A Solution Manual For

DIFFERENTIAL EQUATIONS
by Paul Blanchard, Robert L.
Devaney, Glen R. Hall. 4th
edition. Brooks/Cole. Boston,
USA. 2012

Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33	3
2	Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47	4 1
3	Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61	73
4	Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71	87
5	Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89	98
6	Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121	139
7	Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133	156
8	Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136	181
9	Chapter 3. Linear Systems. Exercises section 3.1. page 258	21 4
10	Chapter 3. Linear Systems. Exercises section 3.2. page 277	235
11	Chapter 3. Linear Systems. Exercises section 3.4 page 310	258
12	Chapter 3. Linear Systems. Exercises section 3.5 page 327	279
13	Chapter 3. Linear Systems. Exercises section 3.6 page 342	29 4
14	Chapter 3. Linear Systems. Exercises section 3.8 page 371	297
15	Chapter 3. Linear Systems. Review Exercises for chapter 3. page 37	632 3
16	Chapter 4. Forcing and Resonance. Section 4.1 page 399	340
17	Chapter 4. Forcing and Resonance. Section 4.2 page 412	382

18 Chapter 4. Forcing and Resonance. Section 4.3 page 424	400
19 Chapter 6. Laplace transform. Section 6.3 page 600	406
20 Chapter 6. Laplace transform. Section 6.4. page 608	416
21 Chapter 6. Laplace transform. Section 6.6. page 624	421

1 Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

1.1	problem 1.									•											4
1.2	problem 5 .																				5
1.3	problem 6 .																				6
1.4	problem 7 .																				7
1.5	problem 8 .																				8
1.6	problem 9 .																				9
1.7	problem 10						•	 •							•					•	10
1.8	problem 11				•							•		•				•			11
1.9	problem 12				•																12
1.10	problem 13	•	•		•							•		•						•	13
1.11	problem 14				•																14
1.12	problem 15	•	•		•							•		•						•	15
1.13	problem 16				•																16
1.14	problem 17											•		•	•						17
1.15	problem 18																				18
1.16	problem 19																				21
1.17	problem 20																				22
1.18	problem 21						•								•					•	23
1.19	problem 22																				24
1.20	problem 23																				25
1.21	problem 24																				26
1.22	problem 25																				27
1.23	problem 26																				28
1.24	problem 27						•	 													29
1.25	problem 28						•	 													30
1.26	problem 29																				31
1.27	problem 30																				32
1.28	problem 31																				33
1.29	problem 32																				34
1.30	problem 33							 													35
1.31	problem 34							 													36
1.32	problem 35							 													37
1.33	problem 36							 													38
1.34	problem 37																				39
1.35	problem 38							 													40

1.1 problem 1

Internal problem ID [12545]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y+1}{t+1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(t),t)=(y(t)+1)/(t+1),y(t), singsol=all)

$$y(t) = -1 + (t+1) c_1$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 18

 $DSolve[y'[t]==(y[t]+1)/(t+1),y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -1 + c_1(t+1)$$

$$y(t) \rightarrow -1$$

1.2 problem 5

Internal problem ID [12546]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - y^2 t^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(t),t)=(t*y(t))^2,y(t), singsol=all)$

$$y(t) = \frac{3}{-t^3 + 3c_1}$$

✓ Solution by Mathematica

Time used: 0.214 (sec). Leaf size: 22 $\,$

DSolve[y'[t]==(t*y[t])^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{3}{t^3 + 3c_1}$$

$$y(t) \to 0$$

1.3 problem 6

Internal problem ID [12547]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - t^4 y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(t),t)=t^4*y(t),y(t), singsol=all)$

$$y(t) = c_1 \mathrm{e}^{\frac{t^5}{5}}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 22

DSolve[y'[t]==t^4*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 e^{\frac{t^5}{5}}$$

$$y(t) \to 0$$

1.4 problem 7

Internal problem ID [12548]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)=2*y(t)+1,y(t), singsol=all)

$$y(t) = -\frac{1}{2} + c_1 e^{2t}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 24

DSolve[y'[t]==2*y[t]+1,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{1}{2} + c_1 e^{2t}$$

$$y(t) \to -\frac{1}{2}$$

1.5 problem 8

Internal problem ID [12549]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y = 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)=2-y(t),y(t), singsol=all)

$$y(t) = 2 + c_1 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 20

DSolve[y'[t]==2-y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 2 + c_1 e^{-t}$$

$$y(t) \rightarrow 2$$

1.6 problem 9

Internal problem ID [12550]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 9.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - e^{-y} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 8

dsolve(diff(y(t),t)=exp(-y(t)),y(t), singsol=all)

$$y(t) = \ln\left(t + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.369 (sec). Leaf size: 10

DSolve[y'[t]==Exp[-y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \log(t + c_1)$$

1.7 problem 10

Internal problem ID [12551]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 10.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - x^2 = 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

 $dsolve(diff(x(t),t)=1+x(t)^2,x(t), singsol=all)$

$$x(t) = \tan\left(t + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.222 (sec). Leaf size: 24

DSolve[x'[t]==1+x[t]^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \tan(t+c_1)$$

$$x(t) \rightarrow -i$$

$$x(t) \to i$$

1.8 problem 11

Internal problem ID [12552]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2ty^2 - 3y^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=2*t*y(t)^2+3*y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{-t^2 + c_1 - 3t}$$

✓ Solution by Mathematica

Time used: 0.218 (sec). Leaf size: 23

DSolve[y'[t]==2*t*y[t]^2+3*y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\frac{1}{t^2 + 3t + c_1}$$

$$y(t) \to 0$$

1.9 problem 12

Internal problem ID [12553]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{t}{y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(t),t)=t/y(t),y(t), singsol=all)

$$y(t) = \sqrt{t^2 + c_1}$$

$$y(t) = -\sqrt{t^2 + c_1}$$

✓ Solution by Mathematica

Time used: 0.14 (sec). Leaf size: 35

DSolve[y'[t]==t/y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\sqrt{t^2 + 2c_1}$$

$$y(t) o \sqrt{t^2 + 2c_1}$$

1.10 problem 13

Internal problem ID [12554]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{t}{t^2y + y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(diff(y(t),t)=t/(t^2*y(t)+y(t)),y(t), singsol=all)$

$$y(t) = \sqrt{\ln(t^2 + 1) + c_1}$$
$$y(t) = -\sqrt{\ln(t^2 + 1) + c_1}$$

✓ Solution by Mathematica

Time used: 0.162 (sec). Leaf size: 41

DSolve[y'[t]==t/(t^2*y[t]+y[t]),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\sqrt{\log(t^2+1) + 2c_1}$$

$$y(t) \to \sqrt{\log(t^2 + 1) + 2c_1}$$

1.11 problem 14

Internal problem ID [12555]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - ty^{\frac{1}{3}} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=t*y(t)^(1/3),y(t), singsol=all)$

$$y(t)^{\frac{2}{3}} - \frac{t^2}{3} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.346 (sec). Leaf size: 31

DSolve[y'[t]==t*y[t]^(1/3),y[t],t,IncludeSingularSolutions -> True]

$$y(t) o rac{(t^2 + 2c_1)^{3/2}}{3\sqrt{3}}$$

$$y(t) \to 0$$

1.12 problem 15

Internal problem ID [12556]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$y' - \frac{1}{2y+1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(t),t)=1/(2*y(t)+1),y(t), singsol=all)

$$y(t) = -\frac{1}{2} - \frac{\sqrt{1 + 4t + 4c_1}}{2}$$

$$y(t) = -\frac{1}{2} + \frac{\sqrt{1 + 4t + 4c_1}}{2}$$

✓ Solution by Mathematica

Time used: 0.14 (sec). Leaf size: 49

DSolve[y'[t]==1/(2*y[t]+1),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{2} \left(-1 - \sqrt{4t + 1 + 4c_1} \right)$$

$$y(t) \rightarrow \frac{1}{2} \left(-1 + \sqrt{4t + 1 + 4c_1} \right)$$

1.13 problem 16

Internal problem ID [12557]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2y+1}{t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(t),t)=(2*y(t)+1)/t,y(t), singsol=all)

$$y(t) = -\frac{1}{2} + c_1 t^2$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 22

DSolve[y'[t]==(2*y[t]+1)/t,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{1}{2} + c_1 t^2$$

$$y(t) \rightarrow -\frac{1}{2}$$

1.14 problem 17

Internal problem ID [12558]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y(1-y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(t),t)=y(t)*(1-y(t)),y(t), singsol=all)

$$y(t) = \frac{1}{1 + c_1 e^{-t}}$$

✓ Solution by Mathematica

Time used: 0.394 (sec). Leaf size: 29

DSolve[y'[t]==y[t]*(1-y[t]),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{e^t}{e^t + e^{c_1}}$$

$$y(t) \to 0$$

$$y(t) \rightarrow 1$$

1.15 problem 18

Internal problem ID [12559]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{4t}{1+3y^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 373

 $dsolve(diff(y(t),t)=4*t/(1+3*y(t)^2),y(t), singsol=all)$

$$y(t) = \frac{\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324c_1t^2 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}{1}$$

$$-\frac{1}{\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324c_1t^2 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}}$$

$$y(t) = -\frac{\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324c_1t^2 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}{6}$$

$$+\frac{1}{2\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324c_1t^2 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}}$$

$$-\frac{i\sqrt{3}\left(\frac{\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324c_1t^2 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}{3} + \frac{1}{\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324c_1t^2 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}}\right)}$$

$$+\frac{1}{2\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324c_1t^2 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}}$$

$$+\frac{1}{2\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324c_1t^2 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}}$$

$$+\frac{i\sqrt{3}\left(\frac{\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324c_1t^2 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}{3} + \frac{1}{\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324c_1t^2 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}}$$

$$+\frac{1}{2}\frac{1}{\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324c_1t^2 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}}$$

✓ Solution by Mathematica

Time used: 3.132 (sec). Leaf size: 298

DSolve[y'[t]==4*t/(1+3*y[t]^2),y[t],t,IncludeSingularSolutions -> True]

$$\begin{split} y(t) & \to \frac{\sqrt[3]{54t^2 + \sqrt{108 + 729 \left(2t^2 + c_1\right)^2} + 27c_1}}{3\sqrt[3]{2}} - \frac{\sqrt[3]{2}}{\sqrt[3]{54t^2 + \sqrt{108 + 729 \left(2t^2 + c_1\right)^2} + 27c_1}} \\ y(t) & \to \frac{\left(-1 + i\sqrt{3}\right)\sqrt[3]{54t^2 + \sqrt{108 + 729 \left(2t^2 + c_1\right)^2} + 27c_1}}{6\sqrt[3]{2}} \\ & + \frac{1 + i\sqrt{3}}{2^{2/3}\sqrt[3]{54t^2 + \sqrt{108 + 729 \left(2t^2 + c_1\right)^2} + 27c_1}} \\ y(t) & \to \frac{1 - i\sqrt{3}}{2^{2/3}\sqrt[3]{54t^2 + \sqrt{108 + 729 \left(2t^2 + c_1\right)^2} + 27c_1}} \\ & - \frac{\left(1 + i\sqrt{3}\right)\sqrt[3]{54t^2 + \sqrt{108 + 729 \left(2t^2 + c_1\right)^2} + 27c_1}}{6\sqrt[3]{2}} \end{split}$$

1.16 problem 19

Internal problem ID [12560]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$v' - t^2v + 2v = t^2 - 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(v(t),t)=t^2*v(t)-2-2*v(t)+t^2,v(t), singsol=all)$

$$v(t) = -1 + c_1 \mathrm{e}^{rac{t\left(t^2 - 6
ight)}{3}}$$

✓ Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 27

DSolve[v'[t]==t^2*v[t]-2-2*v[t]+t^2,v[t],t,IncludeSingularSolutions -> True]

$$v(t) \to -1 + c_1 e^{\frac{1}{3}t(t^2-6)}$$

$$v(t) \to -1$$

1.17 problem 20

Internal problem ID [12561]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{1}{1+yt+y+t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

dsolve(diff(y(t),t)=1/(t*y(t)+t+y(t)+1),y(t), singsol=all)

$$y(t) = -1 - \sqrt{1 + 2\ln(t+1) + 2c_1}$$

$$y(t) = -1 + \sqrt{1 + 2\ln(t+1) + 2c_1}$$

✓ Solution by Mathematica

Time used: 0.217 (sec). Leaf size: 47

DSolve[y'[t]==1/(t*y[t]+t+y[t]+1),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -1 - \sqrt{2\log(t+1) + 1 + 2c_1}$$

$$y(t) \to -1 + \sqrt{2\log(t+1) + 1 + 2c_1}$$

1.18 problem 21

Internal problem ID [12562]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - \frac{\mathrm{e}^t y}{1 + y^2} = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(diff(y(t),t)=exp(t)*y(t)/(1+y(t)^2),y(t), singsol=all)$

$$y(t) = \mathrm{e}^{-rac{\mathrm{LambertW}\left(\mathrm{e}^{2c_1+2\,\mathrm{e}^t}
ight)}{2}+c_1+\mathrm{e}^t}$$

Solution by Mathematica

Time used: 33.022 (sec). Leaf size: 46

DSolve[y'[t]==Exp[t]*y[t]/(1+y[t]^2),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\sqrt{W\left(e^{2(e^t+c_1)}\right)}$$
$$y(t) \to \sqrt{W\left(e^{2(e^t+c_1)}\right)}$$

$$y(t) \rightarrow \sqrt{W\left(e^{2(e^t+c_1)}\right)}$$

$$y(t) \to 0$$

1.19 problem 22

Internal problem ID [12563]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'-y^2=-4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(t),t)=y(t)^2-4,y(t), singsol=all)$

$$y(t) = -\frac{2(1 + e^{4t}c_1)}{e^{4t}c_1 - 1}$$

✓ Solution by Mathematica

Time used: 1.053 (sec). Leaf size: 40

DSolve[y'[t]==y[t]^2-4,y[t],t,IncludeSingularSolutions -> True]

$$y(t) o rac{2 - 2e^{4(t+c_1)}}{1 + e^{4(t+c_1)}}$$

$$y(t) \rightarrow -2$$

$$y(t) \rightarrow 2$$

1.20 problem 23

Internal problem ID [12564]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$w' - \frac{w}{t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve(diff(w(t),t)=w(t)/t,w(t), singsol=all)

$$w(t) = c_1 t$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 14

DSolve[w'[t]==w[t]/t,w[t],t,IncludeSingularSolutions -> True]

$$w(t) \rightarrow c_1 t$$

$$w(t) \to 0$$

1.21 problem 24

Internal problem ID [12565]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \sec(y) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 8

dsolve(diff(y(x),x)=sec(y(x)),y(x), singsol=all)

$$y(x) = \arcsin\left(x + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.35 (sec). Leaf size: 10

DSolve[y'[x]==Sec[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \arcsin(x + c_1)$$

1.22 problem 25

Internal problem ID [12566]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' + tx = 0$$

With initial conditions

$$\left[x(0) = \frac{1}{\sqrt{\pi}}\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve([diff(x(t),t)=-x(t)*t,x(0) = 1/Pi^(1/2)],x(t), singsol=all)$

$$x(t) = \frac{e^{-\frac{t^2}{2}}}{\sqrt{\pi}}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 20

DSolve[{x'[t]==-x[t]*t,{x[0]==1/Sqrt[Pi]}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) o rac{e^{-rac{t^2}{2}}}{\sqrt{\pi}}$$

1.23 problem 26

Internal problem ID [12567]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - yt = 0$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

dsolve([diff(y(t),t)=t*y(t),y(0) = 3],y(t), singsol=all)

$$y(t) = 3 \operatorname{e}^{\frac{t^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 16

DSolve[{y'[t]==t*y[t],{y[0]==3}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 3e^{\frac{t^2}{2}}$$

1.24 problem 27

Internal problem ID [12568]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 0$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 9

 $dsolve([diff(y(t),t)=-y(t)^2,y(0)=1/2],y(t), singsol=all)$

$$y(t) = \frac{1}{t+2}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 10

 $DSolve[\{y'[t]==-y[t]^2,\{y[0]==1/2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{t+2}$$

1.25 problem 28

Internal problem ID [12569]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - t^2 y^3 = 0$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 15

 $dsolve([diff(y(t),t)=t^2*y(t)^3,y(0) = -1],y(t), singsol=all)$

$$y(t) = -\frac{3}{\sqrt{-6t^3 + 9}}$$

✓ Solution by Mathematica

Time used: 0.285 (sec). Leaf size: 20

 $DSolve[\{y'[t]==t^2*y[t]^3,\{y[0]==-1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow -\frac{1}{\sqrt{1-\frac{2t^3}{3}}}$$

1.26 problem 29

Internal problem ID [12570]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(t),t)=-y(t)^2,y(0)=0],y(t), singsol=all)$

$$y(t) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $DSolve[\{y'[t]==-y[t]^2,\{y[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 0$$

1.27 problem 30

Internal problem ID [12571]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{t}{y - t^2 y} = 0$$

With initial conditions

$$[y(0) = 4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 24

 $\label{eq:decomposition} dsolve([diff(y(t),t)=t/(y(t)-t^2*y(t)),y(0)=4],y(t), singsol=all)$

$$y(t) = \sqrt{-\ln(t-1) - \ln(t+1) + i\pi + 16}$$

✓ Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 24

 $DSolve[\{y'[t]==t/(y[t]-t^2*y[t]),\{y[0]==4\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \sqrt{-\log(t^2 - 1) + i\pi + 16}$$

1.28 problem 31

Internal problem ID [12572]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y = 1$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([diff(y(t),t)=2*y(t)+1,y(0) = 3],y(t), singsol=all)

$$y(t) = \frac{7e^{2t}}{2} - \frac{1}{2}$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 18

 $\label{eq:DSolve} DSolve[\{y'[t]==2*y[t]+1,\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{2} \left(7e^{2t} - 1 \right)$$

1.29 problem 32

Internal problem ID [12573]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 32.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - ty^2 - 2y^2 = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 16

 $dsolve([diff(y(t),t)=t*y(t)^2+2*y(t)^2,y(0) = 1],y(t), singsol=all)$

$$y(t) = -\frac{2}{t^2 + 4t - 2}$$

✓ Solution by Mathematica

Time used: 0.219 (sec). Leaf size: 17

 $DSolve[\{y'[t]==t*y[t]^2+2*y[t]^2,\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow -\frac{2}{t^2+4t-2}$$

1.30 problem 33

Internal problem ID [12574]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 33.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - \frac{t^2}{x + t^3 x} = 0$$

With initial conditions

$$[x(0) = -2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

 $dsolve([diff(x(t),t)=t^2/(x(t)+t^3*x(t)),x(0) = -2],x(t), singsol=all)$

$$x(t) = -\frac{\sqrt{6\ln(t^3 + 1) + 36}}{3}$$

✓ Solution by Mathematica

Time used: 0.202 (sec). Leaf size: $26\,$

 $DSolve[\{x'[t]==t^2/(x[t]+t^3*x[t]),\{x[0]==-2\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \rightarrow -\sqrt{\frac{2}{3}}\sqrt{\log{(t^3+1)}+6}$$

1.31 problem 34

Internal problem ID [12575]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 34.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{1 - y^2}{y} = 0$$

With initial conditions

$$[y(0) = -2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 16

 $dsolve([diff(y(t),t)=(1-y(t)^2)/y(t),y(0) = -2],y(t), singsol=all)$

$$y(t) = -\sqrt{1 + 3e^{-2t}}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 20

 $DSolve[\{y'[t]==(1-y[t]^2)/y[t],\{y[0]==-2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\sqrt{3e^{-2t} + 1}$$

1.32 problem 35

Internal problem ID [12576]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 35.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \left(1 + y^2\right)t = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

 $dsolve([diff(y(t),t)=(y(t)^2+1)*t,y(0) = 1],y(t), singsol=all)$

$$y(t) = \tan\left(\frac{t^2}{2} + \frac{\pi}{4}\right)$$

✓ Solution by Mathematica

Time used: 0.29 (sec). Leaf size: 17

 $DSolve[\{y'[t]==(y[t]^2+1)*t,\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \tan\left(\frac{1}{4}(2t^2 + \pi)\right)$$

1.33 problem 36

Internal problem ID [12577]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 36.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{1}{2y+3} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(y(t),t)=1/(2*y(t)+3),y(0) = 1],y(t), singsol=all)

$$y(t) = -\frac{3}{2} + \frac{\sqrt{25 + 4t}}{2}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 20

 $DSolve[\{y'[t]==1/(2*y[t]+3),\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow \frac{1}{2} \left(\sqrt{4t + 25} - 3 \right)$$

1.34 problem 37

Internal problem ID [12578]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 37.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2ty^2 - 3y^2t^2 = 0$$

With initial conditions

$$[y(1) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve([diff(y(t),t)=2*t*y(t)^2+3*t^2*y(t)^2,y(1) = -1],y(t), singsol=all)$

$$y(t) = -\frac{1}{t^3 + t^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.222 (sec). Leaf size: 17

DSolve[{y'[t]==2*t*y[t]^2+3*t^2*y[t]^2,{y[1]==-1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\frac{1}{t^3 + t^2 - 1}$$

1.35 problem 38

Internal problem ID [12579]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 38.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$y' - \frac{y^2 + 5}{y} = 0$$

With initial conditions

$$[y(0) = -2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 16

 $dsolve([diff(y(t),t)=(y(t)^2+5)/y(t),y(0) = -2],y(t), singsol=all)$

$$y(t) = -\sqrt{-5 + 9e^{2t}}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 20

 $DSolve[\{y'[t]==(y[t]^2+5)/y[t],\{y[0]==-2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\sqrt{9e^{2t} - 5}$$

2 Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

2.1	problem	1		•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	42
2.2	${\bf problem}$	2																															43
2.3	${\bf problem}$	3																															44
2.4	${\bf problem}$	4																					•										45
2.5	${\bf problem}$	5																															46
2.6	${\rm problem}$	6																					•	•									47
2.7	$\operatorname{problem}$	7																					•										48
2.8	${\rm problem}$	8																					•										49
2.9	$\operatorname{problem}$	9																															50
2.10	$\operatorname{problem}$	10																					•										51
2.11	$\operatorname{problem}$	15	b(1)																				•										52
2.12	$\operatorname{problem}$	15	b(2)																				•										53
2.13	$\operatorname{problem}$	15	b(3)																				•										54
2.14	${\rm problem}$	15	b(4)			•													•			•	•										55
	$\operatorname{problem}$																																56
2.16	${\rm problem}$	16	(i) .			•													•			•	•										57
2.17	${\rm problem}$	16	(ii)			•													•			•	•										58
2.18	$\operatorname{problem}$	16	(iii)			•																	•										59
2.19	$\operatorname{problem}$	16	(iv)			•																	•										60
2.20	$\operatorname{problem}$	16	(v)																				•					•					61
2.21	$\operatorname{problem}$	16	(vi)			•													•				•										62
	$\operatorname{problem}$		` '																														63
2.23	$\operatorname{problem}$	16	(viii)		•													•				•										64
2.24	$\operatorname{problem}$	19	a(i)																				•										65
	$\operatorname{problem}$																																67
2.26	${\bf problem}$	19	a(iii))																			•					•					68
2.27	$\operatorname{problem}$	20																				•	•										70
2.28	$\operatorname{problem}$	21																					•										71
2.29	problem	22																															72

2.1 problem 1

Internal problem ID [12580]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = t^2 + t$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=t^2+t,y(t), singsol=all)$

$$y(t) = \frac{1}{3}t^3 + \frac{1}{2}t^2 + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

DSolve[y'[t]==t^2+t,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{t^3}{3} + \frac{t^2}{2} + c_1$$

2.2 problem 2

Internal problem ID [12581]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = t^2 + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(t),t)=t^2+1,y(t), singsol=all)$

$$y(t) = \frac{1}{3}t^3 + t + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 16

DSolve[y'[t]==t^2+1,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{t^3}{3} + t + c_1$$

2.3 problem 3

Internal problem ID [12582]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 2y = 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve(diff(y(t),t)=1-2*y(t),y(t), singsol=all)

$$y(t) = \frac{1}{2} + c_1 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 24

DSolve[y'[t]==1-2*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{2} + c_1 e^{-2t}$$

$$y(t) \to \frac{1}{2}$$

2.4 problem 4

Internal problem ID [12583]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 4y^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

 $dsolve(diff(y(t),t)=4*y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{-4t + c_1}$$

✓ Solution by Mathematica

Time used: 0.157 (sec). Leaf size: 20

DSolve[y'[t]==4*y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{1}{4t + c_1}$$

$$y(t) \to 0$$

2.5 problem 5

Internal problem ID [12584]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y(1-y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(t),t)=2*y(t)*(1-y(t)),y(t), singsol=all)

$$y(t) = \frac{1}{1 + c_1 e^{-2t}}$$

✓ Solution by Mathematica

Time used: 0.404 (sec). Leaf size: 33

DSolve[y'[t]==2*y[t]*(1-y[t]),y[t],t,IncludeSingularSolutions -> True]

$$y(t) o rac{e^{2t}}{e^{2t} + e^{c_1}}$$

$$y(t) \to 0$$

$$y(t) \rightarrow 1$$

2.6 problem 6

Internal problem ID [12585]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - y = t + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(t),t)=y(t)+t+1,y(t), singsol=all)

$$y(t) = -t - 2 + c_1 e^t$$

✓ Solution by Mathematica

Time used: 0.1 (sec). Leaf size: 16

DSolve[y'[t]==y[t]+t+1,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -t + c_1 e^t - 2$$

2.7 problem 7

Internal problem ID [12586]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y(1-y) = 0$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 12

dsolve([diff(y(t),t)=3*y(t)*(1-y(t)),y(0) = 1/2],y(t), singsol=all)

$$y(t) = \frac{1}{1 + e^{-3t}}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 20

 $DSolve[\{y'[t]==3*y[t]*(1-y[t]),\{y[0]==1/2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{e^{3t}}{e^{3t} + 1}$$

2.8 problem 8

Internal problem ID [12587]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - 2y = -t$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve([diff(y(t),t)=2*y(t)-t,y(0) = 1/2],y(t), singsol=all)

$$y(t) = \frac{t}{2} + \frac{1}{4} + \frac{e^{2t}}{4}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 19

 $\label{eq:DSolve} DSolve[\{y'[t]==2*y[t]-t,\{y[0]==1/2\}\},y[t],t,IncludeSingularSolutions \ -> \ True]$

$$y(t) \to \frac{1}{4} (2t + e^{2t} + 1)$$

2.9 problem 9

Internal problem ID [12588]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Riccati]

$$y' - \left(y + \frac{1}{2}\right)(t+y) = 0$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 65

dsolve([diff(y(t),t)=(y(t)+1/2)*(y(t)+t),y(0) = 1/2],y(t), singsol=all)

$$y(t) = \frac{-i\sqrt{\pi} e^{-\frac{1}{8}}\sqrt{2} \operatorname{erf}\left(\frac{i\sqrt{2}(-1+2t)}{4}\right) - i\sqrt{\pi} e^{-\frac{1}{8}}\sqrt{2} \operatorname{erf}\left(\frac{i\sqrt{2}}{4}\right) + 4 e^{\frac{t(t-1)}{2}} - 2}{2i\sqrt{\pi} e^{-\frac{1}{8}}\sqrt{2} \operatorname{erf}\left(\frac{i\sqrt{2}(-1+2t)}{4}\right) + 2i\sqrt{\pi} e^{-\frac{1}{8}}\sqrt{2} \operatorname{erf}\left(\frac{i\sqrt{2}}{4}\right) + 4}$$

✓ Solution by Mathematica

Time used: 0.332 (sec). Leaf size: 124

$$y(t) \rightarrow \frac{-\sqrt{2\pi} \operatorname{erfi}\left(\frac{1-2t}{2\sqrt{2}}\right) + \sqrt{2\pi} \operatorname{erfi}\left(\frac{1}{2\sqrt{2}}\right) + 4e^{\frac{1}{8}(1-2t)^2} - 2\sqrt[8]{e}}{2\sqrt{2\pi} \operatorname{erfi}\left(\frac{1-2t}{2\sqrt{2}}\right) - 2\sqrt{2\pi} \operatorname{erfi}\left(\frac{1}{2\sqrt{2}}\right) + 4\sqrt[8]{e}}$$

2.10 problem 10

Internal problem ID [12589]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - (t+1)y = 0$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

dsolve([diff(y(t),t)=(t+1)*y(t),y(0) = 1/2],y(t), singsol=all)

$$y(t) = \frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 19

 $DSolve[\{y'[t]==(t+1)*y[t],\{y[0]==1/2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{2}e^{\frac{1}{2}t(t+2)}$$

2.11 problem 15 b(1)

Internal problem ID [12590]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 15 b(1).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$S' - S^3 + 2S^2 - S = 0$$

With initial conditions

$$\left[S(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 1.0 (sec). Leaf size: 37

 $dsolve([diff(S(t),t)=S(t)^3-2*S(t)^2+S(t),S(0) = 1/2],S(t), singsol=all)$

$$S(t) = \mathrm{e}^{\mathrm{RootOf}(-i\pi\,\mathrm{e}^{-Z} - \ln(\mathrm{e}^{-Z} + 1)\mathrm{e}^{-Z} + _Z\mathrm{e}^{-Z} + t\,\mathrm{e}^{-Z} + 2\,\mathrm{e}^{-Z} + 1)} + 1$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

{}

2.12 problem 15 b(2)

Internal problem ID [12591]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 15 b(2).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$S' - S^3 + 2S^2 - S = 0$$

With initial conditions

$$\left[S(1) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.703 (sec). Leaf size: 35

 $dsolve([diff(S(t),t)=S(t)^3-2*S(t)^2+S(t),S(1) = 1/2],S(t), singsol=all)$

$$S(t) = e^{\text{RootOf}(-i\pi\,e^{-Z} - \ln(e^{-Z} + 1)e^{-Z} + -Ze^{-Z} + t\,e^{-Z} + e^{-Z} + 1)} + 1$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

{}

2.13 problem 15 b(3)

Internal problem ID [12592]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 15 b(3).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$S' - S^3 + 2S^2 - S = 0$$

With initial conditions

$$[S(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $\label{eq:decomposition} $$ dsolve([diff(S(t),t)=S(t)^3-2*S(t)^2+S(t),S(0)=1],S(t), $$ singsol=all)$$

$$S(t) = 1$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

DSolve[{S'[t]==S[t]^3-2*S[t]^2+S[t],{S[0]==1}},S[t],t,IncludeSingularSolutions -> True]

$$S(t) \rightarrow 1$$

2.14 problem 15 b(4)

Internal problem ID [12593]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 15 b(4).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$S' - S^3 + 2S^2 - S = 0$$

With initial conditions

$$\left[S(0) = \frac{3}{2}\right]$$

✓ Solution by Maple

Time used: 0.25 (sec). Leaf size: 41

 $dsolve([diff(S(t),t)=S(t)^3-2*S(t)^2+S(t),S(0) = 3/2],S(t), singsol=all)$

$$S(t) = \mathrm{e}^{\mathrm{RootOf}\left(\mathrm{e}^{-Z}\ln(3) - \ln\left(\mathrm{e}^{-Z} + 1\right)\mathrm{e}^{-Z} + _{Z}\,\mathrm{e}^{-Z} + t\,\mathrm{e}^{-Z} - 2\,\mathrm{e}^{-Z} + 1\right)} + 1$$

✓ Solution by Mathematica

Time used: 0.885 (sec). Leaf size: 31

 $DSolve[\{S'[t]==S[t]^3-2*S[t]^2+S[t],\{S[0]==3/2\}\},S[t],t,IncludeSingularSolutions \rightarrow True]$

$$S(t) \rightarrow \text{InverseFunction} \left[-\frac{1}{\#1-1} - \log(\#1-1) + \log(\#1) \& \right] \left[t - 2 + \log(3) \right]$$

2.15 problem 15 b(5)

Internal problem ID [12594]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 15 b(5).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$S' - S^3 + 2S^2 - S = 0$$

With initial conditions

$$\left[S(0) = -\frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.687 (sec). Leaf size: 45

 $dsolve([diff(S(t),t)=S(t)^3-2*S(t)^2+S(t),S(0) = -1/2],S(t), singsol=all)$

$$S(t) = \mathrm{e}^{\mathrm{RootOf}\left(-3\ln\left(\mathrm{e}^{-Z}+1\right)\mathrm{e}^{-Z}-3\,\mathrm{e}^{-Z}\ln(3)+3_Z\mathrm{e}^{-Z}+3t\,\mathrm{e}^{-Z}+2\,\mathrm{e}^{-Z}+3\right)} + 1$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{S'[t]==S[t]^3-2*S[t]^2+S[t],{S[0]==-1/2}},S[t],t,IncludeSingularSolutions -> True]

{}

2.16 problem 16 (i)

Internal problem ID [12595]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(t),t)=y(t)^2+y(t),y(t), singsol=all)$

$$y(t) = \frac{1}{-1 + c_1 e^{-t}}$$

✓ Solution by Mathematica

Time used: 0.384 (sec). Leaf size: 33

DSolve[y'[t]==y[t]^2+y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -rac{e^{t+c_1}}{-1+e^{t+c_1}}$$

$$y(t) \rightarrow -1$$

$$y(t) \to 0$$

2.17 problem 16 (ii)

Internal problem ID [12596]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve(diff(y(t),t)=y(t)^2-y(t),y(t), singsol=all)$

$$y(t) = \frac{1}{1 + c_1 e^t}$$

✓ Solution by Mathematica

Time used: 0.294 (sec). Leaf size: 25

DSolve[y'[t]==y[t]^2-y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{1 + e^{t + c_1}}$$

$$y(t) \to 0$$

$$y(t) \to 1$$

2.18 problem 16 (iii)

Internal problem ID [12597]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^3 - y^2 = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 18

 $dsolve(diff(y(t),t)=y(t)^3+y(t)^2,y(t), singsol=all)$

$$y(t) = -\frac{1}{\text{LambertW}\left(-c_1 e^{t-1}\right) + 1}$$

✓ Solution by Mathematica

Time used: 0.318 (sec). Leaf size: 38

DSolve[y'[t]==y[t]^3+y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \text{InverseFunction} \left[-\frac{1}{\#1} - \log(\#1) + \log(\#1 + 1) \& \right] [t + c_1]$$

$$y(t) \rightarrow -1$$

$$y(t) \to 0$$

2.19 problem 16 (iv)

Internal problem ID [12598]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = -t^2 + 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(t),t)=2-t^2,y(t), singsol=all)$

$$y(t) = -\frac{1}{3}t^3 + 2t + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 18

DSolve[y'[t]==2-t^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{t^3}{3} + 2t + c_1$$

2.20 problem 16 (v)

Internal problem ID [12599]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (v).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - yt - ty^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=t*y(t)+t*y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{-1 + e^{-\frac{t^2}{2}}c_1}$$

✓ Solution by Mathematica

Time used: 0.396 (sec). Leaf size: 45

DSolve[y'[t]==t*y[t]+t*y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) o -rac{e^{rac{t^2}{2}+c_1}}{-1+e^{rac{t^2}{2}+c_1}}$$

$$y(t) \rightarrow -1$$

$$y(t) \to 0$$

2.21 problem 16 (vi)

Internal problem ID [12600]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (vi).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - t^2 y = t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(t),t)=t^2+t^2*y(t),y(t), singsol=all)$

$$y(t) = -1 + e^{\frac{t^3}{3}}c_1$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 24

DSolve[y'[t]==t^2+t^2*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -1 + c_1 e^{\frac{t^3}{3}}$$

$$y(t) \rightarrow -1$$

2.22 problem 16 (vii)

Internal problem ID [12601]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (vii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - yt = t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(t),t)=t+t*y(t),y(t), singsol=all)

$$y(t) = -1 + e^{\frac{t^2}{2}}c_1$$

✓ Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 24

DSolve[y'[t]==t+t*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -1 + c_1 e^{\frac{t^2}{2}}$$

$$y(t) \rightarrow -1$$

2.23 problem 16 (viii)

Internal problem ID [12602]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (viii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'=t^2-2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(t),t)=t^2-2,y(t), singsol=all)$

$$y(t) = \frac{1}{3}t^3 - 2t + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 18

DSolve[y'[t]==t^2-2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \frac{t^3}{3} - 2t + c_1$$

2.24 problem 19 a(i)

Internal problem ID [12603]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 19 a(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\theta' + \frac{11\cos(\theta)}{10} = \frac{9}{10}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve(diff(theta(t),t)=1-cos(theta(t))+(1+cos(theta(t)))*(-1/10),theta(t),singsol=all)

$$\theta(t) = -2 \arctan \left(\frac{\tanh \left(\frac{(t+c_1)\sqrt{10}}{10} \right) \sqrt{10}}{10} \right)$$

✓ Solution by Mathematica

Time used: 1.026 (sec). Leaf size: 69

DSolve[theta'[t]==1-Cos[theta[t]]+(1+Cos[theta[t]])*(-1/10),theta[t],t,IncludeSingularSoluti

$$heta(t)
ightarrow -2 \arctan \left(rac{ anh\left(rac{t-10c_1}{\sqrt{10}}
ight)}{\sqrt{10}}
ight)$$

$$\theta(t) \to -\arccos\left(\frac{9}{11}\right)$$

$$\theta(t) \to \arccos\left(\frac{9}{11}\right)$$

$$\theta(t) \to -2 \arctan\left(\frac{1}{\sqrt{10}}\right)$$

$$\theta(t) \to 2 \arctan\left(\frac{1}{\sqrt{10}}\right)$$

2.25 problem 19 a(ii)

Internal problem ID [12604]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 19 a(ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\theta'=2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

dsolve(diff(theta(t),t)=1-cos(theta(t))+(1+cos(theta(t))),theta(t), singsol=all)

$$heta(t) = -2 \arctan\left(rac{1}{t+c_1}
ight)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 11

DSolve[theta'[t]==1-Cos[theta[t]]+(1+Cos[theta[t]]),theta[t],t,IncludeSingularSolutions -> T

$$\theta(t) \to 2t + c_1$$

2.26 problem 19 a(iii)

Internal problem ID [12605]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 19 a(iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\theta' + \frac{9\cos(\theta)}{10} = \frac{11}{10}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve(diff(theta(t),t)=1-cos(theta(t))+(1+cos(theta(t)))*(1/10),theta(t), singsol=all)

$$heta(t) = 2 \arctan \left(rac{ an\left(rac{(t+c_1)\sqrt{10}}{10}
ight)\sqrt{10}}{10}
ight)$$

✓ Solution by Mathematica

Time used: 10.277 (sec). Leaf size: 55

DSolve[theta'[t]==1-Cos[theta[t]]+(1+Cos[theta[t]])*(1/10),theta[t],t,IncludeSingularSolution

$$\theta(t) \to 2 \arctan\left(\frac{\tan\left(\frac{t-10c_1}{\sqrt{10}}\right)}{\sqrt{10}}\right)$$

$$\theta(t) \to -\arccos\left(\frac{11}{9}\right)$$

$$\theta(t) \to \arccos\left(\frac{11}{9}\right)$$

$$\theta(t) \to \text{Interval}[\{-\pi, \pi\}]$$

2.27 problem 20

Internal problem ID [12606]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$v' + \frac{v}{RC} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(v(t),t)=-v(t)/(R*C),v(t), singsol=all)

$$v(t) = c_1 \mathrm{e}^{-\frac{t}{RC}}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 24

DSolve[v'[t]==-v[t]/(r*c),v[t],t,IncludeSingularSolutions -> True]

$$v(t) \to c_1 e^{-\frac{t}{cr}}$$

$$v(t) \to 0$$

2.28 problem 21

Internal problem ID [12607]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$v' - \frac{K - v}{RC} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(v(t),t)=(K-v(t))/(R*C),v(t), singsol=all)

$$v(t) = K + c_1 e^{-\frac{t}{RC}}$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 26

DSolve[v'[t]==(k-v[t])/(r*c),v[t],t,IncludeSingularSolutions -> True]

$$v(t) \to k + c_1 e^{-\frac{t}{cr}}$$

$$v(t) \to k$$

2.29 problem 22

Internal problem ID [12608]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$v' + 2v = 2V(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(v(t),t)=(V(t)-v(t))/(1/2*1),v(t), singsol=all)

$$v(t) = \left(\int 2V(t) e^{2t} dt + c_1 \right) e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 32

 $DSolve[v'[t] == (V[t]-v[t])/(1/2*1), v[t], t, IncludeSingularSolutions \rightarrow True]$

$$v(t) \to e^{-2t} \left(\int_1^t 2e^{2K[1]} V(K[1]) dK[1] + c_1 \right)$$

3 Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

3.1	problem	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7	4
3.2	$\operatorname{problem}$	2																																			7	5
3.3	$\operatorname{problem}$	3																																			7	6
3.4	${\bf problem}$	4																																			7	7
3.5	$\operatorname{problem}$	5																																			7	8
3.6	$\operatorname{problem}$	6																																			7	9
3.7	${\bf problem}$	7																																			8	0
3.8	${\bf problem}$	8																																			8	1
3.9	$\operatorname{problem}$	9																																			8	2
3.10	$\operatorname{problem}$	10)																																		8	3
3.11	${\rm problem}$	15	•																																		8	4
3.12	$\operatorname{problem}$	16	;	•								•					•																				8	5
3.13	problem	17	7																																		8	6

3.1 problem 1

Internal problem ID [12609]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y = 1$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([diff(y(t),t)=2*y(t)+1,y(0) = 3],y(t), singsol=all)

$$y(t) = -\frac{1}{2} + \frac{7e^{2t}}{2}$$

Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 18

 $DSolve[{y'[t]==2*y[t]+1,{y[0]==3}},y[t],t,IncludeSingularSolutions -> True]$

$$y(t) \to \frac{1}{2} \left(7e^{2t} - 1 \right)$$

3.2 problem 2

Internal problem ID [12610]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_Riccati, _special]]

$$y' + y^2 = t$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 89

$$dsolve([diff(y(t),t)=t-y(t)^2,y(0) = 1],y(t), singsol=all)$$

 $y(t) = \frac{2\,\mathrm{AiryAi}\,(1,t)\,\pi 3^{\frac{5}{6}} - 3\,\mathrm{AiryAi}\,(1,t)\,\Gamma \left(\frac{2}{3}\right)^2 3^{\frac{2}{3}} - 3\,\mathrm{AiryBi}\,(1,t)\,3^{\frac{1}{6}}\Gamma \left(\frac{2}{3}\right)^2 - 2\,\mathrm{AiryBi}\,(1,t)\,\pi 3^{\frac{1}{3}}}{2\,\mathrm{AiryAi}\,(t)\,\pi 3^{\frac{5}{6}} - 3\,\mathrm{AiryAi}\,(t)\,\Gamma \left(\frac{2}{3}\right)^2 3^{\frac{2}{3}} - 3\,\mathrm{AiryBi}\,(t)\,3^{\frac{1}{6}}\Gamma \left(\frac{2}{3}\right)^2 - 2\,\mathrm{AiryBi}\,(t)\,\pi 3^{\frac{1}{3}}}$

✓ Solution by Mathematica

Time used: 11.27 (sec). Leaf size: 163

 $DSolve[\{y'[t]==t-y[t]^2,\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True] \\$

 $y(t) \rightarrow \frac{2it^{3/2}\operatorname{Gamma}\left(\frac{1}{3}\right)\operatorname{BesselJ}\left(-\frac{2}{3},\frac{2}{3}it^{3/2}\right) + \sqrt[3]{-3}\operatorname{Gamma}\left(\frac{2}{3}\right)\left(it^{3/2}\operatorname{BesselJ}\left(-\frac{4}{3},\frac{2}{3}it^{3/2}\right) - it^{3/2}\operatorname{BesselJ}\left(\frac{2}{3}\right)}{2t\left(\sqrt[3]{-3}\operatorname{Gamma}\left(\frac{2}{3}\right)\operatorname{BesselJ}\left(-\frac{1}{3},\frac{2}{3}it^{3/2}\right) + \operatorname{Gamma}\left(\frac{1}{3}\right)\operatorname{BesselJ}\left(\frac{1}{3},\frac{2}{3}it^{3/2}\right)} \right)$

3.3 problem 3

Internal problem ID [12611]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_Riccati, _special]]

$$y' - y^2 = -4t$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 113

 $dsolve([diff(y(t),t)=y(t)^2-4*t,y(0) = 1/2],y(t), singsol=all)$

$$y(t) = \frac{\left(\left(3\,3^{\frac{1}{6}}\Gamma\left(\frac{2}{3}\right)^22^{\frac{2}{3}} - \pi3^{\frac{1}{3}}\right)\operatorname{AiryBi}\left(1,2^{\frac{2}{3}}t\right) + \left(\pi3^{\frac{5}{6}} + 3\Gamma\left(\frac{2}{3}\right)^26^{\frac{2}{3}}\right)\operatorname{AiryAi}\left(1,2^{\frac{2}{3}}t\right)\right)2^{\frac{2}{3}}}{\left(-\pi3^{\frac{5}{6}} - 3\Gamma\left(\frac{2}{3}\right)^26^{\frac{2}{3}}\right)\operatorname{AiryAi}\left(2^{\frac{2}{3}}t\right) + \operatorname{AiryBi}\left(2^{\frac{2}{3}}t\right)\left(-3\,3^{\frac{1}{6}}\Gamma\left(\frac{2}{3}\right)^22^{\frac{2}{3}} + \pi3^{\frac{1}{3}}\right)}$$

✓ Solution by Mathematica

Time used: 10.151 (sec). Leaf size: 193

 $DSolve[\{y'[t]==y[t]^2-4*t,\{y[0]==1/2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

 $\begin{array}{c} y(t) \rightarrow \\ -\frac{4it^{3/2}\operatorname{Gamma}\left(\frac{1}{3}\right)\operatorname{BesselJ}\left(-\frac{2}{3},\frac{4}{3}it^{3/2}\right) + 2^{2/3}\sqrt[3]{3}\left(\sqrt{3}-i\right)\operatorname{Gamma}\left(\frac{2}{3}\right)\left(2t^{3/2}\operatorname{BesselJ}\left(-\frac{4}{3},\frac{4}{3}it^{3/2}\right) - 2t^{2/3}\sqrt[3]{3}\left(-1-i\sqrt{3}\right)\operatorname{Gamma}\left(\frac{2}{3}\right)\operatorname{BesselJ}\left(-\frac{1}{3},\frac{4}{3}it^{3/2}\right) + \operatorname{Gamma}\left(\frac{1}{3}\right)\operatorname{Indian}\left(\frac{1}{3}\right)\operatorname{Gamma}\left(\frac{2}{3}\right)\operatorname{BesselJ}\left(-\frac{1}{3},\frac{4}{3}it^{3/2}\right) + \operatorname{Gamma}\left(\frac{1}{3}\right)\operatorname{Indian}\left(\frac{1}{3}\right)\operatorname{Indian}\left(\frac{1}{3}\right)\operatorname{Indian}\left(\frac{1}{3}\right)\operatorname{Gamma}\left(\frac{1}{3}\right)\operatorname{Gamma}\left(\frac{1}{3}\right)\operatorname{Indian}\left(\frac{1}{3}\right)\operatorname{Gamma}\left(\frac{1}{3}\right)\operatorname$

3.4 problem 4

Internal problem ID [12612]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \sin(y) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.609 (sec). Leaf size: 63

dsolve([diff(y(t),t)=sin(y(t)),y(0) = 1],y(t), singsol=all)

$$y(t) = \arctan\left(-\frac{2e^{t}\sin(1)}{(-1+\cos(1))e^{2t}-\cos(1)-1}, \frac{(1-\cos(1))e^{2t}-\cos(1)-1}{(-1+\cos(1))e^{2t}-\cos(1)-1}\right)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 16

 $\label{eq:DSolve} DSolve[\{y'[t]==Sin[y[t]],\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \ \ -> \ \ True]$

$$y(t) \to \arccos(-\tanh(t - \arctanh(\cos(1))))$$

3.5 problem 5

Internal problem ID [12613]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - (3 - w)(w + 1) = 0$$

With initial conditions

$$[w(0) = 4]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 23

dsolve([diff(w(t),t)=(3-w(t))*(w(t)+1),w(0) = 4],w(t), singsol=all)

$$w(t) = \frac{15 e^{4t} + 1}{-1 + 5 e^{4t}}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 26

$$w(t) \to \frac{15e^{4t} + 1}{5e^{4t} - 1}$$

3.6 problem 6

Internal problem ID [12614]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - (3 - w)(w + 1) = 0$$

With initial conditions

$$[w(0) = 0]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 21

dsolve([diff(w(t),t)=(3-w(t))*(w(t)+1),w(0) = 0],w(t), singsol=all)

$$w(t) = \frac{3e^{4t} - 3}{3 + e^{4t}}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 23

 $DSolve[\{w'[t]==(3-w[t])*(w[t]+1),\{w[0]==0\}\},w[t],t,IncludeSingularSolutions \rightarrow True]$

$$w(t) \to \frac{3(e^{4t} - 1)}{e^{4t} + 3}$$

3.7 problem 7

Internal problem ID [12615]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - e^{\frac{2}{y}} = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 37

dsolve([diff(y(t),t)=exp(2/y(t)),y(0) = 2],y(t), singsol=all)

$$y(t) = -\frac{2}{\text{RootOf}(-2_Z Ei_1(-_Z) - 2_Z e^{-1} + 2_Z Ei_1(1) - _Z t - 2 e^{-Z})}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y'[t]==Exp[2/y[t]],{y[0]==2}},y[t],t,IncludeSingularSolutions -> True]

{}

3.8 problem 8

Internal problem ID [12616]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - e^{\frac{2}{y}} = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 38

dsolve([diff(y(t),t)=exp(2/y(t)),y(1) = 2],y(t), singsol=all)

$$y(t) = -\frac{2}{\text{RootOf}(-2_Z Ei_1(-_Z) - 2_Z e^{-1} + 2_Z Ei_1(1) - _Zt - 2 e^{-Z} + _Z)}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y'[t]==Exp[2/y[t]],{y[1]==2}},y[t],t,IncludeSingularSolutions -> True]

{}

3.9 problem 9

Internal problem ID [12617]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$y' - y^2 + y^3 = 0$$

With initial conditions

$$\left[y(0) = \frac{1}{5}\right]$$

✓ Solution by Maple

Time used: 1.391 (sec). Leaf size: 21

 $dsolve([diff(y(t),t)=y(t)^2-y(t)^3,y(0) = 1/5],y(t), singsol=all)$

$$y(t) = \frac{1}{\text{LambertW} (4e^{-t+4}) + 1}$$

✓ Solution by Mathematica

Time used: 0.495 (sec). Leaf size: 31

 $DSolve[\{y'[t]==y[t]^2-y[t]^3,\{y[0]==2/10\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow \text{InverseFunction} \left[\frac{1}{\#1} + \log(1 - \#1) - \log(\#1) \& \right] \left[-t + 5 + \log(4) \right]$$

3.10 problem 10

Internal problem ID [12618]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Abel]

$$y' - 2y^3 = t^2$$

With initial conditions

$$\left[y(0) = -\frac{1}{2}\right]$$

X Solution by Maple

 $\label{eq:decomposition} $$ dsolve([diff(y(t),t)=2*y(t)^3+t^2,y(0) = -1/2],y(t), singsol=all)$$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y'[t]==2*y[t]^3+t^2,{y[0]==-1/2}},y[t],t,IncludeSingularSolutions -> True]

Not solved

3.11 problem 15

Internal problem ID [12619]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \sqrt{y} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

dsolve([diff(y(t),t)=sqrt(y(t)),y(0)=1],y(t), singsol=all)

$$y(t) = \frac{\left(t+2\right)^2}{4}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 14

DSolve[{y'[t]==Sqrt[y[t]],{y[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{4}(t+2)^2$$

3.12 problem 16

Internal problem ID [12620]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y = 2$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.422 (sec). Leaf size: 12

dsolve([diff(y(t),t)=2-y(t),y(0) = 1],y(t), singsol=all)

$$y(t) = 2 - e^{-t}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 14

 $DSolve[\{y'[t]==2-y[t],\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow 2 - e^{-t}$$

3.13 problem 17

Internal problem ID [12621]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\theta' + \frac{11\cos(\theta)}{10} = \frac{9}{10}$$

With initial conditions

$$[\theta(0) = 1]$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 29

$$\theta(t) = -2 \arctan \left(\frac{\tanh \left(-\arctan \left(\tan \left(\frac{1}{2} \right) \sqrt{10} \right) + \frac{\sqrt{10}t}{10} \right) \sqrt{10}}{10} \right)$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 36

DSolve[{theta'[t]==1-Cos[theta[t]] + (1+Cos[theta[t]])*(-1/10),{theta[0]==1}},theta[t],t,Ir

$$heta(t)
ightarrow -2 \arctan \left(rac{ anh\left(rac{t}{\sqrt{10}} - \operatorname{arctanh}\left(\sqrt{10} an\left(rac{1}{2}
ight)
ight)}{\sqrt{10}}
ight)$$

4	Chapter 1. First-Order Differential Equations.
	Exercises section 1.5 page 71

4.1	problem 5.		•	•							•			•				•	•		88
4.2	problem 6 .																				90
4.3	problem 7 .																				91
4.4	problem 8 .																				92
4.5	problem 12																				93
4.6	problem 13																				94
4.7	problem 14																				95
4.8	problem 15																				96
4.9	problem 16											_									97

4.1 problem 5

Internal problem ID [12622]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y(y - 1)(y - 3) = 0$$

With initial conditions

$$[y(0) = 4]$$

✓ Solution by Maple

Time used: 1.125 (sec). Leaf size: 133

$$dsolve([diff(y(t),t)=y(t)*(y(t)-1)*(y(t)-3),y(0) = 4],y(t), singsol=all)$$

$$=\frac{48\left(\frac{e^{6t}}{3}-\frac{9}{16}\right)\left(27-32\,e^{6t}+8\sqrt{16\,e^{12t}-27\,e^{6t}}\right)^{\frac{2}{3}}+48\left(\left(27-32\,e^{6t}+8\sqrt{16\,e^{12t}-27\,e^{6t}}\right)^{\frac{1}{3}}+3\right)\left(e^{6t}-48\sqrt{16\,e^{12t}-27\,e^{6t}}\right)^{\frac{1}{3}}}{\left(27-32\,e^{6t}+8\sqrt{16\,e^{12t}-27\,e^{6t}}\right)^{\frac{2}{3}}\left(16\,e^{6t}-27\right)}$$

✓ Solution by Mathematica

Time used: 0.172 (sec). Leaf size: 132

 $DSolve[\{y'[t]==y[t]*(y[t]-1)*(y[t]-3),\{y[0]==4\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow \frac{3i(\sqrt{3}+i)\sqrt[3]{4\sqrt{e^{6t}(16e^{6t}-27)^3}+864e^{6t}-256e^{12t}-729}}{32e^{6t}-54} + \frac{9(1+i\sqrt{3})}{2\sqrt[3]{4\sqrt{e^{6t}(16e^{6t}-27)^3}+864e^{6t}-256e^{12t}-729}} + 1$$

4.2 problem 6

Internal problem ID [12623]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y(y - 1)(y - 3) = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

$$dsolve([diff(y(t),t)=y(t)*(y(t)-1)*(y(t)-3),y(0) = 0],y(t), singsol=all)$$

$$y(t) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

$$DSolve[\{y'[t]==y[t]*(y[t]-1)*(y[t]-3),\{y[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$$

$$y(t) \to 0$$

4.3 problem 7

Internal problem ID [12624]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y(y - 1)(y - 3) = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 9.141 (sec). Leaf size: 6167

dsolve([diff(y(t),t)=y(t)*(y(t)-1)*(y(t)-3),y(0) = 2],y(t), singsol=all)

Expression too large to display

Expression too large to display

✓ Solution by Mathematica

Time used: 0.091 (sec). Leaf size: 105

 $DSolve[\{y'[t]==y[t]*(y[t]-1)*(y[t]-3),\{y[0]==2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow \frac{\sqrt[3]{2\sqrt{e^{6t}(4e^{6t}+1)^3} + 8e^{6t} + 16e^{12t} + 1}}{4e^{6t}+1} + \frac{1}{\sqrt[3]{2\sqrt{e^{6t}(4e^{6t}+1)^3} + 8e^{6t} + 16e^{12t} + 1}} + 1$$

4.4 problem 8

Internal problem ID [12625]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y(y - 1)(y - 3) = 0$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 1.125 (sec). Leaf size: 133

 $\label{eq:decomposition} \\ \mbox{dsolve([diff(y(t),t)=y(t)*(y(t)-1)*(y(t)-3),y(0) = -1],y(t), singsol=all)} \\$

$$=\frac{\left(2\operatorname{e}^{6t}-4\right)\left(1-\operatorname{e}^{6t}+\sqrt{\operatorname{e}^{6t}\left(\operatorname{e}^{6t}-2\right)}\right)^{\frac{2}{3}}+\left(\left(i\sqrt{3}-1\right)\left(1-\operatorname{e}^{6t}+\sqrt{\operatorname{e}^{6t}\left(\operatorname{e}^{6t}-2\right)}\right)^{\frac{1}{3}}-i\sqrt{3}-1\right)\left(\operatorname{e}^{6t}-\sqrt{\operatorname{e}^{6t}\left(\operatorname{e}^{6t}-2\right)}\right)^{\frac{2}{3}}}{\left(1-\operatorname{e}^{6t}+\sqrt{\operatorname{e}^{6t}\left(\operatorname{e}^{6t}-2\right)}\right)^{\frac{2}{3}}\left(2\operatorname{e}^{6t}-4\right)}$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 104

$$y(t) \to \frac{\sqrt[3]{2\sqrt{e^{6t}(e^{6t}-2)^3 + 8e^{6t} - 2e^{12t} - 8}}}{e^{6t}-2} - \frac{2^{2/3}}{\sqrt[3]{\sqrt{e^{6t}(e^{6t}-2)^3 + 4e^{6t} - e^{12t} - 4}}} + 1$$

4.5 problem 12

Internal problem ID [12626]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve(diff(y(t),t)=-y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{t + c_1}$$

✓ Solution by Mathematica

Time used: 0.156 (sec). Leaf size: 18

DSolve[y'[t]==-y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) o rac{1}{t - c_1}$$

$$y(t) \to 0$$

4.6 problem 13

Internal problem ID [12627]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 13.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^3 = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

 $dsolve([diff(y(t),t)=y(t)^3,y(0) = 1],y(t), singsol=all)$

$$y(t) = \frac{1}{\sqrt{1 - 2t}}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 14

 $DSolve[\{y'[t]==y[t]^3,\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) o rac{1}{\sqrt{1-2t}}$$

4.7 problem 14

Internal problem ID [12628]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{1}{(y+1)(-2+t)} = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 24

dsolve([diff(y(t),t)=1/((y(t)+1)*(t-2)),y(0) = 0],y(t), singsol=all)

$$y(t) = -1 + \sqrt{1 + 2\ln(t - 2) - 2\ln(2) - 2i\pi}$$

✓ Solution by Mathematica

Time used: 0.188 (sec). Leaf size: 28

 $DSolve[\{y'[t]==1/((y[t]+1)*(t-2)),\{y[0]==0\}\},y[t],t,IncludeSingularSolutions] \rightarrow True]$

$$y(t) \to -1 + \sqrt{2\log(t-2) - 2i\pi + 1 - \log(4)}$$

4.8 problem 15

Internal problem ID [12629]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{1}{(y+2)^2} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 13

 $dsolve([diff(y(t),t)=1/(y(t)+2)^2,y(0) = 1],y(t), singsol=all)$

$$y(t) = (27 + 3t)^{\frac{1}{3}} - 2$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 20

 $DSolve[\{y'[t]==1/(y[t]+2)^2,\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \sqrt[3]{3}\sqrt[3]{t+9} - 2$$

4.9 problem 16

Internal problem ID [12630]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{t}{-2+y} = 0$$

With initial conditions

$$[y(-1) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 15

dsolve([diff(y(t),t)=t/(y(t)-2),y(-1) = 0],y(t), singsol=all)

$$y(t) = 2 - \sqrt{t^2 + 3}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 21

 $DSolve[\{y'[t]==1/(y[t]-2),\{y[-1]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow 2 - \sqrt{2}\sqrt{t+3}$$

5 Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

5.1	problem 1 and 13 (i)	100
5.2	problem 1 and 13 (ii)	101
5.3	problem 1 and 13 (iii) \dots	102
5.4	problem 1 and 13 (iv) \dots	103
5.5	problem 2 and 14(i) $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	104
5.6	problem 2 and 14(ii)	105
5.7	problem 2 and 14(iii)	106
5.8	problem 2 and 14(iv)	107
5.9	problem 3 and 15(i) $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	108
5.10	problem 3 and 15(ii)	109
5.11	problem 3 and 15(iii)	110
5.12	problem 3 and 15(iv)	111
5.13	problem 4	112
5.14	problem 4 and 16(i) $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	113
5.15	problem 4 and 16(ii)	114
5.16	problem 4 and 16(iii)	115
5.17	problem 4 and 16(iv)	116
5.18	problem 5	117
5.19	problem 6	118
5.20	problem 7	119
5.21	problem 8	120
5.22	problem 9	121
5.23	problem 10	122
5.24	problem 11	123
5.25	problem 12	124
5.26	problem 22	125
5.27	problem 23	126
5.28	problem 24	127
5.29	problem 25	128
	problem 26	129
5.31	problem 27	130
5.32	problem 37 (i)	131
5.33	problem 37 (ii)	132
5.34	problem 37 (iii)	133
5.35	problem 37 (iv)	134

5.36	problem :	37	(v)				•					•				•		•	•	•			135
5.37	problem	37	(vi)																				136
5.38	problem	37	(vii)																				137
5.39	problem	37	(viii))																			138

5.1 problem 1 and 13 (i)

Internal problem ID [12631]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 1 and 13 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y(-2 + y) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(t),t)=3*y(t)*(y(t)-2),y(0) = 1],y(t), singsol=all)

$$y(t) = \frac{2}{e^{6t} + 1}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 16

 $DSolve[\{y'[t]==3*y[t]*(y[t]-2),\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{2}{e^{6t} + 1}$$

5.2 problem 1 and 13 (ii)

Internal problem ID [12632]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 1 and 13 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y(-2 + y) = 0$$

With initial conditions

$$[y(-2) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve([diff(y(t),t)=3*y(t)*(y(t)-2),y(-2) = -1],y(t), singsol=all)

$$y(t) = -\frac{2}{3e^{6t+12} - 1}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 20

 $DSolve[\{y'[t]==3*y[t]*(y[t]-2),\{y[-2]==-1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{2}{1 - 3e^{6(t+2)}}$$

5.3 problem 1 and 13 (iii)

Internal problem ID [12633]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 1 and 13 (iii).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y(-2 + y) = 0$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(t),t)=3*y(t)*(y(t)-2),y(0) = 3],y(t), singsol=all)

$$y(t) = -\frac{6}{e^{6t} - 3}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 16

 $DSolve[\{y'[t]==3*y[t]*(y[t]-2),\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\frac{6}{e^{6t} - 3}$$

5.4 problem 1 and 13 (iv)

Internal problem ID [12634]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 1 and 13 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y(-2 + y) = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(y(t),t)=3*y(t)*(y(t)-2),y(0) = 2],y(t), singsol=all)

$$y(t) = 2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $DSolve[\{y'[t]==3*y[t]*(y[t]-2),\{y[0]==2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow 2$$

5.5 problem 2 and 14(i)

Internal problem ID [12635]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 2 and 14(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = -12$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 23

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)-12,y(0) = 1],y(t), singsol=all)$

$$y(t) = \frac{-10e^{8t} + 18}{5e^{8t} + 3}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 26

DSolve[{y'[t]==y[t]^2-4*y[t]-12,{y[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{18 - 10e^{8t}}{5e^{8t} + 3}$$

5.6 problem 2 and 14(ii)

Internal problem ID [12636]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 2 and 14(ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = -12$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 26

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)-12,y(1) = 0],y(t), singsol=all)$

$$y(t) = \frac{-6e^{8t-8} + 6}{3e^{8t-8} + 1}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 32

 $DSolve[\{y'[t]==y[t]^2-4*y[t]-12,\{y[1]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{6e^8 - 6e^{8t}}{3e^{8t} + e^8}$$

5.7 problem 2 and 14(iii)

Internal problem ID [12637]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 2 and 14(iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = -12$$

With initial conditions

$$[y(0) = 6]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)-12,y(0) = 6],y(t), singsol=all)$

$$y(t) = 6$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $DSolve[\{y'[t]==y[t]^2-4*y[t]-12,\{y[0]==6\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow 6$$

5.8 problem 2 and 14(iv)

Internal problem ID [12638]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 2 and 14(iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = -12$$

With initial conditions

$$[y(0) = 5]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 20

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)-12,y(0) = 5],y(t), singsol=all)$

$$y(t) = \frac{-2e^{8t} + 42}{e^{8t} + 7}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 24

 $DSolve[\{y'[t]==y[t]^2-4*y[t]-12,\{y[0]==5\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) o rac{42 - 2e^{8t}}{e^{8t} + 7}$$

5.9 problem 3 and 15(i)

Internal problem ID [12639]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 3 and 15(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \cos(y) = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 32

dsolve([diff(y(t),t)=cos(y(t)),y(0)=0],y(t), singsol=all)

$$y(t) = \arctan\left(\frac{e^{2t} - 1}{e^{2t} + 1}, \frac{2e^t}{e^{2t} + 1}\right)$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 8

DSolve[{y'[t]==Cos[y[t]],{y[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \arcsin(\tanh(t))$$

5.10 problem 3 and 15(ii)

Internal problem ID [12640]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 3 and 15(ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \cos(y) = 0$$

With initial conditions

$$[y(-1) = 1]$$

✓ Solution by Maple

Time used: 0.421 (sec). Leaf size: 79

dsolve([diff(y(t),t)=cos(y(t)),y(-1)=1],y(t), singsol=all)

$$y(t) = \arctan\left(\frac{\sin{(1)}\,e^{2t+2} + e^{2t+2} + \sin{(1)} - 1}{\sin{(1)}\,e^{2t+2} + e^{2t+2} - \sin{(1)} + 1}, \frac{2\,e^{t+1}\cos{(1)}}{\sin{(1)}\,e^{2t+2} + e^{2t+2} - \sin{(1)} + 1}\right)$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 13

DSolve[{y'[t]==Cos[y[t]],{y[-1]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \arcsin\left(\coth\left(t + 1 + \coth^{-1}(\sin(1))\right)\right)$$

5.11 problem 3 and 15(iii)

Internal problem ID [12641]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 3 and 15(iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \cos(y) = 0$$

With initial conditions

$$\left[y(0) = -\frac{\pi}{2}\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve([diff(y(t),t)=cos(y(t)),y(0) = -1/2*Pi],y(t), singsol=all)

$$y(t) = -\frac{\pi}{2}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 10

DSolve[{y'[t]==Cos[y[t]],{y[0]==-Pi/2}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{\pi}{2}$$

5.12 problem 3 and 15(iv)

Internal problem ID [12642]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 3 and 15(iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \cos(y) = 0$$

With initial conditions

$$[y(0) = \pi]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 32

dsolve([diff(y(t),t)=cos(y(t)),y(0)=Pi],y(t), singsol=all)

$$y(t) = \arctan\left(\frac{e^{2t} - 1}{e^{2t} + 1}, -\frac{2e^t}{e^{2t} + 1}\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y'[t]==Cos[y[t]],{y[0]==Pi}},y[t],t,IncludeSingularSolutions -> True]

5.13 problem 4

Internal problem ID [12643]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - w\cos\left(w\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(w(t),t)=w(t)*cos(w(t)),w(t), singsol=all)

$$t - \left(\int^{w(t)} \frac{1}{\underline{-a\cos(\underline{-a})}} d\underline{-a} \right) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 7.857 (sec). Leaf size: 50

DSolve[w'[t]==w[t]*Cos[w[t]],w[t],t,IncludeSingularSolutions -> True]

$$w(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{\sec(K[1])}{K[1]} dK[1] \& \right] [t + c_1]$$

$$w(t) \to 0$$

$$w(t) \rightarrow -\frac{\pi}{2}$$

$$w(t) o \frac{\pi}{2}$$

5.14 problem 4 and 16(i)

Internal problem ID [12644]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 4 and 16(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - w\cos\left(w\right) = 0$$

With initial conditions

$$[w(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(w(t),t)=w(t)*cos(w(t)),w(0)=0],w(t), singsol=all)

$$w(t) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

DSolve[{w'[t]==w[t]*Cos[w[t]],{w[0]==0}},w[t],t,IncludeSingularSolutions -> True]

$$w(t) \to 0$$

5.15 problem 4 and 16(ii)

Internal problem ID [12645]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 4 and 16(ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - w\cos(w) = 0$$

With initial conditions

$$[w(3) = 1]$$

✓ Solution by Maple

Time used: 0.266 (sec). Leaf size: 38

dsolve([diff(w(t),t)=w(t)*cos(w(t)),w(3) = 1],w(t), singsol=all)

$$w(t) = \text{RootOf}\left(\int_{-Z}^{1} \frac{\sec\left(\underline{a}\right)}{\underline{a}} d\underline{a} + t - 3\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{w'[t]==w[t]*Cos[w[t]],{w[3]==1}},w[t],t,IncludeSingularSolutions -> True]

5.16 problem 4 and 16(iii)

Internal problem ID [12646]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 4 and 16(iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - w\cos\left(w\right) = 0$$

With initial conditions

$$[w(0) = 2]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 37

dsolve([diff(w(t),t)=w(t)*cos(w(t)),w(0)=2],w(t), singsol=all)

$$w(t) = \operatorname{RootOf}\left(\int_{-Z}^{2} \frac{\operatorname{sec}\left(\underline{a}\right)}{\underline{a}} d\underline{a} + t\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{w'[t]==w[t]*Cos[w[t]],{w[0]==2}},w[t],t,IncludeSingularSolutions -> True]

5.17 problem 4 and 16(iv)

Internal problem ID [12647]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 4 and 16(iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - w\cos(w) = 0$$

With initial conditions

$$[w(0) = -1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 37

dsolve([diff(w(t),t)=w(t)*cos(w(t)),w(0) = -1],w(t), singsol=all)

$$w(t) = \text{RootOf}\left(\int_{-Z}^{-1} \frac{\sec\left(\underline{a}\right)}{\underline{a}} d\underline{a} + t\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{w'[t]==w[t]*Cos[w[t]],{w[0]==-1}},w[t],t,IncludeSingularSolutions -> True]

5.18 problem **5**

Internal problem ID [12648]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - (1 - w)\sin(w) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(w(t),t)=(1-w(t))*sin(w(t)),w(t), singsol=all)

$$t + \int^{w(t)} \frac{1}{(-1 + \underline{a})\sin(\underline{a})} d\underline{a} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 12.825 (sec). Leaf size: 41

DSolve[w'[t]==(1-w[t])*Sin[w[t]],w[t],t,IncludeSingularSolutions -> True]

$$w(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{\csc(K[1])}{K[1] - 1} dK[1] \& \right] [-t + c_1]$$

$$w(t) \to 0$$

$$w(t) \to 1$$

5.19 problem 6

Internal problem ID [12649]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{1}{-2+y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(t),t)=1/(y(t)-2),y(t), singsol=all)

$$y(t) = 2 - \sqrt{4 + 2c_1 + 2t}$$

$$y(t) = 2 + \sqrt{4 + 2c_1 + 2t}$$

✓ Solution by Mathematica

Time used: 0.145 (sec). Leaf size: 44

DSolve[y'[t]==1/(y[t]-2),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 2 - \sqrt{2}\sqrt{t + 2 + c_1}$$

$$y(t) \to 2 + \sqrt{2}\sqrt{t + 2 + c_1}$$

5.20 problem 7

Internal problem ID [12650]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$v' + v^2 + 2v = -2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(v(t),t)=-v(t)^2-2*v(t)-2,v(t), singsol=all)$

$$v(t) = -1 - \tan\left(t + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.699 (sec). Leaf size: 30

DSolve[v'[t]==-v[t]^2-2*v[t]-2,v[t],t,IncludeSingularSolutions -> True]

$$v(t) \rightarrow -1 - \tan(t - c_1)$$

$$v(t) \rightarrow -1 - i$$

$$v(t) \rightarrow -1 + i$$

5.21 problem 8

Internal problem ID [12651]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - 3w^3 + 12w^2 = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 49

 $dsolve(diff(w(t),t)=3*w(t)^3-12*w(t)^2,w(t), singsol=all)$

$$w(t) = \mathrm{e}^{\mathrm{RootOf}(\ln(\mathrm{e}^{-Z}+4)\mathrm{e}^{-Z}+48c_1\mathrm{e}^{-Z}--Z\mathrm{e}^{-Z}+48t\,\mathrm{e}^{-Z}+4\ln(\mathrm{e}^{-Z}+4)+192c_1-4-Z+192t-4)} + 4$$

✓ Solution by Mathematica

Time used: 0.392 (sec). Leaf size: 50

DSolve[w'[t]==3*w[t]^3-12*w[t]^2,w[t],t,IncludeSingularSolutions -> True]

$$w(t) \to \text{InverseFunction} \left[\frac{1}{4\#1} + \frac{1}{16} \log(4 - \#1) - \frac{\log(\#1)}{16} \& \right] [3t + c_1]$$

$$w(t) \to 0$$

$$w(t) \rightarrow 4$$

5.22 problem 9

Internal problem ID [12652]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \cos(y) = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(t),t)=1+cos(y(t)),y(t), singsol=all)

$$y(t) = 2\arctan(t + c_1)$$

✓ Solution by Mathematica

Time used: 0.462 (sec). Leaf size: 35

DSolve[y'[t]==1+cos[y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{1}{\cos(K[1]) + 1} dK[1] \& \right] [t + c_1]$$

 $y(t) \to \cos^{(-1)}(-1)$

5.23 problem 10

Internal problem ID [12653]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \tan(y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(diff(y(t),t)=tan(y(t)),y(t), singsol=all)

$$y(t) = \arcsin\left(c_1 e^t\right)$$

✓ Solution by Mathematica

Time used: 50.012 (sec). Leaf size: 17

DSolve[y'[t]==Tan[y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \arcsin\left(e^{t+c_1}\right)$$

$$y(t) \to 0$$

5.24 problem 11

Internal problem ID [12654]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y \ln\left(|y|\right) = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 21

dsolve(diff(y(t),t)=y(t)*ln(abs(y(t))),y(t), singsol=all)

$$y(t) = \mathrm{e}^{-c_1 \mathrm{e}^t}$$

$$y(t) = -\mathrm{e}^{-c_1\mathrm{e}^t}$$

✓ Solution by Mathematica

Time used: 0.321 (sec). Leaf size: 35

DSolve[y'[t]==y[t]*Log[Abs[y[t]]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{1}{K[1] \log(|K[1]|)} dK[1] \& \right] [t + c_1]$$

 $y(t) \to 1$

5.25 problem 12

Internal problem ID [12655]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - (w^2 - 2)\arctan(w) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $dsolve(diff(w(t),t)=(w(t)^2-2)*arctan(w(t)),w(t), singsol=all)$

$$t - \left(\int^{w(t)} \frac{1}{(\underline{a^2 - 2)\arctan(\underline{a})}} d\underline{a} \right) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.909 (sec). Leaf size: 62

DSolve[w'[t]==(w[t]^2-2)*Arctan[w[t]],w[t],t,IncludeSingularSolutions -> True]

$$w(t) \rightarrow \text{InverseFunction} \left[\int_{1}^{\#1} \frac{1}{\operatorname{Arctan}(K[1])(K[1]^{2}-2)} dK[1] \& \right] [t+c_{1}]$$

$$w(t) \to -\sqrt{2}$$

$$w(t) \to \sqrt{2}$$

$$w(t) \to \operatorname{Arctan}^{(-1)}(0)$$

5.26 problem 22

Internal problem ID [12656]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = 2$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 24

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)+2,y(0) = -1],y(t), singsol=all)$

$$y(t) = 2 - \sqrt{2} \tanh \left(\sqrt{2} t + \operatorname{arctanh} \left(\frac{3\sqrt{2}}{2} \right) \right)$$

✓ Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 59

 $DSolve[\{y'[t]==y[t]^2-4*y[t]+2,\{y[0]==-1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) o -rac{\left(\sqrt{2}-4
ight)e^{2\sqrt{2}t}+4+\sqrt{2}}{\left(3+\sqrt{2}
ight)e^{2\sqrt{2}t}-3+\sqrt{2}}$$

5.27 problem 23

Internal problem ID [12657]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = 2$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)+2,y(0) = 2],y(t), singsol=all)$

$$y(t) = 2 - \sqrt{2} \tanh\left(\sqrt{2}t\right)$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 46

 $DSolve[\{y'[t]==y[t]^2-4*y[t]+2,\{y[0]==2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{-(\sqrt{2}-2) e^{2\sqrt{2}t} + 2 + \sqrt{2}}{e^{2\sqrt{2}t} + 1}$$

5.28 problem 24

Internal problem ID [12658]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 24.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = 2$$

With initial conditions

$$[y(0) = -2]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 24

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)+2,y(0) = -2],y(t), singsol=all)$

$$y(t) = 2 - \sqrt{2} \tanh \left(\sqrt{2} t + \operatorname{arctanh} \left(2\sqrt{2} \right) \right)$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 59

 $DSolve[\{y'[t]==y[t]^2-4*y[t]+2,\{y[0]==-2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) o -rac{2\left(\left(\sqrt{2}-3\right)e^{2\sqrt{2}t}+3+\sqrt{2}\right)}{\left(4+\sqrt{2}\right)e^{2\sqrt{2}t}-4+\sqrt{2}}$$

5.29 problem 25

Internal problem ID [12659]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$y' - y^2 + 4y = 2$$

With initial conditions

$$[y(0) = -4]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 24

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)+2,y(0) = -4],y(t), singsol=all)$

$$y(t) = 2 - \sqrt{2} \tanh \left(\sqrt{2} t + \operatorname{arctanh} \left(3\sqrt{2} \right) \right)$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 63

 $DSolve[\{y'[t]==y[t]^2-4*y[t]+2,\{y[0]==-4\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow -\frac{2\left(\left(2\sqrt{2}-5\right)e^{2\sqrt{2}t}+5+2\sqrt{2}\right)}{\left(6+\sqrt{2}\right)e^{2\sqrt{2}t}-6+\sqrt{2}}$$

5.30 problem 26

Internal problem ID [12660]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 26.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = 2$$

With initial conditions

$$[y(0) = 4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 24

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)+2,y(0) = 4],y(t), singsol=all)$

$$y(t) = 2 - \sqrt{2} \tanh \left(\sqrt{2}t - \operatorname{arctanh}\left(\sqrt{2}\right)\right)$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 62

 $DSolve[\{y'[t]==y[t]^2-4*y[t]+2,\{y[0]==4\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow \frac{(4\sqrt{2} - 6) e^{2\sqrt{2}t} + 6 + 4\sqrt{2}}{(\sqrt{2} - 2) e^{2\sqrt{2}t} + 2 + \sqrt{2}}$$

5.31 problem 27

Internal problem ID [12661]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = 2$$

With initial conditions

$$[y(3) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)+2,y(3) = 1],y(t), singsol=all)$

$$y(t) = 2 - \sqrt{2} \tanh \left(\frac{\left(-6 + \sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{2}}{2}\right) + 2t\right)\sqrt{2}}{2} \right)$$

✓ Solution by Mathematica

Time used: 0.098 (sec). Leaf size: 69

 $DSolve[\{y'[t]==y[t]^2-4*y[t]+2,\{y[3]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) o rac{\sqrt{2} \left(e^{2\sqrt{2}t} + e^{6\sqrt{2}} \right)}{\left(1 + \sqrt{2} \right) e^{2\sqrt{2}t} + \left(\sqrt{2} - 1 \right) e^{6\sqrt{2}}}$$

5.32 problem 37 (i)

Internal problem ID [12662]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y \cos\left(\frac{\pi y}{2}\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(t),t)=y(t)*cos(Pi/2*y(t)),y(t), singsol=all)

$$t - \left(\int^{y(t)} \frac{1}{\underline{-a\cos\left(\frac{\pi - a}{2}\right)}} d\underline{-a} \right) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 4.801 (sec). Leaf size: 47

DSolve[y'[t]==y[t]*Cos[Pi/2*y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{\sec\left(\frac{1}{2}\pi K[1]\right)}{K[1]} dK[1] \& \right] [t + c_1]$$

$$y(t) \rightarrow -1$$

$$y(t) \to 0$$

$$y(t) \rightarrow 1$$

5.33 problem 37 (ii)

Internal problem ID [12663]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y^2 + y' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(t),t)=y(t)-y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{1 + c_1 e^{-t}}$$

✓ Solution by Mathematica

Time used: 0.42 (sec). Leaf size: 29

DSolve[y'[t]==y[t]-y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{e^t}{e^t + e^{c_1}}$$

$$y(t) \to 0$$

$$y(t) \rightarrow 1$$

5.34 problem 37 (iii)

Internal problem ID [12664]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y\sin\left(\frac{\pi y}{2}\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(t),t)=y(t)*sin(Pi/2*y(t)),y(t), singsol=all)

$$t - \left(\int^{y(t)} \frac{1}{\underline{-a\sin\left(\frac{\pi \underline{-a}}{2}\right)}} d\underline{-a} \right) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 7.222 (sec). Leaf size: 37

DSolve[y'[t]==y[t]*Sin[Pi/2*y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{\csc\left(\frac{1}{2}\pi K[1]\right)}{K[1]} dK[1] \& \right] [t+c_1]$$

 $y(t) \to 0$

5.35 problem 37 (iv)

Internal problem ID [12665]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^3 + y^2 = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=y(t)^3-y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{\text{LambertW}(-c_1 e^{t-1}) + 1}$$

✓ Solution by Mathematica

Time used: 0.374 (sec). Leaf size: 38

DSolve[y'[t]==y[t]^3-y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \text{InverseFunction} \left[\frac{1}{\#1} + \log(1 - \#1) - \log(\#1) \& \right] [t + c_1]$$

$$y(t) \to 0$$

$$y(t) \rightarrow 1$$

5.36 problem 37 (v)

Internal problem ID [12666]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (v).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \cos\left(\frac{\pi y}{2}\right) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 57

dsolve(diff(y(t),t)=cos(Pi/2*y(t)),y(t), singsol=all)

$$y(t) = \frac{2\arctan\left(\frac{e^{c_1\pi + \pi t} - 1}{e^{c_1\pi + \pi t} + 1}, \frac{2e^{\frac{1}{2}c_1\pi + \frac{1}{2}\pi t}}{e^{c_1\pi + \pi t} + 1}\right)}{\pi}$$

✓ Solution by Mathematica

Time used: 0.846 (sec). Leaf size: 31

 $DSolve[y'[t] == Cos[Pi/2*y[t]], y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{2\arcsin\left(\coth\left(\frac{1}{2}\pi(t+c_1)\right)\right)}{\pi}$$

$$y(t) \rightarrow -1$$

$$y(t) \to 1$$

5.37 problem 37 (vi)

Internal problem ID [12667]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (vi).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(t),t)=y(t)^2-y(t),y(t), singsol=all)$

$$y(t) = \frac{1}{1 + c_1 e^t}$$

✓ Solution by Mathematica

Time used: 0.336 (sec). Leaf size: 25

DSolve[y'[t]==y[t]^2-y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{1 + e^{t + c_1}}$$

$$y(t) \to 0$$

$$y(t) \to 1$$

5.38 problem 37 (vii)

Internal problem ID [12668]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (vii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y\sin\left(\frac{\pi y}{2}\right) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

dsolve(diff(y(t),t)=y(t)*sin(Pi/2*y(t)),y(t), singsol=all)

$$t - \left(\int^{y(t)} \frac{1}{a \sin\left(\frac{\pi a}{2}\right)} da \right) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.786 (sec). Leaf size: 37

DSolve[y'[t]==y[t]*Sin[Pi/2*y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{\csc\left(\frac{1}{2}\pi K[1]\right)}{K[1]} dK[1] \& \right] [t+c_1]$$

 $y(t) \to 0$

5.39 problem 37 (viii)

Internal problem ID [12669]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (viii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + y^3 = 0$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 20

 $dsolve(diff(y(t),t)=y(t)^2-y(t)^3,y(t), singsol=all)$

$$y(t) = rac{1}{ ext{LambertW}\left(-rac{\mathrm{e}^{-t-1}}{c_1}
ight) + 1}$$

✓ Solution by Mathematica

Time used: 0.408 (sec). Leaf size: 40

DSolve[y'[t]==y[t]^2-y[t]^3,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \text{InverseFunction} \left[\frac{1}{\#1} + \log(1 - \#1) - \log(\#1) \& \right] [-t + c_1]$$

$$y(t) \to 0$$

$$y(t) \to 1$$

6 Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

6.1	problem	1.		•	•	•	•	•		•		•	•	•	•	•	•	•	•		•	•		•	140
6.2	$\operatorname{problem}$	2 .																							141
6.3	$\operatorname{problem}$	3.																							142
6.4	$\operatorname{problem}$	4.																							143
6.5	$\operatorname{problem}$	5.																							144
6.6	$\operatorname{problem}$	6.																							145
6.7	problem	7.																							146
6.8	$\operatorname{problem}$	8.																							147
6.9	problem	9.																							148
6.10	problem	10																							149
6.11	problem	11																							150
6.12	problem	20																							151
6.13	$\operatorname{problem}$	21																							152
6.14	$\operatorname{problem}$	22																							153
6.15	problem	23																							154
6.16	problem	24																							155

6.1 problem 1

Internal problem ID [12670]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + 4y = 9 e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(t),t)=-4*y(t)+9*exp(-t),y(t), singsol=all)

$$y(t) = (3e^{3t} + c_1)e^{-4t}$$

✓ Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 21

DSolve[y'[t]==-4*y[t]+9*Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-4t} (3e^{3t} + c_1)$$

6.2 problem 2

Internal problem ID [12671]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + 4y = 3 e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(t),t)=-4*y(t)+3*exp(-t),y(t), singsol=all)

$$y(t) = \left(e^{3t} + c_1\right)e^{-4t}$$

✓ Solution by Mathematica

Time used: 0.087 (sec). Leaf size: 19

DSolve[y'[t]==-4*y[t]+3*Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-4t} (e^{3t} + c_1)$$

6.3 problem 3

Internal problem ID [12672]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 3y = 4\cos(2t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(t),t)=-3*y(t)+4*cos(2*t),y(t), singsol=all)

$$y(t) = \frac{8\sin(2t)}{13} + \frac{12\cos(2t)}{13} + c_1 e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.155 (sec). Leaf size: 31

DSolve[y'[t]==-3*y[t]+4*Cos[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{4}{13}(2\sin(2t) + 3\cos(2t)) + c_1e^{-3t}$$

6.4 problem 4

Internal problem ID [12673]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - 2y = \sin(2t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(t),t)=2*y(t)+sin(2*t),y(t), singsol=all)

$$y(t) = c_1 e^{2t} - \frac{\sin(2t)}{4} - \frac{\cos(2t)}{4}$$

✓ Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 30

DSolve[y'[t]==2*y[t]+Sin[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{1}{4}\sin(2t) - \frac{1}{4}\cos(2t) + c_1e^{2t}$$

6.5 problem 5

Internal problem ID [12674]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - 3y = -4 e^{3t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(t),t)=3*y(t)-4*exp(3*t),y(t), singsol=all)

$$y(t) = e^{3t}(-4t + c_1)$$

✓ Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 17

DSolve[y'[t]==3*y[t]-4*Exp[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{3t}(-4t + c_1)$$

6.6 problem 6

Internal problem ID [12675]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - \frac{y}{2} = 4 e^{\frac{t}{2}}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(t),t)=y(t)/2+4*exp(t/2),y(t), singsol=all)

$$y(t) = e^{\frac{t}{2}}(4t + c_1)$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 19

DSolve[y'[t]==y[t]/2+4*Exp[t/2],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{t/2}(4t + c_1)$$

6.7 problem 7

Internal problem ID [12676]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = e^{\frac{t}{3}}$$

With initial conditions

$$[y(0) = 1]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve([diff(y(t),t)+2*y(t)=exp(t/3),y(0) = 1],y(t), singsol=all)

$$y(t) = \frac{\left(3e^{\frac{7t}{3}} + 4\right)e^{-2t}}{7}$$

✓ Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 25

 $DSolve[\{y'[t]+2*y[t]==Exp[t/3],\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{7}e^{-2t} (3e^{7t/3} + 4)$$

6.8 problem 8

Internal problem ID [12677]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - 2y = 3e^{-2t}$$

With initial conditions

$$[y(0) = 10]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve([diff(y(t),t)-2*y(t)=3*exp(-2*t),y(0) = 10],y(t), singsol=all)

$$y(t) = -\frac{3e^{-2t}}{4} + \frac{43e^{2t}}{4}$$

Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 23

 $DSolve[\{y'[t]-2*y[t]==3*Exp[-2*t],\{y[0]==10\}\},y[t],t,IncludeSingularSolutions \ \ -> True]$

$$y(t) \to \frac{1}{4}e^{-2t} (43e^{4t} - 3)$$

6.9 problem 9

Internal problem ID [12678]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + y = \cos(2t)$$

With initial conditions

$$[y(0) = 5]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

dsolve([diff(y(t),t)+y(t)=cos(2*t),y(0) = 5],y(t), singsol=all)

$$y(t) = \frac{2\sin(2t)}{5} + \frac{\cos(2t)}{5} + \frac{24e^{-t}}{5}$$

✓ Solution by Mathematica

Time used: 0.144 (sec). Leaf size: 27

$$y(t) \to \frac{1}{5} (24e^{-t} + 2\sin(2t) + \cos(2t))$$

6.10 problem 10

Internal problem ID [12679]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + 3y = \cos(2t)$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([diff(y(t),t)+3*y(t)=cos(2*t),y(0) = -1],y(t), singsol=all)

$$y(t) = \frac{2\sin(2t)}{13} + \frac{3\cos(2t)}{13} - \frac{16e^{-3t}}{13}$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: $30\,$

DSolve[{y'[t]+3*y[t]==Cos[2*t],{y[0]==-1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{13} (2(\sin(2t) - 8e^{-3t}) + 3\cos(2t))$$

6.11 problem 11

Internal problem ID [12680]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - 2y = 7e^{2t}$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(t),t)-2*y(t)=7*exp(2*t),y(0) = 3],y(t), singsol=all)

$$y(t) = e^{2t}(7t+3)$$

✓ Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 16

 $DSolve[\{y'[t]-2*y[t]==7*Exp[2*t],\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to e^{2t}(7t+3)$$

6.12 problem 20

Internal problem ID [12681]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + 2y = 3t^2 + 2t - 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(t),t)+2*y(t)=3*t^2+2*t-1,y(t), singsol=all)$

$$y(t) = \frac{3t^2}{2} - \frac{t}{2} - \frac{1}{4} + c_1 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.193 (sec). Leaf size: 28

DSolve[y'[t]+2*y[t]==3*t^2+2*t-1,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{4} (6t^2 - 2t - 1) + c_1 e^{-2t}$$

6.13 problem 21

Internal problem ID [12682]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + 2y = t^2 + 2t + 1 + e^{4t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(t),t)+2*y(t)=t^2+2*t+1+exp(4*t),y(t), singsol=all)$

$$y(t) = \frac{1}{4} + \frac{e^{4t}}{6} + \frac{t^2}{2} + \frac{t}{2} + c_1 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.557 (sec). Leaf size: 35

DSolve[y'[t]+2*y[t]==t^2+2*t+1+Exp[4*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \frac{1}{12} (6t^2 + 6t + 2e^{4t} + 3) + c_1 e^{-2t}$$

6.14 problem 22

Internal problem ID [12683]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + y = t^3 + \sin(3t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $dsolve(diff(y(t),t)+y(t)=t^3+sin(3*t),y(t), singsol=all)$

$$y(t) = t^3 - 3t^2 + 6t + \frac{\sin(3t)}{10} - \frac{3\cos(3t)}{10} + c_1 e^{-t} - 6$$

✓ Solution by Mathematica

Time used: 0.19 (sec). Leaf size: 42

DSolve[y'[t]+y[t]==t^3+Sin[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to t^3 - 3t^2 + 6t + \frac{1}{10}\sin(3t) - \frac{3}{10}\cos(3t) + c_1e^{-t} - 6$$

6.15 problem 23

Internal problem ID [12684]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - 3y = 2t - e^{4t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(t),t)-3*y(t)=2*t-exp(4*t),y(t), singsol=all)

$$y(t) = -\frac{2t}{3} - \frac{2}{9} - e^{4t} + c_1 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.146 (sec). Leaf size: 30

DSolve[y'[t]-3*y[t]==2*t-Exp[4*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{2}{9}(3t+1) - e^{4t} + c_1 e^{3t}$$

6.16 problem 24

Internal problem ID [12685]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + y = \cos(2t) + 3\sin(2t) + e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(t),t)+y(t)=cos(2*t)+3*sin(2*t)+exp(-t),y(t), singsol=all)

$$y(t) = \sin(2t) - \cos(2t) + c_1 e^{-t} + t e^{-t}$$

✓ Solution by Mathematica

Time used: 0.239 (sec). Leaf size: 32

DSolve[y'[t]+y[t]==Cos[2*t]+3*Sin[2*t]+Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t} (t + e^t \sin(2t) - e^t \cos(2t) + c_1)$$

7 Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

7.1	problem	1 .											 						 	157
7.2	problem	2 .											 							158
7.3	problem	3.											 							159
7.4	$\operatorname{problem}$	4 .											 . .						 	160
7.5	problem	5.											 							161
7.6	$\operatorname{problem}$	6.											 . .						 	162
7.7	$\operatorname{problem}$	7.											 						 	163
7.8	$\operatorname{problem}$	8.											 						 	164
7.9	${\bf problem}$	9 .											 						 	165
7.10	${\bf problem}$	10											 						 	166
7.11	$\operatorname{problem}$	11											 						 	167
7.12	$\operatorname{problem}$	12											 	•					 	168
7.13	${\bf problem}$	13											 						 	169
7.14	$\operatorname{problem}$	14											 							170
7.15	$\operatorname{problem}$	15											 							171
7.16	$\operatorname{problem}$	16											 	•					 	172
7.17	$\operatorname{problem}$	17											 	•					 	173
7.18	$\operatorname{problem}$	18											 							174
7.19	$\operatorname{problem}$	19											 	•					 	175
7.20	$\operatorname{problem}$	20											 	•					 	176
7.21	$\operatorname{problem}$	21											 						 	178
7.22	$\operatorname{problem}$	22	(f)										 							179
7.23	problem	23											 							180

7.1 problem 1

Internal problem ID [12686]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' + \frac{y}{t} = 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(t),t)=-y(t)/t+2,y(t), singsol=all)

$$y(t) = t + \frac{c_1}{t}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 13

DSolve[y'[t]==-y[t]/t+2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to t + \frac{c_1}{t}$$

7.2 problem 2

Internal problem ID [12687]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{3y}{t} = t^5$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(t),t)=3/t*y(t)+t^5,y(t), singsol=all)$

$$y(t) = \left(\frac{t^3}{3} + c_1\right)t^3$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 19

DSolve[y'[t]==3/t*y[t]+t^5,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{t^6}{3} + c_1 t^3$$

7.3 problem 3

Internal problem ID [12688]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{t+1} = t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(diff(y(t),t)=-y(t)/(1+t)+t^2,y(t), singsol=all)$

$$y(t) = \frac{\frac{1}{4}t^4 + \frac{1}{3}t^3 + c_1}{1+t}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 28

DSolve[y'[t]==-y[t]/(1+t)+t^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) o rac{3t^4 + 4t^3 + 12c_1}{12t + 12}$$

7.4 problem 4

Internal problem ID [12689]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2yt = 4e^{-t^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=-2*t*y(t)+4*exp(-t^2),y(t), singsol=all)$

$$y(t) = e^{-t^2} (4t + c_1)$$

✓ Solution by Mathematica

Time used: 0.098 (sec). Leaf size: 19

DSolve[y'[t]==-2*t*y[t]+4*Exp[-t^2],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t^2} (4t + c_1)$$

7.5 problem 5

Internal problem ID [12690]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{2ty}{t^2 + 1} = 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)-2*t/(1+t^2)*y(t)=3,y(t), singsol=all)$

$$y(t) = (t^2 + 1) (3 \arctan(t) + c_1)$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 18

 $DSolve[y'[t]-2*t/(1+t^2)*y[t]==3,y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow (t^2 + 1) (3 \arctan(t) + c_1)$$

7.6 problem 6

Internal problem ID [12691]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{2y}{t} = e^t t^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)-2/t*y(t)=t^3*exp(t),y(t), singsol=all)$

$$y(t) = ((t-1)e^t + c_1)t^2$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 19

DSolve[y'[t]-2/t*y[t]==t^3*Exp[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to t^2 \left(e^t (t-1) + c_1 \right)$$

7.7 problem 7

Internal problem ID [12692]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{t+1} = 2$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve([diff(y(t),t)=-y(t)/(1+t)+2,y(0) = 3],y(t), singsol=all)

$$y(t) = \frac{t^2 + 2t + 3}{1 + t}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 19

 $DSolve[\{y'[t]==-y[t]/(1+t)+2,\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{t^2 + 2t + 3}{t + 1}$$

7.8 problem 8

Internal problem ID [12693]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{t+1} = 4t^2 + 4t$$

With initial conditions

$$[y(1) = 10]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $\label{eq:dsolve} $$ dsolve([diff(y(t),t)=y(t)/(1+t)+4*t^2+4*t,y(1) = 10],y(t), singsol=all)$$

$$y(t) = 2t^3 + 2t^2 + 3t + 3$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 20

 $DSolve[\{y'[t]==y[t]/(1+t)+4*t^2+4*t,\{y[1]==10\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 2t^3 + 2t^2 + 3t + 3$$

7.9 problem 9

Internal problem ID [12694]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{t} = 2$$

With initial conditions

$$[y(1) = 3]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

dsolve([diff(y(t),t)=-y(t)/t+2,y(1)=3],y(t), singsol=all)

$$y(t) = t + \frac{2}{t}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 12

 $\label{eq:DSolve} DSolve[\{y'[t]==-y[t]/t+2,\{y[1]==3\}\},y[t],t,IncludeSingularSolutions \ -> \ True]$

$$y(t) \to t + \frac{2}{t}$$

7.10 problem 10

Internal problem ID [12695]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2yt = 4 e^{-t^2}$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $\label{eq:def:def:def:def:def:def:def} $$ $ dsolve([diff(y(t),t)=-2*t*y(t)+4*exp(-t^2),y(0) = 3],y(t), $$ singsol=all) $$$

$$y(t) = e^{-t^2}(4t+3)$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 18

 $DSolve[\{y'[t]==-2*t*y[t]+4*Exp[-t^2],\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to e^{-t^2} (4t + 3)$$

7.11 problem 11

Internal problem ID [12696]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{2y}{t} = 2t^2$$

With initial conditions

$$[y(-2) = 4]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve([diff(y(t),t)-2*y(t)/t=2*t^2,y(-2) = 4],y(t), singsol=all)$

$$y(t) = 2t^3 + 5t^2$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 14

 $DSolve[\{y'[t]-2*y[t]/t==2*t^2,\{y[-2]==4\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow t^2(2t+5)$$

7.12 problem 12

Internal problem ID [12697]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 12.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{3y}{t} = 2e^{2t}t^3$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve([diff(y(t),t)-3/t*y(t)=2*t^3*exp(2*t),y(1) = 0],y(t), singsol=all)$

$$y(t) = -t^3 \left(-e^{2t} + e^2 \right)$$

✓ Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 20

DSolve[{y'[t]-3/t*y[t]==2*t^3*Exp[2*t],{y[1]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \left(e^{2t} - e^2\right)t^3$$

7.13 problem 13

Internal problem ID [12698]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \sin(t) y = 4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(t),t)=sin(t)*y(t)+4,y(t), singsol=all)

$$y(t) = \left(\int 4 e^{\cos(t)} dt + c_1\right) e^{-\cos(t)}$$

✓ Solution by Mathematica

Time used: 0.486 (sec). Leaf size: $29\,$

DSolve[y'[t]==Sin[t]*y[t]+4,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-\cos(t)} \left(\int_1^t 4e^{\cos(K[1])} dK[1] + c_1 \right)$$

7.14 problem 14

Internal problem ID [12699]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - t^2 y = 4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 55

 $dsolve(diff(y(t),t)=t^2*y(t)+4,y(t), singsol=all)$

$$y(t) = c_1 e^{\frac{t^3}{3}} + \frac{e^{\frac{t^3}{6}} 243^{\frac{5}{6}} \left(t^3 \text{ WhittakerM}\left(\frac{1}{6}, \frac{2}{3}, \frac{t^3}{3}\right) + 4 \text{ WhittakerM}\left(\frac{7}{6}, \frac{2}{3}, \frac{t^3}{3}\right)\right)}{27t^2 \left(t^3\right)^{\frac{1}{6}}}$$

✓ Solution by Mathematica

Time used: 0.102 (sec). Leaf size: 49

DSolve[y'[t]==t^2*y[t]+4,y[t],t,IncludeSingularSolutions -> True]

$$y(t)
ightarrowrac{1}{3}e^{rac{t^3}{3}}\Biggl(-rac{4\sqrt[3]{3}t\Gamma\Bigl(rac{1}{3},rac{t^3}{3}\Bigr)}{\sqrt[3]{t^3}}+3c_1\Biggr)$$

7.15 problem 15

Internal problem ID [12700]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{t^2} = 4\cos\left(t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(t),t)=y(t)/t^2+4*cos(t),y(t), singsol=all)$

$$y(t) = \left(\int 4\operatorname{e}^{rac{1}{t}}\cos\left(t
ight)dt + c_1
ight)\operatorname{e}^{-rac{1}{t}}$$

✓ Solution by Mathematica

Time used: 3.836 (sec). Leaf size: 34

DSolve[y'[t]==y[t]/t^2+4*Cos[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-1/t} \left(\int_1^t 4e^{\frac{1}{K[1]}} \cos(K[1]) dK[1] + c_1 \right)$$

7.16 problem 16

Internal problem ID [12701]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - y = 4\cos\left(t^2\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 57

 $dsolve(diff(y(t),t)=y(t)+4*cos(t^2),y(t), singsol=all)$

$$y(t) = \left(\frac{\sqrt{\pi} e^{\frac{i}{4}} \operatorname{erf}\left(\sqrt{-i} t + \frac{1}{2\sqrt{-i}}\right)}{\sqrt{-i}} - \sqrt{\pi} e^{-\frac{i}{4}} (-1)^{\frac{3}{4}} \operatorname{erf}\left((-1)^{\frac{1}{4}} t - \frac{(-1)^{\frac{3}{4}}}{2}\right) + c_1\right) e^{t}$$

✓ Solution by Mathematica

Time used: 0.137 (sec). Leaf size: 77

DSolve[y'[t]==y[t]+4*Cos[t^2],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^t \left(c_1 - \sqrt[4]{-1} e^{-\frac{i}{4}} \sqrt{\pi} \left(\text{erfi}\left(\frac{1}{2} (-1)^{3/4} (2t-i)\right) + i e^{\frac{i}{2}} \text{erfi}\left(\frac{1}{2} \sqrt[4]{-1} (2t+i)\right) \right) \right)$$

7.17 problem 17

Internal problem ID [12702]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + e^{-t^2}y = \cos(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(t),t)=-y(t)/exp(t^2)+cos(t),y(t), singsol=all)$

$$y(t) = \left(\int \mathrm{e}^{rac{\sqrt{\pi} \, \operatorname{erf}(t)}{2}} \cos\left(t
ight) dt + c_1
ight) \mathrm{e}^{-rac{\sqrt{\pi} \, \operatorname{erf}(t)}{2}}$$

✓ Solution by Mathematica

Time used: 1.093 (sec). Leaf size: 47

DSolve[y'[t]==-y[t]/Exp[t^2]+Cos[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) o e^{-\frac{1}{2}\sqrt{\pi} \mathrm{erf}(t)} \Biggl(\int_{1}^{t} e^{\frac{1}{2}\sqrt{\pi} \mathrm{erf}(K[1])} \cos(K[1]) dK[1] + c_{1} \Biggr)$$

7.18 problem 18

Internal problem ID [12703]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{\sqrt{t^3 - 3}} = t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $dsolve(diff(y(t),t)=y(t)/sqrt(t^3-3)+t,y(t), singsol=all)$

$$y(t) = \left(\int t\,\mathrm{e}^{-\left(\int rac{1}{\sqrt{t^3-3}}dt
ight)}dt + c_1
ight)\mathrm{e}^{\int rac{1}{\sqrt{t^3-3}}dt}$$

✓ Solution by Mathematica

Time used: 20.591 (sec). Leaf size: 110

DSolve[y'[t]==y[t]/Sqrt[t^3-3]+t,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow e^{\frac{t\sqrt{1-\frac{t^3}{3}} \text{ Hypergeometric} 2F1\left(\frac{1}{3},\frac{1}{2},\frac{4}{3},\frac{t^3}{3}\right)}{\sqrt{t^3-3}} \left(\int_1^t \exp\left(-\frac{\text{Hypergeometric} 2F1\left(\frac{1}{3},\frac{1}{2},\frac{4}{3},\frac{K[1]^3}{3}\right) K[1] \sqrt{1-\frac{K[1]^3}{3}}}{\sqrt{K[1]^3-3}}\right) K[1] + c_1 \right)$$

7.19 problem 19

Internal problem ID [12704]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - aty = 4 e^{-t^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

 $dsolve(diff(y(t),t)=a*t*y(t)+4*exp(-t^2),y(t), singsol=all)$

$$y(t) = \left(\frac{4\sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{4+2a}t}{2}\right)}{\sqrt{4+2a}} + c_1\right) e^{\frac{at^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.213 (sec). Leaf size: 58

DSolve[y'[t]==a*t*y[t]+4*Exp[-t^2],y[t],t,IncludeSingularSolutions -> True]

$$y(t)
ightarrow rac{e^{rac{at^2}{2}} \left(2\sqrt{2\pi} \mathrm{erf}\left(rac{\sqrt{a+2}t}{\sqrt{2}}
ight) + \sqrt{a+2}c_1
ight)}{\sqrt{a+2}}$$

7.20 problem 20

Internal problem ID [12705]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - t^r y = 4$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 331

 $dsolve(diff(y(t),t)=t^r*y(t)+4,y(t), singsol=all)$

$$= \left(\frac{4\left(\frac{1}{r+1}\right)^{-\frac{1}{r+1}}\left(\frac{(r+1)^{2}t^{\frac{r}{r+1}+\frac{1}{r+1}-1-r}\left(\frac{1}{r+1}\right)^{\frac{1}{r+1}}\left(\frac{t^{r+1}r^{2}}{r+1}+\frac{2t^{r+1}}{r+1}+r^{2}+\frac{t^{r+1}}{r+1}+3r+2\right)\left(\frac{t^{r+1}}{r+1}\right)^{-\frac{r+2}{2(r+1)}}e^{-\frac{t^{r+1}}{2(r+1)}}}{(r+2)(2r+3)}\right)}{r} + c_{1} e^{\frac{t^{r+1}}{r+1}} + c_{1} e^{\frac{t^{r+1}}{r+1}} + c_{1} e^{\frac{t^{r+1}}{r+1}} + c_{1} e^{\frac{t^{r+1}}{r+1}}$$

✓ Solution by Mathematica

Time used: 0.12 (sec). Leaf size: 66

DSolve[y'[t]==t^r*y[t]+4,y[t],t,IncludeSingularSolutions -> True]

$$y(t)
ightarrow e^{rac{t^{r+1}}{r+1}} \Biggl(-rac{4t \Bigl(rac{t^{r+1}}{r+1}\Bigr)^{-rac{1}{r+1}} \Gamma\Bigl(rac{1}{r+1},rac{t^{r+1}}{r+1}\Bigr)}{r+1} + c_1 \Biggr)$$

7.21 problem 21

Internal problem ID [12706]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$v' + \frac{2v}{5} = 3\cos(2t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(v(t),t)+4/10*v(t)=3*cos(2*t),v(t), singsol=all)

$$v(t) = \frac{75\sin(2t)}{52} + \frac{15\cos(2t)}{52} + c_1 e^{-\frac{2t}{5}}$$

✓ Solution by Mathematica

Time used: 0.152 (sec). Leaf size: 31

DSolve[v'[t]+4/10*v[t]==3*Cos[2*t],v[t],t,IncludeSingularSolutions -> True]

$$v(t) \to \frac{15}{52} (5\sin(2t) + \cos(2t)) + c_1 e^{-2t/5}$$

7.22 problem 22 (f)

Internal problem ID [12707]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 22 (f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2yt = 4e^{-t^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=-2*t*y(t)+4*exp(-t^2),y(t), singsol=all)$

$$y(t) = e^{-t^2} (4t + c_1)$$

✓ Solution by Mathematica

Time used: 0.095 (sec). Leaf size: 19

DSolve[y'[t]==-2*t*y[t]+4*Exp[-t^2],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t^2} (4t + c_1)$$

7.23 problem 23

Internal problem ID [12708]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' + 2y = 3 e^{-2t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $\label{eq:decomposition} dsolve(diff(y(t),t)+2*y(t)=3*exp(-2*t),y(t), \ singsol=all)$

$$y(t) = e^{-2t}(3t + c_1)$$

✓ Solution by Mathematica

Time used: 0.084 (sec). Leaf size: 17

DSolve[y'[t]+2*y[t]==3*Exp[-2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-2t}(3t + c_1)$$

8 Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136

8.1	problem 2.	 	•			•											•	182
8.2	problem 3 .	 																183
8.3	problem 4 .	 																184
8.4	problem 5 .	 																185
8.5	problem 6 .	 																186
8.6	problem 17																	187
8.7	problem 20																	188
8.8	problem 21																	189
8.9	problem 22																	190
8.10	problem 23																	191
8.11	problem 24																	192
8.12	problem 25																	193
8.13	problem 26																	194
8.14	problem 27																	195
8.15	problem 28																	196
8.16	problem 29																	197
8.17	problem 30																	198
8.18	problem 31																	199
8.19	problem 32																	200
8.20	problem 33																	201
8.21	problem 34																	202
8.22	problem 35																	203
8.23	problem 36																	204
8.24	problem 37																	205
8.25	problem 38																	206
8.26	problem 39																	207
8.27	problem 40																	208
8.28	problem 43																	209
8.29	problem 44																	210
8.30	problem 45																	211
8.31	problem 46																	212
8.32	problem 47																	213

8.1 problem 2

Internal problem ID [12709]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(t),t)=3*y(t),y(t), singsol=all)

$$y(t) = c_1 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 18

DSolve[y'[t]==3*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 e^{3t}$$

$$y(t) \to 0$$

8.2 problem 3

Internal problem ID [12710]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

 ${f Section}$: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = t^2 \left(t^2 + 1 \right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=t^2*(t^2+1),y(t), singsol=all)$

$$y(t) = \frac{1}{3}t^3 + \frac{1}{5}t^5 + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

DSolve[y'[t]==t^2*(t^2+1),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \frac{t^5}{5} + \frac{t^3}{3} + c_1$$

8.3 problem 4

Internal problem ID [12711]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

 ${f Section}$: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + \sin\left(y\right)^5 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 189

 $dsolve(diff(y(t),t)=-sin(y(t))^5,y(t), singsol=all)$

$$\begin{split} y(t) &= \arctan \left(\frac{2 \, \mathrm{e}^{\mathrm{RootOf}(\mathrm{e}^{8-Z} + 8 \, \mathrm{e}^{6-Z} + 64c_1 \mathrm{e}^{4-Z} + 24_Z \mathrm{e}^{4-Z} + 64t \, \mathrm{e}^{4-Z} - 8 \, \mathrm{e}^{2-Z} - 1)}{\mathrm{e}^{2 \, \mathrm{RootOf}(\mathrm{e}^{8-Z} + 8 \, \mathrm{e}^{6-Z} + 64c_1 \mathrm{e}^{4-Z} + 24_Z \mathrm{e}^{4-Z} + 64t \, \mathrm{e}^{4-Z} - 8 \, \mathrm{e}^{2-Z} - 1) + 1}, \\ &- \frac{\mathrm{e}^{2 \, \mathrm{RootOf}(\mathrm{e}^{8-Z} + 8 \, \mathrm{e}^{6-Z} + 64c_1 \mathrm{e}^{4-Z} + 24_Z \mathrm{e}^{4-Z} + 64t \, \mathrm{e}^{4-Z} - 8 \, \mathrm{e}^{2-Z} - 1) - 1}{\mathrm{e}^{2 \, \mathrm{RootOf}(\mathrm{e}^{8-Z} + 8 \, \mathrm{e}^{6-Z} + 64c_1 \mathrm{e}^{4-Z} + 24_Z \mathrm{e}^{4-Z} + 64t \, \mathrm{e}^{4-Z} - 8 \, \mathrm{e}^{2-Z} - 1) + 1} \right) \end{split}$$

✓ Solution by Mathematica

Time used: 1.165 (sec). Leaf size: 101

DSolve[y'[t]==-Sin[y[t]]^5,y[t],t,IncludeSingularSolutions -> True]

$$\begin{split} y(t) &\rightarrow \text{InverseFunction} \left[\frac{1}{16} \left(-\frac{1}{64} \csc^4 \left(\frac{\#1}{2} \right) - \frac{3}{32} \csc^2 \left(\frac{\#1}{2} \right) + \frac{1}{64} \sec^4 \left(\frac{\#1}{2} \right) \right. \\ &\left. + \frac{3}{32} \sec^2 \left(\frac{\#1}{2} \right) + \frac{3}{8} \log \left(\sin \left(\frac{\#1}{2} \right) \right) - \frac{3}{8} \log \left(\cos \left(\frac{\#1}{2} \right) \right) \right) \& \right] \left[-\frac{t}{16} + c_1 \right] \\ y(t) &\rightarrow 0 \end{split}$$

8.4 problem 5

Internal problem ID [12712]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{(t^2 - 4)(y + 1)e^y}{(t - 1)(3 - y)} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

$$dsolve(diff(y(t),t)=((t^2-4)*(1+y(t))*exp(y(t)))/((t-1)*(3-y(t))),y(t), singsol=all)$$

$$y(t) = -\text{RootOf}\left(8 \text{ e Ei}_1\left(1 - \underline{Z}\right) + t^2 - 6\ln(t - 1) - 2\text{ e}^{-Z} + 2c_1 + 2t\right)$$

✓ Solution by Mathematica

Time used: 1.486 (sec). Leaf size: 53

$$DSolve[y'[t] == ((t^2-4)*(1+y[t])*Exp[y[t]])/((t-1)*(3-y[t])),y[t],t,IncludeSingularSolut]$$

$$y(t) \rightarrow \text{InverseFunction} \left[-4e \, \text{ExpIntegralEi}(-\#1-1) - e^{-\#1} \& \right] \left[-\frac{t^2}{2} - t + 3 \log(t-1) + \frac{3}{2} + c_1 \right]$$

$$y(t) \rightarrow -1$$

8.5 problem 6

Internal problem ID [12713]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \sin\left(y\right)^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(t),t)=sin(y(t))^2,y(t), singsol=all)$

$$y(t) = \pi - \operatorname{arccot}(t + c_1)$$

✓ Solution by Mathematica

Time used: 0.319 (sec). Leaf size: 19

DSolve[y'[t]==Sin[y[t]]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\cot^{-1}(t - 2c_1)$$

$$y(t) \to 0$$

8.6 problem 17

Internal problem ID [12714]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['x=G(y,y')']

$$y' - (y - 3)(\sin(y)\sin(t) + \cos(t) + 1) = 0$$

With initial conditions

$$[y(0) = 4]$$

X Solution by Maple

$$dsolve([diff(y(t),t)=(y(t)-3)*(sin(y(t))*sin(t)+cos(t)+1),y(0)=4],y(t), singsol=all)$$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

Not solved

8.7 problem 20

Internal problem ID [12715]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(t),t)=y(t)+exp(-t),y(t), singsol=all)

$$y(t) = \left(-\frac{\mathrm{e}^{-2t}}{2} + c_1\right)\mathrm{e}^t$$

✓ Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 21

DSolve[y'[t]==y[t]+Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{e^{-t}}{2} + c_1 e^t$$

8.8 problem 21

Internal problem ID [12716]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 2y = 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)= 3-2*y(t),y(t), singsol=all)

$$y(t) = \frac{3}{2} + c_1 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 24

DSolve[y'[t]==3-2*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{3}{2} + c_1 e^{-2t}$$

$$y(t) o rac{3}{2}$$

8.9 problem 22

Internal problem ID [12717]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - yt = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)=t*y(t),y(t), singsol=all)

$$y(t) = c_1 \mathrm{e}^{\frac{t^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 22

DSolve[y'[t]==t*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 e^{\frac{t^2}{2}}$$

$$y(t) \to 0$$

8.10 problem 23

Internal problem ID [12718]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 3y = e^{7t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(t),t)= 3*y(t)+exp(7*t),y(t), singsol=all)

$$y(t) = \left(\frac{\mathrm{e}^{4t}}{4} + c_1\right) \mathrm{e}^{3t}$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 23

DSolve[y'[t]==3*y[t]+Exp[7*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{e^{7t}}{4} + c_1 e^{3t}$$

8.11 problem 24

Internal problem ID [12719]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{ty}{t^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(diff(y(t),t)=t*y(t)/(1+t^2),y(t), singsol=all)$

$$y(t) = c_1 \sqrt{t^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 22

DSolve[y'[t]==t*y[t]/(1+t^2),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow c_1 \sqrt{t^2 + 1}$$

$$y(t) \to 0$$

8.12 problem 25

Internal problem ID [12720]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 5y = \sin(3t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(t),t) = -5*y(t)+sin(3*t),y(t), singsol=all)

$$y(t) = \frac{5\sin(3t)}{34} - \frac{3\cos(3t)}{34} + c_1 e^{-5t}$$

✓ Solution by Mathematica

Time used: 0.165 (sec). Leaf size: 30

DSolve[y'[t]==-5*y[t]+Sin[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{5}{34}\sin(3t) - \frac{3}{34}\cos(3t) + c_1e^{-5t}$$

8.13 problem 26

Internal problem ID [12721]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

 ${f Section}:$ Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{2y}{t+1} = t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(t),t)=t+2*y(t)/(1+t),y(t), singsol=all)

$$y(t) = \left(\ln{(1+t)} + \frac{1}{1+t} + c_1\right)(1+t)^2$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 23

DSolve[y'[t]==t+2*y[t]/(1+t),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to (t+1)^2 \left(\frac{1}{t+1} + \log(t+1) + c_1\right)$$

8.14 problem 27

Internal problem ID [12722]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'-y^2=3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)= 3+y(t)^2,y(t), singsol=all)$

$$y(t) = \sqrt{3} \tan \left((t + c_1) \sqrt{3} \right)$$

✓ Solution by Mathematica

Time used: 0.256 (sec). Leaf size: 48

DSolve[y'[t]==3+y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \sqrt{3} \tan \left(\sqrt{3}(t+c_1)\right)$$

$$y(t) \rightarrow -i\sqrt{3}$$

$$y(t) \to i\sqrt{3}$$

8.15 problem 28

Internal problem ID [12723]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y + y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(t),t)= 2*y(t)-y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{2}{2c_1e^{-2t} + 1}$$

✓ Solution by Mathematica

Time used: 0.447 (sec). Leaf size: 36

DSolve[y'[t]==2*y[t]-y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) o rac{2e^{2t}}{e^{2t} + e^{2c_1}}$$

$$y(t) \to 0$$

$$y(t) \rightarrow 2$$

8.16 problem 29

Internal problem ID [12724]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

 ${f Section}$: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 3y = e^{-2t} + t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(t),t) = -3*y(t)+exp(-2*t)+t^2,y(t), singsol=all)$

$$y(t) = \frac{t^2}{3} - \frac{2t}{9} + \frac{2}{27} + e^{-2t} + c_1 e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.147 (sec). Leaf size: 33

DSolve[y'[t]==-3*y[t]+Exp[-2*t]+t^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{27} (9t^2 - 6t + 2) + e^{-2t} + c_1 e^{-3t}$$

8.17 problem 30

Internal problem ID [12725]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' + tx = 0$$

With initial conditions

$$[x(0) = e]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve([diff(x(t),t)= -t*x(t),x(0) = exp(1)],x(t), singsol=all)

$$x(t) = e^{1 - \frac{t^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 16

DSolve[{x'[t]==-t*x[t],{x[0]==Exp[1]}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{1 - \frac{t^2}{2}}$$

8.18 problem 31

Internal problem ID [12726]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = \cos(4t)$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([diff(y(t),t)= 2*y(t)+cos(4*t),y(0) = 1],y(t), singsol=all)

$$y(t) = \frac{11 e^{2t}}{10} + \frac{\sin(4t)}{5} - \frac{\cos(4t)}{10}$$

✓ Solution by Mathematica

Time used: 0.159 (sec). Leaf size: 29

DSolve[{y'[t]==2*y[t]+Cos[4*t],{y[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{10} (11e^{2t} + 2\sin(4t) - \cos(4t))$$

8.19 problem 32

Internal problem ID [12727]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 32.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 3y = 2e^{3t}$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(t),t)= 3*y(t)+2*exp(3*t),y(0) = -1],y(t), singsol=all)

$$y(t) = e^{3t}(2t - 1)$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 16

 $DSolve[\{y'[t]==3*y[t]+2*Exp[3*t],\{y[0]==-1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to e^{3t}(2t-1)$$

8.20 problem 33

Internal problem ID [12728]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 33.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - t^2 y^3 - y^3 = 0$$

With initial conditions

$$\left[y(0) = -\frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 18

 $dsolve([diff(y(t),t)=t^2*y(t)^3+y(t)^3,y(0)=-1/2],y(t), singsol=all)$

$$y(t) = -\frac{3}{\sqrt{-6t^3 - 18t + 36}}$$

✓ Solution by Mathematica

Time used: 0.319 (sec). Leaf size: 28

 $DSolve[\{y'[t]==t^2*y[t]^3+y[t]^3,\{y[0]==-1/2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t)
ightarrow -rac{\sqrt{rac{3}{2}}}{\sqrt{-t^3-3t+6}}$$

8.21 problem 34

Internal problem ID [12729]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 34.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 5y = 3e^{-5t}$$

With initial conditions

$$[y(0) = -2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(t),t)+5*y(t)=3*exp(-5*t),y(0)=-2],y(t), singsol=all)

$$y(t) = e^{-5t}(3t - 2)$$

✓ Solution by Mathematica

Time used: 0.085 (sec). Leaf size: 16

$$y(t) \to e^{-5t}(3t - 2)$$

8.22 problem 35

Internal problem ID [12730]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 35.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - 2yt = 3t e^{t^2}$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve([diff(y(t),t)= 2*t*y(t)+3*t*exp(t^2),y(0) = 1],y(t), singsol=all)$

$$y(t) = \frac{e^{t^2}(3t^2 + 2)}{2}$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 21

$$y(t)
ightarrow rac{1}{2}e^{t^2} ig(3t^2+2ig)$$

8.23 problem 36

Internal problem ID [12731]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 36.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{(t+1)^2}{(y+1)^2} = 0$$

With initial conditions

$$[y(0) = 0]$$

Solution by Maple

Time used: 0.062 (sec). Leaf size: 5

 $dsolve([diff(y(t),t)=(t+1)^2/(y(t)+1)^2,y(0)=0],y(t), singsol=all)$

$$y(t) = t$$

✓ Solution by Mathematica

Time used: 0.805 (sec). Leaf size: 16

 $DSolve[\{y'[t] == (t+1)^2/(y[t]+1)^2, \{y[0] == 0\}\}, y[t], t, IncludeSingularSolutions \ \ -> True]$

$$y(t) \to \sqrt[3]{(t+1)^3} - 1$$

8.24 problem 37

Internal problem ID [12732]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 37.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2ty^2 - 3y^2t^2 = 0$$

With initial conditions

$$[y(1) = -1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 16

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{y(t)},\mbox{t}) = \mbox{2*t*y(t)}^2 + 3*t^2 + y(\mbox{t})^2, \\ \mbox{y(1)} = \mbox{-1}], \\ \mbox{y(t)}, \ \mbox{singsol=all}) \\$

$$y(t) = -\frac{1}{t^3 + t^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.222 (sec). Leaf size: 17

DSolve[{y'[t]== 2*t*y[t]^2+3*t^2*y[t]^2,{y[1]==-1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{1}{t^3 + t^2 - 1}$$

8.25 problem 38

Internal problem ID [12733]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 38.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 1$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(t),t)= 1-y(t)^2,y(0) = 1],y(t), singsol=all)$

$$y(t) = 1$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $DSolve[\{y'[t]== 1-y[t]^2, \{y[0]==1\}\}, y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow 1$$

8.26 problem 39

Internal problem ID [12734]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 39.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{t^2}{y + yt^3} = 0$$

With initial conditions

$$[y(0) = -2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{y}(\mbox{t}),\mbox{t}) = \mbox{t^2/(y(t)+t^3*y(t)),y(0)} = -2],\\ \mbox{y(t), singsol=all)} \\$

$$y(t) = -\frac{\sqrt{6\ln(t^3 + 1) + 36}}{3}$$

Solution by Mathematica

Time used: 0.195 (sec). Leaf size: 26

 $DSolve[\{y'[t]==t^2/(y[t]+t^3*y[t]),\{y[0]==-2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\sqrt{\frac{2}{3}}\sqrt{\log(t^3+1)+6}$$

8.27 problem 40

Internal problem ID [12735]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 40.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 2y = 1$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve([diff(y(t),t)=y(t)^2-2*y(t)+1,y(0)=2],y(t), singsol=all)$

$$y(t) = \frac{t-2}{t-1}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 14

 $DSolve[\{y'[t]==y[t]^2-2*y[t]+1,\{y[0]==2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{t-2}{t-1}$$

8.28 problem 43

Internal problem ID [12736]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 43.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Riccati]

$$y' - (-2 + y)(y + 1 - \cos(t)) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 118

dsolve(diff(y(t),t)=(y(t)-2)*(y(t)+1-cos(t)),y(t), singsol=all)

$$y(t) = -\frac{ic_1 e^{t - \frac{3\pi}{2} - \sin(t)}}{c_1 e^{-2t} \left(\int ie^{-\frac{3\pi}{2} + 3t - \sin(t)} dt \right) + e^{\pi - 2t}} - \frac{-2c_1 e^{-2t} \left(\int ie^{-\frac{3\pi}{2} + 3t - \sin(t)} dt \right) - 2e^{\pi - 2t}}{c_1 e^{-2t} \left(\int ie^{-\frac{3\pi}{2} + 3t - \sin(t)} dt \right) + e^{\pi - 2t}}$$

✓ Solution by Mathematica

Time used: 3.379 (sec). Leaf size: 224

DSolve[y'[t] == (y[t]-2)*(y[t]+1-Cos[t]),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\frac{-2\int_{1}^{e^{it}} e^{\frac{i\left(K[1]^{2}-1\right)}{2K[1]}}K[1]^{-1-3i}dK[1] + ie^{\frac{1}{2}ie^{-it}\left(-1+e^{2it}\right)}\left(e^{it}\right)^{-3i} - 2c_{1}}{\int_{1}^{e^{it}} e^{\frac{i\left(K[1]^{2}-1\right)}{2K[1]}}K[1]^{-1-3i}dK[1] + c_{1}}$$

$$y(t) \rightarrow 2$$

$$y(t)
ightarrow 2 - rac{ie^{rac{1}{2}ie^{-it}(-1+e^{2it})}{(e^{it})^{-3i}}}{\int_{1}^{e^{it}}e^{rac{i\left(K[1]^{2}-1
ight)}{2K[1]}}K[1]^{-1-3i}dK[1]}$$

8.29 problem 44

Internal problem ID [12737]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 44.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Abel]

$$y' - (y - 1)(-2 + y)(y - e^{\frac{t}{2}}) = 0$$

X Solution by Maple

dsolve(diff(y(t),t)=(y(t)-1)*(y(t)-2)*(y(t)-exp(t/2)),y(t), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y'[t] == (y[t]-1)*(y[t]-2)*(y[t]-Exp[t/2]), y[t], t, IncludeSingularSolutions \rightarrow True]$

Timed out

8.30 problem 45

Internal problem ID [12738]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 45.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - t^2 y - y = t^2 + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(t),t)=t^2*y(t)+1+y(t)+t^2,y(t), singsol=all)$

$$y(t) = -1 + c_1 e^{\frac{t(t^2+3)}{3}}$$

✓ Solution by Mathematica

Time used: 0.188 (sec). Leaf size: 26

DSolve[y'[t]==t^2*y[t]+1+y[t]+t^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -1 + c_1 e^{\frac{t^3}{3} + t}$$

$$y(t) \rightarrow -1$$

8.31 problem 46

Internal problem ID [12739]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 46.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2y+1}{t} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

dsolve(diff(y(t),t)=(2*y(t)+1)/t,y(t), singsol=all)

$$y(t) = -\frac{1}{2} + c_1 t^2$$

Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 22

 $DSolve[y'[t] == (2*y[t]+1)/t, y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\frac{1}{2} + c_1 t^2$$

$$y(t) \to -\frac{1}{2}$$

8.32 problem 47

Internal problem ID [12740]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 47.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 3$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

 $dsolve([diff(y(t),t)=3-y(t)^2,y(0)=0],y(t), singsol=all)$

$$y(t) = \sqrt{3} \tanh\left(\sqrt{3}t\right)$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 37

 $DSolve[\{y'[t]==3-y[t]^2,\{y[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t)
ightarrow rac{\sqrt{3}\left(e^{2\sqrt{3}t} - 1\right)}{e^{2\sqrt{3}t} + 1}$$

Chapter 3. Linear Systems. Exercises section 3.1. 9 page 258 9.1 9.2 216 9.3217 9.4218 219 9.59.6 220 222 9.7 9.8 2259.9 227 9.10 problem 24 229 9.11 problem 25 230 9.12 problem 26 231 9.13 problem 28 232 9.14 problem 29 2339.15 problem 34

9.1 problem 1

Internal problem ID [12741]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 1.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = x(t) - y$$
$$y' = x(t) - y$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 19

dsolve([diff(x(t),t)=x(t)-y(t),diff(y(t),t)=x(t)-y(t)],[x(t), y(t)], singsol=all)

$$x(t) = c_1 t + c_1 + c_2$$

$$y(t) = c_1 t + c_2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 32

DSolve[{x'[t]==x[t]-y[t],y'[t]==x[t]-y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1(t+1) - c_2t$$

$$y(t) \to (c_1 - c_2)t + c_2$$

9.2 problem 2

Internal problem ID [12742]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 2.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) - y$$
$$y' = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 19

dsolve([diff(x(t),t)=2*x(t)-y(t),diff(y(t),t)=0],[x(t), y(t)], singsol=all)

$$x(t) = \frac{c_2}{2} + c_1 e^{2t}$$

$$y(t) = c_2$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 32

 $DSolve[\{x'[t]==2*x[t]-y[t],y'[t]==0\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \left(c_1 - \frac{c_2}{2}\right)e^{2t} + \frac{c_2}{2}$$
$$y(t) \to c_2$$

9.3 problem 3

Internal problem ID [12743]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t)$$
$$y' = 2x(t) + y$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve([diff(x(t),t)=x(t),diff(y(t),t)=2*x(t)+y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{c_2 e^t}{2}$$

$$y(t) = e^t(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

DSolve[{x'[t]==x[t],y'[t]==2*x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^t$$

$$y(t) \rightarrow e^t(2c_1t + c_2)$$

9.4 problem 4

Internal problem ID [12744]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + 2y$$
$$y' = 2x(t) - y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve([diff(x(t),t)=-x(t)+2*y(t),diff(y(t),t)=2*x(t)-y(t)],[x(t), y(t)], singsol=all)

$$x(t) = c_1 e^t - c_2 e^{-3t}$$

$$y(t) = c_1 e^t + c_2 e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 68

$$x(t) \to \frac{1}{2}e^{-3t} (c_1(e^{4t}+1) + c_2(e^{4t}-1))$$

$$y(t) \to \frac{1}{2}e^{-3t}(c_1(e^{4t}-1)+c_2(e^{4t}+1))$$

9.5 problem 5

Internal problem ID [12745]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y$$
$$y' = x(t) + y$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 86

dsolve([diff(x(t),t)=2*x(t)+y(t),diff(y(t),t)=x(t)+y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}}\sqrt{5}}{2} - \frac{c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}\sqrt{5}}{2} + \frac{c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}}}{2} + \frac{c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}}{2}$$
$$y(t) = c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}} + c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 145

DSolve[{x'[t]==2*x[t]+y[t],y'[t]==x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{10} e^{-\frac{1}{2}\left(\sqrt{5}-3\right)t} \left(c_1 \left(\left(5+\sqrt{5}\right) e^{\sqrt{5}t} + 5 - \sqrt{5} \right) + 2\sqrt{5}c_2 \left(e^{\sqrt{5}t} - 1 \right) \right)$$

$$y(t) \to \frac{1}{10} e^{-\frac{1}{2} \left(\sqrt{5}-3\right)t} \left(2\sqrt{5}c_1\left(e^{\sqrt{5}t}-1\right) - c_2\left(\left(\sqrt{5}-5\right)e^{\sqrt{5}t}-5-\sqrt{5}\right)\right)$$

9.6 problem 6

Internal problem ID [12746]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 6.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3y$$
$$y' = 3\pi y - \frac{x(t)}{3}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 148

dsolve([diff(x(t),t)=3*y(t),diff(y(t),t)=3*Pi*y(t)-1/3*x(t)],[x(t), y(t)], singsol=all)

$$x(t) = rac{3c_1 \mathrm{e}^{-rac{\left(-3\pi+\sqrt{9\pi^2-4}
ight)t}{2}\sqrt{9\pi^2-4}}}{2} + rac{9c_1 \mathrm{e}^{-rac{\left(-3\pi+\sqrt{9\pi^2-4}
ight)t}{2}\pi}}{2} \ - rac{3c_2 \mathrm{e}^{rac{\left(3\pi+\sqrt{9\pi^2-4}
ight)t}{2}\sqrt{9\pi^2-4}}}{2} + rac{9c_2 \mathrm{e}^{rac{\left(3\pi+\sqrt{9\pi^2-4}
ight)t}{2}\pi}}{2} \ \ y(t) = c_1 \mathrm{e}^{-rac{\left(-3\pi+\sqrt{9\pi^2-4}
ight)t}{2}} + c_2 \mathrm{e}^{rac{\left(3\pi+\sqrt{9\pi^2-4}
ight)t}{2}}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 233

$$\xrightarrow{x(t)} \frac{e^{-\frac{1}{2}\left(\sqrt{9\pi^2-4}-3\pi\right)t}\left(\sqrt{9\pi^2-4}c_1\left(e^{\sqrt{9\pi^2-4}t}+1\right)-3\pi c_1\left(e^{\sqrt{9\pi^2-4}t}-1\right)+6c_2\left(e^{\sqrt{9\pi^2-4}t}-1\right)\right)}{2\sqrt{9\pi^2-4}}$$

$$\begin{array}{l} y(t) \\ \rightarrow \frac{e^{-\frac{1}{2}\left(\sqrt{9\pi^2-4}-3\pi\right)t}\left(3c_2\left(3\pi\left(e^{\sqrt{9\pi^2-4}t}-1\right)+\sqrt{9\pi^2-4}\left(e^{\sqrt{9\pi^2-4}t}+1\right)\right)-2c_1\left(e^{\sqrt{9\pi^2-4}t}-1\right)\right)}{6\sqrt{9\pi^2-4}} \end{array}$$

9.7 problem 7

Internal problem ID [12747]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$p'(t) = 3p(t) - 2q(t) - 7r(t)$$

$$q'(t) = -2p(t) + 6r(t)$$

$$r'(t) = \frac{73q(t)}{100} + 2r(t)$$

Solution by Maple

Time used: 0.141 (sec). Leaf size: 910

$$\frac{\text{dsolve}([\text{diff}(p(t),t)=3*p(t)-2*q(t)-7*r(t),\text{diff}(q(t),t)=-2*p(t)+6*r(t),\text{diff}(r(t),t)=73/100*q(t))}{\text{diff}(p(t),t)=3*p(t)-2*q(t)-7*r(t),\text{diff}(q(t),t)=-2*p(t)+6*r(t),\text{diff}(r(t),t)=73/100*q(t)}$$

$$p(t) =$$

$$\left(i\sqrt{3} \left(31130 + 6i\sqrt{895302429} \right)^{\frac{4}{3}} - \left(31130 + 6i\sqrt{895302429} \right)^{\frac{4}{3}} + 128560i\sqrt{3} \right)^{\frac{4}{3}} + 128560i\sqrt{3} \left(31130 + 6i\sqrt{895302429} \right)^{\frac{4}{3}} + 128560i\sqrt{3} \left(31130 + 6i\sqrt{895302429} \right)^{\frac{4}{3}} + 128660i\sqrt{3} \right)^{\frac{4}{3}} + 128660i\sqrt{3} + 128660i\sqrt{3} + 128660i\sqrt{3} + 1$$

$$+\frac{\left(i\sqrt{3}\left(31130+6i\sqrt{895302429}\right)^{\frac{4}{3}}+\left(31130+6i\sqrt{895302429}\right)^{\frac{4}{3}}+128560i\sqrt{3}\left(31130+6i\sqrt{895302429}\right)^{\frac{4}{3}}}{2}+128560i\sqrt{3}\left(31130+6i\sqrt{895302429}\right)^{\frac{4}{3}}}$$

$$q(t) =$$

$$-\frac{5 \left(i \sqrt{3} \left(31130+6 i \sqrt{895302429}\right)^{\frac{2}{3}}-3214 i \sqrt{3}+\left(31130+6 i \sqrt{895302429}\right)^{\frac{2}{3}}+20 \left(31130+6 i \sqrt{895302429}\right)^{\frac{2}{3}}}{219 \left(31130+6 i \sqrt{895302429}\right)^{\frac{2}{3}}}$$

$$+\frac{5 \left(i \sqrt{3} \left(31130+6 i \sqrt{895302429}\right)^{\frac{2}{3}}-3214 i \sqrt{3}-\left(31130+6 i \sqrt{895302429}\right)^{\frac{2}{3}}-20 \left(31130+6 i \sqrt{895302429}\right)^{\frac{2}{3}}-20 \left(31130+6 i \sqrt{895302429}\right)^{\frac{2}{3}}}{219 \left(31130+6 i \sqrt{895302429}\right)^{\frac{2}{3}}}$$

 $30(31130+6i\sqrt{89530})$

$$+\frac{10\Big(\big(31130+6i\sqrt{895302429}\big)^{\frac{2}{3}}+50\big(31130+6i\sqrt{895302429}\big)^{\frac{2}{3}}+50\big(31130+6i\sqrt{895302429}\big)^{\frac{2}{3}}+3214\Big)}{c_{3}e}e^{\frac{\Big(\big(31130+6i\sqrt{895302429}\big)^{\frac{2}{3}}+50\big(31130+6i\sqrt{895302429}\big)^{\frac{2}{3}}+50\big(31130+6i\sqrt{895302429}\big)^{\frac{2}{3}}+50\big(31130+6i\sqrt{895302429}\big)^{\frac{2}{3}}+3214\Big)}e^{\frac{1}{3}}e^{\frac$$

$$\frac{5\left((31130 + 6i\sqrt{893302429})^{-10}(31130 + 6i\sqrt{893302429})^{-13214}\right)c_{3}e_{4}}{219\left(31130 + 6i\sqrt{895302429}\right)^{\frac{1}{3}}}$$

$$r(t) = c_1 \mathrm{e}^{-\frac{\left(i\sqrt{3}\left(31130+6i\sqrt{895302429}\right)^{\frac{2}{3}}-3214i\sqrt{3}+\left(31130+6i\sqrt{895302429}\right)^{\frac{2}{3}}-100\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}+3214\right)t}}{\frac{\left(i\sqrt{3}\left(31130+6i\sqrt{895302429}\right)^{\frac{2}{3}}-3214i\sqrt{3}-\left(31130+6i\sqrt{895302429}\right)^{\frac{2}{3}}+100\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}-3214\right)t}}{\frac{\left(\left(31130+6i\sqrt{895302429}\right)^{\frac{2}{3}}+50\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}+3214\right)t}}{\frac{\left(\left(31130+6i\sqrt{895302429}\right)^{\frac{2}{3}}+50\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}+3214\right)t}}{30\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}+3214\right)t}}}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 602

 $DSolve[{p'[t] == 3*p[t] - 2*q[t] - 7*r[t], q'[t] == -2*p[t] + 6*r[t], r'[t] == 73/100*q[t] + 2*r[t]}, {p[t], q'[t] == -2*p[t] + 6*r[t], r'[t] == 73/100*q[t] + 2*r[t]}, {p[t], q'[t] == -2*p[t] + 6*r[t], r'[t] == 73/100*q[t] + 2*r[t]}, {p[t], q'[t] == -2*p[t] + 6*r[t], r'[t] == 73/100*q[t] + 2*r[t]}, {p[t], q'[t] == -2*p[t] + 6*r[t], r'[t] == 73/100*q[t] + 2*r[t]}, {p[t], q'[t] == -2*p[t] + 6*r[t], r'[t] == 73/100*q[t] + 2*r[t]}, {p[t], q'[t] == -2*p[t] + 6*r[t], r'[t] == 73/100*q[t] + 2*r[t]}, {p[t], q'[t] == -2*p[t] + 6*r[t], r'[t] == 73/100*q[t] + 2*r[t]}, {p[t], q'[t] == -2*p[t] + 6*r[t], r'[t] == 73/100*q[t] + 2*r[t]}, {p[t], q'[t] == -2*p[t] + 6*r[t]}, {p[t], q'[t] == -2*p[t]}, {$

$$\begin{split} p(t) &\to -100c_2 \mathrm{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 \right. \\ &+ 10920000 \&, \frac{2 \# 1e^{\frac{\# 1t}{100}} + 111e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] - 100c_3 \mathrm{RootSum} \left[\# 1^3 - 500 \# 1^2 \right. \\ &- 23800 \# 1 + 10920000 \&, \frac{7 \# 1e^{\frac{\# 1t}{100}} + 1200e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] + c_1 \mathrm{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{\# 1^2 e^{\frac{\# 1t}{100}} - 200 \# 1e^{\frac{\# 1t}{100}} - 43800e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] \\ q(t) &\to -200c_1 \mathrm{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 \right. \\ &+ 10920000 \&, \frac{\# 1e^{\frac{\# 1t}{100}} - 200e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] + 200c_3 \mathrm{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{3 \# 1e^{\frac{\# 1t}{100}} - 200e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] + c_2 \mathrm{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{\# 1^2 e^{\frac{\# 1t}{100}} - 500 \# 1e^{\frac{\# 1t}{100}} + 60000e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] \\ r(t) &\to -14600c_1 \mathrm{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] + r_3 c_2 \mathrm{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{\# 1e^{\frac{\# 1t}{100}} - 300e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] \\ - 23800 \# 1 + 10920000 \&, \frac{\# 1e^{\frac{\# 1t}{100}} - 300e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] \\ - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{\# 1e^{\frac{\# 1t}{100}} - 300e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] \\ - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{\# 1e^{\frac{\# 1t}{100}} - 300e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] \\ - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{\# 1e^{\frac{\# 1t}{100}} - 300e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right]$$

9.8 problem 8

Internal problem ID [12748]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 8.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) + 2\pi y$$
$$y' = 4x(t) - y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 115

dsolve([diff(x(t),t)=-3*x(t)+2*Pi*y(t),diff(y(t),t)=4*x(t)-y(t)],[x(t),y(t)], singsol=all)

$$x(t) = -\frac{c_1 e^{-(2+\sqrt{1+8\pi})t} \sqrt{1+8\pi}}{4} + \frac{c_2 e^{(-2+\sqrt{1+8\pi})t} \sqrt{1+8\pi}}{4}$$
$$-\frac{c_1 e^{-(2+\sqrt{1+8\pi})t}}{4} - \frac{c_2 e^{(-2+\sqrt{1+8\pi})t}}{4}$$
$$y(t) = c_1 e^{-(2+\sqrt{1+8\pi})t} + c_2 e^{(-2+\sqrt{1+8\pi})t}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 189

$$\frac{x(t)}{\Rightarrow} \frac{e^{-((2+\sqrt{1+8\pi})t)} \left(c_1\left((\sqrt{1+8\pi}-1)e^{2\sqrt{1+8\pi}t}+1+\sqrt{1+8\pi}\right)+2\pi c_2\left(e^{2\sqrt{1+8\pi}t}-1\right)\right)}{2\sqrt{1+8\pi}}$$

$$y(t) \to \frac{e^{-((2+\sqrt{1+8\pi})t)} \left(4c_1 \left(e^{2\sqrt{1+8\pi}t}-1\right)+c_2 \left(\left(1+\sqrt{1+8\pi}\right)e^{2\sqrt{1+8\pi}t}-1+\sqrt{1+8\pi}\right)\right)}{2\sqrt{1+8\pi}}$$

9.9 problem 9

Internal problem ID [12749]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 9.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \beta y$$
$$y' = \gamma x(t) - y$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 128

$$dsolve([diff(x(t),t)=beta*y(t),diff(y(t),t)=gamma*x(t)-y(t)],[x(t),y(t)], singsol=all)$$

$$\begin{aligned} x(t) \\ &= \frac{c_1 \mathrm{e}^{\frac{(-1 + \sqrt{4\gamma\beta + 1})t}{2}} \sqrt{4\gamma\beta + 1} - c_2 \mathrm{e}^{-\frac{(1 + \sqrt{4\gamma\beta + 1})t}{2}} \sqrt{4\gamma\beta + 1} + c_1 \mathrm{e}^{\frac{(-1 + \sqrt{4\gamma\beta + 1})t}{2}} + c_2 \mathrm{e}^{-\frac{(1 + \sqrt{4\gamma\beta + 1})t}{2}} } \\ y(t) &= c_1 \mathrm{e}^{\frac{(-1 + \sqrt{4\gamma\beta + 1})t}{2}} + c_2 \mathrm{e}^{-\frac{(1 + \sqrt{4\gamma\beta + 1})t}{2}} \end{aligned}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 202

$$\begin{split} & x(t) \\ & \rightarrow \frac{e^{-\frac{1}{2}t(\sqrt{4\beta\gamma+1}+1)} \left(c_1 \left(\sqrt{4\beta\gamma+1}+\left(\sqrt{4\beta\gamma+1}+1\right) e^{t\sqrt{4\beta\gamma+1}}-1\right)+2\beta c_2 \left(e^{t\sqrt{4\beta\gamma+1}}-1\right)\right)}{2\sqrt{4\beta\gamma+1}} \\ & y(t) \\ & \rightarrow \frac{e^{-\frac{1}{2}t(\sqrt{4\beta\gamma+1}+1)} \left(2\gamma c_1 \left(e^{t\sqrt{4\beta\gamma+1}}-1\right)+c_2 \left(\sqrt{4\beta\gamma+1}+\left(\sqrt{4\beta\gamma+1}-1\right) e^{t\sqrt{4\beta\gamma+1}}+1\right)\right)}{2\sqrt{4\beta\gamma+1}} \end{split}$$

9.10 problem 24

Internal problem ID [12750]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 24.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = x(t) + y$$

With initial conditions

$$[x(0) = -2, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

dsolve([diff(x(t),t) = 2*y(t), diff(y(t),t) = x(t)+y(t), x(0) = -2, y(0) = -1], [x(t), y(t)],

$$x(t) = -\frac{4e^{2t}}{3} - \frac{2e^{-t}}{3}$$

$$y(t) = -\frac{4e^{2t}}{3} + \frac{e^{-t}}{3}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 44

$$x(t) \to -\frac{2}{3}e^{-t}(2e^{3t}+1)$$

$$y(t) \to \frac{1}{3}e^{-t}(1 - 4e^{3t})$$

9.11 problem 25

Internal problem ID [12751]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 25.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) - y$$
$$y' = x(t) + 3y$$

With initial conditions

$$[x(0) = 0, y(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve([diff(x(t),t) = x(t)-y(t), diff(y(t),t) = x(t)+3*y(t), x(0) = 0, y(0) = 2],[x(t), y(t), x(t)]

$$x(t) = -2e^{2t}t$$

$$y(t) = e^{2t}(2t+2)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 26

DSolve[{x'[t]==x[t]-y[t],y'[t]==x[t]+3*y[t]},{x[0]==0,y[0]==2},{x[t],y[t]},t,IncludeSingular

$$x(t) \to -2e^{2t}t$$

$$y(t) \rightarrow 2e^{2t}(t+1)$$

9.12 problem 26

Internal problem ID [12752]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 26.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -2x(t) - y$$
$$y' = 2x(t) - 5y$$

With initial conditions

$$[x(0) = 2, y(0) = 3]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 28

dsolve([diff(x(t),t) = -2*x(t)-y(t), diff(y(t),t) = 2*x(t)-5*y(t), x(0) = 2, y(0) = 3], [x(t), x(t), x(t),

$$x(t) = e^{-3t} + e^{-4t}$$

$$y(t) = e^{-3t} + 2e^{-4t}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 30

 $DSolve[\{x'[t]==-2*x[t]-y[t],y'[t]==2*x[t]-5*y[t]\},\{x[0]==2,y[0]==3\},\{x[t],y[t]\},t,IncludeSing(x)=0$

$$x(t) \rightarrow e^{-4t}(e^t + 1)$$

$$y(t) \to e^{-4t} \left(e^t + 2 \right)$$

9.13 problem 28

Internal problem ID [12753]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 28.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -2x(t) - 3y$$
$$y' = 3x(t) - 2y$$

With initial conditions

$$[x(0) = 2, y(0) = 3]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 44

$$dsolve([diff(x(t),t) = -2*x(t)-3*y(t), diff(y(t),t) = 3*x(t)-2*y(t), x(0) = 2, y(0) = 3], [x(0), x(0), x(0$$

$$x(t) = e^{-2t} (2\cos(3t) - 3\sin(3t))$$

$$y(t) = e^{-2t} (3\cos(3t) + 2\sin(3t))$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 46

$$x(t) \to e^{-2t} (2\cos(3t) - 3\sin(3t))$$

$$y(t) \to e^{-2t}(2\sin(3t) + 3\cos(3t))$$

9.14 problem 29

Internal problem ID [12754]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 29.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 3y$$
$$y' = x(t)$$

With initial conditions

$$[x(0) = 2, y(0) = 3]$$

/ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

dsolve([diff(x(t),t) = 2*x(t)+3*y(t), diff(y(t),t) = x(t), x(0) = 2, y(0) = 3], [x(t), y(t)],

$$x(t) = \frac{15 e^{3t}}{4} - \frac{7 e^{-t}}{4}$$

$$y(t) = \frac{5e^{3t}}{4} + \frac{7e^{-t}}{4}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 44

$$x(t) \to \frac{1}{4}e^{-t}(15e^{4t} - 7)$$

$$y(t) \rightarrow \frac{1}{4}e^{-t} \big(5e^{4t} + 7\big)$$

9.15 problem 34

Internal problem ID [12755]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 34.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 1$$
$$y' = x(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve([diff(x(t),t)=1,diff(y(t),t)=x(t)],[x(t), y(t)], singsol=all)

$$x(t) = t + c_1$$

 $y(t) = \frac{1}{2}t^2 + c_1t + c_2$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 26

 $\label{eq:DSolve} DSolve[\{x'[t]==1,y'[t]==x[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \ -> \ True]$

$$x(t) \rightarrow t + c_1$$

$$y(t) \rightarrow \frac{t^2}{2} + c_1 t + c_2$$

10 Chapter 3. Linear Systems. Exercises section 3.2. page 277

0.1 problem 1	236
0.2 problem 2	237
0.3 problem 3	238
0.4 problem 4	239
0.5 problem 5	240
0.6 problem 6	241
0.7 problem 7	242
0.8 problem 8	243
0.9 problem 9	244
0.10 problem 10	245
0.11 problem 11 (a)	246
0.12problem 11 (b)	247
0.13problem 11 (c)	248
0.14problem 12 (a)	249
0.15problem 12 (b)	250
0.16problem 12 (c)	251
0.17problem 13 (a)	252
0.18problem 13 (b)	253
0.19problem 13 (c)	254
0.20problem 14 (a)	255
0.21 problem 14 (b)	256
0.22problem 14 (c)	257

10.1 problem 1

Internal problem ID [12756]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t)$$
$$y' = -2y$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

dsolve([diff(x(t),t)=3*x(t),diff(y(t),t)=-2*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = c_1 e^{3t}$$

$$y(t) = c_2 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 32

DSolve[{x'[t]==3*x[t],y'[t]==-2*x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^{3t}$$

$$y(t) \to c_2 - \frac{2}{3}c_1(e^{3t} - 1)$$

10.2 problem 2

Internal problem ID [12757]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 2.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -4x(t) - 2y$$
$$y' = -x(t) - 3y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

dsolve([diff(x(t),t)=-4*x(t)-2*y(t),diff(y(t),t)=-x(t)-3*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = 2c_1 e^{-5t} - c_2 e^{-2t}$$

$$y(t) = c_1 e^{-5t} + c_2 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 71

$$x(t) \to \frac{1}{3}e^{-5t} (c_1(e^{3t}+2) - 2c_2(e^{3t}-1))$$

$$y(t) \to \frac{1}{3}e^{-5t}(c_1(-e^{3t}) + 2c_2e^{3t} + c_1 + c_2)$$

10.3 problem 3

Internal problem ID [12758]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -5x(t) - 2y$$
$$y' = -x(t) - 4y$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 36

dsolve([diff(x(t),t)=-5*x(t)-2*y(t),diff(y(t),t)=-x(t)-4*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -c_1 e^{-3t} + 2c_2 e^{-6t}$$
$$y(t) = c_1 e^{-3t} + c_2 e^{-6t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 71

$$x(t) \to \frac{1}{3}e^{-6t} (c_1(e^{3t}+2) - 2c_2(e^{3t}-1))$$

$$y(t) \to \frac{1}{3}e^{-6t}(c_1(-e^{3t}) + 2c_2e^{3t} + c_1 + c_2)$$

10.4 problem 4

Internal problem ID [12759]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y$$
$$y' = -x(t) + 4y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve([diff(x(t),t)=2*x(t)+1*y(t),diff(y(t),t)=-x(t)+4*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = e^{3t}(c_2t + c_1 - c_2)$$

 $y(t) = e^{3t}(c_2t + c_1)$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 44

DSolve[{x'[t]==2*x[t]+1*y[t],y'[t]==-x[t]+4*y[t]},{x[t],y[t]},t,IncludeSingularSolutions ->

$$x(t) \to e^{3t}(c_1(-t) + c_2t + c_1)$$

$$y(t) \to e^{3t}((c_2 - c_1)t + c_2)$$

10.5 problem 5

Internal problem ID [12760]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -\frac{x(t)}{2}$$
$$y' = x(t) - \frac{y}{2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve([diff(x(t),t)=-1/2*x(t),diff(y(t),t)=x(t)-1/2*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = c_2 e^{-\frac{t}{2}}$$

 $y(t) = e^{-\frac{t}{2}}(c_2 t + c_1)$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 33

$$x(t) \to c_1 e^{-t/2}$$

 $y(t) \to e^{-t/2} (c_1 t + c_2)$

10.6 problem 6

Internal problem ID [12761]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 6.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 5x(t) + 4y$$
$$y' = 9x(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve([diff(x(t),t)=5*x(t)+4*y(t),diff(y(t),t)=9*x(t)],[x(t),y(t)], singsol=all)

$$x(t) = c_1 e^{9t} - \frac{4c_2 e^{-4t}}{9}$$

$$y(t) = c_1 e^{9t} + c_2 e^{-4t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 74

DSolve[{x'[t]==5*x[t]+4*y[t],y'[t]==9*x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{13}e^{-4t} \left(c_1 \left(9e^{13t} + 4\right) + 4c_2 \left(e^{13t} - 1\right)\right)$$

$$y(t) \to \frac{1}{13}e^{-4t} (9c_1(e^{13t} - 1) + c_2(4e^{13t} + 9))$$

10.7 problem 7

Internal problem ID [12762]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) + 4y$$
$$y' = x(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve([diff(x(t),t)=3*x(t)+4*y(t),diff(y(t),t)=1*x(t)],[x(t), y(t)], singsol=all)

$$x(t) = -c_1 e^{-t} + 4c_2 e^{4t}$$

$$y(t) = c_1 e^{-t} + c_2 e^{4t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 71

DSolve[{x'[t]==3*x[t]+4*y[t],y'[t]==1*x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{5}e^{-t}(c_1(4e^{5t}+1)+4c_2(e^{5t}-1))$$

$$y(t) \to \frac{1}{5}e^{-t}(c_1(e^{5t}-1)+c_2(e^{5t}+4))$$

10.8 problem 8

Internal problem ID [12763]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 8.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) - y$$
$$y' = -x(t) + y$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 86

dsolve([diff(x(t),t)=2*x(t)-y(t),diff(y(t),t)=-1*x(t)+y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -\frac{c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}}\sqrt{5}}{2} + \frac{c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}\sqrt{5}}{2} - \frac{c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}}}{2} - \frac{c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}}{2}$$
$$y(t) = c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}} + c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 144

$$x(t) \to \frac{1}{10} e^{-\frac{1}{2} \left(\sqrt{5} - 3\right)t} \left(c_1 \left(\left(5 + \sqrt{5}\right) e^{\sqrt{5}t} + 5 - \sqrt{5}\right) - 2\sqrt{5}c_2 \left(e^{\sqrt{5}t} - 1 \right) \right)$$

$$y(t) \to -\frac{1}{10} e^{-\frac{1}{2} \left(\sqrt{5} - 3\right)t} \left(2\sqrt{5}c_1 \left(e^{\sqrt{5}t} - 1 \right) + c_2 \left(\left(\sqrt{5} - 5\right) e^{\sqrt{5}t} - 5 - \sqrt{5}\right) \right)$$

10.9 problem 9

Internal problem ID [12764]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 9.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y$$
$$y' = x(t) + y$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 86

dsolve([diff(x(t),t)=2*x(t)+y(t),diff(y(t),t)=x(t)+y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}}\sqrt{5}}{2} - \frac{c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}\sqrt{5}}{2} + \frac{c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}}}{2} + \frac{c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}}{2}$$
$$y(t) = c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}} + c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 145

DSolve[{x'[t]==2*x[t]+y[t],y'[t]==x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{10} e^{-\frac{1}{2}\left(\sqrt{5}-3\right)t} \left(c_1 \left(\left(5+\sqrt{5}\right) e^{\sqrt{5}t} + 5 - \sqrt{5} \right) + 2\sqrt{5}c_2 \left(e^{\sqrt{5}t} - 1 \right) \right)$$

$$y(t) \to \frac{1}{10} e^{-\frac{1}{2} \left(\sqrt{5}-3\right)t} \left(2\sqrt{5}c_1\left(e^{\sqrt{5}t}-1\right) - c_2\left(\left(\sqrt{5}-5\right)e^{\sqrt{5}t}-5-\sqrt{5}\right)\right)$$

10.10 problem 10

Internal problem ID [12765]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 10.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) - 2y$$
$$y' = x(t) - 4y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve([diff(x(t),t)=-x(t)-2*y(t),diff(y(t),t)=x(t)-4*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = c_1 e^{-3t} + 2c_2 e^{-2t}$$

$$y(t) = c_1 e^{-3t} + c_2 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 58

$$x(t) \to e^{-3t} (c_1(2e^t - 1) - 2c_2(e^t - 1))$$

$$y(t) \to e^{-3t} (c_1(e^t - 1) - c_2(e^t - 2))$$

10.11 problem 11 (a)

Internal problem ID [12766]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 11 (a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) - 2y$$
$$y' = -2x(t) + y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

/ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

$$x(t) = \frac{e^{2t}}{5} + \frac{4e^{-3t}}{5}$$

$$y(t) = -\frac{2e^{2t}}{5} + \frac{2e^{-3t}}{5}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 40

$$x(t) \to \frac{1}{5}e^{-3t} (e^{5t} + 4)$$

$$y(t) \rightarrow -\frac{2}{5}e^{-3t} \left(e^{5t} - 1\right)$$

10.12 problem 11 (b)

Internal problem ID [12767]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 11 (b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) - 2y$$
$$y' = -2x(t) + y$$

With initial conditions

$$[x(0) = 0, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

dsolve([diff(x(t),t) = -2*x(t)-2*y(t), diff(y(t),t) = -2*x(t)+y(t), x(0) = 0, y(0) = 1], [x(t)-2*y(t), x(t)-2*y(t), x(t)-2*y(t), x(t) = -2*x(t)+y(t), x(t) = 0, y(t) = 0, y(t)

$$x(t) = -\frac{2e^{2t}}{5} + \frac{2e^{-3t}}{5}$$

$$y(t) = \frac{4e^{2t}}{5} + \frac{e^{-3t}}{5}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 42

$$x(t) \to -\frac{2}{5}e^{-3t}(e^{5t} - 1)$$

$$y(t) \rightarrow \frac{1}{5}e^{-3t} \left(4e^{5t} + 1\right)$$

problem 11 (c) 10.13

Internal problem ID [12768]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 11 (c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) - 2y$$
$$y' = -2x(t) + y$$

With initial conditions

$$[x(0) = 1, y(0) = -2]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve([diff(x(t),t) = -2*x(t)-2*y(t), diff(y(t),t) = -2*x(t)+y(t), x(0) = 1, y(0) = -2], [x(0), x(0), x(0

$$x(t) = e^{2t}$$

$$x(t) = e^{2t}$$
$$y(t) = -2e^{2t}$$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 20

DSolve[{x'[t]==-2*x[t]-2*y[t],y'[t]==-2*x[t]+y[t]},{x[0]==1,y[0]==-2},{x[t],y[t]},t,IncludeS

$$x(t) \to e^{2t}$$

$$x(t) \to e^{2t}$$

 $y(t) \to -2e^{2t}$

10.14 problem 12 (a)

Internal problem ID [12769]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 12 (a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t)$$
$$y' = x(t) - 2y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

dsolve([diff(x(t),t) = 3*x(t), diff(y(t),t) = x(t)-2*y(t), x(0) = 1, y(0) = 0], [x(t), y(t)],

$$x(t) = e^{3t}$$

$$y(t) = \frac{e^{3t}}{5} - \frac{e^{-2t}}{5}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 29

 $DSolve[\{x'[t] == 3*x[t], y'[t] == x[t] - 2*y[t]\}, \{x[0] == 1, y[0] == 0\}, \{x[t], y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 3*x[t], y'[t] == x[t] - 2*y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 3*x[t], y'[t] == x[t] - 2*y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 3*x[t], y'[t] == x[t] - 2*y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 3*x[t], y'[t] == x[t] - 2*y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 3*x[t], y'[t] == x[t] - 2*y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 3*x[t], y'[t] == x[t] - 2*y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 3*x[t], y'[t] == x[t] - 2*y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == 3*x[t], y'[t] == x[t] - 2*y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == x[t], y'[t] == x[t] - 2*y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == x[t], y'[t] == x[t] - 2*y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == x[t], y'[t] == x[t] - 2*y[t]\}, t, Inc] udeSingularSolve[\{x'[t] == x[t], y'[t] == x[t] - 2*y[t]]\}, t, Inc] udeSingularSolve[\{x'[t] == x[t], y'[t] == x[t] - 2*y[t]]\}, t, Inc] udeSingularSolve[\{x'[t] == x[t], y'[t] == x[t] - 2*y[t]]\}, t, Inc] udeSingularSolve[\{x'[t] == x[t], y'[t] == x[t] - 2*y[t]]\}, t, Inc] udeSingularSolve[\{x'[t] == x[t] - 2*y[t]]]$

$$x(t) \to e^{3t}$$

$$y(t) \to \frac{1}{5}e^{-2t} (e^{5t} - 1)$$

problem 12 (b) 10.15

Internal problem ID [12770]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 12 (b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t)$$
$$y' = x(t) - 2y$$

With initial conditions

$$[x(0) = 0, y(0) = 1]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

dsolve([diff(x(t),t) = 3*x(t), diff(y(t),t) = x(t)-2*y(t), x(0) = 0, y(0) = 1], [x(t), y(t)],

$$x(t) = 0$$

$$y(t) = e^{-2t}$$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 14

$$x(t) \to 0$$

$$x(t) \to 0$$

 $y(t) \to e^{-2t}$

10.16 problem 12 (c)

Internal problem ID [12771]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 12 (c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t)$$
$$y' = x(t) - 2y$$

With initial conditions

$$[x(0) = 2, y(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve([diff(x(t),t) = 3*x(t), diff(y(t),t) = x(t)-2*y(t), x(0) = 2, y(0) = 2], [x(t), y(t)],

$$x(t) = 2e^{3t}$$

$$y(t) = \frac{2e^{3t}}{5} + \frac{8e^{-2t}}{5}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 31

$$x(t) \to 2e^{3t}$$

$$y(t) \to \frac{2}{5}e^{-2t}(e^{5t} + 4)$$

10.17 problem 13 (a)

Internal problem ID [12772]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 13 (a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -4x(t) + y$$
$$y' = 2x(t) - 3y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

$$x(t) = \frac{2e^{-5t}}{3} + \frac{e^{-2t}}{3}$$

$$2e^{-5t} + 2e^{-5t}$$

$$y(t) = -\frac{2e^{-5t}}{3} + \frac{2e^{-2t}}{3}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 40

DSolve[{x'[t]==-4*x[t]+y[t],y'[t]==2*x[t]-3*y[t]},{x[0]==1,y[0]==0},{x[t],y[t]},t,IncludeSin

$$x(t) \to \frac{1}{3}e^{-5t}(e^{3t} + 2)$$

$$y(t) \to \frac{2}{3}e^{-5t}(e^{3t} - 1)$$

10.18 problem 13 (b)

Internal problem ID [12773]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 13 (b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -4x(t) + y$$
$$y' = 2x(t) - 3y$$

With initial conditions

$$[x(0) = 2, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = 2*x(t)-3*y(t), x(0) = 2, y(0) = 1], [x(t), x(t), x(t),

$$x(t) = e^{-5t} + e^{-2t}$$

$$y(t) = -e^{-5t} + 2e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 34

 $DSolve[\{x'[t]==-4*x[t]+y[t],y'[t]==2*x[t]-3*y[t]\},\{x[0]==2,y[0]==1\},\{x[t],y[t]\},t,IncludeSing(x)=0$

$$x(t) \to e^{-5t} + e^{-2t}$$

$$y(t) \to e^{-5t} \left(2e^{3t} - 1 \right)$$

10.19 problem 13 (c)

Internal problem ID [12774]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 13 (c).

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -4x(t) + y$$
$$y' = 2x(t) - 3y$$

With initial conditions

$$[x(0) = -1, y(0) = -2]$$

/ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

$$x(t) = -e^{-2t}$$

$$y(t) = -2e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 22

 $DSolve[\{x'[t]==-4*x[t]+y[t],y'[t]==2*x[t]-3*y[t]\},\{x[0]==-1,y[0]==-2\},\{x[t],y[t]\},t,IncludeStands{$\frac{1}{2}$},t,IncludeStands{\frac

$$x(t) \to -e^{-2t}$$

$$y(t) \to -2e^{-2t}$$

10.20 problem 14 (a)

Internal problem ID [12775]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 14 (a).

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 4x(t) - 2y$$
$$y' = x(t) + y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

$$x(t) = 2e^{3t} - e^{2t}$$

$$y(t) = e^{3t} - e^{2t}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 32

 $DSolve[\{x'[t]==4*x[t]-2*y[t],y'[t]==x[t]+y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeSingularing and the standard property of the standard prop$

$$x(t) \rightarrow e^{2t} (2e^t - 1)$$

$$y(t) \rightarrow e^{2t} \left(e^t - 1 \right)$$

10.21 problem 14 (b)

Internal problem ID [12776]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 14 (b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 4x(t) - 2y$$
$$y' = x(t) + y$$

With initial conditions

$$[x(0) = 2, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

$$x(t) = 2e^{3t}$$

$$y(t) = e^{3t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 20

DSolve[{x'[t]==4*x[t]-2*y[t],y'[t]==x[t]+y[t]},{x[0]==2,y[0]==1},{x[t],y[t]},t,IncludeSingul

$$x(t) \to 2e^{3t}$$

$$y(t) \to e^{3t}$$

10.22 problem 14 (c)

Internal problem ID [12777]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 14 (c).

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 4x(t) - 2y$$
$$y' = x(t) + y$$

With initial conditions

$$[x(0) = -1, y(0) = -2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve([diff(x(t),t) = 4*x(t)-2*y(t), diff(y(t),t) = x(t)+y(t), x(0) = -1, y(0) = -2], [x(t), x(t), x(t),

$$x(t) = 2e^{3t} - 3e^{2t}$$

$$y(t) = e^{3t} - 3e^{2t}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 32

$$x(t) \rightarrow e^{2t} (2e^t - 3)$$

$$y(t) \rightarrow e^{2t} (e^t - 3)$$

11 Chapter 3. Linear Systems. Exercises section 3.4 page 310

11.1	problem	3.	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	259
11.2	problem	4 .																											260
11.3	problem	5 .																											261
11.4	problem	6													•														262
11.5	problem	7.													•														264
11.6	problem	8 .																											266
11.7	problem	9 .																											268
11.8	problem	10																											269
11.9	problem	11																											270
11.10)problem	12																										•	271
11.11	l problem	13																											273
11.12	2problem	14																											275
11.13	Bproblem	24																											277
11.14	4problem	26																											278

11.1 problem 3

Internal problem ID [12778]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 3.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = -2x(t)$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve([diff(x(t),t) = 2*y(t), diff(y(t),t) = -2*x(t), x(0) = 1, y(0) = 0],[x(t), y(t)], sin(t)

$$x(t) = \cos\left(2t\right)$$

$$y(t) = -\sin\left(2t\right)$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 18

 $DSolve[\{x'[t] == 2*y[t], y'[t] == -2*x[t]\}, \{x[0] == 1, y[0] == 0\}, \{x[t], y[t]\}, t, Include \\ Singular Solution \\ Solution \\ Singular Solution$

$$x(t) \to \cos(2t)$$

$$y(t) \to -\sin(2t)$$

11.2 problem 4

Internal problem ID [12779]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 2y$$
$$y' = -4x(t) + 6y$$

With initial conditions

$$[x(0) = 1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 33

$$dsolve([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], [x(0) =$$

$$x(t) = e^{4t} \cos(2t)$$

 $y(t) = e^{4t}(-\sin(2t) + \cos(2t))$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 35

$$x(t) \to e^{4t} \cos(2t)$$

 $y(t) \to e^{4t} (\cos(2t) - \sin(2t))$

11.3 problem 5

Internal problem ID [12780]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - 5y$$
$$y' = 3x(t) + y$$

With initial conditions

$$[x(0) = 4, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 49

$$dsolve([diff(x(t),t) = -3*x(t)-5*y(t), diff(y(t),t) = 3*x(t)+y(t), x(0) = 4, y(0) = 0], [x(t), x(t), x(t),$$

$$x(t) = -\frac{e^{-t}\left(-12\cos\left(\sqrt{11}\,t\right) + \frac{24\sqrt{11}\,\sin\left(\sqrt{11}\,t\right)}{11}\right)}{3}$$
$$y(t) = \frac{12\,e^{-t}\sqrt{11}\,\sin\left(\sqrt{11}\,t\right)}{11}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 63

$$DSolve[\{x'[t]==-3*x[t]-5*y[t],y'[t]==3*x[t]+y[t]\},\{x[0]==4,y[0]==0\},\{x[t],y[t]\},t,IncludeSing(x)=0$$

$$x(t) \to \frac{4}{11} e^{-t} \left(11 \cos \left(\sqrt{11} t \right) - 2\sqrt{11} \sin \left(\sqrt{11} t \right) \right)$$
$$y(t) \to \frac{12 e^{-t} \sin \left(\sqrt{11} t \right)}{\sqrt{11}}$$

11.4 problem 6

Internal problem ID [12781]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 6.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = -2x(t) - y$$

With initial conditions

$$[x(0) = -1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 61

$$x(t) = -\frac{e^{-\frac{t}{2}} \left(4\cos\left(\frac{\sqrt{15}t}{2}\right) - \frac{4\sqrt{15}\sin\left(\frac{\sqrt{15}t}{2}\right)}{5}\right)}{4}$$

$$y(t) = e^{-\frac{t}{2}} \left(\cos \left(\frac{\sqrt{15}t}{2} \right) + \frac{\sqrt{15} \sin \left(\frac{\sqrt{15}t}{2} \right)}{5} \right)$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 92

$$x(t) \to \frac{1}{5}e^{-t/2} \left(\sqrt{15} \sin \left(\frac{\sqrt{15}t}{2} \right) - 5 \cos \left(\frac{\sqrt{15}t}{2} \right) \right)$$

$$y(t) o rac{1}{5}e^{-t/2} \Biggl(\sqrt{15} \sin \left(rac{\sqrt{15}t}{2}
ight) + 5\cos \left(rac{\sqrt{15}t}{2}
ight) \Biggr)$$

11.5problem 7

Internal problem ID [12782]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) - 6y$$
$$y' = 2x(t) + y$$

With initial conditions

$$[x(0) = 2, y(0) = 1]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 61

dsolve([diff(x(t),t) = 2*x(t)-6*y(t), diff(y(t),t) = 2*x(t)+y(t), x(0) = 2, y(0) = 1],[x(t),x(t),x(t),x(t)]

$$x(t) = -\frac{e^{\frac{3t}{2}} \left(\frac{40\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right)}{47} - 8\cos\left(\frac{\sqrt{47}t}{2}\right)\right)}{4}$$

$$x(t) = -\frac{e^{\frac{3t}{2}} \left(\frac{40\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right)}{47} - 8\cos\left(\frac{\sqrt{47}t}{2}\right)\right)}{4}$$
$$y(t) = e^{\frac{3t}{2}} \left(\frac{7\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + \cos\left(\frac{\sqrt{47}t}{2}\right)\right)$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 94

DSolve[{x'[t]==2*x[t]-6*y[t],y'[t]==2*x[t]+y[t]},{x[0]==2,y[0]==1},{x[t],y[t]},t,IncludeSing

$$x(t) \to \frac{2}{47} e^{3t/2} \left(47 \cos \left(\frac{\sqrt{47}t}{2} \right) - 5\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) \right)$$

$$y(t) o rac{1}{47}e^{3t/2} \Biggl(7\sqrt{47} \sin \left(rac{\sqrt{47}t}{2}
ight) + 47\cos \left(rac{\sqrt{47}t}{2}
ight) \Biggr)$$

11.6 problem 8

Internal problem ID [12783]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 8.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + 4y$$
$$y' = -3x(t) + 2y$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 63

$$dsolve([diff(x(t),t) = x(t)+4*y(t), diff(y(t),t) = -3*x(t)+2*y(t), x(0) = 1, y(0) = -1],[x(t)+2*y(t), x(0) = -1],[x(t)+2*y(t),[x(t)+2*y(t), x(t), x(t$$

$$x(t) = \frac{e^{\frac{3t}{2}} \left(-\frac{54\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + 6\cos\left(\frac{\sqrt{47}t}{2}\right) \right)}{6}$$

$$x(t) = \frac{e^{\frac{3t}{2}} \left(-\frac{54\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + 6\cos\left(\frac{\sqrt{47}t}{2}\right) \right)}{6}$$
$$y(t) = e^{\frac{3t}{2}} \left(-\frac{7\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right)}{47} - \cos\left(\frac{\sqrt{47}t}{2}\right) \right)$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 94

DSolve[{x'[t]==1*x[t]+4*y[t],y'[t]==-3*x[t]+2*y[t]},{x[0]==1,y[0]==-1},{x[t],y[t]},t,Include

$$x(t) \to \frac{1}{47} e^{3t/2} \left(47 \cos \left(\frac{\sqrt{47}t}{2} \right) - 9\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) \right)$$
$$y(t) \to -\frac{1}{47} e^{3t/2} \left(7\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) + 47 \cos \left(\frac{\sqrt{47}t}{2} \right) \right)$$

11.7 problem 9

Internal problem ID [12784]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 9.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = -2x(t)$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

$$x(t) = \cos\left(2t\right)$$

$$y(t) = -\sin\left(2t\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 18

DSolve[{x'[t]==0*x[t]+2*y[t],y'[t]==-2*x[t]+0*y[t]},{x[0]==1,y[0]==0},{x[t],y[t]},t,IncludeS

$$x(t) \to \cos(2t)$$

$$y(t) \to -\sin(2t)$$

11.8 problem 10

Internal problem ID [12785]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 10.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 2y$$
$$y' = -4x(t) + 6y$$

With initial conditions

$$[x(0) = 1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

$$x(t) = e^{4t} \cos(2t)$$

 $y(t) = e^{4t}(-\sin(2t) + \cos(2t))$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 35

$$x(t) \to e^{4t} \cos(2t)$$

 $y(t) \to e^{4t} (\cos(2t) - \sin(2t))$

11.9 problem 11

Internal problem ID [12786]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 11.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - 5y$$
$$y' = 3x(t) + y$$

With initial conditions

$$[x(0) = 4, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 49

$$dsolve([diff(x(t),t) = -3*x(t)-5*y(t), diff(y(t),t) = 3*x(t)+y(t), x(0) = 4, y(0) = 0], [x(t), x(t), x(t),$$

$$x(t) = -\frac{e^{-t}\left(-12\cos\left(\sqrt{11}\,t\right) + \frac{24\sqrt{11}\,\sin\left(\sqrt{11}\,t\right)}{11}\right)}{3}$$
$$y(t) = \frac{12\,e^{-t}\sqrt{11}\,\sin\left(\sqrt{11}\,t\right)}{11}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 63

$$x(t) \to \frac{4}{11} e^{-t} \left(11 \cos \left(\sqrt{11} t \right) - 2\sqrt{11} \sin \left(\sqrt{11} t \right) \right)$$
$$y(t) \to \frac{12 e^{-t} \sin \left(\sqrt{11} t \right)}{\sqrt{11}}$$

11.10 problem 12

Internal problem ID [12787]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 12.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = -2x(t) - y$$

With initial conditions

$$[x(0) = -1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 61

dsolve([diff(x(t),t) =
$$2*y(t)$$
, diff(y(t),t) = $-2*x(t)-y(t)$, x(0) = -1 , y(0) = 1],[x(t), y(t)

$$x(t) = -\frac{e^{-\frac{t}{2}} \left(4\cos\left(\frac{\sqrt{15}t}{2}\right) - \frac{4\sqrt{15}\sin\left(\frac{\sqrt{15}t}{2}\right)}{5} \right)}{4}$$

$$y(t) = e^{-\frac{t}{2}} \left(\cos \left(\frac{\sqrt{15}t}{2} \right) + \frac{\sqrt{15} \sin \left(\frac{\sqrt{15}t}{2} \right)}{5} \right)$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 92

DSolve[{x'[t]==2*y[t],y'[t]==-2*x[t]-1*y[t]},{x[0]==-1,y[0]==1},{x[t],y[t]},t,IncludeSingula

$$x(t) \to \frac{1}{5}e^{-t/2} \left(\sqrt{15} \sin\left(\frac{\sqrt{15}t}{2}\right) - 5\cos\left(\frac{\sqrt{15}t}{2}\right) \right)$$
$$y(t) \to \frac{1}{5}e^{-t/2} \left(\sqrt{15} \sin\left(\frac{\sqrt{15}t}{2}\right) + 5\cos\left(\frac{\sqrt{15}t}{2}\right) \right)$$

11.11 problem 13

Internal problem ID [12788]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 13.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) - 6y$$
$$y' = 2x(t) + y$$

With initial conditions

$$[x(0) = 2, y(0) = 1]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 61

dsolve([diff(x(t),t) = 2*x(t)-6*y(t), diff(y(t),t) = 2*x(t)+y(t), x(0) = 2, y(0) = 1],[x(t),x(t),x(t),x(t)]

$$x(t) = -\frac{e^{\frac{3t}{2}} \left(\frac{40\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right)}{47} - 8\cos\left(\frac{\sqrt{47}t}{2}\right)\right)}{4}$$

$$x(t) = -\frac{e^{\frac{3t}{2}} \left(\frac{40\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right)}{47} - 8\cos\left(\frac{\sqrt{47}t}{2}\right)\right)}{4}$$
$$y(t) = e^{\frac{3t}{2}} \left(\frac{7\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + \cos\left(\frac{\sqrt{47}t}{2}\right)\right)$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 94

DSolve[{x'[t]==2*x[t]-6*y[t],y'[t]==2*x[t]+1*y[t]},{x[0]==2,y[0]==1},{x[t],y[t]},t,IncludeSi

$$x(t) \to \frac{2}{47} e^{3t/2} \left(47 \cos \left(\frac{\sqrt{47}t}{2} \right) - 5\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) \right)$$
$$y(t) \to \frac{1}{47} e^{3t/2} \left(7\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) + 47 \cos \left(\frac{\sqrt{47}t}{2} \right) \right)$$

11.12problem 14

Internal problem ID [12789]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 14.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + 4y$$
$$y' = -3x(t) + 2y$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 63

$$dsolve([diff(x(t),t) = x(t)+4*y(t), diff(y(t),t) = -3*x(t)+2*y(t), x(0) = 1, y(0) = -1],[x(t)+2*y(t), x(0) = -1],[x(t)+2*y(t),[x(t)+2*y(t), x(t)+2*y(t),[x(t)+2*y(t),[x(t)+2*y(t),[x(t)+2*y(t),[x(t)+2*y(t),[x(t)+2*y(t),[x(t)+2*y(t),[x(t)+2*y(t),[x(t)+2*y(t),[x(t)+2*y(t),[x(t)+2*y(t),[x(t)+2*y(t),[x(t$$

$$x(t) = \frac{e^{\frac{3t}{2}} \left(-\frac{54\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + 6\cos\left(\frac{\sqrt{47}t}{2}\right) \right)}{6}$$

$$x(t) = \frac{e^{\frac{3t}{2}} \left(-\frac{54\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + 6\cos\left(\frac{\sqrt{47}t}{2}\right) \right)}{6}$$
$$y(t) = e^{\frac{3t}{2}} \left(-\frac{7\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right)}{47} - \cos\left(\frac{\sqrt{47}t}{2}\right) \right)$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 94

DSolve[{x'[t]==1*x[t]+4*y[t],y'[t]==-3*x[t]+2*y[t]},{x[0]==1,y[0]==-1},{x[t],y[t]},t,Include

$$x(t) \to \frac{1}{47} e^{3t/2} \left(47 \cos \left(\frac{\sqrt{47}t}{2} \right) - 9\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) \right)$$

$$y(t) \rightarrow -\frac{1}{47}e^{3t/2}\left(7\sqrt{47}\sin\left(\frac{\sqrt{47}t}{2}\right) + 47\cos\left(\frac{\sqrt{47}t}{2}\right)\right)$$

11.13 problem 24

Internal problem ID [12790]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 24.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -\frac{9x(t)}{10} - 2y$$
$$y' = x(t) + \frac{11y}{10}$$

With initial conditions

$$[x(0) = 1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

$$x(t) = -e^{\frac{t}{10}}(3\sin(t) - \cos(t))$$

$$y(t) = e^{\frac{t}{10}} (2\sin(t) + \cos(t))$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 38

$$DSolve[\{x'[t]==-9/10*x[t]-2*y[t],y'[t]==x[t]+11/10*y[t]\},\{x[0]==1,y[0]==1\},\{x[t],y[t]\},t,Incompared to the context of the c$$

$$x(t) \to e^{t/10}(\cos(t) - 3\sin(t))$$

$$y(t) \to e^{t/10} (2\sin(t) + \cos(t))$$

11.14 problem 26

Internal problem ID [12791]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 26.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) + 10y$$
$$y' = -x(t) + 3y$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 37

dsolve([diff(x(t),t)=-3*x(t)+10*y(t),diff(y(t),t)=-x(t)+3*y(t)],[x(t),y(t)],singsol=all)

$$x(t) = -\cos(t) c_1 + \sin(t) c_2 + 3\sin(t) c_1 + 3\cos(t) c_2$$

$$y(t) = \sin(t) c_1 + \cos(t) c_2$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 42

$$x(t) \to 10c_2 \sin(t) + c_1(\cos(t) - 3\sin(t))$$

$$y(t) \to c_2(3\sin(t) + \cos(t)) - c_1\sin(t)$$

12 Chapter 3. Linear Systems. Exercises section 3.5 page 327

12.1	problem	Ι.	•	•	•	•	•	•	•	•	•	•	•		 •	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	280
12.2	problem	2 .																														281
12.3	problem	3.																														282
12.4	problem	4 .																														283
12.5	problem	5.																														284
12.6	problem	6.																														285
12.7	problem	7.																														286
12.8	problem	8.																														287
12.9	problem	17																														288
12.10)problem	18																														289
12.1	l problem	19																														290
12.12	2problem	21((a)																													291
12.13	Bproblem	21((b)																													292
12.14	4problem	24																														293

12.1 problem 1

Internal problem ID [12792]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t)$$
$$y' = x(t) - 3y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve([diff(x(t),t) = -3*x(t), diff(y(t),t) = x(t)-3*y(t), x(0) = 1, y(0) = 0], [x(t), y(t)]

$$x(t) = e^{-3t}$$

$$y(t) = e^{-3t}t$$

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 20

$$x(t) \to e^{-3t}$$

$$x(t) \to e^{-3t}$$

 $y(t) \to e^{-3t}t$

12.2 problem 2

Internal problem ID [12793]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 2.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y$$
$$y' = -x(t) - 2y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 73

$$x(t) = \frac{e^{\sqrt{3}t}}{2} + \frac{e^{-\sqrt{3}t}}{2} + \frac{\sqrt{3}e^{\sqrt{3}t}}{3} - \frac{\sqrt{3}e^{-\sqrt{3}t}}{3}$$
$$y(t) = -\frac{\sqrt{3}e^{\sqrt{3}t}}{6} + \frac{\sqrt{3}e^{-\sqrt{3}t}}{6}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 82

 $DSolve[\{x'[t]==2*x[t]+1*y[t],y'[t]==-1*x[t]-2*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeStandsolve[\{x'[t]==2*x[t]+1*y[t],y'[t]==-1*x[t]-2*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeStandsolve[\{x'[t]==2*x[t]+1*y[t],y'[t]==-1*x[t]-2*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeStandsolve[\{x'[t]==2*x[t]+1*y[t],y'[t]==-1*x[t]-2*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeStandsolve[\{x'[t]==-1*x[t]+1*y[t],y'[t]==-1*x[t]-2*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeStandsolve[\{x'[t]==-1*x[t]+1*y[t],y'[t]==-1*x[t]-2*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t],y[t]==-1*x[t]-2*y[t],\{x[0]==1,y[0]==0\},\{x[t],y[t]==-1*x[t]-2*y[t],\{x[0]==1,y[0]==0\},\{x[t],y[t]==-1*x[t]-2*y[t],\{x[0]==1,y[0]==0\},\{x[t],y[t]==-1*x[t]-2*y[t],\{x[0]==1,y[0]==0\},\{x[t],y[t]==-1*x[t]-2*y[t],\{x[0]==1,y[0]==0\},\{x[t],y[t]==-1*x[t]-2*y[t],\{x[0]==1,y[0]==0\},\{x[t],y[t]==-1*x[t]-2*y[t],\{x[0]==1,y[0]==0\},\{x[t],y[t]==-1*x[t]-2*y[t]-2*y[t],\{x[t],y[t]==-1*x[t]-2*y[t],\{x[t],y[t]==-1*x[t]-2*y[t],\{x[t],y[t]==-1*x[t]-2*y[t]-2*y[t],\{x[t],y[t]==-1*x[t]-2*y[$

$$x(t) \to \frac{1}{6} e^{-\sqrt{3}t} \left(\left(3 + 2\sqrt{3} \right) e^{2\sqrt{3}t} + 3 - 2\sqrt{3} \right)$$
$$y(t) \to -\frac{e^{-\sqrt{3}t} \left(e^{2\sqrt{3}t} - 1 \right)}{2\sqrt{3}}$$

12.3 problem 3

Internal problem ID [12794]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 3.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -2x(t) - y$$
$$y' = x(t) - 4y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve([diff(x(t),t) = -2*x(t)-y(t), diff(y(t),t) = x(t)-4*y(t), x(0) = 1, y(0) = 0], [x(t), x(t), x

$$x(t) = e^{-3t}(t+1)$$

$$y(t) = e^{-3t}t$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 24

DSolve[{x'[t]==-2*x[t]-1*y[t],y'[t]==1*x[t]-4*y[t]},{x[0]==1,y[0]==0},{x[t],y[t]},t,IncludeS

$$x(t) \rightarrow e^{-3t}(t+1)$$

$$y(t) \to e^{-3t}t$$

12.4 problem 4

Internal problem ID [12795]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 4.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = y$$
$$y' = -x(t) - 2y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

dsolve([diff(x(t),t) = y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], [x(t), y(t)],

$$x(t) = -\mathrm{e}^{-t}(-t-1)$$

$$y(t) = -e^{-t}t$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 25

$$x(t) \rightarrow e^{-t}(t+1)$$

$$y(t) \to -e^{-t}t$$

12.5problem 5

Internal problem ID [12796]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t)$$
$$y' = x(t) - 3y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve([diff(x(t),t) = -3*x(t), diff(y(t),t) = x(t)-3*y(t), x(0) = 1, y(0) = 0], [x(t), y(t)]

$$x(t) = e^{-3t}$$

$$y(t) = e^{-3t}t$$

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 20

DSolve $[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeS$

$$x(t) \to e^{-3t}$$

$$x(t) \to e^{-3t}$$

 $y(t) \to e^{-3t}t$

12.6 problem 6

Internal problem ID [12797]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 6.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y$$
$$y' = -x(t) + 4y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

$$x(t) = e^{3t}(-t+1)$$

$$y(t) = -e^{3t}t$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 26

 $DSolve[{x'[t] == 2*x[t] + 1*y[t], y'[t] == -1*x[t] + 4*y[t]}, {x[0] == 1, y[0] == 0}, {x[t], y[t]}, t, IncludeStands{a}$

$$x(t) \rightarrow -e^{3t}(t-1)$$

$$y(t) \rightarrow -e^{3t}t$$

12.7 problem 7

Internal problem ID [12798]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 7.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -2x(t) - y$$
$$y' = x(t) - 4y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve([diff(x(t),t) = -2*x(t)-y(t), diff(y(t),t) = x(t)-4*y(t), x(0) = 1, y(0) = 0], [x(t), x(t), x

$$x(t) = e^{-3t}(t+1)$$

$$y(t) = e^{-3t}t$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 24

DSolve $[\{x'[t]=-2*x[t]-1*y[t],y'[t]=-1*x[t]-4*y[t]\},\{x[0]=-1,y[0]=-0\},\{x[t],y[t]\},t,IncludeS$

$$x(t) \rightarrow e^{-3t}(t+1)$$

$$y(t) \to e^{-3t}t$$

12.8 problem 8

Internal problem ID [12799]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 8.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = y$$
$$y' = -x(t) - 2y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve([diff(x(t),t) = y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], [x(t), y(t)],

$$x(t) = -\mathrm{e}^{-t}(-t-1)$$

$$y(t) = -e^{-t}t$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 25

$$x(t) \rightarrow e^{-t}(t+1)$$

$$y(t) \to -e^{-t}t$$

12.9 problem 17

Internal problem ID [12800]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 17.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = -y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve([diff(x(t),t) = 2*y(t), diff(y(t),t) = -y(t), x(0) = 1, y(0) = 0],[x(t), y(t)], sings(x(t),t) = -y(t), x(0) = 1, y(0) = 0],[x(t), y(t)], sings(x(t),t) = -y(t), x(0) = 1, y(0) = 0],[x(t), y(t)], sings(x(t),t) = -y(t), x(0) = 1, y(0) = 0],[x(t), y(t)], sings(x(t),t) = -y(t), x(0) = 1, y(0) = 0],[x(t), y(t)], sings(x(t),t) = -y(t), x(0) = 1, y(0) = 0],[x(t), y(t)], sings(x(t),t) = -y(t), x(0) = 1, y(0) = 0],[x(t), y(t)], sings(x(t),t) = -y(t), x(0) = 1, y(0) = 0],[x(t), y(t)], sings(x(t),t) = -y(t), x(0) = 1, y(0) = 0],[x(t), y(t)], sings(x(t),t) = -y(t), x(0) = 1, y(0) = 0],[x(t), y(t)], sings(x(t),t) = -y(t), x(0) = 1, y(0) = 0],[x(t), y(t)], sings(x(t),t) = -y(t), x(t), x(t) = 0, x(t), x(t)

$$x(t) = 1$$

$$y(t) = 0$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 10

DSolve[{x'[t]==2*y[t],y'[t]==0*x[t]-1*y[t]},{x[0]==1,y[0]==0},{x[t],y[t]},t,IncludeSingularS

$$x(t) \rightarrow 1$$

$$y(t) \to 0$$

12.10 problem 18

Internal problem ID [12801]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 18.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 4y$$
$$y' = 3x(t) + 6y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

$$x(t) = \frac{e^{8t}}{4} + \frac{3}{4}$$

$$y(t) = -\frac{3}{8} + \frac{3e^{8t}}{8}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 30

DSolve[{x'[t]==2*x[t]+4*y[t],y'[t]==3*x[t]+6*y[t]},{x[0]==1,y[0]==0},{x[t],y[t]},t,IncludeSi

$$x(t) \to \frac{1}{4} \left(e^{8t} + 3 \right)$$

$$y(t) \to \frac{3}{8} \left(e^{8t} - 1 \right)$$

12.11 problem 19

Internal problem ID [12802]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 19.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 4x(t) + 2y$$
$$y' = 2x(t) + y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

$$x(t) = \frac{4e^{5t}}{5} + \frac{1}{5}$$

$$y(t) = -\frac{2}{5} + \frac{2e^{5t}}{5}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 32

 $DSolve[\{x'[t]==4*x[t]+2*y[t],y'[t]==2*x[t]+1*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeSi=0\}$

$$x(t) \to \frac{1}{5} \left(4e^{5t} + 1 \right)$$

$$y(t)
ightarrow rac{2}{5} \left(e^{5t} - 1
ight)$$

12.12 problem 21(a)

Internal problem ID [12803]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 21(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 15

dsolve([diff(x(t),t)=2*y(t),diff(y(t),t)=0],[x(t), y(t)], singsol=all)

$$x(t) = 2c_2t + c_1$$

$$y(t) = c_2$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 18

DSolve[{x'[t]==2*y[t],y'[t]==0*x[t]+0*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow 2c_2t + c_1$$

$$y(t) \rightarrow c_2$$

12.13 problem 21(b)

Internal problem ID [12804]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 21(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2y$$
$$y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve([diff(x(t),t)=-2*y(t),diff(y(t),t)=0],[x(t), y(t)], singsol=all)

$$x(t) = -2c_2t + c_1$$

$$y(t)=c_2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 18

$$x(t) \rightarrow c_1 - 2c_2t$$

$$y(t) \rightarrow c_2$$

12.14 problem 24

Internal problem ID [12805]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 24.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - y$$
$$y' = 4x(t) + y$$

With initial conditions

$$[x(0) = -1, y(0) = 2]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve([diff(x(t),t) = -3*x(t)-y(t), diff(y(t),t) = 4*x(t)+y(t), x(0) = -1, y(0) = 2], [x(t), x(t), x(t),

$$x(t) = -e^{-t}$$

$$y(t) = 2 e^{-t}$$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 22

 $DSolve[\{x'[t]==-3*x[t]-y[t],y'[t]==4*x[t]+y[t]\},\{x[0]==-1,y[0]==2\},\{x[t],y[t]\},t,IncludeSing[x,y]==-1,y[0]==-$

$$x(t) \to -e^{-t}$$
$$y(t) \to 2e^{-t}$$

$$y(t) \to 2e^{-t}$$

13	Chapter 3. Linear Systems. Exercises section
	3.6 page 342
13.1	$\operatorname{roblem} 1 \ldots \ldots \ldots \ldots \ldots 295$
13.2	roblem 2

13.1 problem 1

Internal problem ID [12806]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.6 page 342

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 6y' - 7y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

 $dsolve(diff(y(t),t)^2)-6*diff(y(t),t)-7*y(t)=0,y(t), singsol=all)$

$$y(t) = c_1 e^{7t} + c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 22

DSolve[y''[t]-6*y'[t]-7*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t} \left(c_2 e^{8t} + c_1 \right)$$

13.2 problem 2

Internal problem ID [12807]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.6 page 342

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 12y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(t),t)^2)-diff(y(t),t)^{-12*y(t)=0},y(t), singsol=all)$

$$y(t) = c_1 e^{-3t} + c_2 e^{4t}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 22

DSolve[y''[t]-y'[t]-12*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-3t} (c_2 e^{7t} + c_1)$$

14 Chapter 3. Linear Systems. Exercises section 3.8 page 371

14.1 problem 1		•	•			•									 					298
14.2 problem 4														•	 					300
14.3 problem 5															 					302
14.4 problem 6														•	 					304
14.5 problem 7														•	 					306
14.6 problem 10)														 					308
14.7 problem 11															 					310
14.8 problem 12	?													•	 					312
14.9 problem 13	}														 					314
14.10 problem 14			•												 	•				315
14.11 problem 15)														 					316
14.12 problem 16	;														 					317
14.13 problem 17	•														 					319
14.14 problem 18	3														 					320
14.15 problem 20)														 					322

14.1 problem 1

Internal problem ID [12808]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{y}{10}$$
$$y' = \frac{z(t)}{5}$$
$$z'(t) = \frac{2x(t)}{5}$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 183

dsolve([diff(x(t),t)=0*x(t)+1/10*y(t)+0*z(t),diff(y(t),t)=0*x(t)+0*y(t)+2/10*z(t),diff(z(t),t)=0*x(t)+0*y(t)+2/10*z(t),diff(z(t),t)=0*x(t)+0*y(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t

$$x(t) = \frac{c_1 e^{\frac{t}{5}}}{2} - \frac{c_2 e^{-\frac{t}{10}} \sin\left(\frac{\sqrt{3}t}{10}\right)}{4} + \frac{c_2 e^{-\frac{t}{10}} \sqrt{3} \cos\left(\frac{\sqrt{3}t}{10}\right)}{4} - \frac{c_3 e^{-\frac{t}{10}} \cos\left(\frac{\sqrt{3}t}{10}\right)}{4} - \frac{c_3 e^{-\frac{t}{10}} \sqrt{3} \sin\left(\frac{\sqrt{3}t}{10}\right)}{4}$$

$$y(t) = c_1 e^{\frac{t}{5}} - \frac{c_2 e^{-\frac{t}{10}} \sin\left(\frac{\sqrt{3}t}{10}\right)}{2} - \frac{c_2 e^{-\frac{t}{10}} \sqrt{3} \cos\left(\frac{\sqrt{3}t}{10}\right)}{2} - \frac{c_3 e^{-\frac{t}{10}} \cos\left(\frac{\sqrt{3}t}{10}\right)}{2} + \frac{c_3 e^{-\frac{t}{10}} \sqrt{3} \sin\left(\frac{\sqrt{3}t}{10}\right)}{2}$$

$$z(t) = c_1 e^{\frac{t}{5}} + c_2 e^{-\frac{t}{10}} \sin\left(\frac{\sqrt{3}t}{10}\right) + c_3 e^{-\frac{t}{10}} \cos\left(\frac{\sqrt{3}t}{10}\right)$$

Time used: 0.059 (sec). Leaf size: 269

 $DSolve[\{x'[t]==0*x[t]+1/10*y[t]+0*z[t],y'[t]==0*x[t]+0*y[t]+2/10*z[t],z'[t]==4/10*x[t]+0*y[t]+0*y[t]+1/10*z[t],z'[t]=-4/10*x[t]+0*y[t]+1/10*z[t]+0*y[t]+1/10*z[t]+0*y[t]+1/10*z[t]+0*y[t]+1/10*z[t$

$$\begin{split} x(t) &\to \frac{1}{6} e^{-t/10} \Bigg((2c_1 + c_2 + c_3) e^{t/10} \sqrt[5]{e^t} \\ &\quad + (4c_1 - c_2 - c_3) \cos \left(\frac{\sqrt{3}t}{10} \right) + \sqrt{3} (c_2 - c_3) \sin \left(\frac{\sqrt{3}t}{10} \right) \Bigg) \\ y(t) &\to \frac{1}{3} e^{-t/10} \Bigg((2c_1 + c_2 + c_3) e^{t/10} \sqrt[5]{e^t} \\ &\quad - (2c_1 - 2c_2 + c_3) \cos \left(\frac{\sqrt{3}t}{10} \right) - \sqrt{3} (2c_1 - c_3) \sin \left(\frac{\sqrt{3}t}{10} \right) \Bigg) \\ z(t) &\to \frac{1}{3} e^{-t/10} \Bigg((2c_1 + c_2 + c_3) e^{t/10} \sqrt[5]{e^t} \\ &\quad - (2c_1 + c_2 - 2c_3) \cos \left(\frac{\sqrt{3}t}{10} \right) + \sqrt{3} (2c_1 - c_2) \sin \left(\frac{\sqrt{3}t}{10} \right) \Bigg) \end{split}$$

14.2 problem 4

Internal problem ID [12809]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = y$$
$$y' = -x(t)$$
$$z'(t) = 2z(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

dsolve([diff(x(t),t)=0*x(t)+1*y(t)+0*z(t),diff(y(t),t)=-1*x(t)+0*y(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(

$$x(t) = -\cos(t) c_1 + \sin(t) c_2$$

$$y(t) = \sin(t) c_1 + \cos(t) c_2$$

$$z(t) = c_3 e^{2t}$$

Time used: 0.035 (sec). Leaf size: 76

 $DSolve[\{x'[t]==0*x[t]+1*y[t]+0*z[t],y'[t]==-1*x[t]+0*y[t]+0*z[t],z'[t]==0*x[t]+0*y[t]+2*z[t]$

$$x(t) \rightarrow c_1 \cos(t) + c_2 \sin(t)$$

$$y(t) \rightarrow c_2 \cos(t) - c_1 \sin(t)$$

$$z(t) \to c_3 e^{2t}$$

$$x(t) \rightarrow c_1 \cos(t) + c_2 \sin(t)$$

$$y(t) \rightarrow c_2 \cos(t) - c_1 \sin(t)$$

$$z(t) \to 0$$

14.3 problem 5

Internal problem ID [12810]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + 3y$$
$$y' = 3x(t) - 2y$$
$$z'(t) = -z(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 40

dsolve([diff(x(t),t)=-2*x(t)+3*y(t)+0*z(t),diff(y(t),t)=3*x(t)-2*y(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z

$$x(t) = c_1 e^t - c_2 e^{-5t}$$

$$y(t) = c_1 e^t + c_2 e^{-5t}$$

$$z(t) = c_3 e^{-t}$$

Time used: 0.032 (sec). Leaf size: 150

 $DSolve[\{x'[t]==-2*x[t]+3*y[t]+0*z[t],y'[t]==3*x[t]-2*y[t]+0*z[t],z'[t]==0*x[t]+0*y[t]-1*z[t]+0*y[t]+0*y[t]-1*z[t]+0*y[t]+0*y[t]+0*z[t]+0*y[t]+0*z[t$

$$x(t) \to \frac{1}{2}e^{-5t} \left(c_1 \left(e^{6t} + 1 \right) + c_2 \left(e^{6t} - 1 \right) \right)$$

$$y(t) \to \frac{1}{2}e^{-5t} \left(c_1 \left(e^{6t} - 1 \right) + c_2 \left(e^{6t} + 1 \right) \right)$$

$$z(t) \to c_3 e^{-t}$$

$$x(t) \to \frac{1}{2}e^{-5t} \left(c_1 \left(e^{6t} + 1 \right) + c_2 \left(e^{6t} - 1 \right) \right)$$

$$y(t) \to \frac{1}{2}e^{-5t} \left(c_1 \left(e^{6t} - 1 \right) + c_2 \left(e^{6t} + 1 \right) \right)$$

$$z(t) \to 0$$

14.4 problem 6

Internal problem ID [12811]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 6.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + 3z(t)$$
$$y' = -y$$
$$z'(t) = -3x(t) + z(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 51

$$dsolve([diff(x(t),t)=1*x(t)+0*y(t)+3*z(t),diff(y(t),t)=0*x(t)-1*y(t)+0*z(t),diff(z(t),t)=-3*z(t),diff(y(t),t)=0*x(t)-1*y(t)+0*z(t),diff(z(t),t)=-3*z(t)+0*$$

$$x(t) = -e^{t}(c_{2}\cos(3t) - \sin(3t)c_{3})$$

 $y(t) = c_{1}e^{-t}$

$$z(t) = e^{t}(c_3 \cos(3t) + \sin(3t) c_2)$$

Time used: 0.032 (sec). Leaf size: 108

$$DSolve[\{x'[t] == 1*x[t] + 0*y[t] + 3*z[t], y'[t] == 0*x[t] - 1*y[t] + 0*z[t], z'[t] == -3*x[t] + 0*y[t] + 1*z[t]$$

$$x(t) \to e^t(c_1 \cos(3t) + c_2 \sin(3t))$$

$$z(t) \to e^t(c_2\cos(3t) - c_1\sin(3t))$$

$$y(t) \to c_3 e^{-t}$$

$$x(t) \to e^t(c_1 \cos(3t) + c_2 \sin(3t))$$

$$z(t) \to e^t(c_2\cos(3t) - c_1\sin(3t))$$

$$y(t) \to 0$$

14.5 problem 7

Internal problem ID [12812]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t)$$
$$y' = 2y - z(t)$$
$$z'(t) = -y + 2z(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

dsolve([diff(x(t),t)=1*x(t)+0*y(t)+0*z(t),diff(y(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t)-1*z(t)

$$x(t) = c_1 e^t$$

$$y(t) = -c_2 e^{3t} + c_3 e^t$$

$$z(t) = c_2 e^{3t} + c_3 e^t$$

Time used: 0.034 (sec). Leaf size: 144

DSolve[{x'[t]==1*x[t]+0*y[t]+0*z[t],y'[t]==0*x[t]+2*y[t]-1*z[t],z'[t]==0*x[t]-1*y[t]+2*z[t]}

$$x(t) \to c_1 e^t$$

$$y(t) \to \frac{1}{2} e^t (c_2 e^{2t} - c_3 e^{2t} + c_2 + c_3)$$

$$z(t) \to \frac{1}{2} e^t (c_2 (-e^{2t}) + c_3 e^{2t} + c_2 + c_3)$$

$$x(t) \to 0$$

$$y(t) \to \frac{1}{2} e^t (c_2 e^{2t} - c_3 e^{2t} + c_2 + c_3)$$

$$z(t) \to \frac{1}{2} e^t (c_2 (-e^{2t}) + c_3 e^{2t} + c_2 + c_3)$$

14.6 problem 10

Internal problem ID [12813]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 10.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + y$$
$$y' = -2y$$
$$z'(t) = -z(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 33

dsolve([diff(x(t),t)=-2*x(t)+1*y(t)+0*z(t),diff(y(t),t)=0*x(t)-2*y(t)+0*z(t),diff(z(t),t)=0*x(t)-2*y(t)+0*z(t)-2*y(t)+0*z(t)-2*y(t)+0*z(t)-2*y(t)

$$x(t) = (c_2t + c_1) e^{-2t}$$

$$y(t) = c_2 \mathrm{e}^{-2t}$$

$$z(t) = c_3 e^{-t}$$

Time used: 0.038 (sec). Leaf size: 72

 $DSolve[\{x'[t] == -2*x[t] + 1*y[t] + 0*z[t], y'[t] == 0*x[t] - 2*y[t] + 0*z[t], z'[t] == 0*x[t] + 0*y[t] - 1*z[t]$

$$x(t) \to e^{-2t}(c_2t + c_1)$$

$$y(t) \to c_2 e^{-2t}$$

$$z(t) \to c_3 e^{-t}$$

$$x(t) \to e^{-2t}(c_2t + c_1)$$

$$y(t) \to c_2 e^{-2t}$$

$$z(t) \to 0$$

14.7 problem 11

Internal problem ID [12814]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 11.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + y$$
$$y' = -2y$$
$$z'(t) = z(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve([diff(x(t),t)=-2*x(t)+1*y(t)+0*z(t),diff(y(t),t)=0*x(t)-2*y(t)+0*z(t),diff(z(t),t)=0*x(t)-2*y(t)+0*z(t)-2*y(t)+0*z(t)-2*y(t)+0*z(t)-2*y(t)+0*z(t)-2*y(t)+0*z(t)-2*y(t)

$$x(t) = (c_2t + c_1)e^{-2t}$$

$$y(t) = c_2 e^{-2t}$$

$$z(t) = c_3 e^t$$

Time used: 0.033 (sec). Leaf size: 70

 $DSolve[\{x'[t]==-2*x[t]+1*y[t]+0*z[t],y'[t]==0*x[t]-2*y[t]+0*z[t],z'[t]==0*x[t]+0*y[t]+1*z[t]$

$$x(t) \to e^{-2t}(c_2t + c_1)$$

$$y(t) \to c_2 e^{-2t}$$

$$z(t) \to c_3 e^t$$

$$x(t) \to e^{-2t}(c_2t + c_1)$$

$$y(t) \to c_2 e^{-2t}$$

$$z(t) \to 0$$

14.8 problem 12

Internal problem ID [12815]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 12.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + 2y$$
$$y' = 2x(t) - 4y$$
$$z'(t) = -z(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

dsolve([diff(x(t),t)=-1*x(t)+2*y(t)+0*z(t),diff(y(t),t)=2*x(t)-4*y(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z

$$x(t) = -\frac{c_2 e^{-5t}}{2} + 2c_1$$

$$y(t) = c_1 + c_2 e^{-5t}$$

$$z(t) = c_3 e^{-t}$$

Time used: 0.037 (sec). Leaf size: 158

 $DSolve[\{x'[t] == -1*x[t] + 2*y[t] + 0*z[t], y'[t] == 2*x[t] - 4*y[t] + 0*z[t], z'[t] == 0*x[t] + 0*y[t] - 1*z[t]$

$$x(t) \to \frac{1}{5}e^{-5t} \left(c_1 \left(4e^{5t} + 1 \right) + 2c_2 \left(e^{5t} - 1 \right) \right)$$

$$y(t) \to \frac{1}{5}e^{-5t} \left(2c_1 \left(e^{5t} - 1 \right) + c_2 \left(e^{5t} + 4 \right) \right)$$

$$z(t) \to c_3 e^{-t}$$

$$x(t) \to \frac{1}{5}e^{-5t} \left(c_1 \left(4e^{5t} + 1 \right) + 2c_2 \left(e^{5t} - 1 \right) \right)$$

$$y(t) \to \frac{1}{5}e^{-5t} \left(2c_1 \left(e^{5t} - 1 \right) + c_2 \left(e^{5t} + 4 \right) \right)$$

$$z(t) \to 0$$

14.9 problem 13

Internal problem ID [12816]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 13.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + 2y$$
$$y' = 2x(t) - 4y$$
$$z'(t) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 31

dsolve([diff(x(t),t)=-1*x(t)+2*y(t)+0*z(t),diff(y(t),t)=2*x(t)-4*y(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z

$$x(t) = -\frac{c_2 e^{-5t}}{2} + 2c_1$$

 $y(t) = c_1 + c_2 e^{-5t}$
 $z(t) = c_3$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 77

 $DSolve[\{x'[t] == -1*x[t] + 2*y[t] + 0*z[t], y'[t] == 2*x[t] - 4*y[t] + 0*z[t], z'[t] == 0*x[t] + 0*y[t] + 0*z[t]$

$$x(t) \to \frac{1}{5}e^{-5t} \left(c_1 \left(4e^{5t} + 1 \right) + 2c_2 \left(e^{5t} - 1 \right) \right)$$
$$y(t) \to \frac{1}{5}e^{-5t} \left(2c_1 \left(e^{5t} - 1 \right) + c_2 \left(e^{5t} + 4 \right) \right)$$
$$z(t) \to c_3$$

14.10 problem 14

Internal problem ID [12817]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 14.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + y$$
$$y' = -2y + z(t)$$
$$z'(t) = -2z(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 46

dsolve([diff(x(t),t)=-2*x(t)+1*y(t)+0*z(t),diff(y(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t)-2*y(t)+1*z(t)-2*y(t)+1*z(t)-2*y(t)+1*z(t)-2*y(t)+1*z(t)-2*y(t)+1*z(t)-2*y(t)-

$$x(t) = \frac{(c_3t^2 + 2c_2t + 2c_1)e^{-2t}}{2}$$
$$y(t) = (c_3t + c_2)e^{-2t}$$
$$z(t) = c_3e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 57

 $DSolve[\{x'[t] == -2*x[t] + 1*y[t] + 0*z[t], y'[t] == 0*x[t] - 2*y[t] + 1*z[t], z'[t] == 0*x[t] + 0*y[t] - 2*z[t]$

$$x(t) \to \frac{1}{2}e^{-2t}(t(c_3t + 2c_2) + 2c_1)$$

 $y(t) \to e^{-2t}(c_3t + c_2)$
 $z(t) \to c_3e^{-2t}$

14.11 problem 15

Internal problem ID [12818]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 15.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = y$$
$$y' = z(t)$$
$$z'(t) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve([diff(x(t),t)=0*x(t)+1*y(t)+0*z(t),diff(y(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*z(

$$x(t) = \frac{1}{2}c_3t^2 + c_2t + c_1$$
$$y(t) = c_3t + c_2$$
$$z(t) = c_3$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 36

 $DSolve[\{x'[t]==0*x[t]+1*y[t]+0*z[t],y'[t]==0*x[t]+0*y[t]+1*z[t],z'[t]==0*x[t]+0*y[t]+0*z[t]\}$

$$x(t)
ightarrow rac{c_3 t^2}{2} + c_2 t + c_1$$

 $y(t)
ightarrow c_3 t + c_2$
 $z(t)
ightarrow c_3$

14.12 problem 16

Internal problem ID [12819]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 16.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) - y$$
$$y' = -2y + 3z(t)$$
$$z'(t) = -x(t) + 3y - z(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 171

$$dsolve([diff(x(t),t)=2*x(t)-1*y(t)+0*z(t),diff(y(t),t)=0*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*x(t)-2*y(t)+3*z(t)+3$$

$$x(t) = -\frac{9c_2 e^{\left(-1+2\sqrt{3}\right)t}}{11} - \frac{9c_3 e^{-\left(1+2\sqrt{3}\right)t}}{11} - \frac{4c_2 e^{\left(-1+2\sqrt{3}\right)t}\sqrt{3}}{11} + \frac{4c_3 e^{-\left(1+2\sqrt{3}\right)t}\sqrt{3}}{11} + c_1 e^t$$

$$y(t) = \frac{6c_2 e^{\left(-1+2\sqrt{3}\right)t}\sqrt{3}}{11} - \frac{6c_3 e^{-\left(1+2\sqrt{3}\right)t}\sqrt{3}}{11} - \frac{3c_2 e^{\left(-1+2\sqrt{3}\right)t}}{11} - \frac{3c_3 e^{-\left(1+2\sqrt{3}\right)t}}{11} + c_1 e^t$$

$$z(t) = c_1 e^t + c_2 e^{\left(-1+2\sqrt{3}\right)t} + c_3 e^{-\left(1+2\sqrt{3}\right)t}$$

Time used: 0.054 (sec). Leaf size: 474

DSolve[{x'[t]==2*x[t]-1*y[t]+0*z[t],y'[t]==0*x[t]-2*y[t]+3*z[t],z'[t]==-1*x[t]+3*y[t]-1*z[t]

$$\begin{split} x(t) &\to \frac{1}{16} e^{-\left(\left(1+2\sqrt{3}\right)t\right)} \left(c_1 \left(\left(5+3\sqrt{3}\right) e^{4\sqrt{3}t} + 6 e^{2\left(1+\sqrt{3}\right)t} + 5 - 3\sqrt{3}\right) \right. \\ &\quad - 2 c_2 \left(\left(1+\sqrt{3}\right) e^{4\sqrt{3}t} - 2 e^{2\left(1+\sqrt{3}\right)t} + 1 - \sqrt{3}\right) \\ &\quad - c_3 \left(\left(3+\sqrt{3}\right) e^{4\sqrt{3}t} - 6 e^{2\left(1+\sqrt{3}\right)t} + 3 - \sqrt{3}\right)\right) \\ y(t) &\to \frac{1}{16} e^{-\left(\left(1+2\sqrt{3}\right)t\right)} \left(c_1 \left(-\left(3+\sqrt{3}\right) e^{4\sqrt{3}t} + 6 e^{2\left(1+\sqrt{3}\right)t} - 3 + \sqrt{3}\right) \right. \\ &\quad + 2 c_2 \left(-\left(\sqrt{3}-3\right) e^{4\sqrt{3}t} + 2 e^{2\left(1+\sqrt{3}\right)t} + 3 + \sqrt{3}\right) \\ &\quad + 3 c_3 \left(\left(\sqrt{3}-1\right) e^{4\sqrt{3}t} + 2 e^{2\left(1+\sqrt{3}\right)t} - 1 - \sqrt{3}\right)\right) \\ z(t) &\to -\frac{1}{48} e^{-\left(\left(1+2\sqrt{3}\right)t\right)} \left(c_1 \left(\left(9+7\sqrt{3}\right) e^{4\sqrt{3}t} - 18 e^{2\left(1+\sqrt{3}\right)t} + 9 - 7\sqrt{3}\right) \right. \\ &\quad - 2 c_2 \left(\left(5\sqrt{3}-3\right) e^{4\sqrt{3}t} + 6 e^{2\left(1+\sqrt{3}\right)t} - 3 - 5\sqrt{3}\right) \\ &\quad + 3 c_3 \left(\left(\sqrt{3}-5\right) e^{4\sqrt{3}t} - 6 e^{2\left(1+\sqrt{3}\right)t} - 5 - \sqrt{3}\right)\right) \end{split}$$

14.13 problem 17

Internal problem ID [12820]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 17.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -4x(t) + 3y$$
$$y' = -y + z(t)$$
$$z'(t) = 5x(t) - 5y$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 111

dsolve([diff(x(t),t)=-4*x(t)+3*y(t)+0*z(t),diff(y(t),t)=0*x(t)-1*y(t)+1*z(t),diff(z(t),t)=5*x(t)+1*z(t),diff(z(t),t)=5*x(t)+1*z(t),diff(z(t),t)=5*x(t)+1*z(t)+1*z(t),diff(z(t),t)=5*x(t)+1*z(

$$x(t) = -\frac{9c_2 e^{-2t} \sin(t)}{10} - \frac{3c_2 e^{-2t} \cos(t)}{10} - \frac{9c_3 e^{-2t} \cos(t)}{10} + \frac{3c_3 e^{-2t} \sin(t)}{10} + c_1 e^{-t}$$

$$y(t) = -\frac{c_2 e^{-2t} \cos(t)}{2} - \frac{c_2 e^{-2t} \sin(t)}{2} - \frac{c_3 e^{-2t} \cos(t)}{2} + \frac{c_3 e^{-2t} \sin(t)}{2} + c_1 e^{-t}$$

$$z(t) = e^{-2t} (\sin(t) c_2 + \cos(t) c_3)$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 152

DSolve[{x'[t]==-4*x[t]+3*y[t]+0*z[t],y'[t]==0*x[t]-1*y[t]+1*z[t],z'[t]==5*x[t]-5*y[t]+0*z[t]

$$x(t) \to \frac{1}{2}e^{-2t} \left((5c_1 - 3c_2 + 3c_3)e^t - 3(c_1 - c_2 + c_3)\cos(t) - 3(3c_1 - 3c_2 + c_3)\sin(t) \right)$$

$$y(t) \to \frac{1}{2}e^{-2t} \left((5c_1 - 3c_2 + 3c_3)e^t + (-5c_1 + 5c_2 - 3c_3)\cos(t) - (5c_1 - 5c_2 + c_3)\sin(t) \right)$$

$$z(t) \to e^{-2t} (c_3 \cos(t) + (5c_1 - 5c_2 + 2c_3)\sin(t))$$

14.14 problem 18

Internal problem ID [12821]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 18.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -10x(t) + 10y$$
$$y' = 28x(t) - y$$
$$z'(t) = -\frac{8z(t)}{3}$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 95

dsolve([diff(x(t),t)=-10*x(t)+10*y(t)+0*z(t),diff(y(t),t)=28*x(t)-1*y(t)+0*z(t),diff(z(t),t)=28*x(t)-1*y(t)+0*z(

$$x(t) = \frac{c_1 e^{\frac{\left(-11+\sqrt{1201}\right)t}{2}}\sqrt{1201}}{56} - \frac{c_2 e^{-\frac{\left(11+\sqrt{1201}\right)t}{2}}\sqrt{1201}}{56} - \frac{9c_1 e^{\frac{\left(-11+\sqrt{1201}\right)t}{2}}}{56} - \frac{9c_2 e^{-\frac{\left(11+\sqrt{1201}\right)t}{2}}}{56}$$

$$y(t) = c_1 e^{\frac{\left(-11+\sqrt{1201}\right)t}{2}} + c_2 e^{-\frac{\left(11+\sqrt{1201}\right)t}{2}}$$

$$z(t) = c_3 e^{-\frac{8t}{3}}$$

Time used: 0.047 (sec). Leaf size: 312

DSolve[{x'[t]==-10*x[t]+10*y[t]+0*z[t],y'[t]==28*x[t]-1*y[t]+0*z[t],z'[t]==0*x[t]+0*y[t]-8/3

$$\begin{array}{c} x(t) \\ \to \frac{e^{-\frac{1}{2}\left(11+\sqrt{1201}\right)t}\left(c_1\left(\left(1201-9\sqrt{1201}\right)e^{\sqrt{1201}t}+1201+9\sqrt{1201}\right)+20\sqrt{1201}c_2\left(e^{\sqrt{1201}t}-1\right)\right)}{2402} \\ y(t) \\ \to \frac{e^{-\frac{1}{2}\left(11+\sqrt{1201}\right)t}\left(56\sqrt{1201}c_1\left(e^{\sqrt{1201}t}-1\right)+c_2\left(\left(1201+9\sqrt{1201}\right)e^{\sqrt{1201}t}+1201-9\sqrt{1201}\right)\right)}{2402} \\ z(t) \to c_3e^{-8t/3} \\ x(t) \\ \to \frac{e^{-\frac{1}{2}\left(11+\sqrt{1201}\right)t}\left(c_1\left(\left(1201-9\sqrt{1201}\right)e^{\sqrt{1201}t}+1201+9\sqrt{1201}\right)+20\sqrt{1201}c_2\left(e^{\sqrt{1201}t}-1\right)\right)}{2402} \\ y(t) \\ \to \frac{e^{-\frac{1}{2}\left(11+\sqrt{1201}\right)t}\left(56\sqrt{1201}c_1\left(e^{\sqrt{1201}t}-1\right)+c_2\left(\left(1201+9\sqrt{1201}\right)e^{\sqrt{1201}t}+1201-9\sqrt{1201}\right)\right)}{2402} \\ z(t) \to 0 \end{array}$$

14.15 problem 20

Internal problem ID [12822]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 20.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -y + z(t)$$
$$y' = -x(t) + z(t)$$
$$z'(t) = z(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 42

dsolve([diff(x(t),t)=-y(t)+z(t),diff(y(t),t)=-x(t)+z(t),diff(z(t),t)=z(t)],[x(t),y(t),z(t)]

$$x(t) = -c_1 e^t + c_2 e^{-t} + c_3 e^t$$
$$y(t) = c_1 e^t + c_2 e^{-t}$$
$$z(t) = c_3 e^t$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 94

DSolve[{x'[t]==-y[t]+z[t],y'[t]==-x[t]+z[t],z'[t]==z[t]},{x[t],y[t],z[t]},t,IncludeSingularS

$$x(t) \to \frac{1}{2}e^{-t}(c_1(e^{2t}+1) - (c_2 - c_3)(e^{2t}-1))$$

$$y(t) \to \frac{1}{2}e^{-t}(-(c_1(e^{2t}-1)) + c_2(e^{2t}+1) + c_3(e^{2t}-1))$$

$$z(t) \to c_3e^t$$

15 Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

15.1	problem	3				•	•	•	•														324
15.2	problem	6																					326
15.3	problem	7												 									327
15.4	problem	19	(i)																				328
15.5	problem	19	(ii	i)																			329
15.6	$\operatorname{problem}$	19	(ii	$\mathbf{ii})$																•			330
15.7	problem	19	(i	v)																			331
15.8	problem	19	(v)											•								332
15.9	problem	19	(v	i)											•								333
15.10)problem	19	(v	ii)											•								334
15.11	problem	19	(v	iii)																		335
15.12	2problem	23																					336
15.13	8problem	24																					337
15.14	lproblem	25																					338
15.15	problem	26												 									339

problem 3 15.1

Internal problem ID [12825]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t)$$
$$y' = -2y$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve([diff(x(t),t)=3*x(t)+0*y(t),diff(y(t),t)=0*x(t)-2*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = c_1 e^{3t}$$

$$x(t) = c_1 e^{3t}$$
$$y(t) = c_2 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 65

$$x(t) \to c_1 e^{3t}$$

$$y(t) \to c_2 e^{-2t}$$

$$x(t) \to c_1 e^{3t}$$

$$y(t) \to 0$$

$$x(t) \to 0$$

$$y(t) \to c_2 e^{-2t}$$

$$x(t) \to 0$$

$$y(t) \to 0$$

15.2 problem 6

Internal problem ID [12827]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 6.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 0$$
$$y' = x(t) - y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(x(t),t)=0*x(t)+0*y(t),diff(y(t),t)=1*x(t)-1*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = c_1$$

$$y(t) = c_1 + c_2 \mathrm{e}^{-t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 27

$$x(t) \rightarrow c_1$$

$$y(t) \to e^{-t} (c_1(e^t - 1) + c_2)$$

15.3 problem 7

Internal problem ID [12828]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 7.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = \pi^2 x(t) + \frac{187y}{5}$$
$$y' = \sqrt{555} x(t) + \frac{400617y}{5000}$$

With initial conditions

$$[x(0) = 0, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

$$x(t) = 0$$

$$y(t) = 0$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 10

DSolve[{x'[t]==Pi^2*x[t]+374/10*y[t],y'[t]==Sqrt[555]*x[t]+801234/10000*y[t]}, {x[0]==0,y[0]=

$$x(t) \to 0$$

$$y(t) \to 0$$

15.4 problem 19(i)

Internal problem ID [12829]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19(i).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + y$$
$$y' = -2x(t) - y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

dsolve([diff(x(t),t)=1*x(t)+1*y(t),diff(y(t),t)=-2*x(t)-y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -\frac{\cos(t) c_1}{2} + \frac{\sin(t) c_2}{2} - \frac{\sin(t) c_1}{2} - \frac{\cos(t) c_2}{2}$$
$$y(t) = \sin(t) c_1 + \cos(t) c_2$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 39

$$x(t) \to c_1 \cos(t) + (c_1 + c_2) \sin(t)$$

$$y(t) \to c_2 \cos(t) - (2c_1 + c_2) \sin(t)$$

15.5 problem 19 (ii)

Internal problem ID [12830]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (ii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) + y$$
$$y' = -x(t) + y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 82

dsolve([diff(x(t),t)=-3*x(t)+1*y(t),diff(y(t),t)=-1*x(t)+1*y(t)],[x(t),y(t)], singsol=all)

$$x(t) = -c_1 e^{\left(\sqrt{3}-1\right)t} \sqrt{3} + c_2 e^{-\left(1+\sqrt{3}\right)t} \sqrt{3} + 2c_1 e^{\left(\sqrt{3}-1\right)t} + 2c_2 e^{-\left(1+\sqrt{3}\right)t}$$
$$y(t) = c_1 e^{\left(\sqrt{3}-1\right)t} + c_2 e^{-\left(1+\sqrt{3}\right)t}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 147

DSolve[{x'[t]==-3*x[t]+1*y[t],y'[t]==-1*x[t]+1*y[t]},{x[t],y[t]},t,IncludeSingularSolutions

$$x(t) \to \frac{1}{6}e^{-\left(\left(1+\sqrt{3}\right)t\right)} \left(c_1\left(\left(3-2\sqrt{3}\right)e^{2\sqrt{3}t}+3+2\sqrt{3}\right)+\sqrt{3}c_2\left(e^{2\sqrt{3}t}-1\right)\right)$$

$$y(t) \to \frac{1}{6} e^{-\left(\left(1+\sqrt{3}\right)t\right)} \left(c_2\left(\left(3+2\sqrt{3}\right)e^{2\sqrt{3}t}+3-2\sqrt{3}\right)-\sqrt{3}c_1\left(e^{2\sqrt{3}t}-1\right)\right)$$

15.6 problem 19 (iii)

Internal problem ID [12831]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) + y$$
$$y' = -x(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 68

dsolve([diff(x(t),t)=-3*x(t)+1*y(t),diff(y(t),t)=-1*x(t)+0*y(t)],[x(t),y(t)], singsol=all)

$$x(t) = \left(-\frac{\sqrt{5}}{2} + \frac{3}{2}\right) c_1 e^{\frac{\left(\sqrt{5} - 3\right)t}{2}} + \left(\frac{3}{2} + \frac{\sqrt{5}}{2}\right) c_2 e^{-\frac{\left(3 + \sqrt{5}\right)t}{2}}$$
$$y(t) = c_1 e^{\frac{\left(\sqrt{5} - 3\right)t}{2}} + c_2 e^{-\frac{\left(3 + \sqrt{5}\right)t}{2}}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 148

 $DSolve[\{x'[t]==-3*x[t]+1*y[t],y'[t]==-1*x[t]+0*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \}$

$$x(t) \to \frac{1}{10} e^{-\frac{1}{2} \left(3 + \sqrt{5}\right)t} \left(c_1 \left(\left(5 - 3\sqrt{5}\right) e^{\sqrt{5}t} + 5 + 3\sqrt{5}\right) + 2\sqrt{5}c_2 \left(e^{\sqrt{5}t} - 1\right) \right)$$

$$y(t) \to \frac{1}{10} e^{-\frac{1}{2} \left(3 + \sqrt{5}\right)t} \left(c_2 \left(\left(5 + 3\sqrt{5}\right) e^{\sqrt{5}t} + 5 - 3\sqrt{5}\right) - 2\sqrt{5}c_1 \left(e^{\sqrt{5}t} - 1\right)\right)$$

15.7 problem 19 (iv)

Internal problem ID [12832]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (iv).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + y$$
$$y' = -2x(t) + y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

dsolve([diff(x(t),t)=-1*x(t)+1*y(t),diff(y(t),t)=-2*x(t)+1*y(t)],[x(t),y(t)], singsol=all)

$$x(t) = -\frac{\cos(t) c_1}{2} + \frac{\sin(t) c_2}{2} + \frac{\sin(t) c_1}{2} + \frac{\cos(t) c_2}{2}$$
$$y(t) = \sin(t) c_1 + \cos(t) c_2$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 39

DSolve[{x'[t]==-1*x[t]+1*y[t],y'[t]==-2*x[t]+1*y[t]},{x[t],y[t]},t,IncludeSingularSolutions

$$x(t) \to c_1 \cos(t) + (c_2 - c_1) \sin(t)$$

 $y(t) \to c_2(\sin(t) + \cos(t)) - 2c_1 \sin(t)$

15.8 problem 19 (v)

Internal problem ID [12833]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (v).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t)$$
$$y' = x(t) - y$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve([diff(x(t),t)=2*x(t)+0*y(t),diff(y(t),t)=1*x(t)-1*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = 3c_1 e^{2t}$$

$$y(t) = c_1 e^{2t} + c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 40

 $DSolve[\{x'[t]==2*x[t]+0*y[t],y'[t]==1*x[t]-1*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \{x'[t]==2*x[t]+0*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \{x'[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]+0*y[t]\},\{x[t]==2*x[t]+0*y[t]+0*$

$$x(t) \to c_1 e^{2t}$$

$$y(t) \to \frac{1}{3}e^{-t}(c_1(e^{3t}-1)+3c_2)$$

15.9 problem 19 (vi)

Internal problem ID [12834]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (vi).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) + y$$
$$y' = -x(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 68

dsolve([diff(x(t),t)=3*x(t)+1*y(t),diff(y(t),t)=-1*x(t)+0*y(t)],[x(t), y(t)],singsol=all)

$$x(t) = \left(\frac{\sqrt{5}}{2} - \frac{3}{2}\right) c_2 e^{-\frac{\left(\sqrt{5} - 3\right)t}{2}} + \left(-\frac{3}{2} - \frac{\sqrt{5}}{2}\right) c_1 e^{\frac{\left(3 + \sqrt{5}\right)t}{2}}$$
$$y(t) = c_1 e^{\frac{\left(3 + \sqrt{5}\right)t}{2}} + c_2 e^{-\frac{\left(\sqrt{5} - 3\right)t}{2}}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 148

$$x(t) \to \frac{1}{10} e^{-\frac{1}{2} \left(\sqrt{5} - 3\right)t} \left(c_1 \left(\left(5 + 3\sqrt{5}\right) e^{\sqrt{5}t} + 5 - 3\sqrt{5} \right) + 2\sqrt{5}c_2 \left(e^{\sqrt{5}t} - 1 \right) \right)$$
$$y(t) \to -\frac{1}{10} e^{-\frac{1}{2} \left(\sqrt{5} - 3\right)t} \left(2\sqrt{5}c_1 \left(e^{\sqrt{5}t} - 1 \right) + c_2 \left(\left(3\sqrt{5} - 5\right) e^{\sqrt{5}t} - 5 - 3\sqrt{5} \right) \right)$$

15.10 problem 19 (vii)

Internal problem ID [12835]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (vii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = y$$
$$y' = -4x(t) - 4y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve([diff(x(t),t)=0*x(t)+1*y(t),diff(y(t),t)=-4*x(t)-4*y(t)],[x(t), y(t)],\\ singsol=all)$

$$x(t) = -\frac{e^{-2t}(2c_2t + 2c_1 + c_2)}{4}$$
$$y(t) = (c_2t + c_1)e^{-2t}$$

 $y(t)=(c_2t+c_1)\operatorname{e}^{-t}$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 45

 $DSolve[\{x'[t]==0*x[t]+1*y[t],y'[t]==-4*x[t]-4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions-1,t] \\ -4*x[t]-4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions-1,t] \\ -4*x[t]-4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions-1,t] \\ -4*x[t]-4*x[t]-4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions-1,t] \\ -4*x[t]-4*x[$

$$x(t) \to e^{-2t}(2c_1t + c_2t + c_1)$$

$$y(t) \to e^{-2t}(c_2 - 2(2c_1 + c_2)t)$$

15.11 problem 19 (viii)

Internal problem ID [12836]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (viii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - 3y$$
$$y' = 2x(t) + y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 78

dsolve([diff(x(t),t)=-3*x(t)-3*y(t),diff(y(t),t)=2*x(t)+1*y(t)],[x(t),y(t)],singsol=all)

$$x(t) = -\frac{e^{-t}\left(\sqrt{2}\sin\left(\sqrt{2}t\right)c_2 - \sqrt{2}\cos\left(\sqrt{2}t\right)c_1 + 2\sin\left(\sqrt{2}t\right)c_1 + 2\cos\left(\sqrt{2}t\right)c_2\right)}{2}$$
$$y(t) = e^{-t}\left(\sin\left(\sqrt{2}t\right)c_1 + \cos\left(\sqrt{2}t\right)c_2\right)$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 91

$$x(t) \to \frac{1}{2}e^{-t} \left(2c_1 \cos\left(\sqrt{2}t\right) - \sqrt{2}(2c_1 + 3c_2)\sin\left(\sqrt{2}t\right) \right)$$
$$y(t) \to e^{-t} \left(c_2 \cos\left(\sqrt{2}t\right) + \sqrt{2}(c_1 + c_2)\sin\left(\sqrt{2}t\right) \right)$$

15.12 problem 23

Internal problem ID [12837]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 5y' + 6y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve([diff(y(t),t\$2)+5*diff(y(t),t)+6*y(t)=0,y(0) = 0, D(y)(0) = 2],y(t), singsol=all)

$$y(t) = -2e^{-3t} + 2e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 17

DSolve[{y''[t]+5*y'[t]+6*y[t]==0,{y[0]==0,y'[0]==2}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to 2e^{-3t} \left(e^t - 1 \right)$$

15.13 problem 24

Internal problem ID [12838]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 2y' + 5y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

$$y(t) = e^{-t}(\sin{(2t)} + 3\cos{(2t)})$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 22

DSolve[{y''[t]+2*y'[t]+5*y[t]==0,{y[0]==3,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to e^{-t}(\sin(2t) + 3\cos(2t))$$

15.14 problem 25

Internal problem ID [12839]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = e^{-t}(1+2t)$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 16

DSolve[{y''[t]+2*y'[t]+y[t]==0,{y[0]==1,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t}(2t+1)$$

15.15 problem 26

Internal problem ID [12840]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 2y = 0$$

With initial conditions

$$y(0) = 3, y'(0) = -\sqrt{2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve([diff(y(t),t$2)+2*y(t)=0,y(0) = 3, D(y)(0) = -2^{(1/2)}],y(t), singsol=all)$

$$y(t) = -\sin\left(\sqrt{2}\,t\right) + 3\cos\left(\sqrt{2}\,t\right)$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 26

DSolve[{y''[t]+2*y[t]==0,{y[0]==3,y'[0]==-Sqrt[2]}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 3\cos\left(\sqrt{2}t\right) - \sin\left(\sqrt{2}t\right)$$

16 Chapter 4. Forcing and Resonance. Section 4.1 page 399

16.1 problem	1.								 							 					 342
16.2 problem	2 .								 							 					 343
16.3 problem	3.								 							 					 344
16.4 problem	4 .								 			 •				 					 345
16.5 problem	5.								 							 					 346
16.6 problem	6.								 			 •				 					 347
16.7 problem	7.	•		•					 			 •			•	 	•		•		 348
16.8 problem	8.	•		•					 			 •			•	 	•		•		 349
16.9 problem	9.	•		•					 			 •			•	 	•		•		 350
16.10 problem	10								 		•	 •				 					 351
16.11 problem	11								 		•	 •				 					 352
16.12problem	12							•	 •	•	•	 •			•	 			•		 353
16.13problem	13								 		•	 •				 					 354
16.14problem			•					•	 •		•	 •		•	•	 			•		 355
16.15problem	15	•	•	•				•	 •						•	 	•		•		 356
16.16problem			•					•	 •		•	 •		•	•	 			•		 357
16.17problem		•	•	•				•	 •						•	 	•		•		 358
16.18problem		•	•	•			•	•				 •			•	 	•		•		 359
16.19problem		•	•	•			•	•				 •			•	 	•		•		 360
16.20 problem	21	•	•	•				•	 •						•	 	•		•		 361
16.21 problem	22							•	 •	•	•	 •			•	 			•		
16.22 problem	23							•	 •	•	•	 •			•	 			•		 363
16.23 problem	24	•	•	•				•	 •						•	 	•		•		 364
16.24problem		•	•	•				•	 •						•	 	•		•		
16.25 problem		•	•	•				•	 •						•	 	•		•		 366
16.26 problem	27	•	•	•				•	 •						•	 	•		•		 367
16.27 problem	28							•	 •	•	•	 •			•	 			•		 368
16.28 problem								•	 •	•	•	 •			•	 			•		 369
16.29 problem	30	•						•								 			•		 370
16.30 problem	31	•						•								 			•		 371
16.31 problem	32	•						•								 			•		 372
16.32 problem	33													•		 					 373
16.33 problem	34	•														 					 374
16.34 problem	35	•						•								 					 375
$16.35 \mathrm{problem}$	37															 					 376
16.36 problem	38															 					 377

16.37 problem 39																		378
16.38problem 40																		379
16.39problem 41																		380
16.40 problem 42																		381

16.1 problem 1

Internal problem ID [12841]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 6y = e^{4t}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

 $dsolve(diff(y(t),t)^2)-diff(y(t),t)^6*y(t)=exp(4*t),y(t), singsol=all)$

$$y(t) = c_2 e^{3t} + c_1 e^{-2t} + \frac{e^{4t}}{6}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 31

DSolve[y''[t]-y'[t]-6*y[t]==Exp[4*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{e^{4t}}{6} + c_1 e^{-2t} + c_2 e^{3t}$$

16.2 problem 2

Internal problem ID [12842]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 8y = 2e^{-3t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(t),t)+6*diff(y(t),t)+8*y(t)=2*exp(-3*t),y(t), singsol=all)

$$y(t) = \left(-\frac{c_1 e^{-2t}}{2} - 2 e^{-t} + c_2\right) e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 27

DSolve[y''[t]+6*y'[t]+8*y[t]==2*Exp[-3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-4t} \left(-2e^t + c_2 e^{2t} + c_1 \right)$$

16.3 problem 3

Internal problem ID [12843]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = 5 e^{3t}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

 $dsolve(diff(y(t),t)^2)-diff(y(t),t)^2*y(t)=5*exp(3*t),y(t), singsol=all)$

$$y(t) = c_2 e^{2t} + c_1 e^{-t} + \frac{5 e^{3t}}{4}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 31

$$y(t) \to \frac{5e^{3t}}{4} + c_1e^{-t} + c_2e^{2t}$$

16.4 problem 4

Internal problem ID [12844]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 13y = e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+13*y(t)=exp(-t),y(t), singsol=all)

$$y(t) = c_2 e^{-2t} \sin(3t) + c_1 e^{-2t} \cos(3t) + \frac{e^{-t}}{10}$$

✓ Solution by Mathematica

Time used: 0.115 (sec). Leaf size: 34

DSolve[y''[t]+4*y'[t]+13*y[t]==Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{10}e^{-2t}(e^t + 10c_2\cos(3t) + 10c_1\sin(3t))$$

16.5 problem 5

Internal problem ID [12845]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 13y = -3e^{-2t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+13*y(t)=-3*exp(-2*t),y(t), singsol=all)

$$y(t) = c_2 e^{-2t} \sin(3t) + c_1 e^{-2t} \cos(3t) - \frac{e^{-2t}}{3}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 32

DSolve[y''[t]+4*y'[t]+13*y[t]==-3*Exp[-2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{3}e^{-2t}(3c_2\cos(3t) + 3c_1\sin(3t) - 1)$$

16.6 problem 6

Internal problem ID [12846]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 7y' + 10y = e^{-2t}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

dsolve(diff(y(t),t\$2)+7*diff(y(t),t)+10*y(t)=exp(-2*t),y(t), singsol=all)

$$y(t) = c_2 e^{-5t} + c_1 e^{-2t} + \frac{t e^{-2t}}{3}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 31

DSolve[y''[t]+7*y'[t]+10*y[t]==Exp[-2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-5t} \left(e^{3t} \left(\frac{t}{3} - \frac{1}{9} + c_2 \right) + c_1 \right)$$

16.7 problem 7

Internal problem ID [12847]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 5y' + 4y = e^{4t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(t),t\$2)-5*diff(y(t),t)+4*y(t)=exp(4*t),y(t), singsol=all)

$$y(t) = e^t c_2 + c_1 e^{4t} + \frac{t e^{4t}}{3}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 29

DSolve[y''[t]-5*y'[t]+4*y[t]==Exp[4*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 e^t + e^{4t} \left(\frac{t}{3} - \frac{1}{9} + c_2 \right)$$

16.8 problem 8

Internal problem ID [12848]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' - 6y = 4 e^{-3t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(t),t)^2)+diff(y(t),t)^{-6*}y(t)^{-4*}exp(-3*t),y(t), singsol=all)$

$$y(t) = c_2 e^{2t} + c_1 e^{-3t} - \frac{4 e^{-3t}t}{5}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 32

DSolve[y''[t]+y'[t]-6*y[t]==4*Exp[-3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{25}e^{-3t} \left(-20t + 25c_2e^{5t} - 4 + 25c_1\right)$$

16.9 problem 9

Internal problem ID [12849]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 8y = e^{-t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

 $\frac{dsolve([diff(y(t),t$^2)+6*diff(y(t),t)+8*y(t)=exp(-t),y(0)=0,D(y)(0)=0],y(t), singsol=al}{(t)}$

$$y(t) = \frac{(2e^{3t} - 3e^{2t} + 1)e^{-4t}}{6}$$

Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 28

DSolve[{y''[t]+6*y'[t]+8*y[t]==Exp[-t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -

$$y(t) \to \frac{1}{6}e^{-4t}(e^t - 1)^2(2e^t + 1)$$

16.10 problem 10

Internal problem ID [12850]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 7y' + 12y = 3e^{-t}$$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

 $\frac{dsolve([diff(y(t),t$2)+7*diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t$2)+7*diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),singsolve([diff(y(t),t)+12*y(t)=3*exp(-t),y(0)=2,D(y)(0)=1]}{},y(t),y(t),y(t),y(t)=1,y(t),y(t)=1,y(t$

$$y(t) = \frac{15 e^{-3t}}{2} - 6 e^{-4t} + \frac{e^{-t}}{2}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 26

DSolve[{y''[t]+7*y'[t]+12*y[t]==3*Exp[-t],{y[0]==2,y'[0]==1}},y[t],t,IncludeSingularSolution

$$y(t) \to \frac{1}{2}e^{-4t} (15e^t + e^{3t} - 12)$$

16.11 problem 11

Internal problem ID [12851]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 13y = -3e^{-2t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

$$y(t) = \frac{e^{-2t}(\cos(3t) - 1)}{3}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 20

$$y(t) \to \frac{1}{3}e^{-2t}(\cos(3t) - 1)$$

16.12 problem 12

Internal problem ID [12852]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 7y' + 10y = e^{-2t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve([diff(y(t),t\$2)+7*diff(y(t),t)+10*y(t)=exp(-2*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t\$2)+7*diff(y(t),t)+10*y(t)=exp(-2*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)+10*y(t)=exp(-2*t),y(0) = 0, D(y)(0) = 0, D(y)(0)

$$y(t) = \frac{(3t-1)e^{-2t}}{9} + \frac{e^{-5t}}{9}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 27

$$y(t) \to \frac{1}{9}e^{-5t} (e^{3t}(3t-1)+1)$$

16.13 problem 13

Internal problem ID [12853]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 3y = e^{-\frac{t}{2}}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

$$y(t) = \frac{e^{-3t}}{5} - e^{-t} + \frac{4e^{-\frac{t}{2}}}{5}$$

✓ Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 32

$$y(t) \to \frac{1}{5}e^{-3t} \left(-5e^{2t} + 4e^{5t/2} + 1\right)$$

16.14 problem 14

Internal problem ID [12854]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 3y = e^{-2t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

$$y(t) = \frac{e^{-3t}}{2} + \frac{e^{-t}}{2} - e^{-2t}$$

Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 21

$$y(t) \to \frac{1}{2}e^{-3t} \left(e^t - 1\right)^2$$

16.15 problem 15

Internal problem ID [12855]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 3y = e^{-4t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $\frac{dsolve([diff(y(t),t$2)+4*diff(y(t),t)+3*y(t)=exp(-4*t),y(0) = 0, D(y)(0) = 0]}{y(t)}, singsol=\frac{1}{2}$

$$y(t) = -\frac{e^{-3t}}{2} + \frac{e^{-t}}{6} + \frac{e^{-4t}}{3}$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 26

$$y(t) \to \frac{1}{6}e^{-4t}(e^t - 1)^2(e^t + 2)$$

16.16 problem 16

Internal problem ID [12856]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 20y = e^{-\frac{t}{2}}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

 $\boxed{ \text{dsolve}([\text{diff}(y(t),t\$2)+4*\text{diff}(y(t),t)+20*y(t)=\exp(-t/2),y(0) = 0, D(y)(0) = 0],y(t), \text{ singsolve}([\text{diff}(y(t),t\$2)+4*\text{diff}(y(t),t)+20*y(t)=\exp(-t/2),y(0) = 0, D(y)(0) = 0],y(t), \text{ singsolve}([\text{diff}(y(t),t)+20*y(t)+20*y(t)])$

$$y(t) = \frac{4e^{-\frac{t}{2}}}{73} + \frac{(-8\cos(4t) - 3\sin(4t))e^{-2t}}{146}$$

✓ Solution by Mathematica

Time used: 0.259 (sec). Leaf size: 36

$$y(t) \to \frac{1}{146}e^{-2t}(8e^{3t/2} - 3\sin(4t) - 8\cos(4t))$$

16.17 problem 17

Internal problem ID [12857]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 20y = e^{-2t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=exp(-2*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=exp(-2*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)+20*y(t)=exp(-2*t),y(0) = 0, D(y)(0) = 0, D(y)(

$$y(t) = -\frac{e^{-2t}(\cos(4t) - 1)}{16}$$

Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 20

$$y(t) \to \frac{1}{8}e^{-2t}\sin^2(2t)$$

16.18 problem 18

Internal problem ID [12858]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 20y = e^{-4t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=exp(-4*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=exp(-4*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)\$2)+4*diff(y(t),t)+20*y(t)=exp(-4*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)])

$$y(t) = \frac{(-2\cos(4t) + \sin(4t))e^{-2t}}{40} + \frac{e^{-4t}}{20}$$

✓ Solution by Mathematica

Time used: 0.18 (sec). Leaf size: 37

$$y(t) \to \frac{1}{40}e^{-4t} \left(e^{2t}\sin(4t) - 2e^{2t}\cos(4t) + 2\right)$$

16.19 problem 19

Internal problem ID [12859]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + y = e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=exp(-t),y(t), singsol=all)

$$y(t) = c_2 e^{-t} + e^{-t}tc_1 + \frac{t^2 e^{-t}}{2}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 27

DSolve[y''[t]+2*y'[t]+y[t]==Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{2}e^{-t}(t^2 + 2c_2t + 2c_1)$$

16.20 problem 21

Internal problem ID [12860]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 5y' + 4y = 5$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([diff(y(t),t\$2)-5*diff(y(t),t)+4*y(t)=5,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = -\frac{5e^t}{3} + \frac{5e^{4t}}{12} + \frac{5}{4}$$

Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 21

DSolve[{y''[t]-5*y'[t]+4*y[t]==5,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to \frac{5}{12} \left(-4e^t + e^{4t} + 3 \right)$$

16.21 problem 22

Internal problem ID [12861]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 5y' + 6y = 2$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve([diff(y(t),t\$2)+5*diff(y(t),t)+6*y(t)=2,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{2e^{-3t}}{3} - e^{-2t} + \frac{1}{3}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 26

DSolve[{y''[t]+5*y'[t]+6*y[t]==2,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to \frac{1}{3}e^{-3t}(e^t - 1)^2(e^t + 2)$$

16.22 problem 23

Internal problem ID [12862]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 2y' + 10y = 10$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+10*y(t)=10,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = 1 + \frac{(-3\cos(3t) - \sin(3t))e^{-t}}{3}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 32

DSolve[{y''[t]+2*y'[t]+10*y[t]==10,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> Tr

$$y(t) \to \frac{1}{3}e^{-t}(3e^t - \sin(3t) - 3\cos(3t))$$

16.23 problem 24

Internal problem ID [12863]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 4y' + 6y = -8$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+6*y(t)=-8,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{4e^{-2t}\sin(\sqrt{2}t)\sqrt{2}}{3} + \frac{4e^{-2t}\cos(\sqrt{2}t)}{3} - \frac{4}{3}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 44

DSolve[{y''[t]+4*y'[t]+6*y[t]==-8,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \rightarrow \frac{4}{3}e^{-2t}\left(-e^{2t} + \sqrt{2}\sin\left(\sqrt{2}t\right) + \cos\left(\sqrt{2}t\right)\right)$$

16.24 problem 25

Internal problem ID [12864]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$y'' + 9y = e^{-t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)+9*y(t)=exp(-t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{\sin(3t)}{30} - \frac{\cos(3t)}{10} + \frac{e^{-t}}{10}$$

✓ Solution by Mathematica

Time used: 0.121 (sec). Leaf size: 33

DSolve[{y''[t]+9*y[t]==Exp[-t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{30}e^{-t}(e^t\sin(3t) - 3e^t\cos(3t) + 3)$$

16.25 problem 26

Internal problem ID [12865]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y = 2e^{-2t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)+4*y(t)=2*exp(-2*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{\sin(2t)}{4} - \frac{\cos(2t)}{4} + \frac{e^{-2t}}{4}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 25

$$y(t) \to \frac{1}{4} (e^{-2t} + \sin(2t) - \cos(2t))$$

16.26 problem 27

Internal problem ID [12866]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 2y = -3$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(t),t\$2)+2*y(t)=-3,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = -\frac{3}{2} + \frac{3\cos\left(\sqrt{2}\,t\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 17

DSolve[{y''[t]+2*y[t]==-3,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -3\sin^2\left(\frac{t}{\sqrt{2}}\right)$$

16.27 problem 28

Internal problem ID [12867]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y = e^t$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)+4*y(t)=exp(t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = -\frac{\sin(2t)}{10} - \frac{\cos(2t)}{5} + \frac{e^t}{5}$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 27

DSolve[{y''[t]+4*y[t]==Exp[t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{10} (2e^t - \sin(2t) - 2\cos(2t))$$

16.28 problem 29

Internal problem ID [12868]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 9y = 6$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve([diff(y(t),t\$2)+9*y(t)=6,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{2}{3} - \frac{2\cos(3t)}{3}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 17

DSolve[{y''[t]+9*y[t]==6,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) o rac{4}{3}\sin^2\left(rac{3t}{2}
ight)$$

16.29 problem 30

Internal problem ID [12869]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y = -e^t$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

dsolve([diff(y(t),t\$2)+2*y(t)=-exp(t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{\sqrt{2} \sin\left(\sqrt{2}t\right)}{6} + \frac{\cos\left(\sqrt{2}t\right)}{3} - \frac{e^t}{3}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 39

$$y(t) \to \frac{1}{6} \left(-2e^t + \sqrt{2}\sin\left(\sqrt{2}t\right) + 2\cos\left(\sqrt{2}t\right) \right)$$

16.30 problem 31

Internal problem ID [12870]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$y'' + 4y = -3t^2 + 2t + 3$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

 $dsolve([diff(y(t),t$2)+4*y(t)=-3*t^2+2*t+3,y(0) = 2, D(y)(0) = 0],y(t), singsol=all)$

$$y(t) = -\frac{\sin(2t)}{4} + \frac{7\cos(2t)}{8} - \frac{3t^2}{4} + \frac{t}{2} + \frac{9}{8}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 31

$$y(t) \to \frac{1}{8} (-6t^2 + 4t - 2\sin(2t) - 9\cos(2t) + 9)$$

16.31 problem 32

Internal problem ID [12871]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing y]]

$$y'' + 2y' = 3t + 2$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)=3*t+2,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{3t^2}{4} + \frac{e^{-2t}}{8} + \frac{t}{4} - \frac{1}{8}$$

✓ Solution by Mathematica

Time used: 0.131 (sec). Leaf size: 24

DSolve[{y''[t]+2*y'[t]==3*t+2,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{8} (6t^2 + 2t + e^{-2t} - 1)$$

16.32 problem 33

Internal problem ID [12872]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing y]]

$$y'' + 4y' = 3t + 2$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)=3*t+2,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{3t^2}{8} + \frac{5e^{-4t}}{64} + \frac{5t}{16} - \frac{5}{64}$$

✓ Solution by Mathematica

Time used: 0.136 (sec). Leaf size: 26

DSolve[{y''[t]+4*y'[t]==3*t+2,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{64} (24t^2 + 20t + 5e^{-4t} - 5)$$

16.33 problem 34

Internal problem ID [12873]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 3y' + 2y = t^2$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

 $dsolve([diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=t^2,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)$

$$y(t) = \frac{7}{4} - \frac{3t}{2} + \frac{t^2}{2} + \frac{e^{-2t}}{4} - 2e^{-t}$$

Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 37

DSolve[{y''[t]+3*y'[t]+2*y[t]==t^2,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> Tr

$$y(t) \to \frac{1}{4}e^{-2t} \left(e^{2t} \left(2t^2 - 6t + 7 \right) - 8e^t + 1 \right)$$

16.34 problem 35

Internal problem ID [12874]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$y'' + 4y = t - \frac{1}{20}t^2$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

 $dsolve([diff(y(t),t$2)+4*y(t)=t-t^2/20,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)$

$$y(t) = -\frac{\sin(2t)}{8} - \frac{\cos(2t)}{160} - \frac{t^2}{80} + \frac{t}{4} + \frac{1}{160}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 31

DSolve[{y''[t]+4*y[t]==t-t^2/20,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \frac{1}{160} \left(-2t^2 + 40t - 20\sin(2t) - \cos(2t) + 1 \right)$$

16.35 problem 37

Internal problem ID [12875]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 37.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 5y' + 6y = 4 + e^{-t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

 $\frac{dsolve([diff(y(t),t$2)+5*diff(y(t),t)+6*y(t)=4+exp(-t),y(0)=0,D(y)(0)=0]}{y(t),singsol=0}$

$$y(t) = \frac{11 e^{-3t}}{6} - 3 e^{-2t} + \frac{e^{-t}}{2} + \frac{2}{3}$$

✓ Solution by Mathematica

Time used: 0.106 (sec). Leaf size: 28

$$y(t) \to \frac{1}{6}e^{-3t}(e^t - 1)^2(4e^t + 11)$$

16.36 problem 38

Internal problem ID [12876]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 3y' + 2y = e^{-t} - 4$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 30

$$y(t) = -(2e^{2t} + \ln(e^{-t})e^{t} - 3e^{t} + 1)e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.077 (sec). Leaf size: 23

$$y(t) \to e^{-t}(t+3) - e^{-2t} - 2$$

16.37 problem 39

Internal problem ID [12877]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 39.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 8y = 2t + e^{-t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

dsolve([diff(y(t),t\$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(-t),y(0) = 0, D(y)(0) = 0],y(t), sings(x,y) = 0

$$y(t) = \frac{5e^{-4t}}{48} - \frac{3}{16} + \frac{t}{4} + \frac{e^{-t}}{3} - \frac{e^{-2t}}{4}$$

✓ Solution by Mathematica

Time used: 0.223 (sec). Leaf size: 42

$$y(t) \to \frac{1}{48}e^{-4t}(3e^{4t}(4t-3)-12e^{2t}+16e^{3t}+5)$$

16.38 problem 40

Internal problem ID [12878]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 40.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 8y = 2t + e^t$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $\frac{dsolve([diff(y(t),t$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(t),y(0)=0,D(y)(0)=0]}{},y(t),singsolve([diff(y(t),t$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(t),y(0)=0,D(y)(0)=0]}{},y(t),singsolve([diff(y(t),t)$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(t),y(0)=0,D(y)(0)=0]}{},y(t),singsolve([diff(y(t),t)$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(t),y(0)=0,D(y)(0)=0]}{},y(t),singsolve([diff(y(t),t)$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(t),y(0)=0,D(y)(0)=0]}{},y(t),singsolve([diff(y(t),t)$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(t),y(0)=0,D(y)(0)=0]}{},y(t),singsolve([diff(y(t),t)$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(t),y(0)=0,D(y)(0)=0]}{},y(t),singsolve([diff(y(t),t)$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(t),y(0)=0,D(y)(0)=0]}{},y(t),singsolve([diff(y(t),t)])}{}$

$$y(t) = \frac{(16 e^{5t} + 60t e^{4t} - 45 e^{4t} + 20 e^{2t} + 9) e^{-4t}}{240}$$

✓ Solution by Mathematica

Time used: 0.2 (sec). Leaf size: 33

DSolve[{y''[t]+6*y'[t]+8*y[t]==2*t+Exp[t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolution

$$y(t) \to \frac{1}{240} (60t + 9e^{-4t} + 20e^{-2t} + 16e^t - 45)$$

16.39 problem 41

Internal problem ID [12879]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 41.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y = t + e^{-t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

dsolve([diff(y(t),t\$2)+4*y(t)=t+exp(-t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = -\frac{\sin(2t)}{40} - \frac{\cos(2t)}{5} + \frac{t}{4} + \frac{e^{-t}}{5}$$

✓ Solution by Mathematica

Time used: 0.794 (sec). Leaf size: 32

DSolve[{y''[t]+4*y[t]==t+Exp[-t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to \frac{1}{40} (10t + 8e^{-t} - \sin(2t) - 8\cos(2t))$$

16.40 problem 42

Internal problem ID [12880]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 42.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = 6 + t^2 + e^t$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

 $dsolve([diff(y(t),t$2)+4*y(t)=6+t^2+exp(t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)$

$$y(t) = -\frac{\sin(2t)}{10} - \frac{63\cos(2t)}{40} + \frac{11}{8} + \frac{t^2}{4} + \frac{e^t}{5}$$

✓ Solution by Mathematica

Time used: 0.352 (sec). Leaf size: 33

$$y(t) \to \frac{1}{40} (10t^2 + 8e^t - 4\sin(2t) - 63\cos(2t) + 55)$$

17 Chapter 4. Forcing and Resonance. Section 4.2 page 412

7.1 problem 1	83
7.2 problem 2	84
7.3 problem 3	85
7.4 problem 4	86
7.5 problem 5	87
7.6 problem 6	88
7.7 problem 7	89
7.8 problem 8	90
7.9 problem 9	91
7.10problem 10	92
7.11 problem 11	93
7.12problem 12	94
7.13problem 13	95
7.14problem 14	96
7.15 problem 15	97
7.16 problem 18	98
7.17 problem 19	99

17.1 problem 1

Internal problem ID [12881]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 3y' + 2y = \cos(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(t),t)+3*diff(y(t),t)+2*y(t)=cos(t),y(t), singsol=all)

$$y(t) = -c_1 e^{-2t} + \frac{\cos(t)}{10} + \frac{3\sin(t)}{10} + c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 32

 $DSolve[y''[t]+3*y'[t]+2*y[t] == Cos[t], y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{10} (3\sin(t) + \cos(t) + 10e^{-2t} (c_2 e^t + c_1))$$

17.2 problem 2

Internal problem ID [12882]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = 5\cos(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

dsolve(diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=5*cos(t),y(t), singsol=all)

$$y(t) = -c_1 e^{-2t} + \frac{\cos(t)}{2} + \frac{3\sin(t)}{2} + c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 32

DSolve[y''[t]+3*y'[t]+2*y[t]==5*Cos[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{2} (3\sin(t) + \cos(t) + 2e^{-2t} (c_2 e^t + c_1))$$

17.3 problem 3

Internal problem ID [12883]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 3y' + 2y = \sin(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(t),t)^2)+3*diff(y(t),t)+2*y(t)=sin(t),y(t), singsol=all)$

$$y(t) = -c_1 e^{-2t} - \frac{3\cos(t)}{10} + \frac{\sin(t)}{10} + c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.098 (sec). Leaf size: 32

 $DSolve[y''[t]+3*y'[t]+2*y[t] == Sin[t], y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{10} (\sin(t) - 3\cos(t) + 10e^{-2t} (c_2 e^t + c_1))$$

17.4 problem 4

Internal problem ID [12884]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = 2\sin(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

dsolve(diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=2*sin(t),y(t), singsol=all)

$$y(t) = -c_1 e^{-2t} - \frac{3\cos(t)}{5} + \frac{\sin(t)}{5} + c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 32

DSolve[y''[t]+3*y'[t]+2*y[t]==2*Sin[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{5} (\sin(t) - 3\cos(t) + 5e^{-2t} (c_2 e^t + c_1))$$

17.5 problem 5

Internal problem ID [12885]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 6y' + 8y = \cos\left(t\right)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

 $dsolve(diff(y(t),t)^2)+6*diff(y(t),t)+8*y(t)=cos(t),y(t), singsol=all)$

$$y(t) = -\frac{c_1 e^{-4t}}{2} + \frac{7\cos(t)}{85} + \frac{6\sin(t)}{85} + c_2 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 35

DSolve[y''[t]+6*y'[t]+8*y[t]==Cos[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{6\sin(t)}{85} + \frac{7\cos(t)}{85} + e^{-4t}(c_2e^{2t} + c_1)$$

17.6 problem 6

Internal problem ID [12886]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 8y = -4\cos(3t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(diff(y(t),t)^2)+6*diff(y(t),t)+8*y(t)=-4*cos(3*t),y(t), singsol=all)$

$$y(t) = -\frac{c_1 e^{-4t}}{2} + c_2 e^{-2t} + \frac{4\cos(3t)}{325} - \frac{72\sin(3t)}{325}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 37

DSolve[y''[t]+6*y'[t]+8*y[t]==-4*Cos[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 e^{-4t} + c_2 e^{-2t} + \frac{4}{325} (\cos(3t) - 18\sin(3t))$$

17.7 problem 7

Internal problem ID [12887]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 4y' + 13y = 3\cos(2t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+13*y(t)=3*cos(2*t),y(t), singsol=all)

$$y(t) = c_2 e^{-2t} \sin(3t) + c_1 e^{-2t} \cos(3t) + \frac{24 \sin(2t)}{145} + \frac{27 \cos(2t)}{145}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 47

DSolve[y''[t]+4*y'[t]+13*y[t]==3*Cos[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{3}{145} (8\sin(2t) + 9\cos(2t)) + c_2 e^{-2t} \cos(3t) + c_1 e^{-2t} \sin(3t)$$

17.8 problem 8

Internal problem ID [12888]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 4y' + 20y = -\cos(5t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=-cos(5*t),y(t), singsol=all)

$$y(t) = e^{-2t} \sin(4t) c_2 + e^{-2t} \cos(4t) c_1 + \frac{\cos(5t)}{85} - \frac{4\sin(5t)}{85}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 45

DSolve[y''[t]+4*y'[t]+20*y[t]==-Cos[5*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{85}(\cos(5t) - 4\sin(5t)) + c_2 e^{-2t}\cos(4t) + c_1 e^{-2t}\sin(4t)$$

17.9 problem 9

Internal problem ID [12889]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 4y' + 20y = -3\sin(2t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 37

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=-3*sin(2*t),y(t), singsol=all)

$$y(t) = e^{-2t} \sin(4t) c_2 + e^{-2t} \cos(4t) c_1 - \frac{3\sin(2t)}{20} + \frac{3\cos(2t)}{40}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 45

DSolve[y''[t]+4*y'[t]+20*y[t]==-3*Sin[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{3}{40}(\cos(2t) - 2\sin(2t)) + c_2 e^{-2t}\cos(4t) + c_1 e^{-2t}\sin(4t)$$

17.10 problem 10

Internal problem ID [12890]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = \cos(3t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

 $dsolve(diff(y(t),t)^2)+2*diff(y(t),t)+y(t)=cos(3*t),y(t), singsol=all)$

$$y(t) = c_2 e^{-t} + e^{-t}tc_1 - \frac{2\cos(3t)}{25} + \frac{3\sin(3t)}{50}$$

✓ Solution by Mathematica

Time used: 0.22 (sec). Leaf size: 35

DSolve[y''[t]+2*y'[t]+y[t]==Cos[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{3}{50}\sin(3t) - \frac{2}{25}\cos(3t) + e^{-t}(c_2t + c_1)$$

17.11 problem 11

Internal problem ID [12891]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 8y = \cos\left(t\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $\frac{dsolve([diff(y(t),t$2)+6*diff(y(t),t)+8*y(t)=cos(t),y(0)=0,D(y)(0)=0],y(t),singsol=all}{dsolve([diff(y(t),t$2)+6*diff(y(t),t)+8*y(t)=cos(t),y(0)=0,D(y)(0)=0],y(t),singsol=all}{dsolve([diff(y(t),t$2)+6*diff(y(t),t)+8*y(t)=cos(t),y(0)=0,D(y)(0)=0],y(t),singsol=all}{dsolve([diff(y(t),t)$2)+6*diff(y(t),t)+8*y(t)=cos(t),y(0)=0,D(y)(0)=0],y(t),singsol=all}{dsolve([diff(y(t),t)$2)+6*diff(y(t),t)+8*y(t)=cos(t),y(0)=0,D(y)(0)=0],y(t),singsol=all}{dsolve([diff(y(t),t)$2)+6*diff(y(t),t)+8*y(t)=cos(t),y(0)=0,D(y)(0)=0],y(t),singsol=all}{dsolve([diff(y(t),t)$2)+6*diff(y(t),t)+8*y(t)=cos(t),y(0)=0,D(y)(0)=0],y(t),singsol=all}{dsolve([diff(y(t),t)$2)+6*diff(y(t),t)+8*y(t)=cos(t),y(0)=0,D(y)(0)=0],y(t),singsol=all}{dsolve([diff(y(t),t)])}{dsolve([diff($

$$y(t) = \frac{2e^{-4t}}{17} + \frac{7\cos(t)}{85} + \frac{6\sin(t)}{85} - \frac{e^{-2t}}{5}$$

✓ Solution by Mathematica

Time used: 2.147 (sec). Leaf size: 63

DSolve[{y''[t]+5*y'[t]+8*y[t]==Cos[t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions ->

$$y(t) \to \frac{1}{518} \left(35\sin(t) - 45\sqrt{7}e^{-5t/2}\sin\left(\frac{\sqrt{7}t}{2}\right) + 49\cos(t) - 49e^{-5t/2}\cos\left(\frac{\sqrt{7}t}{2}\right) \right)$$

17.12 problem 12

Internal problem ID [12892]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 6y' + 8y = 2\cos(3t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve([diff(y(t),t\$2)+6*diff(y(t),t)+8*y(t)=2*cos(3*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t\$2)+6*diff(y(t),t)+8*y(t)=2*cos(3*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)\$2)+6*diff(y(t),t)+8*y(t)=2*cos(3*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)])

$$y(t) = \frac{4e^{-4t}}{25} - \frac{2e^{-2t}}{13} - \frac{2\cos(3t)}{325} + \frac{36\sin(3t)}{325}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 74

DSolve[{y''[t]+5*y'[t]+8*y[t]==2*Cos[3*t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolution

$$y(t) \to \frac{1}{791} e^{-5t/2} \left(105 e^{5t/2} \sin(3t) - 85\sqrt{7} \sin\left(\frac{\sqrt{7}t}{2}\right) - 7e^{5t/2} \cos(3t) + 7\cos\left(\frac{\sqrt{7}t}{2}\right) \right)$$

17.13 problem 13

Internal problem ID [12893]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 20y = -3\sin(2t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 44

 $\frac{dsolve([diff(y(t),t$2)+6*diff(y(t),t)+20*y(t)=-3*sin(2*t),y(0)=0,D(y)(0)=0],y(t),sings}{dsolve([diff(y(t),t$2)+6*diff(y(t),t)+20*y(t)=-3*sin(2*t),y(0)=0,D(y)(0)=0],y(t),sings}$

$$y(t) = -\frac{3e^{-3t}\sqrt{11}\sin\left(\sqrt{11}t\right)}{1100} - \frac{9e^{-3t}\cos\left(\sqrt{11}t\right)}{100} - \frac{3\sin\left(2t\right)}{25} + \frac{9\cos\left(2t\right)}{100}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 61

DSolve[{y''[t]+6*y'[t]+20*y[t]==-3*Sin[2*t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSoluti

$$y(t) \to -\frac{3e^{-3t}\left(44e^{3t}\sin(2t) + \sqrt{11}\sin\left(\sqrt{11}t\right) - 33e^{3t}\cos(2t) + 33\cos\left(\sqrt{11}t\right)\right)}{1100}$$

17.14 problem 14

Internal problem ID [12894]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 2y' + y = 2\cos\left(2t\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

 $\frac{dsolve([diff(y(t),t$2)+2*diff(y(t),t)+y(t)=2*cos(2*t),y(0)=0,\ D(y)(0)=0],y(t),\ singsol=2*tos(2*t),y(0)=0,\ D(y)(0)=0,\ D(y)(0)$

$$y(t) = \frac{2(3-5t)e^{-t}}{25} - \frac{6\cos(2t)}{25} + \frac{8\sin(2t)}{25}$$

Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 37

$$y(t) \to -\frac{2}{25}e^{-t}(5t - 4e^t\sin(2t) + 3e^t\cos(2t) - 3)$$

17.15 problem 15

Internal problem ID [12895]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + y = \cos\left(3t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

dsolve(diff(y(t),t\$2)+3*diff(y(t),t)+y(t)=cos(3*t),y(t), singsol=all)

$$y(t) = e^{\frac{\left(\sqrt{5}-3\right)t}{2}}c_2 + e^{-\frac{\left(3+\sqrt{5}\right)t}{2}}c_1 - \frac{8\cos(3t)}{145} + \frac{9\sin(3t)}{145}$$

✓ Solution by Mathematica

Time used: 0.674 (sec). Leaf size: 52

 $DSolve[y''[t]+3*y'[t]+y[t] == Cos[3*t], y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{9}{145}\sin(3t) - \frac{8}{145}\cos(3t) + e^{-\frac{1}{2}(3+\sqrt{5})t} \left(c_2 e^{\sqrt{5}t} + c_1\right)$$

17.16 problem 18

Internal problem ID [12896]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 20y = 3 + 2\cos(2t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

 $dsolve(diff(y(t),t)^2)+4*diff(y(t),t)+20*y(t)=3+2*cos(2*t),y(t), singsol=all)$

$$y(t) = e^{-2t} \sin(4t) c_2 + e^{-2t} \cos(4t) c_1 + \frac{\sin(2t)}{20} + \frac{\cos(2t)}{10} + \frac{3}{20}$$

✓ Solution by Mathematica

Time used: 1.265 (sec). Leaf size: 47

DSolve[y''[t]+4*y'[t]+20*y[t]==3+2*Cos[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{20} (\sin(2t) + 2\cos(2t) + 20c_2e^{-2t}\cos(4t) + 20c_1e^{-2t}\sin(4t) + 3)$$

17.17 problem 19

Internal problem ID [12897]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 20y = e^{-t}\cos(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=exp(-t)*cos(t),y(t), singsol=all)

$$y(t) = e^{-2t} \sin(4t) c_2 + e^{-2t} \cos(4t) c_1 + \frac{e^{-t} (\sin(t) + 8\cos(t))}{130}$$

✓ Solution by Mathematica

Time used: 0.457 (sec). Leaf size: 44

DSolve[y''[t]+4*y'[t]+20*y[t]==Exp[-t]*Cos[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{130}e^{-2t} \left(e^t \sin(t) + 8e^t \cos(t) + 130c_2 \cos(4t) + 130c_1 \sin(4t) \right)$$

18 Chapter 4. Forcing and Resonance. Section 4.3 page 424

18.1	problem	1		•	•								•						•		•		401
18.2	${\bf problem}$	2																					402
18.3	${\bf problem}$	3																					403
18.4	${\bf problem}$	4																					404
18.5	problem	5						_							_		_				_		405

18.1 problem 1

Internal problem ID [12898]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = \cos\left(t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(t),t\$2)+9*y(t)=cos(t),y(t), singsol=all)

$$y(t) = \sin(3t) c_2 + \cos(3t) c_1 + \frac{\cos(t)}{8}$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 30

DSolve[y''[t]+9*y[t]==Cos[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{\cos(t)}{8} + \left(\frac{1}{12} + c_1\right)\cos(3t) + c_2\sin(3t)$$

18.2 problem 2

Internal problem ID [12899]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = 5\sin\left(2t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(t),t\$2)+9*y(t)=5*sin(2*t),y(t), singsol=all)

$$y(t) = \sin(3t) c_2 + \cos(3t) c_1 + \sin(2t)$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 24

DSolve[y''[t]+9*y[t]==5*Sin[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \sin(2t) + c_1 \cos(3t) + c_2 \sin(3t)$$

18.3 problem 3

Internal problem ID [12900]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = -\cos\left(\frac{t}{2}\right)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(t),t\$2)+4*y(t)=-cos(t/2),y(t), singsol=all)

$$y(t) = c_2 \sin(2t) + c_1 \cos(2t) - \frac{4\cos(\frac{t}{2})}{15}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 30

DSolve[y''[t]+4*y[t]==-Cos[t/2],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{4}{15} \cos\left(\frac{t}{2}\right) + c_1 \cos(2t) + c_2 \sin(2t)$$

18.4 problem 4

Internal problem ID [12901]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = 3\cos(2t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(t),t\$2)+4*y(t)=3*cos(2*t),y(t), singsol=all)

$$y(t) = c_2 \sin(2t) + c_1 \cos(2t) + \frac{3\cos(2t)}{8} + \frac{3\sin(2t)t}{4}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 33

DSolve[y''[t]+4*y[t]==3*Cos[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \left(\frac{3}{16} + c_1\right)\cos(2t) + \frac{1}{4}(3t + 4c_2)\sin(2t)$$

18.5 problem 5

Internal problem ID [12902]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 9y = 2\cos(3t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(t),t\$2)+9*y(t)=2*cos(3*t),y(t), singsol=all)

$$y(t) = \sin(3t) c_2 + \cos(3t) c_1 + \frac{\cos(3t)}{9} + \frac{\sin(3t) t}{3}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 31

DSolve[y''[t]+9*y[t]==2*Cos[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \left(\frac{1}{18} + c_1\right)\cos(3t) + \frac{1}{3}(t + 3c_2)\sin(3t)$$

19 Chapter 6. Laplace transform. Section 6.3 page 600

19.1	problem 27																		407
19.2	problem 28																		408
19.3	problem 29																		409
19.4	problem 30																		410
19.5	problem 31																		411
19.6	problem 32																		412
19.7	problem 33																		413
19.8	problem 34																		414

19.1 problem 27

Internal problem ID [12903]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 4y = 8$$

With initial conditions

$$[y(0) = 11, y'(0) = 5]$$

✓ Solution by Maple

Time used: 0.218 (sec). Leaf size: 18

dsolve([diff(y(t),t\$2)+4*y(t)=8,y(0) = 11, D(y)(0) = 5],y(t), singsol=all)

$$y(t) = 2 + 9\cos(2t) + \frac{5\sin(2t)}{2}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 19

DSolve[{y''[t]+4*y[t]==8,{y[0]==11,y'[0]==5}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 9\cos(2t) + 5\sin(t)\cos(t) + 2$$

19.2 problem 28

Internal problem ID [12904]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$y'' - 4y = e^{2t}$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 22

dsolve([diff(y(t),t\$2)-4*y(t)=exp(2*t),y(0) = 1, D(y)(0) = -1],y(t), singsol=all)

$$y = \frac{13 e^{-2t}}{16} + \frac{e^{2t}(3+4t)}{16}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 27

$$y(t) \to \frac{1}{16}e^{-2t} (e^{4t}(4t+3)+13)$$

19.3 problem 29

Internal problem ID [12905]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y' + 5y = 2e^t$$

With initial conditions

$$[y(0) = 3, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 20

dsolve([diff(y(t),t\$2)-4*diff(y(t),t)+5*y(t)=2*exp(t),y(0) = 3, D(y)(0) = 1],y(t), singsol=a

$$y = (2\cos(t) - 4\sin(t))e^{2t} + e^{t}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 25

DSolve[{y''[t]-4*y'[t]+5*y[t]==2*Exp[t],{y[0]==3,y'[0]==1}},y[t],t,IncludeSingularSolutions

$$y(t) \rightarrow e^t \left(-4e^t \sin(t) + 2e^t \cos(t) + 1\right)$$

19.4 problem 30

Internal problem ID [12906]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 13y = 13$$
 Heaviside $(t - 4)$

With initial conditions

$$[y(0) = 3, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 57

$$dsolve([diff(y(t),t$2)+6*diff(y(t),t)+13*y(t)=13*Heaviside(t-4),y(0) = 3, D(y)(0) = 1],y(t),$$

$$y = \left(-\frac{1}{2} - \frac{3i}{4}\right) \text{ Heaviside } (t-4) e^{(-3-2i)(t-4)} + \left(-\frac{1}{2} + \frac{3i}{4}\right) \text{ Heaviside } (t-4) e^{(-3+2i)(t-4)} + \text{ Heaviside } (t-4) + e^{-3t} (3\cos(2t) + 5\sin(2t))$$

✓ Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 82

$$DSolve[{y''[t]-4*y'[t]+5*y[t]==UnitStep[t-4],{y[0]==3,y'[0]==1}},y[t],t,IncludeSingularSolut}$$

$$y(t) \\ \rightarrow \begin{cases} e^{2t}(3\cos(t) - 5\sin(t)) & t \leq 4 \\ -\frac{1}{5}e^{2t-8}\cos(4-t) + 3e^{2t}\cos(t) - \frac{2}{5}e^{2t-8}\sin(4-t) - 5e^{2t}\sin(t) + \frac{1}{5} & \text{True} \end{cases}$$

19.5 problem 31

Internal problem ID [12907]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \cos(2t)$$

With initial conditions

$$[y(0) = -2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.093 (sec). Leaf size: 18

dsolve([diff(y(t),t\$2)+4*y(t)=cos(2*t),y(0) = -2, D(y)(0) = 0],y(t), singsol=all)

$$y = \frac{t\sin(2t)}{4} - 2\cos(2t)$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 21

$$y(t) \to \frac{1}{4}t\sin(2t) - 2\cos(2t)$$

19.6 problem 32

Internal problem ID [12908]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y = \text{Heaviside}(t - 4)\cos(5t - 20)$$

With initial conditions

$$[y(0) = 0, y'(0) = -2]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 39

$$y = -\frac{2\sqrt{3} \sin\left(\sqrt{3} t\right)}{3} - \frac{\text{Heaviside} (t-4) \cos\left(5t-20\right)}{22} + \frac{\text{Heaviside} (t-4) \cos\left(\sqrt{3} (t-4)\right)}{22}$$

✓ Solution by Mathematica

Time used: 0.797 (sec). Leaf size: 66

$$y(t) \rightarrow \begin{cases} -\frac{2\sin\left(\sqrt{3}t\right)}{\sqrt{3}} & t \leq 4\\ \frac{1}{66}\left(-3\cos(5(t-4)) + 3\cos\left(\sqrt{3}(t-4)\right) - 44\sqrt{3}\sin\left(\sqrt{3}t\right)\right) & \text{True} \end{cases}$$

19.7 problem 33

Internal problem ID [12909]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 4y' + 9y = 20$$
 Heaviside $(-2 + t) \sin (-2 + t)$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 64

$$dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+9*y(t)=20*Heaviside(t-2)*sin(t-2),y(0) = 1, D(y)(0) = 1$$

$$y = e^{4-2t} \cos\left(\sqrt{5}\left(-2+t\right)\right) \text{ Heaviside}\left(-2+t\right) + e^{-2t} \cos\left(\sqrt{5}t\right)$$
$$+ \frac{4\sqrt{5}e^{-2t} \sin\left(\sqrt{5}t\right)}{5} - \text{ Heaviside}\left(-2+t\right) \left(\cos\left(-2+t\right) - 2\sin\left(-2+t\right)\right)$$

✓ Solution by Mathematica

Time used: 2.391 (sec). Leaf size: 115

$$\rightarrow \{ -\cos(2-t) + e^{4-2t}\cos\left(\sqrt{5}(t-2)\right) + e^{-2t}\cos\left(\sqrt{5}t\right) - 2\sin(2-t) + \frac{4e^{-2t}\sin\left(\sqrt{5}t\right)}{\sqrt{5}} \quad t > 2 \\ \frac{1}{5}e^{-2t}\left(5\cos\left(\sqrt{5}t\right) + 4\sqrt{5}\sin\left(\sqrt{5}t\right)\right)$$
 True

19.8 problem 34

Internal problem ID [12910]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 3y = \begin{cases} t & 0 \le t < 1\\ 1 & 1 \le t \end{cases}$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 83

dsolve([diff(y(t),t\$2)+3*y(t)=piecewise(0<=t and t<1,t,t>=1,1),y(0) = 2, D(y)(0) = 0],y(t),

$$y = 2\cos\left(\sqrt{3}\,t\right) - \frac{\sqrt{3}\,\sin\left(\sqrt{3}\,t\right)}{9} + \frac{\left(\left\{\begin{array}{cc} t & t < 1\\ 1 + \frac{\sqrt{3}\,\sin\left(\sqrt{3}\,(-1+t)\right)}{3} & 1 \le t\end{array}\right)}{3}\right.$$

✓ Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 108

$$\begin{split} y(t) &\to & \left\{ \begin{array}{c} 2\cos\left(\sqrt{3}t\right) & t \leq 0 \\ \\ y(t) &\to & \left\{ \begin{array}{c} \frac{1}{9}\left(3t + 18\cos\left(\sqrt{3}t\right) - \sqrt{3}\sin\left(\sqrt{3}t\right)\right) & 0 < t \leq 1 \\ \\ \frac{1}{9}\left(18\cos\left(\sqrt{3}t\right) + \sqrt{3}\sin\left(\sqrt{3}(t-1)\right) - \sqrt{3}\sin\left(\sqrt{3}t\right) + 3\right) & \text{True} \end{array} \right. \end{split}$$

20.1 problem 2

Internal problem ID [12911]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.4. page 608

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y = 5(\delta(-2+t))$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)+3*y(t)=5*Dirac(t-2),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y = \frac{5\operatorname{Heaviside}\left(-2+t\right)\sin\left(\sqrt{3}\left(-2+t\right)\right)\sqrt{3}}{3}$$

✓ Solution by Mathematica

Time used: 0.288 (sec). Leaf size: 36

 $DSolve[\{y''[t]+3*y[t]==DiracDelta[t-2],\{y[0]==2,y'[0]==0\}\},y[t],t,IncludeSingularSolutions=0\}$

$$y(t) o rac{\theta(t-2)\sin\left(\sqrt{3}(t-2)\right)}{\sqrt{3}} + 2\cos\left(\sqrt{3}t\right)$$

20.2 problem 3

Internal problem ID [12912]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.4. page 608

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y = \delta(-3 + t)$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 37

 $\frac{dsolve([diff(y(t),t$2)+2*diff(y(t),t)+5*y(t)=Dirac(t-3),y(0) = 1, D(y)(0) = 1]}{y(t)}, singsolve([diff(y(t),t$2)+2*diff(y(t),t)+5*y(t)=Dirac(t-3),y(0) = 1, D(y)(0) = 1]$

$$y = e^{-t}(\cos(2t) + \sin(2t)) + \frac{\text{Heaviside}(t-3)e^{-t+3}\sin(2t-6)}{2}$$

✓ Solution by Mathematica

Time used: 0.179 (sec). Leaf size: 41

DSolve[{y''[t]+2*y'[t]+5*y[t]==DiracDelta[t-3],{y[0]==1,y'[0]==1}},y[t],t,IncludeSingularSol

$$y(t) \to \frac{1}{2}e^{-t}(2(\sin(2t) + \cos(2t)) - e^{3}\theta(t-3)\sin(6-2t))$$

20.3 problem 4

Internal problem ID [12913]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.4. page 608

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = -2(\delta(-2+t))$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 32

$$y = -2$$
 Heaviside $(-2 + t) e^{2-t} \sin(-2 + t) + 2 e^{-t} (\cos(t) + \sin(t))$

✓ Solution by Mathematica

Time used: 0.3 (sec). Leaf size: 31

$$y(t) \to 2e^{-t}(e^2\theta(t-2)\sin(2-t) + \sin(t) + \cos(t))$$

20.4 problem 5

Internal problem ID [12914]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.4. page 608

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 3y = \delta(t - 1) - 3(\delta(t - 4))$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 51

$$dsolve([diff(y(t),t$2)+2*diff(y(t),t)+3*y(t)=Dirac(t-1)-3*Dirac(t-4),y(0) = 0), D(y)(0) = 0],$$

$$=\frac{\sqrt{2}\left(-3\operatorname{Heaviside}\left(t-4\right)\operatorname{e}^{4-t}\sin\left(\sqrt{2}\left(t-4\right)\right)+\operatorname{Heaviside}\left(-1+t\right)\operatorname{e}^{1-t}\sin\left(\sqrt{2}\left(-1+t\right)\right)\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.371 (sec). Leaf size: 53

$$y(t) \to \frac{e^{1-t} \left(\theta(t-1)\sin\left(\sqrt{2}(t-1)\right) - 3e^3 \theta(t-4)\sin\left(\sqrt{2}(t-4)\right)\right)}{\sqrt{2}}$$

21 Chapter 6. Laplace transform. Section 6.6. page 624

21.1	problem	1	•				•						•					•	•			422
21.2	problem	2																				423
21.3	problem	3																				425
21.4	problem	4											•								•	427
21.5	problem	5																				429
21.6	problem	6											•								•	430
21.7	problem	7																				431
21.8	problem	8																				432

21.1 problem 1

Internal problem ID [12915]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = e^{-2t} \sin(4t)$$

With initial conditions

$$[y(0) = 2, y'(0) = -2]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 37

$$y = \frac{(4\cos(4t) - 7\sin(4t))e^{-2t}}{130} + \frac{128(\cos(t) + \frac{\sin(t)}{8})e^{-t}}{65}$$

✓ Solution by Mathematica

Time used: 0.379 (sec). Leaf size: 41

$$y(t) \to \frac{1}{130}e^{-2t}(32e^t\sin(t) - 7\sin(4t) + 256e^t\cos(t) + 4\cos(4t))$$

21.2 problem 2

Internal problem ID [12916]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' + 5y = \text{Heaviside}(-2 + t)\sin(-8 + 4t)$$

With initial conditions

$$[y(0) = -2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 89

$$\frac{dsolve([diff(y(t),t$2)+diff(y(t),t)+5*y(t)=Heaviside(t-2)*sin(4*(t-2)),y(0)=-2, D(y)(0)=-2)}{dsolve([diff(y(t),t$2)+diff(y(t),t)+5*y(t)=Heaviside(t-2)*sin(4*(t-2)),y(0)=-2, D(y)(0)=-2)}$$

$$y = \frac{4 e^{1-\frac{t}{2}} \cos\left(\frac{\sqrt{19} \,(-2+t)}{2}\right) \text{ Heaviside} \left(-2+t\right)}{137} \\ + \frac{92 e^{1-\frac{t}{2}} \sin\left(\frac{\sqrt{19} \,(-2+t)}{2}\right) \text{ Heaviside} \left(-2+t\right) \sqrt{19}}{2603} - 2 e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{19} \,t}{2}\right) \\ - \frac{2 e^{-\frac{t}{2}} \sqrt{19} \sin\left(\frac{\sqrt{19} \,t}{2}\right)}{19} - \frac{4 \left(\cos\left(-8+4t\right) + \frac{11 \sin(-8+4t)}{4}\right) \text{ Heaviside} \left(-2+t\right)}{137}$$

✓ Solution by Mathematica

Time used: 6.103 (sec). Leaf size: 163

$$y(t) \\ -\frac{2}{19}e^{-t/2}\left(19\cos\left(\frac{\sqrt{19}t}{2}\right) + \sqrt{19}\sin\left(\frac{\sqrt{19}t}{2}\right)\right) \\ \rightarrow \begin{cases} e^{-t/2}\left(-76e^{t/2}\cos(8-4t) + 76e\cos\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 5206\cos\left(\frac{\sqrt{19}t}{2}\right) + 209e^{t/2}\sin(8-4t) + 92\sqrt{19}e\sin\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt{19}\sin\left(\frac{\sqrt{19}t}{2}\right) + 209e^{t/2}\sin(8-4t) + 92\sqrt{19}e\sin\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt{19}\sin\left(\frac{\sqrt{19}t}{2}\right) + 209e^{t/2}\sin\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt{19}\sin\left(\frac{\sqrt{19}t}{2}\right) + 209e^{t/2}\cos\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt{19}\sin\left(\frac{1}{2}\sqrt{19}(t-2)\right) + 296e^{t/2}\sin\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt{19}\sin\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt{19}\cos\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt$$

21.3 problem 3

Internal problem ID [12917]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + y' + 8y = (1 - \text{Heaviside}(t - 4))\cos(t - 4)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 128

$$dsolve([diff(y(t),t$2)+diff(y(t),t)+8*y(t)=(1-Heaviside(t-4))*cos(t-4),y(0)=0, D(y)(0)=0$$

$$y = \frac{9 \text{ Heaviside } (t - 4) \left(\left(\sin \left(2\sqrt{31} \right) \sqrt{31} - \frac{217 \cos \left(2\sqrt{31} \right)}{9} \right) \cos \left(\frac{\sqrt{31} t}{2} \right) - \frac{217 \sin \left(\frac{\sqrt{31} t}{2} \right) \left(\frac{9 \cos \left(2\sqrt{31} \right) \sqrt{31}}{217} + \sin \left(2\sqrt{31} \right) \right)}{9} \right) - \frac{1550}{7 \left(\cos \left(4 \right) - \frac{\sin(4)}{2} \right) e^{-\frac{t}{2}} \cos \left(\sqrt{31} t \right)}{9} = \frac{9 \left(\cos \left(4 \right) - \frac{13 \sin(4)}{2} \right) e^{-\frac{t}{2}} \sin \left(\sqrt{31} t \right)}{9} = \frac{13 \sin(4)}{2} e^{-\frac{t}{2}} \sin \left(\sqrt{31} t \right)}{9} = \frac{13 \sin(4)}{2} e^{-\frac{t}{2}} \sin \left(\sqrt{31} t \right)}{9} = \frac{13 \sin(4)}{2} e^{-\frac{t}{2}} \sin \left(\sqrt{31} t \right)$$

$$-\frac{1550}{7\left(\cos\left(4\right)-\frac{\sin\left(4\right)}{7}\right)e^{-\frac{t}{2}}\cos\left(\frac{\sqrt{31}t}{2}\right)} - \frac{9\left(\cos\left(4\right)+\frac{13\sin\left(4\right)}{9}\right)\sqrt{31}e^{-\frac{t}{2}}\sin\left(\frac{\sqrt{31}t}{2}\right)}{50} - \frac{7(-1+\operatorname{Heaviside}(t-4))\left(\left(\cos\left(t\right)+\frac{\sin(t)}{7}\right)\cos\left(4\right)-\frac{\sin(4)(\cos(t)-7\sin(t))}{7}\right)}{50}$$

✓ Solution by Mathematica

Time used: 4.688 (sec). Leaf size: 207

$$y(t) = e^{-t/2} \left(\theta(4-t) \left(-31e^{t/2} \sin(4-t) - 9\sqrt{31}e^2 \sin\left(\frac{1}{2}\sqrt{31}(t-4)\right) + 217e^{t/2} \cos(4-t) - 217e^2 \cos\left(\frac{1}{2}\sqrt{31}(t-4)\right) + 217e^{t/2} \cos\left(\frac{1}{2}\sqrt{31}(t-4)\right$$

21.4 problem 4

Internal problem ID [12918]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + y' + 3y = (1 - \text{Heaviside}(-2 + t)) e^{\frac{1}{5} - \frac{t}{10}} \sin(-2 + t)$$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.25 (sec). Leaf size: 178

$$dsolve([diff(y(t),t$2)+diff(y(t),t)+3*y(t)=(1-Heaviside(t-2))*exp(-(t-2)/10)*sin(t-2),y(0)=(1-Heaviside(t-2))*exp(-(t-2)/10)*sin(t-2)*exp(-(t-2)/10)*sin(t-2)*exp(-(t-2)/10)*sin(t-2)*exp(-(t-2)/10)*exp(-(t-2)/10)*sin(t-2)*exp(-(t-2)/10)*exp(-(t-2)/$$

$$\begin{split} & = \frac{8000 \, \text{Heaviside} \left(-2+t\right) \left(\left(\cos\left(t\right) - \frac{191 \sin\left(t\right)}{80}\right) \cos\left(2\right) + \frac{191 \left(\cos\left(t\right) + \frac{80 \sin\left(t\right)}{191}\right) \sin\left(2\right)}{80}\right) \, \mathrm{e}^{\frac{1}{5} - \frac{t}{10}}}{42881} \\ & + \frac{100 \left(11 \left(80 \cos\left(2\right) + 191 \sin\left(2\right)\right) \cos\left(\frac{\sqrt{11} \, t}{2}\right) - 318 \sqrt{11} \sin\left(\frac{\sqrt{11} \, t}{2}\right) \left(\cos\left(2\right) - \frac{782 \sin\left(2\right)}{795}\right)\right) \, \mathrm{e}^{\frac{1}{5} - \frac{t}{2}}}{471691} \\ & + \left(-\frac{4000}{42881} + \frac{9550 i}{42881}\right) \, \mathrm{e}^{\left(-\frac{1}{10} - i\right)\left(-2 + t\right)} + \left(-\frac{4000}{42881} - \frac{9550 i}{42881}\right) \, \mathrm{e}^{\left(-\frac{1}{10} + i\right)\left(-2 + t\right)} \\ & + \frac{200 \, \mathrm{Heaviside} \left(-2 + t\right) \left(\left(-159 \sin\left(\sqrt{11}\right) \sqrt{11} - 440 \cos\left(\sqrt{11}\right)\right) \cos\left(\frac{\sqrt{11} \, t}{2}\right) + \left(159 \cos\left(\sqrt{11}\right) \sqrt{11} - 471691\right) }{471691} \\ & + \frac{5 \, \mathrm{e}^{-\frac{t}{2}} \sqrt{11} \, \sin\left(\frac{\sqrt{11} \, t}{2}\right)}{11} + \mathrm{e}^{-\frac{t}{2}} \cos\left(\frac{\sqrt{11} \, t}{2}\right) \end{split}$$

✓ Solution by Mathematica

Time used: 6.103 (sec). Leaf size: 243

$$y(t) = \underbrace{\frac{e^{-t/2} \left(-248000 e^{\frac{2t}{5} + \frac{1}{5}} \cos(2 - t) + 5 \left(\sqrt{31} \left(483881 - 8 \sqrt[5]{e} (3295 \cos(2) - 1782 \sin(2))\right) \sin \left(\frac{\sqrt{31}t}{2}\right) - 428420 e^{\frac{2t}{5} + \frac{1}{5}} \sin(2 - t)\right) + 31 \cos \left(\sqrt{31}t + \frac{1}{5} \cos(2 - t)\right) + 31 \cos \left(\sqrt{31}t + \frac{1}{5} \cos(2 - t)\right) + 5\sqrt{31} \left(26360 e^{\frac{1}{5} \cos \left(\frac{1}{2} \sqrt{31}(t - 2)\right) + \left(483881 - 8 \sqrt[5]{e} (3295 \cos(2) - 1782 \sin(2))\right) \sin \left(\frac{\sqrt{31}t}{2}\right)\right) + 31 \cos \left(\sqrt{31}t + \frac{1}{5} \cos(2 - t)$$

21.5 problem 5

Internal problem ID [12919]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 16y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 15

dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all)

$$y = \cos\left(4t\right) + \frac{\sin\left(4t\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 18

DSolve[{y''[t]+16*y[t]==0,{y[0]==1,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \frac{1}{4}\sin(4t) + \cos(4t)$$

21.6 problem 6

Internal problem ID [12920]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \sin\left(2t\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 18

dsolve([diff(y(t),t\$2)+4*y(t)=sin(2*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y = \frac{\sin(2t)}{8} - \frac{t\cos(2t)}{4}$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 21

DSolve[{y''[t]+4*y[t]==Sin[2*t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{8}(\sin(2t) - 2t\cos(2t))$$

21.7 problem 7

Internal problem ID [12921]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing x]]

$$y'' + 2y' + y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 14

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=0,y(0) = 1, D(y)(0) = 2],y(t), singsol=all)

$$y = (3t+1) e^{-t}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 16

DSolve[{y''[t]+2*y'[t]+y[t]==0,{y[0]==1,y'[0]==2}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t}(3t+1)$$

21.8 problem 8

Internal problem ID [12922]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 16y = t$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 18

dsolve([diff(y(t),t\$2)+16*y(t)=t,y(0) = 1, D(y)(0) = 1],y(t), singsol=all)

$$y = \frac{t}{16} + \cos(4t) + \frac{15\sin(4t)}{64}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 24

DSolve[{y''[t]+16*y[t]==t,{y[0]==1,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{64}(4t + 15\sin(4t)) + \cos(4t)$$