A Solution Manual For

Applied Differential equations, N Curle, 1971

Nasser M. Abbasi

March 3, 2024

Contents

1 Examples, page 35

 $\mathbf{2}$

1 Examples, page 35

1.1	problem 1																			3
1.2	problem 2																			4
1.3	problem 3																			5
1.4	problem 4																			6

1.1 problem 1

Internal problem ID [2998]

Book: Applied Differential equations, N Curle, 1971

Section: Examples, page 35 Problem number: 1.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [quadrature]

$$y - y' - \frac{{y'}^2}{2} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 145

 $dsolve(y(x)=diff(y(x),x)+1/2*(diff(y(x),x))^2,y(x), singsol=all)$

$$y(x) = \frac{e^{-2 \operatorname{LambertW}\left(-\sqrt{2} e^{-c_1 + x - 1}\right) - 2c_1 + 2x + \ln(2) - 2}}{2} - e^{-\operatorname{LambertW}\left(-e^{-c_1} e^x \sqrt{2} e^{-1}\right) - c_1 + x + \frac{\ln(2)}{2} - 1}$$

$$y(x) = rac{\mathrm{e}^{2\operatorname{RootOf}\left(-_Z - 2x + 2\operatorname{e}^{-Z} - 2 + 2c_1 + \ln\left(rac{\mathrm{e}^3 - Z}{2} - 2\operatorname{e}^{2 - Z} + 2\operatorname{e}^{-Z}
ight)
ight)}}{2} }{-\operatorname{e}^{\operatorname{RootOf}\left(-_Z - 2x + 2\operatorname{e}^{-Z} - 2 + 2c_1 + \ln\left(rac{\mathrm{e}^3 - Z}{2} - 2\operatorname{e}^{2 - Z} + 2\operatorname{e}^{-Z}
ight)
ight)}}$$

✓ Solution by Mathematica

Time used: 18.04 (sec). Leaf size: 66

 $DSolve[y[x] == y'[x] + 1/2*(y'[x])^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{1}{2} W \left(-e^{x-1-c_1} \right) \left(2 + W \left(-e^{x-1-c_1} \right) \right)$$

$$y(x) \to \frac{1}{2}W(e^{x-1+c_1})(2+W(e^{x-1+c_1}))$$

$$y(x) \to 0$$

problem 2 1.2

Internal problem ID [2999]

Book: Applied Differential equations, N Curle, 1971

Section: Examples, page 35 Problem number: 2.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

$$(-xy' + y)^2 - y'^2 = 1$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 57

 $dsolve((y(x)-x*diff(y(x),x))^2=1+(diff(y(x),x))^2,y(x), singsol=all)$

$$y(x) = \sqrt{-x^2 + 1}$$

$$y(x) = -\sqrt{-x^2 + 1}$$

$$y(x) = c_1 x - \sqrt{c_1^2 + 1}$$

 $y(x) = c_1 x + \sqrt{c_1^2 + 1}$

Solution by Mathematica

Time used: 0.127 (sec). Leaf size: 73

 $DSolve[(y[x]-x*y'[x])^2==1+(y'[x])^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x - \sqrt{1 + c_1^2}$$
$$y(x) \to c_1 x + \sqrt{1 + c_1^2}$$
$$y(x) \to -\sqrt{1 - x^2}$$
$$y(x) \to \sqrt{1 - x^2}$$

1.3 problem 3

Internal problem ID [3000]

Book: Applied Differential equations, N Curle, 1971

Section: Examples, page 35 Problem number: 3.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[$\underline{}$ homogeneous, 'class C'], $\underline{}$ dAlembert]

$$y - y'^2 \left(1 - \frac{2y'}{3}\right) = x$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

 $dsolve(y(x)-x=(diff(y(x),x))^2*(1-2/3*\ diff(y(x),x)),y(x),\ singsol=all)$

$$y(x) = x + rac{1}{3}$$
 $y(x) = c_1 - rac{2(c_1 - x)^{rac{3}{2}}}{3}$ $y(x) = c_1 + rac{2(c_1 - x)^{rac{3}{2}}}{3}$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y[x]-x==(y'[x])^2*(1-2/3* y'[x]),y[x],x,IncludeSingularSolutions -> True]$

Timed out

1.4 problem 4

Internal problem ID [3001]

Book: Applied Differential equations, N Curle, 1971

Section: Examples, page 35 Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, _Riccati]

$$y'x^2 - x(y-1) - (y-1)^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x)=x*(y(x)-1)+(y(x)-1)^2,y(x), singsol=all)$

$$y(x) = 1 - \frac{x}{\ln(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.203 (sec). Leaf size: 23

 $DSolve[x^2*y'[x] == x*(y[x]-1)+(y[x]-1)^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 1 + \frac{x}{-\log(x) + c_1}$$

$$y(x) \to 1$$