A Solution Manual For

Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Nasser M. Abbasi

March 3, 2024

Contents

1	1.4, page 36	2
2	1.6, page 50	18
3	1.8, page 68	33

1 1.4, page 36

1.1	problem	1																			3
1.2	$\operatorname{problem}$	2																			4
1.3	problem	3																			5
1.4	$\operatorname{problem}$	4																			6
1.5	$\operatorname{problem}$	5																			7
1.6	$\operatorname{problem}$	6																			8
1.7	$\operatorname{problem}$	7																			9
1.8	$\operatorname{problem}$	8																			10
1.9	$\operatorname{problem}$	9																			11
1.10	$\operatorname{problem}$	10																			12
1.11	$\operatorname{problem}$	11																			13
1.12	problem	12																			14
1.13	problem	13	•																		15
1.14	problem	14	:																		16
1.15	problem	15															_				17

1.1 problem 1

Internal problem ID [2544]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x)=2*x*y(x),y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{x^2}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 18

DSolve[y'[x]==2*x*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^{x^2}$$

$$y(x) \to 0$$

1.2 problem 2

Internal problem ID [2545]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y^2}{x^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)=y(x)^2/(x^2+1),y(x), singsol=all)$

$$y(x) = -\frac{1}{\arctan(x) - c_1}$$

✓ Solution by Mathematica

Time used: 0.147 (sec). Leaf size: 19

 $DSolve[y'[x]==y[x]^2/(x^2+1),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{\arctan(x) + c_1}$$

$$y(x) \to 0$$

1.3 problem 3

Internal problem ID [2546]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$e^{y+x}y'=1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve(exp(x+y(x))*diff(y(x),x)-1=0,y(x), singsol=all)

$$y(x) = \ln\left(c_1 e^x - 1\right) - x$$

✓ Solution by Mathematica

Time used: 0.089 (sec). Leaf size: 16

DSolve[Exp[x+y[x]]*y'[x]-1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \log\left(-e^{-x} + c_1\right)$$

1.4 problem 4

Internal problem ID [2547]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{\ln(x)x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

dsolve(diff(y(x),x)=y(x)/(x*ln(x)),y(x), singsol=all)

$$y(x) = \ln(x) c_1$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 15

DSolve[y'[x]==y[x]/(x*Log[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \log(x)$$

$$y(x) \to 0$$

1.5 problem 5

Internal problem ID [2548]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 5.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y - (x - 2)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 9

dsolve(y(x)-(x-2)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1(-2+x)$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 16

 $DSolve[y[x]-(x-2)*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1(x-2)$$

$$y(x) \to 0$$

1.6 problem 6

Internal problem ID [2549]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2x(y-1)}{x^2 + 3} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x)= $(2*x*(y(x)-1))/(x^2+3),y(x)$, singsol=all)

$$y(x) = 1 + (x^2 + 3) c_1$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 20

 $DSolve[y'[x] == (2*x*(y[x]-1))/(x^2+3), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 1 + c_1(x^2 + 3)$$

$$y(x) \to 1$$

1.7 problem 7

Internal problem ID [2550]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 7.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y - xy' + 2y'x^2 = 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(y(x)-x*diff(y(x),x)=3-2*x^2*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \frac{\left(-\frac{3}{x} + c_1\right)x}{2x - 1}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 24

 $DSolve[y[x]-x*y'[x]==3-2*x^2*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{3 + c_1 x}{1 - 2x}$$

$$y(x) \rightarrow 3$$

1.8 problem 8

Internal problem ID [2551]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{\cos(-y+x)}{\sin(x)\sin(y)} = -1$$

Solution by Maple

Time used: 0.125 (sec). Leaf size: 13

dsolve(diff(y(x),x)=(cos(x-y(x)))/(sin(x)*sin(y(x)))-1,y(x), singsol=all)

$$y(x) = \arccos\left(\frac{1}{\sin(x)c_1}\right)$$

✓ Solution by Mathematica

Time used: 5.76 (sec). Leaf size: 47

 $DSolve[y'[x] == (Cos[x-y[x]])/(Sin[x]*Sin[y[x]])-1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\arccos\left(-\frac{1}{2}c_1\csc(x)\right)$$

$$y(x) \to \arccos\left(-\frac{1}{2}c_1\csc(x)\right)$$

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{\pi}{2}$$

1.9 problem 9

Internal problem ID [2552]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - \frac{x(-1+y^2)}{2(x-2)(x-1)} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)=(x*(y(x)^2-1))/(2*(x-2)*(x-1)),y(x), singsol=all)$

$$y(x) = -\tanh\left(\ln\left(-2 + x\right) - \frac{\ln\left(x - 1\right)}{2} + \frac{c_1}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.942 (sec). Leaf size: 51

 $DSolve[y'[x] == (x*(y[x]^2-1))/(2*(x-2)*(x-1)),y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to -\frac{x + e^{2c_1}(x-2)^2 - 1}{-x + e^{2c_1}(x-2)^2 + 1}$$

$$y(x) \rightarrow -1$$

$$y(x) \to 1$$

1.10 problem 10

Internal problem ID [2553]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{yx^2 - 32}{-x^2 + 16} = 32$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 77

 $dsolve(diff(y(x),x)=(x^2*y(x)-32)/(16-x^2) + 32,y(x), singsol=all)$

$$y(x) = \left(32 e^{x} - 1440 e^{-4} \operatorname{Ei}_{1}(-x-4) + \frac{128 e^{x}}{(x+4)^{2}} - \frac{1952 e^{x}}{x+4} + c_{1}\right) \left(\frac{e^{-x}x^{2}}{(x-4)^{2}} + \frac{8 e^{-x}x}{(x-4)^{2}} + \frac{16 e^{-x}}{(x-4)^{2}}\right)$$

Solution by Mathematica

Time used: 0.204 (sec). Leaf size: 56

 $DSolve[y'[x] == (x^2*y[x]-32)/(16-x^2) + 32,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{e^{-x-4}(1440(x+4)^2 \operatorname{ExpIntegralEi}(x+4) + e^4(32e^x(x^2 - 53x - 224) + c_1(x+4)^2))}{(x-4)^2}$$

1.11 problem 11

Internal problem ID [2554]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x-a)(x-b)y'-y=-c$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve((x-a)*(x-b)*diff(y(x),x)-(y(x)-c)=0,y(x), singsol=all)

$$y(x) = c + (x - b)^{-\frac{1}{a-b}} (x - a)^{\frac{1}{a-b}} c_1$$

✓ Solution by Mathematica

Time used: 0.287 (sec). Leaf size: 41

 $DSolve[(x-a)*(x-b)*y'[x]-(y[x]-c)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c + c_1(x-b)^{\frac{1}{b-a}}(x-a)^{\frac{1}{a-b}}$$

$$y(x) \to c$$

1.12 problem 12

Internal problem ID [2555]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y^{2} + (x^{2} + 1) y' = -1$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 11

 $\label{eq:dsolve} $$ dsolve([(x^2+1)*diff(y(x),x)+y(x)^2=-1,y(0) = 1],y(x), singsol=all)$ $$$

$$y(x) = \cot\left(\arctan\left(x\right) + \frac{\pi}{4}\right)$$

✓ Solution by Mathematica

Time used: 0.242 (sec). Leaf size: 14

 $DSolve[\{(x^2+1)*y'[x]+y[x]^2=-1,y[0]==1\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \cot\left(\arctan(x) + \frac{\pi}{4}\right)$$

1.13 problem 13

Internal problem ID [2556]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(1 - x^2) y' + yx = ax$$

With initial conditions

$$[y(0) = 2a]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

 $\label{eq:decomposition} \\ \mbox{dsolve}([(1-x^2)*\mbox{diff}(y(x),x)+x*y(x)=a*x,y(0) = 2*a],y(x), \ \mbox{singsol=all}) \\$

$$y(x) = a\left(1 - i\sqrt{x - 1}\sqrt{x + 1}\right)$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 21

 $DSolve[\{(1-x^2)*y'[x]+x*y[x]==a*x,y[0]==2*a\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow a - ia\sqrt{x^2 - 1}$$

1.14 problem 14

Internal problem ID [2557]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + \frac{\sin(y+x)}{\cos(x)\sin(y)} = 1$$

With initial conditions

$$\left[y\Big(\frac{\pi}{4}\Big) = \frac{\pi}{4}\right]$$

✓ Solution by Maple

Time used: 0.469 (sec). Leaf size: 11

$$y(x) = \arccos\left(\frac{\sec(x)}{2}\right)$$

✓ Solution by Mathematica

Time used: 6.234 (sec). Leaf size: 12

$$y(x) \to \arccos\left(\frac{\sec(x)}{2}\right)$$

1.15 problem 15

Internal problem ID [2558]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36 Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - y^3 \sin\left(x\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(diff(y(x),x)=y(x)^3*sin(x),y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{c_1 + 2\cos(x)}}$$

$$y(x) = -\frac{1}{\sqrt{c_1 + 2\cos(x)}}$$

✓ Solution by Mathematica

Time used: 0.207 (sec). Leaf size: 49

DSolve[y'[x]==y[x]^3*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{\sqrt{2}\sqrt{\cos(x) - c_1}}$$

$$y(x) o rac{1}{\sqrt{2}\sqrt{\cos(x) - c_1}}$$

$$y(x) \to 0$$

2 1.6, page 50

2.1	problem	1																				19)
2.2	$\operatorname{problem}$	2																				20)
2.3	$\operatorname{problem}$	3																				21	
2.4	$\operatorname{problem}$	4																				22	,
2.5	$\operatorname{problem}$	5																				23	,
2.6	$\operatorname{problem}$	6																				2 4	L
2.7	${\bf problem}$	7											•									25)
2.8	${\bf problem}$	8											•									26)
2.9	$\operatorname{problem}$	9																				27	,
2.10	${\bf problem}$	10)										•									28	,
2.11	${\bf problem}$	11	-										•									29)
2.12	$\operatorname{problem}$	12	2																			30)
2.13	$\operatorname{problem}$	13	3																			31	L
2 14	problem	14	Ĺ																			32)

2.1 problem 1

Internal problem ID [2559]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = e^{2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(x),x)-y(x)=exp(2*x),y(x), singsol=all)

$$y(x) = (e^x + c_1) e^x$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 15

DSolve[y'[x]-y[x]==Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^x(e^x + c_1)$$

2.2 problem 2

Internal problem ID [2560]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x^2 - 4yx = x^7\sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $\label{local_decomposition} \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x}) - 4 * \mbox{x*y}(\mbox{x}) = \mbox{x^7*sin}(\mbox{x}), \mbox{y}(\mbox{x}), \mbox{singsol=all}) \\$

$$y(x) = (\sin(x) - \cos(x) x + c_1) x^4$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 19

DSolve[x^2*y'[x]-4*x*y[x]==x^7*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x^4(\sin(x) - x\cos(x) + c_1)$$

2.3 problem 3

Internal problem ID [2561]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2yx = 2x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(x),x)+2*x*y(x)=2*x^3,y(x), singsol=all)$

$$y(x) = x^2 - 1 + e^{-x^2}c_1$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 20

 $DSolve[y'[x]+2*x*y[x]==2*x^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x^2 + c_1 e^{-x^2} - 1$$

2.4 problem 4

Internal problem ID [2562]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{2yx}{x^2 + 1} = 4x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x)+2*x/(1+x^2)*y(x)=4*x,y(x), singsol=all)$

$$y(x) = x^2 + 1 + \frac{c_1}{x^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 24

 $DSolve[y'[x]+2*x/(1+x^2)*y[x]==4*x,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{x^4 + 2x^2 + c_1}{x^2 + 1}$$

2.5 problem 5

Internal problem ID [2563]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 5.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{2yx}{x^2 + 1} = \frac{4}{(x^2 + 1)^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x)+2*x/(1+x^2)*y(x)=4/(1+x^2)^2,y(x), singsol=all)$

$$y(x) = \frac{4\arctan(x) + c_1}{x^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 20

 $DSolve[y'[x]+2*x/(1+x^2)*y[x]==4/(1+x^2)^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{4\arctan(x) + c_1}{x^2 + 1}$$

2.6 problem 6

Internal problem ID [2564]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$2\cos(x)^{2}y' + y\sin(2x) = 4\cos(x)^{4}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(2*cos(x)^2*diff(y(x),x)+y(x)*sin(2*x)=4*cos(x)^4,y(x), singsol=all)$

$$y(x) = (2\sin(x) + c_1)\cos(x)$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 15

DSolve[2*Cos[x]^2*y'[x]+y[x]*Sin[2*x]==4*Cos[x]^4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \cos(x)(2\sin(x) + c_1)$$

2.7 problem 7

Internal problem ID [2565]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' + \frac{y}{\ln(x) x} = 9x^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)+1/(x*ln(x))*y(x)=9*x^2,y(x), singsol=all)$

$$y(x) = \frac{3x^3 \ln(x) - x^3 + c_1}{\ln(x)}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 25

DSolve[y'[x]+1/(x*Log[x])*y[x]==9*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{-x^3 + 3x^3 \log(x) + c_1}{\log(x)}$$

2.8 problem 8

Internal problem ID [2566]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - y \tan(x) = 8\sin(x)^3$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)-y(x)*tan(x)=8*sin(x)^3,y(x), singsol=all)$

$$y(x) = \frac{-\cos(2x) + \frac{\cos(4x)}{4} + c_1}{\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 19

 $DSolve[y'[x]-y[x]*Tan[x] == 8*Sin[x]^3, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow 2\sin^3(x)\tan(x) + c_1\sec(x)$$

2.9 problem 9

Internal problem ID [2567]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$tx' + 2x = 4e^t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(t*diff(x(t),t)+2*x(t)=4*exp(t),x(t), singsol=all)

$$x(t) = \frac{4(t-1)e^t + c_1}{t^2}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 20

DSolve[t*x'[t]+2*x[t]==4*Exp[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{4e^t(t-1) + c_1}{t^2}$$

2.10 problem 10

Internal problem ID [2568]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \sin(x) \left(y \sec(x) - 2\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)=sin(x)*(y(x)*sec(x)-2),y(x), singsol=all)

$$y(x) = \frac{\frac{\cos(2x)}{2} + c_1}{\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 20

 $DSolve[y'[x] == Sin[x]*(y[x]*Sec[x]-2),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2} \sec(x) (\cos(2x) + 2c_1)$$

2.11 problem 11

Internal problem ID [2569]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-y\sin(x) - \cos(x)y' = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve((1-y(x)*sin(x))-cos(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (\tan(x) + c_1)\cos(x)$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 13

DSolve[(1-y[x]*Sin[x])-Cos[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x) + c_1 \cos(x)$$

2.12 problem 12

Internal problem ID [2570]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{y}{x} = 2\ln(x) x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)-y(x)/x=2*x^2*ln(x),y(x), singsol=all)$

$$y(x) = \left(\ln\left(x\right)x^2 - rac{x^2}{2} + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 23

DSolve[y'[x]-y[x]/x==2*x^2*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{x^3}{2} + x^3 \log(x) + c_1 x$$

2.13 problem 13

Internal problem ID [2571]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + \alpha y = e^{\beta x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

dsolve(diff(y(x),x)+alpha*y(x)=exp(beta*x),y(x), singsol=all)

$$y(x) = \left(\frac{\mathrm{e}^{x(\alpha+\beta)}}{\alpha+\beta} + c_1\right) \mathrm{e}^{-\alpha x}$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 31

DSolve[y'[x]+\[Alpha]*y[x]==Exp[\[Beta]*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{\alpha(-x)} \left(e^{x(\alpha+\beta)} + c_1(\alpha+\beta) \right)}{\alpha+\beta}$$

2.14 problem 14

Internal problem ID [2572]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.6, page 50 Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = -\frac{m}{x} + \ln\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x)+m/x=ln(x),y(x), singsol=all)

$$y(x) = x \ln(x) - x - m \ln(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 19

DSolve[y'[x]+m/x==Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (x-m)\log(x) - x + c_1$$

3 1.8, page 68

3.1	problem 9 .																		34
3.2	problem 10			•															35
3.3	problem 11			•															36
3.4	problem 12																		37
3.5	problem 13			•														•	38
3.6	problem 14			•															39
3.7	problem 15			•														•	40
3.8	problem 16																		41
3.9	problem 17			•														•	43
3.10	problem 18																		44
3.11	problem 19																		45
3.12	problem 20																		46
3.13	problem 21			•															47
3.14	problem 22																		48

3.1 problem 9

Internal problem ID [2573]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$(3x - y)y' - 3y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve((3*x-y(x))*diff(y(x),x)=3*y(x),y(x), singsol=all)

$$y(x) = e^{\text{LambertW}(-3x e^{-3c_1}) + 3c_1}$$

✓ Solution by Mathematica

Time used: 6.016 (sec). Leaf size: $25\,$

 $DSolve[(3*x-y[x])*y'[x] == 3*y[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{3x}{W\left(-3e^{-c_1}x\right)}$$

$$y(x) \to 0$$

3.2 problem 10

Internal problem ID [2574]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$y' - \frac{(y+x)^2}{2x^2} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)=(x+y(x))^2/(2*x^2),y(x), singsol=all)$

$$y(x) = \tan\left(\frac{\ln(x)}{2} + \frac{c_1}{2}\right)x$$

✓ Solution by Mathematica

Time used: 0.234 (sec). Leaf size: 17

 $DSolve[y'[x] == (x+y[x])^2/(2*x^2), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) o x an\left(rac{\log(x)}{2} + c_1
ight)$$

3.3 problem 11

Internal problem ID [2575]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$\sin\left(\frac{y}{x}\right)(xy'-y) - x\cos\left(\frac{y}{x}\right) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve(sin(y(x)/x)*(x*diff(y(x),x)-y(x))=x*cos(y(x)/x),y(x), singsol=all)

$$y(x) = x \arccos\left(\frac{1}{c_1 x}\right)$$

✓ Solution by Mathematica

Time used: 25.589 (sec). Leaf size: 56

DSolve[Sin[y[x]/x]*(x*y'[x]-y[x]) == x*Cos[y[x]/x], y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to -x \arccos\left(\frac{e^{-c_1}}{x}\right)$$

$$y(x) \to x \arccos\left(\frac{e^{-c_1}}{x}\right)$$

$$y(x) \to -\frac{\pi x}{2}$$

$$y(x) o \frac{\pi x}{2}$$

3.4 problem 12

Internal problem ID [2576]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy' - \sqrt{16x^2 - y^2} - y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

 $dsolve(x*diff(y(x),x)=sqrt(16*x^2-y(x)^2)+y(x),y(x), singsol=all)$

$$-\arctan\left(\frac{y(x)}{\sqrt{16x^2 - y(x)^2}}\right) + \ln(x) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.43 (sec). Leaf size: 18

DSolve[x*y'[x]==Sqrt[16*x^2-y[x]^2]+y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -4x \cosh(i\log(x) + c_1)$$

3.5 problem 13

Internal problem ID [2577]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy' - y - \sqrt{9x^2 + y^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

 $dsolve(x*diff(y(x),x)-y(x)=sqrt(9*x^2+y(x)^2),y(x), singsol=all)$

$$\frac{y(x)}{x^2} + \frac{\sqrt{9x^2 + y(x)^2}}{x^2} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.376 (sec). Leaf size: 27

 $DSolve[x*y'[x]-y[x]==Sqrt[9*x^2+y[x]^2],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{9e^{c_1}x^2}{2} - rac{e^{-c_1}}{2}$$

3.6 problem 14

Internal problem ID [2578]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$x(x^2 - y^2) - x(y^2 + x^2) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

 $dsolve(x*(x^2-y(x)^2)-x*(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \text{RootOf}\left(\int^{-Z} \frac{\underline{a^2 + 1}}{\underline{a^3 + \underline{a^2 + \underline{a} - 1}}} d\underline{a} + \ln(x) + c_1\right) x$$

✓ Solution by Mathematica

Time used: 0.133 (sec). Leaf size: 71

 $DSolve[x*(x^2-y[x]^2)-x*(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions] -> True]$

Solve
$$\left[\text{RootSum} \left[\#1^3 + \#1^2 + \#1 \right] - 1\&, \frac{\#1^2 \log \left(\frac{y(x)}{x} - \#1 \right) + \log \left(\frac{y(x)}{x} - \#1 \right)}{3\#1^2 + 2\#1 + 1} \& \right] = -\log(x) + c_1, y(x) \right]$$

3.7 problem 15

Internal problem ID [2579]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$xy' + y \ln(x) - \ln(y) y = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 16

dsolve(x*diff(y(x),x)+y(x)*ln(x)=y(x)*ln(y(x)),y(x), singsol=all)

$$y(x) = x e^{-c_1 x} e$$

✓ Solution by Mathematica

Time used: 0.264 (sec). Leaf size: 24

DSolve[x*y'[x]+y[x]*Log[x]==y[x]*Log[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to xe^{1+e^{c_1}x}$$

$$y(x) \to ex$$

3.8 problem 16

Internal problem ID [2580]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y' - \frac{y^2 + 2yx - 2x^2}{x^2 - yx + y^2} = 0$$

✓ Solution by Maple

Time used: 0.579 (sec). Leaf size: 79

 $dsolve(diff(y(x),x)= (y(x)^2+2*x*y(x)-2*x^2)/(x^2-x*y(x)+y(x)^2),y(x), singsol=all)$

$$y(x) = -\frac{x\left(\text{RootOf}\left(2_Z^6 + (9c_1x^2 - 1)_Z^4 - 6x^2c_1_Z^2 + c_1x^2\right)^2 - 1\right)}{\text{RootOf}\left(2_Z^6 + (9c_1x^2 - 1)_Z^4 - 6x^2c_1_Z^2 + c_1x^2\right)^2}$$

✓ Solution by Mathematica

Time used: 60.179 (sec). Leaf size: 373

$$\begin{split} y(x) & \to \frac{\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}}{3\sqrt[3]{2}} \\ & - \frac{\sqrt[3]{2}(-3x^2 + e^{2c_1})}{\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}} + x \\ y(x) & \to \frac{\left(-1 + i\sqrt{3}\right)\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}}{6\sqrt[3]{2}} \\ & + \frac{\left(1 + i\sqrt{3}\right)\left(-3x^2 + e^{2c_1}\right)}{2^{2/3}\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}} + x \\ y(x) & \to -\frac{\left(1 + i\sqrt{3}\right)\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}}{6\sqrt[3]{2}} \\ & + \frac{\left(1 - i\sqrt{3}\right)\left(-3x^2 + e^{2c_1}\right)}{2^{2/3}\sqrt[3]{-54x^3 + 2\sqrt{729x^6 + (-9x^2 + 3e^{2c_1})^3}}} + x \end{split}$$

3.9 problem 17

Internal problem ID [2581]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A']]

$$2y'yx - x^2 e^{-\frac{y^2}{x^2}} - 2y^2 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 26

 $dsolve(2*x*y(x)*diff(y(x),x)-(x^2*exp(-y(x)^2/x^2)+2*y(x)^2)=0,y(x), singsol=all)$

$$y(x) = \sqrt{\ln\left(\ln\left(x\right) + c_1\right)} x$$

$$y(x) = -\sqrt{\ln\left(\ln\left(x\right) + c_1\right)} x$$

✓ Solution by Mathematica

Time used: 2.155 (sec). Leaf size: 38

$$y(x) \to -x\sqrt{\log(\log(x) + 2c_1)}$$

$$y(x) \to x\sqrt{\log(\log(x) + 2c_1)}$$

3.10 problem 18

Internal problem ID [2582]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$y'x^2 - y^2 - 3yx = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x^2*diff(y(x),x)=y(x)^2+3*x*y(x)+x^2,y(x), singsol=all)$

$$y(x) = -\frac{x(\ln(x) + c_1 + 1)}{\ln(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.145 (sec). Leaf size: 28

 $DSolve[x^2*y'[x] == y[x]^2 + 3*x*y[x] + x^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{x(\log(x) + 1 + c_1)}{\log(x) + c_1}$$

$$y(x) \to -x$$

3.11 problem 19

Internal problem ID [2583]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y'y - \sqrt{y^2 + x^2} = -x$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 28

 $dsolve(y(x)*diff(y(x),x)=sqrt(x^2+y(x)^2)-x,y(x), singsol=all)$

$$-c_{1} + \frac{\sqrt{x^{2} + y(x)^{2}}}{y(x)^{2}} + \frac{x}{y(x)^{2}} = 0$$

✓ Solution by Mathematica

Time used: 0.432 (sec). Leaf size: 57

 $\textbf{DSolve}[y[x]*y'[x] == \textbf{Sqrt}[x^2+y[x]^2]-x,y[x],x, \textbf{IncludeSingularSolutions} \rightarrow \textbf{True}]$

$$y(x) \to -e^{\frac{c_1}{2}} \sqrt{2x + e^{c_1}}$$

$$y(x) \to e^{\frac{c_1}{2}} \sqrt{2x + e^{c_1}}$$

$$y(x) \to 0$$

3.12 problem 20

Internal problem ID [2584]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[$_$ homogeneous, 'class A'], $_$ rational, [$_$ Abel, '2nd type', 'class A']

$$2x(y + 2x) y' - y(-y + 4x) = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 25

dsolve(2*x*(y(x)+2*x)*diff(y(x),x)=y(x)*(4*x-y(x)),y(x), singsol=all)

$$y(x) = \mathrm{e}^{\mathrm{LambertW}\left(2\,\mathrm{e}^{rac{3c_1}{2}}x^{rac{3}{2}}
ight) - rac{3c_1}{2} - rac{3\ln(x)}{2}}x$$

✓ Solution by Mathematica

Time used: 5.384 (sec). Leaf size: 29

DSolve[2*x*(y[x]+2*x)*y'[x]==y[x]*(4*x-y[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2x}{W(2e^{-c_1}x^{3/2})}$$

$$y(x) \to 0$$

3.13 problem 21

Internal problem ID [2585]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$xy' - \tan\left(\frac{y}{x}\right)x - y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

dsolve(x*diff(y(x),x)=x*tan(y(x)/x)+y(x),y(x), singsol=all)

$$y(x) = \arcsin(c_1 x) x$$

✓ Solution by Mathematica

Time used: 4.369 (sec). Leaf size: 19

 $DSolve[x*y'[x] == x*Tan[y[x]/x] + y[x], y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to x \arcsin\left(e^{c_1}x\right)$$

$$y(x) \to 0$$

3.14 problem 22

Internal problem ID [2586]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.8, page 68 Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' - \frac{x\sqrt{y^2 + x^2} + y^2}{yx} = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve(diff(y(x),x)=(x*sqrt(x^2+y(x)^2)+y(x)^2)/(x*y(x)),y(x), singsol=all)$

$$-\frac{\sqrt{x^{2}+y(x)^{2}}}{x}+\ln(x)-c_{1}=0$$

Solution by Mathematica

Time used: 0.283 (sec). Leaf size: 54

$$y(x) \to -x\sqrt{\log^2(x) + 2c_1\log(x) - 1 + c_1^2}$$

 $y(x) \to x\sqrt{\log^2(x) + 2c_1\log(x) - 1 + c_1^2}$

$$y(x) \to x\sqrt{\log^2(x) + 2c_1\log(x) - 1 + c_1^2}$$