
A Solution Manual For

Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961

Nasser M. Abbasi

March 3, 2024

Contents

1 Exercis 2, page 5

 $\mathbf{2}$

1 Exercis 2, page 5

1.1	problem	2(a)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 	•	•	•	•		•	•	•	3
1.2	problem	2(b)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 	 •	•	•	•	•		•	•	4
1.3	problem	2(c)		•	•		•	•		•		•		•	•	•		•	•	•	•	•	•	 	 •	•		•			•	•	5
1.4	problem	2(d)	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	 	•	•	•	•			•	•	6
1.5	problem	2(e)	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	 	•	•	•	•			•	•	7
1.6	problem	2(a)	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	 	•	•	•	•			•	•	8
1.7	problem	3(a)	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	 	•	•	•	•			•	•	9
1.8	problem	3(b)	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	 	•	•	•	•			•	•	10
1.9	problem	3(c)	•	•			•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	 	•	•	•	•			•	•	11
1.10	problem	3(d)	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	 	•	•	•	•			•	•	12
1.11	problem	3(e)	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	 	•	•	•	•			•	•	13
1.12	problem	3(f).	•	•			•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	 	•	•	•	•			•	•	14
1.13	problem	3(g)	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	 	 •	•	•	•			•	•	15
1.14	problem	3(h)	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	 	•	•	•	•			•	•	16
1.15	problem	3(i) .	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	 	•	•	•	•			•	•	17

1.1 problem 2(a)

Internal problem ID [2432]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961 Section: Exercis 2, page 5 Problem number: 2(a). ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'=2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(diff(y(x),x)=2,y(x), singsol=all)

$$y(x) = 2x + c_1$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 11

DSolve[y'[x]==2,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \rightarrow 2x + c_1$

1.2 problem 2(b)

Internal problem ID [2433]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(b).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = 2 e^{3x}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x)=2*exp(3*x),y(x), singsol=all)

$$y(x) = \frac{2 e^{3x}}{3} + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 17

DSolve[y'[x]==2*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2e^{3x}}{3} + c_1$$

1.3 problem 2(c)

Internal problem ID [2434]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(c).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \frac{2}{\sqrt{1 - x^2}}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

 $dsolve(diff(y(x),x)=2/sqrt(1-x^2),y(x), singsol=all)$

$$y(x) = 2\arcsin\left(x\right) + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 28

DSolve[y'[x]==2/Sqrt[1-x^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -4 \arctan\left(rac{\sqrt{1-x^2}}{x+1}
ight) + c_1$$

1.4 problem 2(d)

Internal problem ID [2435]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(d).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = e^{x^2}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x)=exp(x^2),y(x), singsol=all)

$$y(x) = rac{\sqrt{\pi} \, \operatorname{erfl} \left(x
ight)}{2} + c_1$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 19

DSolve[y'[x]==Exp[x^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{2}\sqrt{\pi} \operatorname{erfi}(x) + c_1$$

1.5 problem 2(e)

Internal problem ID [2436]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(e).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = x e^{x^2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve(diff(y(x),x)=x*exp(x^2),y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^{x^2}}{2} + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 17

DSolve[y'[x]==x*Exp[x^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{x^2}}{2} + c_1$$

1.6 problem 2(a)

Internal problem ID [2437]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(a).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \arcsin\left(x\right)$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x)=arcsin(x),y(x), singsol=all)

$$y(x) = x \arcsin(x) + \sqrt{-x^2 + 1} + c_1$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 23

DSolve[y'[x]==ArcSin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x \arcsin(x) + \sqrt{1 - x^2} + c_1$$

1.7 problem 3(a)

Internal problem ID [2438]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(a).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - yx = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve(diff(y(x),x)=y(x)*x,y(x), singsol=all)

$$y(x) = \mathrm{e}^{\frac{x^2}{2}} c_1$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 22

DSolve[y'[x]==y[x]*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o c_1 e^{rac{x^2}{2}}$$

 $y(x) o 0$

1.8 problem 3(b)

Internal problem ID [2439]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(b).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - y^2 x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(x),x)=y(x)^2*x^2,y(x), singsol=all)$

$$y(x) = \frac{3}{-x^3 + 3c_1}$$

✓ Solution by Mathematica

Time used: 0.107 (sec). Leaf size: 22

DSolve[y'[x]==y[x]^2*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -rac{3}{x^3+3c_1}$$

 $y(x)
ightarrow 0$

1.9 problem 3(c)

Internal problem ID [2440]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(c).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + x e^y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve(diff(y(x),x)=-x*exp(y(x)),y(x), singsol=all)

$$y(x) = \ln\left(\frac{2}{x^2 + 2c_1}\right)$$

✓ Solution by Mathematica

Time used: 0.307 (sec). Leaf size: 19

DSolve[y'[x]==-x*Exp[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \log(2) - \log(x^2 - 2c_1)$$

1.10 problem 3(d)

Internal problem ID [2441]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(d).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'\sin\left(y\right) = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x)*sin(y(x))=x^2,y(x), singsol=all)

$$y(x) = \pi - \arccos\left(rac{x^3}{3} + c_1
ight)$$

✓ Solution by Mathematica

Time used: 0.509 (sec). Leaf size: 37

DSolve[y'[x]*Sin[y[x]]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow - \arccos\left(-rac{x^3}{3} - c_1
ight)$$

 $y(x)
ightarrow \arccos\left(-rac{x^3}{3} - c_1
ight)$

1.11 problem 3(e)

Internal problem ID [2442]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(e).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xy' - \sqrt{1 - y^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(diff(y(x),x)*x=sqrt(1-y(x)^2),y(x), singsol=all)

$$y(x) = \sin\left(\ln\left(x\right) + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.217 (sec). Leaf size: 29

DSolve[y'[x]*x==Sqrt[1-y[x]^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \cos(\log(x) + c_1)$$

 $y(x) \rightarrow -1$
 $y(x) \rightarrow 1$
 $y(x) \rightarrow \text{Interval}[\{-1, 1\}]$

1.12 problem 3(f)

Internal problem ID [2443]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(f).
ODE order: 1.
ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 - y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve((diff(y(x),x))^2-y(x)^2=0,y(x), singsol=all)$

$$y(x) = c_1 e^x$$

 $y(x) = e^{-x} c_1$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 28

DSolve[(y'[x])^2-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \rightarrow c_1 e^{-x}$ $y(x) \rightarrow c_1 e^x$ $y(x) \rightarrow 0$

1.13 problem 3(g)

Internal problem ID [2444]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(g).
ODE order: 1.
ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 - 3y' = -2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)^2-3*diff(y(x),x)+2=0,y(x), singsol=all)$

$$y(x) = 2x + c_1$$
$$y(x) = c_1 + x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 19

DSolve[(y'[x])^2-3*y'[x]+2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + c_1$$

 $y(x) \to 2x + c_1$

1.14 problem 3(h)

Internal problem ID [2445]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(h).
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\left(x^2+1\right)y'=1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

dsolve((1+x^2)*diff(y(x),x)=1,y(x), singsol=all)

$$y(x) = \arctan\left(x\right) + c_1$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 10

DSolve[(1+x^2)*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \rightarrow \arctan(x) + c_1$

1.15 problem 3(i)

Internal problem ID [2446]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961 Section: Exercis 2, page 5 Problem number: 3(i). ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'\sin\left(x\right) = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)*sin(x)=1,y(x), singsol=all)

 $y(x) = -\ln\left(\csc\left(x\right) + \cot\left(x\right)\right) + c_1$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 13

DSolve[y'[x]*Sin[x]==1,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \rightarrow -\arctan(\cos(x)) + c_1$