
A Solution Manual For

Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.

Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 7.	POWER	SERIES	METHODS.	7.2.1	Exercises.	page 29	0	2
---	------------	-------	--------	----------	-------	------------	---------	---	---

2 Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300 15

1 Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

1.1	$\operatorname{problem}$	7.2.1		•			•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	 •	•	•	•	•	•	3
1.2	problem	7.2.2				•		•				•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	4
1.3	problem	7.2.3		•		•		•				•	•	•	•			•	•	•	•	•	•		•	•		•	•	5
1.4	problem	7.2.4				•		•				•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	6
1.5	problem	7.2.5		•		•		•				•	•	•	•			•	•	•	•	•	•		•	•		•	•	7
1.6	problem	7.2.6				•		•				•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	8
1.7	$\operatorname{problem}$	7.2.7		•		•		•	•		•	•	•	•	•	•		•	•	•	•	•	•			•	•	•	•	9
1.8	$\operatorname{problem}$	7.2.8	par	t(a).	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			•	•	•		10
1.9	$\operatorname{problem}$	7.2.8	par	t(b).	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			•	•	•		11
1.10	$\operatorname{problem}$	7.2.1	01 .	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	12
1.11	problem	7.2.1	02 .	•		•		•			•	•	•	•	•			•	•	•	•	•	•		•	•		•	•	13
1.12	problem	7.2.1	03.								•		•										•					•	•	14

1.1 problem 7.2.1

Internal problem ID [5503]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.1.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=1);

$$y(x) = \left(1 - \frac{(x-1)^2}{2} + \frac{(x-1)^4}{24}\right)y(1) + \left(x - 1 - \frac{(x-1)^3}{6} + \frac{(x-1)^5}{120}\right)D(y)(1) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 51

AsymptoticDSolveValue[y''[x]+y[x]==0,y[x],{x,1,5}]

$$y(x) \rightarrow c_1 \left(\frac{1}{24}(x-1)^4 - \frac{1}{2}(x-1)^2 + 1\right) + c_2 \left(\frac{1}{120}(x-1)^5 - \frac{1}{6}(x-1)^3 + x - 1\right)$$

1.2 problem 7.2.2

Internal problem ID [5504]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.2.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + 4yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+4*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{2x^3}{3}\right)y(0) + \left(x - \frac{1}{3}x^4\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[y''[x]+4*x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2\left(x - \frac{x^4}{3}\right) + c_1\left(1 - \frac{2x^3}{3}\right)$$

1.3 problem 7.2.3

Internal problem ID [5505]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.3.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' - yx = 0$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve(diff(y(x),x\$2)-x*y(x)=0,y(x),type='series',x=1);

$$y(x) = \left(1 + \frac{(x-1)^2}{2} + \frac{(x-1)^3}{6} + \frac{(x-1)^4}{24} + \frac{(x-1)^5}{30}\right)y(1) + \left(x - 1 + \frac{(x-1)^3}{6} + \frac{(x-1)^4}{12} + \frac{(x-1)^5}{120}\right)D(y)(1) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 78

AsymptoticDSolveValue[$y''[x]-x*y[x]==0, y[x], \{x, 1, 5\}$]

$$y(x) \to c_1 \left(\frac{1}{30} (x-1)^5 + \frac{1}{24} (x-1)^4 + \frac{1}{6} (x-1)^3 + \frac{1}{2} (x-1)^2 + 1 \right) \\ + c_2 \left(\frac{1}{120} (x-1)^5 + \frac{1}{12} (x-1)^4 + \frac{1}{6} (x-1)^3 + x - 1 \right)$$

1.4 problem 7.2.4

Internal problem ID [5506]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.4.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + yx^2 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x^2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - rac{x^4}{12}
ight)y(0) + \left(x - rac{1}{20}x^5
ight)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2\left(x - rac{x^5}{20}
ight) + c_1\left(1 - rac{x^4}{12}
ight)$$

1.5 problem 7.2.5

Internal problem ID [5507]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.5.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

Order:=6; dsolve(diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + rac{1}{2}x^2 + rac{1}{8}x^4
ight)y(0) + Oig(x^6ig)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 22

AsymptoticDSolveValue[$y'[x]-x*y[x]==0, y[x], \{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^4}{8} + \frac{x^2}{2} + 1 \right)$$

1.6 problem 7.2.6

Internal problem ID [5508]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.6.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer, [_2nd_order, _linear, '_with_symmetry_[0,F(x)]']

$$\left(-x^2+1\right)y''-y'x+p^2y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 71

Order:=6; dsolve((1-x^2)*diff(y(x),x\$2)-x*diff(y(x),x)+p^2*y(x)=0,y(x),type='series',x=0);

$$\begin{aligned} y(x) &= \left(1 - \frac{p^2 x^2}{2} + \frac{p^2 (p^2 - 4) x^4}{24}\right) y(0) \\ &+ \left(x - \frac{(p^2 - 1) x^3}{6} + \frac{(p^4 - 10p^2 + 9) x^5}{120}\right) D(y)(0) + O(x^6) \end{aligned}$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 88

AsymptoticDSolveValue[(1-x^2)*y''[x]-x*y'[x]+p^2*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_2 \left(\frac{p^4 x^5}{120} - \frac{p^2 x^5}{12} - \frac{p^2 x^3}{6} + \frac{3x^5}{40} + \frac{x^3}{6} + x \right) + c_1 \left(\frac{p^4 x^4}{24} - \frac{p^2 x^4}{6} - \frac{p^2 x^2}{2} + 1 \right)$$

1.7 problem 7.2.7

Internal problem ID [5509]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.7.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2}+1) y'' - 2y'x + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

Order:=6; dsolve((1+x^2)*diff(y(x),x\$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = y(0) + D(y)(0) x - x^2 y(0)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 18

AsymptoticDSolveValue[(1+x²)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],{x,0,5}]

$$y(x) \rightarrow c_1 \left(1 - x^2 \right) + c_2 x$$

1.8 problem 7.2.8 part(a)

Internal problem ID [5510]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.8 part(a).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$\left(x^2+1\right)y''+y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve((x^2+1)*diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{8}x^4\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{7}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$(x^{2+1})*y''[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{7x^5}{120} - \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{8} - \frac{x^2}{2} + 1\right)$$

1.9 problem 7.2.8 part(b)

Internal problem ID [5511]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.8 part(b).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' + y = 0$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve(x*diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=1);

$$y(x) = \left(1 - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{6} - \frac{(x-1)^4}{24} + \frac{(x-1)^5}{60}\right)y(1) + \left(x - 1 - \frac{(x-1)^3}{6} + \frac{(x-1)^4}{12} - \frac{(x-1)^5}{24}\right)D(y)(1) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 78

AsymptoticDSolveValue $[x*y''[x]+y[x]==0, y[x], \{x, 1, 5\}]$

$$y(x) \to c_1 \left(\frac{1}{60} (x-1)^5 - \frac{1}{24} (x-1)^4 + \frac{1}{6} (x-1)^3 - \frac{1}{2} (x-1)^2 + 1 \right) \\ + c_2 \left(-\frac{1}{24} (x-1)^5 + \frac{1}{12} (x-1)^4 - \frac{1}{6} (x-1)^3 + x - 1 \right)$$

1.10 problem 7.2.101

Internal problem ID [5512]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.101.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + 2yx^3 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

Order:=6; dsolve(diff(y(x),x\$2)+2*x^3*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - rac{x^5}{10}
ight)y(0) + D(y)\left(0
ight)x + Oig(x^6ig)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 20

AsymptoticDSolveValue[$y''[x]+2*x^3*y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_1igg(1-rac{x^5}{10}igg)+c_2x$$

1.11 problem 7.2.102

Internal problem ID [5513]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.102.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - yx = \frac{1}{1 - x}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

Order:=6; dsolve([diff(y(x),x\$2)-x*y(x)=1/(1-x),y(0) = 0, D(y)(0) = 0],y(x),type='series',x=0);

$$y(x) = rac{1}{2}x^2 + rac{1}{6}x^3 + rac{1}{12}x^4 + rac{3}{40}x^5 + \mathrm{O}\left(x^6
ight)$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 56

AsymptoticDSolveValue[$\{y''[x]-x*y[x]==1/(1-x), \{\}\}, y[x], \{x, 0, 5\}$]

$$y(x) \rightarrow \frac{3x^5}{40} + \frac{x^4}{12} + c_2\left(\frac{x^4}{12} + x\right) + \frac{x^3}{6} + c_1\left(\frac{x^3}{6} + 1\right) + \frac{x^2}{2}$$

1.12 problem 7.2.103

Internal problem ID [5514]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.103.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

Order:=6; dsolve(x^2*diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \sqrt{x} \left(x^{-\frac{\sqrt{5}}{2}} c_1 + x^{\frac{\sqrt{5}}{2}} c_2 \right) + O(x^6)$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 38

AsymptoticDSolveValue $[x^2*y''[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 x^{\frac{1}{2}(1+\sqrt{5})} + c_2 x^{\frac{1}{2}(1-\sqrt{5})}$$

2	Chapter	7.	Ρ	°C)V	V	E	R		S]	E	R	l	E	S]	M	E	<u>.</u>	[]	H	C)])	S	•	7	7.	3.	2
	The met	; ho o	d	0	f]	Ð	٢C	b	e	n	iu	15	5.	E	Cx	ce	er	ci	is:	es	5.	p)a	le	ge	è	3	0	0	
2.1	problem 7.3.3					•		•	•			•			•	•			•			•		•		•		•		16
2.2	problem 7.3.4			•					•		•		•		•	•		•	•			•	•			•		•	•	18
2.3	problem 7.3.5			•					•		•	•	•		•	•		•	•			•	•			•		•		19
2.4	problem 7.3.6			•					•		•		•		•	•		•	•			•	•			•		•	•	20
2.5	problem 7.3.7			•					•		•	•	•		•	•		•	•			•	•			•		•		21
2.6	problem 7.3.8	(a)		•					•		•	•	•		•	•		•	•			•	•		•	•		•		22
2.7	problem 7.3.8	(b)		•		•			•		•	•	•	• •	•	•	•	•	•	• •	•	•	•		•	•		•		24
2.8	problem 7.3.8	(c)		•					•		•	•	•		•	•		•	•			•	•		•	•		•		25
2.9	problem 7.3.8	(d)		•					•		•	•	•		•	•		•	•			•	•		•	•		•		27
2.10	problem 7.3.8	(e)		•					•		•	•	•		•	•		•	•			•	•		•	•		•		28
2.11	problem 7.3.1	01 (a).	•		•			•			•	•		•	•			•				•			•		•		29
2.12	problem 7.3.1	01 (b).	•					•		•	•	•		•			•	•			•	•			•		•		30
2.13	problem 7.3.1	01 (c)).	•		•			•			•	•		•	•			•				•			•		•		31
2.14	problem 7.3.1	01 (d).	•		•			•			•	•		•	•			•				•			•		•		32
2.15	problem 7.3.1	01 (e)).	•					•		•	•	•		•			•	•			•	•			•		•		33
2.16	problem 7.3.1	02 .		•		•			•			•	•		•	•			•				•			•		•		34
2.17	problem 7.3.1	03.		•					•			•			•	•			•	•						•		•		35
2.18	problem 7.3.1	04 (d).	•		•			•			•			•	•		•	•	•						•		•		36

2.1 problem 7.3.3

Internal problem ID [5515]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.3.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + (1+x)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 69

Order:=6; dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= c_1 x^{-i} \left(1 + \left(-\frac{1}{5} - \frac{2i}{5} \right) x + \left(-\frac{1}{40} + \frac{3i}{40} \right) x^2 + \left(\frac{3}{520} - \frac{7i}{1560} \right) x^3 \\ &+ \left(-\frac{1}{2496} + \frac{i}{12480} \right) x^4 + \left(\frac{9}{603200} + \frac{i}{361920} \right) x^5 + \mathcal{O} \left(x^6 \right) \right) \\ &+ c_2 x^i \left(1 + \left(-\frac{1}{5} + \frac{2i}{5} \right) x + \left(-\frac{1}{40} - \frac{3i}{40} \right) x^2 + \left(\frac{3}{520} + \frac{7i}{1560} \right) x^3 \\ &+ \left(-\frac{1}{2496} - \frac{i}{12480} \right) x^4 + \left(\frac{9}{603200} - \frac{i}{361920} \right) x^5 + \mathcal{O} \left(x^6 \right) \right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 90

AsymptoticDSolveValue[x²*y''[x]+x*y'[x]+(1+x)*y[x]==0,y[x],{x,0,5}]

$$y(x) \rightarrow \left(\frac{1}{12480} + \frac{i}{2496}\right) c_2 x^{-i} \left(ix^4 - (8+16i)x^3 + (168+96i)x^2 - (1056-288i)x + (480-2400i)\right) - \left(\frac{1}{2496} + \frac{i}{12480}\right) c_1 x^i \left(x^4 - (16+8i)x^3 + (96+168i)x^2 + (288-1056i)x - (2400-480i)\right)$$

2.2 problem 7.3.4

Internal problem ID [5516]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.4.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

Order:=6; dsolve(x²*diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \sqrt{x} \left(x^{-rac{\sqrt{5}}{2}} c_1 + x^{rac{\sqrt{5}}{2}} c_2
ight) + O(x^6)$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 38

AsymptoticDSolveValue $[x^2*y''[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 x^{\frac{1}{2}(1+\sqrt{5})} + c_2 x^{\frac{1}{2}(1-\sqrt{5})}$$

2.3 problem 7.3.5

Internal problem ID [5517]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.5.
ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + \frac{y'}{x} - yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; dsolve(diff(y(x),x\$2)+1/x*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);

$$y(x) = (\ln(x) c_2 + c_1) \left(1 + \frac{1}{9}x^3 + O(x^6)\right) + \left(-\frac{2}{27}x^3 + O(x^6)\right) c_2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 39

AsymptoticDSolveValue[y''[x]+1/x*y'[x]-x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1\left(\frac{x^3}{9} + 1\right) + c_2\left(\left(\frac{x^3}{9} + 1\right)\log(x) - \frac{2x^3}{27}\right)$$

2.4 problem 7.3.6

Internal problem ID [5518]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.6.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$2xy'' + y' - yx^2 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

Order:=6; dsolve(2*x*diff(y(x),x\$2)+diff(y(x),x)-x^2*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 \sqrt{x} \left(1 + \frac{1}{21} x^3 + O(x^6) \right) + c_2 \left(1 + \frac{1}{15} x^3 + O(x^6) \right)$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 33

AsymptoticDSolveValue[2*x*y''[x]+y'[x]-x^2*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \sqrt{x} \left(\frac{x^3}{21} + 1\right) + c_2 \left(\frac{x^3}{15} + 1\right)$$

2.5 problem 7.3.7

Internal problem ID [5519]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.7.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y'x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 37

Order:=6; dsolve(x²*diff(y(x),x\$2)-x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y(x) = x \Big(x^{-\sqrt{2}} c_1 + x^{\sqrt{2}} c_2 \Big) + O \big(x^6 \big)$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

AsymptoticDSolveValue $[x^2*y''[x]-x*y'[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 x^{1+\sqrt{2}} + c_2 x^{1-\sqrt{2}}$$

2.6 problem 7.3.8 (a)

Internal problem ID [5520]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.8 (a).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}(x^{2}+1)y''+yx=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 58

Order:=6; dsolve(x^2*(1+x^2)*diff(y(x),x\$2)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 - \frac{1}{2}x + \frac{1}{12}x^2 + \frac{11}{144}x^3 - \frac{83}{2880}x^4 - \frac{2557}{86400}x^5 + O(x^6) \right) + c_2 \left(\ln(x) \left(-x + \frac{1}{2}x^2 - \frac{1}{12}x^3 - \frac{11}{144}x^4 + \frac{83}{2880}x^5 + O(x^6) \right) + \left(1 - \frac{3}{4}x^2 + \frac{13}{36}x^3 + \frac{25}{1728}x^4 - \frac{8743}{86400}x^5 + O(x^6) \right) \right)$$

Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 87

AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]+x*y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{157x^4 + 768x^3 - 2160x^2 + 1728x + 1728}{1728} - \frac{1}{144}x \left(11x^3 + 12x^2 - 72x + 144 \right) \log(x) \right) + c_2 \left(-\frac{83x^5}{2880} + \frac{11x^4}{144} + \frac{x^3}{12} - \frac{x^2}{2} + x \right)$$

2.7 problem 7.3.8 (b)

Internal problem ID [5521]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.8 (b).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + y' + y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6; dsolve(x²*diff(y(x),x\$2)+diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

No solution found

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 84

AsymptoticDSolveValue $[x^2*y''[x]+y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 e^{\frac{1}{x}} \left(\frac{59241x^5}{40} + \frac{1911x^4}{8} + \frac{91x^3}{2} + \frac{21x^2}{2} + 3x + 1 \right) x^2 + c_1 \left(-\frac{91x^5}{40} + \frac{7x^4}{8} - \frac{x^3}{2} + \frac{x^2}{2} - x + 1 \right)$$

2.8 problem 7.3.8 (c)

Internal problem ID [5522]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.8 (c).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' + y'x^3 + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 58

Order:=6; dsolve(x*diff(y(x),x\$2)+x^3*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= c_1 x \left(1 - \frac{1}{2} x + \frac{1}{12} x^2 - \frac{13}{144} x^3 + \frac{157}{2880} x^4 - \frac{877}{86400} x^5 + \mathcal{O}\left(x^6\right) \right) \\ &+ c_2 \left(\ln\left(x\right) \left(-x + \frac{1}{2} x^2 - \frac{1}{12} x^3 + \frac{13}{144} x^4 - \frac{157}{2880} x^5 + \mathcal{O}\left(x^6\right) \right) \\ &+ \left(1 - \frac{3}{4} x^2 + \frac{7}{36} x^3 + \frac{25}{1728} x^4 + \frac{6377}{86400} x^5 + \mathcal{O}\left(x^6\right) \right) \right) \end{split}$$

Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 87

AsymptoticDSolveValue[x*y''[x]+x^3*y'[x]+y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{1}{144} x \left(13x^3 - 12x^2 + 72x - 144 \right) \log(x) + \frac{-131x^4 + 480x^3 - 2160x^2 + 1728x + 1728}{1728} \right) + c_2 \left(\frac{157x^5}{2880} - \frac{13x^4}{144} + \frac{x^3}{12} - \frac{x^2}{2} + x \right)$$

2.9 problem 7.3.8 (d)

Internal problem ID [5523]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.8 (d).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' + y'x - e^x y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 54

Order:=6; dsolve(x*diff(y(x),x\$2)+x*diff(y(x),x)-exp(x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 + \frac{1}{6} x^2 + \frac{1}{72} x^3 + \frac{7}{480} x^4 + \frac{29}{10800} x^5 + O(x^6) \right) + c_2 \left(\ln(x) \left(x + \frac{1}{6} x^3 + \frac{1}{72} x^4 + \frac{7}{480} x^5 + O(x^6) \right) + \left(1 - x - \frac{2}{9} x^3 - \frac{11}{864} x^4 - \frac{109}{4800} x^5 + O(x^6) \right) \right)$$

Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 70

AsymptoticDSolveValue $[x*y''[x]+x*y'[x]-Exp[x]*y[x]==0,y[x],{x,0,5}]$

$$y(x) \to c_2 \left(\frac{7x^5}{480} + \frac{x^4}{72} + \frac{x^3}{6} + x \right) \\ + c_1 \left(\frac{1}{864} \left(-23x^4 - 336x^3 - 1728x + 864 \right) + \frac{1}{72} x \left(x^3 + 12x^2 + 72 \right) \log(x) \right)$$

2.10 problem 7.3.8 (e)

Internal problem ID [5524]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.8 (e).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x^2y'' + x^2y' + yx^2 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

Order:=6; dsolve(x²*diff(y(x),x\$2)+x²*diff(y(x),x)+x²*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{120}x^5\right)y(0) + \left(x - \frac{1}{2}x^2 + \frac{1}{24}x^4 - \frac{1}{120}x^5\right)D(y)(0) + O(x^6)y(0) + O(x$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[x²*y''[x]+x²*y'[x]+x²*y[x]==0,y[x],{x,0,5}]

$$y(x) \rightarrow c_2 \left(-\frac{x^5}{120} + \frac{x^4}{24} - \frac{x^2}{2} + x \right) + c_1 \left(-\frac{x^5}{120} + \frac{x^3}{6} - \frac{x^2}{2} + 1 \right)$$

2.11 problem 7.3.101 (a)

Internal problem ID [5525]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.101 (a).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

Order:=6; dsolve(diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(\frac{1}{24}x^4 - \frac{1}{2}x^2 + 1\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x]+y[x]==0, y[x], \{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^5}{120} - \frac{x^3}{6} + x \right) + c_1 \left(\frac{x^4}{24} - \frac{x^2}{2} + 1 \right)$$

2.12 problem 7.3.101 (b)

Internal problem ID [5526]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.101 (b).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{3}y'' + (1+x)y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6; dsolve(x^3*diff(y(x),x\$2)+(1+x)*y(x)=0,y(x),type='series',x=0);

No solution found

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 222

AsymptoticDSolveValue[x^3*y''[x]+(1+x)*y[x]==0,y[x],{x,0,5}]

$$\begin{split} y(x) & \rightarrow c_1 e^{-\frac{2i}{\sqrt{x}}} x^{3/4} \bigg(\frac{520667425699057 i x^{9/2}}{131941395333120} - \frac{21896102683 i x^{7/2}}{21474836480} + \frac{19100991 i x^{5/2}}{41943040} \\ & -\frac{3367 i x^{3/2}}{8192} - \frac{194208949785748261 x^5}{21110623253299200} + \frac{5189376335871 x^4}{2748779069440} - \frac{846810601 x^3}{1342177280} \\ & + \frac{205387 x^2}{524288} - \frac{273 x}{512} + \frac{13 i \sqrt{x}}{16} \\ & + 1 \bigg) + c_2 e^{\frac{2i}{\sqrt{x}}} x^{3/4} \bigg(-\frac{520667425699057 i x^{9/2}}{131941395333120} + \frac{21896102683 i x^{7/2}}{21474836480} - \frac{19100991 i x^{5/2}}{41943040} + \frac{3367 i x^{3/2}}{8192} - \frac{19420892}{211100} \bigg) \bigg) \end{split}$$

2.13 problem 7.3.101 (c)

Internal problem ID [5527]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.101 (c).
ODE order: 2.

ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' + x^5y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 58

Order:=6; dsolve(x*diff(y(x),x\$2)+x^5*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = c_1 x \left(1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{144}x^3 + \frac{1}{2880}x^4 - \frac{2881}{86400}x^5 + O(x^6) \right) + c_2 \left(\ln(x) \left(-x + \frac{1}{2}x^2 - \frac{1}{12}x^3 + \frac{1}{144}x^4 - \frac{1}{2880}x^5 + O(x^6) \right) + \left(1 - \frac{3}{4}x^2 + \frac{7}{36}x^3 - \frac{35}{1728}x^4 + \frac{101}{86400}x^5 + O(x^6) \right) \right)$$

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 85

AsymptoticDSolveValue $[x*y''[x]+x^5*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{1}{144} x \left(x^3 - 12x^2 + 72x - 144 \right) \log(x) + \frac{-47x^4 + 480x^3 - 2160x^2 + 1728x + 1728}{1728} \right) + c_2 \left(\frac{x^5}{2880} - \frac{x^4}{144} + \frac{x^3}{12} - \frac{x^2}{2} + x \right)$$

2.14 problem 7.3.101 (d)

Internal problem ID [5528]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.101 (d).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\sin\left(x\right)y''-y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 58

Order:=6; dsolve(sin(x)*diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$\begin{split} y(x) &= c_1 x \left(1 + \frac{1}{2}x + \frac{1}{12}x^2 + \frac{1}{48}x^3 + \frac{1}{192}x^4 + \frac{37}{28800}x^5 + \mathcal{O}\left(x^6\right) \right) \\ &+ c_2 \left(\ln\left(x\right) \left(x + \frac{1}{2}x^2 + \frac{1}{12}x^3 + \frac{1}{48}x^4 + \frac{1}{192}x^5 + \mathcal{O}\left(x^6\right) \right) \\ &+ \left(1 - \frac{3}{4}x^2 - \frac{1}{6}x^3 - \frac{5}{192}x^4 - \frac{257}{28800}x^5 + \mathcal{O}\left(x^6\right) \right) \right) \end{split}$$

Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 85

AsymptoticDSolveValue[Sin[x]*y''[x]-y[x]==0,y[x],{x,0,5}]

$$y(x) \to c_1 \left(\frac{1}{48} x \left(x^3 + 4x^2 + 24x + 48 \right) \log(x) + \frac{1}{64} \left(-3x^4 - 16x^3 - 80x^2 - 64x + 64 \right) \right) \\ + c_2 \left(\frac{x^5}{192} + \frac{x^4}{48} + \frac{x^3}{12} + \frac{x^2}{2} + x \right)$$

2.15 problem 7.3.101 (e)

Internal problem ID [5529]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.101 (e).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\cos\left(x\right)y'' - \sin\left(x\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

Order:=6; dsolve(cos(x)*diff(y(x),x\$2)-sin(x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{6}x^3 + \frac{1}{60}x^5\right)y(0) + \left(x + \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 35

 $AsymptoticDSolveValue[Cos[x]*y''[x]-Sin[x]*y[x]==0,y[x], \{x,0,5\}]$

$$y(x) \to c_2\left(\frac{x^4}{12} + x\right) + c_1\left(\frac{x^5}{60} + \frac{x^3}{6} + 1\right)$$

2.16 problem 7.3.102

Internal problem ID [5530]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.102.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

Order:=6; dsolve(x²*diff(y(x),x\$2)-y(x)=0,y(x),type='series',x=0);

$$y(x) = \sqrt{x} \left(x^{-rac{\sqrt{5}}{2}} c_1 + x^{rac{\sqrt{5}}{2}} c_2
ight) + O(x^6)$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 38

AsymptoticDSolveValue $[x^2*y''[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 x^{\frac{1}{2}(1+\sqrt{5})} + c_2 x^{\frac{1}{2}(1-\sqrt{5})}$$

2.17 problem 7.3.103

Internal problem ID [5531]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.103.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + \left(x - \frac{3}{4}\right)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 65

Order:=6; dsolve(x^2*diff(y(x),x\$2)+(x-3/4)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1 x^2 \left(1 - \frac{1}{3}x + \frac{1}{24}x^2 - \frac{1}{360}x^3 + \frac{1}{8640}x^4 - \frac{1}{302400}x^5 + \mathcal{O}\left(x^6\right)\right) + c_2 \left(\ln\left(x\right)\left(x^2 - \frac{1}{3}x^3 + \frac{1}{24}x^4 - \frac{1}{360}x^5 + \mathcal{O}\left(x^6\right)\right)}{\sqrt{x}}$$

Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 101

AsymptoticDSolveValue $[x^2*y''[x]+(x-3/4)*y[x]==0,y[x],\{x,0,5\}]$

y(x)

$$\rightarrow c_2 \left(\frac{x^{11/2}}{8640} - \frac{x^{9/2}}{360} + \frac{x^{7/2}}{24} - \frac{x^{5/2}}{3} + x^{3/2} \right) + c_1 \left(\frac{31x^4 - 176x^3 + 144x^2 + 576x + 576}{576\sqrt{x}} - \frac{1}{48}x^{3/2} (x^2 - 8x + 24)\log(x) \right)$$

2.18 problem 7.3.104 (d)

Internal problem ID [5532]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number: 7.3.104 (d).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - y'x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

Order:=6; dsolve(x²*diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = x(\ln(x) c_2 + c_1) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 14

AsymptoticDSolveValue $[x^2*y''[x]-x*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 x + c_2 x \log(x)$$