol=all)

$$y(t) = e^{-t}(t-1)$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 14

DSolve[{y''[t]+2*y'[t]+y[t]==0,{y[0]==-1,y'[0]==2}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow e^{-t}(t-1)$$

3.4 problem Problem 5

Internal problem ID [11966]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 5y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

$$y(t) = 3e^{2t}\sin(t)$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 14

DSolve[{y''[t]-4*y'[t]+5*y[t]==0,{y[0]==0,y'[0]==3}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to 3e^{2t}\sin(t)$$

3.5 problem Problem 6

Internal problem ID [11967]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 6y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

dsolve([diff(y(t),t\$2)-diff(y(t),t)-6*y(t)=0,y(0) = 2, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = \left(e^{5t} + 1\right)e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 16

DSolve[{y''[t]-y'[t]-6*y[t]==0,{y[0]==2,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-2t} + e^{3t}$$

3.6 problem Problem 7

Internal problem ID [11968]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$4y'' - 4y' + 37y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = -3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([4*diff(y(t),t\$2)-4*diff(y(t),t)+37*y(t)=0,y(0) = 2, D(y)(0) = -3],y(t), singsol=all)

$$y(t) = -\frac{2e^{\frac{t}{2}}(2\sin(3t) - 3\cos(3t))}{3}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 29

DSolve[{4*y''[t]-4*y'[t]+37*y[t]==0,{y[0]==2,y'[0]==-3}},y[t],t,IncludeSingularSolutions ->

$$y(t) \to \frac{2}{3}e^{t/2}(3\cos(3t) - 2\sin(3t))$$

3.7 problem Problem 8

Internal problem ID [11969]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 3y' + 2y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

$$y(t) = -5e^{-2t} + 7e^{-t}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 18

DSolve[{y''[t]+3*y'[t]+2*y[t]==0,{y[0]==2,y'[0]==3}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to e^{-2t} \left(7e^t - 5 \right)$$

3.8 problem Problem 9

Internal problem ID [11970]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + 5y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

$$y(t) = \cos(2t) e^{-t}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 15

DSolve[{y''[t]+2*y'[t]+5*y[t]==0,{y[0]==1,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to e^{-t}\cos(2t)$$

3.9 problem Problem 10

Internal problem ID [11971]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$4y'' - 12y' + 13y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $\frac{dsolve([4*diff(y(t),t$2)-12*diff(y(t),t)+13*y(t)=0,y(0)=2,D(y)(0)=3],y(t)}{dsolve([4*diff(y(t),t$2)-12*diff(y(t),t)+13*y(t)=0,y(0)=2,D(y)(0)=3],y(t)}, singsol=all)$

$$y(t) = 2e^{\frac{3t}{2}}\cos(t)$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 16

DSolve[{4*y''[t]-12*y'[t]+13*y[t]==0,{y[0]==2,y'[0]==3}},y[t],t,IncludeSingularSolutions ->

$$y(t) \to 2e^{3t/2}\cos(t)$$

3.10 problem Problem 11

Internal problem ID [11972]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y' + 13y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -6]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $\frac{dsolve([diff(y(t),t$2)+4*diff(y(t),t)+13*y(t)=0,y(0) = 1, D(y)(0) = -6],y(t),}{singsol=all)}$

$$y(t) = -\frac{e^{-2t}(4\sin(3t) - 3\cos(3t))}{3}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 27

$$y(t) \to \frac{1}{3}e^{-2t}(3\cos(3t) - 4\sin(3t))$$

3.11 problem Problem 12

Internal problem ID [11973]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 6y' + 9y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

$$y(t) = e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 10

DSolve[{y''[t]+6*y'[t]+9*y[t]==0,{y[0]==1,y'[0]==-3}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to e^{-3t}$$

3.12 problem Problem 13

Internal problem ID [11974]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 13.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[high order, missing x]]

$$y'''' + y = 0$$

With initial conditions

$$y(0) = 1, y'(0) = 0, y''(0) = 0, y'''(0) = \frac{\sqrt{2}}{2}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 55

 $dsolve([diff(y(t),t\$4)+y(t)=0,y(0)=1,D(y)(0)=0,(D@@2)(y)(0)=0,(D@@3)(y)(0)=1/2*2^{-1})$

$$y(t) = \frac{\left(3e^{-\frac{\sqrt{2}t}{2}} + e^{\frac{\sqrt{2}t}{2}}\right)\cos\left(\frac{\sqrt{2}t}{2}\right)}{4} + \frac{\sin\left(\frac{\sqrt{2}t}{2}\right)\left(e^{-\frac{\sqrt{2}t}{2}} + e^{\frac{\sqrt{2}t}{2}}\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: $61\,$

DSolve[{y'''[t]+y[t]==0,{y[0]==0,y'[0]==0,y''[0]==0,y'''[0]==1/Sqrt[2]}},y[t],t,IncludeSing

$$y(t) \to \frac{1}{4} e^{-\frac{t}{\sqrt{2}}} \left(\left(e^{\sqrt{2}t} + 1 \right) \sin \left(\frac{t}{\sqrt{2}} \right) - \left(e^{\sqrt{2}t} - 1 \right) \cos \left(\frac{t}{\sqrt{2}} \right) \right)$$

3.13 problem Problem 14

Internal problem ID [11975]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' - 2y' + 5y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

$$y(t) = -\frac{e^t \sin(2t)}{2}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 14

DSolve[{y''[t]-2*y'[t]+5*+y[t]==0,{y[0]==0,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> Tr

$$y(t) \to -e^t \sin(t) \cos(t)$$

3.14 problem Problem 15

Internal problem ID [11976]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 20y' + 51y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = -14]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

$$y(t) = e^{3t} - e^{17t}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 18

DSolve[{y''[t]-20*y'[t]+51*+y[t]==0,{y[0]==0,y'[0]==-14}},y[t],t,IncludeSingularSolutions ->

$$y(t) \to e^{3t} - e^{17t}$$

3.15 problem Problem 16

Internal problem ID [11977]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$2y'' + 3y' + y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

$$y(t) = 4 e^{-\frac{t}{2}} - e^{-t}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 22

DSolve[{2*y''[t]+3*y'[t]+y[t]==0,{y[0]==3,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to e^{-t} (4e^{t/2} - 1)$$

3.16 problem Problem 17

Internal problem ID [11978]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$3y'' + 8y' - 3y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = -4]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve([3*diff(y(t),t\$2)+8*diff(y(t),t)-3*y(t)=0,y(0) = 3, D(y)(0) = -4],y(t), singsol=all)

$$y(t) = \frac{3\left(e^{\frac{10t}{3}} + 1\right)e^{-3t}}{2}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 23

DSolve[{3*y''[t]+8*y'[t]-3*y[t]==0,{y[0]==3,y'[0]==-4}},y[t],t,IncludeSingularSolutions -> T

$$y(t) \to \frac{3}{2}e^{-3t} (e^{10t/3} + 1)$$

3.17 problem Problem 18

Internal problem ID [11979]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$2y'' + 20y' + 51y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -5]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

$$y(t) = e^{-5t} \cos\left(\frac{\sqrt{2}t}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 19

DSolve[{2*y''[t]+20*y'[t]+51*y[t]==0,{y[0]==1,y'[0]==-5}},y[t],t,IncludeSingularSolutions ->

$$y(t) \to e^{-5t} \cos\left(\frac{t}{\sqrt{2}}\right)$$

3.18 problem Problem 19

Internal problem ID [11980]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' + 40y' + 101y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -5]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

$$y(t) = e^{-5t} \cos\left(\frac{t}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 17

DSolve[{4*y''[t]+40*y'[t]+101*y[t]==0,{y[0]==1,y'[0]==-5}},y[t],t,IncludeSingularSolutions -

$$y(t) \to e^{-5t} \cos\left(\frac{t}{2}\right)$$

3.19 problem Problem 20

Internal problem ID [11981]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 6y' + 34y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

$$y(t) = e^{-3t} (3\cos(5t) + 2\sin(5t))$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 24

DSolve[{y''[t]+6*y'[t]+34*y[t]==0,{y[0]==3,y'[0]==1}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to e^{-3t}(2\sin(5t) + 3\cos(5t))$$

3.20 problem Problem 21

Internal problem ID [11982]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 21.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 8y'' + 16y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1, y''(0) = -8]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

$$y(t) = t e^{-4t} + 1$$

✓ Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 14

DSolve[{y'''[t]+8*y''[t]+16*y'[t]==0,{y[0]==1,y'[0]==1,y''[0]==-8}},y[t],t,IncludeSingularSo

$$y(t) \to e^{-4t}t + 1$$

3.21 problem Problem 22

Internal problem ID [11983]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 22.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, missing x]]

$$y''' + 6y'' + 13y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1, y''(0) = -6]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

$$y(t) = \frac{\mathrm{e}^{-3t}\sin\left(2t\right)}{2} + 1$$

✓ Solution by Mathematica

Time used: 0.456 (sec). Leaf size: 17

DSolve[{y'''[t]+6*y''[t]+13*y'[t]==0,{y[0]==1,y'[0]==1,y''[0]==-6}},y[t],t,IncludeSingularSo

$$y(t) \rightarrow e^{-3t} \sin(t) \cos(t) + 1$$

3.22 problem Problem 23

Internal problem ID [11984]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 23.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, missing x]]

$$y''' - 6y'' + 13y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1, y''(0) = 6]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

$$y(t) = \frac{e^{3t}\sin(2t)}{2} + 1$$

✓ Solution by Mathematica

Time used: 0.443 (sec). Leaf size: 17

$$y(t) \to e^{3t} \sin(t) \cos(t) + 1$$

3.23 problem Problem 24

Internal problem ID [11985]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 24.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, missing x]]

$$y''' + 4y'' + 29y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 5, y''(0) = -20]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

$$y(t) = e^{-2t} \sin(5t) + 1$$

✓ Solution by Mathematica

Time used: 0.58 (sec). Leaf size: 49

DSolve[{y'''[t]+4*y''[t]-20*y'[t]==0,{y[0]==1,y'[0]==5,y''[0]==-20}},y[t],t,IncludeSingularS

$$y(t) o rac{5e^{2\left(\sqrt{6}-1\right)t}}{4\sqrt{6}} - rac{5e^{-2\left(1+\sqrt{6}\right)t}}{4\sqrt{6}} + 1$$

3.24 problem Problem 25

Internal problem ID [11986]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 25.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 6y'' + 25y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 4, y''(0) = -24]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

$$y(t) = e^{-3t}\sin(4t) + 1$$

✓ Solution by Mathematica

Time used: 0.467 (sec). Leaf size: 17

DSolve[{y'''[t]+6*y''[t]+25*y'[t]==0,{y[0]==1,y'[0]==4,y''[0]==-24}},y[t],t,IncludeSingularS

$$y(t) \to e^{-3t} \sin(4t) + 1$$

3.25 problem Problem 26

Internal problem ID [11987]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 26.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 6y'' + 10y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 3, y''(0) = 8]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

$$y(t) = e^{3t} \cos(t)$$

✓ Solution by Mathematica

Time used: 0.212 (sec). Leaf size: 13

DSolve[{y'''[t]-6*y''[t]+10*y'[t]==0,{y[0]==1,y'[0]==3,y''[0]==8}},y[t],t,IncludeSingularSol

$$y(t) \to e^{3t} \cos(t)$$

3.26 problem Problem 27

Internal problem ID [11988]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357

Problem number: Problem 27.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 13y'' + 36y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = -1, y''(0) = 5, y'''(0) = 19]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

$$y(t) = \cos(2t) + \sin(2t) - \cos(3t) - \sin(3t)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 26

$$y(t) \to \sin(2t) - \sin(3t) + \cos(2t) - \cos(3t)$$

4 Chapter 5.6 Laplace transform.

Nonhomogeneous equations. Problems page 368

4.1	problem P	Problem	2(a)														111
4.2	problem P	Problem	2(b)			•											112
4.3	problem P	Problem	2(c)			•											113
4.4	problem P	Problem	2(d)			•											114
4.5	problem P	Problem	2(e)			•											115
4.6	problem P	Problem	2(f)						 •						•		116
4.7	problem P	Problem	2(g)			•											117
4.8	problem P	Problem	2(h)						 •						•		118
4.9	problem P	Problem	2(i) .														119
4.10	problem P	roblem	2(i)[j]			•											120
4.11	problem P	roblem	2(j)[k	:]					 •				•		•		121
4.12	problem P	roblem	2(k)[l	.]													122
4.13	problem P	roblem	2(m)			•											123
4.14	problem P	roblem	2(l)[n	<u>[</u>					 •				•		•		124
4.15	problem P	roblem	3(a)														125
4.16	problem P	roblem	3(b)			•											126
4.17	problem P	roblem	3(c)														127
4.18	problem P	roblem	3(d)			•											128
4.19	problem P	roblem	3(e)						 •				•		•		129
4.20	problem P	roblem	3(f)														131
4.21	problem P	roblem	3(g)														132
4.22	problem P	roblem	3(h)						 •				•		•		134
4.23	problem P	roblem	3(i) .														135
4.24	problem P	roblem	3(j)														137
4.25	problem P	roblem	4(a)														139
4.26	problem P	roblem	4(b)														141
4.27	problem P	roblem	4(c)														143
4.28	problem P	roblem	4(d)														145
4.29	problem P	roblem	4(e)														147
4.30	problem P	roblem	5(a)														149
4.31	problem P	roblem	5(b)														150
4.32	problem P	$^{ m roblem}$	5(c)														151
4.33	problem P	$^{ m roblem}$	5(d)														152
4.34	problem P	$^{ m roblem}$	5(e)														153
4.35	problem P	$\mathbf{Problem}$	5(f)														154

4.36	problem	Problem	6(a)		•											•	•		•	155
4.37	$\operatorname{problem}$	Problem	13(a)																	156
4.38	${\bf problem}$	Problem	13(b)																	157
4.39	${\bf problem}$	Problem	13(c)																	158
4.40	${\bf problem}$	Problem	13(d)																	159
4.41	${\rm problem}$	Problem	14(a)																	160
4.42	problem	Problem	14(b)															_		162

4.1 problem Problem 2(a)

Internal problem ID [11989]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + 3y = 9t$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+3*y(t)=9*t,y(0) = 0, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = 3t + 2e^{-t}\cos\left(\sqrt{2}t\right) - 2$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 13

DSolve[{y''[t]+2*y''[t]+3*y[t]==9*t,{y[0]==0,y'[0]==1}},y[t],t,IncludeSingularSolutions -> T

$$y(t) \rightarrow 3t - 2\sin(t)$$

4.2 problem Problem 2(b)

Internal problem ID [11990]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$4y'' + 16y' + 17y = 17t - 1$$

With initial conditions

$$[y(0) = -1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve([4*diff(y(t),t\$2)+16*diff(y(t),t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = 2],y(t), singsolve([4*diff(y(t),t\$2)+16*diff(y(t),t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = 2],y(t), singsolve([4*diff(y(t),t\$2)+16*diff(y(t),t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = 2],y(t), singsolve([4*diff(y(t),t)+16*diff(y(t),t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = 2],y(t), singsolve([4*diff(y(t),t)+17*y(t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = 2],y(t), singsolve([4*diff(y(t),t)+17*y(t)+17*y(t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = 2],y(t), singsolve([4*diff(y(t),t)+17*y(t)+17*y(t)+17*y(t)=17*t-1,y(0) = -1, D(y)(0) = -1, D(y)(0)

$$y(t) = t + 2e^{-2t}\sin\left(\frac{t}{2}\right) - 1$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 21

DSolve[{4*y''[t]+16*y'[t]+17*y[t]==17*t-1,{y[0]==-1,y'[0]==2}},y[t],t,IncludeSingularSolution

$$y(t) \to t + 2e^{-2t} \sin\left(\frac{t}{2}\right) - 1$$

4.3 problem Problem 2(c)

Internal problem ID [11991]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$4y'' + 5y' + 4y = 3e^{-t}$$

With initial conditions

$$[y(0) = -1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

 $\frac{\text{dsolve}([4*\text{diff}(y(t),t$^2)+5*\text{diff}(y(t),t)+4*y(t)=3*\exp(-t),y(0)=-1,D(y)(0)=}{1],y(t),\text{ sings}}$

$$y(t) = \frac{2e^{-\frac{5t}{8}}\sqrt{39}\sin\left(\frac{\sqrt{39}t}{8}\right)}{13} - 2e^{-\frac{5t}{8}}\cos\left(\frac{\sqrt{39}t}{8}\right) + e^{-t}$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 58

DSolve[{4*y''[t]+5*y'[t]+4*y[t]==3*Exp[-t],{y[0]==-1,y'[0]==1}},y[t],t,IncludeSingularSoluti

$$y(t) \to e^{-t} + 2\sqrt{\frac{3}{13}}e^{-5t/8}\sin\left(\frac{\sqrt{39}t}{8}\right) - 2e^{-5t/8}\cos\left(\frac{\sqrt{39}t}{8}\right)$$

4.4 problem Problem 2(d)

Internal problem ID [11992]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - 4y' + 4y = e^{2t}t^2$$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

$$y(t) = e^{2t} \left(1 + \frac{t^4}{12} \right)$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 19

DSolve[{y''[t]-4*y'[t]+4*y[t]==t^2*Exp[2*t],{y[0]==1,y'[0]==2}},y[t],t,IncludeSingularSoluti

$$y(t) \to \frac{1}{12}e^{2t}(t^4 + 12)$$

4.5 problem Problem 2(e)

Internal problem ID [11993]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 9y = e^{-2t}$$

With initial conditions

$$\left[y(0) = -\frac{2}{13}, y'(0) = \frac{1}{13}\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)+9*y(t)=exp(-2*t),y(0) = -2/13, D(y)(0) = 1/13],y(t), singsol=all)

$$y(t) = \frac{\sin(3t)}{13} - \frac{3\cos(3t)}{13} + \frac{e^{-2t}}{13}$$

✓ Solution by Mathematica

Time used: 0.242 (sec). Leaf size: 25

$$y(t) \to \frac{1}{13} (e^{-2t} + \sin(3t) - 3\cos(3t))$$

4.6 problem Problem 2(f)

Internal problem ID [11994]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2y'' - 3y' + 17y = 17t - 1$$

With initial conditions

$$[y(0) = -1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

$$y(t) = \frac{125 e^{\frac{3t}{4}} \sin\left(\frac{\sqrt{127}t}{4}\right) \sqrt{127}}{2159} - \frac{19 e^{\frac{3t}{4}} \cos\left(\frac{\sqrt{127}t}{4}\right)}{17} + t + \frac{2}{17}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 59

DSolve[{2*y''[t]-3*y'[t]+17*y[t]==17*t-1,{y[0]==-1,y'[0]==2}},y[t],t,IncludeSingularSolution

$$y(t) \to t + \frac{125e^{3t/4}\sin\left(\frac{\sqrt{127}t}{4}\right)}{17\sqrt{127}} - \frac{19}{17}e^{3t/4}\cos\left(\frac{\sqrt{127}t}{4}\right) + \frac{2}{17}$$

4.7 problem Problem 2(g)

Internal problem ID [11995]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + y = e^{-t}$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

$$y(t) = e^{-t} \left(1 + \frac{t^2}{2} \right)$$

Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 19

DSolve[{y''[t]+2*y'[t]+y[t]==Exp[-t],{y[0]==1,y'[0]==-1}},y[t],t,IncludeSingularSolutions ->

$$y(t) \rightarrow \frac{1}{2}e^{-t}(t^2+2)$$

4.8 problem Problem 2(h)

Internal problem ID [11996]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + 5y = t + 2$$

With initial conditions

$$[y(0) = 4, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve([diff(y(t),t\$2)-2*diff(y(t),t)+5*y(t)=2+t,y(0) = 4, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = -\frac{34 e^{t} \sin(2t)}{25} + \frac{88 e^{t} \cos(2t)}{25} + \frac{t}{5} + \frac{12}{25}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 32

DSolve[{y''[t]-2*y'[t]+5*y[t]==2+t,{y[0]==4,y'[0]==1}},y[t],t,IncludeSingularSolutions -> Tr

$$y(t) \to \frac{1}{25} (5t - 34e^t \sin(2t) + 88e^t \cos(2t) + 12)$$

4.9 problem Problem 2(i)

Internal problem ID [11997]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$2y' + y = e^{-\frac{t}{2}}$$

With initial conditions

$$[y(0) = -1]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve([2*diff(y(t),t)+y(t)=exp(-t/2),y(0) = -1],y(t), singsol=all)

$$y(t) = \frac{(t-2)e^{-\frac{t}{2}}}{2}$$

✓ Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 19

 $DSolve[{2*y'[t]+y[t]==Exp[-t/2], {y[0]==-1}}, y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) o rac{1}{2}e^{-t/2}(t-2)$$

4.10 problem Problem 2(i)[j]

Internal problem ID [11998]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(i)[j].

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 8y' + 20y = \sin(2t)$$

With initial conditions

$$[y(0) = 1, y'(0) = -4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

 $\frac{dsolve([diff(y(t),t$2)+8*diff(y(t),t)+20*y(t)=sin(2*t),y(0) = 1, D(y)(0) = -4],y(t), singsolve([diff(y(t),t$2)+8*diff(y(t),t)+20*y(t)=sin(2*t),y(0) = 1, D(y)(0) = -4],y(t), singsolve([diff(y(t),t)$2)+8*diff(y(t),t)+20*y(t)=sin(2*t),y(0) = 1, D(y)(0) = -4],y(t), singsolve([diff(y(t),t)])$

$$y(t) = \frac{(33e^{-4t} - 1)\cos(2t)}{32} + \frac{\sin(2t)(e^{-4t} + 1)}{32}$$

✓ Solution by Mathematica

Time used: 0.292 (sec). Leaf size: 40

DSolve[{y''[t]+8*y'[t]+20*y[t]==Sin[2*t],{y[0]==1,y'[0]==-4}},y[t],t,IncludeSingularSolution

$$y(t) \to \frac{1}{32}e^{-4t}((e^{4t}+1)\sin(2t)-(e^{4t}-33)\cos(2t))$$

4.11 problem Problem 2(j)[k]

Internal problem ID [11999]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(j)[k].

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4y'' - 4y' + y = t^2$$

With initial conditions

$$[y(0) = -12, y'(0) = 7]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $\frac{dsolve([4*diff(y(t),t$^2)-4*diff(y(t),t)+y(t)=t^2,y(0) = -12, D(y)(0) = 7],y(t)}{dsolve([4*diff(y(t),t$^2)-4*diff(y(t),t)+y(t)=t^2,y(0) = -12, D(y)(0) = 7],y(t)}, singsol=all)$

$$y(t) = (17t - 36) e^{\frac{t}{2}} + t^2 + 8t + 24$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 26

DSolve[{4*y''[t]-4*y'[t]+y[t]==t^2,{y[0]==-12,y'[0]==7}},y[t],t,IncludeSingularSolutions ->

$$y(t) \to t^2 + 8t + e^{t/2}(17t - 36) + 24$$

4.12 problem Problem 2(k)[l]

Internal problem ID [12000]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(k)[l].

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$2y'' + y' - y = 4\sin(t)$$

With initial conditions

$$[y(0) = 0, y'(0) = -4]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 25

dsolve([2*diff(y(t),t\$2)+diff(y(t),t)-y(t)=4*sin(t),y(0) = 0, D(y)(0) = -4],y(t), singsol=al(t),y(t),y(t)=4*sin(t),y(t)=0, D(y)(t)=0, D(y)(t)

$$y(t) = -\frac{2e^{-t}\left(4e^{\frac{3t}{2}} - 5 + (\cos(t) + 3\sin(t))e^{t}\right)}{5}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 34

DSolve[{2*y''[t]+y'[t]-y[t]==4*Sin[t],{y[0]==0,y'[0]==-4}},y[t],t,IncludeSingularSolutions -

$$y(t) \to \frac{2}{5} (5e^{-t} - 4e^{t/2} - 3\sin(t) - \cos(t))$$

4.13 problem Problem 2(m)

Internal problem ID [12001]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(m).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = e^{2t}$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

dsolve([diff(y(t),t)-y(t)=exp(2*t),y(0) = 1],y(t), singsol=all)

$$y(t) = e^{2t}$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 10

DSolve[{y'[t]-y[t]==Exp[2*t],{y[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{2t}$$

4.14 problem Problem 2(l)[n]

Internal problem ID [12002]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 2(l)[n].

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3y'' + 5y' - 2y = 7e^{-2t}$$

With initial conditions

$$[y(0) = 3, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve([3*diff(y(t),t\$2)+5*diff(y(t),t)-2*y(t)=7*exp(-2*t),y(0) = 3, D(y)(0) = 0],y(t), sing

$$y(t) = -\left(-3e^{\frac{7t}{3}} + t\right)e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 23

DSolve[{3*y''[t]+5*y'[t]-2*y[t]==7*Exp[-2*t],{y[0]==3,y'[0]==0}},y[t],t,IncludeSingularSolut

$$y(t) \to 3e^{t/3} - e^{-2t}t$$

4.15 problem Problem 3(a)

Internal problem ID [12003]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + y = \text{Heaviside}(t) - \text{Heaviside}(-2 + t)$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

$$dsolve([diff(y(t),t)+y(t)=Heaviside(t)-Heaviside(t-2),y(0) = 1],y(t), singsol=all)$$

 $y(t) = \text{Heaviside}(t) - \text{Heaviside}(t-2) + \text{Heaviside}(t-2) e^{-t+2} - e^{-t} \text{Heaviside}(t) + e^{-t}$

✓ Solution by Mathematica

Time used: 0.108 (sec). Leaf size: 31

$$y(t) \rightarrow \begin{cases} 1 & 0 \le t \le 2 \\ e^{2-t} & t > 2 \end{cases}$$

$$e^{-t} \quad \text{True}$$

4.16 problem Problem 3(b)

Internal problem ID [12004]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - 2y = 4t(\text{Heaviside}(t) - \text{Heaviside}(-2 + t))$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 48

$$\frac{dsolve([diff(y(t),t)-2*y(t)=4*t*(Heaviside(t)-Heaviside(t-2)),y(0)=1],y(t),}{singsol=all)}$$

$$y(t) = 2t \operatorname{Heaviside}(t-2) - 2t \operatorname{Heaviside}(t) + \operatorname{Heaviside}(t-2) - \operatorname{Heaviside}(t) - 5 \operatorname{Heaviside}(t-2) e^{-4+2t} + \operatorname{Heaviside}(t) e^{2t} + e^{2t}$$

✓ Solution by Mathematica

Time used: 0.121 (sec). Leaf size: 47

$$\begin{array}{cccc} & e^{2t} & t < 0 \\ y(t) \to & \{ & e^{2t-4}(-5+2e^4) & t > 2 \\ & & -2t+2e^{2t}-1 & \text{True} \end{array}$$

4.17 problem Problem 3(c)

Internal problem ID [12005]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = 24\sin(t)$$
 (Heaviside (t) + Heaviside $(t - \pi)$)

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

dsolve([diff(y(t),t\$2)+9*y(t)=24*sin(t)*(Heaviside(t)+Heaviside(t-Pi)),y(0)=0, D(y)(0)=0

$$y(t) = 4 \sin(t)^3 (\text{Heaviside}(t) + \text{Heaviside}(t - \pi))$$

✓ Solution by Mathematica

Time used: 0.089 (sec). Leaf size: 24

DSolve[{y''[t]+9*y[t]==24*Sin[t]*(UnitStep[t]+UnitStep[t-Pi]),{y[0]==0,y'[0]==0}},y[t],t,Inc

$$y(t) \to 4(\theta(\pi - t)(\theta(t) - 2) + 2)\sin^3(t)$$

4.18 problem Problem 3(d)

Internal problem ID [12006]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = \text{Heaviside}(t) - \text{Heaviside}(t-1)$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

$$y(t) = t \operatorname{Heaviside}(t-1) e^{-t+1} + (1 + \operatorname{Heaviside}(t)(-t-1)) e^{-t} + \operatorname{Heaviside}(t) - \operatorname{Heaviside}(t-1)$$

✓ Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 43

$$DSolve[\{y''[t]+2*y'[t]+y[t]==UnitStep[t]-UnitStep[t-1],\{y[0]==1,y'[0]==-1\}\},y[t],t,IncludeSites[t-1],\{y[0]==-1,y'[0]==-1\}\},y[t],t,IncludeSites[t-1],\{y[0]==-1,y'[0]==-1\}\},y[t],t,IncludeSites[t-1],\{y[0]==-1,y'[0]==-1$$

$$y(t) \rightarrow \begin{array}{ccc} e^{-t} & t < 0 \\ & 1 - e^{-t}t & 0 \leq t \leq 1 \\ & (-1 + e)e^{-t}t & \text{True} \end{array}$$

4.19 problem Problem 3(e)

Internal problem ID [12007]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 2y' + 2y = 5\cos(t)$$
 (Heaviside (t) – Heaviside $(t - \frac{\pi}{2})$)

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 76

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=5*cos(t)*(Heaviside(t)-Heaviside(t-Pi/2)),y(0))

$$\begin{split} y(t) &= -\operatorname{Heaviside}\left(t - \frac{\pi}{2}\right)\left(\cos\left(t\right) - 2\sin\left(t\right)\right) \mathrm{e}^{\frac{\pi}{2} - t} \\ &+ \left(-\cos\left(t\right) - 2\sin\left(t\right)\right) \operatorname{Heaviside}\left(t - \frac{\pi}{2}\right) \\ &+ \left(\left(1 - \operatorname{Heaviside}\left(t\right)\right)\cos\left(t\right) - 3\sin\left(t\right) \operatorname{Heaviside}\left(t\right)\right) \mathrm{e}^{-t} \\ &+ \operatorname{Heaviside}\left(t\right)\left(\cos\left(t\right) + 2\sin\left(t\right)\right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.095 (sec). Leaf size: 72

DSolve[{y''[t]+2*y'[t]+2*y[t]==5*Cos[t]*(UnitStep[t]-UnitStep[t-Pi/2]),{y[0]==1,y'[0]==-1}},

4.20 problem Problem 3(f)

Internal problem ID [12008]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 5y' + 6y = 36t(\text{Heaviside}(t) - \text{Heaviside}(t-1))$$

With initial conditions

$$[y(0) = -1, y'(0) = -2]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 67

 $\frac{dsolve([diff(y(t),t$2)+5*diff(y(t),t)+6*y(t)=36*t*(Heaviside(t)-Heaviside(t-1)),y(0) = -1, I}{dsolve([diff(y(t),t$2)+5*diff(y(t),t)+6*y(t)=36*t*(Heaviside(t)-Heaviside(t-1)),y(0) = -1, I}{dsolve([diff(y(t),t$2)+5*diff(y(t),t)+6*y(t)=36*t*(Heaviside(t)-Heaviside(t-1)),y(0) = -1, I}{dsolve([diff(y(t),t])+6*y(t)=36*t*(Heaviside(t)-Heaviside(t-1)),y(0) = -1, I}{dsolve([diff(y(t),t])+6*y(t)=36*t*(Heaviside(t)-Heaviside(t-1)),y(0) = -1, I}{dsolve([diff(y(t),t])+6*y(t)=36*t*(Heaviside(t)-Heaviside(t-1)),y(0) = -1, I}{dsolve([diff(y(t),t])+6*y(t)=36*t*(Heaviside(t)-Heaviside(t)-Heaviside(t-1)),y(0) = -1, I}{dsolve([diff(y(t),t])+6*y(t)=36*t*(Heaviside(t)-Heaviside$

$$\begin{split} y(t) &= 6 \bigg(\bigg(\bigg(-t + \frac{5}{6} \bigg) \operatorname{e}^{3t} - \frac{4 \operatorname{e}^3}{3} + \frac{3 \operatorname{e}^{t+2}}{2} \bigg) \operatorname{Heaviside}\left(t - 1\right) + \operatorname{Heaviside}\left(t\right) \left(t - \frac{5}{6}\right) \operatorname{e}^{3t} \\ &+ \left(\frac{3 \operatorname{e}^t}{2} - \frac{2}{3} \right) \operatorname{Heaviside}\left(t\right) - \frac{5 \operatorname{e}^t}{6} + \frac{2}{3} \bigg) \operatorname{e}^{-3t} \end{split}$$

✓ Solution by Mathematica

Time used: 0.071 (sec). Leaf size: 64

DSolve[{y''[t]+5*y'[t]+6*y[t]==36*t*(UnitStep[t]-UnitStep[t-1]),{y[0]==-1,y'[0]==-2}},y[t],t

$$e^{-3t}(4-5e^t) \qquad t<0$$

$$y(t) \to \ \{ \quad e^{-3t}(-8e^3+4e^t+9e^{t+2}) \quad t>1$$

$$6t+4e^{-2t}-5 \qquad {\rm True}$$

4.21 problem Problem 3(g)

Internal problem ID [12009]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 4y' + 13y = 39$$
 Heaviside $(t) - 507(-2 + t)$ Heaviside $(-2 + t)$

With initial conditions

$$[y(0) = 3, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 84

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+13*y(t)=39*Heaviside(t)-507*(t-2)*Heaviside(t-2),y(0))

$$\begin{split} y(t) &= -12 \, \mathrm{Heaviside} \, (t-2) \left(\left(\cos \left(6 \right) + \frac{5 \sin \left(6 \right)}{12} \right) \cos \left(3 t \right) \right. \\ & \left. - \frac{5 \sin \left(3 t \right) \left(\cos \left(6 \right) - \frac{12 \sin \left(6 \right)}{5} \right)}{12} \right) \mathrm{e}^{-2t+4} \\ & + 3 (30 - 13t) \, \mathrm{Heaviside} \, (t-2) - 3 \, \mathrm{e}^{-2t} (\mathrm{Heaviside} \, (t) - 1) \cos \left(3 t \right) \\ & + \frac{\left(-6 \, \mathrm{Heaviside} \, (t) + 7 \right) \sin \left(3 t \right) \mathrm{e}^{-2t}}{3} + 3 \, \mathrm{Heaviside} \, (t) \end{split}$$

✓ Solution by Mathematica

Time used: 0.097 (sec). Leaf size: 103

$$y(t) \\ -39t - 12e^{4-2t}\cos(6-3t) - 5e^{4-2t}\sin(6-3t) + \frac{1}{3}e^{-2t}\sin(3t) + 93 \qquad t > 2 \\ \rightarrow \{ \\ \frac{1}{3}e^{-2t}\sin(3t) + 3 \qquad \qquad 0 \le t \le 2 \\ \frac{1}{3}e^{-2t}(9\cos(3t) + 7\sin(3t)) \qquad \qquad \text{True}$$

4.22 problem Problem 3(h)

Internal problem ID [12010]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = 3$$
 Heaviside $(t) - 3$ Heaviside $(t - 4) + (2t - 5)$ Heaviside $(t - 4)$

With initial conditions

$$\left[y(0) = \frac{3}{4}, y'(0) = 2 \right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 48

dsolve([diff(y(t),t\$2)+4*y(t)=3*(Heaviside(t)-Heaviside(t-4))+(2*t-5)*Heaviside(t-4),y(0)=0

$$y(t) = \sin{(2t)} + \frac{3\cos{(2t)}}{4} - \frac{\text{Heaviside}\left(t-4\right)\sin{(2t-8)}}{4} + \frac{\text{Heaviside}\left(t-4\right)t}{2} \\ - 2\,\text{Heaviside}\left(t-4\right) - \frac{3\,\text{Heaviside}\left(t\right)\cos{(2t)}}{4} + \frac{3\,\text{Heaviside}\left(t\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 60

 $DSolve[\{y''[t]+4*y[t]==3*(UnitStep[t]-UnitStep[t-4])+(2*t-5)*UnitStep[t-4],\{y[0]==3/4,y'[0]=-3/4,$

$$\sin(2t) + \frac{3}{4} \qquad 0 \le t \le 4$$

$$y(t) \to \left\{ \begin{array}{cc} \frac{3}{4}\cos(2t) + \sin(2t) & t < 0 \\ \frac{1}{4}(2t + \sin(8 - 2t) + 4\sin(2t) - 5) & \text{True} \end{array} \right.$$

4.23 problem Problem 3(i)

Internal problem ID [12011]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$4y'' + 4y' + 5y = 25t \left(\text{Heaviside}\left(t\right) - \text{Heaviside}\left(t - \frac{\pi}{2}\right) \right)$$

With initial conditions

$$[y(0) = 2, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 85

dsolve([4*diff(y(t),t\$2)+4*diff(y(t),t)+5*y(t)=25*t*(Heaviside(t)-Heaviside(t-Pi/2)),y(0)=0

$$\begin{split} y(t) &= -\frac{5\left(\left(\pi + \frac{12}{5}\right)\cos\left(t\right) - 2\left(\pi - \frac{8}{5}\right)\sin\left(t\right)\right) \operatorname{Heaviside}\left(t - \frac{\pi}{2}\right) \operatorname{e}^{-\frac{t}{2} + \frac{\pi}{4}}}{4} \\ &+ (4 - 5t) \operatorname{Heaviside}\left(t - \frac{\pi}{2}\right) \\ &+ ((4\cos\left(t\right) - 3\sin\left(t\right)) \operatorname{Heaviside}\left(t\right) + 2\cos\left(t\right) + 3\sin\left(t\right)) \operatorname{e}^{-\frac{t}{2}} \\ &+ \operatorname{Heaviside}\left(t\right) \left(-4 + 5t\right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.085 (sec). Leaf size: 101

DSolve[{4*y''[t]+4*y'[t]+5*y[t]==25*t*(UnitStep[t]-UnitStep[t-Pi/2]),{y[0]==2},y'[0]==2}},y[t]

4.24 problem Problem 3(j)

Internal problem ID [12012]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 3(j).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 4y' + 3y = \text{Heaviside}(t) - \text{Heaviside}(t-1) + \text{Heaviside}(-2+t) - \text{Heaviside}(-3+t)$$

With initial conditions

$$y(0) = -\frac{2}{3}, y'(0) = 1$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 117

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+3*y(t)=Heaviside(t)-Heaviside(t-1)+Heaviside(t-2)-Heaviside(t-2)-Heaviside(t-1)+Heaviside(t-2)-Heavis

$$y(t) = \frac{\left(-\frac{1}{3} - e^{2+2t} \operatorname{Heaviside}(t-2) + e^{3+2t} \operatorname{Heaviside}(t-3) + e^{2t+1} \operatorname{Heaviside}(t-1) + \frac{2(\operatorname{Heaviside}(t) - \operatorname{Heaviside}(t-1))}{2(\operatorname{Heaviside}(t-1) + e^{3+2t} \operatorname{Heaviside}(t-3))} = \frac{\left(-\frac{1}{3} - e^{2+2t} \operatorname{Heaviside}(t-2) + e^{3+2t} \operatorname{Heaviside}(t-3) + e^{2t+1} \operatorname{Heaviside}(t-1) + \frac{2(\operatorname{Heaviside}(t) - \operatorname{Heaviside}(t-1))}{2(\operatorname{Heaviside}(t-3) + e^{3+2t} \operatorname{Heaviside}(t-3))} = \frac{\left(-\frac{1}{3} - e^{2+2t} \operatorname{Heaviside}(t-2) + e^{3+2t} \operatorname{Heaviside}(t-3) + e^{2t+1} \operatorname{Heaviside}(t-1) + \frac{2(\operatorname{Heaviside}(t) - \operatorname{Heaviside}(t-1))}{2(\operatorname{Heaviside}(t-3) + e^{3+2t} \operatorname{Heaviside}(t-3))} = \frac{\left(-\frac{1}{3} - e^{2+2t} \operatorname{Heaviside}(t-3) + e^{3+2t} \operatorname$$

✓ Solution by Mathematica

Time used: 0.115 (sec). Leaf size: 199

 $DSolve[\{y''[t]+4*y'[t]+3*y[t]==UnitStep[t]-UnitStep[t-1]+UnitStep[t-2]-UnitStep[t-3],\{y[0]==UnitStep[t-3],\{y[0]=$

$$\begin{split} \frac{1}{3}-e^{-t} & 0 \leq t \leq 1 \\ -\frac{1}{6}e^{-3t}(1+3e^{2t}) & t < 0 \\ y(t) \rightarrow & \{ & \frac{1}{6}e^{-3t}(-e^3-6e^{2t}+3e^{2t+1}) & 1 < t \leq 2 \\ \frac{1}{6}e^{-3t}(-e^3+e^6-6e^{2t}+2e^{3t}+3e^{2t+1}-3e^{2t+2}) & 2 < t \leq 3 \\ \frac{1}{6}e^{-3t}(-e^3+e^6-e^9-6e^{2t}+3e^{2t+1}-3e^{2t+2}+3e^{2t+3}) & \text{True} \end{split}$$

4.25 problem Problem 4(a)

Internal problem ID [12013]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 4(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 2y' = \begin{cases} 4 & 0 \le t < 1 \\ 6 & 1 \le t \end{cases}$$

With initial conditions

$$[y(0) = -6, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 50

 $\frac{dsolve([diff(y(t),t$2)-2*diff(y(t),t)=piecewise(0<=t and t<1,4,t>=1,6),y(0) = -6, D(y)(0) = -6)}{dsolve([diff(y(t),t$2)-2*diff(y(t),t)=piecewise(0<=t and t<1,4,t>=1,6),y(0) = -6, D(y)(0) = -6}$

$$y(t) = \frac{\left\{ \begin{cases} -13 + e^{2t} & t < 0 \\ 3e^{2t} - 15 - 4t & t < 1 \\ 3e^{2t} - 14 + e^{2t-2} - 6t & 1 \le t \end{cases} \right\}}{2}$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 68

$$y(t) \to \begin{cases} \frac{1}{2}(-13 + e^{2t}) & t \le 0 \\ \frac{1}{2}(-4t + 3e^{2t} - 15) & 0 < t \le 1 \end{cases}$$
 True

4.26 problem Problem 4(b)

Internal problem ID [12014]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 4(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - 3y' + 2y = \begin{cases} 0 & 0 \le t < 1\\ 1 & 1 \le t < 2\\ -1 & 2 \le t \end{cases}$$

With initial conditions

$$[y(0) = 3, y'(0) = -1]$$

✓ So

Solution by Maple

Time used: 0.094 (sec). Leaf size: 74

dsolve([diff(y(t),t\$2)-3*diff(y(t),t)+2*y(t)=piecewise(0<=t and t<1,0,t>=1 and t<2,1,t>=2,-1)

$$y(t) = -4e^{2t} + 7e^{t} - \frac{\begin{pmatrix} 0 & t < 1 \\ -1 + 2e^{t-1} - e^{2t-2} & t < 2 \\ 1 + 2e^{t-1} - e^{2t-2} - 4e^{t-2} + 2e^{-4+2t} & 2 \le t \end{pmatrix}}{2}$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 109

$$\begin{aligned} & e^t(7-4e^t) & & t \leq 1 \\ y(t) \rightarrow & \{ & & \frac{1}{2}(1-2e^{t-1}+14e^t-8e^{2t}+e^{2t-2}) & & 1 < t \leq 2 \\ & & & \frac{1}{2}(-1+4e^{t-2}-2e^{t-1}+14e^t-8e^{2t}-2e^{2t-4}+e^{2t-2}) & & \text{True} \end{aligned}$$

4.27 problem Problem 4(c)

Internal problem ID [12015]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 4(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 3y' + 2y = \begin{cases} 1 & 0 \le t < 2 \\ -1 & 2 \le t \end{cases}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 61

dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=piecewise(0<=t and t<2,1,t>=2,-1),y(0) = 0, D(y)

$$y(t) = -\frac{\left\{ \begin{array}{ll} 0 & t < 0 \\ -1 + 2e^{-t} - e^{-2t} & t < 2 \\ 1 + 2e^{-t} - e^{-2t} - 4e^{-t+2} + 2e^{-2t+4} & 2 \le t \end{array} \right\}}{2}$$

✓ Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 68

$$y(t) \to \begin{cases} 0 & t \le 0 \\ \frac{1}{2}e^{-2t}(-1+e^t)^2 & 0 < t \le 2 \\ -\frac{1}{2}e^{-2t}(-1+2e^4+2e^t+e^{2t}-4e^{t+2}) & \text{True} \end{cases}$$

4.28 problem Problem 4(d)

Internal problem ID [12016]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 4(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + y = \begin{cases} t & 0 \le t < \pi \\ -t & \pi \le t \end{cases}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 34

dsolve([diff(y(t),t\$2)+y(t)=piecewise(0<=t and t<Pi,t,t>=Pi,-t),y(0) = 0, D(y)(0) = 0],y(t),

$$y(t) = \begin{cases} 0 & t < 0 \\ t - \sin(t) & t < \pi \\ -2\cos(t)\pi - 3\sin(t) - t & \pi \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 38

$$y(t) \rightarrow \begin{array}{ccc} 0 & t \leq 0 \\ \\ y(t) \rightarrow \begin{array}{ccc} t - \sin(t) & 0 < t \leq \pi \\ \\ -t - 2\pi \cos(t) - 3\sin(t) & \text{True} \end{array}$$

4.29 problem Problem 4(e)

Internal problem ID [12017]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 4(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 4y = \begin{cases} 8t & 0 \le t < \frac{\pi}{2} \\ 8\pi & \frac{\pi}{2} \le t \end{cases}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 45

dsolve([diff(y(t),t\$2)+4*y(t)=piecewise(0<=t and t<Pi/2,8*t,t>=Pi/2,8*Pi),y(0) = 0, D(y)(0)

$$y(t) = \begin{cases} 0 & t < 0 \\ -\sin(2t) + 2t & t < \frac{\pi}{2} \\ \cos(2t)\pi - 2\sin(2t) + 2\pi & \frac{\pi}{2} \le t \end{cases}$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 48

DSolve[{y''[t]+4*y[t]==Piecewise[{{8*t,0<=t<Pi/2},{8*Pi,t>=Pi/2}}],{y[0]==0,y'[0]==0}},y[t],

$$y(t) \to \begin{cases} 0 & t \le 0 \\ 2t - \sin(2t) & t > 0 \land 2t \le \pi \end{cases}$$

$$\pi \cos(2t) - 2\sin(2t) + 2\pi \quad \text{True}$$

4.30 problem Problem 5(a)

Internal problem ID [12018]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 5(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4\pi^2 y = 3\left(\delta\left(t - \frac{1}{3}\right)\right) - \left(\delta(t - 1)\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

$$dsolve([diff(y(t),t\$2)+(2*Pi)^2*y(t)=3*Dirac(t-1/3)-Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),$$

$$y(t) = \frac{\left(-3\sqrt{3}\cos\left(2\pi t\right) - 3\sin\left(2\pi t\right)\right) \text{ Heaviside } \left(t - \frac{1}{3}\right) - 2\sin\left(2\pi t\right) \text{ Heaviside } (t - 1)}{4\pi}$$

✓ Solution by Mathematica

Time used: 0.125 (sec). Leaf size: 49

$$y(t) \to -\frac{2\theta(t-1)\sin(2\pi t) + 3\theta(3t-1)\left(\sin(2\pi t) + \sqrt{3}\cos(2\pi t)\right)}{4\pi}$$

4.31 problem Problem 5(b)

Internal problem ID [12019]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 5(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 2y' + 2y = 3(\delta(t-1))$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $\frac{dsolve([diff(y(t),t$2)+2*diff(y(t),t)+2*y(t)=3*Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),sings}{dsolve([diff(y(t),t$2)+2*diff(y(t),t)+2*y(t)=3*Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),sings}$

$$y(t) = 3e^{-t+1}$$
 Heaviside $(t-1)\sin(t-1)$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 24

DSolve[{y''[t]+2*y'[t]+2*y[t]==3*DiracDelta[t-1],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularS

$$y(t) \to -3e^{1-t}\theta(t-1)\sin(1-t)$$

4.32 problem Problem 5(c)

Internal problem ID [12020]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 5(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 4y' + 29y = 5(\delta(t - \pi)) - 5(\delta(-2\pi + t))$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

 $\frac{\text{dsolve}([\text{diff}(y(t),t\$2)+4*\text{diff}(y(t),t)+29*y(t)=5*\text{Dirac}(t-Pi)-5*\text{Dirac}(t-2*Pi),y}{(0)} = 0, D(y)(0)$

$$y(t) = -e^{-2t+2\pi} \sin(5t) \left(e^{2\pi} \text{ Heaviside} (t-2\pi) + \text{Heaviside} (t-\pi)\right)$$

✓ Solution by Mathematica

Time used: 0.143 (sec). Leaf size: 39

DSolve[{y''[t]+4*y'[t]+29*y[t]==5*DiracDelta[t-Pi]-5*DiracDelta[t-2*Pi],{y[0]==0,y'[0]==0}},

$$y(t) \to -e^{2\pi - 2t} \left(e^{2\pi} \theta(t - 2\pi) + \theta(t - \pi) \right) \sin(5t)$$

4.33 problem Problem 5(d)

Internal problem ID [12021]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 5(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 3y' + 2y = 1 - (\delta(t-1))$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=1-Dirac(t-1),y(0) = 0, D(y)(0) = 0],y(t), sings(t-1),y(t) = 0

$$y(t) = \frac{\mathrm{e}^{-2t}}{2} + \text{Heaviside}\left(t-1\right)\mathrm{e}^{-2t+2} - \mathrm{e}^{-t+1}\,\text{Heaviside}\left(t-1\right) + \frac{1}{2} - \mathrm{e}^{-t}$$

✓ Solution by Mathematica

Time used: 0.099 (sec). Leaf size: $36\,$

DSolve[{y''[t]+3*y'[t]+2*y[t]==1-DiracDelta[t-1],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularS

$$y(t)
ightarrow rac{1}{2}e^{-2t} \Big(\left(e^t - 1\right)^2 - 2e\left(e^t - e\right) \theta(t - 1) \Big)$$

4.34 problem Problem 5(e)

Internal problem ID [12022]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 5(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$4y'' + 4y' + y = e^{-\frac{t}{2}}(\delta(t-1))$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve([4*diff(y(t),t\$2)+4*diff(y(t),t)+y(t)=exp(-t/2)*Dirac(t-1),y(0) = 0, D(y)(0) = 0],y(t-1)

$$y(t) = \frac{\text{Heaviside}(t-1)(t-1)e^{-\frac{t}{2}}}{4}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 23

DSolve[{4*y''[t]+4*y'[t]+y[t]==Exp[-t/2]*DiracDelta[t-1],{y[0]==0,y'[0]==0}},y[t],t,IncludeS

$$y(t) \to \frac{1}{4}e^{-t/2}(t-1)\theta(t-1)$$

4.35 problem Problem 5(f)

Internal problem ID [12023]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 5(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - 7y' + 6y = \delta(t-1)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $\frac{dsolve([diff(y(t),t$2)-7*diff(y(t),t)+6*y(t)=Dirac(t-1),y(0) = 0, D(y)(0) = 0]}{y(t), singsol}$

$$y(t) = \frac{\text{Heaviside}(t-1)(e^{-6+6t} - e^{t-1})}{5}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 29

$$y(t) \to \frac{1}{5}e^{t-6}(e^{5t} - e^5) \theta(t-1)$$

4.36 problem Problem 6(a)

Internal problem ID [12024]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 6(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$10Q' + 100Q = \text{Heaviside}(t-1) - \text{Heaviside}(-2+t)$$

With initial conditions

$$[Q(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

 $\frac{dsolve([10*diff(Q(t),t)+100*Q(t)=Heaviside(t-1)-Heaviside(t-2),Q(0)=0],Q(t)}{dsolve([10*diff(Q(t),t)+100*Q(t)=Heaviside(t-1)-Heaviside(t-2),Q(0)=0],Q(t)}, singsol=all)$

$$\begin{split} Q(t) &= -\frac{\text{Heaviside}\left(t-2\right)}{100} + \frac{\text{Heaviside}\left(t-2\right) \text{e}^{-10t+20}}{100} \\ &+ \frac{\text{Heaviside}\left(t-1\right)}{100} - \frac{\text{Heaviside}\left(t-1\right) \text{e}^{-10t+10}}{100} \end{split}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 22

$$q(t) \rightarrow \frac{1}{100} e^{-10t} \left(e^{10t} - 1\right)$$
 UnitStep

4.37 problem Problem 13(a)

Internal problem ID [12025]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 13(a).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' + 4y' + 4y = 8$$

With initial conditions

$$[y(0) = 4, y'(0) = -3, y''(0) = -3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve([diff(y(t),t\$3)+diff(y(t),t\$2)+4*diff(y(t),t)+4*y(t)=8,y(0)=4,D(y)(0)=-3,(D@@2)

$$y(t) = 2 + \cos(2t) + e^{-t} - \sin(2t)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 22

DSolve[{y'''[t]+y''[t]+4*y'[t]+4*y[t]==8,{y[0]==4,y'[0]==-3,y''[0]==-3}},y[t],t,IncludeSingu

$$y(t) \rightarrow e^{-t} - \sin(2t) + \cos(2t) + 2$$

4.38 problem Problem 13(b)

Internal problem ID [12026]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 13(b).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - 2y'' - y' + 2y = 4t$$

With initial conditions

$$[y(0) = 2, y'(0) = -2, y''(0) = 4]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $\frac{dsolve([diff(y(t),t$3)-2*diff(y(t),t$2)-diff(y(t),t)+2*y(t)=4*t,y(0) = 2, D(y)(0) = -2, (D@@Color=0.00)(0)}{dsolve([diff(y(t),t$3)-2*diff(y(t),t$2)-diff(y(t),t)+2*y(t)=4*t,y(0) = 2, D(y)(0) = -2, (D@@Color=0.00)(0) =$

$$y(t) = 2t + 1 - 3e^{t} + 3e^{-t} + e^{2t}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 27

DSolve[{y'''[t]-2*y''[t]-y'[t]+2*y[t]==4*t,{y[0]==2,y'[0]==-2,y''[0]==4}},y[t],t,IncludeSing

$$y(t) \rightarrow 2t + 3e^{-t} - 3e^t + e^{2t} + 1$$

4.39 problem Problem 13(c)

Internal problem ID [12027]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 13(c).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, linear, nonhomogeneous]]

$$y''' - y'' + 4y' - 4y = 8e^{2t} - 5e^{t}$$

With initial conditions

$$[y(0) = 2, y'(0) = 0, y''(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $\frac{\text{dsolve}([\text{diff}(y(t),t\$3)-\text{diff}(y(t),t\$2)+4*\text{diff}(y(t),t)-4*y(t)=8*\exp(2*t)-5*\exp(t),y(0)=2,D(0)}{\text{dsolve}([\text{diff}(y(t),t\$3)-\text{diff}(y(t),t\$2)+4*\text{diff}(y(t),t)-4*y(t)=8*\exp(2*t)-5*\exp(t),y(0)=2,D(0)}{\text{dsolve}([\text{diff}(y(t),t\$3)-\text{diff}(y(t),t\$2)+4*\text{diff}(y(t),t)-4*y(t)=8*\exp(2*t)-5*\exp(t),y(0)=2,D(0)}{\text{dsolve}([\text{diff}(y(t),t\$3)-\text{diff}(y(t),t\$2)+4*\text{diff}(y(t),t)-4*y(t)=8*\exp(2*t)-5*\exp(t),y(0)=2,D(0)}{\text{dsolve}([\text{diff}(y(t),t\$3)-\text{diff}(y(t),t\$2)+4*\text{diff}(y(t),t)-4*y(t)=8*\exp(2*t)-5*\exp(t),y(0)=2,D(0)$

$$y(t) = e^{2t} - e^{t}t + e^{t} - \sin(2t)$$

✓ Solution by Mathematica

Time used: 0.561 (sec). Leaf size: 24

DSolve[{y'''[t]-y''[t]+4*y'[t]-4*y[t]==8*Exp[2*t]-5*Exp[t],{y[0]==2,y'[0]==0,y''[0]==3}},y[t]

$$y(t) \rightarrow e^t \left(-t + e^t + 1 \right) - \sin(2t)$$

4.40 problem Problem 13(d)

Internal problem ID [12028]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 13(d).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - 5y'' + y' - y = -t^2 + 2t - 10$$

With initial conditions

$$[y(0) = 2, y'(0) = 0, y''(0) = 0]$$

✓ Solution by Maple

Time used: 0.453 (sec). Leaf size: 369

$$\frac{dsolve([diff(y(t),t\$3)-5*diff(y(t),t\$2)+diff(y(t),t)-y(t)=2*t-10-t^2,y(0)=2)}{dsolve([diff(y(t),t\$3)-5*diff(y(t),t\$2)+diff(y(t),t)-y(t)=2*t-10-t^2,y(0)=2)}, D(y)(0)=0,$$

y(t)

$$154 \left(\left(116 + 6\sqrt{3}\sqrt{26}\right)^{\frac{1}{3}}\sqrt{3}\sqrt{26} + \frac{58\left(116 + 6\sqrt{3}\sqrt{26}\right)^{\frac{2}{3}}\sqrt{26}\sqrt{3}}{77} + \frac{55\sqrt{3}\sqrt{26}}{14} - \frac{69\left(116 + 6\sqrt{3}\sqrt{26}\right)^{\frac{1}{3}}}{14} - \frac{234\left(116 + 6\sqrt{3}\sqrt{2}\right)^{\frac{1}{3}}}{77} + \frac{234\left(116 + 6\sqrt{3}\sqrt{2}\right)^{\frac{1}{3}}}{14} + \frac{116\sqrt{3}\sqrt{2}}{14} + \frac{116\sqrt{3}\sqrt{2$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 1009

$$y(t) \to \frac{-\text{Root}\left[\#1^3 - 5\#1^2 + \#1 - 1\&, 2\right] \text{Root}\left[\#1^3 - 5\#1^2 + \#1 - 1\&, 3\right]^2 t^2 + \text{Root}\left[\#1^3 - 5\#1^2 + \#1 - 1\&, 2\right] t^2 + \text{Root}\left[\#1^3 - 5$$

4.41 problem Problem 14(a)

Internal problem ID [12029]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 14(a).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[high order, linear, nonhomogeneous]]

$$y'''' - 5y'' + 4y = 12$$
 Heaviside $(t) - 12$ Heaviside $(t-1)$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 0, y'''(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 91

 $\frac{dsolve([diff(y(t),t\$4)-5*diff(y(t),t\$2)+4*y(t)=12*(Heaviside(t)-Heaviside(t-1)),y(0)=0,\ D(t)}{dsolve([diff(y(t),t\$4)-5*diff(y(t),t\$2)+4*y(t)=12*(Heaviside(t)-Heaviside(t-1)),y(0)=0,\ D(t)=12*(Heaviside(t)-Heaviside(t-1)),y(0)=0,\ D(t)=12*(Heaviside(t)-Heaviside(t$

$$\begin{split} y(t) &= 2 \operatorname{e}^{-2t} \left(\operatorname{e}^{3t-1} \operatorname{Heaviside} \left(t - 1 \right) - \frac{\operatorname{e}^{4t-2} \operatorname{Heaviside} \left(t - 1 \right)}{4} \right. \\ &\quad + \left(-\frac{\operatorname{e}^2}{4} - \frac{3 \operatorname{e}^{2t}}{2} + \operatorname{e}^{1+t} \right) \operatorname{Heaviside} \left(t - 1 \right) \\ &\quad - \left(\operatorname{e}^t - \frac{3 \operatorname{e}^{2t}}{2} + \operatorname{e}^{3t} - \frac{\operatorname{e}^{4t}}{4} - \frac{1}{4} \right) \operatorname{Heaviside} \left(t \right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 88

$$y(t) \to \begin{cases} \frac{1}{2}e^{-2t}(-1+e^t)^4 & 0 \le t \le 1\\ \frac{1}{2}(-1+e)e^{-2(t+1)}(-e^2-e^3+e^{4t}+4e^{t+2}-4e^{3t+1}+e^{4t+1}) & t > 1 \end{cases}$$

4.42 problem Problem 14(b)

Internal problem ID [12030]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368

Problem number: Problem 14(b).

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - 16y = 32$$
 Heaviside $(t) - 32$ Heaviside $(t - \pi)$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 0, y'''(0) = 0]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 119

 $\frac{dsolve([diff(y(t),t\$4)-16*y(t)=32*(Heaviside(t)-Heaviside(t-Pi)),y(0)=0,D(y)(0)=0,(D@@$

$$y(t) = -\frac{\operatorname{Heaviside}(t-\pi) \operatorname{e}^{-2t+2\pi}}{2} - \frac{\operatorname{Heaviside}(t-\pi) \operatorname{e}^{2t-2\pi}}{2} + (2-\cos{(2t)})\operatorname{Heaviside}(t-\pi) + \left(\cos{(2t)} + \frac{\operatorname{e}^{-2t}}{2} + \frac{\operatorname{e}^{2t}}{2} - 2\right)\operatorname{Heaviside}(t)$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 72

$$y(t) \to \begin{cases} \frac{1}{2}e^{-2(t+\pi)}(-1+e^{2\pi})(-e^{2\pi}+e^{4t}) & t > \pi \\ \frac{1}{2}(2\cos(2t)+e^{-2t}+e^{2t}-4) & 0 \le t \le \pi \end{cases}$$

5 Chapter 6. Introduction to Systems of ODEs. Problems page 408

5.1	problem Problem 1	(a)	•		•	•	•	•	•				•		•			•	164
5.2	problem Problem 1	(b)																	165
5.3	problem Problem 1	(c)																	166
5.4	problem Problem 1	(d)																	168
5.5	problem Problem 1	(e)																	169
5.6	problem Problem 2	(a)																	171
5.7	problem Problem 2	(b)																	172
5.8	problem Problem 2	(c)																	173
5.9	problem Problem 2	(d)																	174
5.10	problem Problem 2	(e)																	175
5.11	problem Problem 2	(f)																	176
5.12	problem Problem 3	(a)																	177
5.13	problem Problem 3	(b)																	178
5.14	problem Problem 3	(c)																	180
5.15	problem Problem 3	(d)																	181
5.16	problem Problem 3	(e)																	182
5.17	problem Problem 3	(f)																	183
5.18	problem Problem 3	(g)																	185

5.1 problem Problem 1(a)

Internal problem ID [12031]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$t^2y'' + 3y't + y = t^7$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(t^2*diff(y(t),t)^2)+3*t*diff(y(t),t)+y(t)=t^7,y(t), singsol=all)$

$$y(t) = \frac{c_2}{t} + \frac{t^7}{64} + \frac{c_1 \ln(t)}{t}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 26

DSolve[t^2*y''[t]+3*t*y'[t]+y[t]==t^7,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{t^8 + 64c_2 \log(t) + 64c_1}{64t}$$

5.2 problem Problem 1(b)

Internal problem ID [12032]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$t^{2}y'' - 6y't + \sin(2t)y = \ln(t)$$

X Solution by Maple

 $dsolve(t^2*diff(y(t),t)^2)-6*t*diff(y(t),t)+sin(2*t)*y(t)=ln(t),y(t), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[t^2*y''[t]-6*t*y'[t]+Sin[2*t]*y[t]==Log[t],y[t],t,IncludeSingularSolutions -> True]

Not solved

5.3 problem Problem 1(c)

Internal problem ID [12033]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + \frac{y}{t} = t$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 39

dsolve(diff(y(t),t\$2)+3*diff(y(t),t)+y(t)/t=t,y(t), singsol=all)

$$y(t) = e^{-3t}t \text{ KummerM}\left(\frac{2}{3}, 2, 3t\right)c_2 + e^{-3t}t \text{ KummerU}\left(\frac{2}{3}, 2, 3t\right)c_1 + \frac{t^2}{7} - \frac{t}{14}$$

Solution by Mathematica

Time used: 23.552 (sec). Leaf size: 253

DSolve[y''[t]+3*y'[t]+y[t]/t==t,y[t],t,IncludeSingularSolutions -> True]

$$y(t)
ightarrow G_{1,2}^{2,0} \Biggl(3t \Biggl| egin{array}{c} rac{2}{3} \\ 0,1 \end{array} \Biggr) \Biggl(\int_{1}^{t}$$

$$\frac{3\,\mathrm{Hypergeometric1F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric1F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric1F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric1F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric1F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric1F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric1F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric1F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric1F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)+3\,\mathrm{Hypergeometric2F1}\left(\frac{4}{3},2,-3K[2]\right)G_{1,2}^{2,0}\left(3K[2]\left|\begin{array}{c}\frac{2}{3}\\0,1\end{array}\right)$$

$$+ c_2 - 3t$$
 Hypergeometric1F1 $\left(\frac{4}{3}, 2, \frac{4}{3}, 2, \frac{4}{3}, 2, \frac{4}{3}, 2, \frac{4}{3}, 2, \frac{4}{3}, 2, \frac{4}{3}, \frac{4}$

$$-3t \bigg) \left(\int_{1}^{t} \frac{G_{1,2}^{2,0} \left(3K_{1,2} - 2K_{1,2} - 2K_$$

$$+ c_1$$

5.4 problem Problem 1(d)

Internal problem ID [12034]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y't - y\ln(t) = \cos(2t)$$

X Solution by Maple

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(t),t\$2)+t*\text{diff}(y(t),t)-y(t)*\text{ln}(t)=\cos(2*t),y(t), \text{ singsol=all}) \\$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y''[t]+t*y'[t]-y[t]*Log[t]==Cos[2*t],y[t],t,IncludeSingularSolutions -> True]

Not solved

5.5 problem Problem 1(e)

Internal problem ID [12035]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$t^3y'' - 2ty' + y = t^4$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 120

 $dsolve(t^3*diff(y(t),t^2)-2*t*diff(y(t),t)+y(t)=t^4,y(t), singsol=all)$

$$\begin{split} y(t) &= \mathrm{e}^{-\frac{1}{t}} \bigg(\mathrm{BesselI}\left(0, \frac{1}{t}\right) + \mathrm{BesselI}\left(1, \frac{1}{t}\right) \bigg) \, c_2 \\ &+ \mathrm{e}^{-\frac{1}{t}} \bigg(- \mathrm{BesselK}\left(0, \frac{1}{t}\right) + \mathrm{BesselK}\left(1, \frac{1}{t}\right) \bigg) \, c_1 - \bigg(\bigg(\mathrm{BesselI}\left(0, \frac{1}{t}\right) \\ &+ \mathrm{BesselI}\left(1, \frac{1}{t}\right) \bigg) \, \bigg(\int t \bigg(- \mathrm{BesselK}\left(0, \frac{1}{t}\right) + \mathrm{BesselK}\left(1, \frac{1}{t}\right) \bigg) \, \mathrm{e}^{\frac{1}{t}} dt \bigg) \\ &+ \bigg(\int t \bigg(\mathrm{BesselI}\left(0, \frac{1}{t}\right) + \mathrm{BesselI}\left(1, \frac{1}{t}\right) \bigg) \, \mathrm{e}^{\frac{1}{t}} dt \bigg) \, \bigg(\mathrm{BesselK}\left(0, \frac{1}{t}\right) \\ &- \mathrm{BesselK}\left(1, \frac{1}{t}\right) \bigg) \bigg) \, \mathrm{e}^{-\frac{1}{t}} \end{split}$$

✓ Solution by Mathematica

Time used: 27.071 (sec). Leaf size: 272

DSolve[t^3*y''[t]-2*t*y'[t]+y[t]==t^4,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-1/t} \bigg(\text{BesselI} \left(0, \frac{1}{t} \right) \\ + \text{BesselI} \left(1, \frac{1}{t} \right) \bigg) \left(\int_{1}^{t} \frac{2e^{\frac{2}{K[1]}} \sqrt{\pi} K[1]^{3} G_{1,2}^{2,0} \left(\frac{2}{K[1]} | \frac{\frac{1}{2}}{-1,0} \right)}{e^{\frac{1}{K[1]}} \sqrt{\pi} \left(\text{BesselI} \left(0, \frac{1}{K[1]} \right) - \text{BesselI} \left(2, \frac{1}{K[1]} \right) \right) G_{1,2}^{2,0} \left(\frac{2}{K[1]} | \frac{\frac{1}{2}}{-1,0} \right) - 2 \left(\text{BesselI} \left(0, \frac{1}{K[1]} \right) - \frac{1}{K[1]} \right) G_{1,2}^{2,0} \left(\frac{2}{K[1]} | \frac{1}{2} \right) - 2 \left(\frac{1}{K[1]} |$$

5.6 problem Problem 2(a)

Internal problem ID [12036]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 2(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 2y' + y = 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve(diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=1,y(t), singsol=all)

$$y(t) = e^{-t}c_2 + e^{-t}tc_1 + 1$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 21

DSolve[y''[t]+2*y'[t]+y[t]==1,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow e^{-t} \left(e^t + c_2 t + c_1 \right)$$

5.7 problem Problem 2(b)

Internal problem ID [12037]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 2(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$y'' - 2y' + 5y = e^t$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(diff(y(t),t\$2)-2*diff(y(t),t)+5*y(t)=exp(t),y(t), singsol=all)

$$y(t) = e^{t} \sin(2t) c_{2} + e^{t} \cos(2t) c_{1} + \frac{e^{t}}{4}$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 33

DSolve[y''[t]-2*y'[t]+5*y[t]==Exp[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{4}e^t((1+4c_2)\cos(2t)+4c_1\sin(2t)+1)$$

5.8 problem Problem 2(c)

Internal problem ID [12038]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 2(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 3y' - 7y = 4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(t),t\$2)-3*diff(y(t),t)-7*y(t)=4,y(t), singsol=all)

$$y(t) = e^{\frac{\left(3+\sqrt{37}\right)t}{2}}c_2 + e^{-\frac{\left(-3+\sqrt{37}\right)t}{2}}c_1 - \frac{4}{7}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 43

DSolve[y''[t]-3*y'[t]-7*y[t]==4,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 e^{-\frac{1}{2}(\sqrt{37}-3)t} + c_2 e^{\frac{1}{2}(3+\sqrt{37})t} - \frac{4}{7}$$

5.9 problem Problem 2(d)

Internal problem ID [12039]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 2(d).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, missing x]]

$$y''' + 3y'' + 3y' + y = 5$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(t),t\$3)+3*diff(y(t),t\$2)+3*diff(y(t),t)+y(t)=5,y(t), singsol=all)

$$y(t) = 5 + c_1 e^{-t} + c_2 t^2 e^{-t} + c_3 e^{-t} t$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 28

DSolve[y'''[t]+3*y''[t]+3*y'[t]+y[t]==5,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t} (5e^t + t(c_3t + c_2) + c_1)$$

5.10 problem Problem 2(e)

Internal problem ID [12040]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 2(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$3y'' + 5y' - 2y = 3t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(3*diff(y(t),t\$2)+5*diff(y(t),t)-2*y(t)=3*t^2,y(t), singsol=all)$

$$y(t) = c_2 e^{-2t} + e^{\frac{t}{3}} c_1 - \frac{3t^2}{2} - \frac{15t}{2} - \frac{93}{4}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 38

DSolve[3*y''[t]+5*y'[t]-2*y[t]==3*t^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\frac{3}{4}(2t^2 + 10t + 31) + c_1e^{t/3} + c_2e^{-2t}$$

5.11 problem Problem 2(f)

Internal problem ID [12041]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 2(f).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, missing y]]

$$y''' - 2y'' + 4y' = \sin(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 64

dsolve(diff(y(t),t\$3)=2*diff(y(t),t\$2)-4*diff(y(t),t)+sin(t),y(t), singsol=all)

$$y(t) = \frac{e^{t} \cos\left(\sqrt{3}\,t\right) c_{1}}{4} + \frac{c_{1} \sqrt{3}\,e^{t} \sin\left(\sqrt{3}\,t\right)}{4} - \frac{c_{2} \sqrt{3}\,e^{t} \cos\left(\sqrt{3}\,t\right)}{4} + \frac{e^{t} \sin\left(\sqrt{3}\,t\right) c_{2}}{4} + \frac{2 \sin\left(t\right)}{13} - \frac{3 \cos\left(t\right)}{13} + c_{3}$$

✓ Solution by Mathematica

Time used: 1.636 (sec). Leaf size: 82

DSolve[y'''[t]==2*y''[t]-4*y'[t]+Sin[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{52} \Big(8\sin(t) - 12\cos(t) - 13\Big(\sqrt{3}c_1 - c_2 \Big) e^t \cos\Big(\sqrt{3}t \Big) + 13c_1 e^t \sin\Big(\sqrt{3}t \Big) + 13\sqrt{3}c_2 e^t \sin\Big(\sqrt{3}t \Big) \Big) + c_3$$

5.12 problem Problem 3(a)

Internal problem ID [12042]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) - 2y$$
$$y' = 3x(t) - 4y$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 35

dsolve([diff(x(t),t)=x(t)-2*y(t),diff(y(t),t)=3*x(t)-4*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{2c_1 e^{-2t}}{3} + e^{-t}c_2$$

$$y(t) = c_1 e^{-2t} + e^{-t} c_2$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 60

$$x(t) \to e^{-2t} (c_1(3e^t - 2) - 2c_2(e^t - 1))$$

$$y(t) \to e^{-2t} (3c_1(e^t - 1) + c_2(3 - 2e^t))$$

5.13 problem Problem 3(b)

Internal problem ID [12043]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{5x(t)}{4} + \frac{3y}{4}$$
$$y' = \frac{x(t)}{2} - \frac{3y}{2}$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 86

dsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)],[x(t),y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)],[x(t),y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)],[x(t),y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)],[x(t),y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)],[x(t),y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)],[x(t),y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/4*y(t),diff(y(t),t)=1/2*x(t)-3/4*y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(y(t),t)=1/2*x(t)-3/2*y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(x(t),t)=1/2*x(t)-3/4*y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*y(t),diff(x(t),t)=1/2*x(t)-3/4*y(t)], singsolve([diff(x(t),t)=5/4*x(t)+3/4*x(

$$x(t) = \frac{c_1 e^{\frac{\left(-1+\sqrt{145}\right)t}{8}}\sqrt{145}}{4} - \frac{c_2 e^{-\frac{\left(1+\sqrt{145}\right)t}{8}}\sqrt{145}}{4} + \frac{11c_1 e^{\frac{\left(-1+\sqrt{145}\right)t}{8}}}{4} + \frac{11c_2 e^{-\frac{\left(1+\sqrt{145}\right)t}{8}}}{4}$$

$$y(t) = c_1 \mathrm{e}^{rac{\left(-1 + \sqrt{145}
ight)t}{8}} + c_2 \mathrm{e}^{-rac{\left(1 + \sqrt{145}
ight)t}{8}}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 161

 $DSolve[\{x'[t]==5/4*x[t]+3/4*y[t],y'[t]==1/2*x[t]-3/2*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSolv[t],t,IncludeSingularSo$

$$\begin{split} x(t) &\to \frac{1}{290} e^{-\frac{1}{8} \left(1 + \sqrt{145}\right) t} \left(c_1 \left(\left(145 + 11\sqrt{145}\right) e^{\frac{\sqrt{145}t}{4}} + 145 - 11\sqrt{145}\right) \right. \\ &\quad \left. + 6\sqrt{145} c_2 \left(e^{\frac{\sqrt{145}t}{4}} - 1\right) \right) \\ y(t) &\to \frac{1}{290} e^{-\frac{1}{8} \left(1 + \sqrt{145}\right) t} \left(4\sqrt{145} c_1 \left(e^{\frac{\sqrt{145}t}{4}} - 1\right) \right. \\ &\quad \left. - c_2 \left(\left(11\sqrt{145} - 145\right) e^{\frac{\sqrt{145}t}{4}} - 145 - 11\sqrt{145}\right) \right) \end{split}$$

5.14 problem Problem 3(c)

Internal problem ID [12044]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) - 2y$$
$$y' = -y + x(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve([diff(x(t),t)-x(t)+2*y(t)=0,diff(y(t),t)+y(t)-x(t)=0],[x(t), y(t)], singsol=all)

$$x(t) = c_1 \cos(t) - c_2 \sin(t) + c_1 \sin(t) + c_2 \cos(t)$$

$$y(t) = c_1 \sin(t) + c_2 \cos(t)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 39

$$x(t) \to c_1(\sin(t) + \cos(t)) - 2c_2\sin(t)$$

$$y(t) \to c_2 \cos(t) + (c_1 - c_2) \sin(t)$$

5.15 problem Problem 3(d)

Internal problem ID [12045]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(d).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -5x(t) + 2y$$
$$y' = -2x(t) + y$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 83

dsolve([diff(x(t),t)+5*x(t)-2*y(t)=0,diff(y(t),t)+2*x(t)-y(t)=0],[x(t), y(t)], singsol=all)

$$x(t) = -\frac{c_1 e^{\left(-2+\sqrt{5}\right)t} \sqrt{5}}{2} + \frac{c_2 e^{-\left(2+\sqrt{5}\right)t} \sqrt{5}}{2} + \frac{3c_1 e^{\left(-2+\sqrt{5}\right)t}}{2} + \frac{3c_2 e^{-\left(2+\sqrt{5}\right)t}}{2}$$

$$y(t) = c_1 e^{\left(-2 + \sqrt{5}\right)t} + c_2 e^{-\left(2 + \sqrt{5}\right)t}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 148

$$x(t) \to \frac{1}{10} e^{-\left(\left(2+\sqrt{5}\right)t\right)} \left(c_1 \left(\left(5-3\sqrt{5}\right) e^{2\sqrt{5}t} + 5 + 3\sqrt{5}\right) + 2\sqrt{5}c_2 \left(e^{2\sqrt{5}t} - 1\right)\right)$$

$$y(t) \to \frac{1}{10} e^{-\left(\left(2+\sqrt{5}\right)t\right)} \left(c_2\left(\left(5+3\sqrt{5}\right)e^{2\sqrt{5}t}+5-3\sqrt{5}\right)-2\sqrt{5}c_1\left(e^{2\sqrt{5}t}-1\right)\right)$$

5.16 problem Problem 3(e)

Internal problem ID [12046]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(e).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) - 2y$$
$$y' = x(t) - 3y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 70

dsolve([diff(x(t),t)-3*x(t)+2*y(t)=0,diff(y(t),t)-x(t)+3*y(t)=0],[x(t), y(t)], singsol=all)

$$x(t) = c_1 \sqrt{7} e^{\sqrt{7}t} - c_2 \sqrt{7} e^{-\sqrt{7}t} + 3c_1 e^{\sqrt{7}t} + 3c_2 e^{-\sqrt{7}t}$$

$$y(t) = c_1 e^{\sqrt{7}t} + c_2 e^{-\sqrt{7}t}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 144

$$x(t) \to \frac{1}{14} e^{-\sqrt{7}t} \left(c_1 \left(\left(7 + 3\sqrt{7} \right) e^{2\sqrt{7}t} + 7 - 3\sqrt{7} \right) - 2\sqrt{7}c_2 \left(e^{2\sqrt{7}t} - 1 \right) \right)$$

$$y(t) \to \frac{1}{14} e^{-\sqrt{7}t} \left(\sqrt{7}c_1 \left(e^{2\sqrt{7}t} - 1 \right) - c_2 \left(\left(3\sqrt{7} - 7 \right) e^{2\sqrt{7}t} - 7 - 3\sqrt{7} \right) \right)$$

5.17 problem Problem 3(f)

Internal problem ID [12047]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(f).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + z(t)$$
$$y' = y - x(t)$$
$$z'(t) = -x(t) - 2y + 3z(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 49

dsolve([diff(x(t),t)+x(t)-z(t)=0,diff(y(t),t)-y(t)+x(t)=0,diff(z(t),t)+x(t)+2*y(t)-3*z(t)=0]

$$x(t) = \frac{c_3 e^{3t}}{4} - c_2 + c_1 + c_2 t$$

$$y(t) = -\frac{c_3 e^{3t}}{8} + c_1 + c_2 t$$

$$z(t) = c_1 + c_2 t + c_3 e^{3t}$$

Time used: 0.015 (sec). Leaf size: 132

DSolve[{x'[t]+x[t]-z[t]==0,y'[t]-y[t]+x[t]==0,z'[t]+x[t]+2*y[t]-3*z[t]==0},{x[t],y[t],z[t]},

$$x(t) \to \frac{1}{9} \left(-9c_1(t-1) + c_2 \left(6t - 2e^{3t} + 2 \right) + c_3 \left(3t + 2e^{3t} - 2 \right) \right)$$

$$y(t) \to \frac{1}{9} \left(-9c_1t + c_2 \left(6t + e^{3t} + 8 \right) + c_3 \left(3t - e^{3t} + 1 \right) \right)$$

$$z(t) \to \frac{1}{9} \left(-9c_1t - 2c_2 \left(-3t + 4e^{3t} - 4 \right) + c_3 \left(3t + 8e^{3t} + 1 \right) \right)$$

5.18 problem Problem 3(g)

Internal problem ID [12048]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6. Introduction to Systems of ODEs. Problems page 408

Problem number: Problem 3(g).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -\frac{x(t)}{2} + 2y - 3z(t)$$
$$y' = y - \frac{z(t)}{2}$$
$$z'(t) = -2x(t) + z(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 164

$$dsolve([diff(x(t),t)=-1/2*x(t)+2*y(t)-3*z(t),diff(y(t),t)=y(t)-1/2*z(t),diff(z(t),t)=-2*x(t)))$$

$$x(t) = -\frac{c_2 e^{\frac{\left(-3+\sqrt{33}\right)t}{4}}\sqrt{33}}{8} + \frac{c_3 e^{-\frac{\left(3+\sqrt{33}\right)t}{4}}\sqrt{33}}{8} + \frac{7c_2 e^{\frac{\left(-3+\sqrt{33}\right)t}{4}}}{8} + \frac{7c_3 e^{-\frac{\left(3+\sqrt{33}\right)t}{4}}}{8} - c_1 e^{3t}$$

$$y(t) = \frac{c_2 e^{\frac{\left(-3+\sqrt{33}\right)t}{4}\sqrt{33}}}{8} - \frac{c_3 e^{-\frac{\left(3+\sqrt{33}\right)t}{4}\sqrt{33}}}{8} + \frac{7c_2 e^{\frac{\left(-3+\sqrt{33}\right)t}{4}}}{8} + \frac{7c_3 e^{-\frac{\left(3+\sqrt{33}\right)t}{4}}}{8} - \frac{c_1 e^{3t}}{4}$$

$$z(t) = c_1 e^{3t} + c_2 e^{\frac{\left(-3+\sqrt{33}\right)t}{4}} + c_3 e^{-\frac{\left(3+\sqrt{33}\right)t}{4}}$$

Time used: 0.053 (sec). Leaf size: 523

$$x(t) \to \frac{1}{264} e^{-\frac{1}{4} \left(3 + \sqrt{33}\right)t} \left(c_1 \left(\left(88 - 16\sqrt{33}\right) e^{\frac{\sqrt{33}t}{2}} + 88e^{\frac{1}{4} \left(15 + \sqrt{33}\right)t} + 88 + 16\sqrt{33} \right) + 4c_2 \left(\left(3\sqrt{33} - 11\right) e^{\frac{\sqrt{33}t}{2}} + 22e^{\frac{1}{4} \left(15 + \sqrt{33}\right)t} - 11 - 3\sqrt{33} \right) - c_3 \left(\left(13\sqrt{33} - 77\right) e^{\frac{\sqrt{33}t}{2}} + 154e^{\frac{1}{4} \left(15 + \sqrt{33}\right)t} - 77 - 13\sqrt{33} \right) \right)$$

$$\xrightarrow{y(t)} e^{-\frac{1}{4}\left(3+\sqrt{33}\right)t} \left(-4c_1\left(\left(11+5\sqrt{33}\right)e^{\frac{\sqrt{33}t}{2}}-22e^{\frac{1}{4}\left(15+\sqrt{33}\right)t}+11-5\sqrt{33}\right)+c_2\left(\left(484+92\sqrt{33}\right)e^{\frac{\sqrt{33}t}{2}}+884+32\sqrt{33}\right)e^{\frac{\sqrt{33}t}{2}}+884+32\sqrt{33}e^{\frac{\sqrt$$

$$\begin{split} z(t) &\to -\frac{1}{264} e^{-\frac{1}{4} \left(3 + \sqrt{33}\right)t} \bigg(4c_1 \bigg(\left(3\sqrt{33} - 11\right) e^{\frac{\sqrt{33}t}{2}} + 22 e^{\frac{1}{4} \left(15 + \sqrt{33}\right)t} - 11 - 3\sqrt{33} \bigg) \\ &\quad - 4c_2 \bigg(\left(11 + 5\sqrt{33}\right) e^{\frac{\sqrt{33}t}{2}} - 22 e^{\frac{1}{4} \left(15 + \sqrt{33}\right)t} + 11 - 5\sqrt{33} \bigg) \\ &\quad + c_3 \bigg(\left(7\sqrt{33} - 55\right) e^{\frac{\sqrt{33}t}{2}} - 154 e^{\frac{1}{4} \left(15 + \sqrt{33}\right)t} - 55 - 7\sqrt{33} \bigg) \bigg) \end{split}$$

6 Chapter 6.4 Reduction to a single ODE. Problems page 415

6.1	problem Problem 4(a)								•			•		•	•			188
6.2	problem Problem 4(b)																	189
6.3	problem Problem 4(c)																	190
6.4	problem Problem 4(d)																	191
6.5	problem Problem 4(e)																	192
6.6	problem Problem 4(f)																	193
6.7	problem Problem 4(g)																	194

6.1 problem Problem 4(a)

Internal problem ID [12049]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{y}{2} + \frac{x(t)}{2}$$

 $y' = \frac{y}{2} - \frac{x(t)}{2}$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 46

 $\boxed{ \text{dsolve}([\text{diff}(x(t),t)+\text{diff}(y(t),t)=y(t),\text{diff}(x(t),t)-\text{diff}(y(t),t)=x(t)],[x(t),y(t)], \text{ singsolution}}$

$$x(t) = -e^{\frac{t}{2}} \left(\cos \left(\frac{t}{2} \right) c_1 - \sin \left(\frac{t}{2} \right) c_2 \right)$$

$$y(t) = \mathrm{e}^{rac{t}{2}}igg(c_2\cos\left(rac{t}{2}
ight) + c_1\sin\left(rac{t}{2}
ight)igg)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 63

DSolve[{x'[t]+y'[t]==y[t],x'[t]-y'[t]==x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t)
ightarrow e^{t/2} igg(c_1 \cos \left(rac{t}{2}
ight) + c_2 \sin \left(rac{t}{2}
ight) igg)$$

$$y(t) o e^{t/2} \left(c_2 \cos \left(\frac{t}{2} \right) - c_1 \sin \left(\frac{t}{2} \right) \right)$$

6.2 problem Problem 4(b)

Internal problem ID [12050]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{t}{3} + \frac{2x(t)}{3} + \frac{2y}{3}$$
$$y' = \frac{t}{3} - \frac{x(t)}{3} - \frac{y}{3}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 45

dsolve([diff(x(t),t)+2*diff(y(t),t)=t,diff(x(t),t)-diff(y(t),t)=x(t)+y(t)],[x(t),y(t)], sin(x,t)=x(x,t)+y

$$x(t) = -4t - 6e^{\frac{t}{3}}c_1 - 6 - \frac{t^2}{2} - c_2$$

$$y(t) = \frac{t^2}{2} + 3e^{\frac{t}{3}}c_1 + 2t + c_2$$

✓ Solution by Mathematica

Time used: 0.178 (sec). Leaf size: 87

DSolve[{x'[t]+2*y'[t]==t,x'[t]-y'[t]==x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> T

$$x(t) \to -\frac{t^2}{2} - 4t + c_1(2e^{t/3} - 1) + 2c_2(e^{t/3} - 1) - 12$$

$$y(t) \rightarrow \frac{t^2}{2} + 2t - c_1 e^{t/3} - c_2 e^{t/3} + 6 + c_1 + 2c_2$$

6.3 problem Problem 4(c)

Internal problem ID [12051]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{6}{5} + \frac{3y}{5} - \frac{3t}{5} + x(t)$$
$$y' = \frac{6}{5} - \frac{2y}{5} + \frac{2t}{5}$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 30

 $\frac{dsolve([diff(x(t),t)-diff(y(t),t)=x(t)+y(t)-t,2*diff(x(t),t)+3*diff(y(t),t)=2*x(t)+6],[x(t),t)+3*diff(y(t),t)=2*x(t)+6]}{dsolve([diff(x(t),t)-diff(y(t),t)=x(t)+y(t)-t,2*diff(x(t),t)+3*diff(y(t),t)=2*x(t)+6]},[x(t),t]$

$$x(t) = -\frac{3}{2} - \frac{3e^{-\frac{2t}{5}}c_2}{7} + c_1e^t$$

$$y(t) = t + \frac{1}{2} + e^{-\frac{2t}{5}}c_2$$

✓ Solution by Mathematica

Time used: 0.438 (sec). Leaf size: 53

DSolve[{x'[t]-y'[t]==x[t]+y[t]-t,2*x'[t]+3*y'[t]==2*x[t]+6},{x[t],y[t]},t,IncludeSingularSol

$$x(t)
ightarrow \left(c_1 + rac{3c_2}{7}
ight)e^t - rac{3}{7}c_2e^{-2t/5} - rac{3}{2}$$

$$y(t) \to t + c_2 e^{-2t/5} + \frac{1}{2}$$

6.4 problem Problem 4(d)

Internal problem ID [12052]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(d).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{2t}{7} + \frac{y}{7}$$
$$y' = -\frac{3t}{7} + \frac{2y}{7}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

dsolve([2*diff(x(t),t)-diff(y(t),t)=t,3*diff(x(t),t)+2*diff(y(t),t)=y(t)],[x(t),y(t)], single for the context of the context

$$x(t) = \frac{t^2}{4} + \frac{3t}{4} + \frac{e^{\frac{2t}{7}}c_2}{2} + c_1$$

$$y(t) = \frac{3t}{2} + \frac{21}{4} + e^{\frac{2t}{7}}c_2$$

✓ Solution by Mathematica

Time used: 0.129 (sec). Leaf size: 60

$$x(t) \to \frac{1}{8} (2t^2 + 6t + 4c_2 e^{2t/7} + 21 + 8c_1 - 4c_2)$$

 $y(t) \to \frac{3t}{2} + c_2 e^{2t/7} + \frac{21}{4}$

6.5 problem Problem 4(e)

Internal problem ID [12053]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(e).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{3t}{4} - \frac{x(t)}{4} - \frac{y}{4}$$
$$y' = \frac{5t}{4} - \frac{3x(t)}{4} - \frac{3y}{4}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 45

dsolve([5*diff(x(t),t)-3*diff(y(t),t)=x(t)+y(t),3*diff(x(t),t)-diff(y(t),t)=t],[x(t), y(t)],

$$x(t) = \frac{t}{2} - \frac{e^{-t}c_1}{3} - 2 + \frac{t^2}{8} - c_2$$

$$y(t) = -\frac{t^2}{8} - e^{-t}c_1 + \frac{3t}{2} + c_2$$

✓ Solution by Mathematica

Time used: 0.075 (sec). Leaf size: 75

 $DSolve[\{5*x'[t]-3*y'[t]==x[t]+y[t],3*x'[t]-y'[t]==t\},\{x[t],y[t]\},t,IncludeSingularSolutions \}$

$$x(t) \to \frac{1}{8} (t^2 + 4t + 2(c_1 + c_2)e^{-t} - 4 + 6c_1 - 2c_2)$$
$$y(t) \to \frac{1}{8} (-t^2 + 12t + 2(3(c_1 + c_2)e^{-t} - 6 - 3c_1 + c_2))$$

6.6 problem Problem 4(f)

Internal problem ID [12054]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(f).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{4t}{5} + \frac{4y}{5}$$
$$y' = \frac{t}{5} + \frac{y}{5}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve([diff(x(t),t)-4*diff(y(t),t)=0,2*diff(x(t),t)-3*diff(y(t),t)=y(t)+t],[x(t),y(t)], since ([diff(x(t),t)-4*diff(y(t),t)=0,2*diff(x(t),t)-3*diff(y(t),t)=y(t)+t],[x(t),y(t)], since ([diff(x(t),t)-4*diff(y(t),t)=0,2*diff(x(t),t)-3*diff(y(t),t)=y(t)+t],[x(t),y(t)], since ([diff(x(t),t)-4*diff(y(t),t)=0,2*diff(x(t),t)-3*diff(y(t),t)=y(t)+t],[x(t),y(t)], since ([diff(x(t),t)-4*diff(y(t),t)=0,2*diff(x(t),t)-3*diff(y(t),t)=y(t)+t],[x(t),y(t)], since ([diff(x(t),t)-4*diff(y(t),t)=0,2*diff(x(t),t)-3*diff(y(t),t)=y(t)+t],[x(t),y(t)], since ([diff(x(t),t)-4*diff(x(t),t)=0,2*diff(x(t),t)-3*diff(y(t),t)=y(t)+t],[x(t),y(t)], since ([diff(x(t),t)-4*diff(x(t),t)=0,2*diff(x(t),t)=y(t)+t],[x(t),y(t)],[x(t

$$x(t) = -4t + 4e^{\frac{t}{5}}c_2 + c_1$$

$$y(t) = -t - 5 + e^{\frac{t}{5}}c_2$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 45

$$x(t) \rightarrow -4t + 4c_2e^{t/5} - 20 + c_1 - 4c_2$$

$$y(t) \to -t + c_2 e^{t/5} - 5$$

6.7 problem Problem 4(g)

Internal problem ID [12055]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 6.4 Reduction to a single ODE. Problems page 415

Problem number: Problem 4(g).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{\sin(t)}{4} + \frac{x(t)}{4} + \frac{y}{4} + \frac{t}{4}$$
$$y' = \frac{\sin(t)}{8} - \frac{3x(t)}{8} - \frac{3y}{8} - \frac{3t}{8}$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 51

dsolve([3*diff(x(t),t)+2*diff(y(t),t)=sin(t),diff(x(t),t)-2*diff(y(t),t)=x(t)+y(t)+t],[x(t),t]

$$x(t) = \frac{16 e^{-\frac{t}{8}} c_1}{3} - \frac{17 \cos(t)}{65} - \frac{6 \sin(t)}{65} + 8 + 2t - c_2$$

$$y(t) = -8e^{-\frac{t}{8}}c_1 + \frac{9\sin(t)}{65} - \frac{7\cos(t)}{65} - 3t + c_2$$

✓ Solution by Mathematica

Time used: 0.358 (sec). Leaf size: 98

$$x(t) \to -2t - \frac{6\sin(t)}{17} - \frac{7\cos(t)}{17} + 2c_1e^{t/4} + 2c_2e^{t/4} - 8 - c_1 - 2c_2$$

$$y(t) \to t + \frac{3\sin(t)}{17} - \frac{5\cos(t)}{17} - c_1e^{t/4} - c_2e^{t/4} + 4 + c_1 + 2c_2$$

7 Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Problems page 514

7.1	problem	Problem	3(a)	•		•	•	•	•			•			•	•	•	•	•	•	196
7.2	problem	${\bf Problem}$	3(b)																		197
7.3	problem	${\bf Problem}$	3(c)																		198
7.4	problem	${\bf Problem}$	3(d)																		199
7.5	problem	${\bf Problem}$	4 (a)																		200
7.6	problem	${\bf Problem}$	4(b)																		203
7.7	problem	${\bf Problem}$	4(c)																		205
7.8	problem	${\bf Problem}$	4(d)																		207
7.9	problem	${\bf Problem}$	5(a)																		209
7.10	problem	${\bf Problem}$	5(b)																		210
7.11	problem	${\bf Problem}$	5(c)																		212
7.12	problem	${\bf Problem}$	5(d)																		214
7.13	problem	${\bf Problem}$	6(a)																		216
7.14	problem	${\bf Problem}$	6(b)																		217
7.15	problem	${\bf Problem}$	6(c)																		219
7.16	problem	Problem	6(d)																		221

7.1 problem Problem 3(a)

Internal problem ID [12056]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 3(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -4x(t) + 9y + 12 e^{-t}$$
$$y' = -5x(t) + 2y$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 66

$$dsolve([diff(x(t),t)=-4*x(t)+9*y(t)+12*exp(-t),diff(y(t),t)=-5*x(t)+2*y(t)],[x(t),y(t)], single ([diff(x(t),t)=-4*x(t)+9*y(t)+12*exp(-t),diff(y(t),t)=-5*x(t)+2*y(t)],[x(t),y(t)], single ([diff(x(t),t)=-4*x(t)+9*y(t)+12*exp(-t),diff(y(t),t)=-5*x(t)+2*y(t)],[x(t),y(t)], single ([diff(x(t),t)=-4*x(t)+9*y(t)+12*exp(-t),diff(y(t),t)=-5*x(t)+2*y(t)],[x(t),y(t)], single ([diff(x(t),t)=-4*x(t)+9*y(t)+12*exp(-t),diff(y(t),t)=-5*x(t)+2*y(t)],[x(t),y(t)=-5*x(t)+2*y(t)], single ([diff(x(t),t)=-6*x(t)+2*y(t)],[x(t),y(t)=-6*x(t)+2*y(t)], single ([diff(x(t),t)=-6*x(t)+2*y(t)],[x(t),y(t)=-6*x(t)+2*y(t)], single ([diff(x(t),t)=-6*x(t)+2*y(t)],[x(t),y(t)=-6*x(t)+2*y(t)], single ([diff(x(t),t)=-6*x(t)+2*y(t)],[x(t),y(t)=-6*x(t)+2*y(t)], single ([diff(x(t),t)=-6*x(t)+2*y(t)],[x(t),y(t)=-6*x(t)+2*y(t)], single ([diff(x(t),t)=-6*x(t)+2*y(t)], single ([diff(x(t),t)=-6*x(t)+2*x(t)+2*y(t)], single ([diff(x(t),t)=-6*x(t)+2*x(t)$$

$$x(t) = \frac{e^{-t}(6\sin(6t)c_1 + 3\sin(6t)c_2 + 3\cos(6t)c_1 - 6\cos(6t)c_2 - 5)}{5}$$

$$y(t) = \frac{e^{-t}(3\sin(6t)c_2 + 3\cos(6t)c_1 - 5)}{3}$$

✓ Solution by Mathematica

Time used: 0.095 (sec). Leaf size: 73

$$DSolve[\{x'[t]==-4*x[t]+9*y[t]+12*Exp[-t],y'[t]==-5*x[t]+2*y[t]\},\{x[t],y[t]\},t,IncludeSingularity[t]=-5*x[t]+2*y[t]\},\{x[t],y[t]\},t,IncludeSingularity[t]=-5*x[t]+2*y[t]\},\{x[t],y[t]\},t,IncludeSingularity[t]=-5*x[t]+2*y[t]\},IncludeSingularity[t]=-5*x[t]+2*y[t]]+12*Exp[-t],IncludeSingularity[t]=-5*x[t]+2*y[t]]+12*Exp[-t],IncludeSingularity[t]=-5*x[t]+2*y[t]]+12*Exp[-t],IncludeSingularity[t]=-5*x[t]+2*y[t]]+12*Exp[-t],IncludeSingularity[t]=-5*x[t]+2*y[t]]+12*Exp[-t],IncludeSingularity[t]=-5*x[t]+2*y[t]]+12*Exp[-t],IncludeSingularity[t]=-5*x[t]+2*y[t]]+12*Exp[-t],IncludeSingularity[t]=-5*x[t]+2*y[t]]+12*Exp[-t],IncludeSingularity[t]=-5*x[t]+2*y[t]]+12*Exp[-t]+12*Exp[-$$

$$x(t) \to \frac{1}{2}e^{-t}(2c_1\cos(6t) - (c_1 - 3c_2)\sin(6t) - 2)$$
$$y(t) \to \frac{1}{6}e^{-t}(6c_2\cos(6t) + (3c_2 - 5c_1)\sin(6t) - 10)$$

7.2 problem Problem 3(b)

Internal problem ID [12057]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 3(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -7x(t) + 6y + 6e^{-t}$$
$$y' = -12x(t) + 5y + 37$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 82

$$dsolve([diff(x(t),t)=-7*x(t)+6*y(t)+6*exp(-t),diff(y(t),t)=-12*x(t)+5*y(t)+37],[x(t),y(t)],$$

$$x(t) = 6 + \frac{e^{-t}(\sin(6t) c_1 + \sin(6t) c_2 + \cos(6t) c_1 - \cos(6t) c_2 - 2\sin(6t) - 2\cos(6t) - 2}{2}$$

$$y(t) = 7 + e^{-t}(\sin(6t) c_2 + \cos(6t) c_1 - 2\cos(6t) - 2)$$

✓ Solution by Mathematica

Time used: 0.387 (sec). Leaf size: 72

DSolve
$$[\{x'[t]==-7*x[t]+6*y[t]+6*Exp[-t],y'[t]==-12*x[t]+5*y[t]+37\},\{x[t],y[t]\},t,IncludeSing[x]$$

$$x(t) \to e^{-t} (6e^t + c_1 \cos(6t) + (c_2 - c_1) \sin(6t) - 1)$$

$$y(t) \to e^{-t} (7e^t + c_2 \cos(6t) + (c_2 - 2c_1)\sin(6t) - 2)$$

7.3 problem Problem 3(c)

Internal problem ID [12058]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 3(c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -7x(t) + 10y + 18e^{t}$$
$$y' = -10x(t) + 9y + 37$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 81

$$dsolve([diff(x(t),t)=-7*x(t)+10*y(t)+18*exp(t),diff(y(t),t)=-10*x(t)+9*y(t)+37],[x(t),y(t)]$$

$$x(t) = 10 + \frac{e^{t}(3\sin(6t)c_{1} + 4\sin(6t)c_{2} + 4\cos(6t)c_{1} - 3\cos(6t)c_{2} - 15\sin(6t) - 20\cos(6t) - 20)}{5}$$

$$y(t) = 7 + e^{t}(\sin(6t) c_2 + \cos(6t) c_1 - 5\cos(6t) - 5)$$

✓ Solution by Mathematica

Time used: 0.622 (sec). Leaf size: 82

$$DSolve[\{x'[t]==-7*x[t]+10*y[t]+18*Exp[t],y'[t]==-10*x[t]+9*y[t]+37\},\{x[t],y[t]\},t,IncludeSing(x)=0$$

$$x(t) \to -4e^t + c_1e^t\cos(6t) - \frac{1}{3}(4c_1 - 5c_2)e^t\sin(6t) + 10$$

$$y(t) \to -5e^t + c_2 e^t \cos(6t) - \frac{1}{3}(5c_1 - 4c_2)e^t \sin(6t) + 7$$

7.4 problem Problem 3(d)

Internal problem ID [12059]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 3(d).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -14x(t) + 39y + 78\sinh(t)$$
$$y' = -6x(t) + 16y + 6\cosh(t)$$

✓ Solution by Maple

Time used: 0.329 (sec). Leaf size: 84

dsolve([diff(x(t),t)=-14*x(t)+39*y(t)+78*sinh(t),diff(y(t),t)=-6*x(t)+16*y(t)+6*cosh(t)],[x(t),t]=-6*x(t)+16*y(t)+6*cosh(t)]

$$x(t) = \frac{5 e^{t} \sin(3t) c_{2}}{2} - \frac{e^{t} \cos(3t) c_{2}}{2} + \frac{5 e^{t} \cos(3t) c_{1}}{2} + \frac{e^{t} \sin(3t) c_{1}}{2} + \frac{119 e^{-t}}{2} - \frac{105 e^{t}}{2} + \cosh(t)$$

$$y(t) = e^{t} \sin(3t) c_{2} + e^{t} \cos(3t) c_{1} + 21 e^{-t} - 21 e^{t}$$

✓ Solution by Mathematica

Time used: 0.623 (sec). Leaf size: 90

 $DSolve[\{x'[t]==-14*x[t]+39*y[t]+78*Sinh[t],y'[t]==-6*x[t]+16*y[t]+6*Cosh[t]\},\{x[t],y[t]\},t,I]$

$$x(t) \to 60e^{-t} - 52e^t + c_1e^t\cos(3t) - (5c_1 - 13c_2)e^t\sin(3t)$$

$$y(t) \rightarrow 21e^{-t} - 21e^{t} + c_2e^{t}\cos(3t) - (2c_1 - 5c_2)e^{t}\sin(3t)$$

7.5 problem Problem 4(a)

Internal problem ID [12060]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 4(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 4y - 2z(t) - 2\sinh(t)$$
$$y' = 4x(t) + 2y - 2z(t) + 10\cosh(t)$$
$$z'(t) = -x(t) + 3y + z(t) + 5$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 429

 $\frac{dsolve([diff(x(t),t)=2*x(t)+4*y(t)-2*z(t)-2*sinh(t),diff(y(t),t)=4*x(t)+2*y(t)-2*z(t)+10*cost}{dsolve([diff(x(t),t)=2*x(t)+4*y(t)-2*z(t)+10*cost})$

$$x(t) = -1 - \frac{3\sinh(4t)e^{5t}}{14} - \frac{275\sinh(6t)e^{5t}}{1008} + \frac{3\cosh(4t)e^{5t}}{14} + \frac{275\cosh(6t)e^{5t}}{1008}$$

$$- \frac{3\sinh(t)}{16} - \frac{45\cosh(t)}{16} - \frac{275e^{-2t}\sinh(t)}{224} + \frac{9c_1e^{-2t}}{8} + \frac{c_2e^{2t}}{2}$$

$$+ 2c_3e^{5t} - \frac{275e^{-2t}\cosh(t)}{224} + \frac{3e^{2t}\sinh(t)}{2} - \frac{3e^{2t}\cosh(t)}{2}$$

$$+ \frac{275e^{2t}\sinh(3t)}{288} - \frac{3e^{-2t}\sinh(3t)}{14} - \frac{275e^{2t}\cosh(3t)}{288} - \frac{3e^{-2t}\cosh(3t)}{14}$$

$$y(t) = -1 - \frac{\sinh{(4t)} e^{5t}}{14} + \frac{25\sinh{(6t)} e^{5t}}{144} + \frac{\cosh{(4t)} e^{5t}}{14} - \frac{25\cosh{(6t)} e^{5t}}{144}$$

$$- \frac{\sinh{(t)}}{16} - \frac{15\cosh{(t)}}{16} + \frac{25e^{-2t}\sinh{(t)}}{32} - \frac{5c_1e^{-2t}}{8} + \frac{c_2e^{2t}}{2}$$

$$+ 2c_3e^{5t} + \frac{25e^{-2t}\cosh{(t)}}{32} + \frac{e^{2t}\sinh{(t)}}{2} - \frac{e^{2t}\cosh{(t)}}{2}$$

$$- \frac{175e^{2t}\sinh{(3t)}}{288} - \frac{e^{-2t}\sinh{(3t)}}{14} + \frac{175e^{2t}\cosh{(3t)}}{288} - \frac{e^{-2t}\cosh{(3t)}}{14}$$

$$z(t) = -\frac{25 e^{-2t} \sinh(t)}{14} - 3 - \frac{4 e^{-2t} \sinh(3t)}{7} - \frac{25 e^{-2t} \cosh(t)}{14} - \frac{4 e^{-2t} \cosh(3t)}{7} + 4 e^{2t} \sinh(t) + \frac{25 e^{2t} \sinh(3t)}{18} - 4 e^{2t} \cosh(t) - \frac{25 e^{2t} \cosh(3t)}{18} - \frac{4 \sinh(4t) e^{5t}}{7} - \frac{25 \sinh(6t) e^{5t}}{63} + \frac{4 \cosh(4t) e^{5t}}{7} + \frac{25 \cosh(6t) e^{5t}}{63} + c_1 e^{-2t} + c_2 e^{2t} + c_3 e^{5t}$$

Time used: 0.292 (sec). Leaf size: 233

DSolve[{x'[t]==2*x[t]+4*y[t]-2*z[t]-2*Sinh[t],y'[t]==4*x[t]+2*y[t]-2*z[t]+10*Cosh[t],z'[t]==

$$x(t) \to -\frac{29e^{-t}}{9} - 3e^{t} + \frac{9}{14}(c_{1} - c_{2})e^{-2t} + \frac{2}{21}(9c_{1} + 5c_{2} - 7c_{3})e^{5t} + \frac{1}{6}(-3c_{1} + c_{2} + 4c_{3})e^{2t} - 1$$

$$y(t) \to \frac{7e^{-t}}{9} - e^{t} + \frac{5}{14}(c_{2} - c_{1})e^{-2t} + \frac{2}{21}(9c_{1} + 5c_{2} - 7c_{3})e^{5t} + \frac{1}{6}(-3c_{1} + c_{2} + 4c_{3})e^{2t} - 1$$

$$z(t) \to -\frac{25e^{-t}}{9} - 4e^{t} + \frac{4}{7}(c_{1} - c_{2})e^{-2t} + \frac{1}{21}(9c_{1} + 5c_{2} - 7c_{3})e^{5t} + \frac{1}{3}(-3c_{1} + c_{2} + 4c_{3})e^{2t} - 3$$

7.6 problem Problem 4(b)

Internal problem ID [12061]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 4(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 6y - 2z(t) + 50 e^{t}$$
$$y' = 6x(t) + 2y - 2z(t) + 21 e^{-t}$$
$$z'(t) = -x(t) + 6y + z(t) + 9$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 102

dsolve([diff(x(t),t)=2*x(t)+6*y(t)-2*z(t)+50*exp(t),diff(y(t),t)=6*x(t)+2*y(t)-2*z(t)+21*exp(t

$$x(t) = 12e^{t} - 1 - 6e^{-t} + c_{3}e^{6t} + c_{1}e^{-4t} + \frac{2c_{2}e^{3t}}{5}$$

$$y(t) = 2e^{t} - 1 + e^{-t} + c_3 e^{6t} - \frac{2c_1 e^{-4t}}{3} + \frac{2c_2 e^{3t}}{5}$$

$$z(t) = 37 e^{t} - 4 - 6 e^{-t} + c_3 e^{6t} + c_2 e^{3t} + c_1 e^{-4t}$$

Time used: 0.2 (sec). Leaf size: 213

DSolve[{x'[t]==2*x[t]+6*y[t]-2*z[t]+50*Exp[t],y'[t]==6*x[t]+2*y[t]-2*z[t]+21*Exp[-t],z'[t]==

$$x(t) \to -6e^{-t} + 12e^{t} + \frac{3}{5}(c_{1} - c_{2})e^{-4t} + \frac{1}{15}(16c_{1} + 9c_{2} - 10c_{3})e^{6t} - \frac{2}{3}(c_{1} - c_{3})e^{3t} - 1$$

$$y(t) \to e^{-t} + 2e^{t} - \frac{2}{5}(c_{1} - c_{2})e^{-4t} + \frac{1}{15}(16c_{1} + 9c_{2} - 10c_{3})e^{6t} - \frac{2}{3}(c_{1} - c_{3})e^{3t} - 1$$

$$z(t) \to -6e^{-t} + 37e^{t} + \frac{3}{5}(c_{1} - c_{2})e^{-4t} + \frac{1}{15}(16c_{1} + 9c_{2} - 10c_{3})e^{6t} - \frac{5}{3}(c_{1} - c_{3})e^{3t} - 4$$

7.7 problem Problem 4(c)

Internal problem ID [12062]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 4(c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) - 2y + 4z(t)$$
$$y' = -2x(t) + y + 2z(t)$$
$$z'(t) = -4x(t) - 2y + 6z(t) + e^{2t}$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 89

$$dsolve([diff(x(t),t)=-2*x(t)-2*y(t)+4*z(t),diff(y(t),t)=-2*x(t)+1*y(t)+2*z(t),diff(z(t),t)=-2*x(t)+2*z(t)$$

$$x(t) = \frac{3c_2e^{2t}}{4} + 4e^{2t}t - \frac{19e^{2t}}{4} + e^tc_3 - \frac{e^{2t}c_1}{2}$$

$$y(t) = \frac{c_2 e^{2t}}{2} + 2 e^{2t} t - \frac{5 e^{2t}}{2} + \frac{e^t c_3}{2} + e^{2t} c_1$$

$$z(t) = (e^{t}(5t + c_2 - 5) + c_3)e^{t}$$

Time used: 0.023 (sec). Leaf size: 118

 $DSolve[\{x'[t]==-2*x[t]-2*y[t]+4*z[t],y'[t]==-2*x[t]+y[t]+2*z[t],z'[t]==-4*x[t]-2*y[t]+6*z[t]$

$$x(t) \rightarrow e^{t} (e^{t} (4t - 4 - 3c_1 - 2c_2 + 4c_3) + 2(2c_1 + c_2 - 2c_3))$$

$$y(t) \to e^t (2e^t(t-1-c_1+c_3) + 2c_1 + c_2 - 2c_3)$$

$$z(t) \to e^t (e^t (5t - 4 - 4c_1 - 2c_2 + 5c_3) + 2(2c_1 + c_2 - 2c_3))$$

7.8 problem Problem 4(d)

Internal problem ID [12063]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 4(d).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) - 2y + 3z(t)$$

$$y' = x(t) - y + 2z(t) + 2e^{-t}$$

$$z'(t) = -2x(t) + 2y - 2z(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 91

dsolve([diff(x(t),t)=3*x(t)-2*y(t)+3*z(t),diff(y(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t),diff(z(t),t)=x(t)-y(t)+2*z(t)+2*exp(-t)+2*

$$x(t) = -e^{t}c_{1} - c_{2}e^{-2t} - c_{3}e^{t}t - \frac{3e^{t}c_{3}}{2} + 2e^{-t}$$

$$y(t) = e^{-t} + \frac{e^t c_1}{2} - c_2 e^{-2t} + \frac{c_3 e^t t}{2} - e^t c_3$$

$$z(t) = -2e^{-t} + e^{t}c_1 + c_2e^{-2t} + c_3e^{t}t$$

Time used: 0.106 (sec). Leaf size: 174

$$x(t) \to \frac{1}{9}e^{-2t} \left(18e^t + e^{3t} (c_1(6t+13) + c_3(6t+7) - 6c_2) - 4c_1 + 6c_2 - 7c_3 \right)$$

$$y(t) \to \frac{1}{9}e^{-2t} \left(9e^t + e^{3t} (c_1(4-3t) + c_3(7-3t) + 3c_2) - 4c_1 + 6c_2 - 7c_3 \right)$$

$$z(t) \to \frac{1}{9}e^{-2t} \left(-18e^t + 2e^{3t} (-(c_1(3t+2)) - 3c_3t + 3c_2 + c_3) + 4c_1 - 6c_2 + 7c_3 \right)$$

7.9 problem Problem 5(a)

Internal problem ID [12064]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 5(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 7x(t) + y - 1 - 6e^{t}$$
$$y' = -4x(t) + 3y + 4e^{t} - 3$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 30

dsolve([diff(x(t),t) = 7*x(t)+y(t)-1-6*exp(t), diff(y(t),t) = -4*x(t)+3*y(t)+4*exp(t)-3, x(t)+4*exp(t)-3, x(t)-3, x

$$x(t) = -2t e^{5t} + e^t$$

$$y(t) = 1 + (4t - 2)e^{5t}$$

✓ Solution by Mathematica

Time used: 0.325 (sec). Leaf size: 51

DSolve[$\{x'[t]==7*x[t]+y[t]-1-Exp[t],y'[t]==-4*x[t]+3*y[t]+4*Exp[t]-3\},\{x[0]==1,y[0]==-1\},\{x[0]==-1\}$

$$x(t) \to \frac{1}{8}e^t (e^{4t}(4t+5)+3)$$

$$y(t) \to \frac{1}{4} \left(-e^{5t}(4t+3) - 5e^t + 4 \right)$$

7.10 problem Problem 5(b)

Internal problem ID [12065]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 5(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) - 2y + 24\sin(t)$$
$$y' = 9x(t) - 3y + 12\cos(t)$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 44

$$dsolve([diff(x(t),t) = 3*x(t)-2*y(t)+24*sin(t), diff(y(t),t) = 9*x(t)-3*y(t)+12*cos(t), x(0))$$

$$x(t) = \cos(3t) - \frac{4\sin(3t)}{3} + 9\sin(t)$$

$$y(t) = \frac{7\cos(3t)}{2} - \frac{\sin(3t)}{2} - \frac{9\cos(t)}{2} + \frac{51\sin(t)}{2}$$

Time used: 0.027 (sec). Leaf size: 50

$$x(t) \to 9\sin(t) - \frac{4}{3}\sin(3t) + \cos(3t)$$
$$y(t) \to \frac{1}{2}(51\sin(t) - \sin(3t) - 9\cos(t) + 7\cos(3t))$$

7.11 problem Problem 5(c)

Internal problem ID [12066]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 5(c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 7x(t) - 4y + 10e^{t}$$
$$y' = 3x(t) + 14y + 6e^{2t}$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 54

dsolve([diff(x(t),t) = 7*x(t)-4*y(t)+10*exp(t), diff(y(t),t) = 3*x(t)+14*y(t)+6*exp(2*t), x(t)+10*exp(t)

$$x(t) = \frac{67 e^{10t}}{9} - \frac{14 e^{11t}}{3} - \frac{e^{2t}}{3} - \frac{13 e^t}{9}$$

$$y(t) = -\frac{67e^{10t}}{12} + \frac{14e^{11t}}{3} - \frac{5e^{2t}}{12} + \frac{e^t}{3}$$

Time used: 0.016 (sec). Leaf size: 54

DSolve[{x'[t]==7*x[t]-4*y[t]+10*Exp[t],y'[t]==3*x[t]+14*y[t]+6*Exp[2*t]},{x[0]==1,y[0]==-1},

$$x(t) \rightarrow -\frac{1}{9}e^{t} \left(-40e^{9t} + 18e^{10t} + 13\right)$$

$$y(t) o rac{1}{3}e^t \left(-10e^{9t} + 6e^{10t} + 1\right)$$

7.12 problem Problem 5(d)

Internal problem ID [12067]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 5(d).

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -7x(t) + 4y + 6 e^{3t}$$
$$y' = -5x(t) + 2y + 6 e^{2t}$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 58

dsolve([diff(x(t),t) = -7*x(t)+4*y(t)+6*exp(3*t), diff(y(t),t) = -5*x(t)+2*y(t)+6*exp(2*t),

$$x(t) = \frac{6e^{2t}}{5} + \frac{44e^{-3t}}{5} - \frac{46e^{-2t}}{5} + \frac{e^{3t}}{5}$$

$$y(t) = \frac{44 e^{-3t}}{5} - \frac{23 e^{-2t}}{2} + \frac{27 e^{2t}}{10} - e^{3t}$$

Time used: 0.011 (sec). Leaf size: 48

$$x(t) \to \frac{1}{5}e^{-3t} \left(-16e^t + e^{6t} + 20\right)$$

 $y(t) \to -e^{-3t} \left(4e^t + e^{6t} - 4\right)$

7.13 problem Problem 6(a)

Internal problem ID [12068]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 6(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - 3y + z(t)$$

$$y' = 2y + 2z(t) + 29 e^{-t}$$

$$z'(t) = 5x(t) + y + z(t) + 39 e^{t}$$

With initial conditions

$$[x(0) = 1, y(0) = 2, z(0) = 3]$$

✓ Solution by Maple

Time used: 7.391 (sec). Leaf size: 949416

$$dsolve([diff(x(t),t) = -3*x(t)-3*y(t)+z(t), diff(y(t),t) = 2*y(t)+2*z(t)+29*exp(-t), diff(z(t),t) = 2*y(t)+2*z(t$$

Expression too large to display

Expression too large to display

Expression too large to display

✓ Solution by Mathematica

Time used: 0.228 (sec). Leaf size: 3462

Too large to display

7.14 problem Problem 6(b)

Internal problem ID [12069]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 6(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y - z(t) + 5\sin(t)$$
$$y' = y + z(t) - 10\cos(t)$$
$$z'(t) = x(t) + z(t) + 2$$

With initial conditions

$$[x(0) = 1, y(0) = 2, z(0) = 3]$$

✓ Solution by Maple

Time used: 0.25 (sec). Leaf size: 71

$$x(t) = -3e^{t} \sin(t) + 4e^{t} \cos(t) - 1 - 2\cos(t)$$

$$y(t) = -4\sin(t) + 5\cos(t) + 1 + 3e^{t}\sin(t) - 4e^{t}\cos(t)$$

$$z(t) = 3e^{t}\cos(t) + 4e^{t}\sin(t) - 1 + \cos(t) - \sin(t)$$

Time used: 4.398 (sec). Leaf size: 74

DSolve[{x'[t]==2*x[t]+y[t]-z[t]+5*Sin[t],y'[t]==y[t]+z[t]-10*Cos[t],z'[t]==x[t]+z[t]+2},{x[0]

$$x(t) \to -3e^{t} \sin(t) + (4e^{t} - 2) \cos(t) - 1$$

$$y(t) \to (3e^{t} - 4) \sin(t) + (5 - 4e^{t}) \cos(t) + 1$$

$$z(t) \to (4e^{t} - 1) \sin(t) + (3e^{t} + 1) \cos(t) - 1$$

7.15 problem Problem 6(c)

Internal problem ID [12070]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 6(c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) + 3y + z(t) + 10\cos(t)\sin(t)$$

$$y' = x(t) - 5y - 3z(t) + 10\cos(t)^{2} - 5$$

$$z'(t) = -3x(t) + 7y + 3z(t) + 23e^{t}$$

With initial conditions

$$[x(0) = 1, y(0) = 2, z(0) = 3]$$

✓ Solution by Maple

Time used: 0.828 (sec). Leaf size: 132

$$dsolve([diff(x(t),t) = -3*x(t)+3*y(t)+z(t)+5*sin(2*t), diff(y(t),t) = x(t)-5*y(t)-3*z(t)+5*c(t)+5*$$

$$x(t) = -\frac{69 e^{t}}{26} + \sin(2t) + \frac{\cos(2t)}{2} + \frac{21 e^{-t}}{2} - \frac{191 e^{-2t} \cos(2t)}{26} + \frac{16 e^{-2t} \sin(2t)}{13}$$

$$y(t) = -\frac{253 e^{t}}{26} - \frac{5 \sin(2t)}{2} + \frac{21 e^{-t}}{2} + \frac{16 e^{-2t} \cos(2t)}{13} + \frac{191 e^{-2t} \sin(2t)}{26}$$

$$z(t) = \frac{483 e^{t}}{26} + \frac{7 \cos{(2t)}}{2} + \frac{9 \sin{(2t)}}{2} - \frac{21 e^{-t}}{2} - \frac{223 e^{-2t} \cos{(2t)}}{26} - \frac{159 e^{-2t} \sin{(2t)}}{26}$$

Time used: 14.393 (sec). Leaf size: 197

 $DSolve[\{x'[t] == -3*x[t] + 3*y[t] + z[t] + 5*Sin[3*t], y'[t] == x[t] - 5*y[t] - 3*z[t] + 5*Cos[2*t], z'[t] == -3*x[t] + 5*Cos[2*t], z'[t] == -3*x[t], z'[t] == -3*x[$

$$\begin{split} x(t) &\to \frac{1}{754} \big(7540e^{-t} - 2001e^t + 603e^{-2t} \sin(2t) + 377 \sin(2t) + 429 \sin(3t) \\ &\quad + \big(1131 - 5409e^{-2t} \big) \cos(2t) - 507 \cos(3t) \big) \\ y(t) &\to \frac{1}{754} \big(7540e^{-t} - 7337e^t + 5409e^{-2t} \sin(2t) - 1508 \sin(2t) - 507 \sin(3t) \\ &\quad + \big(603e^{-2t} + 1131 \big) \cos(2t) - 429 \cos(3t) \big) \\ z(t) &\to -10e^{-t} + \frac{483e^t}{26} - \frac{2403}{377}e^{-2t} \sin(2t) + \frac{43}{58} \sin(3t) \\ &\quad + \left(1 - \frac{3006e^{-2t}}{377} \right) \cos(2t) + \frac{81}{58} \cos(3t) + 9 \sin(t) \cos(t) \end{split}$$

7.16 problem Problem 6(d)

Internal problem ID [12071]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters).

Problems page 514

Problem number: Problem 6(d).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) + y - 3z(t) + 2e^{t}$$
$$y' = 4x(t) - y + 2z(t) + 4e^{t}$$
$$z'(t) = 4x(t) - 2y + 3z(t) + 4e^{t}$$

With initial conditions

$$[x(0) = 1, y(0) = 2, z(0) = 3]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 86

dsolve([diff(x(t),t) = -3*x(t)+y(t)-3*z(t)+2*exp(t), diff(y(t),t) = 4*x(t)-y(t)+2*z(t)+4*exp(t), diff(y(t),t) = 4*x(t)-y(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z(t)+4*exp(t)+2*z

$$x(t) = -\frac{3e^t}{2} - 2e^{-t}\sin(2t) + \frac{5e^{-t}\cos(2t)}{2}$$

$$y(t) = \frac{5e^{t}}{2} + \frac{9e^{-t}\sin(2t)}{2} - \frac{e^{-t}\cos(2t)}{2}$$

$$z(t) = \frac{7e^{t}}{2} + \frac{9e^{-t}\sin(2t)}{2} - \frac{e^{-t}\cos(2t)}{2}$$

Time used: 0.04 (sec). Leaf size: 98

DSolve[{x'[t]==-3*x[t]+y[t]-3*z[t]+2*Exp[t],y'[t]==4*x[t]-y[t]+2*z[t]+4*Exp[t],z'[t]==4*x[t]

$$x(t) \to -\frac{1}{2}e^{-t} \left(3e^{2t} + 4\sin(2t) - 5\cos(2t)\right)$$
$$y(t) \to \frac{1}{2}e^{-t} \left(5e^{2t} + 9\sin(2t) - \cos(2t)\right)$$
$$z(t) \to \frac{1}{2}e^{-t} \left(7e^{2t} + 9\sin(2t) - \cos(2t)\right)$$

8	Chapter 8.4 Systems of Linear Differential Equations (Method of Undetermined Coefficients). Problems page 520
	problem Problem 1(a)

8.1 problem Problem 1(a)

Internal problem ID [12072]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.4 Systems of Linear Differential Equations (Method of Undetermined

Coefficients). Problems page 520

Problem number: Problem 1(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + 5y + 10\sinh(t)$$
$$y' = 19x(t) - 13y + 24\sinh(t)$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 176

$$dsolve([diff(x(t),t)=x(t)+5*y(t)+10*sinh(t),diff(y(t),t)=19*x(t)-13*y(t)+24*sinh(t)],[x(t),t)=19*x(t)-13*y(t)+24*xinh(t)],[x(t),t)=19*x(t)-13*y(t)+24*xinh(t)-13*y(t)-13*$$

$$x(t) = -\frac{71\sinh{(7t)}e^{6t}}{266} - \frac{7\cosh{(5t)}e^{6t}}{12} + \frac{71\cosh{(7t)}e^{6t}}{266} + \frac{7\sinh{(5t)}e^{6t}}{12} + \frac{71e^{-18t}\cosh{(17t)}}{646} - \frac{35e^{-18t}\cosh{(19t)}}{228} + \frac{71e^{-18t}\sinh{(17t)}}{646} - \frac{35e^{-18t}\sinh{(19t)}}{228} + c_2e^{6t} - \frac{5c_1e^{-18t}}{19} - \frac{24\sinh{(t)}}{19}$$

$$y(t) = c_2 e^{6t} + c_1 e^{-18t} + \frac{71\left(\left(-\frac{323\cosh(5t)}{71} + \frac{17\cosh(7t)}{7} + \frac{323\sinh(5t)}{71} - \frac{17\sinh(7t)}{7}\right)e^{24t} + \sinh\left(17t\right) - \frac{85\sinh(19t)}{71} + \cosh\left(17t\right) - \frac{85\cos(17t)}{71} + \frac{85\cos(17t)}$$

Time used: 0.072 (sec). Leaf size: 108

DSolve[{x'[t]==x[t]+5*y[t]+10*Sinh[t],y'[t]==19*x[t]-13*y[t]+24*Sinh[t]},{x[t],y[t]},t,Inclu

$$x(t) \to \frac{120e^{-t}}{119} - \frac{26e^t}{19} + \frac{5}{24}(c_1 - c_2)e^{-18t} + \frac{1}{24}(19c_1 + 5c_2)e^{6t}$$

$$y(t) \to \frac{71e^{-t}}{119} - e^t - \frac{19}{24}(c_1 - c_2)e^{-18t} + \frac{1}{24}(19c_1 + 5c_2)e^{6t}$$

8.2 problem Problem 1(b)

Internal problem ID [12073]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Do-

brushkin. CRC Press 2015

Section: Chapter 8.4 Systems of Linear Differential Equations (Method of Undetermined

Coefficients). Problems page 520

Problem number: Problem 1(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 9x(t) - 3y - 6t$$
$$y' = -x(t) + 11y + 10t$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 44

dsolve([diff(x(t),t)=9*x(t)-3*y(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)], singsolve([diff(x(t),t)=9*x(t)-3*y(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)], singsolve([diff(x(t),t)=9*x(t)-3*y(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)], singsolve([diff(x(t),t)=9*x(t)-3*y(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)], singsolve([diff(x(t),t)=9*x(t)-3*y(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)=-x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)=-x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)=-x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)=-x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)=-x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)=-x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)=-x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)=-x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)=-x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)=-x(t)-6*t,diff(y(t),t)=-x(t)+11*y(t)+10*t],[x(t),y(t)=-x(t)-6*t,diff(y(t),t)=-x(t)+10*t],[x(t),y(t)=-x(t)-6*t,diff(y(t),diff(y(t),diff(y(t),diff(y(t),diff(y(t),diff(y(t),diff(y(t),diff(y(t),diff(y(t),diff(y(t),diff(y(t),diff(y(t),diff(y(t),diff(y(t)

$$x(t) = 3e^{8t}c_2 - e^{12t}c_1 + \frac{1}{64} + \frac{3t}{8}$$

$$y(t) = e^{8t}c_2 + e^{12t}c_1 - \frac{7t}{8} - \frac{5}{64}$$

✓ Solution by Mathematica

Time used: 0.113 (sec). Leaf size: 78

$$x(t) \to \frac{1}{64} (24t + 16(c_1 - 3c_2)e^{12t} + 48(c_1 + c_2)e^{8t} + 1)$$

$$y(t) \to \frac{1}{64} \left(-56t - 16(c_1 - 3c_2)e^{12t} + 16(c_1 + c_2)e^{8t} - 5 \right)$$