A Solution Manual For

Advanced Mathematica, Book2, Perkin and Perkin, 1992

Nasser M. Abbasi

March 3, 2024

Contents

1 Chapter 11.3, page 316

 $\mathbf{2}$

1 Chapter 11.3, page 316

1.1	problem 1.																	3
1.2	problem 2 .																	4
1.3	problem 3 .																	5
1.4	problem 4 .																	6
1.5	problem 5 .																	7
1.6	problem 6 .																	8
1.7	problem 7 .																	9
1.8	problem 8 .																	10
1.9	problem 9 .																	11
1.10	problem 10																	12
1.11	problem 11																	13
1.12	problem 12																	14
1.13	problem 13																	15
1.14	problem 14																	16
1.15	problem 15																	17
1.16	problem 16																	18
1.17	problem 17																	19
1.18	problem 18																	20
1.19	problem 19																	21
1.20	problem 20																	22
1.21	problem 21																	23
1.22	problem 22																	24
1.23	problem 23																	25
1.24	problem 24																	26
1.25	problem 25																	27
1.26	problem 26																	28
1.27	problem 27		•												•			29
1.28	problem 28																	30

1.1 problem 1

Internal problem ID [3052]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$3y^2y' = 2x - 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 78

 $dsolve(3*y(x)^2*diff(y(x),x)=2*x-1,y(x), singsol=all)$

$$y(x) = (x^{2} + c_{1} - x)^{\frac{1}{3}}$$

$$y(x) = -\frac{(x^{2} + c_{1} - x)^{\frac{1}{3}}}{2} - \frac{i\sqrt{3}(x^{2} + c_{1} - x)^{\frac{1}{3}}}{2}$$

$$y(x) = -\frac{(x^{2} + c_{1} - x)^{\frac{1}{3}}}{2} + \frac{i\sqrt{3}(x^{2} + c_{1} - x)^{\frac{1}{3}}}{2}$$

✓ Solution by Mathematica

Time used: 0.257 (sec). Leaf size: 71 $\,$

 $DSolve[3*y[x]^2*y'[x] == 2*x-1, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \sqrt[3]{x^2 - x + 3c_1}$$

$$y(x) \to -\sqrt[3]{-1}\sqrt[3]{x^2 - x + 3c_1}$$

$$y(x) \to (-1)^{2/3}\sqrt[3]{x^2 - x + 3c_1}$$

1.2 problem 2

Internal problem ID [3053]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 6xy^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $\label{eq:diff} $$\operatorname{dsolve}(\operatorname{diff}(y(x),x)=6*x*y(x)^2,y(x), $$singsol=all)$$

$$y(x) = \frac{1}{-3x^2 + c_1}$$

✓ Solution by Mathematica

Time used: 0.12 (sec). Leaf size: 22

DSolve[y'[x]==6*x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{3x^2 + c_1}$$

$$y(x) \to 0$$

1.3 problem 3

Internal problem ID [3054]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - e^y \sin(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x)=exp(y(x))*sin(x),y(x), singsol=all)

$$y(x) = -\ln(\cos(x) - c_1)$$

✓ Solution by Mathematica

Time used: 0.332 (sec). Leaf size: 15

DSolve[y'[x] == Exp[y[x]] *Sin[x], y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to -\log(\cos(x) - c_1)$$

1.4 problem 4

Internal problem ID [3055]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - e^{-y+x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(diff(y(x),x)=exp(x-y(x)),y(x), singsol=all)

$$y(x) = \ln\left(e^x + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.769 (sec). Leaf size: 12

DSolve[y'[x] == Exp[x-y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \log\left(e^x + c_1\right)$$

1.5 problem 5

Internal problem ID [3056]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - x \sec(y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x)=x*sec(y(x)),y(x), singsol=all)

$$y(x) = \arcsin\left(\frac{x^2}{2} + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.436 (sec). Leaf size: 31

DSolve[y'[x]==x*Sec[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o \arcsin\left(\frac{x^2}{2} + c_1\right)$$

$$y(x) o \arcsin\left(\frac{x^2}{2} + c_1\right)$$

1.6 problem 6

Internal problem ID [3057]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 6.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3\cos(y)^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(x),x)=3*cos(y(x))^2,y(x), singsol=all)$

$$y(x) = \arctan(3x + 3c_1)$$

✓ Solution by Mathematica

Time used: 0.387 (sec). Leaf size: 32

 $\label{eq:DSolve} DSolve[y'[x]==3*Cos[y[x]]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \arctan(3x + 2c_1)$$

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{\pi}{2}$$

1.7 problem 7

Internal problem ID [3058]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xy' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve(x*diff(y(x),x)=y(x),y(x), singsol=all)

$$y(x) = c_1 x$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 14

DSolve[x*y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x$$

$$y(x) \to 0$$

1.8 problem 8

Internal problem ID [3059]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(1-x)y'-y=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve((1-x)*diff(y(x),x)=y(x),y(x), singsol=all)

$$y(x) = \frac{c_1}{x - 1}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 20

DSolve[(1-x)*y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{c_1}{1-x}$$

$$y(x) \to 0$$

1.9 problem 9

Internal problem ID [3060]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 9.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{4yx}{x^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(diff(y(x),x)=(4*x*y(x))/(x^2+1),y(x), singsol=all)$

$$y(x) = c_1(x^2 + 1)^2$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 20

DSolve[y'[x]== $(4*x*y[x])/(x^2+1),y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \rightarrow c_1 \left(x^2 + 1\right)^2$$

$$y(x) \to 0$$

1.10 problem 10

Internal problem ID [3061]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2y}{x^2 - 1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x)=(2*y(x))/(x^2-1),y(x), singsol=all)$

$$y(x) = \frac{c_1(-x^2+1)}{(x+1)^2}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 22

 $DSolve[y'[x] == (2*y[x])/(x^2-1), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{c_1(x-1)}{x+1}$$

$$y(x) \to 0$$

1.11 problem 11

Internal problem ID [3062]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x^2 - y^2 = 0$$

With initial conditions

$$[y(1) = -1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 14

 $dsolve([x^2*diff(y(x),x)-y(x)^2=0,y(1) = -1],y(x), singsol=all)$

$$y(x) = -\frac{x}{-1+2x}$$

✓ Solution by Mathematica

Time used: 0.118 (sec). Leaf size: 14

 $DSolve[\{x^2*y'[x]-y[x]^2==0,y[1]==-1\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x}{1 - 2x}$$

1.12 problem 12

Internal problem ID [3063]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + 2yx = 0$$

With initial conditions

$$[y(0) = 5]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([diff(y(x),x)+2*x*y(x)=0,y(0) = 5],y(x), singsol=all)

$$y(x) = 5 e^{-x^2}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 14

 $DSolve[\{y'[x]+2*x*y[x]==0,y[0]==5\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow 5e^{-x^2}$$

1.13 problem 13

Internal problem ID [3064]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\cot(x) y' - y = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

dsolve([cot(x)*diff(y(x),x)=y(x),y(0) = 2],y(x), singsol=all)

$$y(x) = 2\sec\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 9

 $DSolve[\{Cot[x]*y'[x]==y[x],y[0]==2\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 2\sec(x)$$

1.14 problem 14

Internal problem ID [3065]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - x e^{-2y} = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 12

dsolve([diff(y(x),x)=x*exp(-2*y(x)),y(0)=0],y(x), singsol=all)

$$y(x) = \frac{\ln(x^2 + 1)}{2}$$

✓ Solution by Mathematica

Time used: 0.333 (sec). Leaf size: 15

DSolve[{y'[x]==x*Exp[-2*y[x]],y[0]==0},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} \log \left(x^2 + 1\right)$$

1.15 problem 15

Internal problem ID [3066]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2yx = 2x$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

dsolve([diff(y(x),x)-2*x*y(x)=2*x,y(0) = 1],y(x), singsol=all)

$$y(x) = -1 + 2e^{x^2}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 14

 $DSolve[\{y'[x]-2*x*y[x]==2*x,y[0]==1\},y[x],x,IncludeSingularSolutions \ -> \ True]$

$$y(x) \to 2e^{x^2} - 1$$

1.16 problem 16

Internal problem ID [3067]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xy' - yx - y = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve([x*diff(y(x),x)=x*y(x)+y(x),y(1) = 1],y(x), singsol=all)

$$y(x) = x e^{x-1}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 12

 $DSolve[\{x*y'[x]==x*y[x]+y[x],y[1]==1\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{x-1}x$$

1.17 problem 17

Internal problem ID [3068]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$(x^3+1) y' = 3 \tan(x) x^2$$

With initial conditions

$$\left[y(0) = \frac{\pi}{2}\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

 $dsolve([(1+x^3)*diff(y(x),x)=3*x^2*tan(x),y(0) = 1/2*Pi],y(x), singsol=all)$

$$y(x) = 3\left(\int_0^x \frac{\tan(_z1)_z1^2}{(_z1+1)(_z1^2-_z1+1)}d_z1\right) + \frac{\pi}{2}$$

✓ Solution by Mathematica

Time used: 8.597 (sec). Leaf size: 35

 $DSolve[\{(1+x^3)*y'[x]=3*x^2*Tan[x],y[0]==Pi/2\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \int_0^x \frac{3K[1]^2 \tan(K[1])}{K[1]^3 + 1} dK[1] + \frac{\pi}{2}$$

1.18 problem 18

Internal problem ID [3069]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x\cos(y)y' - \sin(y) = 1$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 8

dsolve([x*cos(y(x))*diff(y(x),x)=1+sin(y(x)),y(1)=0],y(x), singsol=all)

$$y(x) = \arcsin\left(x - 1\right)$$

✓ Solution by Mathematica

Time used: 37.067 (sec). Leaf size: 53

DSolve[{x*Cos[y[x]]*y'[x]==1+Sin[y[x]],y[1]==0},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -2\arccos\left(\frac{1}{2}\left(\sqrt{2-x} + \sqrt{x}\right)\right)$$

$$y(x) \to 2\arccos\left(\frac{1}{2}\left(\sqrt{2-x} + \sqrt{x}\right)\right)$$

1.19 problem 19

Internal problem ID [3070]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - 2y(y - 1) = 0$$

With initial conditions

$$\left[y\left(\frac{1}{2}\right) = 2\right]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 15

dsolve([x*diff(y(x),x)=2*y(x)*(y(x)-1),y(1/2) = 2],y(x), singsol=all)

$$y(x) = -\frac{1}{2x^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.339 (sec). Leaf size: 14

 $DSolve[\{x*y'[x]==2*y[x]*(y[x]-1),y[1/2]==2\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{1 - 2x^2}$$

1.20 problem 20

Internal problem ID [3071]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2xy' + y^2 = 1$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 13

 $dsolve([2*x*diff(y(x),x)=1-y(x)^2,y(1) = 0],y(x), singsol=all)$

$$y(x) = \frac{x-1}{x+1}$$

✓ Solution by Mathematica

Time used: 0.514 (sec). Leaf size: 14

 $DSolve \ [\{2*x*y'[x]==1-y[x]^2,y[1]==0\},y[x],x,IncludeSingularSolutions \ -> \ True]$

$$y(x) \to \frac{x-1}{x+1}$$

1.21 problem 21

Internal problem ID [3072]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(1-x)y'-yx=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve((1-x)*diff(y(x),x)=x*y(x),y(x), singsol=all)

$$y(x) = \frac{c_1 \mathrm{e}^{-x}}{x - 1}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 23

DSolve[(1-x)*y'[x]==x*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1 e^{-x}}{x - 1}$$

$$y(x) \to 0$$

1.22 problem 22

Internal problem ID [3073]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x^2 - 1) y' - (x^2 + 1) y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve((x^2-1)*diff(y(x),x)=(x^2+1)*y(x),y(x), singsol=all)$

$$y(x) = \frac{e^x(x-1)c_1}{x+1}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 25

DSolve $[(x^2-1)*y'[x]==(x^2+1)*y[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{c_1 e^x (x-1)}{x+1}$$

$$y(x) \to 0$$

1.23 problem 23

Internal problem ID [3074]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - e^x(y^2 + 1) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve(diff(y(x),x)=exp(x)*(y(x)^2+1),y(x), singsol=all)$

$$y(x) = \tan\left(e^x + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.274 (sec). Leaf size: 26

 $\label{eq:DSolve} DSolve[y'[x] == Exp[x]*(y[x]^2+1), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \tan\left(e^x + c_1\right)$$

$$y(x) \to -i$$

$$y(x) \to i$$

1.24 problem 24

Internal problem ID [3075]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'e^y - 2xe^y = -2x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

dsolve(exp(y(x))*diff(y(x),x)+2*x=2*x*exp(y(x)),y(x), singsol=all)

$$y(x) = -\ln\left(-\frac{1}{-1 + e^{x^2}c_1}\right)$$

✓ Solution by Mathematica

Time used: 2.015 (sec). Leaf size: 21

DSolve[Exp[y[x]]*y'[x]+2*x==2*x*Exp[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \log\left(1 + e^{x^2 + c_1}\right)$$

$$y(x) \to 0$$

1.25 problem 25

Internal problem ID [3076]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$e^{2x}yy' = -2x$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 16

dsolve([exp(2*x)*y(x)*diff(y(x),x)+2*x=0,y(0) = 1],y(x), singsol=all)

$$y(x) = \sqrt{(1+2x)e^{-2x}}$$

✓ Solution by Mathematica

Time used: 1.816 (sec). Leaf size: 20

 $DSolve[\{Exp[2*x]*y[x]*y'[x]+2*x==0,y[0]==1\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \sqrt{e^{-2x}(2x+1)}$$

1.26 problem 26

Internal problem ID [3077]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y'yx - \sqrt{y^2 - 9} = 0$$

With initial conditions

$$[y(e^4) = 5]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 12

 $dsolve([x*y(x)*diff(y(x),x)=sqrt(y(x)^2-9),y(exp(4)) = 5],y(x), singsol=all)$

$$y(x) = \sqrt{9 + \ln(x)^2}$$

✓ Solution by Mathematica

Time used: 0.256 (sec). Leaf size: 33

$$y(x) \to \sqrt{\log^2(x) + 9}$$

$$y(x) \to \sqrt{\log^2(x) - 16\log(x) + 73}$$

1.27 problem 27

Internal problem ID [3078]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$(y+x-1)y'+y=x+1$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 27

dsolve((x+y(x)-1)*diff(y(x),x)=(x-y(x)+1),y(x), singsol=all)

$$y(x) = 1 - \frac{c_1 x + \sqrt{2c_1^2 x^2 + 1}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.163 (sec). Leaf size: 47

 $\label{eq:DSolve} DSolve[(x+y[x]-1)*y'[x] == (x-y[x]+1),y[x],x,IncludeSingularSolutions \ \mbox{-> True}]$

$$y(x) \to -\sqrt{2x^2 + 1 + c_1} - x + 1$$

$$y(x) \to \sqrt{2x^2 + 1 + c_1} - x + 1$$

1.28 problem 28

Internal problem ID [3079]

Book: Advanced Mathematica, Book2, Perkin and Perkin, 1992

Section: Chapter 11.3, page 316

Problem number: 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[$_$ homogeneous, 'class A'], $_$ rational, $_$ Bernoulli]

$$y'yx + y^2 = 2x^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(x*y(x)*diff(y(x),x)=2*x^2-y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{x^4 + c_1}}{x}$$

$$y(x) = -\frac{\sqrt{x^4 + c_1}}{x}$$

Solution by Mathematica

Time used: 0.206 (sec). Leaf size: 38

DSolve[x*y[x]*y'[x]==2*x^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o -rac{\sqrt{x^4 + c_1}}{x}$$
 $y(x) o rac{\sqrt{x^4 + c_1}}{x}$

$$y(x) o rac{\sqrt{x^4 + c_1}}{x}$$