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First Order. Page 38
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1.1 problem 1 (a)

Internal problem ID [5912]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.3 Introduction— Linear equations of First Order. Page 38

Problem number: 1 (a).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

y = e’ +sin (z)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

tdsolve(diff(y(x),x)=exp(3*x)+sin(x),y(x), singsol=all)

e3z
y(x) = 5 ~cos () +c

v/ Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 21

LDSolve [y' [x]==Exp[3*x]+Sin[x],y[x] ,x,IncludeSingularSolutions -> True]

3z
y(z) — = = cos(z) + ¢



1.2 problem 1 (b)

Internal problem ID [5913]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.3 Introduction— Linear equations of First Order. Page 38

Problem number: 1 (b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

y'=z+2

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(diff (y(x),x$2)=2+x,y(x), singsol=all)

1
y(z) = gxg‘ + 2+ a1z + ¢

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 22

‘ DSolvely'' [x]==2+x,y[x],x,IncludeSingularSolutions -> Truel

3

T
y(x)—)E—i-xQ—i-czx—l—cl



1.3 problem 1 (d)

Internal problem ID [5914]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 1.3 Introduction— Linear equations of First Order. Page 38
Problem number: 1 (d).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _quadrature]]

" 2

<
|
8

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

-

Ldsolve(diff(y(x),x$3)=x‘2,y(x), singsol=all)

-/

1 1
y(z) = @15 + Eclxz + zco + c3

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 25

DSolvel[y'''[x]==x"2,y[x],x,IncludeSingularSolutions -> True]

N\

5

z
y(z) — o csx? + e + ¢



1.4 problem 2 (a)

Internal problem ID [5915]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.3 Introduction— Linear equations of First Order. Page 38

Problem number: 2 (a).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

Y +cos(z)y=0

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 11

e

tdsolve(diff(y(x),x)+cos(x)*y(x)=0,y(x), singsol=all)

~—

—sin(z)

y(x) = cie
v/ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 19

kDSolve [y' [x]+Cos [x]*y[x]==0,y[x] ,x,IncludeSingularSolutions -> Truel

y(z) = cre” sin(z)

y(z) =0



1.5 problem 2 (b)

Internal problem ID [5916]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.3 Introduction— Linear equations of First Order. Page 38

Problem number: 2 (b).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

y' + cos (z) y = cos () sin (z)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve (diff (y(x) ,x)+cos(x) *y(x)=sin(x)*cos(x) ,y(x), singsol=all) J

y(z) = sin (z) — 1 + ¢ e~ *2@

v/ Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 18

LDSolve [y' [x]+Cos [x] *y [x]==Sin[x]*Cos [x] ,y [x] ,x,IncludeSingularSolutions -> Trﬁ.\e]

y(z) — sin(z) + c;e 5@ — 1



1.6 problem 2 (c)

Internal problem ID [5917]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.3 Introduction— Linear equations of First Order. Page 38

Problem number: 2 (c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

Yy —y=0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve(diff(y(x),x$2)—y(x)=0,y(x), singsol=all)

y(z) = e %c; + €%cy

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 20

LDSolve [y'' [x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

T

y(z) = c1€” + coe”



1.7 problem 2 (f)

Internal problem ID [5918]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.3 Introduction— Linear equations of First Order. Page 38

Problem number: 2 (f).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y'+4y=0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(diff (y(x),x$2) +4*y (x)=0,y(x), singsol=all)

y(x) = ¢y sin (2z) + ¢ cos (2x)

v Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20

LDSolve [y'' [x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(z) — ¢1 cos(2x) + ¢z sin(2x)

10



1.8 problem 2 (h)

Internal problem ID [5919]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.3 Introduction— Linear equations of First Order. Page 38

Problem number: 2 (h).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y"+k2y=0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

-

Ldsolve(diff (y(x),x$2)+k~2%y (x)=0,y(x), singsol=all)

y(z) = ¢; sin (kx) + ¢ cos (kz)

v/ Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20

~—

e

LDSolve [y'' [x]+k~2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

~—

y(x) = ¢ cos(kx) + cosin(kz)

11



1.9 problem 3(a)

Internal problem ID [5920)]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.3 Introduction— Linear equations of First Order. Page 38

Problem number: 3(a).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

Y +5y=2
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
Ldsolve(diff (y(x),x)+bxy(x)=2,y(x), singsol=all) J

2
y(z) = =+ e ¢,

v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 24

‘ DSolvel[y' [x]+5*y[x]==2,y[x],x,IncludeSingularSolutions -> True]

12



1.10 problem 4(a)

Internal problem ID [5921]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.3 Introduction— Linear equations of First Order. Page 38

Problem number: 4(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

y'=3z+1
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
Ldsolve(diff (y(x),x$2)=3*x+1,y(x), singsol=all) J

1 1
y(z) = 51'3 + 5.%2 + az+ ¢

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 25

‘ DSolvely'' [x]==3*x+1,y[x],x,IncludeSingularSolutions -> Truel

1
y(z) — 5 (z° + 2° + 2c27 + 2¢1)

13



1.11 problem 5(a)

Internal problem ID [5922]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.3 Introduction— Linear equations of First Order. Page 38

Problem number: 5(a).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

y —yk=0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

Ldsolve(diff(y(x),x)=k*y(x),y(x), singsol=all)

y(z) = cre™

v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 18

LDSolve [y' [x]==k*y[x],y[x],x,IncludeSingularSolutions -> True]

y(z) = ke

y(z) =0

14
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2.1 problem 1(a)

Internal problem ID [5923]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.6 Introduction— Linear equations of First Order. Page 41

Problem number: 1(a).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

Yy —2y=1

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff(y(x),x)—2*y(x)=1,y(x), singsol=all)

1
y(o) = —5 + e

v/ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 24

‘ DSolvel[y' [x]-2*y[x]==1,y[x],x,IncludeSingularSolutions -> True]

1
y(z) — -5t c1e*®

y@)—>—%

16



2.2 problem 1(b)

Internal problem ID [5924]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 1.6 Introduction— Linear equations of First Order. Page 41
Problem number: 1(b).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y+y=e

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

-

Ldsolve(diff(y(x),x)+y(x)=exp(x),y(x), singsol=all)

-/

T

(&
yo) =S e

v/ Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 21

‘ DSolvely' [x]+y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

T

e
y(z) — 5 +ce™®

17



2.3 problem 1(c)

Internal problem ID [5925]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.6 Introduction— Linear equations of First Order. Page 41

Problem number: 1(c).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

Yy —2y=2"+zx

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

Ldsolve(diff(y(x),x)-2*y(x)=x‘2+x,y(x), singsol=all)

z? 1
y(z) = —5 %5 +e*¢;

v/ Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 23

DSolvel[y' [x]-2*y[x]==x"2+x,y[x],x,IncludeSingularSolutions -> True]

N\

1
y(z) — —5(30 +1)% + c1e*

18



2.4 problem 1(d)

Internal problem ID [5926]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover.
1961

Section: Chapter 1.6 Introduction— Linear equations of First Order. Page 41
Problem number: 1(d).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y+3y =2e7°

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

NY

-

Ldsolve(B*diff(y(x),x)+y(x)=2*exp(-x),y(x), singsol=all)

| —

—z _z

y(z) =—e"+e 3¢y
v/ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 23

-

LDSolve [3*y' [x]+y[x]==2%Exp[-x] ,y[x] ,x,IncludeSingularSolutions -> Truel

-/

y(z) > e (-1+ clez’”/3)

19



2.5 problem 1(e)

Internal problem ID [5927]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.6 Introduction— Linear equations of First Order. Page 41

Problem number: 1(e).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y/_+_3y=ei$

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

| dsolve(diff (y(x),x)+3*y(x)=exp(I*x),y(x), singsol=all)

3 i ;
— 2 (3+%)x —3z
y(z) ((10 10)6 +cl>e

v Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 29

-

LDSolve [y' [x]+3*y[x]==Exp[I*x],y[x],x,IncludeSingularSolutions -> True]

20

~—



2.6 problem 2

Internal problem ID [5928]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 1.6 Introduction— Linear equations of First Order. Page 41
Problem number: 2.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

y+iy=uz

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

-

Ldsolve (diff (y(x) ,x)+I*xy(x)=x,y(x), singsol=all)

-/

y(z) = —iz + 1+ e “c;
v/ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 22

-

LDSolve [y' [x]+I*y[x]==x,y[x],x,IncludeSingularSolutions -> Truel

-/

y(z) = —iz + e + 1

21



2.7 problem 3

Internal problem ID [5929]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 1.6 Introduction— Linear equations of First Order. Page 41
Problem number: 3.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

Ly +Ry=EFE

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

Ldsolve(L*diff(y(x),x)+R*y(x)=E,y(x), singsol=all)

(z) = g teTec
y\r) = R 1

v/ Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 23

-

LDSolve [Lxy' [x]+R*y [x]==EO0,y[x],x,IncludeSingularSolutions -> True]

-/

22



2.8 problem 4

Internal problem ID [5930]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 1.6 Introduction— Linear equations of First Order. Page 41
Problem number: 4.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

Ly + Ry = Esin (wz)

With initial conditions

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 47

tdsolve([L*diff(y(x),x)+R*y(x)=E*sin(omega*x),y(O) = 0],y(x), singsol=all)

E(L cos (wz)w — e~ L Lw — sin (wz) R)
y(il,') == Ww2L? + R2

v/ Solution by Mathematica
Time used: 0.115 (sec). Leaf size: 47

-

LDSolve [{L*y' [x]+R*y [x]==E0*Sin[\ [Omega]l *x] ,{y [0]1==0}},y[x],x, IncludeSingularSjalutions -> Tru

EO (Lwe_% — Lw cos(zw) + Rsin(mw))
L2w? + R?

y(z) =

23



2.9 problem 5

Internal problem ID [5931]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.6 Introduction— Linear equations of First Order. Page 41

Problem number: 5.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

Lyl+Ry — Eeiw.’z:

With initial conditions

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 38

Ldsolve([L*diff(y(x),x)+R*y(x)=E*exp(I*omega*x),y(O) = 0],y(x), singsol=all) J

E(ezwim) — 1) e~
tLw+ R

y(z) =

v/ Solution by Mathematica
Time used: 0.101 (sec). Leaf size: 43

LDSolve [{L*y' [x]+R*y [x]==EO*Exp [I*\ [Omega] *x] ,{y[0]==0}},y[x],x,IncludeSingularSolutions -> T

E0e~ % (—1 + ew(RiiLw)>
R+ 1iLw

y(z) =

24



2.10 problem 7

Internal problem ID [5932]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1.6 Introduction— Linear equations of First Order. Page 41

Problem number: 7.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

¥ +ya = b(z)

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

Ldsolve(diff(y(x),x)+a*y(x)=b(x),y(x), singsol=all)

y(z) = ( / b(z) e da + cl) o

v/ Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 32

DSolvely' [x]+a*y[x]==b[x],y[x],x,IncludeSingularSolutions -> True]

N

y(z) > e (/x eKUp(K[1]))dK[1] + cl)

1

25



3 Chapter 1. Introduction— Linear equations of

First Order. Page 45

3.1 problem 1(a)
3.2 problem 1(b)
3.3 problem 1(c)
3.4 problem 1(d)
3.5 problem 1(e)
3.6 problem 2 . .
3.7 problem 3 . .
3.8 problem 8 . .
3.9 problem 14(a)
3.10 problem 14(b)
3.11 problem 14(b)

26



3.1 problem 1(a)

Internal problem ID [5933]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1. Introduction— Linear equations of First Order. Page 45

Problem number: 1(a).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

yz+y ==
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
Ldsolve (diff (y(x) ,x)+2*x*y(x)=x,y(x), singsol=all) J
1
y(z) = 3 + e

v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 26

‘ DSolvel[y' [x]+2*x*y[x]==x,y[x],x,IncludeSingularSolutions -> True]

27



3.2 problem 1(b)

Internal problem ID [5934]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1. Introduction— Linear equations of First Order. Page 45

Problem number: 1(b).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

yr+y=32>-1

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(x*diff(y(x),x)+y(x)=3*x‘3-1,y(x), singsol=all)

3.4
“rr—x+cC
y(x)=4T

v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 20

LDSolve [x*y' [x]+y[x]==3%x"3-1,y[x],x,IncludeSingularSolutions -> True]

323 ¢
LAy
y(z) = =+

28



3.3 problem 1(c)

Internal problem ID [5935]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1. Introduction— Linear equations of First Order. Page 45

Problem number: 1(c).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

yl+ewy:3ez

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

Ldsolve (diff (y(x) ,x)+exp(x) *y (x)=3*exp(x),y(x), singsol=all) J

y(z) =3+e ¢
v/ Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 22

-

.
LDSolve [y' [x]+Exp [x] *y [x]==3*Exp[x] ,y [x] ,x,IncludeSingularSolutions -> True] J

y(z) = 3+ cre™®
y(z) =3

29



3.4 problem 1(d)

Internal problem ID [5936]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1. Introduction— Linear equations of First Order. Page 45

Problem number: 1(d).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

sin(z)

Yy —ytan(z) =€

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve (diff (y(x) ,x)-tan(x)*y(x)=exp(sin(x)),y(x), singsol=all) J
esin(z) + ¢
ylz) = cos ()

v Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 15

LDSolve [y' [x]-Tan[x]*y[x]==Exp[Sin[x]],y[x],x,IncludeSingularSolutions -> True}]

y(x) — sec(x) (esm(”’) +c1)

30



3.5 problem 1(e)

Internal problem ID [5937]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 1. Introduction— Linear equations of First Order. Page 45
Problem number: 1(e).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

2

yr+y =xze”

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 18

dsolve(diff (y(x) ,x)+2*x*y(x)=x*exp(-x~2),y(x), singsol=all)

N\

v/ Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 24

e

kDSolve [y' [x]+2*x*y [x]==x*Exp[-x~2] ,y[x] ,x,IncludeSingularSolutions -> True]

|

y(x) — %e‘”2 (z° +2c1)

31



3.6 problem 2

Internal problem ID [5938]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1. Introduction— Linear equations of First Order. Page 45

Problem number: 2.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

— sin(z)

Yy +cos(z)y=e

With initial conditions

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 11

-

dsolve ([diff (y(x),x)+cos(x)*y(x)=exp(-sin(x)),y(Pi) = Pil,y(x), singsol=all) |

N J

y(z) — e sin(m)x

v/ Solution by Mathematica
Time used: 0.138 (sec). Leaf size: 13

‘ DSolve [{y' [x]+Cos [x]*y[x]==Exp[-Sin[x]],{y[Pil==Pil}},y[x],x, IncludeSingularSo#.utions -> True

y(x) — ze~ sin(z)
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3.7 problem 3

Internal problem ID [5939]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1. Introduction— Linear equations of First Order. Page 45

Problem number: 3.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

vy +2yz =1

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve(x‘2*diff(y(x),x)+2*x*y(x)=1,y(x), singsol=all)

v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 13

LDSolve [x~2xy' [x]+2*x*y [x]==1,y[x],x,IncludeSingularSolutions -> True]

T+
72

y(z) =
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3.8 problem 8

Internal problem ID [5940)]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1. Introduction— Linear equations of First Order. Page 45

Problem number: 8.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_linear, ‘class A‘]]

Y + 2y = b(x)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

Ldsolve(diff(y(x),x)+2*y(x)=b(x),y(x), singsol=all)

y(z) = ( / b(z) e*dx + cl) o2

v/ Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 31

DSolvel[y' [x]+2*y[x]==b[x],y[x],x,IncludeSingularSolutions -> True]

N

y(z) — e > (/x KMy K[1])dK[1] + cl)

1
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3.9 problem 14(a)

Internal problem ID [5941]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 1. Introduction— Linear equations of First Order. Page 45
Problem number: 14(a).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

y—y=1

With initial conditions

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 8

Ldsolve([diff(y(x),x)=1+y(x),y(O) = 0],y(x), singsol=all)

y(z) =€ -1
v/ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 10

-

LDSolve [{y' [x]==1+y[x],{y[0]==0}},y[x] ,x,IncludeSingularSolutions -> Truel

-/

y(x) > e —1
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3.10 problem 14(b)

Internal problem ID [5942]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1. Introduction— Linear equations of First Order. Page 45

Problem number: 14(b).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

P +y =1
With initial conditions
[y(0) = 0]
v Solution by Maple
Time used: 0.031 (sec). Leaf size: 6
Ldsolve( [diff (y(x),x)=1+y(x)~2,y(0) = 0],y(x), singsol=all) J

y(z) = tan (z)
v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 7

-

LDSolve [{y' [x]==1+y[x]~2,{y[0]==0}},y[x],x,IncludeSingularSolutions -> True] J

y(x) — tan(z)
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3.11 problem 14(b)

Internal problem ID [5943]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 1. Introduction— Linear equations of First Order. Page 45

Problem number: 14(b).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

P +y =1
With initial conditions
[y(0) = 0]
v Solution by Maple
Time used: 0.015 (sec). Leaf size: 6
Ldsolve( [diff (y(x),x)=1+y(x)~2,y(0) = 0],y(x), singsol=all) J

y(z) = tan (z)
v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 7

-

LDSolve [{y' [x]==1+y[x]~2,{y[0]==0}},y[x],x,IncludeSingularSolutions -> True] J

y(x) — tan(z)
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4 Chapter 2. Linear equations with constant

coefficients. Page 52

4.1 problem 1(a)
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4.3 problem 1(c)
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4.12 problem 3(c)
4.13 problem 3(d)
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4.1 problem 1(a)
Internal problem ID [5944]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 1(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y'—4y=0

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

Ldsolve(diff(y(x),x$2)—4*y(x)=0,y(x), singsol=all) J

y(z) = ey + cpe™

v/ Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 22

LDSolve [y'' [x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(z) = e > (c1e™ + ¢2)
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4.2 problem 1(b)

Internal problem ID [5945]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 1(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

3y +2y=0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

Ldsolve(B*diff (y(x),x$2)+2*y (x)=0,y(x), singsol=all)

y(x) = ¢1 sin <@) + ¢y cos (@)

v Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 32

r

LDSolve [3xy'' [x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

| —

s v ({2 (2
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4.3 problem 1(c)
Internal problem ID [5946]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 1(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' +16y =0
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
Ldsolve(diff (y(x),x$2)+16*y(x)=0,y(x), singsol=all) J

y(x) = ¢ sin (4z) + co cos (4x)
v Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20

LDSolve [y'' [x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(z) — ¢1 cos(4x) + c2 sin(4x)
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4.4 problem 1(d)
Internal problem ID [5947]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 1(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

yll — 0
v Solution by Maple
Time used: 0.015 (sec). Leaf size: 9
Ldsolve(diff (y(x),x$2)=0,y(x), singsol=all) J

y(x) =z +co
v Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12

LDSolve [y''[x]==0,y[x],x,IncludeSingularSolutions -> Truel J

y(x) > o+
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4.5 problem 1(e)
Internal problem ID [5948]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 1(e).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' +2iy +y=0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

Ldsolve (diff (y(x) ,x$2)+2*I*diff (y(x),x)+y(x)=0,y(x), singsol=all) J

y(z) = cie”“sin (\/5 x) + e cos (\@ x)

v/ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 38

LDSolve [y'' [x]+2*Ix*y' [x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(x) — e_i(”ﬁ)w (chZi‘/ﬁ”” + C1>
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4.6 problem 1(f)
Internal problem ID [5949]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 1(f).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' —4y' +5y =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

Ldsolve (diff (y(x) ,x$2)-4*diff (y(x),x)+6*y(x)=0,y(x), singsol=all) J

y(x) = c; sin (z) €2* + ¢y cos () e**

v/ Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 22

LDSolve [y'' [x]-4xy' [x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(x) — €**(cy cos(z) + ¢; sin(x))
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4.7 problem 1(g)

Internal problem ID [5950]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 1(g).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

v + (=1 +3i)y — 3iy =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

e

tdsolve(diff(y(x),x$2)+(3*I-1)*diff(y(x),x)-3*I*y(x)=0,y(x), singsol=all)

~—

y(z) = c1e7% + e”cy
v/ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 22

e

LDSolve [y'' [x]+(3*I-1)*y"' [x]-3*I*y[x]==0,y[x],x,IncludeSingularSolutions -> Trﬁ.\e]

y(x) — c1e7 + cpe”
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4.8 problem 2(a)

Internal problem ID [5951]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 2(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y'+y —6y=0

With initial conditions
[y(0) = 1,4'(0) = 0]

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 18

Ldsolve( [diff (y(x),x$2)+diff (y(x),x)-6*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x), singsol=all)

(3e%® +2) e
5

y(z) =

v/ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 23

LDSolve [{y'' [x]+y' [x]-6*y[x]==0,{y[0]==1,y' [0]==0}},y[x],x, IncludeSingularSoluJL.ions -> True]

y(z) — %6_3"’” (3¢ +2)
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4.9 problem 2(b)

Internal problem ID [5952]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 2(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y'+y —6y=0

With initial conditions
[y(0) = 0,4'(0) = 1]

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 16

Ldsolve( [diff (y(x),x$2)+diff (y(x),x)-6*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

(6593 _ 1) e—3z

y(z) = 7

v/ Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 21

LDSolve [{y'' [x]+y' [x]-6*y[x]==0,{y[0]==0,y' [0]==1}},y[x],x, IncludeSingularSoluJL.ions -> True]
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4.10 problem 3(a)

Internal problem ID [5953]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 3(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' +y=0

With initial conditions

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

|dsolve([diff (y(x),x$2)+y(x)=0,y(0) = 1, y(1/2%Pi) = 2],y(x), singsol=all) |

y(x) = 2sin (z) + cos (x)

v/ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 12

-

.
DSolve[{y'' [x]+y[x]==0,{y[0]==1,y[Pi/2]==2}},y[x],x,IncludeSingularSolutions +> Truel

N\

y(z) — 2sin(x) + cos(z)
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4.11 problem 3(b)

Internal problem ID [5954]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 3(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' +y=0

With initial conditions
[y(0) = 0,y(m) = 0]

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 8

Ldsolve([diff(y(x),x$2)+y(x)=0,y(0) = 0, y(Pi) = 0],y(x), singsol=all) J

y(x) = ¢y sin (z)
v/ Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 10

-

N
LDSolve [{y'' [x]+y[x]==0,{y[0]==0,y[Pil==0}},y[x] ,x,IncludeSingularSolutions —>J True]

y(x) — ¢ sin(z)
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4.12 problem 3(c)

Internal problem ID [5955]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 3(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' +y=0

With initial conditions

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 8

‘dsolve([diff (y(x),x$2)+y(x)=0,y(0) = 0, D(y)(1/2%Pi) = 0],y(x), singsol=all)

y(x) = ¢y sin (z)
v/ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 10

-

.
DSolve[{y'' [x]+y[x]==0,{y[0]==0,y"' [Pi/2]==0}},y[x],x,IncludeSingularSolutions| -> Truel

N\ J

y(x) — c; sin(z)
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4.13 problem 3(d)

Internal problem ID [5956]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 52

Problem number: 3(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' +y=0

With initial conditions

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

dsolve ([diff (y(x),x$2)+y(x)=0,y(0) = 0, y(1/2%Pi) = 0],y(x), singsol=all) ‘

y(z) =0
v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 6

-

N\

.
DSolve[{y'' [x]+y[x]==0,{y[0]==0,y[Pi/2]==0}},y[x],x,IncludeSingularSolutions +> Truel

y(z) =0
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5.1 problem 1(a)

Internal problem ID [5957]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 59

Problem number: 1(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' -2y —3y=0

With initial conditions
[y(0) = 0,4'(0) = 1]

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

Ldsolve([diff(y(x),x$2)—2*diff(y(x),x)—3*y(x)=0,y(0) = 0, D(yp (0 = 1],y(x), sjingsol=all)

T

o
4

e3z
y(z) = e

v/ Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 21

LDSolve [{y'' [x]-2*y' [x]-3*y[x]==0,{y[0]==0,y' [0]==1}},y[x],x, IncludeSingularSojlutions -> True

@) e (e~ 1)
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5.2 problem 1(b)

Internal problem ID [5958]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 59

Problem number: 1(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

Y'+(14+4)y +y=0

With initial conditions
[y(0) = 0,%'(0) = 0]

v Solution by Maple
Time used: 0.078 (sec). Leaf size: 5

Ldsolve([diff(y(x),x$2)+(4*I+1)*diff(y(x),x)+y(x)=0,y(0) = 0, D(y)(0) = OJ,y(x}, singsol=all)

y(z) =0
v/ Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 6

LDSolve [{y'' [x]+(4xI+1)*y' [x]+y[x]==0,{y[0]==0,y' [0]==03}},y[x],x, IncludeSingul%rSolutions ->

y(z) =0
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5.3 problem 1(c)

Internal problem ID [5959]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 59

Problem number: 1(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

v + (=1 +3i)y — 3iy =0

With initial conditions
[y(0) = 2,'(0) = 0]

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

Ldsolve([diff(y(x),x$2)+(3*I—1)*diff(y(x),x)—3*I*y(x)=O,y(0) = 2, D(y)(0) = O]J,y(x), singsol=

v Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 31

‘ DSolve [{y'' [x]+(3*I-1)*y"' [x]-3*I*y[x]==0,{y[0]==2,y' [0]==0}},y[x],x, IncludeSi#gularSolutions

1 _. .
y(z) = 56_3“”((9 + 30)e 37 4 (1 — 34))
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5.4 problem 1(d)

Internal problem ID [5960)]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 59

Problem number: 1(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' +10y =0

With initial conditions

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 27

Ldsolve([diff(y(x),x$2)+10*y(x)=0,y(0) = Pi, D(y)(0) = Pi~2],y(x), singsol=a11})

7(my/10 sin (v10z) + 10 cos (v/10z))
y(z) = 10

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 33

‘ DSolve[{y'' [x]+10*y[x]==0,{y[0]==Pi,y' [0]==Pi~2}},y[x],x, IncludeSingularSolut#ons -> True]

y(x) — m\/%l_()z) + 7 cos (\/ﬁ:t:)
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6.1 problem 1(a)

Internal problem ID [5961]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

Y + 4y = cos (x)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

e

tdsolve(diff(y(x),x$2)+4*y(x)=cos(x),y(x), singsol=all)

~—

cos ()

y(x) = sin (2z) co + cos (2z) ¢ + 3

v/ Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 26

LDSolve [y'' [x]+4*xy[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True] J

cos(x)

y(x) — + ¢1 cos(2z) + ¢ sin(2z)
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6.2 problem 1(b)

Internal problem ID [5962]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" + 9y = sin (3z)

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

e

tdsolve(diff(y(x),x$2)+9*y(x)=sin(3*x),y(x), singsol=all)

~—

y(x) = sin (3z) c2 + cos (3z) ¢; — w
v/ Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 33
LDSolve [y'' [x]+9*y[x]==8in[3#*x],y[x],x,IncludeSingularSolutions -> Truel J

y(x) — (—% + cl> cos(3x) + 3—16(1 + 36¢2) sin(3x)
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6.3 problem 1(c)

Internal problem ID [5963]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" +y = tan(z)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

e

kdsolve (diff (y(x),x$2)+y(x)=tan(x),y(x), singsol=all)

~—

y(z) = sin (z) c2 + cos (z) ¢; — cos (z) In (sec (z) + tan (z))
v Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 23

LDSolve [y'' [x]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]

y(z) — cos(z)(—arctanh(sin(x))) + ¢; cos(x) + o sin(z)

60



6.4 problem 1(d)

Internal problem ID [5964]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y'+2iy +y==z

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 34

Ldsolve (diff (y(x) ,x$2)+2*I*xdiff (y(x),x)+y(x)=x,y(x), singsol=all) J

y(x) = e sin (\/5 x) ¢ + e cos (\/5 x) o —2i+z

v/ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 44

LDSolve [y'' [x]+2*Ix*y' [x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]

y(@) = o+ e (VD 4 g (VP)e g
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6.5 problem 1(e)

Internal problem ID [5965]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(e).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y' — 4y + 5y =3e " 4 227

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

e N
Ldsolve (diff (y(x),x$2)-4*diff (y(x),x)+b*y(x)=3*exp(-x)+2*x~2,y(x), singsol=a11})

3e® 22? 16z 44

— ai 2z 2z 204 A
y(x) = sin (z) €““ca + cos (z) €“"c; + 10 + - + 5 _|_125

v/ Solution by Mathematica
Time used: 0.316 (sec). Leaf size: 47

‘ DSolvely'' [x]-4*y' [x]+5*y[x]==3*Exp[-x]+2*x~2,y[x],x,IncludeSingularSolutions| -> Truel

1
y(z) — 550 (100z” + 160z + 75e~* + 88) + c2e™ cos(z) + c1€*” sin(z)
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6.6 problem 1(f)

Internal problem ID [5966]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(f).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" =Ty + 6y = sin (z)

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

e

tdsolve(diff(y(x),x$2)—7*diff(y(x),x)+6*y(x)=sin(x),y(x), singsol=all)

~—

7 cos (z) + 5sin (x)

_ 6x T
y(x) = 2™ + €%c; + 7 N

v/ Solution by Mathematica
Time used: 0.063 (sec). Leaf size: 32

LDSolve [y'' [x]-7*y' [x]+6*y[x]==8in[x],y[x],x,IncludeSingularSolutions -> True]J

5sin(z) 4 7 cos(z)

1 1 + c1€° + cpe®®

y(z) =
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6.7 problem 1(g)

Internal problem ID [5967]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(g).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

Y’ +y = 2sin (z) sin (2z)

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

e

tdsolve(diff(y(x),x$2)+y(x)=2*sin(x)*sin(2*x),y(x), singsol=all)

~—

sin (z) (— cos (x) sin (z) + )
2

y(x) = sin (z) ¢y + cos (z) ¢; +

v/ Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 33

LDSolve [y'' [x]+y[x]==2*Sin[x]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True}]

y(z) — %(COS(&T) + (=1 + 8cy) cos(z) + 4(z + 2¢o) sin(x))
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6.8 problem 1(h)

Internal problem ID [5968]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(h).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" +y = sec(z)

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

e

tdsolve(diff(y(x),x$2)+y(x)=sec(x),y(x), singsol=all)

~—

y(x) = sin (z) ¢z + cos (z) ¢; — In (sec (z)) cos (x) + sin (z) =
v Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 22

LDSolve [y'' [x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

y(x) = (z + o) sin(z) + cos(z)(log(cos(z)) + ¢1)
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6.9 problem 1(i)

Internal problem ID [5969]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(i).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

4yll _ y — e:l:
v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 21
Ldsolve (4xdiff (y(x) ,x$2)-y(x)=exp(x),y(x), singsol=all) J

T

y(z) = e 2cy+e2e; + e

v/ Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 33

‘ DSolve[4*y'' [x]-y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> Truel

T
y(z) — % + 16?4 cpe™/?
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6.10 problem 1(j)

Internal problem ID [5970)]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 1(j).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

6y" +5y —6y==x

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

Ldsolve (6xdiff (y(x) ,x$2)+5*diff (y(x),x)-6*y(x)=x,y(x), singsol=all) J

_3z 2z T 5
y(xz) =e 2cz—|—e3cl—g—%

v/ Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 34

‘ DSolve[6*y'' [x]+5*y' [x]-6%y[x]==x,y[x],x,IncludeSingularSolutions -> Truel

z 2z/3 —3z/2 )
_> _—— —_
y(x) g Tae e 36
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6.11 problem 4(c)

Internal problem ID [5971]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 69

Problem number: 4(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

Y + w?y = Acos (wz)

With initial conditions
[y(0) =0,7'(0) = 1]

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 18

e

Ldsolve([diff(y(x),x$2)+omega"2*y(x)=A*cos(omega*x),y(O) = 0, D(y(0) = 1],y(x}, singsol=all)

y(z) = sin (wz) (Az + 2)

2w
v/ Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 21

LDSolve [{y'' [x]+\ [Omegal] ~2*y [x]==A*Cos [\ [Omega] *x] ,{y [0]==0,y' [0]==1}},y[x], x,}[ncludeSingulaI

R (Az + 2) sin(aw)
2w

y(z)

68



Chapter 2. Linear equations with constant
coefficients. Page 74

problem 4(a) . . . ...
problem 4(b) . . . ...
problem 4(c) . . . ...
problem 4(d) . . . . ...
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7.1 problem 4(a)

Internal problem ID [5972]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(a).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

ylll _ 8y — 0
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 35
Ldsolve(diff (y(x),x$3)-8*y(x)=0,y(x), singsol=all) J

y(x) = €*“c; + cye™ " sin (\/5 x) + cse™* cos (\/§ x)

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 42

LDSolve [y''' [x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> Truel

y(x) = e ° (cle?’”” + ¢y cos (\/§m> + c3sin <\/§m>)
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7.2 problem 4(b)

Internal problem ID [5973]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(b).

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

yllll + 16y — O
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 65
Ldsolve(diff (y(x),x$4)+16*y(x)=0,y(x), singsol=all) J

y(z) = —Cle_ﬂx sin (\/§$> — cze‘/i”” sin <\/§ x)
+ C3e_ﬁx oS (\/§x> + c4eﬁ"” cos (\@ ac)

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 67

e

LDSolve [y'''' [x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> Truel

A >

y(z) — e‘ﬁx<(cle2‘/§”” + Cg) cos (\/ﬁ:p) + <c4e2‘/§“” + c3> sin <\/§x)>
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7.3 problem 4(c)

Internal problem ID [5974]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(c).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

yl/l _ 5yll + 6yl — O

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(diff (y(x),x$3)-5*diff (y(x),x$2) +6*diff (y(x),x)=0,y(x), singsol=all) J

y(z) = c1 + e*“cy + c3e™”

v/ Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 30

LDSolve [y''' [x]-Bb*y'' [x]+6*y' [x]==0,y[x],x,IncludeSingularSolutions -> True] J

1 1
y(l‘) — 50162‘” + gCQ€3$ +c3
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7.4 problem 4(d)

Internal problem ID [5975]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(d).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

ylll _ iy” + 4yl _ 4Zy — 0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

Ldsolve(diff(y(x),x$3)—I*diff(y(x),x$2)+4*diff(y(x),x)—4*I*y(x)=O,y(x), singsg}=a11)

2ix

y(z) = 16 + coe™ + cze”
v Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 36

LDSolve [y''' [x]-I*xy'' [x]+4*y' [x]-4*I*y[x]==0,y[x],x,IncludeSingularSolutions —f True]

y(z) = €2 (c2e™ + ¢3¢ + ¢1)
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7.5 problem 4(f)

Internal problem ID [5976]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(f).

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

yllll + 5yll + 4y — 0

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

Ldsolve (diff (y(x) ,x$4)+5*diff (y(x) ,x$2) +4*y(x)=0,y(x), singsol=all) J

y(z) = ¢ 8in (22) + o cos (2z) + ¢z sin (z) + ¢4 cos (z)

v Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30

LDSolve [y'''' [x]+6*y'' [x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> Truel J

y(x) = ¢ cos(2z) + ¢4 sin(x) + cos(x)(2¢e sin(z) + ¢3)
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7.6 problem 4(g)

Internal problem ID [5977]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(g).

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

yllll _ 16y — 0
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 29
Ldsolve(diff (y(x),x$4)-16*y(x)=0,y(x), singsol=all) J

y(z) = €*"c1 + c2e™* + c3sin (2z) + ¢4 cos (2z)

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 36

LDSolve [y''''[x]-16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(x) — c1e®® + cze” ¥ + ¢y cos(2z) + ¢y sin(2z)
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7.7 problem 4(h)

Internal problem ID [5978]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(h).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

ylll_3yl_2y:0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

Ldsolve (diff (y(x),x$3)-3*diff (y(x),x)-2*y(x)=0,y(x), singsol=all) J

2o+ e + ez

y(z) =e
v/ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

LDSolve [y''' [x]-3*y' [x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> Truel

y(z) = e (coz + 36> + 1)
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7.8 problem 4(i)

Internal problem ID [5979]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 74

Problem number: 4(i).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

y" —3iy" -3y +iy=0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

Ldsolve(diff(y(x),x$3)—3*I*diff(y(x),x$2)—3*diff(y(x),x)+I*y(x)=O,y(x), singsg}=a11)

y(x) = c1e™ + coe™x + czex?
v Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 25

LDSolve [y''' [x]-3*%Ixy'"' [x]-3*y' [x]+I*y[x]==0,y[x],x,IncludeSingularSolutions —f True]

y(x) = e (z(csx + c3) +c1)
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8.1 problem 1(c)

Internal problem ID [5980)]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 79

Problem number: 1(c).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

ylll _ 4yl — 0

With initial conditions
[y(0) = 0,%'(0) = 1,4"(0) = 0]

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

Ldsolve([diff(y(x),x$3)—4*diff(y(x),x)=0,y(0) = 0, D(y)(0) = 1, (De@2) (y)(0) =J 01,y(x), sings

v/ Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 69

LDSolve {y''' [x]-4*y[x]==0,{y[0]==0,y' [0]==1,y'' [0]==0}},y[x],x,IncludeSingularSolutions -> T

.z 3z
e V2 (eQ/§ + /3sin (‘5%) — cos (%))
3 22/3

y(z) -
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8.2 problem 2(c)

Internal problem ID [5981]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 79

Problem number: 2(c).

ODE order: 5.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y(5) _ y//// _ y/_+_y =0

With initial conditions

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 28

e B

Ldsolve( [diff (y(x),x$5)-diff (y(x),x$4)-diff (y(x),x)+y(x)=0,y(0) = 1, D(y)(0) J 0, (Dee2) (y) (C

_e® (—2z45)e”  cos(z) sin(z)
e 1

v Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 34

LDSolve[{y' e x]-yt o [x] -y [xk]+y [x]==0,{y[0]==1,y' [0]==0,y' ' [0]==0,y"'""' [O]=j=0,y' ' [0]==0]}

1
y() = g (~2¢" + 7" + 5¢” — 2sin(z) + 2 cos(z))
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9.1 problem 1(a)

Internal problem ID [5982]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 1(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y'+y=0
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
Ldsolve(diff (y(x),x$2)+y(x)=0,y(x), singsol=all) J

y(z) = ¢ sin (z) + o cos (z)

v Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 16

LDSolve [y'' [x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(x) = ¢1 cos(z) + cosin(z)
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9.2 problem 1(b)

Internal problem ID [5983]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 1(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y'—y=0
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
Ldsolve(diff(y(x),x$2)—y(x)=0,y(x), singsol=all) J

y(z) = e %c; + €%cy
v/ Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 20

LDSolve [y'' [x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

T

y(z) = c1€” + coe”
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9.3 problem 1(c)

Internal problem ID [5984]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 1(c).

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

" _ y — O
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
Ldsolve(diff (y(x),x$4)-y(x)=0,y(x), singsol=all) J

y(z) = e “c1 + e"cy + c3sin (z) + ¢4 cos ()

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30

LDSolve [y''''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(z) = c1€” + c3e™" + cp cos(x) + ¢4 sin(z)
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9.4 problem 1(d)

Internal problem ID [5985]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 1(d).

ODE order: 5.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y® +2y =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 369

Ldsolve(diff(y(x),x$5)+2*y(x)=0,y(x), singsol=all)

IS

2% cos(%)\/g cos(%)2% 21’—70 V5+v5 sin(%) i21% V54+vV5 cos(%) izé sin(%)\/g isin(%‘:)2%
1 + 1 - 1 + 1 - 1 z
= C1€

Ol

1

V5—5 cos(%) iZ% sin(%)\/g isin(g)Z
4 - 4 - 4

|

[\

P

Q

]

17}
—~
o
[N—"

S
|

Q

]

17}
—~

IS

[N—"

[V

G

+

[V

et

1S

o

|

S

2

5
—
o
N—""
|

o

[V

g~

)w

2%005(%)\/5 cos(%)2% 210 5—\/gsin(%) 3210 5—\/5003(%) iZ%sin(%)\/g isin(g)2é>
1 - 1 1 z

— J’_ 1 — 1 —

N

T

Q%COS(g)\/E cos(g)z% 210 5+\/gsin(%> 210 5+\/gcos(%)+i2%sin(%)\/3 isin(g)zé)
4 4 - 4
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v/ Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 180

LDSolve [y''''' [x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(x) > e 2275 | cze 2295

5z — Vo — \
+C36245/5 CcOSs <5—\/3$> +c4 Ccos (M) +cze245}5 sin ( ) \/3m> te sin < 5 + \/g$>

(vE-1)z ( (v5—5)z

2 923/10 2 923/10 2 923/10 92 93/10
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9.5 problem 1(e)

Internal problem ID [5986]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 1(e).

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

yllll _ 5yll + 4y — O

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

Ldsolve (diff (y(x) ,x$4)-5+diff (y(x) ,x$2)+4*y(x)=0,y(x), singsol=all) J

y(z) = e¥c; + cpe™ + c3e™" + c4e”

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 35

LDSolve [y''''[x]-6*y'"' [x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(z) = e (c2e” + ¥ (cae® + c3) + 1)
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9.6 problem 2

Internal problem ID [5987]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 2.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

ylll+y:O

With initial conditions
[y(0) = 0,%'(0) = 1,4"(0) = 0]

v/ Solution by Maple
Time used: 0.094 (sec). Leaf size: 39

Ldsolve([diff(y(x),x$3)+y(x)=0,y(0) = 0, D(y) (0) =1, (De@2)(y)(0) = 0],y(x), lfingsol=a11)

(x/ge%z sin (@) + e cos <@> — 1) e ”
3

y(z) =

v Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 59

‘ DSolve[{y''' [x]+y[x]==0,{y[0]==0,y' [0]==1,y'' [0]==0}},y[x],x, IncludeSingularS{olutions -> Tru

y(z) = %e‘x (\/563‘”/2 sin (@) + €37/2 cos (@) - 1)
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9.7 problem 3(a)

Internal problem ID [5988]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 3(a).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing x]]

ylll_iyll+y,_iy:0

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 27

Ldsolve(diff(y(x),x$3)—I*diff(y(x),x$2)+diff(y(x),x)—I*y(x)=O,y(x), singsol=a¥})

y(z) = e ey + coe™ + czex
v Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 31

LDSolve [y''' [x]-I*xy'' [x]+y' [x]-I*y[x]==0,y[x],x,IncludeSingularSolutions -> Trj.\e]

y(z) = e (e*(csz + &) + 1)
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9.8 problem 3(b)

Internal problem ID [5989]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 3(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' =2y —y=0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

Ldsolve(diff(y(x),x$2)—2*I*diff(y(x),x)—y(x)=0,y(x), singsol=all) J

y(z) = c1e™ + ez
v Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20

LDSolve [y'' [x]-2%Ixy' [x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(x) — ei”(czx +c1)
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9.9 problem 5(b)

Internal problem ID [5990)]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 83

Problem number: 5(b).

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

y//// _ k4y — 0

With initial conditions
[y(0) =0,4'(0) =0,y(1) = 0,%'(1) = 0]

v/ Solution by Maple
Time used: 0.094 (sec). Leaf size: 5

Ldsolve([diff(y(x),x$4)—k"4*y(x)=0,y(0) =0, D(y)(0) =0, y(1) = 0, D(y (1) = ﬂD],y(x), singsc

y(z) =0
v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 6

-

LDSolve [{y''''[x]-k"4*y[x]==0,{y[0]==0,y[1]==0,y' [0]==0,y"' [1]1==0}},y[x],x, Incl}.ldeSingularSolu

y(z) =0
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10 Chapter 2. Linear equations with constant

coefficients. Page 89

10.1 problem 1(a)
10.2 problem 1(b)
10.3 problem 1(c)
10.4 problem 1(d)
10.5 problem 1(e)
10.6 problem 1(f)
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10.1 problem 1(a)

Internal problem ID [5991]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 89

Problem number: 1(a).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

/1,

y' —y=z

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 38

Ldsolve(diff(y(x),x$3)—y(x)=x,y(x), singsol=all)

y(z) = —x 4+ e"cy + coe” 2 cos (%) + cge” 2 sin (%)

v Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 57

LDSolve [y''' [x]-y[x]==x,y[x],x,IncludeSingularSolutions -> Truel

3
y(r) > —z+cie” + cae™%? cos (%) + c3e %% sin (

V3z
2
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10.2 problem 1(b)

Internal problem ID [5992]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 89

Problem number: 1(b).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

y/// _ 8y — eiw

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 44

-

Ldsolve(diff(y(x),x$3)-8*y(x)=exp(I*x),y(x), singsol=all)

| —

8 ] .
y(x) = (_& + é) e +e*c; + cpe™ cos <\/§ z) + c3e ¥ sin (\/5 x)

v/ Solution by Mathematica
Time used: 0.472 (sec). Leaf size: 59

LDSolve [y''' [x]-8*y[x]==Exp[I*x],y[x],x,IncludeSingularSolutions -> True]

y(x) — %e‘w (—(8 —1)e(F9% 1 65¢,€%® 4 65¢, cos (\/ga:) + 65¢3 sin (\/§x)>
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10.3 problem 1(c)

Internal problem ID [5993]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 89

Problem number: 1(c).

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

y"" + 16y = cos (z)

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 85

e

tdsolve(diff(y(x),x$4)+16*y(x)=cos(x),y(x), singsol=all)

~—

=— cos (z) c16V2% cos T
W) =51 2vR) (-5 12ve) @ (v22)

V2o gin (\/ﬁ :c) + c;),e_\/iz cos (\/5 a:) + c4e_‘/§”” sin <\/§ x)

+ coe

v/ Solution by Mathematica
Time used: 0.762 (sec). Leaf size: 74

-

DSolvely'''' [x]+16*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

N\

y(x) — M + e V2 ((6162\/% + cz> COS (ﬁx) + (0462\630 + 03> sin (\@33))
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10.4 problem 1(d)

Internal problem ID [5994]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 89

Problem number: 1(d).

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

yl/ll _ 4ylll + 6yl/ _ 4yl + y — e(B

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

Ldsolve (diff (y(x) ,x$4)-4*diff (y(x) ,x$3)+6*diff (y(x) ,x$2)-4*diff (y(x),x)+y(x) =ejtp (x),y(x), sir

ezt

s T e”c1 + ez + cze®x’ + cqe”ad

y(z) =

v/ Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 39

‘ DSolvely'''' [x]-4xy''' [x]+6x*y'"' [x]-4*y' [x]+y[x]==Exp[x],y[x] ,x,IncludeSingula#Solutions => T

1
y(z) — ﬂew (364 + 24c4a® + 24c37® 4 24c0x + 2401)
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10.5 problem 1(e)

Internal problem ID [5995]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 89

Problem number: 1(e).

ODE order: 4.

ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

"

y" —y = cos(z)

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 32

e

tdsolve(diff(y(x),x$4)—y(x)=cos(x),y(x), singsol=all)

~—

y(z) = _cos4(x) _om Ef) %+ cos (x) c1 + €°co + c3sin (x) + cae™

T

v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 40

LDSolve [y''''[x]-y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

- 1 z :
y(x) = c1e” + cze™* + (—5 + 02) cos(z) + <_Z + 04) sin(z)
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10.6 problem 1(f)

Internal problem ID [5996]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 89

Problem number: 1(f).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y// _ 2iy' —y= eiz _ 2€—ix

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 44

{dsolve(diff(y(x),x$2)-2*I*diff(y(x),x)-y(x)=exp(I*x)-2*exp(-I*x),y(x), sings§#=all)

(2 + 2iz + 2) cos (z) =~ x(iz — 2)sin (z)
2 + 2

y(T) = 26 + ey +

v/ Solution by Mathematica
Time used: 0.177 (sec). Leaf size: 39

-

LDSolve [y'' [x]-2%Ixy' [x]-y[x]==Exp[I*x]-2*Exp[-I*x],y[x],x, IncludeSingularSolu}ions -> True]

y(x) — %e"“’ (14 €**(z® + 2c2z + 2c1) )
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11.1 problem 1(a)

Internal problem ID [5997]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

Y + 4y = cos (x)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

e

tdsolve(diff(y(x),x$2)+4*y(x)=cos(x),y(x), singsol=all)

~—

cos ()
3

y(x) = sin (2z) co + cos (2z) ¢ +

v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 26

LDSolve [y'' [x]+4*xy[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

cos(x)

y(x) — + ¢1 cos(2z) + ¢ sin(2z)
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11.2 problem 1(b)

Internal problem ID [5998]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" + 4y = sin (2z)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

e

tdsolve(diff(y(x),x$2)+4*y(x)=sin(2*x),y(x), singsol=all)

~—

z cos (2x)

y(x) = sin (2z) ¢y + cos (2x) ¢; — 1

v/ Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 33

LDSolve [y'' [x]+4*y[x]==8in[2*x],y[x],x,IncludeSingularSolutions -> Truel

y(z) — (—z + cl) cos(2x) + %(1 + 16¢2) sin(z) cos(x)
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11.3 problem 1(c)

Internal problem ID [5999]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

yll_4y:3e2x+4e—x

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

-

Ldsolve(diff(y(x),x$2)—4*y(x)=3*exp(2*x)+4*exp(—x),y(x), singsol=all)

~—

3(—=14+4x)e?® 4e°
y(x):e2x02+e—2xcl+ ( "'1_6'7")6 _ 63

v/ Solution by Mathematica
Time used: 0.345 (sec). Leaf size: 86

‘ DSolvely'' [x]-4*y[x]==3*exp[2*x]+4*Exp[-x],y[x],x,IncludeSingularSolutions -> ‘ Truel

y(z) = 2% (e4z/ }16—3K[1] (3eK[1] exp(2K|[1]) + 4) dK[1] _|_/
1 1

1
—ZeK[z] (3™ exp(2K[2]) + 4) dK[2] + c1e*® + 02)
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11.4 problem 1(d)

Internal problem ID [6000]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y' — 1y — 2y = x? + cos (x)

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

Ldsolve(diff (7 (x),x$2) -diff (y(x) ,x)-2%y (x)=x"2+cos (x) ,y(x), singsol=all) J

2 .
s —», ®* 3cos(z) sin(z) =
ylz) = eFert e -5 10 0 2

v/ Solution by Mathematica
Time used: 0.142 (sec). Leaf size: 44

LDSolve [y'' [x]-y' [x]-2*y[x]==x"2+Cos[x],y[x] ,x,IncludeSingularSolutions -> Truel

1
y(x) — 20 (—=10z* 4 10z — 2sin(z) — 6 cos(z) — 15) + cre™™ + coe*”

103



11.5 problem 1(e)

Internal problem ID [6001]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(e).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y// + gy — 113263’76

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

-

Ldsolve (diff (y(x),x$2)+9*y(x)=x"2*exp(3*x),y(x), singsol=all)

~—

(3 —1)% e

y(x) = sin (3z) ca + cos (3z) ¢; + o

v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 36

LDSolve [y'' [x]+9*y[x]==x"2xExp[3*x] ,y[x] ,x,IncludeSingularSolutions -> True] J

1
y(z) = 16—263””(1 — 32)% + ¢; cos(3z) + ¢y sin(3z)
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11.6 problem 1(f)

Internal problem ID [6002]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(f).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

Yy +y = ze cos (2z)

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 37

e

tdsolve(diff(y(x),x$2)+y(x)=x*exp(x)*cos(2*x),y(x), singsol=all)

~—

(=5z + 11) € cos (22) N e”(z — 1) sin (2z)
90 )

y(x) = sin () ¢y + cos (x) ¢ +

v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 45

-

.
DSolvely'' [x]+y[x]==x*Exp[x]*Cos[2*x],y[x],x,IncludeSingularSolutions -> Truel]

N J

y(z) — —%e””@(l — 5z) sin(2z) + (5 — 11) cos(2x)) + ¢; cos(x) + ¢z sin(z)
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11.7 problem 1(g)

Internal problem ID [6003]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(g).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

y" + iy + 2y = 2cosh (2z) + e **

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

Ldsolve(diff(y(x),x$2)+I*diff(y(x),x)+2*y(x)=2*cosh(2*x)+exp(-2*x),y(x), singsol=all)

- ; 3 i 3 i
_ iz —2ix - v —2z & 2z
y(@) = ee e e + (10+ 10)e + (20 20)e
v/ Solution by Mathematica
Time used: 0.157 (sec). Leaf size: 48

‘ DSolvely'' [x]+I*y' [x]+2*y[x]==2%Cosh[2*x]+Exp[-2*x],y[x],x, IncludeSingularSol#tions -> Truel

1 . .
y(z) — %6_%((3 — i) + (6 + 20)) + cr1e” " + €™
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11.8 problem 1(h)

Internal problem ID [6004]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(h).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _quadrature]]

y" = 2% + e “sin (2)

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 36

Ldsolve (diff (y(x),x$3)=x"2+exp(-x)*sin(x),y(x), singsol=all) J
5 ¢’ cos(z)e™® sin(z)e®
y(x)—@+ 5~ 1 1 + xco + 3

v/ Solution by Mathematica
Time used: 0.114 (sec). Leaf size: 47

LDSolve [y''' [x]==x"2+Exp[-x]*Sin[x],y[x],x,IncludeSingularSolutions -> True] J

5

x 1 .. 1 _,
y(z) = et sz’ + 1€ sin(z) — 1€ cos(z) + ez + ¢
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11.9 problem 1(i)

Internal problem ID [6005]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 2. Linear equations with constant coefficients. Page 93

Problem number: 1(i).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

y/// + 3y// 4 33/, + y = e—mx2

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 36

e N

Ldsolve (diff (y(x) ,x$3)+3*diff (y(x),x$2)+3*diff (y(x) ,x)+y(x)=x"2%exp(-x),y(x), jsingsol=a11)

5e—z

a0 + e %¢; + coe % + cge %

y(z) =

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 34

‘ DSolvely''' [x]+3*y'' [x]+3*y' [x]+y[x]==x"2xExp[-x],y[x] ,x,IncludeSingularSolutﬁons -> Truel

1
y(z) = @e_x (m5 + 60c3z? + 60co + 60c1)
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12.1 problem 1(c.1)

Internal problem ID [6006]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 108

Problem number: 1(c.1).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

/
¥ v
T T

=0

With initial conditions

[y(1) = 1,4/(1) = 0]

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

e

Ldsolve([diff (y(x),x$2)+1/x*diff (y(x),x)-1/x"2*y(x)=0,y(1) = 1, D(y) (1) = 0] ,y}x) , singsol=al

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 17

LDSolve [{y'' [x]+1/x*y' [x]-1/x"2*y[x]==0,{y[1]==1,y' [1]==0}},y[x],x, IncludeSingj.\larSolutions -

( )_>:c2+1
T
y 2x
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12.2 problem 1(c.2)

Internal problem ID [6007]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 108

Problem number: 1(c.2).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

/
¥ v
T T

=0

With initial conditions

[y(1) = 0,4/(1) = 1]

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 13

e

Ldsolve([diff (y(x),x$2)+1/x*diff (y(x),x)-1/x"2*y(x)=0,y(1) = 0, D(y) (1) = 1] ,y}x) , singsol=al

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 17

LDSolve [{y'' [x]+1/x*y' [x]-1/x"2*y[x]==0,{y[1]==0,y' [1]==1}},y[x] ,x,IncludeSingj.\larSolutions -
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12.3 problem 2

Internal problem ID [6008]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 108

Problem number: 2.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

Bz -1y +(9z—3)y — 9 =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

‘dsolve((3*x—1)”2*diff(y(x),x$2)+(9*x-3)*diff(y(x),x)—9*y(x)=0,y(x), singsol=a11)

y(z) = c_ll—l-(x—%)Q

T —3

v/ Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 39

‘ DSolve [(3*x-1) ~2*y'' [x]+(9*x-3)*y' [x]-9*y[x]==0,y[x],x, IncludeSingularSolutio#s -> True]

c1(—92% + 6z — 2) — 3icoz(3z — 2)
6 — 2

y(z) —
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13.1 problem 1(a)
Internal problem ID [6009]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 1(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

2y — Ty'z 4+ 15y =0

Given that one solution of the ode is

Il
8

n

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 15

( N
Ldsolve( [x~2*diff (y(x),x$2) -T*x*diff (y(x),x)+15%y(x)=0,x"3],y(x), singsol=a11)J

y(z) = cox® + 128

v/ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 18

‘ DSolve [x~2xy' ' [x]-7T*x*y' [x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> Trué]

y(z) = 7 (c22® + 1)
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13.2 problem 1(b)
Internal problem ID [6010)]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 1(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

x2y//_y/x+y:0

Given that one solution of the ode is

I
8

n

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

-

Ldsolve( [x~2xdiff (y(x) ,x$2) -x*diff (y(x) ,x)+y(x)=0,x],y(x), singsol=all)

-/

y(x) = 1z + oz In (z)

v/ Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 15

e

kDSolve [x~2*xy'' [x]-x*y' [x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

~—

y(z) = z(c2log(z) + 1)
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13.3 problem 1(c)
Internal problem ID [6011]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 1(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y' —4y'z+ (42 - 2)y =0

Given that one solution of the ode is

Il
®

n

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

‘dsolve([diff(y(x),x$2)—4*x*diff(y(x),x)+(4*x‘2—2)*y(x)=0,exp(x‘2)],y(x), sing#ol=a11)

y(z) = c16” + cpze”
v/ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 18

-

N
LDSolve [y'' [x]-4*xxy' [x]+(4*x"2-2)*y[x]==0,y[x] ,x,IncludeSingularSolutions -> jl'rue]

y(z) = €% (caz + ¢1)
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13.4 problem 1(d)
Internal problem ID [6012]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 1(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [_Laguerre]

zy' —y'(1+2)+y=0

Given that one solution of the ode is

|
@

n

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

Ldsolve( [x*diff (y(x),x$2)-(x+1)*diff (y(x),x)+y(x)=0,exp(x)],y(x), singsol=a11)J

y(x) =ci(x + 1) + €%cy
v/ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 19

LDSolve [x*xy' ' [x]-(x+1)*y' [x]+y[x]==0,y[x],x,IncludeSingularSolutions -> Truel J

y(x) = c1e” — ca(x + 1)
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13.5 problem 1(e)
Internal problem ID [6013]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 1(e).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

(—2z?+1)y" — 2z +2y =0

Given that one solution of the ode is

I
8

n

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 26

‘dsolve([(1—x‘2)*diff(y(x),x$2)—2*x*diff(y(x),x)+2*y(x)=0,x],y(x), singsol=a11?

In(z—1)z kn(z+1)z
1
2 2 +

y(x) = c1x + ¢y ( -

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 33

kDSolve [(1-x"2) *y' ' [x] -2*x*y' [x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> jl‘rue]

y(z) =z — %cz(a: log(1 — z) — zlog(z + 1) + 2)
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13.6 problem 1(f)
Internal problem ID [6014]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 1(f).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y' —2y'r+2y=0

Given that one solution of the ode is

h=2x
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
Ldsolve( [diff (y(x),x$2)-2*xx*diff (y(x),x)+2*y(x)=0,x],y(x), singsol=all) J

y(z) =z +c <\/7_r erfi(z) z — e’”2>

v Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 43

e

kDSolve [y'' [x]-2*%x*y' [x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(z) — —\/7_TC2\/ﬁerﬁ<\/ﬁ> + c2€” + 2017
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13.7 problem 2

Internal problem ID [6015]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 121

Problem number: 2.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

x3y/// _ 3$2y” + 6y'ac _ 6y — 0

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

[dsolve ([x~3*diff (y(x) ,x$3) -3*x"2xdiff (y(x) ,x$2) +6*x*diff (y(x) ,x)-6*y(x)=0,x] ,}r (x), singsol=a

y(z) = cox® + c12? + sz

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 19

‘ DSolve [x~3xy''' [x]-3*x"2*y'' [x]+6*x*y' [x]-6*y[x]==0,y[x],x, IncludeSingularSol#.ltions -> True]

y(z) = z(z(csz + c2) + 1)
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14 Chapter 3. Linear equations with variable

coefficients. Page 124

14.1 problem 1
14.2 problem 2
14.3 problem 3
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14.1 problem 1

Internal problem ID [6016]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 124

Problem number: 1.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

22y —2=0

Given that one solution of the ode is

Nh==e
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
Ldsolve( [x~2*diff (y(x),x$2)-2xy(x)=0,x"2],y(x), singsol=all) J

_ .2, %
y(z) = 1z +x

v/ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 18

‘ DSolve [x~2xy' ' [x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> Truel
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14.2 problem 2

Internal problem ID [6017]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 124

Problem number: 2.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

x2y//_y/x+y:0

Given that one solution of the ode is

I
8

n

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

-

Ldsolve( [x~2xdiff (y(x) ,x$2) -x*diff (y(x) ,x)+y(x)=0,x],y(x), singsol=all)

-/

y(x) = 1z + oz In (z)

v/ Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 15

e

kDSolve [x~2*xy'' [x]-x*y' [x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

~—

y(z) = z(c2log(z) + 1)
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14.3 problem 3

Internal problem ID [6018]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 124

Problem number: 3.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

oy +4y'z+y(z® +2) =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve (x72+diff (y(x) ,x$2) +4*xx*diff (y(x) ,x)+(2+x"2) *y(x)=0,y(x), singsol=all) J

¢ sin (z) 4 cacos (x)

y(x) = 2 2

v/ Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 37

LDSolve [x~2%y' ' [x]+4*xxy' [x]+(2+x72) *y [x]==0,y[x] ,x,IncludeSingularSolutions —f Truel

2c1e” — jcqe™
z) —
y(z) 57
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15 Chapter 3. Linear equations with variable

coefficients. Page 130
15.1 problem 1(a) . . . . . . . . .

15.2 problem 1
15.3 problem 1
15.4 problem 1
15.5 problem 1
15.6 problem 2
15.7 problem 3
15.8 problem 4
15.9 problem 5
15.10problem 6
15.11problem 7
15.12problem 8

(
(
(
(

D) e e
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15.1 problem 1(a)

Internal problem ID [6019]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover.

1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 1(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [ _Hermite]

y//_y/w_i_y:()

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

NY

p
‘0rder:=6;
Ldsolve(diff(y(x),x$2)—x*diff(y(x),x)+y(x)=0,y(x),type='series',X=O);

y(z) = (1 = %xz = 2—14x4) y(0) + D(y) (0) z + O(z°)

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 27

LAsymptoticDSolveValue [y'' [x]-x*y' [x]+y[x]==0,y[x],{x,0,5}]

4 2

(x) — ¢ 2T b)) e
) 1\ 79147 9 2
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15.2 problem 1(b)

Internal problem ID [6020]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 1(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y' +32%y —yz =0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

‘0rder:=6; ‘
Ldsolve(diff(y(x),x$2)+3*x‘2*diff(y(x),x)—x*y(x)=0,y(x),type='series',x=0); J

3

v = (145 ) w0+ (2~ go*) D) © + O

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28

LAsymptoticDSolveValue [y'' [x]+3*x~2*y' [x]-x*y[x]==0,y[x],{x,0,5}] J

y(:c)—>02(x—%4> +cl(%3+1>
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15.3 problem 1(c)

Internal problem ID [6021]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 1(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

y”—yw2 =0

With the expansion point for the power series method at x = 0.
v Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

p
‘0rder:=6;
‘dsolve(diff(y(x),x$2)—x‘2*y(x)=0,y(x),type='series',x=0);

y(z) = (1 + f—;) y(0) + (x + %xf’) D(y) (0) + O(=°)

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28

-

LAsymptoticDSolveValue [y'' [x]-x"2*y[x]==0,y[x],{x,0,5}]

| —

x° z*
y(x) —)Cg<%+$) +Cl(ﬁ +1)
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15.4 problem 1(d)

Internal problem ID [6022]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 1(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y// +y/$3 -|-in72 =0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

‘0rder:=6; ‘
Ldsolve(diff(y(x),x$2)+x‘3*diff(y(x),x)+x‘2*y(x)=0,y(x),type='series',x=0); J

@) = (1-5 ) 50+ (5 - 152°) D) 0) +0(="

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28

LAsymptoticDSolveValue [y'' [x]+x~3*y' [x]+x~2*y[x]==0,y[x],{x,0,5}] J

z° zt
y(x) —>cz(x— E) —l—cl(l— E)
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15.5 problem 1(e)

Internal problem ID [6023]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 1(e).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y' +y=0

With the expansion point for the power series method at x = 0.
v Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

‘0rder:=6;
'dsolve(diff (y(x),x$2)+y(x)=0,y(x) ,type="'series',x=0);

y(z) = (1 - %x2 + iﬁ) y(0) + (:c ey —x5) D(y) (0) + O(c*)

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42

e

kAsymptoticDSolveValue [y'' [x]+y[x]==0,y[x],{x,0,5}]

~—

2z zt x?
y(l‘)—)CQ(l—ZO—E'i‘IE) +cl(ﬂ_5+1)
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15.6 problem 2

Internal problem ID [6024]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 2.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

y' +(z -1y —(z—-1)y=0

With initial conditions
[y(1) =1,4/(1) = 0]
With the expansion point for the power series method at x = 1.

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

(Order:=6; W
|dsolve([diff (y(x),x$2)+(x-1)"2+diff (y(x),x)-(x-1)*y(x)=0,y(1) = 1, D(y) (1) = 0],y(x),type="s

v Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 14

LAsymptoticDSolveValue {y'' [x]+(x-1) "2y [x]-(x-1)*y[x]==0,{y[1]==1,y' [1] ==0}}J,y[x] »{x,1,5}]

y(x) — é(x —-1)3+1
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15.7 problem 3

Internal problem ID [6025]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 3.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

(2 +1)y"+y=0

With initial conditions
[y(0) = 0,y'(0) = 1]
With the expansion point for the power series method at x = 0.

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

‘0rder:=6; ‘
dsolve ([(1+x72) *diff (y(x) ,x$2)+y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='serie#',x=0);

N J

1 7
y(z) =1 — éx3 + 1—20x5 + O (z°

v Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

‘ AsymptoticDSolveValue [{(1+x~2)*y'' [x]+y[x]==0,{y[0]==0,y"' [0]==1}},y[x],{x,0, 5}]
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15.8 problem 4

Internal problem ID [6026]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 4.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

yll+e£l:y:O

With initial conditions
[y(0) = 1,4'(0) = 0]

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

‘0rder:=6; ‘
dsolve([diff (y(x),x$2)+exp(x)*y(x)=0,y(0) = 1, D(y) (0) = 0],y(x),type='series

N\ J

',x=0);

L1 15 15 6
y(z) =1 5% ~ 6% 0% + O (z°)

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56

r

LAsymptoticDSolveValue [{y'' [x]+Exp[x]*y[x]==0,{}},y[x],{x,0,5}]

| —
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15.9 problem 5

Internal problem ID [6027]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 5.

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

ylll_xy:()

With initial conditions

[y(0) = 1,4/(0) = 0,4"(0) = 0]

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 14

Ldsolve([diff(y(x),x$3)—x*y(x)=0,y(0) =1, D(y)(0) = 0, (De@2) (y)(0) = O],y(x)J, singsol=all)

y(z) = hypergeom ([] ) E ﬂ ’z_i)

v/ Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 21

LDSolve [{y''' [x]-x*xy[x]==0,{y[0]==1,y' [0]==0,y"' ' [0]==0}},y[x],x,IncludeSingularSolutions -> 1T

N
(=2}

3 z*
Bl .
y(.’l)) ? 0 2() 74a 4>
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15.10 problem 6

Internal problem ID [6028]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 6.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

(-2 +1)y" —2y'z+a(a+1)y=0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 101

‘0rder:=6; ‘
- ‘2)*diff(y(x),x$2)—2*x*diff(y(x),x)+a1pha*(alpha+1)*y(x)=0,y(x),ty#e='series',x=0

y(z) = (1_ a(a—;l)gg2 N a(a3+2a22; S5a — 6) )y(O)

(@ +a—2)z* (a*+2a®—13a? — 14a + 24) 2°
\r 6 " 120

)D@Mm+ou%

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 127

LAsymptoticDSolveValue [(1-x"2)*y' ' [x]-2*x*y' [x]+\ [Alpha]*(\ [Alpha]+1)*y [x]==0 ,}r [x],{x,0,5}]

1 5 1 9 1 5 zd

) = ¢ @ —a? —a T —m(—a —a) (a —I-a)x —1—O(a —|—a)x +€
E
6

- (a —I—a)z +— 3 —I—x) +cl(214(a2+a)2x4——(a2—|—oz) x4—%(a2+a) w2+1)
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15.11 problem 7

Internal problem ID [6029]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 7.

ODE order: 2.

ODE degree: 1.

(4

CAS Maple gives this as type [_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)] ‘]

(_x2+1) y"—y’x+a2y= 0

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

Ldsolve ((1-x"2)*diff (y(x) ,x$2) -x*diff (y(x),x)+alpha~2*y(x)=0,y(x), singsol=a11})

y(z) = cl<x+m>_a+02(x+m>a

v/ Solution by Mathematica
Time used: 0.089 (sec). Leaf size: 91

LDSolve [(1-x~2)*y' ' [x]-x*y' [x]+\ [Alpha] ~2*y [x]==0,y[x] ,x, IncludeSingularSolutiﬂons -> Truel

(b (1 27) v )

o 1 x T
— icg sinh <§a(log (1 - ﬁ) - log (ﬁ + 1)))

136



15.12 problem 8

Internal problem ID [6030]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 3. Linear equations with variable coefficients. Page 130

Problem number: 8.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

' —2y'r+ 20y =0

v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 31

Ldsolve(diff (y(x),x$2) -2*x*diff (y(x) ,x)+2*alphaxy(x)=0,y(x), singsol=all) J

— 1 « 3 2 1 (6 3 2
y(z) = c;x KummerM (5 — 51507 > + ¢z KummerU (5 — 51T )

v Solution by Mathematica
Time used: 0.062 (sec). Leaf size: 91

LDSolve [(1-x"2)*y' ' [x] -x*y' [x]+\ [Alpha] ~2*y[x]==0,y[x],x, IncludeSingularSolutiﬁons -> True]

y(z) = ¢ cosh (%a(log (1 = \/%) — log % + 1)))

o 1 z T
— icg sinh (ia(log (]. - ﬁ) - log (ﬁ + 1)))
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16 Chapter 4. Linear equations with Regular
Singular Points. Page 149

16.1 problem 1(a) . . . . . . . . 139
16.2 problem 1(b) . . . . . . . ... 1401
16.3 problem 1(c) . . . . . . . ... 141]
16.4 problem 1(d) . . .. . .. . . .. 142
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16.6 problem 2(a) . . . . . . ... 144
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16.9 problem 2(d) . . . . . . . ... 147
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16.1 problem 1(a)
Internal problem ID [6031]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 1(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[O,}

z2y" +2y'z — 6y =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

-

Ldsolve(x‘2*diff(y(x),x$2)+2*x*diff(y(x),x)—6*y(x)=0,y(x), singsol=all)

~—

C:
y(@) = c1z® + x—?,,

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18

‘ DSolve [x~2*y'' [x]+2*x*y' [x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> Truel]
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16.2 problem 1(b)

Internal problem ID [6032]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 1(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

22%y" +y'r —y =0

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 13

Ldsolve(Q*x‘Z*diff (y(x) ,x$2) +x*diff (y(x) ,x)-y(x)=0,y(x), singsol=all) J

c
y(z) = —= + 2z

\/E
v Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18

e

LDSolve [2#x~2*y' ' [x]+x*y' [x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(z) — “a + cox
x

7
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16.3 problem 1(c)

Internal problem ID [6033]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 1(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[O,}

22y +y'z —4y=0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

-

Ldsolve(x‘2*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=0,y(x), singsol=all)

~—

C:
y(@) = c1z® + x—i

v/ Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 18

‘ DSolve [x~2*y'' [x]+x*y' [x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
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16.4 problem 1(d)

Internal problem ID [6034]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 1(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

x2y// _ 5:1/,.73 + gy — 332

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 20

-

Ldsolve(x‘2*diff(y(x),x$2)—5*x*diff(y(x),x)+9*y(x)=x‘2,y(x), singsol=all)

~—

y(z) = co2® + 23 In (2) ¢; + 22
v/ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 22

‘ DSolve [x~2xy' ' [x]-b*x*y' [x]+9*y[x]==x"2,y[x],x,IncludeSingularSolutions -> Tr#e]

y(z) = 2*(c17 + 3cpz log(z) + 1)
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16.5 problem 1(e)

Internal problem ID [6035]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 1(e).

ODE order: 3.

ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _linear, _homogeneous]]

x3y/// 4 2$2y” _ yIQJ +y — 0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

-

Ldsolve(x‘S*diff(y(x),x$3)+2*x‘2*diff(y(x),x$2)—x*diff(y(x),x)+y(x)=0,y(x), s%%gsol=all)

c
y(z) = ;1 + zcy + c3xIn ()

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 22

‘DSolve [x~3xy' ' ' [x]+2*x" 2%y "' ' [x]-x*y' [x]+y[x]==0,y[x] ,x,IncludeSingularSolutio#s -> True]

y(z) — “ag cox + csz log(z)
T
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16.6 problem 2(a)

Internal problem ID [6036]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 2(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

2y +yr+4y=1

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

Ldsolve(x‘2*diff(y(x),x$2)+x*diff(y(x),x)+4*y(x)=1,y(x), singsol=all)

y(x) =sin (2In (z)) 2 + cos (21In (z)) ¢; + }l

v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 25

~—

-

N\

DSolve [x~2*y'' [x]+x*y' [x]+4*y[x]==1,y[x],x,IncludeSingularSolutions -> True]

J

y(z) — c1 cos(2log(z)) + cosin(2log(x)) + i

144



16.7 problem 2(b)

Internal problem ID [6037]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 2(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

2y —3y'z +5y =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

Ldsolve(x’?*diff (y(x),x$2) -3*x*diff (y(x) ,x) +5%y(x)=0,y(x), singsol=all) J

y(z) = ¢;sin (In (z)) 2° + ¢ cos (In (z)) 2

v/ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 22

‘ DSolve [x~2*y'' [x]-3*x*y' [x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> Truel]

y(z) — z*(cy cos(log(z)) + c; sin(log(z)))
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16.8 problem 2(c)

Internal problem ID [6038]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 2(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

oy + (=2 — i) zy + 3iy =0

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 16

Ldsolve (x~2xdiff (y(x) ,x$2) - (2+I) *x*diff (y(x) ,x)+3*I*y(x)=0,y(x), singsol=all) J

y(z) = c17° + cox’

v/ Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 20

LDSolve [x~2*y' ' [x]-(2+I)*x*y"' [x]+3*I*y[x]==0,y[x],x,IncludeSingularSolutions -f True]

y(z) = a2’ + cp’
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16.9 problem 2(d)

Internal problem ID [6039]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 149

Problem number: 2(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

o2y +yr—dny ==

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

-

Ldsolve(x‘2*diff(y(x),x$2)+x*diff(y(x),x)-4*Pi*y(x)=x,y(x), singsol=all)

~—

T
4 —1

y(x) = Ve, 4+ g2VTe, —

v/ Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 39

LDSolve [x~2xy' ' [x]+x*y' [x]-4*Pix*y[x]==x,y[x],x,IncludeSingularSolutions -> Truel]

T
1—4r

y(z) — eV + VT 4+
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17.1 problem 1(a)

Internal problem ID [6040)]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number: 1(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

x2y"+(:v2+z)y’—y=0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 53

‘0rder:=8; ‘
dsolve(x‘2*diff(y(x),x$2)+(x+x‘2)*diff(y(x),x)—y(x)=0,y(x),type='series',x=0)#

J

N

11 1 1 1 1 1
— 1—Z= 2~ .3 I 5 6 7 8
y(@) clx( 3T 1% “60” t360° ~zm20° T a0160°  181aa0” TO >)

c2(—2+ 2z —2? + 323 — ot + o — s + 552" + 0 (28))

x
v/ Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 92
LAsymptoticDSolveValue [x~2xy' ' [x]+(x+x"2) *y' [x]-y [x]==0,y[x],{x,0,7}] J
()_) .’L'_5_.’L'_4+.’E_3_.’E_2+E+1_1
Ve \720 120 7247 6 T2 ' 2

5 4 3 2

T (L S N U
2\ 20160 2520 ' 360 60 ' 12 3
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17.2 problem 1(b)

Internal problem ID [6041]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

32%y" + 92 + 2yr =0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 70

‘0rder:=8; ‘
Ldsolve(S*x‘Q*diff(y(x),x$2)+x‘6*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',Xf?);

() =ciz|1—  ovlep  Loysy 1 g 7L 5 220991
wer=a 37T 27" T 486" T 14580° T 6561007 ' 41334300
2522341 . 2 2, 2., 1,
__9eeoRs 1 Ltz 2 il
sama0s1200° T O @ )) + 02(11(‘”) ( 37T 9% """

1, T291 225901 . 1, 14,
_ _ 0 1— = Bkl
21870° + osaiso” ~ ga0010” TO () )+ 37 T 953”
35 , 101 . 69199 , 19882543 . .
_ I _2IO0A97ES 0O
s7as” T ea6100° T 14m62250° T m3aoto1z00° TO (@)
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v/ Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 121

LAsymptoticDSolveValue[3*x‘2*y"[x]+x“6*y'[x]+2*x*y[x]== »y[x1,{x,0,7}] J

2(72912° — 452* + 13502 — 2430022 + 218700z — 656100) log(z)
y(z) =

984150
n —8033225 + 589525 — 158625x* + 2430000z — 1640250022 + 19683000z + 29524500)
29524500
c2<225991x7 B 729128 N x° B :c_4 N x_3 B x_2 +x)
41334300 656100 14580 486 27 3
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17.3 problem 1(c)

Internal problem ID [6042]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

nylI _ 53/, + 3y$2 =0

With the expansion point for the power series method at x = 0.

X Solution by Maple

‘Order:=8; ‘
‘dsolve(x“2*diff(y(x),x$2)-5*diff(y(x),x)+3*x”2*y(x)=0,y(x),type='series',x=0)#

No solution found
v/ Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 106

-

LAsymptoticDSolveValue [x~2*y' ' [x]-5*y' [x]+3*x~2*xy[x]==0,y[x],{x,0,7}] J

(o) o o (33027, 9920 182° 3at ot
Y '\ 8750 " 1250 ' 625 ' 50 5

_5/z ( 3020837 524325 357x° 113z* 492% 622 2z ) 9
+c — — T

218750 + 6250 625 + 250 125 + 25 5
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17.4 problem 1(d)

Internal problem ID [6043]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

v’z +4y =0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 70

(0rder:=8;
Ldsolve(x*diff(y(x),x$2)+4*y(x)=0,y(x),type='series',x=0); J
4 4 4 8 16 8
— 1—9 T2 _*3, % 4 _ % 5 6 7 8
v Clx( T T T Terst Tt T 099%5° +O(x)>

16 16 16 32 64
1 _4 o 10 5 10 , 16 5 32 4 02 7 8
+02(n(x) (( )z +8z gL G T et~ e +0 (z°)
112 140 808 1792 9056
1—12 2 3 4 5 6 7 8
+( T g8 = ot T = el o O (z°)
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v/ Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 119

LAsymptoticDSolveValue [x*y' ' [x]+4*y[x]==0,y[x],{x,0,7}]

4
y(z) = ¢ (—w(st — 60z* 4 300z° — 900z” + 1350z — 675) log(z)

675
—227225 + 1572025 — 70500z* + 180000z — 20250022 + 40500z + 10125
+ 10125 )
02(16m7_% 4_365—4—%4-#@—2%““%)
14175 675 ' 45 9 ' 3

154



17.5 problem 1(e)

Internal problem ID [6044]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(e).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

(—2z?+1)y" — 2z +2y =0

With the expansion point for the power series method at x = 1.
v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 49

‘Order:=8; ‘
dsolve((l—x‘Q)*diff(y(x),x$2)—2*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=#);

N J

y(z) = (—g(x—l) a1 1) =) o (@1 (1)

+ﬁ(a5—1)7+0 ((x—1)8)> e+ (1+(z-1)+0 ((—1)%)) (In(z—1) cs+¢1)
v Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 86

s

LAsymptoticDSolveValue [(1-x"2)*y' ' [x]-2%x*y' [x]+2*y [x]==0,y[x],{x,1,7}]

A >

1 . T@—1° 3 . 5 , 1 \
y(x)_)clx”?(m(x 1) 1920 Ta0@ V'~ @ -+ 5z —1)

3 0 1—2x
_§(x_1) —2(9:—1)+T—|—x10g($_1))
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17.6 problem 1(f)

Internal problem ID [6045]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(f).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

(B +2-2)"y" +3(c+2)y + (- 1)y=0

With the expansion point for the power series method at x = —2.
v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 57

‘Order:=8; ‘
Ldsolve((x“2+x-2)“2*diff(y(x),x$2)+3*(x+2)*diff(y(x),x)+(x-1)*y(x)=0,y(x),type%'series',x=-2)

y(z)
2 3 4 5 ‘
‘ (1 - g(w +2)+ %(w +2)"+ 43;110 (z+2)" + 1215095711720 (z+2)" + 62522?241100 (z+2)°+ 94%2?2213380 (z +
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v/ Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 148

kAsymptoticDSolveValue [(x~2+x-2) "2*y' ' [x]+3* (x+2) *y' [x]+(x-1)*y[x]==0,y[x], {X,j'Q »7}]

_ 52991201(z +2)7 5797423z +2)°  709507(z +2)°
11727918720000 290405606400 8066822400

y(z) = c1(z + 2) (

11093 2)4 2)3 11 2)2 1
B (z+2)* 53(x+2)° 1l(z+2) PRE NP A
28304640 29484 1260 21
899971067(z+2)7 |, 16965493(z+2)8 |, 778801(x+2)° |, 10517(x+2)* | 271(x+2)3 23 5(x+2)
2(458981357990400 + 042818849280 + 6235574400 + 12597120 + 43740 + ﬁ(x + 2)2 ~ T 9 + 1)
vr+2
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17.7 problem 1(g)

Internal problem ID [6046]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 1(g).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

x%y" + y'sin (z) + cos (z)y =0

With the expansion point for the power series method at x = 0.
v Solution by Maple
Time used: 0.14 (sec). Leaf size: 53

e

A

Order:=8;

‘dsolve(x‘Z*diff(y(x),x$2)+sin(x)*diff(y(x),x)+cos(x)*y(x)=0,y(x),type='series',x=0);

(r) =ciz™"( 1+ i+i z° + 29 + o7 z*
v =a 12 24 98300 " 28800
803 17\ . ) 1 0\
+( 14515200 4%mm)x+o@ﬁ)+@xo+<m 2Qx

P2 8T N (8B 1T e
28300 28300 14515200 ' 4838400
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v/ Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 112

LAsymptoticDSolveValue [x~2xy' ' [x]+Sin[x]*y' [x]+Cos [x]*y[x]==0,y[x],{x,0,7}]

J

@) i (26499 1290 N\ [ 893 17\ g
y\&) = ar 59222016000 7402752000 14515200 © 4838400

(2 T e (L Yy
28800 " 28800 12" 24

i(<: 26459 12449 > g ( 893 17i ) 6
+ cox + x° — x

59222016000 ' 7402752000 14515200 4838400

(26T N (1 i
28300 28800 12 24
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17.8 problem 2(b)

Internal problem ID [6047]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 2(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

1
2y +y'z + (_Z + x2) y=0

With the expansion point for the power series method at x = 0.
v Solution by Maple
Time used: 0.015 (sec). Leaf size: 39

( N
‘0rder:=8; ‘
‘dsolve(x‘2*diff(y(x),x$2)+x*diff(y(x),x)+(x“2—1/4)*y(x)=0,y(x),type='series',#=0);

az(l—z2® + 552" — 2% + 0 (2?)) + 2 (1 — 2% + 552* — 7552° + O (7))
y(z) = NG

v Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 76

LAsymptoticDSolveValue [x~2xy' ' [x]+x*y' [x]+(x"2-1/4) *y [x]==0,y[x],{x,0,7}] J

P12 p72 32 1 £13/2 292 45/2
% J— — R p— —
y(@) cl( 20 "2 2 T ﬁ) +62( 5040 T 120 6 J”/E)
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17.9 problem 2(c)

Internal problem ID [6048]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 2(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

4z*y" + (42* —5z) oy +y(2* +2) =0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 51

‘Order:=8; ‘
dsolve(4*x‘2*diff(y(x),x$2)+(4*x‘4—5*x)*diff(y(x),x)+(x‘2+2)*y(x)=0,y(x),type%'series',x=0);

N J

1 1 137 . 307 7169
N T S I S 5 6 7 8 21
y(@) Cl”( 2% "% t7® T1050% t36720°  3430800° TO ))+02x (

1, 8 64 147181 , 4037 O(ws))

4+ 5+

2760°

—_— — —_— — 3 —_——
50° " 57" T 128257 T 0753840° 72268875

v Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 106

s

LAsymptoticDSolveValue [4*xx~2%y ' ' [x]+(4*x~4-5*xx) *y ' [x]+(x"2+2) *y [x]==0,y[x],{x, ‘ ,T}]

y(@) = e <_72268875 * 9753840 T 12825 T2m60 57 30 T

1 7 6 1 5 4 3 2
62( 7169z 307z 37z z x x +1) oz

40377 14718125  642° zt 8z 2? 1) 42

3439800 + 36720 + 1950 + 72 15 2
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17.10 problem 2(d)

Internal problem ID [6049]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 154

Problem number: 2(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

2’y + (=32 +z)y + e’y =0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 85

‘Order:=8; ‘
dsolve(x‘2*diff(y(x),x$2)+(x—3*x‘2)*diff(y(x),x)+exp(x)*y(x)=0,y(x),type='ser#es',x=0);

@) = e (14 (1—iyas (L 10 g (T _3950) o (21T ST
i) =av 16 16 39 936 29952 29952

( 5521 6420431 > 5 ( 782461 8813057 )xﬁ

N

217152 10857600 97718400 521164800
1931 271304833i
( 123807193 3271304833 )z7+ o (w8>)

580056422400 812078991360
. . 7 1%\ , (7 395\ , (2117 51970\ ,
+ox'(1+(Q+d)o+ | +—=|2°+ |+ 5 |2+ + x

16 16 39 936 29952 29952
( 5521 642043¢ )x5 ( 782461 88130574 )xﬁ

217152 * 10857600 97718400 + 521164800
1931 2713048331
( 123807193 3271304833¢ )z7 40 (z8>)

580056422400 + 812078991360
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v/ Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 122

LAsymptoticDSolveValue [x~2xy' ' [x]+(x-3*x~2) *y' [x]+Exp [x] *y [x]==0,y[x],{x,0, 7}]J

97718400 ' 1563494400
+ (4384656 + 27639361)x° + (12605400 + 82890004)x*

+ (31161600 + 198144004)z> -+ (66096000 + 339552003)x>

+ (111974400 + 207360004)z + (66355200 — 456192004))

1 114 .
y(z) — ( + ¢ > az* (1302761 + 7568007)z°

11 1
Bl (1563494400 * 97718400

+ (2763936 + 43846561)x° + (8289000 + 126054004)z*
+ (19814400 + 31161600i)z° + (33955200 + 660960007) 2>
+ (20736000 + 1119744004)z — (45619200 — 663552003))

) cor ™ (756800 + 13027611)z°
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18 Chapter 4. Linear equations with Regular
Singular Points. Page 159

18.1 problem 1(a)
18.2 problem 1(b)
18.3 problem 2
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18.1 problem 1(a)

Internal problem ID [6050]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 159

Problem number: 1(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

32%y" +5y'z +3yr =0

With the expansion point for the power series method at x = 0.
v Solution by Maple
Time used: 0.031 (sec). Leaf size: 52

( N
‘0rder:=8; ‘
‘dsolve(3*x“2*diff(y(x),x$2)+5*x*diff(y(x),x)+3*x*y(x)=0,y(x),type='series',x=@);

y(z)
2

— 21— 32+ 557° — 55%° + 13550%" — amewsw® T Temsmow® — memsvmn? T O (%)) 23 + (1 3z 4
T3

v/ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 111

kAsymptoticDSolveValue [3xx~2xy' ' [x]+5*x*y' [x]+3*x*y[x]==0,y[x],{x,0,7}] J

@) o287 SLC | sl® ot 9@ e 3,
Y "\ 26975872000 ' 167552000 4188800 @ 49280 880 ' 80 )

24327 81z 812% 27zt 923 | 922
C2< 610673600 | 2650200 145600 T 2240 56 T 8 3z +1

12/3
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18.2 problem 1(b)

Internal problem ID [6051]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 159

Problem number: 1(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [ Lienard]

w2y”+y'x+y:c2=0

With the expansion point for the power series method at x = 0.
v Solution by Maple
Time used: 0.016 (sec). Leaf size: 47

( N
‘0rder:=8; ‘
‘dsolve(x‘2*diff(y(x),x$2)+x*diff(y(x),x)+x“2*y(x)=0,y(x),type='series',x=0);

y(z) = (In(z) ¢z + c1) <1 — %aﬂ + 6i4x4 - ﬁxfﬁ +0 (xs))
+ ze - %Sx“ + %xﬁ +0 (xs)) o
v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 81
LAsymptoticDSolveValue [x~2%y' ' [x]+x*y' [x]+x~2%y [x]==0,y[x],{x,0,7}] J

x0 [
y(l‘)—)cl(—2304+6—4—z+1>

po( M s 2 (2T T ) g
“\13824 128 " 4 2304 " 64 4 Bl
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18.3 problem 2

Internal problem ID [6052]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 159

Problem number: 2.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

2y +y'ze”+y=0

With the expansion point for the power series method at x = 0.
v Solution by Maple
Time used: 0.031 (sec). Leaf size: 85

e B
‘0rder:=8; ‘
‘dsolve(x‘2*diff(y(x),x$2)+x*exp(x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0?;

(z) =ciz™( 1+ 2N (2 ) (BT %)
) =a 5 5 80 80 9360 1040

_ 103 229% Ay 2831 6077
149760 149760 7238400 4343040

.’L'

.'157

_ 99077 n 26063¢ N 22952047 n 86348931
1563494400 = 260582400 2030197478400 = 580056422400

)
+0 (a:s)) + czx’(l + (—g - %) z+ (% - %) z* + (9360 1040)
)+
)

8,

8

(- 103 4 2291 A 2831 6077
149760 = 149760 7238400 4343040

_ 99077 26063¢ N 22952047 86348931
2030197478400 580056422400

7

o)

1563494400 260582400
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v/ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 122

LAsymptoticDSolveValue [x~2*y' ' [x]+x*Exp[x]*y' [x]+y[x]==0,y[x],{x,0,7}]

1563494400
— (132840 + 24120i)z* — (247680 + 8697607)z? + (2540160 — 19180807)2>
— (4976640 — 356659203)z + (45619200 — 663552001))

11 ; .
y(z) — ( + 57 128 40()) cow " ((4913 + 7070i)2® — (8568 — 32328i)z

97718400 ' 1563494400
— (24120 + 132840i)z* — (869760 + 2476804 )2> — (1918080 — 25401603) x>
+ (35665920 — 4976640i)z — (66355200 — 456192003))

1 114 .
- ( + ! ) a1z’ (7070 + 49134)z°® + (32328 — 85681)z°
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19.1 problem 1(i) . . . . . . . . .
19.2 problem 1(ii) . . . . . . . .. .
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19.1 problem 1(i)

Internal problem ID [6053]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 1(i).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

20°y" + (2 +5z) y' + (£ - 2)y =0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 55

‘0rder:=8; ‘
dsolve(2*x‘2*diff(y(x),x$2)+(5*x+x‘2)*diff(y(x),x)+(x“2—2)*y(x)=0,y(x),type='#eries',x=0);

N J

y(z)
5
S5¢ 1. 25,2, 197 .3 1921 .4 11653 .5 12023 .6 917285 7 8
_ G2 (1 142 ~ 504%" + 33062% T 3a50156% — T03t83680% T omimistorae® T Timesassomna® T O (T )) + ¢
2
x

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 116

LAsymptoticDSolveValue [2*x~2%y ' ' [x]+(5*x+x"2) *y' [x]+(x~2-2) *y [x]==0,y[x],{x,0 ,T}]

917285z" n 129235 _ 11653z° n 1921z* +197x3_25:r2
1126343522304 ~ 21171870720 103783680 3459456 33264 504

427 10128 25  19z* | 223 | 522 _ 22
)+ C2< 35721 T 15360 540 26 T 9t 76 3 +1

y() —>f(

-4+

14 2
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19.2 problem 1(ii)

Internal problem ID [6054]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 1(ii).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

4x*y" — 4y'z e + 3cos(z)y =0

With the expansion point for the power series method at x = 0.
v Solution by Maple
Time used: 0.032 (sec). Leaf size: 81

e

B

Order:=8;
‘dsolve(4*x“2*diff(y(x),x$2)—4*x*exp(x)*diff(y(x),x)+3*cos(x)*y(x)=0,y(x),type%'series',x=0);

3 1, 103, 669 54731 123443
— 14 = T2 -3 4 5 6
y(@) V§<x('+4x+2x'+3mf T 5120" * 921600° T 4838400"
30273113 .
+ 3s00137600° T O )) “
103 , 669

1 3 1 54731 123443
+¢ (ln (z) <—x+—x2+—w3+—w + 6

5 7 8
2%+ 5% T1% t76s” T 10210 1843200° *967es00” TO @ )>

3 59 5701 17519 6852157 417496453
+ i ; ; 7+0(=))))

1 e 2 Il 3
T T T ™ T o7648” T184320% T 165888000 24385536000
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v/ Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 146

LAsymptoticDSolveValue [4*x~2%y' ' [x]-4*x*Exp [x] *y' [x]+3*Cos [x] *y [x]==0,y[x],{x,0,7}]

(2) > ¢ 123443x15/2 N 54731x13/2 N 669x11/2 N 1032%/2 N x7/? N 3x5/2
y 2\ 4838400 921600 5120 384 2 4
32 (54731z° 4 120420z* + 2472002 + 46080022 + 691200z + 921600) %/2log(z)  (19263¢
R 1843200 +
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19.3 problem 1(iii)
Internal problem ID [6055]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 1(iii).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

(—2z?+1) 2%y +3(* +2)y +y =0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 81

‘0rder:=8; ‘
dsolve((1—x‘2)*x“2*diff(y(x),x$2)+3*(x+x‘2)*diff(y(x),x)+y(x)=0,y(x),type='se#ies',x=0);

N J

y(z)
(In(z) ¢ + ¢1) (1 + 3z + %xz — éxS + %x“ — %goﬁ + %ws — 1}?230:67 +0 (ms)) + ((—9) x — %xz + (

T

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 84

e N

LAsymptoticDSolveValue [(1-x"2)*y' ' [x]+3* (x+x"2) *y ' [x]+y [x]==0,y[x],{x,0,7}] J

()= 53z7 N 526 N 225 x* 228 v ) e 1927 N 3z N 5xt 2 +1
y 2 630 24 15 4 3 ! 420 144 20 24 2
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19.4 problem 3(a)

Internal problem ID [6056]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 3(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

2’y +3yz+ (1+z)y=0

With the expansion point for the power series method at x = 0.
v Solution by Maple
Time used: 0.016 (sec). Leaf size: 81

e

A

Order:=8;
‘dsolve(x‘Z*diff(y(x),x$2)+3*x*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=¢);

y(z)
(In(z) ez +c1) (1 — T+ %x2 - 3_16x3 + %fk - 14100x5 + 5181400‘7;6 - 2540116005'37 +0 ($8)> + (23’7 - %“’2 +

T
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v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 164

kAsymptoticDSolveValue [x~2%y' ' [x]+3*x*y' [x]+(1+x) *y [x]==0,y[x],{x,0,7}]

J

il 2 2% 4 o2t 2% 2
Cl( 25401600 | 518400 — 14400 T 576 36 T 4 — T+ 1
y(z) =
T
12127 4925 1372° _ 25z* 1123 _ 3x2
+ d32000 — 3456 + 08 — 4 T 2T

2704000 ~_ 5184
T e 592704000 5184000

T

z 2®  _ _2° zt 2t 2
<_ 25101600 T sisdo0 — Tadoo + 576 — 36 T 1 — ¢ T 1)log(z)

X
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19.5 problem 3(b)

Internal problem ID [6057]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 3(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

nylI 4 2$2y, _ 2y — O

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 53

‘0rder:=8; ‘
Ldsolve(x‘Q*diff(y(x),x$2)+2*x‘2*diff(y(x),x)—2*y(x)=0,y(x),type='series',x=0)}

3 4 2 1 1 8
— 2 1— Q92  *.3 44 5 6 7 0 8
y(z) =z ( z+ P T + 51% ~ 3% +—135x 725° + O (z°)

N c2(12 — 12z + 82 — 8z* + 22® — 3225+ 2827 + O (28))
T

v Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 87

-

LAsymptoticDSolveValue [x~2xy' ' [x]+2*x"2xy ' [x] -2*y [x]==0,y[x],{x,0,7}]

| —

et e+ — = +7°

8x° 2x* 223 222 1 N 2 7 228 425 3z?
C:
\135 35 21 15 ' 5
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19.6 problem 3(c)

Internal problem ID [6058]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 3(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

o’y +5y'z+ (—2*+3)y=0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

‘0rder:=8; ‘
dsolve(x‘2*diff(y(x),x$2)+5*x*diff(y(x),x)+(3—x‘3)*y(x)=0,y(x),type='series',#=0);

N J

a(1+ 2 + 2% + 0 (28)) N c2(—2— 223 — 2% + 0 (28))
T 3

y(z) =

v/ Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 40

LAsymptoticDSolveValue [x~2%y' ' [x]+5*x*y' [x]+(3-3%x"3)*y[x]==0,y[x],{x,0,7}] J

(x) = ¢ m—3+i+1 +c x_5+m_2+1
4 s ™w 2\80 "5 T2
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19.7 problem 3(d)

Internal problem ID [6059]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 3(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

oy —2z(1+2)y +2(1+z)y =0

With the expansion point for the power series method at x = 0.
v Solution by Maple
Time used: 0.016 (sec). Leaf size: 53

e

A

Order:=8;
|dsolve (x~2+diff (y(x) ,x$2) ~2%x* (x+1)*diff (y(x),x)+2* (x+1) *y (x)=0,y(x) , type="'series' ,x=0) ;

2 1 2 2 4 1
— 2 1 “..2 =3 4 5 6 7 0) 3
y(z) = a1z ( +x+or+oa’+ a4 e a2+ 0 ()

4 2 4 4 8
+czx<1 +2x + 222 + §x3 + §x4 + 1—5x5 + 4—5336 + Ex7+ 0] (338)>

v/ Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 92

LAsymptoticDSolveValue [x"2xy' ' [x]-2%x*(x+1)*y' [x]+2*(1+x) *y [x]==0,y[x],{x,0, 7]’}]

47 428  22° 4zt
SN o 2 ™ o3 492
y(x) q(45+15+ 3+-3+-x+-z+z>

N 4x8+2$7+2x6+x5+2x4+ 34 g2
ol t+——+—++—F+r+2
\315 ' 45 '15 ' 3 ' 3
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19.8 problem 3(e)

Internal problem ID [6060]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 3(e).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [_Bessel]

x2y”+y’x+y(z2—1) =0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 53

‘0rder:=8; ‘
Ldsolve(x‘Q*diff(y(x),x$2)+x*diff(y(x),x)+(x‘2—1)*y(x)=0,y(x),type='series',Xf?);

y(z)

_ c122 (1 — %xz + ﬁz‘l — Wllﬁz(i +0 (:cs)) +cy (ln (z) (x2 — %x“ + T;foi +0 (xg)) + (—2 + %z"‘ — T7529

T

v/ Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 75

e

LAsymptoticDSolveValue [x~2*y' ' [x]+x*y' [x]+(x"2-1) *y[x]==0,y[x],{x,0,7}]

~—

z’ z® 2B
y(@) = c2<_9216 T2 78" ‘”)

6 _ 90z% 4 288z2 4+ 1152 1
e <5x 90z + 288z° 4 115 — — (" — 242 + 192) log(x)>

1152z 384
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19.9 problem 3(f)

Internal problem ID [6061]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 166

Problem number: 3(f).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,

2y —22%y + (=2 +4x)y =0

With the expansion point for the power series method at x = 0.
v Solution by Maple
Time used: 0.032 (sec). Leaf size: 55

e

A

Order:=8;

‘dsolve(x‘2*diff(y(x),x$2)-2*x‘2*diff(y(x),x)+(4*x—2)*y(x)=0,y(x),type='series',x=0);

V(#) = a1+ 0 ()
Lo (In (z) ((—48) 2 4+ O (2®)) + (12 + 36z + 7222 + 88z® — 24a* — 225 — 182% — 247 + O (2¥)))
T

v Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 58

e B

LAsymptoticDSolveValue [x~2%y' ' [x]-2*x"2%y' [x]+(4*x-2)*y[x]==0,y[x],{x,0,7}] J

_ 4z5 + 1825 4 90z* — 390z® — 2702% — 135z — 45)

? —4z1
y(x) = cox +cl< z* log(x) yT
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20 Chapter 4. Linear equations with Regular

Singular Points. Page 182

20.1 problem 4
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20.1 problem 4

Internal problem ID [6062]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 4. Linear equations with Regular Singular Points. Page 182

Problem number: 4.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

(—2z?+1)y" — 2z +2y =0

With the expansion point for the power series method at x = 0.
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

‘Order:=8; ‘
dsolve((l—x‘Q)*diff(y(x),x$2)—2*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=¢);

N

y(z) = (1 —z? - %x‘l - %xs) y(0) + D(y) (0) z + O(z°)

v Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 32

e

LAsymptoticDSolveValue [(1-x"2)*y"' ' [x]-2*x*y' [x]+2*y [x]==0,y[x],{x,0,7}]

~—

6 4
y(x)—)cl<—%—%—x2+1)+02x
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21.1 problem 1(a)

Internal problem ID [6063]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 1(a).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

y —yz* =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

-

Ldsolve(diff(y(x),x)=x‘2*y(x),y(x), singsol=all)

-/

23

y(z) =cres
v Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 22

LDSolve [y' [x]==x"2xy[x],y[x],x,IncludeSingularSolutions -> Truel

1:3
y(x) = cre’s

y(z) =0
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21.2 problem 1(b)

Internal problem ID [6064]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 1(b).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

Yy =2
v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
Ldsolve (y(x)*diff (y(x),x)=x,y(x), singsol=all) J

y(z) = Vol +a
y(x) =—vVal+ ¢

v/ Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 35

kDSolve [y [x]*y' [x]==x,y[x],x,IncludeSingularSolutions -> True]

y(x) = =22+ 201
y(x) = V22 +2¢
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21.3 problem 1(c)

Internal problem ID [6065]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 1(c).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

., T4z

A

4
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 720

Ldsolve (diff (y(x),x)=(x+x"2)/(y(x)-y(x)"2),y(x), singsol=all) J
y(x)
1
(1 - 42 - 62% — 12¢; +2/42° + 1207 + 24127 + 92 + 366107 — 207 + 36} — 32 — 6y )
- 2
1
+ 1
2 (1 — 413 — 622 — 12¢; + 2\/4m6 + 122° + 24c¢123 + 92 + 36¢1 22 — 223 + 36¢2 — 322 — 6cl> ’
L1
2
y(z) =
1
(1 — 473 — 622 — 12¢; + 2+/425 + 1225 + 24c,23 + 974 + 36¢172 — 273 + 36¢7 — 372 — 601> :
a 4
1
— 1
4 <1 — 433 — 622 — 12¢; + 21/425 + 1225 + 24c,23 + 974 + 36¢122 — 273 + 36¢7 — 372 — 601> ’
L1
2
1
(1—4x3—6:1:2—1201 +2\/4x6+12x5+24c1x3+9z4+36c1x2—2x3+36c§—3z2 —601) :
iv/3 5 -
2 (1—4x3—612—1201+21 /4284122542
B 2
y(z) =
1
(1= 42 — 622 — 12¢; +2/42° + 1207 + 24127 + 92 + 360107 — 207 + 36 — 32 — 6y )
- 4
1
_ I
4 (1 — 43 — 622 — 12¢; + 2\/4m6 + 122° + 24c¢123 + 92* + 36¢1 22 — 223 + 36¢2 — 312 — 661) °
L1
2 1
(1—413—6:1:2—1201 +2 \/ 42641225 +24c1 23+924 436122 — 23 +36¢7 —322 —661) ’
iV/3 : -
2 (1—41:3—61:2—12014—21 /42641225 +2.
+
2
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v/ Solution by Mathematica
Time used: 4.147 (sec). Leaf size: 346

kDSolve [y' [x]==(x+x"2)/(y[x]-y[x]~2) ,y[x] ,x,IncludeSingularSolutions -> Truel J

1
y(z) — 3 €/—4x3 — 6224 /=14 (—423 — 622 + 14+ 12¢)) 2 + 1+ 12¢

1
_|_
{’/—4x3 — 6224 /=1 + (—423 — 622 + 1+ 12¢1) 2 4+ 1+ 12¢

+1

y(z) — 2i<\/§+ z) U/ —4w — 602 + /=1 + (—42® — 627 + 1+ 1261)2 + 1 + 12¢,

—2 —2i\/3

+ +4
{'/—4x3 — 6224 /=14 (—423 — 622+ 14+ 12¢))2 4+ 1+ 12¢

1
y(@) = 5 —2<1+i\/§> U/ —4w® — 622 + /=1 + (—42® — 622 + 1+ 126) % + 1+ 126,

N 2i(v/3 + i)
{‘/—4953 — 622+ /=14 (—4a3 — 622 + 1+ 12¢1) 2 + 1 + 12¢;

+4
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21.4 problem 1(d)

Internal problem ID [6066]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 1(d).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

‘dsolve(diff(y(x),x)=exp(x—y(x))/(1+exp(x)),y(x), singsol=all)

y(z) =In(In(e*+ 1) + 1)
v/ Solution by Mathematica
Time used: 0.465 (sec). Leaf size: 15

-

N
LDSolve [y' [x]==Exp[x-y[x]]1/(1+Exp[x]),y[x],x,IncludeSingularSolutions -> True]J

y(xz) — log (log (e® + 1) + ¢1)
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21.5 problem 1(e)

Internal problem ID [6067]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 1(e).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

y — zty? = —dz?

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 28

-

Ldsolve (diff (y(x) ,x)=x"2*y(x) "2-4*x"2,y(x), singsol=all)

-/

2(e" e +1)
-1+ e’ c1

v/ Solution by Mathematica

Time used: 0.258 (sec). Leaf size: 52

‘ DSolvel[y' [x]==x"2xy[x] "2-4*x"~2,y[x] ,x,IncludeSingularSolutions -> Truel
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21.6 problem 2(a)

Internal problem ID [6068]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 2(a).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

~y*+y =0
With initial conditions

[y(z0) = yo]
v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 18
Ldsolve( [diff (y(x),x)=y(x)"2,y(x__0) = y__0],y(x), singsol=all) J

Yo
x [ —
y( ) —1+(£L’—$0)y0

v/ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 16

e B

LDSolve [{y' [x]==x2*y[x],{y[x0]==y0}},y[x],x,IncludeSingularSolutions -> True] J

y(x) N y06x2(x—x0)
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21.7 problem 3(a)

Internal problem ID [6069]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 3(a).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

Y —2y=0

With initial conditions

[y(zo) = Yol

v Solution by Maple
Time used: 0.094 (sec). Leaf size: 28

e

tdsolve([diff (y(x) ,x)=2*sqrt(y(x)) ,y(x__0) = y__0],y(x), singsol=all)

~—

y(z) = (22 — 23) /Yo + T — 2270 + T3 + Yo

v/ Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 33

LDSolve [{y' [x]==2*Sqrt [y[x]],{y[x0]==y0}},y[x] ,x,IncludeSingularSolutions -> Tﬁrue]

y(z) — <x —x0+ \/ﬁy
y(x) — <—x +x0 + \/y_0>2
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21.8 problem 3(b)

Internal problem ID [6070]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 3(b).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

Y —2y=0

With initial conditions
[y(wo) = 0]

v Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

e

tdsolve([diff(y(x),x)=2*sqrt(y(x)),y(x__0) = 0],y(x), singsol=all)

~—

y(z) =0
v Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 6

LDSolve [({y' [x]==2*Sqrt [y [x]],{y[x0]==0}},y[x],x,IncludeSingularSolutions -> Trﬁ.\e]

y(z) =0
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21.9 problem 4(a)

Internal problem ID [6071]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 4(a).

ODE order: 1.

ODE degree: 1.

4

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘cl

y_x+y=0
zT—Yy
v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 24
Ldsolve (diff (y(x) ,x)=(x+y(x))/(x-y(x)),y(x), singsol=all) J

y(z) = tan (RootOf (—2_Z+ In (@) +2In(z)+ 2c1>) z

v Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 36

‘ DSolve[y' [x]==(x+y[x])/(x-y[x]),y[x],x,IncludeSingularSolutions -> True] ‘

Solve B log (%?2 + 1) — arctan (M) = —log(z) + c1,y(x)

T
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21.10 problem 4(b)

Internal problem ID [6072]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 4(b).

ODE order: 1.

ODE degree: 1.

4

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘cl

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 20

‘dsolve(diff(y(x),x)=y(x)“2/(x*y(x)+x”2),y(x), singsol=all)

— LambertW < el ) —c1

T

y(z) =e
v/ Solution by Mathematica
Time used: 2.317 (sec). Leaf size: 21

LDSolve [y' [x]==y[x]"2/(x*y[x]+x~2),y[x],x,IncludeSingularSolutions -> True] J
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21.11 problem 4(c)

Internal problem ID [6073]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 4(c).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _rational, _Riccatil

g Tty

2 0
v Solution by Maple
Time used: 0.016 (sec). Leaf size: 11
Ldsolve(diff (y(x),x)=(x"2+x*y (x)+y(x) ~2) /x"2,y(x), singsol=all) J

y(z) =tan(In(z) +c1) x
v/ Solution by Mathematica
Time used: 0.188 (sec). Leaf size: 13

-

N
LDSolve [y' [x]==(x"2+x*xy [x]+y [x]~2) /x"2,y[x] ,x,IncludeSingularSolutions -> True}]

y(xz) — ztan(log(z) + ¢1)
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21.12 problem 4(d)

Internal problem ID [6074]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 4(d).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _dAlembert]

, Y+ e % —0
z
v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 16
Ldsolve (diff (y(x) ,x)=(y(x)+x*exp(-2*y(x) /x))/x,y(x), singsol=all) J

() = In(2In (x2) +2c1)z

v/ Solution by Mathematica
Time used: 0.412 (sec). Leaf size: 18

DSolve[y' [x]==(y[x]+x*Exp [-2*y[x]/x])/x,y[x],x,IncludeSingularSolutions -> Tr#e]

N J

y(z) — %xlog(2(log(x) + 1))
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21.13 problem 5(a)

Internal problem ID [6075]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 5(a).

ODE order: 1.

ODE degree: 1.

4

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

,_Toy+2
y+zr—1

v/ Solution by Maple
Time used: 0.203 (sec). Leaf size: 35

dsolve(diff (y(x),x)=(x-y(x)+2)/(x+y(x)-1),y(x), singsol=all)

N\ J

(2x+1)c1+\/2(2x+1)2c§+1

201

y(w)=g—

v Solution by Mathematica
Time used: 0.154 (sec). Leaf size: 53

( N

LDSolve [y' [x]==(x-y[x]+2)/(x+y[x]-1) ,y[x] ,x,IncludeSingularSolutions -> Truel J

y(x) = —/222+ 204+ 14¢c,—z+1

y(x) > V22 +2c+ 14—z +1
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21.14 problem 5(b)

Internal problem ID [6076]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 5(b).

ODE order: 1.

ODE degree: 1.

4

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

,_2w+3y+120
z—2y—1

v/ Solution by Maple
Time used: 0.219 (sec). Leaf size: 59

dsolve(diff (y(x) ,x)=(2*x+3*y(x)+1) / (x-2*y(x)-1) ,y(x), singsol=all)

N\ J

V3 (7z — 1) tan (RootOf <\/§ In <3(7$4‘1)2 + 3(7z-1) ':m(—Z> > +2v3¢ — 4_Z>)

14

_|_

v Solution by Mathematica
Time used: 0.12 (sec). Leaf size: 85

e N

LDSolve [y' [x]==(2*x+3*y [x]+1) / (x-2*y[x]-1) ,y[x] ,x,IncludeSingularSolutions -> jl'rue]

Solve [32\/5 arctan ( 4y(z) + 5z + 1 )) _3 <8 log (4(7582 + Ty(2)* + (T2 + 5)y(z) + ¢ + 1))

V3(—2y(z) +z -1 (1—"7z)2
+ 16log(7x — 1) + 701) ,y(m)]
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21.15 problem 5(c)

Internal problem ID [6077]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 5(c).

ODE order: 1.

ODE degree: 1.

4

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘cl

p_ ytz+l
Y ortoy—1"

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 29

e hY

dsolve(diff (y(x),x)=(x+y(x)+1)/(2*x+2*y(x)-1) ,y(x), singsol=all)

N\ J

y(x) —e LambertW (—2e~3%e3°1) —3z+3c1 __ .

v/ Solution by Mathematica
Time used: 4.2 (sec). Leaf size: 32

-

N
LDSolve [y' [x]==(x+y[x]+1)/ (2*x+2*y[x]-1) ,y [x] ,x,IncludeSingularSolutions -> Trﬁ.le]

y(z) = —x — %W(—e_?’”c_l“l)

y(z) - —x
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21.16 problem 6(b)

Internal problem ID [6078]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 6(b).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class C‘], _rational, _Riccatil

l_(y+"r—1)2=0

v 2(z + 2)

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 21

e hY

dsolve(diff (y(x),x)=1/2*((x+y(x)-1)/(x+2))~2,y(x), singsol=all)

N\ J

y(z) =3 +tan (M#—%) (x+2)

v/ Solution by Mathematica
Time used: 0.411 (sec). Leaf size: 99

e

LDSolve [y' [x]==1/2%((x+y[x]-1)/(x+2))~2,y[x],x,IncludeSingularSolutions -> True]

. 2i(x 4+ 2)'z + (24 39)2(z + 2)* — 2iciz — (6 + 4i)cy

y(=) i2(z + 2)F — 201

y(x) = iz + (3 + 20)
y(x) = iz + (3 + 20)
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22.1 problem 1(a)

Internal problem ID [6079]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 1(a).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2yz + (3y* + %)y’ =0

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 257

Ldsolve (2*x*y (x) +(x"2+3*y (x) "2) *diff (y(x) ,x)=0,y(x), singsol=all) J

1

3
(108+12, /12c§x6+81>
2z2¢;

6 3

(108+12, /12c§x6+81)

xTr)=
y(x) NG
y(x)
1
CSIL‘ g
% i3 <108+12,/121 6+81) N 202c, i
_(108+12,/12c§’m6+81> N 2e; B (108+12,/12c§x6+81)§
12 1 2
(108-‘,—12, /12c§x6+81>
= A
y(z)
1
3
; i3 (108+12,/126c§x6+81> N 202eq i
(108+12, /12c§z6+81> e N (108412 /12Fa0 81 ) ®

- 12 + 1 2
(108—}-12, /12c{>m6+81>
VA4S
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v/ Solution by Mathematica
Time used: 27.686 (sec). Leaf size: 442

kDSolve [2%x*y [x]+(x~2+3*y [x] "2) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> Trﬁ.\e]

. —2v/322 + %(Vm-l- 9ecr) /3
62/3/+/ 1225 + 81e%1 + 9ee
N i22/3/3(V/3 + ) (V1225 + 81e%r + 9 ) /3 + 2v/2v/3(v/3 + 3i) z°
12 f/ V1225 + 81e + 9eot
. 22/33/3(—1 — iv/3) (V1225 + 81e21 + 9et) 2/3 4 2v/2/3(+/3 — 3i) 2

y(z)

y(z)

Ve 126/ 1226 + 81e2c1 + Qe
y(z) =0
Vo — o2
y(z) — W
y(@) (V3 — 34) x26;/s(c_;/§ + 34) Vb
y(2) = (V3 +3i) 22 — (v/3 — 3i) Vab

6
6V 26

204



22.2 problem 1(b)

Internal problem ID [6080]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 1(b).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

2

yz+ (z+y)y =—=

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

tdsolve((x‘2+x*y(x))+(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)

v/ Solution by Mathematica
Time used: 0.132 (sec). Leaf size: 53

‘ DSolve [(x~2+y[x])+(x+y[x])*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

973
y(x)—)—x—\/—%+x2+cl

223
yx) > —x + —?+x2+cl

205



22.3 problem 1(c)

Internal problem ID [6081]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 1(c).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

e(14+y)y = —€”

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

e

tdsolve(exp(x)+(exp(y(x))*(y(x)+1))*diff(y(x),x)=0,y(x), singsol=all)

~—

y(z) = LambertW (—c; — €°)

v Solution by Mathematica
Time used: 60.161 (sec). Leaf size: 14

LDSolve [Exp [x]+(Exp [y [x]]*(y[x]+1))*y' [x]==0,y[x] ,x,IncludeSingularSolutions -f True]

y(z) = W(=e® +a)
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22.4 problem 1(d)

Internal problem ID [6082]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 1(d).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

cos () cos (y)® — sin (z) sin (2y) y' = 0

v/ Solution by Maple
Time used: 0.141 (sec). Leaf size: 25

‘dsolve(cos(x)*cos(y(x))“2—sin(x)*sin(2*y(x))*diff(y(x),x)=0,y(x), singsol=a11}

1
y(x) = arccos <01Tn(x)>

1
y(x) = m — arccos (an(x))
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v/ Solution by Mathematica
Time used: 6.536 (sec). Leaf size: 73

LDSolve [Cos [x] *Cos [y [x]]~2-Sin[x]*Sin[2*y[x]]*y' [x]==0,y[x],x, IncludeSingularSﬁolutions => Tru

y(x) — — arccos <_Tﬂ($)>

y(x) — arccos (—m>
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22.5 problem 1(e)

Internal problem ID [6083]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 1(e).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

yiz? — y2rdy =0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

-

Ldsolve(x‘2*y(x)‘3—x‘3*y(x)‘2*diff(y(x),x)=0,y(x), singsol=all)

~—

v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 19

-

N
LDSolve [x~2*xy[x] “3-x"3*y[x] "2*y' [x]==0,y[x] ,x,IncludeSingularSolutions -> True)j]

y(z) =0
y(x) = az

y(z) =0
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22.6 problem 1(f)
Internal problem ID [6084]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 1(f).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd tj

y+@—y)y =—2

v Solution by Maple
Time used: 0.047 (sec). Leaf size: 49

e

kdsolve((x+y(x))+(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)

~—

cxr —+/2c2x2 + 1
y(z) = — . .

y(z) = azx+ /2312 + 1
(4]

v/ Solution by Mathematica
Time used: 0.449 (sec). Leaf size: 86

LDSolve [(x+y[x])+(x-y[x])*y' [x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(xz) =z — V22 + 2
y(z) = =+ V222 + €21
y(z) = . — V2Vx?
y(z) = V2V + x
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22.7 problem 1(g)

Internal problem ID [6085]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 1(g).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_exact]

2e*y + 2z cos (y) + (¢ — z”sin(y)) y' =0

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 19

[dsolve ((2*y (x) *exp (2*x) +2*x*cos (y(x)) )+ (exp(2*x) -x"2*sin(y(x)) ) *diff (y (x) ,x) =}) ,y(x), singsol

cos (y(z)) 2> + y(z)e** +¢; =0
v/ Solution by Mathematica
Time used: 0.414 (sec). Leaf size: 30

‘ DSolve [ (2*y [x] #*Exp [2*x] +2*x*Cos [y [x]]) + (Exp [2*#x] -x~2*Sin[y [x]]) *y "' [x]==0,y [x] Lx ,IncludeSingu

Solve [2 (%aﬁ cos(y(z)) + %e%y(x)) — e, y(x)}
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22.8 problem 1(h)

Internal problem ID [6086]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 1(h).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_linear]

y+y'r=-3In(z) 2> — 2°

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

Ldsolve ((3*x~2*1n(x) +x~2+y(x) ) +x*diff (y(x) ,x)=0,y(x), singsol=all) J

—231n(z) + ¢
T

y(z) =

v/ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 19

LDSolve [(3*x~2*Log[x]+x~2+y [x]) +x*y' [x]==0,y[x],x,IncludeSingularSolutions -> jl'rue]

—z3log(z) + ¢1
T

y(z) =
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22.9 problem 2(a)

Internal problem ID [6087]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 2(a).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

2y3 + 3zy’y = —2

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 99

-

Ldsolve((2*y(x)‘3+2)+(3*x*y(x)‘2)*diff(y(x),x)=0,y(x), singsol=all)

~—

(-2 +c)x)’

y(z) = -
_ (P +a)2)’ (-2 +a)a)
y(z) = — o _ —
(—2? +e)z)’  iV3((—2®+e)a)’
y(z) = — 9% + o
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v/ Solution by Mathematica
Time used: 0.281 (sec). Leaf size: 215

kDSolve [(3*y[x] ~3+2)+(3*x*y [x] ~2) *y' [x]==0,y[x],x,IncludeSingularSolutions -> jl‘rue]

3 1 3
—_ _2 3 9c1
3\/ T’ +e

y(z) = — -
(o) » Y2
V3z
J(5) = (—1)2/3V/ =223 + edr
V3z
y(@) = | —g

y(z) — —i’/g
y(z) = —(—1)2/3{"@

2,
3
y(z) =73
(—x3) /
3 ; 3 $3
y(r) = -
(—1)/3¢ 29—
y(z) — . 3
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22.10 problem 2(b)

Internal problem ID [6088]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 2(b).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separablel

cos (z) cos (y) — 2y sin (y) sin (z) =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

e B

kdsolve(cos(x)*cos(y(x))—2*sin(x)*sin(y(x))*diff(y(x) ,x)=0,y(x), singsol=all) J

1
y(x) = arccos (cls—ln(x)>

1
y(x) = m — arccos (an(x))

v/ Solution by Mathematica
Time used: 0.491 (sec). Leaf size: 43

LDSolve [Cos[x]*cos[y[x]]-(2*Sin[x]*Sin[y[x]])*y' [x]==0,y[x],x, IncludeSingularSﬁ)lutions -> Tru

y(z) — InverseFunction [ /1 . %dlf [1]&] B log(sin(z)) + cl}

y(z) = cos=H(0)
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22.11 problem 2(c)

Internal problem ID [6089]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 2(c).

ODE order: 1.

ODE degree: 1.

4

CAS Maple gives this as type [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘cl

5y°c° + 2y + (3yz* +2z)y =0

v/ Solution by Maple
Time used: 0.328 (sec). Leaf size: 347

Ldsolve ((5*x~3xy (x) ~2+2%y (x) )+ (3*x"4*y (x) +2*x) *diff (y (x) ,x)=0,y(x), singsol=aljl)

1 2
6((108z2+12‘/—12c%+81z4>cl) 3 7201
c1 + 1
((108w2+12,/—12c‘11+81w4) cl) 3 1

— 1296 —
y(x) - $3
y(x)

1 1
3((108w2+12\/—12c%+8124>cl) 3 360 ’ ((108z2+12,/—12c‘11+81z4)c1>3 26
- cq - L 1 _181\/5 6cq - !
( (108302-4—12. /—12c‘11+81w4> cl) 3 ( (108:c2+12, /—12c}+8124
_ 1296
3
y(x)
1 1
3((108w2+12\/—12c%+8lz4)cl) 3 360 . <(108z2+12,/—12c‘11+81z4)c1>3 26
- cq - L 1 +181\/§ 6cq - !
( (108z2+12. /—12c‘11+81w4> cl) 3 ( (108w2+12, /—12c}+8124
_ 1296
3
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v/ Solution by Mathematica

Time used: 49.208 (sec). Leaf size: 400

tDSolve [(5%x~3xy [x]~2+2%y [x]) +(3*x "4y [x] +2xx) *xy' [x]==0,y[x],x, IncludeSingularFolutions -> Tr

y(z)
—2x2 + 22% +22/3 {/27013010 — 226 4 3v/3\/c1216 (—4 + 27
3&/27053310 — 8+ g\/g\/clxm (—4 4 27¢ %)
- 6>
y(x)
4z _ 2(1+iv3)a! +22/3(v/3 + 1) ;/27013010 — 228 + 3v/3/c, 216
3\/27C;$10 — x5+ g\/g\/clazlﬁ (—4 + 27c1z4)
- 1245
y(z) =
4g? — 2i<\/§+i)$4 + 22/3(1 + z\/§) €/27clx10 — 26 4+ 3\/§m

— 8+ ;\/5\/013316 (—4 4 27¢ %)
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22.12 problem 2(d)

Internal problem ID [6090]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 2(d).

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

e’ +e'z+zely’ =0

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve ((exp(y(x))+x*exp(y(x)))+(x*exp(y(x)))*diff (y(x),x)=0,y(x), singsol=a11})

y(z)=—z—In(z)+ ¢
v Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 15

LDSolve [(Exp [y [x]1+x*Exp [y [x]]1)+(x*Exp [y [x]]) *y' [x]==0,y[x],x, IncludeSingularSﬂalutions -> Tru

y(z) = —z —log(z) + 1
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23.1 problem 1(a)

Internal problem ID [6091]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 238

Problem number: 1(a).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y//+yl=1

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

-

dsolve(diff (y(x) ,x$2)+diff (y(x),x)=1,y(x), singsol=all)

N\

y(x) = —e "1+ x4+

v/ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 18

LDSolve [y'' [x]+y' [x]==1,y[x],x,IncludeSingularSolutions -> Truel

y(x) >z —cre "+ co
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23.2 problem 1(b)

Internal problem ID [6092]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 238

Problem number: 1(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing y]]

y/l _|_ y/e:l: — ea:

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

e hY

dsolve(diff (y(x) ,x$2)+exp (x)*diff (y(x) ,x)=exp(x),y(x), singsol=all)

N\ J

y(z) = —c1 Eiy (%) + z + ¢

v/ Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 18

LDSolve [y'' [x]+Exp[x]*y' [x]==Exp[x],y[x],x,IncludeSingularSolutions -> Truel J

y(xz) — c1 ExplntegralEi (—e®) + z + c2
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23.3 problem 1(c)

Internal problem ID [6093]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 238

Problem number: 1(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], _Liouville, [_2nd_order, _reducible

vy’ +4y° =0

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 158

Ldsolve (y(x)*diff (y(x) ,x$2) +4*diff (y(x),x)"2=0,y(x), singsol=all) J

y(@) =0

y(x) = (5erx + 5ey)

=

) - (@ L M) (sexs + 5c2)}
y(z) = <—? - ;l + M) (51 + 502)%
y(z) = <? — i — M) (51w + 502)%

S

+ M) (5c1z + 5¢2)
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v/ Solution by Mathematica
Time used: 0.178 (sec). Leaf size: 20

LDSolve [y[x]l*y'' [x]+4*(y' [x])~2==0,y[x],x,IncludeSingularSolutions -> True] J

y(z) = cov/bxr — ¢
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23.4 problem 1(d)

Internal problem ID [6094]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 238

Problem number: 1(d).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x]]

y/l+k2y=0

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

-

dsolve(diff (y(x),x$2)+k~2*y(x)=0,y(x), singsol=all)

y(z) = ¢y sin (kx) + ¢z cos (kx)

v Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 20

LDSolve [y'' [x]+k~2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(x) = c1 cos(kzx) + cysin(kx)
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23.5 problem 1(e)

Internal problem ID [6095]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 238

Problem number: 1(e).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _exact, _nonlinear], _

y' —yy =0

v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 23

e hY

dsolve(diff (y(x),x$2)=y(x)*diff (y(x),x),y(x), singsol=all)

N\ J

v Solution by Mathematica
Time used: 16.739 (sec). Leaf size: 34

-

LDSolve [y'' [x]==y[x]*y' [x],y[x],x,IncludeSingularSolutions -> True]

~—

y(z) = V/24/c; tan (W)
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23.6 problem 1(f)

Internal problem ID [6096]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 238

Problem number: 1(f).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing y]]

zy” — 2 = 23

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

‘dsolve(x*diff(y(x),x$2)—2*diff(y(x),x)=x‘3,y(x), singsol=all)

1 1
y(z) = Zm4 + gclx3 + ¢

v/ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 24

‘ DSolve [x*y'' [x]-2*y' [x]==x"3,y[x],x,IncludeSingularSolutions -> True]

4 3
y(z) — zz + a2

ar 4
3 @
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23.7 problem 2

Internal problem ID [6097]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 238

Problem number: 2.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _reducible, _mu_xy]]

y// _y/2 -1

With initial conditions
[y(0) = 0,%'(0) = 0]

v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 7

Ldsolve([diff(y(x),x$2)=1+diff(y(x),x)“2,y(0) = 0, D(y)(0) = 0],y(x), singsol=J£11)

y(2) = In (sec(z))

v/ Solution by Mathematica

Time used: 2.581 (sec). Leaf size: 27

‘ DSolve[{y'' [x]==1+(y' [x])~2,{y[0]==0,y' [0]1==0}},y[x],x, IncludeSingularSolutio#s -> True]

y(z) = —log(—cos(z)) + im
y(x) = —log(cos(x))
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23.8 problem 3

Internal problem ID [6098]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 238

Problem number: 3.

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _reducible, _mu_poly_j

1
y”+w=0

With initial conditions

[¥(0) = 1,%'(0) = —1]

v/ Solution by Maple
Time used: 0.438 (sec). Leaf size: 26

-

Ldsolve( [diff (y(x),x$2)=-1/(2*diff (y(x),x)"2),y(0) = 1, D(y)(0) = -1],y(x), si\ gsol=all)

y(@) = 3(z+2) (—12x1—68)3 (—1+14V3) +g

v Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 27

-

LDSolve {y'' [x]==-1/(2*(y' [x])"2) ,{y[0]==1,y' [0]==-1}},y[x],x, IncludeSingularS}lutions -> Tru

y(z) = é(m _ (~2)*/3(—3z — 2)*?)
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23.9 problem 5(b)

Internal problem ID [6099]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 238

Problem number: 5(b).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _reducible, _mu_x_y1]]

'+ sin (y) = 0

With initial conditions

v/ Solution by Maple
Time used: 0.812 (sec). Leaf size: 53

-

Ldsolve([diff(y(x),x$2)+sin(y(x))=0,y(0) = 0, D(y)(0) = beta],y(x), singsol=a1}[)

_Z 1
y(x) = RootOf (— (/0 \/2 (TP 2d_a) + x)

_Z 1
y(z) = RootOf ( /0 NI 2d_a + x)

v/ Solution by Mathematica
Time used: 0.621 (sec). Leaf size: 19

DSolve[{y'' [x]+Sin[y[x]1]==0,{y[0]==0,y' [0]==\[Betal}},y[x],x, IncludeSingularS#lutions -> Tru

N

y(x) — 2 JacobiAmplitude (?, %)
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23.10 problem 5(c)

Internal problem ID [6100]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 238

Problem number: 5(c).

ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing x], [_2nd_order, _reducible, _mu_x_y1]]

y' +sin(y) =0

With initial conditions

[y(0) = 0,4(0) = 2]

v/ Solution by Maple
Time used: 0.156 (sec). Leaf size: 23

Ldsolve([diff(y(x),x$2)+sin(y(x))=0,y(0) = 0, D(y)(0) = 2],y(x), singsol=all) J

y(z) = RootOf <— (/0_ md_a> + x>

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

LDSolve [{y'' [x]+Sin[y[x]1]1==0,{y[0]==0,y' [0]==2}},y[x],x, IncludeSingularSolutiofxs -> True]

{
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24.1 problem 3

Internal problem ID [6101]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 250

Problem number: 3.

ODE order: 1.

ODE degree: 1.

Solve

y1(z) = v ()
Yo(z) = y1() + 3a2(2)

With initial conditions
[¥1(0) = 1,2(0) = 2]

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 16

dsolve([diff(y__1(x),x) = y__1(x), diff(y__2(x),x) = y__1(x)+y__2(x), y__1(0) =1, y__2(0) =

N\

yi(z) = €”

ya(x) = e*(x + 2)

v/ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 18

LDSolve [{y1' [x]==y1[x],y2' [x]==y1[x]+y2[x]1},{y1[0]==1,y2[0]==2},{y1[x],y2[x]},%x,IncludeSingul

yl(z) — €°
y2(z) = e°(z + 2)
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24.2 problem 4

Internal problem ID [6102]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 250

Problem number: 4.

ODE order: 1.

ODE degree: 1.

Solve

With initial conditions
[¥1(0) = 1,42(0) = —1]

v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 34

-

dsolve([diff(y__1(x),x) = y__2(x), diff(y__2(x),x) = 6*xy__1(x)+y__2(x), y__1(\<0) =1, y__2(0)

N\
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v/ Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 42

LDSolve [{y1' [x]==y2[x],y2' [x]==6*y1l[x]+y2[x]},{y1[0]==1,y2[0]==-1},{y1[x],y2 [x}] },x,IncludeSin

yl(z) = —e > (e” +4)

Ol = Ot =

y2(z) =& —e " (3e™* — 8)

234



24.3 problem 5

Internal problem ID [6103]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY

1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 250

Problem number: 5.

ODE order: 1.

ODE degree: 1.

Solve

Y1 () = y1(x) + va()
Yo(z) = y1(z) + ya(z) +€*°

With initial conditions
[¥1(0) = 0,2(0) = 0]

v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 36

-

dsolve([diff(y__1(x),x) = y__1(x)+y__2(x), diff(y__2(x),x) = y__1(x)+y__2(x)+¥xp(3*x), y__1(

N\

235



v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 46

LDSolve [{y1' [x]==y1[x]+y2[x],y2"' [x]==y1[x]+y2[x]+Exp[3*x]1},{y1[0]==0,y2[0] ==0}J, {y1[x],y2[x]},

vi(z) - é(e’” C1)? (26" 4 1)

y2(x) — é(—3€2x +4e* — 1)
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25.1 problem 2

Internal problem ID [6104]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961

Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equa-
tions. Page 254

Problem number: 2.

ODE order: 1.

ODE degree: 1.

Solve

y1(z) = 3y1(z) + zys(z)
Y5(z) = ya(2) + 2°ys()
y3(2) = 2zya(z) — y2(2) + e"ys(z)

X Solution by Maple

Ldsolve ([diff(y__1(x),x)=3*y__1(x)+x*y__3(x),diff(y__2(x),x)=y__2(x)+x"3*y__3 (f() ,diff (y__3(x)

No solution found
X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

-

DSolve [{y1' [x]==3*y1l[x]+x*y3[x],y2"' [x]==y2[x]+x"3*y3[x],y3' [x]==2*x*y1[x]-y2 [\#(] +Exp [x] *y3 [x]

N\

Not solved
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