A Solution Manual For

Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963

Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 2. Special types of differential equations of the first kind. Lesson 7	2
2	Chapter 2. Special types of differential equations of the first kind. Lesson 8	18
3	Chapter 2. Special types of differential equations of the first kind. Lesson 9	34
4	Chapter 2. Special types of differential equations of the first kind. Lesson 10	54
5	Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations	101
6	Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods	129
7	Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients	194
8	Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients	229
9	Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters	255
10	Chapter 8. Special second order equations. Lesson 35. Independent variable x absent	276

1 Chapter 2. Special types of differential equations of the first kind. Lesson 7

1.1 problem First order with homogeneous Coefficients. Exercise 7.2, page 61. 3 1.2problem First order with homogeneous Coefficients. Exercise 7.3, page 61. $\mathbf{5}$ problem First order with homogeneous Coefficients. Exercise 7.4, page 61. 1.36 problem First order with homogeneous Coefficients. Exercise 7.5, page 61. 1.4 7 problem First order with homogeneous Coefficients. Exercise 7.6, page 61. 8 1.5problem First order with homogeneous Coefficients. Exercise 7.7, page 61. 1.69 1.7problem First order with homogeneous Coefficients. Exercise 7.8, page 61. 10 1.8problem First order with homogeneous Coefficients. Exercise 7.9, page 61. 11 1.9problem First order with homogeneous Coefficients. Exercise 7.10, page 61 121.10 problem First order with homogeneous Coefficients. Exercise 7.11, page 61 131.11 problem First order with homogeneous Coefficients. Exercise 7.12, page 61 141.12 problem First order with homogeneous Coefficients. Exercise 7.13, page 61 151.13 problem First order with homogeneous Coefficients. Exercise 7.14, page 61 161.14 problem First order with homogeneous Coefficients. Exercise 7.15, page 61 17

1.1 problem First order with homogeneous Coefficients. Exercise 7.2, page 61

Internal problem ID [4427]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.2, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$2yx + (x^2 + y^2) y' = 0$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 257

dsolve(2*x*y(x)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)

✓ Solution by Mathematica

Time used: 15.191 (sec). Leaf size: 401

DSolve[2*x*y[x]+(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \frac{\sqrt[3]{\sqrt{4x^6 + e^{6c_1} + e^{3c_1}}}}{\sqrt[3]{2}} - \frac{\sqrt[3]{2x^2}}{\sqrt[3]{\sqrt{4x^6 + e^{6c_1} + e^{3c_1}}}}\\ y(x) &\to \frac{i2^{2/3}(\sqrt{3} + i)\left(\sqrt{4x^6 + e^{6c_1} + e^{3c_1}}\right)^{2/3} + \sqrt[3]{2}\left(2 + 2i\sqrt{3}\right)x^2}{4\sqrt[3]{\sqrt{4x^6 + e^{6c_1} + e^{3c_1}}}}\\ y(x) &\to \frac{i2^{2/3}(\sqrt{3} + i)\left(\sqrt{4x^6 + e^{6c_1} + e^{3c_1}}\right) - \frac{(1 + i\sqrt{3})\sqrt[3]{\sqrt{4x^6 + e^{6c_1} + e^{3c_1}}}{2\sqrt[3]{2}}\\ y(x) &\to 0\\ y(x) &\to \frac{1}{2}\sqrt[6]{x^6}\left(\frac{(1 - i\sqrt{3})(x^6)^{2/3}}{x^4} - i\sqrt{3} - 1\right)\\ y(x) &\to \frac{1}{2}\sqrt[6]{x^6}\left(\frac{(1 + i\sqrt{3})(x^6)^{2/3}}{x^4} + i\sqrt{3} - 1\right)\\ y(x) &\to \sqrt[6]{x^6} - \frac{(x^6)^{5/6}}{x^4} \end{split}$$

1.2 problem First order with homogeneous Coefficients. Exercise 7.3, page 61

Internal problem ID [4428]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.3, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$\left(x+\sqrt{y^2-yx}\right)y'-y=0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve((x+sqrt(y(x)^2-x*y(x)))*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$\ln (y(x)) + \frac{2\sqrt{y(x)(y(x) - x)}}{y(x)} - c_1 = 0$$

Solution by Mathematica

Time used: 0.291 (sec). Leaf size: 43

DSolve[(x+Sqrt[y[x]^2-x*y[x]])*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions +> True]

Solve
$$\left[\frac{2\sqrt{\frac{y(x)}{x}}-1}{\sqrt{\frac{y(x)}{x}}} + \log\left(\frac{y(x)}{x}\right) = -\log(x) + c_1, y(x)\right]$$

1.3 problem First order with homogeneous Coefficients. Exercise 7.4, page 61

Internal problem ID [4429]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.4, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y - (-y + x) y' = -x$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve((x+y(x))-(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \tan\left(\operatorname{RootOf}\left(-2_Z + \ln\left(\frac{1}{\cos\left(_Z\right)^2}\right) + 2\ln\left(x\right) + 2c_1\right)\right)x$$

Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 36

DSolve[(x+y[x])-(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\frac{1}{2}\log\left(\frac{y(x)^2}{x^2}+1\right) - \arctan\left(\frac{y(x)}{x}\right) = -\log(x) + c_1, y(x)\right]$$

1.4 problem First order with homogeneous Coefficients. Exercise 7.5, page 61

Internal problem ID [4430]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.5, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$xy' - y - x\sin\left(\frac{y}{x}\right) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

dsolve(x*diff(y(x),x)-y(x)-x*sin(y(x)/x)=0,y(x), singsol=all)

$$y(x) = rctan\left(rac{2xc_1}{c_1^2x^2+1}, -rac{c_1^2x^2-1}{c_1^2x^2+1}
ight)x$$

✓ Solution by Mathematica

Time used: 0.325 (sec). Leaf size: 52

DSolve[x*y'[x]-y[x]-x*Sin[y[x]/x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -x \arccos(-\tanh(\log(x) + c_1))$$
$$y(x) \rightarrow x \arccos(-\tanh(\log(x) + c_1))$$
$$y(x) \rightarrow 0$$
$$y(x) \rightarrow -\pi x$$
$$y(x) \rightarrow \pi x$$

1.5 problem First order with homogeneous Coefficients. Exercise 7.6, page 61

Internal problem ID [4431]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.6, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$2x^{2}y + y^{3} + (y^{2}x - 2x^{3})y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

dsolve((2*x^2*y(x)+y(x)^3)+(x*y(x)^2-2*x^3)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \sqrt{-rac{2}{ ext{LambertW}(-2c_1x^4)}} x$$

Solution by Mathematica

Time used: 5.64 (sec). Leaf size: 66

DSolve[(2*x^2*y[x]+y[x]^3)+(x*y[x]^2-2*x^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow -\frac{i\sqrt{2}x}{\sqrt{W\left(-2e^{-2c_1}x^4\right)}}$$
$$y(x) \rightarrow \frac{i\sqrt{2}x}{\sqrt{W\left(-2e^{-2c_1}x^4\right)}}$$
$$y(x) \rightarrow 0$$

1.6 problem First order with homogeneous Coefficients. Exercise 7.7, page 61

Internal problem ID [4432]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.7, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _dAlembert]

$$y^2 + \left(x\sqrt{y^2 - x^2} - yx\right)y' = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

 $dsolve(y(x)^2+(x*sqrt(y(x)^2-x^2)-x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$\frac{\sqrt{y(x)^{2} - x^{2}}}{xy(x)} + \frac{1}{x} - c_{1} = 0$$

✓ Solution by Mathematica

Time used: 2.247 (sec). Leaf size: 111

DSolve[y[x]^2+(x*Sqrt[y[x]^2-x^2]-x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\begin{bmatrix} -\frac{\sqrt{\frac{y(x)^2}{x^2} - 1} \left(\log \left(\sqrt{\frac{y(x)}{x} + 1} - 1 \right) + \log \left(\sqrt{\frac{y(x)}{x} + 1} + 1 \right) \right)}{\sqrt{\frac{y(x)}{x} - 1} \sqrt{\frac{y(x)}{x} + 1}} \\ -2 \log \left(\sqrt{\frac{y(x)}{x} - 1} - \sqrt{\frac{y(x)}{x} + 1} \right) = \log(x) + c_1, y(x) \end{bmatrix}$$

1.7 problem First order with homogeneous Coefficients. Exercise 7.8, page 61

Internal problem ID [4433]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.8, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$\frac{y\cos\left(\frac{y}{x}\right)}{x} - \left(\frac{x\sin\left(\frac{y}{x}\right)}{y} + \cos\left(\frac{y}{x}\right)\right)y' = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 15

dsolve(y(x)/x*cos(y(x)/x)-(x/y(x)*sin(y(x)/x)+cos(y(x)/x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \text{RootOf}(\underline{Zxc_1}\sin(\underline{Z}) - 1)x$$

Solution by Mathematica

Time used: 0.247 (sec). Leaf size: 27

DSolve[y[x]/x*Cos[y[x]/x]-(x/y[x]*Sin[y[x]/x]+Cos[y[x]/x])*y'[x]==0,y[x],x,IncludeSingularSo

Solve
$$\left[\log\left(\frac{y(x)}{x}\right) + \log\left(\sin\left(\frac{y(x)}{x}\right)\right) = -\log(x) + c_1, y(x) \right]$$

1.8 problem First order with homogeneous Coefficients. Exercise 7.9, page 61

Internal problem ID [4434]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.9, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y + x \ln\left(\frac{y}{x}\right) y' - 2xy' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

dsolve(y(x)+x*ln(y(x)/x)*diff(y(x),x)-2*x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = e^{-LambertW(-exc_1)+1}x$$

✓ Solution by Mathematica

Time used: 5.502 (sec). Leaf size: 35

DSolve[y[x]+x*Log[y[x]/x]*y'[x]-2*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -e^{c_1}W(-e^{1-c_1}x)$$

 $y(x) \rightarrow 0$
 $y(x) \rightarrow ex$

1.9 problem First order with homogeneous Coefficients. Exercise 7.10, page 61

Internal problem ID [4435]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.10, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$2y\,\mathrm{e}^{\frac{x}{y}} + \left(y - 2x\,\mathrm{e}^{\frac{x}{y}}\right)y' = 0$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 23

dsolve(2*y(x)*exp(x/y(x))+(y(x)-2*x*exp(x/y(x)))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{x}{\operatorname{RootOf}\left(\frac{-Ze^{-2e^{-Z}}}{c_1} - x\right)}$$

Solution by Mathematica

Time used: 0.247 (sec). Leaf size: 29

DSolve[2*y[x]*Exp[x/y[x]]+(y[x]-2*x*Exp[x/y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$ext{Solve}igg[-2e^{rac{x}{y(x)}}-\logigg(rac{y(x)}{x}igg)=\log(x)+c_1,y(x)igg]$$

1.10 problem First order with homogeneous Coefficients. Exercise 7.11, page 61

Internal problem ID [4436]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.11, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x e^{\frac{y}{x}} - y \sin\left(\frac{y}{x}\right) + x \sin\left(\frac{y}{x}\right) y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 63

dsolve((x*exp(y(x)/x)-y(x)*sin(y(x)/x))+x*sin(y(x)/x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \text{RootOf} \left(e^{2-Z} \left(4\ln(x)^2 e^{2-Z} + 8\ln(x) e^{2-Z} c_1 + 4c_1^2 e^{2-Z} - 4\ln(x) \sin(-Z) e^{-Z} - 4\sin(-Z) e^{-Z} c_1 + 2\sin(-Z)^2 - 1 \right) \right) x$$

Solution by Mathematica

Time used: 0.328 (sec). Leaf size: 39

DSolve[(x*Exp[y[x]/x]-y[x]*Sin[y[x]/x])+x*Sin[y[x]/x]*y'[x]==0,y[x],x,IncludeSingularSolution

Solve
$$\left[-\frac{1}{2}e^{-\frac{y(x)}{x}}\left(\sin\left(\frac{y(x)}{x}\right) + \cos\left(\frac{y(x)}{x}\right)\right) = -\log(x) + c_1, y(x)\right]$$

1.11 problem First order with homogeneous Coefficients. Exercise 7.12, page 61

Internal problem ID [4437]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.12, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 - 2yy'x = -x^2$$

With initial conditions

$$[y(-1) = 0]$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 23

dsolve([(x²+y(x)²)=2*x*y(x)*diff(y(x),x),y(-1) = 0],y(x), singsol=all)

$$y(x) = \sqrt{x (x+1)}$$
$$y(x) = -\sqrt{x (x+1)}$$

Solution by Mathematica

Time used: 0.19 (sec). Leaf size: 36

DSolve[{(x^2+y[x]^2)==2*x*y[x]*y'[x],y[-1]==0},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\sqrt{x}\sqrt{x+1}$$

 $y(x) \rightarrow \sqrt{x}\sqrt{x+1}$

1.12 problem First order with homogeneous Coefficients. Exercise 7.13, page 61

Internal problem ID [4438]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.13, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x \,\mathrm{e}^{\frac{y}{x}} + y - xy' = 0$$

With initial conditions

[y(1) = 0]

Solution by Maple

Time used: 0.031 (sec). Leaf size: 15

dsolve([(x*exp(y(x)/x)+y(x))=x*diff(y(x),x),y(1) = 0],y(x), singsol=all)

$$y(x) = \ln\left(-\frac{1}{\ln(x) - 1}\right)x$$

✓ Solution by Mathematica

Time used: 0.316 (sec). Leaf size: 15

DSolve[{(x*Exp[y[x]/x]+y[x])==x*y'[x],y[1]==0},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x \log(1 - \log(x))$$

1.13 problem First order with homogeneous Coefficients. Exercise 7.14, page 61

Internal problem ID [4439]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.14, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' - \frac{y}{x} + \csc\left(\frac{y}{x}\right) = 0$$

With initial conditions

$$[y(1) = 0]$$

Solution by Maple Time used: 0.047 (sec). Leaf size: 16

dsolve([diff(y(x),x)-y(x)/x+csc(y(x)/x)=0,y(1) = 0],y(x), singsol=all)

 $y(x) = x(1 - 2_B21)\arccos\left(\ln\left(x\right) + 1\right)$

Solution by Mathematica

Time used: 0.394 (sec). Leaf size: 24

DSolve[{y'[x]-y[x]/x+Csc[y[x]/x]==0,y[1]==0},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -x \arccos(\log(x) + 1)$$

 $y(x) \rightarrow x \arccos(\log(x) + 1)$

1.14 problem First order with homogeneous Coefficients. Exercise 7.15, page 61

Internal problem ID [4440]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number: First order with homogeneous Coefficients. Exercise 7.15, page 61.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$yx - y^2 - x^2y' = 0$$

With initial conditions

[y(1) = 1]

Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

dsolve([(x*y(x)-y(x)^2)-x^2*diff(y(x),x)=0,y(1) = 1],y(x), singsol=all)

$$y(x) = \frac{x}{\ln\left(x\right) + 1}$$

✓ Solution by Mathematica

Time used: 0.139 (sec). Leaf size: 13

DSolve[{(x*y[x]-y[x]^2)-x^2*y'[x]==0,y[1]==1},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x}{\log(x) + 1}$$

2 Chapter 2. Special types of differential equations of the first kind. Lesson 8

2.1problem Differential equations with Linear Coefficients. Exercise 8.1, page 69 19 2.2problem Differential equations with Linear Coefficients. Exercise 8.2, page 69 20 2.3problem Differential equations with Linear Coefficients. Exercise 8.3, page 69 21 2.4problem Differential equations with Linear Coefficients. Exercise 8.4, page 69 22 2.5problem Differential equations with Linear Coefficients. Exercise 8.5, page 69 23 2.6problem Differential equations with Linear Coefficients. Exercise 8.6, page 69 24 2.7problem Differential equations with Linear Coefficients. Exercise 8.7, page 69 25 2.8problem Differential equations with Linear Coefficients. Exercise 8.8, page 69 26 2.9problem Differential equations with Linear Coefficients. Exercise 8.9, page 69 27 2.10 problem Differential equations with Linear Coefficients. Exercise 8.10, page 69 28 2.11 problem Differential equations with Linear Coefficients. Exercise 8.11, page 69 29 2.12 problem Differential equations with Linear Coefficients. Exercise 8.12, page 69 30 2.13 problem Differential equations with Linear Coefficients. Exercise 8.13, page 69 31 2.14 problem Differential equations with Linear Coefficients. Exercise 8.14, page 69 33

2.1 problem Differential equations with Linear Coefficients. Exercise 8.1, page 69

Internal problem ID [4441]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.1, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$2y - (2x - 4y) y' = -x + 4$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 31

dsolve((x+2*y(x)-4)-(2*x-4*y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = 1 - \frac{\tan\left(\operatorname{RootOf}\left(2_Z + \ln\left(\frac{1}{\cos(_Z)^2}\right) + 2\ln(x-2) + 2c_1\right)\right)(x-2)}{2}$$

Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 63

DSolve[(x+2*y[x]-4)-(2*x-4*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\begin{bmatrix} 2 \arctan\left(\frac{-2y(x) - x + 4}{x - 2y(x)}\right) \\ + \log\left(\frac{x^2 + 4y(x)^2 - 8y(x) - 4x + 8}{2(x - 2)^2}\right) + 2\log(x - 2) + c_1 = 0, y(x) \end{bmatrix}$$

2.2 problem Differential equations with Linear Coefficients. Exercise 8.2, page 69

Internal problem ID [4442]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.2, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$2y - (3x + 2y - 1) y' = -1 - 3x$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve((3*x+2*y(x)+1)-(3*x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\frac{3x}{2} - \frac{2 \operatorname{LambertW}\left(-\frac{e^{\frac{1}{4}}e^{-\frac{25x}{4}}c_{1}}{4}\right)}{5} + \frac{1}{10}$$

Solution by Mathematica

Time used: 4.816 (sec). Leaf size: 43

DSolve[(3*x+2*y[x]+1)-(3*x+2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{10} \left(-4W \left(-e^{-\frac{25x}{4} - 1 + c_1} \right) - 15x + 1 \right)$$
$$y(x) \to \frac{1}{10} - \frac{3x}{2}$$

2.3 problem Differential equations with Linear Coefficients. Exercise 8.3, page 69

Internal problem ID [4443]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.3, page 69.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y + (2x + 2y + 2) y' = -x - 1$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve((x+y(x)+1)+(2*x+2*y(x)+2)*diff(y(x),x)=0,y(x), singsol=all)

$$egin{aligned} y(x) &= -x-1 \ y(x) &= -rac{x}{2}+c_1 \end{aligned}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[(x+y[x]+1)+(2*x+2*y[x]+2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -x - 1$$

 $y(x)
ightarrow -rac{x}{2} + c_1$

2.4 problem Differential equations with Linear Coefficients. Exercise 8.4, page 69

Internal problem ID [4444]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.4, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y + (2x + 2y - 3)y' = 1 - x$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

dsolve((x+y(x)-1)+(2*x+2*y(x)-3)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = e^{-LambertW(2e^{x}e^{-4}e^{-c_1})+x-4-c_1} + 2 - x$$

Solution by Mathematica

Time used: 4.725 (sec). Leaf size: 33

DSolve[(x+y[x]-1)+(2*x+2*y[x]-3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{1}{2} ig(Wig(-e^{x-1+c_1}ig) - 2x+4ig)$$

 $y(x)
ightarrow 2-x$

2.5 problem Differential equations with Linear Coefficients. Exercise 8.5, page 69

Internal problem ID [4445]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.5, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y - (x - y - 1) y' = 1 - x$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

dsolve((x+y(x)-1)-(x-y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\tan\left(\operatorname{RootOf}\left(2_Z + \ln\left(\frac{1}{\cos\left(_Z\right)^2}\right) + 2\ln\left(x - 1\right) + 2c_1\right)\right)(x - 1)$$

Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 48

DSolve[(x+y[x]-1)-(x-y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[2 \arctan\left(\frac{y(x) + x - 1}{-y(x) + x - 1}\right) = \log\left(\frac{1}{2}\left(\frac{y(x)^2}{(x-1)^2} + 1\right)\right) + 2\log(x-1) + c_1, y(x)\right]$$

2.6 problem Differential equations with Linear Coefficients. Exercise 8.6, page 69

Internal problem ID [4446]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.6, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y + (2x + 2y - 1)y' = -x$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve((x+y(x))+(2*x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = e^{-LambertW(2e^{x}e^{-2}e^{-c_1})+x-2-c_1} - x + 1$$

Solution by Mathematica

Time used: 1.056 (sec). Leaf size: 33

DSolve[(x+y[x])+(2*x+2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\rightarrow \frac{1}{2} \big(W \big(-e^{x-1+c_1} \big) - 2x + 2 \big) \\ y(x) &\rightarrow 1-x \end{split}$$

2.7 problem Differential equations with Linear Coefficients. Exercise 8.7, page 69

Internal problem ID [4447]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.7, page 69.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_separable]

$$7y + (1+2x)y' = 3$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve((7*y(x)-3)+(2*x+1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{3}{7} + \frac{c_1}{\left(1 + 2x\right)^{\frac{7}{2}}}$$

Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 28

DSolve[(7*y[x]-3)+(2*x+1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{3}{7} + \frac{c_1}{(2x+1)^{7/2}}$$
$$y(x) \rightarrow \frac{3}{7}$$

2.8 problem Differential equations with Linear Coefficients. Exercise 8.8, page 69

Internal problem ID [4448]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.8, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$2y + (3x + 6y + 3) y' = -x$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

dsolve((x+2*y(x))+(3*x+6*y(x)+3)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^{-\mathrm{LambertW}\left(-\frac{\mathrm{e}^{-\frac{x}{6}}\mathrm{e}^{-\frac{3}{2}}\mathrm{e}^{\frac{c_{1}}{6}}\right) - \frac{x}{6} - \frac{3}{2} + \frac{c_{1}}{6}}{2}}{2} - \frac{3}{2} - \frac{x}{2}$$

Solution by Mathematica

Time used: 4.834 (sec). Leaf size: 43

DSolve[(x+2*y[x])+(3*x+6*y[x]+3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} \left(-2W \left(-e^{-\frac{x}{6} - 1 + c_1} \right) - x - 3 \right)$$
$$y(x) \to \frac{1}{2} (-x - 3)$$

2.9 problem Differential equations with Linear Coefficients. Exercise 8.9, page 69

Internal problem ID [4449]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.9, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$2y + (y-1)y' = -x$$

Solution by Maple

Time used: 0.234 (sec). Leaf size: 27

dsolve((x+2*y(x))+(y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = 1 - rac{(2+x) (ext{LambertW} (c_1(2+x)) + 1)}{ ext{LambertW} (c_1(2+x))}$$

Solution by Mathematica

Time used: 1.178 (sec). Leaf size: 143

DSolve[(x+2*y[x])+(y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[-\frac{(-2)^{2/3}\left(-\left((x+1)\log\left(-\frac{3(-2)^{2/3}(x+2)}{y(x)-1}\right)\right)+x\log\left(\frac{3(-2)^{2/3}(y(x)+x+1)}{y(x)-1}\right)+\log\left(\frac{3(-2)^{2/3}(y(x)+x+1)}{y(x)-1}\right)+\frac{9(y(x)+x+1)}{y(x)-1}\right)+\frac{1}{2}\right]$$

2.10 problem Differential equations with Linear Coefficients. Exercise 8.10, page 69

Internal problem ID [4450]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.10, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$-2y - (2x + 7y - 1)y' = -4 - 3x$$

Solution by Maple

Time used: 0.531 (sec). Leaf size: 38

dsolve((3*x-2*y(x)+4)-(2*x+7*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = rac{11}{25} - rac{rac{2(25x+26)c_1}{7} + rac{\sqrt{25(25x+26)^2c_1^2 + 7}}{7}}{25c_1}$$

Solution by Mathematica

Time used: 0.126 (sec). Leaf size: 65

DSolve[(3*x-2*y[x]+4)-(2*x+7*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{7} \left(-\sqrt{25x^2 + 52x + 1 + 49c_1} - 2x + 1 \right)$$
$$y(x) \to \frac{1}{7} \left(\sqrt{25x^2 + 52x + 1 + 49c_1} - 2x + 1 \right)$$

2.11 problem Differential equations with Linear Coefficients. Exercise 8.11, page 69

Internal problem ID [4451]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.11, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y + (3x + 3y - 4)y' = -x$$

With initial conditions

[y(1) = 0]

Solution by Maple

Time used: 0.172 (sec). Leaf size: 19

dsolve([(x+y(x))+(3*x+3*y(x)-4)*diff(y(x),x)=0,y(1) = 0],y(x), singsol=all)

$$y(x) = rac{2 \operatorname{LambertW}\left(-1, -rac{3 \operatorname{e}^{x-rac{5}{2}}}{2}
ight)}{3} + 2 - x$$

× Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{(x+y[x])+(3*x+3*y[x]-4)*y'[x]==0,y[1]==0},y[x],x,IncludeSingularSolutions -> True]

{}

2.12 problem Differential equations with Linear Coefficients. Exercise 8.12, page 69

Internal problem ID [4452]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.12, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$2y - (-1 + x + 2y) y' = -3x - 3$$

Solution by Maple

Time used: 0.422 (sec). Leaf size: 46

dsolve((3*x+2*y(x)+3)-(x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{9}{2} - \frac{\text{RootOf}\left(\left(2x+4\right)^5 c_1 \underline{Z^{25} - 5(2x+4)^5 c_1 \underline{Z^{20} - 2}\right)^5 (2x+4)}{4} + \frac{3x}{2}$$

Solution by Mathematica

Time used: 60.094 (sec). Leaf size: 3081

Too large to display

2.13 problem Differential equations with Linear Coefficients. Exercise 8.13, page 69

Internal problem ID [4453]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.13, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y + (2x + y + 3) y' = -7$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 87

dsolve([(y(x)+7)+(2*x+y(x)+3)*diff(y(x),x)=0,y(0) = 1],y(x), singsol=all)

$$y(x) = \left(-x^3 + 6x^2 - 12x + 72 + 8\sqrt{-2x^3 + 12x^2 - 24x + 80}\right)^{\frac{1}{3}} + \frac{(x-2)^2}{\left(-x^3 + 6x^2 - 12x + 72 + 8\sqrt{-2x^3 + 12x^2 - 24x + 80}\right)^{\frac{1}{3}}} - x - 5$$

✓ Solution by Mathematica

Time used: 6.783 (sec). Leaf size: 198

DSolve[{(y[x]+7)+(2*x+y[x]+3)*y'[x]==0,y[0]==1},y[x],x,IncludeSingularSolutions -> True]

$$\begin{array}{c} y(x) \\ \rightarrow \frac{x^2 - \left(\sqrt[3]{-x^3 + 6x^2 + 8\sqrt{2}\sqrt{-x^3 + 6x^2 - 12x + 40}} - 12x + 72 + 4\right)x + \left(-x^3 + 6x^2 + 8\sqrt{2}\sqrt{-x^3 + 6x^2} + 8\sqrt{2}\sqrt{-x^3 + 6x^2$$

2.14 problem Differential equations with Linear Coefficients. Exercise 8.14, page 69

Internal problem ID [4454]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number: Differential equations with Linear Coefficients. Exercise 8.14, page 69.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y - (x - y - 4) y' = -2 - x$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve((x+y(x)+2)-(x-y(x)-4)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -3 - \tan\left(\text{RootOf}\left(2_Z + \ln\left(\frac{1}{\cos\left(_Z\right)^2}\right) + 2\ln(x-1) + 2c_1\right)\right)(x-1)$$

Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 58

DSolve[(x+y[x]+2)-(x-y[x]-4)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\begin{bmatrix} 2 \arctan\left(\frac{y(x) + x + 2}{y(x) - x + 4}\right) \\ + \log\left(\frac{x^2 + y(x)^2 + 6y(x) - 2x + 10}{2(x - 1)^2}\right) + 2\log(x - 1) + c_1 = 0, y(x) \end{bmatrix}$$

3 Chapter 2. Special types of differential equations of the first kind. Lesson 9

3.1	$\operatorname{problem}$	Exact	Differential	equations.	Exercise	9.4, page	79.		 •		•	35
3.2	problem	Exact	Differential	equations.	Exercise	9.5, page	79.		 •			38
3.3	problem	Exact	Differential	equations.	Exercise	9.6, page	79.		 •			39
3.4	$\operatorname{problem}$	Exact	Differential	equations.	Exercise	9.7, page	79.		 •		•	41
3.5	$\operatorname{problem}$	Exact	Differential	equations.	Exercise	9.8, page	79.		 •		•	42
3.6	$\operatorname{problem}$	Exact	Differential	equations.	Exercise	9.9, page	79.		 •		•	43
3.7	$\operatorname{problem}$	Exact	Differential	equations.	Exercise	9.10, page	e 79	•	 •		•	44
3.8	$\operatorname{problem}$	Exact	Differential	equations.	Exercise	9.11, page	e 79	•	 •		•	45
3.9	$\operatorname{problem}$	Exact	Differential	equations.	Exercise	9.12, page	e 79	•	 •		•	46
3.10	$\operatorname{problem}$	Exact	Differential	equations.	Exercise	9.13, page	e 79	•	 •		•	48
3.11	$\operatorname{problem}$	Exact	Differential	equations.	Exercise	9.15, page	e 79	•	 •		•	51
3.12	$\operatorname{problem}$	Exact	Differential	equations.	Exercise	9.16, page	e 79	•	 •		•	52
3.13	problem	Exact	Differential	equations.	Exercise	9.17, page	e 79	•	 •		•	53

3.1 problem Exact Differential equations. Exercise 9.4, page 79

Internal problem ID [4455]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.4, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$3x^2y + 8y^2x + \left(x^3 + 8x^2y + 12y^2\right)y' = 0$$
Solution by Maple

Time used: 0.0 (sec). Leaf size: 597

dsolve((3*x²*y(x)+8*x*y(x)²)+(x³+8*x²*y(x)+12*y(x)²)*diff(y(x),x)=0,y(x), singsol=all)

$$\begin{split} y(x) &= \frac{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{6} \\ &- \frac{6\left(\frac{1}{12}x^3 - \frac{1}{9}x^4\right)}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{12} \\ y(x) &= -\frac{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{12} \\ &+ \frac{\frac{1}{4}x^3 - \frac{1}{3}x^4}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{2} - \frac{x^2}{3} \\ &- \frac{i\sqrt{3}\left(\frac{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{1}{(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2})^{\frac{1}{3}}}{2} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{6} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}}{6} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}}{6} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{6} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{6} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} + 3x^9 + 48c_1x^6 - 54c_1x^5 + 81c_1^2}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{1}{\left(9x^5 - 27c_1 - 8x^6 + 3\sqrt{-3x^{10} +$$

Solution by Mathematica

Time used: 1.703 (sec). Leaf size: 474

DSolve[(3*x^2*y[x]+8*x*y[x]^2)+(x^3+8*x^2*y[x]+12*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSol

$$\begin{split} y(x) & \rightarrow \frac{1}{6} \Biggl(-2x^2 + \sqrt[3]{-8x^6 + 9x^5 + 3\sqrt{3}\sqrt{-x^{10} + x^9 - 16c_1x^6 + 18c_1x^5 + 27c_1^2 + 27c_1}} \\ & + \frac{(4x - 3)x^3}{\sqrt[3]{-8x^6 + 9x^5 + 3\sqrt{3}\sqrt{-x^{10} + x^9 - 16c_1x^6 + 18c_1x^5 + 27c_1^2 + 27c_1}} \Biggr) \\ y(x) & \rightarrow \frac{1}{48} \Biggl(-16x^2 + 4i\Bigl(\sqrt{3} \\ & + i\Bigr)\sqrt[3]{-8x^6 + 9x^5 + 3\sqrt{3}\sqrt{-x^{10} + x^9 - 16c_1x^6 + 18c_1x^5 + 27c_1^2 + 27c_1}} \\ & - \frac{4i\bigl(\sqrt{3} - i\bigr)(4x - 3)x^3}{\sqrt[3]{-8x^6 + 9x^5 + 3\sqrt{3}\sqrt{-x^{10} + x^9 - 16c_1x^6 + 18c_1x^5 + 27c_1^2 + 27c_1}} \Biggr) \\ y(x) & \rightarrow \frac{1}{48} \Biggl(-16x^2 - 4\Bigl(1 \\ & + i\sqrt{3} \Bigr)\sqrt[3]{-8x^6 + 9x^5 + 3\sqrt{3}\sqrt{-x^{10} + x^9 - 16c_1x^6 + 18c_1x^5 + 27c_1^2 + 27c_1}} \Biggr) \\ & + \frac{4i\bigl(\sqrt{3} + i\bigr)(4x - 3)x^3}{\sqrt[3]{-8x^6 + 9x^5 + 3\sqrt{3}\sqrt{-x^{10} + x^9 - 16c_1x^6 + 18c_1x^5 + 27c_1^2 + 27c_1}} \Biggr) \end{split}$$

3.2 problem Exact Differential equations. Exercise 9.5, page 79

Internal problem ID [4456]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.5, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _exact, _rational, [_Abel, '2nd ty

$$\frac{1+2yx}{y} + \frac{(y-x)\,y'}{y^2} = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $dsolve((2*x*y(x)+1)/y(x)+(y(x)-x)/y(x)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -rac{x}{ ext{LambertW}\left(- ext{e}^{x^2}c_1x
ight)}$$

Solution by Mathematica

Time used: 5.208 (sec). Leaf size: 29

DSolve[(2*x*y[x]+1)/y[x]+(y[x]-x)/y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$egin{aligned} y(x) &
ightarrow -rac{x}{W\left(x\left(-e^{x^2-c_1}
ight)
ight)} \ y(x) &
ightarrow 0 \end{aligned}$$

3.3 problem Exact Differential equations. Exercise 9.6, page 79

Internal problem ID [4457]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.6, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$2yx + (x^2 + y^2) y' = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 257

 $dsolve(2*x*y(x)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

Solution by Mathematica

Time used: 15.514 (sec). Leaf size: 401

DSolve[2*x*y[x]+(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \frac{\sqrt[3]{\sqrt{4x^6 + e^{6c_1} + e^{3c_1}}}}{\sqrt[3]{2}} - \frac{\sqrt[3]{2x^2}}{\sqrt[3]{\sqrt{4x^6 + e^{6c_1} + e^{3c_1}}}}\\ y(x) &\to \frac{i2^{2/3}(\sqrt{3} + i)\left(\sqrt{4x^6 + e^{6c_1} + e^{3c_1}}\right)^{2/3} + \sqrt[3]{2}(2 + 2i\sqrt{3})x^2}{4\sqrt[3]{\sqrt{4x^6 + e^{6c_1} + e^{3c_1}}}}\\ y(x) &\to \frac{i2^{2/3}(\sqrt{3} + i)(\sqrt{4x^6 + e^{6c_1} + e^{3c_1}})}{4\sqrt[3]{\sqrt{4x^6 + e^{6c_1} + e^{3c_1}}}} - \frac{(1 + i\sqrt{3})\sqrt[3]{\sqrt{4x^6 + e^{6c_1} + e^{3c_1}}}}{2\sqrt[3]{2}}\\ y(x) &\to 0\\ y(x) &\to \frac{1}{2}\sqrt[6]{x^6} \left(\frac{(1 - i\sqrt{3})(x^6)^{2/3}}{x^4} - i\sqrt{3} - 1\right)\\ y(x) &\to \frac{1}{2}\sqrt[6]{x^6} \left(\frac{(1 + i\sqrt{3})(x^6)^{2/3}}{x^4} + i\sqrt{3} - 1\right)\\ y(x) &\to \sqrt[6]{x^6} - \frac{(x^6)^{5/6}}{x^4} \end{split}$$

3.4 problem Exact Differential equations. Exercise 9.7, page 79

Internal problem ID [4458]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.7, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$e^{x} \sin(y) + e^{-y} - (x e^{-y} - e^{x} \cos(y)) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve((exp(x)*sin(y(x))+exp(-y(x)))-(x*exp(-y(x))-exp(x)*cos(y(x)))*diff(y(x),x)=0,y(x), si

$$e^x \sin(y(x)) + x e^{-y(x)} + c_1 = 0$$

Solution by Mathematica

Time used: 0.389 (sec). Leaf size: 24

DSolve[(Exp[x]*Sin[y[x]]+Exp[-y[x]])-(x*Exp[-y[x]]-Exp[x]*Cos[y[x]])*y'[x]==0,y[x],x,Include

Solve
$$[x(-e^{-y(x)}) - e^x \sin(y(x)) = c_1, y(x)]$$

3.5 problem Exact Differential equations. Exercise 9.8, page 79

Internal problem ID [4459]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.8, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$\cos\left(y\right) - \left(x\sin\left(y\right) - y^{2}\right)y' = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 20

 $dsolve(cos(y(x))-(x*sin(y(x))-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$x - \frac{-\frac{y(x)^{3}}{3} + c_{1}}{\cos(y(x))} = 0$$

Solution by Mathematica

Time used: 0.124 (sec). Leaf size: 23

DSolve[Cos[y[x]]-(x*Sin[y[x]]-y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[x = -\frac{1}{3}y(x)^{3}\sec(y(x)) + c_{1}\sec(y(x)), y(x)\right]$$

3.6 problem Exact Differential equations. Exercise 9.9, page 79

Internal problem ID [4460]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.9, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$-2yx + e^y + (y - x^2 + x e^y) y' = -x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve((x-2*x*y(x)+exp(y(x)))+(y(x)-x^2+x*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)

$$-y(x) x^{2} + x e^{y(x)} + \frac{x^{2}}{2} + \frac{y(x)^{2}}{2} + c_{1} = 0$$

Solution by Mathematica

Time used: 0.315 (sec). Leaf size: 35

DSolve[(x-2*x*y[x]+Exp[y[x]])+(y[x]-x^2+x*Exp[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolution

Solve
$$\left[x^2(-y(x)) + rac{x^2}{2} + xe^{y(x)} + rac{y(x)^2}{2} = c_1, y(x)
ight]$$

3.7 problem Exact Differential equations. Exercise 9.10, page 79

Internal problem ID [4461]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.10, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$y^{2} - (-2yx + e^{y})y' = -x^{2} + x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve((x^2-x+y(x)^2)-(exp(y(x))-2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$rac{x^3}{3} + y(x)^2 \, x - rac{x^2}{2} - \mathrm{e}^{y(x)} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.198 (sec). Leaf size: 32

DSolve[(x^2-x+y[x]^2)-(Exp[y[x]]-2*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[-\frac{x^3}{3} + \frac{x^2}{2} - xy(x)^2 + e^{y(x)} = c_1, y(x)\right]$$

3.8 problem Exact Differential equations. Exercise 9.11, page 79

Internal problem ID [4462]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.11, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$y\cos(x) + (2y + \sin(x) - \sin(y))y' = -2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve((2*x+y(x)*cos(x))+(2*y(x)+sin(x)-sin(y(x)))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x)\sin(x) + x^{2} + y(x)^{2} + \cos(y(x)) + c_{1} = 0$$

Solution by Mathematica

Time used: 0.198 (sec). Leaf size: 22

DSolve[(2*x+y[x]*Cos[x])+(2*y[x]+Sin[x]-Sin[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions

Solve
$$[x^2 + y(x)^2 + y(x)\sin(x) + \cos(y(x)) = c_1, y(x)]$$

3.9 problem Exact Differential equations. Exercise 9.12, page 79

Internal problem ID [4463]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.12, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _dAlembert]

$$x\sqrt{x^2 + y^2} - \frac{x^2yy'}{y - \sqrt{x^2 + y^2}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(x*sqrt(x²+y(x)²)-(x²*y(x))/(y(x)- sqrt(x²+y(x)²))*diff(y(x),x)=0,y(x), singsol=a

$$c_1 + (x^2 + y(x)^2)^{\frac{3}{2}} + y(x)^3 = 0$$

\checkmark Solution by Mathematica

Time used: 60.259 (sec). Leaf size: 2125

DSolve[x*Sqrt[x^2+y[x]^2]-(x^2*y[x])/(y[x]- Sqrt[x^2+y[x]^2])*y'[x]==0,y[x],x, IncludeSingula

$$y(x) \rightarrow x^{2} \sqrt{\frac{e^{6c_{1}}}{x^{4}} - 6x^{2} + \frac{3(5x^{6} - 4e^{6c_{1}})}{\sqrt[3]{-11x^{12} + 14e^{6c_{1}}x^{6} + 2\sqrt{(-x^{6} + e^{6c_{1}})(x^{6} + e^{6c_{1}})^{3} - 2e^{12c_{1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_{1}}x^{6} + 2\sqrt{(-x^{6} + e^{6c_{1}})(x^{6} + e^{6c_{1}})^{3} - 2e^{12c_{1}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_{1}}x^{6} + 2\sqrt{(-x^{6} + e^{6c_{1}})(x^{6} + e^{6c_{1}})^{3} - 2e^{12c_{1}}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_{1}}x^{6} + 2\sqrt{(-x^{6} + e^{6c_{1}})(x^{6} + e^{6c_{1}})^{3} - 2e^{12c_{1}}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_{1}}x^{6} + 2\sqrt{(-x^{6} + e^{6c_{1}})(x^{6} + e^{6c_{1}})^{3} - 2e^{12c_{1}}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_{1}}x^{6} + 2\sqrt{(-x^{6} + e^{6c_{1}})(x^{6} + e^{6c_{1}})^{3} - 2e^{12c_{1}}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_{1}}x^{6} + 2\sqrt{(-x^{6} + e^{6c_{1}})(x^{6} + e^{6c_{1}})^{3} - 2e^{12c_{1}}}}}}$$

$$y(x) = x^2 \left(-\sqrt{\frac{e^{6c_1}}{x^4} - 6x^2 + \frac{3(5x^6 - 4e^{6c_1})}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}}}{\sqrt[3]{-11x^{12} + 2\sqrt{(-x^6 + e^{6c_1})^3}}} + \frac{3\sqrt[3]{-11x^{12} + 2\sqrt{(-x^6 + e^{6c_1})^3}}}}{\sqrt[3]{-11x^{12} + 2\sqrt{(-x^6 + e^{6c_1})^3}}}}} + \frac{3\sqrt[3]{-11x^{12} + 2\sqrt{(-x^6 + e^{6c_1})^3}}}}}{\sqrt[3]{-11x^{12} + 2\sqrt{(-x^6 + e^{6c_1})^3}}}$$

$$y(x) = x^2 \sqrt{\frac{e^{6c_1}}{x^4} - 6x^2 + \frac{3(5x^6 - 4e^{6c_1})}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})^3}}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})^3}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})^3}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})^3}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})^3}}}}$$

$$y(x) = x^2 \sqrt{\frac{e^{6c_1}}{x^4} - 6x^2 + \frac{3(5x^6 - 4e^{6c_1})}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3} - 2e^{12c_1}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}} + \frac{3\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}}{\sqrt[3]{-11x^{12} + 14e^{6c_1}x^6 + 2\sqrt{(-x^6 + e^{6c_1})(x^6 + e^{6c_1})^3}}}}$$

3.10 problem Exact Differential equations. Exercise 9.13, page 79

Internal problem ID [4464]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.13, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$y^{3} - (y^{2} + 1 - 3y^{2}x)y' = -4x^{3} + \sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 1162

dsolve((4*x^3-sin(x)+y(x)^3)-(y(x)^2+1-3*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)

$$\begin{split} y(x) &= \frac{\left(\left(-12x^4 + 4\sqrt{\frac{27x^9 - 9x^8 + 54\cos(x)x^5 + 54c_1x^5 - 18\cos(x)x^4 - 18c_1x^4 + 27x\cos(x)^2 + 54c_1x\cos(x) + 27c_1^2x - 9\cos(x)^2 - 18c_1\cos(x) - 9c_1^2x^2 + 27x\cos(x)^2 + 54c_1x\cos(x) + 27c_1^2x - 9\cos(x)^2 - 18c_1\cos(x) - 9c_1^2x^2 + 27x\cos(x)^2 + 54c_1x\cos(x) + 27c_1^2x - 9\cos(x)^2 - 18c_1\cos(x) - 3x-1\right)}{4(1-1)^2}\right) \\ &+ \frac{6x - 2}{2} \\ &+ \frac{6x - 2}{2} \\ &+ \frac{6x - 2}{3x-1} \\ y(x) = \frac{6(\left(-12x^4 + 4\sqrt{\frac{27x^9 - 9x^8 + 54\cos(x)x^9 + 54c_1x^5 - 18\cos(x)x^4 - 18c_1x^4 + 27x\cos(x)^2 + 54c_1x\cos(x) + 27c_1^2x - 9\cos(x)^2 - 18c_1\cos(x) - 3x-1\right)}{4(3x - 1)} \\ &- \frac{6(\left(-12x^4 + 4\sqrt{\frac{27x^9 - 9x^8 + 54\cos(x)x^5 + 54c_1x^5 - 18\cos(x)x^4 - 18c_1x^4 + 27x\cos(x)^2 + 54c_1x\cos(x) + 27c_1^2x - 9\cos(x)^2 - 18c_1\cos(x) - 3x-1\right)}{6x - 2} \\ y(x) = \frac{6\left(\left(-12x^4 + 4\sqrt{\frac{27x^9 - 9x^8 + 54\cos(x)x^5 + 54c_1x^5 - 18\cos(x)x^4 - 18c_1x^4 + 27x\cos(x)^2 + 54c_1x\cos(x) + 27c_1^2x - 9\cos(x)^2 - 18c_1\cos(x) - 3x-1\right)}{6x - 2} \\ &- \frac{6(\left(-12x^4 + 4\sqrt{\frac{27x^9 - 9x^8 + 54\cos(x)x^5 + 54c_1x^5 - 18\cos(x)x^4 - 18c_1x^4 + 27x\cos(x)^2 + 54c_1x\cos(x) + 27c_1^2x - 9\cos(x)^2 - 18c_1\cos(x) - 3x-1\right)}{6x - 2} \\ y(x) = \frac{6(\left(-12x^4 + 4\sqrt{\frac{27x^9 - 9x^8 + 54\cos(x)x^5 + 54c_1x^5 - 18\cos(x)x^4 - 18c_1x^4 + 27x\cos(x)^2 + 54c_1x\cos(x) + 27c_1^2x - 9\cos(x)^2 - 18c_1\cos(x) - 3x-1\right)}{3x - 1} - \frac{1}{1} \\ &- \frac{6x - 2}{3x - 1} \\ \frac{6x -$$

Solution by Mathematica

Time used: 60.207 (sec). Leaf size: 682

$$\rightarrow \frac{i(\sqrt{3}+i)}{2^{2/3}\sqrt[3]{-27x^{6}+18x^{5}-3x^{4}+\frac{1}{27}\sqrt{4(9-27x)^{3}+6561(1-3x)^{4}(x^{4}+\cos(x)-c_{1})^{2}}-27x^{2}\cos(x)+27x^{2}\cos(x)+27x^{2}\cos(x)-c_{1}}}{\frac{(1+i\sqrt{3})\sqrt[3]{-54x^{6}+36x^{5}-6x^{4}+\frac{2}{27}\sqrt{4(9-27x)^{3}+6561(1-3x)^{4}(x^{4}+\cos(x)-c_{1})^{2}}-54x^{2}\cos(x)-27x^{2}\cos(x$$

3.11 problem Exact Differential equations. Exercise 9.15, page 79

Internal problem ID [4465]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.15, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _Bernoulli]

$$e^{x}(y^{3} + y^{3}x + 1) + 3y^{2}(xe^{x} - 6)y' = 0$$

With initial conditions

$$[y(0) = 1]$$

Solution by Maple

Time used: 0.141 (sec). Leaf size: 38

dsolve([exp(x)*(y(x)^3+x*y(x)^3+1)+3*y(x)^2*(x*exp(x)-6)*diff(y(x),x)=0,y(0) = 1],y(x), sing

$$y(x) = \frac{\left(-1 + i\sqrt{3}\right) \left(-\left(e^x + 5\right) \left(e^x x - 6\right)^2\right)^{\frac{1}{3}}}{2 e^x x - 12}$$

Solution by Mathematica

Time used: 1.114 (sec). Leaf size: 28

DSolve[{Exp[x]*(y[x]^3+x*y[x]^3+1)+3*y[x]^2*(x*Exp[x]-6)*y'[x]==0,y[0]==1},y[x],x,IncludeSir

$$y(x) \to \frac{\sqrt[3]{-e^x - 5}}{\sqrt[3]{e^x x - 6}}$$

3.12 problem Exact Differential equations. Exercise 9.16, page 79

Internal problem ID [4466]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.16, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\sin(x)\cos(y) + \cos(x)\sin(y)y' = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{4}\right) = \frac{\pi}{4}\right]$$

Solution by Maple

Time used: 0.328 (sec). Leaf size: 11

dsolve([sin(x)*cos(y(x))+cos(x)*sin(y(x))*diff(y(x),x)=0,y(1/4*Pi) = 1/4*Pi],y(x), singsol=a

$$y(x) = \arccos\left(\frac{\sec\left(x\right)}{2}\right)$$

Solution by Mathematica

Time used: 6.111 (sec). Leaf size: 12

DSolve[{Sin[x]*Cos[y[x]]+Cos[x]*Sin[y[x]]*y'[x]==0,y[Pi/4]==Pi/4},y[x],x,IncludeSingularSolu

$$y(x) \to \arccos\left(\frac{\sec(x)}{2}\right)$$

3.13 problem Exact Differential equations. Exercise 9.17, page 79

Internal problem ID [4467]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number: Exact Differential equations. Exercise 9.17, page 79.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$y^2 e^{y^2 x} + (2xy e^{y^2 x} - 3y^2) y' = -4x^3$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple Time used: 0.063 (sec). Leaf size: 23

dsolve([(y(x)^2*exp(x*y(x)^2)+4*x^3)+(2*x*y(x)*exp(x*y(x)^2)-3*y(x)^2)*diff(y(x),x)=0,y(1) =

$$y(x) = \text{RootOf}\left(-e^{-Z^2x} - x^4 + Z^3 + 2\right)$$

✓ Solution by Mathematica

Time used: 0.332 (sec). Leaf size: 23

DSolve[{(y[x]^2*Exp[x*y[x]^2]+4*x^3)+(2*x*y[x]*Exp[x*y[x]^2]-3*y[x]^2)*y'[x]==0,y[1]==0},y[x

Solve
$$\left[x^4 + e^{xy(x)^2} - y(x)^3 = 2, y(x)\right]$$

4 Chapter 2. Special types of differential equations of the first kind. Lesson 10

4.1	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ample 10.51, page 90
4.2	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ample 10.52, page 90
4.3	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ample 10.661, page 90
4.4	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ample 10.701, page 90
4.5	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ample 10.741, page 90
4.6	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ample 10.781, page 90
4.7	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ample 10.81, page 90
4.8	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ample 10.83, page 90
4.9	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ercise 10.1, page 90
4.10	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ercise 10.2, page 90
4.11	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ercise 10.3, page 90
4.12	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ercise 10.4, page 90
4.13	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ercise 10.5, page 90
4.14	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ercise 10.6, page 90
4.15	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ercise 10.7, page 90
4.16	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ercise 10.8, page 90
4.17	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ercise 10.9, page 90
4.18	problem Recognizable Exact Differential equations. Integrating factors. Ex-
	ercise 10.10, page 90

4.19	problem Recognizable Exact Differential equations. Integrating factors. Ex-	
	ercise 10.11, page 90	82
4.20	problem Recognizable Exact Differential equations. Integrating factors. Ex-	
	ercise 10.12, page 90	83
4.21	problem Recognizable Exact Differential equations. Integrating factors. Ex-	
	ercise 10.13, page 90	85
4.22	problem Recognizable Exact Differential equations. Integrating factors. Ex-	
	ercise 10.14, page 90	88
4.23	problem Recognizable Exact Differential equations. Integrating factors. Ex-	
	ercise 10.15, page 90	91
4.24	problem Recognizable Exact Differential equations. Integrating factors. Ex-	
	ercise 10.16, page 90	92
4.25	problem Recognizable Exact Differential equations. Integrating factors. Ex-	
	ercise 10.17, page 90	94
4.26	problem Recognizable Exact Differential equations. Integrating factors. Ex-	
	ercise 10.18, page 90	95
4.27	problem Recognizable Exact Differential equations. Integrating factors. Ex-	
	ercise 10.19, page 90	98

4.1 problem Recognizable Exact Differential equations. Integrating factors. Example 10.51, page 90

Internal problem ID [4468]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Example 10.51, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y^2 + y - xy' = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

 $dsolve((y(x)^2+y(x))-x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x}{c_1 - x}$$

Solution by Mathematica

Time used: 0.274 (sec). Leaf size: 32

DSolve[(y[x]^2+y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{e^{c_1}x}{1 - e^{c_1}x}$$

 $y(x)
ightarrow -1$
 $y(x)
ightarrow 0$

4.2 problem Recognizable Exact Differential equations. Integrating factors. Example 10.52, page 90

Internal problem ID [4469]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Example 10.52, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y\sec\left(x\right) + y'\sin\left(x\right) = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve((y(x)*sec(x))+sin(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{c_1}{\tan\left(x\right)}$$

Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 15

DSolve[(y[x]*Sec[x])+Sin[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cot(x)$$

 $y(x) \to 0$

4.3 problem Recognizable Exact Differential equations. Integrating factors. Example 10.661, page 90

Internal problem ID [4470]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Example 10.661, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type $[`y=_G(x,y')']$

$$-\sin\left(y\right) + \cos\left(y\right)y' = -\mathrm{e}^{x}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve((exp(x)-sin(y(x)))+cos(y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\arcsin\left(\left(x + c_1\right)e^x\right)$$

Solution by Mathematica

Time used: 11.754 (sec). Leaf size: 16

DSolve[(Exp[x]-Sin[y[x]])+Cos[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\arcsin\left(e^x(x+c_1)\right)$$

4.4 problem Recognizable Exact Differential equations. Integrating factors. Example 10.701, page 90

Internal problem ID [4471]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Example 10.701, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$yx + \left(x^2 + 1\right)y' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve((x*y(x))+(1+x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{\sqrt{x^2 + 1}}$$

Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 22

DSolve[(x*y[x])+(1+x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{c_1}{\sqrt{x^2 + 1}}$$

 $y(x) \rightarrow 0$

4.5 problem Recognizable Exact Differential equations. Integrating factors. Example 10.741, page 90

Internal problem ID [4472]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Example 10.741, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class C']]

$$y^{3} + y^{2}x + y + (x^{3} + x^{2}y + x) y' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 118

 $dsolve((y(x)^3+x*y(x)^2+y(x))+(x^3+x^2*y(x)+x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x^4 + 2x^2 + 1}{x \left(\sqrt{\frac{c_1 x^4 + c_1 x^2 - 1}{x^2 (x^2 + 1)}} (x^2 + 1)^{\frac{3}{2}} - x^2 - 1\right)}$$
$$y(x) = -\frac{x^4 + 2x^2 + 1}{x \left(x^2 + \sqrt{\frac{c_1 x^4 + c_1 x^2 - 1}{x^2 (x^2 + 1)}} (x^2 + 1)^{\frac{3}{2}} + 1\right)}$$

Solution by Mathematica

Time used: 3.726 (sec). Leaf size: 114

DSolve[(y[x]^3+x*y[x]^2+y[x])+(x^3+x^2*y[x]+x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> 1

$$y(x) \to -\frac{\sqrt{\frac{1}{x^3}}x(x^2+1)}{\sqrt{\frac{1}{x^3}}x^2 - \sqrt{c_1x^3 - \frac{1}{x} + c_1x}}$$
$$y(x) \to -\frac{\sqrt{\frac{1}{x^3}}x(x^2+1)}{\sqrt{\frac{1}{x^3}}x^2 + \sqrt{c_1x^3 - \frac{1}{x} + c_1x}}$$
$$y(x) \to 0$$

4.6 problem Recognizable Exact Differential equations. Integrating factors. Example 10.781, page 90

Internal problem ID [4473]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Example 10.781, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$3y - xy' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve((3*y(x))-(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 x^3$$

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 16

DSolve[(3*y[x])-(x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x^3$$

 $y(x) \to 0$

4.7 problem Recognizable Exact Differential equations. Integrating factors. Example 10.81, page 90

Internal problem ID [4474]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Example 10.81, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y - 3xy' = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 9

dsolve((y(x))-(3*x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 x^{\frac{1}{3}}$$

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 18

DSolve[(y[x])-(3*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \sqrt[3]{x}$$
$$y(x) \to 0$$

4.8 problem Recognizable Exact Differential equations. Integrating factors. Example 10.83, page 90

Internal problem ID [4475]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Example 10.83, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y(2y^{3}x^{2}+3) + x(y^{3}x^{2}-1)y' = 0$$

Solution by Maple

Time used: 0.046 (sec). Leaf size: 39

dsolve((y(x)*(2*x²*y(x)³+3))+(x*(x²*y(x)³-1))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{e^{-\frac{11c_1}{3}}x^3}{\text{RootOf}\left(11e^{11c_1} Z^{15} - e^{11c_1} Z^{11} + 4x^{11}\right)^5}$$

Solution by Mathematica

Time used: 10.635 (sec). Leaf size: 1081

$$DSolve[(y[x]*(2*x^2*y[x]^3+3))+(x*(x^2*y[x]^3-1))*y'[x]==0,y[x],x,IncludeSingularSolutions]$$

$$\begin{split} y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1^6x^{16} - \#1^4e^{\frac{44e_1}{3}} \\ &+ 292820\#1^3x^{14} + 161051x^{12}x, 1 \right] \\ y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1^6x^{16} - \#1^4e^{\frac{44e_1}{3}} \\ &+ 292820\#1^3x^{14} + 161051x^{12}x, 2 \right] \\ y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1^6x^{16} - \#1^4e^{\frac{44e_1}{3}} \\ &+ 292820\#1^3x^{14} + 161051x^{12}x, 3 \right] \\ y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1^6x^{16} - \#1^4e^{\frac{44e_1}{3}} \\ &+ 292820\#1^3x^{14} + 161051x^{12}x, 4 \right] \\ y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1^6x^{16} - \#1^4e^{\frac{44e_1}{3}} \\ &+ 292820\#1^3x^{14} + 161051x^{12}x, 5 \right] \\ y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1^6x^{16} - \#1^4e^{\frac{44e_1}{3}} \\ &+ 292820\#1^3x^{14} + 161051x^{12}x, 6 \right] \\ y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1^6x^{16} - \#1^4e^{\frac{44e_1}{3}} \\ &+ 292820\#1^3x^{14} + 161051x^{12}x, 7 \right] \\ y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1^6x^{16} - \#1^4e^{\frac{44e_1}{3}} \\ &+ 292820\#1^3x^{14} + 161051x^{12}x, 8 \right] \\ y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1^6x^{16} - \#1^4e^{\frac{44e_1}{3}} \\ &+ 292820\#1^3x^{14} + 161051x^{12}x, 8 \right] \\ y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1^6x^{16} - \#1^4e^{\frac{44e_1}{3}} \\ &+ 292820\#1^3x^{14} + 161051x^{12}x, 9 \right] \\ y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1^6x^{16} - \#1^4e^{\frac{44e_1}{3}} \\ &+ 292820\#1^3x^{14} + 161051x^{12}x, 9 \right] \\ y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1^6x^{16} - \#1^4e^{\frac{44e_1}{3}} \\ &+ 292820\#1^3x^{14} + 161051x^{12}x, 9 \right] \\ y(x) &\to \operatorname{Root} \left[1024\#1^{15}x^{22} + 14080\#1^{12}x^{20} + 77440\#1^9x^{18} + 212960\#1$$

$$+292820 \# 1^3 x^{14} + 161051 x^{12} \&.11$$

4.9 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.1, page 90

Internal problem ID [4476]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.1, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$2yx + \left(x^2 + y^2\right)y' = -x^2$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 417

dsolve((2*x*y(x)+x^2)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)

y(x)

y(x)

✓ Solution by Mathematica

Time used: 23.867 (sec). Leaf size: 597

DSolve[(2*x*y[x]+x^2)+(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\rightarrow \frac{\sqrt[3]{-x^3 + \sqrt{5x^6 - 2e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}{\sqrt[3]{2}}}{\sqrt[3]{2}} - \frac{\sqrt[3]{2}x^2}{\sqrt[3]{-x^3 + \sqrt{5x^6 - 2e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}}{\sqrt[3]{-x^3 + \sqrt{5x^6 - 2e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}}{4\sqrt[3]{-x^3 + \sqrt{5x^6 - 2e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}}{4\sqrt[3]{-x^3 + \sqrt{5x^6 - 2e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}} \\ y(x) &\rightarrow \frac{(1 - i\sqrt{3})x^2}{2^{2/3}\sqrt[3]{-x^3 + \sqrt{5x^6 - 2e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}}{2\sqrt[3]{2}} \\ y(x) &\rightarrow \frac{(1 + i\sqrt{3})\sqrt[3]{-x^3 + \sqrt{5x^6 - 2e^{3c_1}x^3 + e^{6c_1} + e^{3c_1}}}{2\sqrt[3]{2}} \\ y(x) &\rightarrow \frac{2\sqrt[3]{-2x^2 + (-2)^{2/3}}\left(\sqrt{5\sqrt{x^6} - x^3}\right)^{2/3}}{2\sqrt[3]{\sqrt{5}\sqrt{x^6} - x^3}} \\ y(x) &\rightarrow \frac{\left(2\sqrt{5\sqrt{x^6} - 2x^3}\right)^{2/3} - 2\sqrt[3]{2}x^2}{2\sqrt[3]{\sqrt{5}\sqrt{x^6} - x^3}} \\ y(x) &\rightarrow \frac{\sqrt[3]{2}(2 - 2i\sqrt{3})x^2 + (-1 - i\sqrt{3})\left(2\sqrt{5\sqrt{x^6} - 2x^3}\right)^{2/3}}{4\sqrt[3]{\sqrt{5}\sqrt{x^6} - x^3}} \end{split}$$

4.10 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.2, page 90

Internal problem ID [4477]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.2, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$y\cos\left(x\right) + \left(y^3 + \sin\left(x\right)\right)y' = -x^2$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

 $dsolve((x^2+y(x)*cos(x))+(y(x)^3+sin(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$\frac{x^3}{3} + y(x)\sin(x) + \frac{y(x)^4}{4} + c_1 = 0$$

Solution by Mathematica

Time used: 60.198 (sec). Leaf size: 1119

DSolve[(x²+y[x]*Cos[x])+(y[x]³+Sin[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) & \rightarrow \frac{\sqrt{\frac{4x^3 + \left(27 \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}\right)^{2/3 - 12c_1}{\sqrt{\frac{3}{\sqrt{27}} 27 \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}}{\sqrt{6}} \\ & -\frac{1}{2} \sqrt{\frac{-\frac{8(x^3 - 3c_1)}{3\sqrt[3]{27} \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}{\sqrt{5}} - \frac{2}{3}\sqrt[3]{27 \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}}{\sqrt{6}} \\ & y(x) & \rightarrow \frac{\sqrt{\frac{4x^3 + \left(27 \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}\right)^{2/3 - 12c_1}}{\sqrt{5}}}}{\sqrt{6}} \\ & +\frac{1}{2} \sqrt{\frac{-\frac{8(x^3 - 3c_1)}{\sqrt{27} \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}{\sqrt{6}}} - \frac{2}{3}\sqrt[3]{27 \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}}{\sqrt{5}} \\ & y(x) & \rightarrow \frac{\sqrt{\frac{4x^3 + \left(27 \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}\right)^{2/3 - 12c_1}}{\sqrt{3}\sqrt{27} \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}}}{\sqrt{6}} \\ & -\frac{1}{2} \sqrt{-\frac{8(x^3 - 3c_1)}{\sqrt{3}\sqrt{27} \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}}{\sqrt{6}} - \frac{2}{3}\sqrt{27 \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}}} \\ y(x) & \rightarrow \frac{\sqrt{6}}{\sqrt{6}} \\ & -\frac{1}{2} \sqrt{-\frac{8(x^3 - 3c_1)}{\sqrt{3}\sqrt{27} \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}}{\sqrt{6}} - \frac{2}{3}\sqrt{27 \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}} \\ & y(x) & \rightarrow \frac{1}{2} \sqrt{-\frac{8(x^3 - 3c_1)}{\sqrt{3}\sqrt{27} \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}}{\sqrt{70}}} - \frac{2}{3}\sqrt{27 \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}} \\ & \frac{1}{2} \sqrt{-\frac{8(x^3 - 3c_1)}{\sqrt{3}\sqrt{27} \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}{\sqrt{70}}} - \frac{2}{3}\sqrt{27 \sin^2(x) + \sqrt{729 \sin^4(x) - 64(x^3 - 3c_1)^3}}}} \\ & \sqrt{10} \sqrt{10$$

4.11 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.3, page 90

Internal problem ID [4478]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.3, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

$$yy'x + y^2 = -x^2 - x$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

 $dsolve((x^2+y(x)^2+x)+(x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{-18x^4 - 24x^3 + 36c_1}}{6x}$$
$$y(x) = \frac{\sqrt{-18x^4 - 24x^3 + 36c_1}}{6x}$$

✓ Solution by Mathematica

Time used: 0.242 (sec). Leaf size: 60

DSolve[(x²+y[x]²+x)+(x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sqrt{-\frac{x^4}{2} - \frac{2x^3}{3} + c_1}}{x}$$
$$y(x) \to \frac{\sqrt{-\frac{x^4}{2} - \frac{2x^3}{3} + c_1}}{x}$$
4.12 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.4, page 90

Internal problem ID [4479]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.4, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$-2yx + e^{y} + (y - x^{2} + x e^{y}) y' = -x$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve((x-2*x*y(x)+exp(y(x)))+(y(x)-x²+x*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)

$$-y(x) x^{2} + x e^{y(x)} + \frac{x^{2}}{2} + \frac{y(x)^{2}}{2} + c_{1} = 0$$

Solution by Mathematica

Time used: 0.316 (sec). Leaf size: 35

DSolve[(x-2*x*y[x]+**Exp**[y[x]])+(y[x]-x²+x***Exp**[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolution

Solve
$$\left[x^2(-y(x)) + \frac{x^2}{2} + xe^{y(x)} + \frac{y(x)^2}{2} = c_1, y(x)\right]$$

4.13 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.5, page 90

Internal problem ID [4480]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.5, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$e^{x} \sin(y) + e^{-y} - (x e^{-y} - e^{x} \cos(y)) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve((exp(x)*sin(y(x))+exp(-y(x)))-(x*exp(-y(x))-exp(x)*cos(y(x)))*diff(y(x),x)=0,y(x), si

$$e^x \sin(y(x)) + x e^{-y(x)} + c_1 = 0$$

Solution by Mathematica

Time used: 0.377 (sec). Leaf size: 24

DSolve[(Exp[x]*Sin[y[x]]+Exp[-y[x]])-(x*Exp[-y[x]]-Exp[x]*Cos[y[x]])*y'[x]==0,y[x],x,Include

Solve
$$[x(-e^{-y(x)}) - e^x \sin(y(x)) = c_1, y(x)]$$

4.14 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.6, page 90

Internal problem ID [4481]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.6, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$-y^{2} - y - \left(x^{2} - y^{2} - x\right)y' = -x^{2}$$

Solution by Maple

Time used: 0.125 (sec). Leaf size: 28

 $dsolve((x^2-y(x)^2-y(x))-(x^2-y(x)^2-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$-2y(x) + \ln(x + y(x)) - \ln(y(x) - x) + 2x - c_1 = 0$$

Solution by Mathematica

Time used: 0.242 (sec). Leaf size: 32

DSolve[(x^2-y[x]^2-y[x])-(x^2-y[x]^2-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[-\frac{e^{2x-2y(x)}(y(x)+x)}{2(x-y(x))} = c_1, y(x)\right]$$

4.15 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.7, page 90

Internal problem ID [4482]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.7, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational]

$$y^2 x^4 - y + (y^4 x^2 - x) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $dsolve((x^4*y(x)^2-y(x))+(x^2*y(x)^4-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$-\frac{x^{3}}{3} - \frac{1}{xy(x)} - \frac{y(x)^{3}}{3} + c_{1} = 0$$

Solution by Mathematica

Time used: 60.131 (sec). Leaf size: 1507

$$\begin{split} y(x) \\ & \rightarrow \frac{1}{4} \left(\sqrt{2} \sqrt{\frac{8\sqrt[3]{2}x + 2^{2/3} \left(x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}\right)^{2/3}}{x\sqrt[3]{x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}}} - \frac{2\sqrt{2} \left(x^3 - 3c_1\right)}{\sqrt{\frac{8\sqrt[3]{2}x + 2^{2/3} \left(x^4 - 3c_1 x\right)^2 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}\right)}{\sqrt[3]{2}x}} - \frac{2\sqrt{2} \left(x^3 - 3c_1\right)}{\sqrt{\frac{8\sqrt[3]{2}x + 2^{2/3} \left(x^4 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}\right)}{\sqrt{\frac{8\sqrt[3]{2}x + 2^{2/3} \left(x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}\right)}{\sqrt[3]{x\sqrt[3]{x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}\right)}}} - \frac{2\sqrt{2} \left(x^3 - 3c_1\right)}{\sqrt{\frac{8\sqrt[3]{2}x + 2^{2/3} \left(x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}\right)}{\sqrt[3]{x\sqrt[3]{x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}\right)}}} - \frac{2\sqrt{2} \left(x^3 - 3c_1\right)}{\sqrt{\frac{8\sqrt[3]{2}x + 2^{2/3} \left(x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}\right)}\right)}{\sqrt[3]{x\sqrt[3]{x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}\right)}}} - \frac{2\sqrt{2} \left(x^3 - 3c_1\right)}{\sqrt[3]{x\sqrt[3]{x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}\right)}} - \frac{2\sqrt{2} \left(x^4 - 3c_1 x\right)^2 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}} - \frac{2\sqrt{2} \left(x^3 - 3c_1\right)}{\sqrt[3]{x\sqrt[3]{x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}\right)}} - 2\sqrt{\frac{\sqrt[3]{x\sqrt[3]{x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}}}}{\sqrt[3]{x\sqrt[3]{x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}\right)}}}} - 2\sqrt{\frac{\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}}}}}{\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}}}}}}} - 2\sqrt{\frac{\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x^9 - 6c_1 x^6 + 9c_1^2 x^3 + \sqrt{x^2 \left(-256x + \left(x^4 - 3c_1 x\right)^4\right)}}}}}}}{\sqrt[3]{x\sqrt[3]{$$

4.16 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.8, page 90

Internal problem ID [4483]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.8, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y(2x+y^3) - x(2x-y^3) y' = 0$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 420

dsolve((y(x)*(2*x+y(x)^3))-(x*(2*x-y(x)^3))*diff(y(x),x)=0,y(x), singsol=all)

$$\begin{split} y(x) &= \frac{\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}}{6x} \\ &+ \frac{2c_1^2}{3x\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}}{12x} + \frac{c_1}{3x} \\ y(x) &= -\frac{\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}}{12x} \\ &- \frac{c_1^2}{3x\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}}{12x} - \frac{c_1^2}{3x\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}} - \frac{2c_1^2}{3x\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}}{2} \\ y(x) &= -\frac{\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}}{12x} \\ &- \frac{c_1^2}{3x\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}}{12x} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}}{6x} - \frac{2c_1^2}{3x\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}} - \frac{2c_1^2}{3x\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}}{2} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}}{6x} - \frac{2c_1^2}{3x\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}} - \frac{2c_1^2}{3x\left(-108x^4 + 8c_1^3 + 12\sqrt{81x^4 - 12c_1^3}x^2\right)^{\frac{1}{3}}}{2} \\ \end{array}$$

Solution by Mathematica

Time used: 11.386 (sec). Leaf size: 371

$$\begin{split} y(x) &\to \\ & - \frac{\frac{2\sqrt[3]{2}c_{1}^{2}}{\sqrt[3]{27x^{4} + 3\sqrt{81x^{8} + 12c_{1}^{3}x^{4}} + 2c_{1}^{3}}}{6x} + \frac{2^{2/3}\sqrt[3]{27x^{4} + 3\sqrt{81x^{8} + 12c_{1}^{3}x^{4}} + 2c_{1}^{3}}}{6x} + \frac{2^{3\sqrt[3]{2}(1 + i\sqrt{3})c_{1}^{2}}}{\sqrt[3]{27x^{4} + 3\sqrt{81x^{8} + 12c_{1}^{3}x^{4}} + 2c_{1}^{3}}} + 2^{2/3}(1 - i\sqrt{3})\sqrt[3]{27x^{4} + 3\sqrt{81x^{8} + 12c_{1}^{3}x^{4}} + 2c_{1}^{3}} - 4c_{1}}{12x} \\ & \to \frac{2\sqrt[3]{2}(1 - i\sqrt{3})c_{1}^{2}}}{\sqrt[3]{27x^{4} + 3\sqrt{81x^{8} + 12c_{1}^{3}x^{4}} + 2c_{1}^{3}}} + 2^{2/3}(1 + i\sqrt{3})\sqrt[3]{27x^{4} + 3\sqrt{81x^{8} + 12c_{1}^{3}x^{4}} + 2c_{1}^{3}} - 4c_{1}}{12x} \end{split}$$

 $y(x) \to 0$

4.17 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.9, page 90

Internal problem ID [4484]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.9, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact]

$$\arctan\left(yx\right) + \frac{yx - 2y^2x}{1 + x^2y^2} + \frac{\left(x^2 - 2x^2y\right)y'}{1 + x^2y^2} = 0$$

Solution by Maple

Time used: 0.093 (sec). Leaf size: 24

 $dsolve((arctan(x*y(x))+(x*y(x)-2*x*y(x)^2)/(1+x^2*y(x)^2))+((x^2-2*x^2*y(x))/(1+x^2*y(x)^2))$

$$y(x) = \frac{\tan\left(\operatorname{RootOf}\left(\underline{Zx} - \ln\left(\tan\left(\underline{Z}\right)^2 + 1\right) + c_1\right)\right)}{x}$$

Solution by Mathematica

Time used: 0.173 (sec). Leaf size: 26

 $DSolve[(ArcTan[x*y[x]]+(x*y[x]-2*x*y[x]^2)/(1+x^2*y[x]^2))+((x^2-2*x^2*y[x])/(1+x^2*y[x]^2))$

Solve $\left[\log \left(x^2 y(x)^2 + 1 \right) - x \arctan(xy(x)) = c_1, y(x) \right]$

4.18 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.10, page 90

Internal problem ID [4485]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.10, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type $[`y=_G(x,y')']$

$$(y e^y - x e^x) y' = -e^x(x+1)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve((exp(x)*(x+1))+(y(x)*exp(y(x))-x*exp(x))*diff(y(x),x)=0,y(x), singsol=all)

$$x e^{-y(x)+x} + \frac{y(x)^2}{2} + c_1 = 0$$

Solution by Mathematica

Time used: 0.291 (sec). Leaf size: 26

DSolve[(Exp[x]*(x+1))+(y[x]*Exp[y[x]]-x*Exp[x])*y'[x]==0,y[x],x,IncludeSingularSolutions ->

Solve
$$\left[-\frac{1}{2}y(x)^2 - xe^{x-y(x)} = c_1, y(x)\right]$$

4.19 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.11, page 90

Internal problem ID [4486]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.11, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _exact, _rational, [_Abel, '2nd ty

$$\frac{yx+1}{y} + \frac{(-x+2y)y'}{y^2} = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

dsolve(((x*y(x)+1)/y(x))+((2*y(x)-x)/y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -rac{x}{2 \operatorname{LambertW}\left(-rac{\mathrm{e}^{rac{x^2}{4}}c_1x}{2}
ight)}$$

Solution by Mathematica

Time used: 3.618 (sec). Leaf size: 37

DSolve[((x*y[x]+1)/y[x])+((2*y[x]-x)/y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> Tru

$$egin{aligned} y(x) &
ightarrow -rac{x}{2W\left(-rac{1}{2}xe^{rac{1}{4}(x^2-2c_1)}
ight)} \ y(x) &
ightarrow 0 \end{aligned}$$

4.20 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.12, page 90

Internal problem ID [4487]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.12, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y^{2} - 3yx + (yx - x^{2})y' = 2x^{2}$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 59

dsolve((y(x)^2-3*x*y(x)-2*x^2)+(x*y(x)-x^2)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{c_1 x^2 - \sqrt{2c_1^2 x^4 + 1}}{c_1 x}$$
$$y(x) = \frac{c_1 x^2 + \sqrt{2c_1^2 x^4 + 1}}{c_1 x}$$

Solution by Mathematica

Time used: 0.657 (sec). Leaf size: 99

DSolve[(y[x]^2-3*x*y[x]-2*x^2)+(x*y[x]-x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow x - \frac{\sqrt{2x^4 + e^{2c_1}}}{x}$$
$$y(x) \rightarrow x + \frac{\sqrt{2x^4 + e^{2c_1}}}{x}$$
$$y(x) \rightarrow x - \frac{\sqrt{2}\sqrt{x^4}}{x}$$
$$y(x) \rightarrow \frac{\sqrt{2}\sqrt{x^4}}{x} + x$$

4.21 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.13, page 90

Internal problem ID [4488]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.13, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class B']]

(1+2x+y) y - x(-1+x+2y) y' = 0

Solution by Maple

Time used: 0.0 (sec). Leaf size: 493

dsolve((y(x)*(y(x)+2*x+1))-(x*(2*y(x)+x-1))*diff(y(x),x)=0,y(x), singsol=all)

$$\begin{split} y(x) &= \frac{35^{\frac{1}{3}} \left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}{40c_{1}} \\ &+ \frac{3x5^{\frac{2}{3}}}{40 \left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}} + x-1 \\ y(x) &= -\frac{35^{\frac{1}{3}} \left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}{80c_{1}} \\ &- \frac{3x5^{\frac{2}{3}}}{80 \left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}} + x-1 \\ &\frac{i\sqrt{3} \left(\frac{35^{\frac{1}{3}} \left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}{40c_{1}} - \frac{3x5^{\frac{2}{3}}}{40c_{1}} - \frac{3x5^{\frac{2}{3}}}{40c_{1}} - \frac{3x5^{\frac{2}{3}}}{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}} +20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}{2} \\ y(x) &= -\frac{35^{\frac{1}{3}} \left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}{80c_{1}} - \frac{3x5^{\frac{2}{3}}}{80\left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}{80c_{1}} + x-1 \\ &\frac{i\sqrt{3} \left(\frac{35^{\frac{1}{3} \left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}{40c_{1}} - \frac{3x5^{\frac{2}{3}}}{40c_{1}\left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}{40\left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}} + x-1 \\ &\frac{i\sqrt{3} \left(\frac{35^{\frac{1}{3} \left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}{40c_{1}} - \frac{3x5^{\frac{2}{3}}}{40c_{1}\left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}}{40\left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}}} - \frac{3x5^{\frac{2}{3}}}{40c_{1}\left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}}{40\left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}} - \frac{3x5^{\frac{2}{3}}}{40\left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{\frac{1}{3}}}}{40\left(x \left(\sqrt{5}\sqrt{\frac{80c_{1}x^{2}-160c_{1}x+80c_{1}-x}{c_{1}}}+20x-20\right)c_{1}^{2}\right)^{$$

Solution by Mathematica

Time used: 41.715 (sec). Leaf size: 463

$$\begin{split} y(x) &\to -\frac{\sqrt[3]{2}x}{\sqrt[3]{-27c_1^2x^2 + \sqrt{108c_1^3x^3 + (27c_1^2x - 27c_1^2x^2)^2 + 27c_1^2x}}}{+\frac{\sqrt[3]{-27c_1^2x^2 + \sqrt{108c_1^3x^3 + (27c_1^2x - 27c_1^2x^2)^2 + 27c_1^2x}}}{3\sqrt[3]{2c_1}} + x - 1 \\ y(x) &\to \frac{(1 + i\sqrt{3})x}{2^{2/3}\sqrt[3]{-27c_1^2x^2 + \sqrt{108c_1^3x^3 + (27c_1^2x - 27c_1^2x^2)^2 + 27c_1^2x}}}{-\frac{(1 - i\sqrt{3})\sqrt[3]{-27c_1^2x^2 + \sqrt{108c_1^3x^3 + (27c_1^2x - 27c_1^2x^2)^2 + 27c_1^2x}}}{6\sqrt[3]{2c_1}} + x - 1 \\ y(x) &\to \frac{(1 - i\sqrt{3})x}{2^{2/3}\sqrt[3]{-27c_1^2x^2 + \sqrt{108c_1^3x^3 + (27c_1^2x - 27c_1^2x^2)^2 + 27c_1^2x}}}{6\sqrt[3]{2c_1}} + x - 1 \\ \frac{y(x) \to \frac{(1 - i\sqrt{3})\sqrt[3]{-27c_1^2x^2 + \sqrt{108c_1^3x^3 + (27c_1^2x - 27c_1^2x^2)^2 + 27c_1^2x}}}{6\sqrt[3]{2c_1}} + x - 1 \\ y(x) \to \frac{(1 - i\sqrt{3})x}{2^{2/3}\sqrt[3]{-27c_1^2x^2 + \sqrt{108c_1^3x^3 + (27c_1^2x - 27c_1^2x^2)^2 + 27c_1^2x}}}{6\sqrt[3]{2c_1}} + x - 1 \\ y(x) \to \frac{(1 + i\sqrt{3})\sqrt[3]{-27c_1^2x^2 + \sqrt{108c_1^3x^3 + (27c_1^2x - 27c_1^2x^2)^2 + 27c_1^2x}}}{6\sqrt[3]{2c_1}} + x - 1 \\ y(x) \to \frac{(1 + i\sqrt{3})\sqrt[3]{-27c_1^2x^2 + \sqrt{108c_1^3x^3 + (27c_1^2x - 27c_1^2x^2)^2 + 27c_1^2x}}}{6\sqrt[3]{2c_1}} + x - 1 \\ y(x) \to \frac{(1 + i\sqrt{3})\sqrt[3]{-27c_1^2x^2 + \sqrt{108c_1^3x^3 + (27c_1^2x - 27c_1^2x^2)^2 + 27c_1^2x}}}}{-\frac{(1 + i\sqrt{3})\sqrt[3]{-27c_1^2x^2 + \sqrt{108c_1^3x^3 + (27c_1^2x - 27c_1^2x^2)^2 + 27c_1^2x}}}{6\sqrt[3]{2c_1}} + x - 1 \\ \end{bmatrix}$$

 $y(x) \rightarrow$ Indeterminate $y(x) \rightarrow x - 1$

4.22 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.14, page 90

Internal problem ID [4489]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.14, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class B']]

$$y(2x - y - 1) + x(-1 - x + 2y) y' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 499

dsolve((y(x)*(2*x-y(x)-1))+(x*(2*y(x)-x-1))*diff(y(x),x)=0,y(x), singsol=all)

Solution by Mathematica

Time used: 40.285 (sec). Leaf size: 471

$$\begin{split} y(x) &\to -\frac{\sqrt[3]{2}x}{\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-\frac{\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}{-3\sqrt[3]{2c_1}} - x - 1 \\ y(x) &\to \frac{(1 + i\sqrt{3})x}{2^{2/3}\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{+\frac{(1 - i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-6\sqrt[3]{2c_1}} - x - 1 \\ y(x) &\to \frac{(1 - i\sqrt{3})x}{2^{2/3}\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3})\sqrt[3]{27c_1^2x^2 + \sqrt{(27c_1^2x^2 + 27c_1^2x)^2 - 108c_1^3x^3 + 27c_1^2x}}}{-x - 1} \\ &+ \frac{(1 + i\sqrt{3}$$

 $y(x) \rightarrow$ Indeterminate $y(x) \rightarrow -x - 1$

4.23 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.15, page 90

Internal problem ID [4490]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.15, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact, _rational, [_Abel, '2nd ty

$$y^{2} + 12x^{2}y + (2yx + 4x^{3})y' = 0$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 50

dsolve((y(x)^2+12*x^2*y(x))+(2*x*y(x)+4*x^3)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{-2x^3 + \sqrt{4x^6 + c_1 x}}{x}$$
$$y(x) = -\frac{2x^3 + \sqrt{4x^6 + c_1 x}}{x}$$

Solution by Mathematica

Time used: 0.431 (sec). Leaf size: 58

DSolve[(y[x]^2+12*x^2*y[x])+(2*x*y[x]+4*x^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> Tru

$$y(x) \to -\frac{2x^3 + \sqrt{x(4x^5 + c_1)}}{x}$$
$$y(x) \to \frac{-2x^3 + \sqrt{x(4x^5 + c_1)}}{x}$$

4.24 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.16, page 90

Internal problem ID [4491]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.16, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$3(x+y)^2 + x(2x+3y) y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 63

dsolve((3*(y(x)+x)^2)+(x*(3*y(x)+2*x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = rac{-rac{2c_1x^2}{3} - rac{\sqrt{-2c_1^2x^4 + 6}}{6}}{c_1x}$$
 $y(x) = rac{-rac{2c_1x^2}{3} + rac{\sqrt{-2c_1^2x^4 + 6}}{6}}{c_1x}$

✓ Solution by Mathematica

Time used: 1.741 (sec). Leaf size: 135

DSolve[(3*(y[x]+x)^2)+(x*(3*y[x]+2*x))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to -\frac{4x^2 + \sqrt{-2x^4 + 6e^{4c_1}}}{6x} \\ y(x) &\to \frac{-4x^2 + \sqrt{-2x^4 + 6e^{4c_1}}}{6x} \\ y(x) &\to -\frac{\sqrt{2}\sqrt{-x^4} + 4x^2}{6x} \\ y(x) &\to \frac{\sqrt{2}\sqrt{-x^4} - 4x^2}{6x} \\ \end{split}$$

4.25 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.17, page 90

Internal problem ID [4492]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.17, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational]

$$y - \left(x + x^2 + y^2\right)y' = 0$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 30

 $dsolve((y(x))-(y(x)^2+x^2+x)*diff(y(x),x)=0,y(x), singsol=all)$

$$c_1 + \frac{e^{-2iy(x)}(ix+y(x))}{2iy(x)+2x} = 0$$

✓ Solution by Mathematica

Time used: 0.102 (sec). Leaf size: 18

DSolve[(y[x])-(y[x]^2+x^2+x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\operatorname{Solve}\left[y(x) - \arctan\left(rac{x}{y(x)}
ight) = c_1, y(x)
ight]$$

4.26 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.18, page 90

Internal problem ID [4493]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.18, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]

 $2yx + \left(a + x^2 + y^2\right)y' = 0$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 470

dsolve((2*x*y(x))+(x^2+y(x)^2+a)*diff(y(x),x)=0,y(x), singsol=all)

$$\begin{split} y(x) &= \frac{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} \\ &- \frac{2(x^2 + a)}{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ y(x) &= -\frac{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{4} \\ &+ \frac{x^2 + a}{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &- \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} \\ y(x) &= -\frac{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{4} \\ &+ \frac{x^2 + a}{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2x^2 + 2a}{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2x^2 + 2a}{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2x^2 + 2a}{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2x^2 + 2a}{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2x^2 + 2a}{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2x^2 + 2a}{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4x^6 + 12a x^4 + 12a^2 x^2 + 4a^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{i\sqrt{3}\left(\frac{1}{2}\right)^{\frac{1}{3}} + \frac{i\sqrt{3}\left(\frac{1}{2}\right)^{\frac{1}{3}} + \frac{i\sqrt{3}\left(\frac{1}{2}\right)^{\frac{1}{3}} + \frac{i\sqrt{3}\left(\frac{1}{2}\right)^{\frac{1}{3}}$$

✓ Solution by Mathematica

Time used: 4.319 (sec). Leaf size: 299

DSolve[(2*x*y[x])+(x^2+y[x]^2+a)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \frac{\sqrt[3]{2} \left(\sqrt{4 \left(a+x^2\right)^3 + 9 c_1{}^2} + 3 c_1 \right)^{2/3} - 2a - 2x^2}{2^{2/3} \sqrt[3]{\sqrt{4 \left(a+x^2\right)^3 + 9 c_1{}^2} + 3 c_1}} \\ y(x) &\to \frac{\left(1+i\sqrt{3}\right) \left(a+x^2\right)}{2^{2/3} \sqrt[3]{\sqrt{4 \left(a+x^2\right)^3 + 9 c_1{}^2} + 3 c_1}} + \frac{i\left(\sqrt{3}+i\right) \sqrt[3]{\sqrt{4 \left(a+x^2\right)^3 + 9 c_1{}^2} + 3 c_1}}{2\sqrt[3]{2}} \\ y(x) &\to \frac{\left(1-i\sqrt{3}\right) \left(a+x^2\right)}{2^{2/3} \sqrt[3]{\sqrt{4 \left(a+x^2\right)^3 + 9 c_1{}^2} + 3 c_1}} - \frac{i\left(\sqrt{3}-i\right) \sqrt[3]{\sqrt{4 \left(a+x^2\right)^3 + 9 c_1{}^2} + 3 c_1}}{2\sqrt[3]{2}} \\ y(x) &\to 0 \end{split}$$

4.27 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.19, page 90

Internal problem ID [4494]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number: Recognizable Exact Differential equations. Integrating factors. Exercise 10.19, page 90.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$2yx + \left(a + x^2 + y^2\right)y' = -x^2 - b$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 810

dsolve((2*x*y(x)+x^2+b)+(y(x)^2+x^2+a)*diff(y(x),x)=0,y(x), singsol=all)

$$\begin{split} y(x) \\ &= \frac{\left(-4x^3 - 12xb - 12c_1 + 4\sqrt{5x^6 + 12a\,x^4 + 6b\,x^4 + 12a^2x^2 + 9b^2x^2 + 6c_1x^3 + 4a^3 + 18bc_1x + 9c_1^2}\right)^{\frac{1}{3}}{2} \\ &- \frac{2(x^2 + a)}{\left(-4x^3 - 12xb - 12c_1 + 4\sqrt{5x^6 + 12a\,x^4 + 6b\,x^4 + 12a^2x^2 + 9b^2x^2 + 6c_1x^3 + 4a^3 + 18bc_1x + 9c_1^2}\right)^{\frac{1}{3}}}{y(x)} = \\ &- \frac{\left(-4x^3 - 12xb - 12c_1 + 4\sqrt{5x^6 + 12a\,x^4 + 6b\,x^4 + 12a^2x^2 + 9b^2x^2 + 6c_1x^3 + 4a^3 + 18bc_1x + 9c_1^2}\right)^{\frac{1}{3}}}{4} \\ &+ \frac{4x^2 + a}{\left(-4x^3 - 12xb - 12c_1 + 4\sqrt{5x^6 + 12a\,x^4 + 6b\,x^4 + 12a^2x^2 + 9b^2x^2 + 6c_1x^3 + 4a^3 + 18bc_1x + 9c_1^2}\right)^{\frac{1}{3}}}}{2} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-4x^3 - 12xb - 12c_1 + 4\sqrt{5x^6 + 12a\,x^4 + 6b\,x^4 + 12a^2x^2 + 9b^2x^2 + 6c_1x^3 + 4a^3 + 18bc_1x + 9c_1^2}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{\left(-4x^3 - 12xb - 12c_1 + 4\sqrt{5x^6 + 12a\,x^4 + 6b\,x^4 + 12a^2x^2 + 9b^2x^2 + 6c_1x^3 + 4a^3 + 18bc_1x + 9c_1^2}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{\left(-4x^3 - 12xb - 12c_1 + 4\sqrt{5x^6 + 12a\,x^4 + 6b\,x^4 + 12a^2x^2 + 9b^2x^2 + 6c_1x^3 + 4a^3 + 18bc_1x + 9c_1^2}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{4x^2 + a}{\left(-4x^3 - 12xb - 12c_1 + 4\sqrt{5x^6 + 12a\,x^4 + 6b\,x^4 + 12a^2x^2 + 9b^2x^2 + 6c_1x^3 + 4a^3 + 18bc_1x + 9c_1^2}\right)^{\frac{1}{3}}}{4} \\ &+ \frac{4x^2 + a}{\left(-4x^3 - 12xb - 12c_1 + 4\sqrt{5x^6 + 12a\,x^4 + 6b\,x^4 + 12a^2x^2 + 9b^2x^2 + 6c_1x^3 + 4a^3 + 18bc_1x + 9c_1^2}\right)^{\frac{1}{3}}}{4} \\ &+ \frac{4x^2 + a}{\left(-4x^3 - 12xb - 12c_1 + 4\sqrt{5x^6 + 12a\,x^4 + 6b\,x^4 + 12a^2x^2 + 9b^2x^2 + 6c_1x^3 + 4a^3 + 18bc_1x + 9c_1^2}\right)^{\frac{1}{3}}}{4} \\ &+ \frac{4x^3 + 4x^2 + a}{\left(-4x^3 - 12xb - 12c_1 + 4\sqrt{5x^6 + 12a\,x^4 + 6b\,x^4 + 12a^2x^2 + 9b^2x^2 + 6c_1x^3 + 4a^3 + 18bc_1x + 9c_1^2}\right)^{\frac{1}{3}}}{4} \\ &+ \frac{4x^3 + 4x^2 + a}{\left(-4x^3 - 12xb - 12c_1 + 4\sqrt{5x^6 + 12a\,x^4 + 6b\,x^4 + 12a^2x^2 + 9b^2x^2 + 6c_1x^3 + 4a^3 + 18bc_1x + 9c_1^2}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{4x^3 + 4x^2 + 4x^2$$

Solution by Mathematica

Time used: 6.558 (sec). Leaf size: 396

DSolve[(2*x*y[x]+x^2+b)+(y[x]^2+x^2+a)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \frac{\sqrt[3]{2} \left(\sqrt{4\left(a+x^2\right)^3 + (3bx+x^3-3c_1)^2} - 3bx-x^3+3c_1\right)^{2/3} - 2a - 2x^2}}{2^{2/3} \sqrt[3]{\sqrt{4\left(a+x^2\right)^3 + (3bx+x^3-3c_1)^2} - 3bx-x^3+3c_1}} \\ y(x) &\to \frac{\left(1+i\sqrt{3}\right)\left(a+x^2\right)}{2^{2/3} \sqrt[3]{\sqrt{4\left(a+x^2\right)^3 + (3bx+x^3-3c_1)^2} - 3bx-x^3+3c_1}} \\ &+ \frac{i(\sqrt{3}+i) \sqrt[3]{\sqrt{4\left(a+x^2\right)^3 + (3bx+x^3-3c_1)^2} - 3bx-x^3+3c_1}}{2\sqrt[3]{2}} \\ y(x) &\to \frac{\left(1-i\sqrt{3}\right)\left(a+x^2\right)}{2^{2/3} \sqrt[3]{\sqrt{4\left(a+x^2\right)^3 + (3bx+x^3-3c_1)^2} - 3bx-x^3+3c_1}} \\ &- \frac{i(\sqrt{3}-i) \sqrt[3]{\sqrt{4\left(a+x^2\right)^3 + (3bx+x^3-3c_1)^2} - 3bx-x^3+3c_1}}{2\sqrt[3]{2}} \end{split}$$

5	Chapter 2. Special types of differential equations
	of the first kind. Lesson 11, Bernoulli Equations
5.1	problem Exercise 11.1, page 97 102
5.2	problem Exercise 11.2, page 97
5.3	problem Exercise 11.3, page 97
5.4	problem Exercise 11.4, page 97
5.5	problem Exercise 11.5, page 97 106
5.6	problem Exercise 11.6, page 97
5.7	problem Exercise 11.7, page 97
5.8	problem Exercise 11.8, page 97
5.9	problem Exercise 11.9, page 97
5.10	problem Exercise 11.11, page 97
5.11	problem Exercise 11.12, page 97
5.12	problem Exercise 11.11, page 97
5.13	problem Exercise 11.14, page 97
5.14	problem Exercise 11.15, page 97
5.15	problem Exercise 11.16, page 97
5.16	problem Exercise 11.17, page 97
5.17	problem Exercise 11.18, page 97
5.18	problem Exercise 11.19, page 97
5.19	problem Exercise 11.20, page 97
5.20	problem Exercise 11.21, page 97
5.21	problem Exercise 11.22, page 97
5.22	problem Exercise 11.23, page 97
5.23	problem Exercise 11.24, page 97
5.24	problem Exercise 11.26, page 97
5.25	problem Exercise 11.27, page 97
5.26	problem Exercise 11.28, page 97
5.27	problem Exercise 11.29, page 97

5.1 problem Exercise 11.1, page 97

Internal problem ID [4495]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.1, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$xy' + y = x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x*diff(y(x),x)+y(x)=x^3,y(x), singsol=all)$

$$y(x)=rac{rac{x^4}{4}+c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 19

DSolve[x*y'[x]+y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^3}{4} + \frac{c_1}{x}$$

5.2 problem Exercise 11.2, page 97

Internal problem ID [4496]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.2, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + ay = b$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x)+a*y(x)=b,y(x), singsol=all)

$$y(x) = \frac{b}{a} + e^{-ax}c_1$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 29

DSolve[y'[x]+a*y[x]==b,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{b}{a} + c_1 e^{-ax}$$

 $y(x) \rightarrow \frac{b}{a}$

5.3 problem Exercise 11.3, page 97

Internal problem ID [4497]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.3, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$xy' + y - y^2 \ln\left(x\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(x*diff(y(x),x)+y(x)=y(x)^2*ln(x),y(x), singsol=all)$

$$y(x) = \frac{1}{1 + c_1 x + \ln(x)}$$

✓ Solution by Mathematica

Time used: 0.143 (sec). Leaf size: 20

DSolve[x*y'[x]+y[x]==y[x]^2*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow rac{1}{\log(x) + c_1 x + 1}$$

 $y(x) \rightarrow 0$

5.4 problem Exercise 11.4, page 97

Internal problem ID [4498]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.4, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' + 2yx = e^{-y^2}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(x(y),y)+2*y*x(y)=exp(-y^2),x(y), singsol=all)$

$$x(y) = (y + c_1) e^{-y^2}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 17

DSolve[x'[y]+2*y*x[y]==Exp[-y^2],x[y],y,IncludeSingularSolutions -> True]

$$x(y) \to e^{-y^2}(y+c_1)$$

5.5 problem Exercise 11.5, page 97

Internal problem ID [4499]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.5, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$r' - \left(r + \mathrm{e}^{- heta}
ight) an\left(heta
ight) = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(r(theta),theta)=(r(theta)+exp(-theta))*tan(theta),r(theta), singsol=all)

$$r(\theta) = \frac{c_1}{\cos(\theta)} - \frac{e^{-\theta}(\cos(\theta) + \sin(\theta))}{2\cos(\theta)}$$

✓ Solution by Mathematica

Time used: 0.093 (sec). Leaf size: 24

DSolve[r'[\[Theta]]==(r[\[Theta]]+Exp[-\[Theta]])*Tan[\[Theta]],r[\[Theta]],\[Theta],Include

$$r(\theta) \rightarrow -\frac{1}{2}e^{- heta}(\tan(\theta) + 1) + c_1 \sec(\theta)$$

5.6 problem Exercise 11.6, page 97

Internal problem ID [4500]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.6, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{2xy}{x^2 + 1} = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)-(2*x*y(x))/(x^2+1)=1,y(x), singsol=all)$

$$y(x) = \left(\arctan\left(x\right) + c_1\right)\left(x^2 + 1\right)$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 16

DSolve[y'[x]-2*x*y[x]/(x^2+1)==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (x^2 + 1) (\arctan(x) + c_1)$$
5.7 problem Exercise 11.7, page 97

Internal problem ID [4501]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.7, page 97. **ODE order**: 1. **ODE degree**: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + y - y^3 x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

 $dsolve(diff(y(x),x)+y(x)=x*y(x)^3,y(x), singsol=all)$

$$y(x) = -\frac{2}{\sqrt{2 + 4c_1 e^{2x} + 4x}}$$
$$y(x) = \frac{2}{\sqrt{2 + 4c_1 e^{2x} + 4x}}$$

Solution by Mathematica

Time used: 2.606 (sec). Leaf size: 50

DSolve[y'[x]+y[x]==x*y[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{1}{\sqrt{x+c_1e^{2x}+\frac{1}{2}}}$$
$$y(x) \rightarrow \frac{1}{\sqrt{x+c_1e^{2x}+\frac{1}{2}}}$$
$$y(x) \rightarrow 0$$

5.8 problem Exercise 11.8, page 97

Internal problem ID [4502]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.8, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

$$\left(-x^3+1
ight)y'-2(x+1)\,y-y^{\frac{5}{2}}=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

 $dsolve((1-x^3)*diff(y(x),x)-2*(1+x)*y(x)=y(x)^{(5/2)},y(x), singsol=all)$

$$-\frac{c_{1}}{\frac{x^{2}}{(x-1)^{2}}+\frac{x}{(x-1)^{2}}+\frac{1}{(x-1)^{2}}}+\frac{1}{y(x)^{\frac{3}{2}}}+\frac{3}{4(x^{2}+x+1)}=0$$

Solution by Mathematica

Time used: 3.024 (sec). Leaf size: 41

DSolve[(1-x^3)*y'[x]-2*(1+x)*y[x]==y[x]^(5/2),y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{2\sqrt[3]{2}}{\left(rac{-3+4c_1(x-1)^2}{x^2+x+1}
ight)^{2/3}}$$

 $y(x)
ightarrow 0$

5.9 problem Exercise 11.9, page 97

Internal problem ID [4503]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.9, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$\tan\left(\theta\right)r'-r=\tan\left(\theta\right)^{2}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(tan(theta)*diff(r(theta),theta)-r(theta)=tan(theta)^2,r(theta), singsol=all)

$$r(\theta) = (\ln (\sec (\theta) + \tan (\theta)) + c_1) \sin (\theta)$$

Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 14

DSolve[Tan[\[Theta]]*r'[\[Theta]]-r[\[Theta]]==Tan[\[Theta]]^2,r[\[Theta]],\[Theta],IncludeS

$$r(\theta) \to \sin(\theta) \left(\coth^{-1}(\sin(\theta)) + c_1 \right)$$

5.10 problem Exercise 11.11, page 97

Internal problem ID [4504]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.11, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = 3 \operatorname{e}^{-2x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve(diff(y(x),x)+2*y(x)=3*exp(-2*x),y(x), singsol=all)

$$y(x) = (3x + c_1) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 17

DSolve[y'[x]+2*y[x]==3*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x}(3x + c_1)$$

5.11 problem Exercise 11.12, page 97

Internal problem ID [4505]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.12, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = \frac{3 \operatorname{e}^{-2x}}{4}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)+2*y(x)=3/4*exp(-2*x),y(x), singsol=all)

$$y(x) = \left(rac{3x}{4} + c_1
ight) \mathrm{e}^{-2x}$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 22

DSolve[y'[x]+2*y[x]==3/4*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}e^{-2x}(3x+4c_1)$$

5.12 problem Exercise 11.11, page 97

Internal problem ID [4506]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.11, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = \sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x)+2*y(x)=sin(x),y(x), singsol=all)

$$y(x) = -\frac{\cos(x)}{5} + \frac{2\sin(x)}{5} + c_1 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 26

DSolve[y'[x]+2*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{2\sin(x)}{5} - rac{\cos(x)}{5} + c_1 e^{-2x}$$

5.13 problem Exercise 11.14, page 97

Internal problem ID [4507]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.14, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y\cos\left(x\right) = e^{2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x)+y(x)*cos(x)=exp(2*x),y(x), singsol=all)

$$y(x) = \left(\int e^{2x+\sin(x)}dx + c_1\right)e^{-\sin(x)}$$

✓ Solution by Mathematica

Time used: 0.735 (sec). Leaf size: 32

DSolve[y'[x]+y[x]*Cos[x]==Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-\sin(x)} \left(\int_{1}^{x} e^{2K[1] + \sin(K[1])} dK[1] + c_1 \right)$$

5.14 problem Exercise 11.15, page 97

Internal problem ID [4508]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.15, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y\cos\left(x\right) = \frac{\sin\left(2x\right)}{2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x)+y(x)*cos(x)=1/2*sin(2*x),y(x), singsol=all)

$$y(x) = \sin(x) - 1 + e^{-\sin(x)}c_1$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 18

DSolve[y'[x]+y[x]*Cos[x]==1/2*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x) + c_1 e^{-\sin(x)} - 1$$

5.15 problem Exercise 11.16, page 97

Internal problem ID [4509]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.16, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$xy' + y = x\sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(x*diff(y(x),x)+y(x)=x*sin(x),y(x), singsol=all)

$$y(x) = \frac{-x\cos\left(x\right) + \sin\left(x\right) + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 19

DSolve[x*y'[x]+y[x]==x*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{\sin(x) - x\cos(x) + c_1}{x}$$

5.16 problem Exercise 11.17, page 97

Internal problem ID [4510]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.17, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$xy' - y = \sin\left(x\right)x^2$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve(x*diff(y(x),x)-y(x)=x^2*sin(x),y(x), singsol=all)$

$$y(x) = \left(-\cos\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 14

DSolve[x*y'[x]-y[x]==x^2*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(-\cos(x) + c_1)$$

5.17 problem Exercise 11.18, page 97

Internal problem ID [4511]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations Problem number: Evergine 11 18, page 07

Problem number: Exercise 11.18, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Bernoulli]

$$xy' + y^2x - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(x*diff(y(x),x)+x*y(x)^2-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{2x}{x^2 + 2c_1}$$

✓ Solution by Mathematica

Time used: 0.149 (sec). Leaf size: 23

DSolve[x*y'[x]+x*y[x]^2-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{2x}{x^2 + 2c_1}$$

 $y(x) \rightarrow 0$

5.18 problem Exercise 11.19, page 97

Internal problem ID [4512]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.19, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$xy' - y(2\ln(x)y - 1) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(x*diff(y(x),x)-y(x)*(2*y(x)*ln(x)-1)=0,y(x), singsol=all)

$$y(x) = \frac{1}{2 + c_1 x + 2\ln(x)}$$

✓ Solution by Mathematica

Time used: 0.14 (sec). Leaf size: 22

DSolve[x*y'[x]-y[x]*(2*y[x]*Log[x]-1)==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow rac{1}{2\log(x) + c_1 x + 2}$$

 $y(x) \rightarrow 0$

5.19 problem Exercise 11.20, page 97

Internal problem ID [4513]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.20, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Bernoulli]

$$x^{2}(-1+x) y' - y^{2} - x(x-2) y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x^{2}(x-1))*diff(y(x),x)-y(x)^{2}-x*(x-2)*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{x^2}{c_1 x - c_1 + 1}$$

Solution by Mathematica

Time used: 0.191 (sec). Leaf size: 25

DSolve[x²*(x-1)*y'[x]-y[x]²-x*(x-2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{x^2}{c_1(-x)+1+c_1}$$

 $y(x)
ightarrow 0$

5.20 problem Exercise 11.21, page 97

Internal problem ID [4514]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.21, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = e^x$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

dsolve([diff(y(x),x)-y(x)=exp(x),y(0) = 1],y(x), singsol=all)

$$y(x) = e^x(x+1)$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 12

DSolve[{y'[x]-y[x]==Exp[x],{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(x+1)$$

5.21 problem Exercise 11.22, page 97

Internal problem ID [4515]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.22, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + \frac{y}{x} - \frac{y^2}{x} = 0$$

With initial conditions

$$[y(-1) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)+y(x)/x=y(x)^2/x,y(-1) = 1],y(x), singsol=all)$

y(x) = 1

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 6

DSolve[{y'[x]+y[x]/x==y[x]^2/x,{y[-1]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 1$$

5.22 problem Exercise 11.23, page 97

Internal problem ID [4516]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.23, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$2\cos(x)y' - \sin(x)y + y^3 = 0$$

With initial conditions

[y(0) = 1]

Solution by Maple

Time used: 0.36 (sec). Leaf size: 33

 $dsolve([2*cos(x)*diff(y(x),x)=y(x)*sin(x)-y(x)^3,y(0) = 1],y(x), singsol=all)$

$$y(x) = \frac{\sqrt{(2\cos(x)^2 - 1)(\cos(x) - \sin(x))}}{2\cos(x)^2 - 1}$$

Solution by Mathematica

Time used: 0.369 (sec). Leaf size: 14

DSolve[{2*Cos[x]*y'[x]==y[x]*Sin[x]-y[x]^3, {y[0]==1}}, y[x], x, IncludeSingularSolutions -> Tru

$$y(x) \to \frac{1}{\sqrt{\sin(x) + \cos(x)}}$$

5.23 problem Exercise 11.24, page 97

Internal problem ID [4517]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.24, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$(x - \cos(y)) y' + \tan(y) = 0$$

With initial conditions

$$\left[y(1) = \frac{\pi}{6}\right]$$

Solution by Maple

Time used: 1.235 (sec). Leaf size: 29

dsolve([(x-cos(y(x)))*diff(y(x),x)+tan(y(x))=0,y(1) = 1/6*Pi],y(x), singsol=all)

$$y(x) = \text{RootOf}\left(24x\sin(\underline{Z}) + 3\sqrt{3} - 6\sin(2\underline{Z}) + 2\pi - 12\underline{Z} - 12\right)$$

Solution by Mathematica

Time used: 0.216 (sec). Leaf size: 45

DSolve[{(x-Cos[y[x]])*y'[x]+Tan[y[x]]==0,{y[1]==Pi/6}},y[x],x,IncludeSingularSolutions -> Tr

Solve
$$\left[x = \frac{1}{24} \left(12 - 3\sqrt{3} - 2\pi\right) \csc(y(x)) + \left(\frac{y(x)}{2} + \frac{1}{4}\sin(2y(x))\right) \csc(y(x)), y(x)\right]$$

5.24 problem Exercise 11.26, page 97

Internal problem ID [4518]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.26, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, _Riccati]

$$y' - \frac{2y}{x} + \frac{y^2}{x} = x^3$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)=x^3+2/x*y(x)-1/x*y(x)^2,y(x), singsol=all)$

$$y(x) = i \tan\left(-rac{ix^2}{2} + c_1
ight) x^2$$

✓ Solution by Mathematica

Time used: 0.162 (sec). Leaf size: 75

DSolve[y'[x]==x^3+2/x*y[x]-1/x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^2 \left(i \cosh\left(\frac{x^2}{2}\right) + c_1 \sinh\left(\frac{x^2}{2}\right)\right)}{i \sinh\left(\frac{x^2}{2}\right) + c_1 \cosh\left(\frac{x^2}{2}\right)}$$
$$y(x) \to x^2 \tanh\left(\frac{x^2}{2}\right)$$

5.25 problem Exercise 11.27, page 97

Internal problem ID [4519]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.27, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Riccati]

$$y' + y^2 \sin(x) = 2 \tan(x) \sec(x)$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

 $dsolve(diff(y(x),x)=2*tan(x)*sec(x)-y(x)^2*sin(x),y(x), singsol=all)$

$$y(x) = \frac{\sec{(x)}\tan{(x)}}{\sin{(x)}(c_1\cos{(x)}^2 + \sec{(x)})} - \frac{2c_1\cos{(x)}}{c_1\cos{(x)}^2 + \sec{(x)}}$$

✓ Solution by Mathematica

Time used: 0.88 (sec). Leaf size: 32

DSolve[y'[x]==2*Tan[x]*Sec[x]-y[x]^2*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{\sec(x) \left(-2\cos^3(x) + c_1\right)}{\cos^3(x) + c_1}$$
$$y(x) \rightarrow \sec(x)$$

5.26 problem Exercise 11.28, page 97

Internal problem ID [4520]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.28, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Riccati]

$$y'+\frac{y}{x}+y^2=\frac{1}{x^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(x),x)=1/x^2-y(x)/x-y(x)^2,y(x), singsol=all)$

$$y(x) = -\frac{\tanh\left(-\ln\left(x\right) + c_1\right)}{x}$$

Solution by Mathematica

Time used: 1.192 (sec). Leaf size: 62

DSolve[y'[x]==1/x^2-y[x]/x-y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{i an(c_1 - i \log(x))}{x}$$

 $y(x)
ightarrow -rac{-x^2 + e^{2i ext{Interval}[\{0,\pi\}]}}{x^3 + x e^{2i ext{Interval}[\{0,\pi\}]}}$

5.27 problem Exercise 11.29, page 97

Internal problem ID [4521]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations

Problem number: Exercise 11.29, page 97. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$y'-\frac{y}{x}+\frac{y^2}{x^2}=1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(x), x)=1+ $y(x)/x-y(x)^2/x^2, y(x)$, singsol=all)

$$y(x) = \tanh\left(\ln\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.539 (sec). Leaf size: 43

DSolve[y'[x]==1+y[x]/x-y[x]^2/x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{x(x^2 - e^{2c_1})}{x^2 + e^{2c_1}}$$

 $y(x)
ightarrow -x$
 $y(x)
ightarrow x$

6 Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

6.1	problem Exerc	cise 12.1, page 103 \ldots 132
6.2	problem Exerc	cise 12.2, page 103
6.3	problem Exerc	cise 12.3, page 103
6.4	problem Exerc	cise 12.4, page 103
6.5	problem Exerc	bise 12.5, page 103 \ldots 2.5 \ldots 136
6.6	problem Exerc	cise 12.6, page 103
6.7	problem Exerc	cise 12.7, page 103
6.8	problem Exerc	cise 12.8, page 103
6.9	problem Exerc	cise 12.9, page 103
6.10	problem Exerc	cise 12.10, page 103 \ldots 142
6.11	problem Exerc	cise 12.11, page 103
6.12	problem Exerc	cise 12.12, page 103
6.13	problem Exerc	bise 12.13, page 103 \ldots 144
6.14	problem Exerc	cise 12.14, page 103
6.15	problem Exerc	cise 12.15, page 103 \ldots 146
6.16	problem Exerc	cise 12.16, page 103 \ldots 147
6.17	problem Exerc	cise 12.17, page 103 $\dots \dots \dots$
6.18	problem Exerc	cise 12.18, page 103
6.19	problem Exerc	cise 12.19, page 103
6.20	problem Exerc	cise 12.20, page 103
6.21	problem Exerc	cise 12.21, page 103
6.22	problem Exerc	cise 12.22, page 103
6.23	problem Exerc	cise 12.23, page 103 \ldots 154
6.24	problem Exerc	cise 12.24, page 103
6.25	problem Exerc	cise 12.25, page 103 \ldots 156
6.26	problem Exerc	cise 12.26, page 103
6.27	problem Exerc	cise 12.27, page 103 \ldots 158
6.28	problem Exerc	cise 12.28, page 103
6.29	problem Exerc	cise 12.29, page 103
6.30	problem Exerc	cise 12.30, page 103
6.31	problem Exerc	cise 12.31, page 103
6.32	problem Exerc	cise 12.32, page 103 \ldots 164
6.33	problem Exerc	cise 12.33, page 103
6.34	problem Exerc	bise 12.34, page 103 \ldots 166

6.35	$\operatorname{problem}$	Exercise	12.35, page	e 103	 •		 •	 •	•	 •		•		•	 •	167
6.36	$\operatorname{problem}$	Exercise	12.36, page	e 103			 •	 •	•	 •		•		•		168
6.37	$\operatorname{problem}$	Exercise	12.37, page	e 103			 •	 •	•	 •		•		•		171
6.38	problem	Exercise	12.38, page	e 103	 •		 •	 •	•	 •	• •	•		•		172
6.39	$\operatorname{problem}$	Exercise	12.39, page	e 103			 •	 •	•	 •		•		•		173
6.40	$\operatorname{problem}$	Exercise	12.40, page	e 103	 •		 •	 •	•	 •		•	•	•	 •	174
6.41	$\operatorname{problem}$	Exercise	12.41, page	e 103			 •	 •	•	 •		•		•		176
6.42	$\operatorname{problem}$	Exercise	12.42, page	e 103	 •		 •	 •	•	 •		•	•	•	 •	177
6.43	$\operatorname{problem}$	Exercise	12.43, page	e 103	 •		 •	 •	•	 •		•	•	•	 •	178
6.44	$\operatorname{problem}$	Exercise	12.44, page	e 103	 •	•	 •	 •	•	 •		•	•	•	 •	181
6.45	$\operatorname{problem}$	Exercise	12.45, page	e 103	 •	•	 •	 •	•	 •		•	•	•	 •	182
6.46	$\operatorname{problem}$	Exercise	12.46, page	e 103			 •	 •	•	 •		•		•		185
6.47	$\operatorname{problem}$	Exercise	12.47, page	e 103	 •		 •	 •	•	 •		•	•	•	 •	187
6.48	$\operatorname{problem}$	Exercise	12.48, page	e 103	 •		 •	 •	•	 •		•	•	•	 •	190
6.49	problem	Exercise	12.49, page	e 103	 •		 •	 •	•	 •		•		•		191
6.50	$\operatorname{problem}$	Exercise	12.50, page	e 103	 •		 •	 •	•	 •		•	•	•	 •	193

6.1 problem Exercise 12.1, page 103

Internal problem ID [4522]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.1, page 103.ODE order: 1.ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$2yy'x + (x+1)y^2 = e^x$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 59

 $dsolve(2*x*y(x)*diff(y(x),x)+(1+x)*y(x)^2=exp(x),y(x), singsol=all)$

$$y(x) = -\frac{e^{-x}\sqrt{2}\sqrt{e^{x}x(e^{2x}+2c_{1})}}{2x}$$
$$y(x) = \frac{e^{-x}\sqrt{2}\sqrt{e^{x}x(e^{2x}+2c_{1})}}{2x}$$

Solution by Mathematica

Time used: 7.324 (sec). Leaf size: 66

DSolve[2*x*y[x]*y'[x]+(1+x)*y[x]^2==Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{\sqrt{e^x + 2c_1 e^{-x}}}{\sqrt{2}\sqrt{x}}$$
$$y(x) \rightarrow \frac{\sqrt{e^x + 2c_1 e^{-x}}}{\sqrt{2}\sqrt{x}}$$

6.2 problem Exercise 12.2, page 103

Internal problem ID [4523]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.2, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=_G(x,y')']

$$\cos\left(y\right)y' + \sin\left(y\right) = x^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(cos(y(x))*diff(y(x),x)+sin(y(x))=x^2,y(x), singsol=all)$

$$y(x) = \arcsin\left(\left(e^{x}x^{2} - 2e^{x}x + 2e^{x} - c_{1}\right)e^{-x}\right)$$

Solution by Mathematica

Time used: 14.047 (sec). Leaf size: 23

DSolve[Cos[y[x]]*y'[x]+Sin[y[x]]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \arcsin(x^2 - 2x - 2c_1e^{-x} + 2)$$

6.3 problem Exercise 12.3, page 103

Internal problem ID [4524]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.3, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$(x+1) y' - y - (x+1) \sqrt{1+y} = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 160

dsolve((x+1)*diff(y(x),x)-(y(x)+1)=(x+1)*sqrt(y(x)+1),y(x), singsol=all)

$$\begin{split} & \frac{\sqrt{y\left(x\right)+1}\,x}{\left(-x^2-2x+y\left(x\right)\right)\left(\sqrt{y\left(x\right)+1}-1-x\right)} \\ &+\frac{2x}{\left(-x^2-2x+y\left(x\right)\right)\left(\sqrt{y\left(x\right)+1}-1-x\right)} \\ &+\frac{x^2}{\left(-x^2-2x+y\left(x\right)\right)\left(\sqrt{y\left(x\right)+1}-1-x\right)} \\ &+\frac{\sqrt{y\left(x\right)+1}}{\left(-x^2-2x+y\left(x\right)\right)\left(\sqrt{y\left(x\right)+1}-1-x\right)} \\ &+\frac{1}{\left(-x^2-2x+y\left(x\right)\right)\left(\sqrt{y\left(x\right)+1}-1-x\right)} - c_1 = 0 \end{split}$$

✓ Solution by Mathematica

Time used: 0.244 (sec). Leaf size: 60

DSolve[(x+1)*y'[x]-(y[x]+1)==(x+1)*Sqrt[y[x]+1],y[x],x,IncludeSingularSolutions -> True]

$$\text{Solve}\left[\frac{2\sqrt{y(x)+1}\arctan\left(\frac{x+1}{\sqrt{-y(x)-1}}\right)}{\sqrt{-y(x)-1}} + \log\left(y(x) - (x+1)^2 + 1\right) - \log(x+1) = c_1, y(x)\right]$$

6.4 problem Exercise 12.4, page 103

Internal problem ID [4525]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.4, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$\mathrm{e}^{y}(y'+1) = \mathrm{e}^{x}$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 16

dsolve(exp(y(x))*(diff(y(x),x)+1)=exp(x),y(x), singsol=all)

$$y(x) = x + \ln\left(rac{c_1 \mathrm{e}^{-2x}}{2} + rac{1}{2}
ight)$$

✓ Solution by Mathematica

Time used: 1.32 (sec). Leaf size: 22

DSolve[Exp[y[x]]*(y'[x]+1)==Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -x + \log\left(rac{e^{2x}}{2} + c_1
ight)$$

6.5 problem Exercise 12.5, page 103

Internal problem ID [4526]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.5, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'\sin(y) + \sin(x)\cos(y) = \sin(x)$$

Solution by Maple

Time used: 0.141 (sec). Leaf size: 14

dsolve(diff(y(x),x)*sin(y(x))+sin(x)*cos(y(x))=sin(x),y(x), singsol=all)

$$y(x) = \arccos\left(e^{-\cos(x)}c_1 + 1\right)$$

Solution by Mathematica

Time used: 0.792 (sec). Leaf size: 81

DSolve[y'[x]*Sin[y[x]]+Sin[x]*Cos[y[x]]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to 0\\ \text{Solve} \left[2\cos(x) \tan\left(\frac{y(x)}{2}\right) e^{\arctan(\cos(y(x)))} \\ &- \sqrt{\sin^2(y(x))} \csc\left(\frac{y(x)}{2}\right) \sec\left(\frac{y(x)}{2}\right) \left(\log\left(\sec^2\left(\frac{y(x)}{2}\right)\right) \\ &- 2\log\left(\tan\left(\frac{y(x)}{2}\right)\right)\right) = c_1, y(x) \right]\\ y(x) &\to 0 \end{split}$$

6.6 problem Exercise 12.6, page 103

Internal problem ID [4527]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.6, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$\left(-y+x\right)^2 y' = 4$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 27

 $dsolve((x-y(x))^2*diff(y(x),x)=4,y(x), singsol=all)$

$$y(x) - \ln(y(x) - x + 2) + \ln(y(x) - x - 2) - c_1 = 0$$

Solution by Mathematica

Time used: 0.202 (sec). Leaf size: 36

DSolve[(x-y[x])^2*y'[x]==4,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[y(x) - 4\left(\frac{1}{4}\log(y(x) - x + 2) - \frac{1}{4}\log(-y(x) + x + 2)\right) = c_1, y(x)\right]$$

6.7 problem Exercise 12.7, page 103

Internal problem ID [4528]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.7, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy' - y - \sqrt{x^2 + y^2} = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve(x*diff(y(x),x)-y(x)=sqrt(x^2+y(x)^2),y(x), singsol=all)$

$$\frac{y(x)}{x^{2}} + \frac{\sqrt{x^{2} + y(x)^{2}}}{x^{2}} - c_{1} = 0$$

Solution by Mathematica

Time used: 0.337 (sec). Leaf size: 27

DSolve[x*y'[x]-y[x]==Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{1}{2} e^{-c_1} ig(-1 + e^{2c_1} x^2ig)$$

6.8 problem Exercise 12.8, page 103

Internal problem ID [4529]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number: Exercise 12.8, page 103.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$(3x + 2y + 1) y' + 3y = -4x - 2$$

Solution by Maple

Time used: 0.312 (sec). Leaf size: 33

dsolve((3*x+2*y(x)+1)*diff(y(x),x)+(4*x+3*y(x)+2)=0,y(x), singsol=all)

$$y(x)=-2-rac{rac{3c_1(x-1)}{2}+rac{\sqrt{(x-1)^2c_1^2+4}}{2}}{c_1}$$

Solution by Mathematica

Time used: 0.123 (sec). Leaf size: 61

DSolve[(3*x+2*y[x]+1)*y'[x]+(4*x+3*y[x]+2)==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} \left(-\sqrt{x^2 - 2x + 1 + 4c_1} - 3x - 1 \right)$$
$$y(x) \to \frac{1}{2} \left(\sqrt{x^2 - 2x + 1 + 4c_1} - 3x - 1 \right)$$

6.9 problem Exercise 12.9, page 103

Internal problem ID [4530]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.9, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$\left(x^2-y^2\right)y'-2yx=0$$

Solution by Maple

Time used: 0.032 (sec). Leaf size: 45

 $dsolve((x^2-y(x)^2)*diff(y(x),x)=2*x*y(x),y(x), singsol=all)$

$$y(x) = -\frac{-1 + \sqrt{-4c_1^2 x^2 + 1}}{2c_1}$$
$$y(x) = \frac{1 + \sqrt{-4c_1^2 x^2 + 1}}{2c_1}$$

✓ Solution by Mathematica

Time used: 0.982 (sec). Leaf size: 66

DSolve[(x^2-y[x]^2)*y'[x]==2*x*y[x],y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \frac{1}{2} \Big(e^{c_1} - \sqrt{-4x^2 + e^{2c_1}} \Big) \\ y(x) &\to \frac{1}{2} \Big(\sqrt{-4x^2 + e^{2c_1}} + e^{c_1} \Big) \\ y(x) &\to 0 \end{split}$$

6.10 problem Exercise 12.10, page 103

Internal problem ID [4531]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.10, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y + \left(1 + \mathrm{e}^{2x} y^2\right) y' = 0$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

dsolve(y(x)+(1+y(x)^2*exp(2*x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = rac{\mathrm{e}^{-x}}{\sqrt{\mathrm{LambertW}\left(c_1\mathrm{e}^{-2x}
ight)}}$$

Solution by Mathematica

Time used: 3.33 (sec). Leaf size: 57

DSolve[y[x]+(1+y[x]^2*Exp[2*x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{e^{-x}}{\sqrt{W(e^{-2x+2c_1})}}$$
$$y(x) \rightarrow \frac{e^{-x}}{\sqrt{W(e^{-2x+2c_1})}}$$
$$y(x) \rightarrow 0$$

6.11 problem Exercise 12.11, page 103

Internal problem ID [4532]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.11, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$x^2y + y^2 + y'x^3 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve((x^2*y(x)+y(x)^2)+x^3*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{3x^2}{3c_1x^3 - 1}$$

✓ Solution by Mathematica

Time used: 0.143 (sec). Leaf size: 26

DSolve[(x²*y[x]+y[x]²)+x³*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{3x^2}{-1 + 3c_1 x^3}$$
$$y(x) \rightarrow 0$$

6.12 problem Exercise 12.12, page 103

Internal problem ID [4533]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.12, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$y^2 e^{y^2 x} + (2xy e^{y^2 x} - 3y^2) y' = -4x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve((y(x)^2*exp(x*y(x)^2)+4*x^3)+(2*x*y(x)*exp(x*y(x)^2)-3*y(x)^2)*diff(y(x),x)=0,y(x), s

$$e^{y(x)^2x} + x^4 - y(x)^3 + c_1 = 0$$

Solution by Mathematica

Time used: 0.279 (sec). Leaf size: 24

DSolve[(y[x]^2*Exp[x*y[x]^2]+4*x^3)+(2*x*y[x]*Exp[x*y[x]^2]-3*y[x]^2)*y'[x]==0,y[x],x,Includ

Solve
$$\left[x^4 + e^{xy(x)^2} - y(x)^3 = c_1, y(x)\right]$$
6.13 problem Exercise 12.13, page 103

Internal problem ID [4534]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.13, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y' - (x^2 + 2y - 1)^{\frac{2}{3}} = -x$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)=(x^2+2*y(x)-1)^{(2/3)-x},y(x), singsol=all)$

$$x - \frac{3(x^2 + 2y(x) - 1)^{\frac{1}{3}}}{2} - c_1 = 0$$

Solution by Mathematica

Time used: 0.214 (sec). Leaf size: 40

DSolve[y'[x]==(x^2+2*y[x]-1)^(2/3)-x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{54} (8x^3 - 3(9 + 8c_1)x^2 + 24c_1^2x + 27 - 8c_1^3)$$

6.14 problem Exercise 12.14, page 103

Internal problem ID [4535]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.14, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$xy' + y - x^2(e^x + 1)y^2 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x*diff(y(x),x)+y(x)=x^2*(1+exp(x))*y(x)^2,y(x), singsol=all)$

$$y(x) = -\frac{1}{\left(x + \mathrm{e}^x - c_1\right)x}$$

✓ Solution by Mathematica

Time used: 0.249 (sec). Leaf size: 55

DSolve[x*y'[x]+y[x]==x^2*(1+exp[x])*y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \frac{1}{-x \int_{1}^{x} (\exp(K[1]) + 1) dK[1] + c_{1}x} \\ y(x) &\to 0 \\ y(x) &\to -\frac{1}{x \int_{1}^{x} (\exp(K[1]) + 1) dK[1]} \end{split}$$

6.15 problem Exercise 12.15, page 103

Internal problem ID [4536]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.15, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2y - xy\ln(x) - 2x\ln(x)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve((2*y(x)-x*y(x)*ln(x))-2*x*ln(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{-\frac{x}{2}} \ln(x)$$

Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 22

DSolve[(2*y[x]-x*y[x]*Log[x])-2*x*Log[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-x/2} \log(x)$$

 $y(x) \to 0$

6.16 problem Exercise 12.16, page 103

Internal problem ID [4537]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.16, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + ay = k e^{bx}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x)+a*y(x)=k*exp(b*x),y(x), singsol=all)

$$y(x) = \left(rac{k \operatorname{e}^{x(a+b)}}{a+b} + c_1
ight) \operatorname{e}^{-ax}$$

✓ Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 33

DSolve[y'[x]+a*y[x]==k*Exp[b*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{e^{-ax} \left(ke^{x(a+b)} + c_1(a+b)
ight)}{a+b}$$

6.17 problem Exercise 12.17, page 103

Internal problem ID [4538]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.17, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$y' - (x+y)^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x)=(x+y(x))^2,y(x), singsol=all)

$$y(x) = -x - \tan\left(c_1 - x\right)$$

✓ Solution by Mathematica

Time used: 0.472 (sec). Leaf size: 14

DSolve[y'[x]==(x+y[x])^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -x + \tan(x + c_1)$$

6.18 problem Exercise 12.18, page 103

Internal problem ID [4539]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.18, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + 8y^3x^3 + 2yx = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

dsolve(diff(y(x),x)+8*x^3*y(x)^3+2*x*y(x)=0,y(x), singsol=all)

$$y(x) = \frac{1}{\sqrt{e^{2x^2}c_1 - 4x^2 - 2}}$$
$$y(x) = -\frac{1}{\sqrt{e^{2x^2}c_1 - 4x^2 - 2}}$$

✓ Solution by Mathematica

Time used: 7.034 (sec). Leaf size: 58

DSolve[y'[x]+8*x^3*y[x]^3+2*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to -\frac{1}{\sqrt{-4x^2 + c_1 e^{2x^2} - 2}} \\ y(x) &\to \frac{1}{\sqrt{-4x^2 + c_1 e^{2x^2} - 2}} \\ y(x) &\to 0 \end{split}$$

6.19 problem Exercise 12.19, page 103

Internal problem ID [4540]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.19, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [NONE]

$$\left(xy\sqrt{x^2-y^2}+x\right)y'-y+x^2\sqrt{x^2-y^2}=0$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 34

dsolve((x*y(x)*sqrt(x^2-y(x)^2)+x)*diff(y(x),x)=y(x)-x^2*sqrt(x^2-y(x)^2),y(x), singsol=all)

$$\frac{y(x)^{2}}{2} + \arctan\left(\frac{y(x)}{\sqrt{x^{2} - y(x)^{2}}}\right) + \frac{x^{2}}{2} - c_{1} = 0$$

Solution by Mathematica

Time used: 1.772 (sec). Leaf size: 44

DSolve[(x*y[x]*Sqrt[x^2-y[x]^2]+x)*y'[x]==y[x]-x^2*Sqrt[x^2-y[x]^2],y[x],x,IncludeSingularSo

$$ext{Solve}igg[-rctanigg(rac{\sqrt{x^2-y(x)^2}}{y(x)}igg)+rac{x^2}{2}+rac{y(x)^2}{2}=c_1,y(x)igg]$$

6.20 problem Exercise 12.20, page 103

Internal problem ID [4541]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.20, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + ay = b\sin\left(kx\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve(diff(y(x),x)+a*y(x)=b*sin(k*x),y(x), singsol=all)

$$y(x) = e^{-ax}c_1 - \frac{b(k\cos(kx) - \sin(kx)a)}{a^2 + k^2}$$

✓ Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 40

DSolve[y'[x]+a*y[x]==b*Sin[k*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{b(a\sin(kx) - k\cos(kx))}{a^2 + k^2} + c_1 e^{-ax}$$

6.21 problem Exercise 12.21, page 103

Internal problem ID [4542]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.21, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xy' - y^2 = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(x*diff(y(x),x)-y(x)^2+1=0,y(x), singsol=all)$

$$y(x) = -\tanh\left(\ln\left(x\right) + c_1\right)$$

Solution by Mathematica

Time used: 0.486 (sec). Leaf size: 43

DSolve[x*y'[x]-y[x]^2+1==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \frac{1 - e^{2c_1} x^2}{1 + e^{2c_1} x^2} \\ y(x) &\to -1 \\ y(x) &\to 1 \end{split}$$

6.22 problem Exercise 12.22, page 103

Internal problem ID [4543]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.22, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$\left(y^2 + \sin\left(x\right)a\right)y' = \cos\left(x\right)$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 41

 $dsolve((y(x)^2+a*sin(x))*diff(y(x),x)=cos(x),y(x), singsol=all)$

$$-e^{-ay(x)}\sin(x) - \frac{(a^2y(x)^2 + 2ay(x) + 2)e^{-ay(x)}}{a^3} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.194 (sec). Leaf size: 45

DSolve[(y[x]^2+a*Sin[x])*y'[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\sin(x)\left(-e^{-ay(x)}\right) - \frac{e^{-ay(x)}(a^2y(x)^2 + 2ay(x) + 2)}{a^3} = c_1, y(x)\right]$$

6.23 problem Exercise 12.23, page 103

Internal problem ID [4544]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.23, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$xy' - x e^{\frac{y}{x}} - y = x$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve(x*diff(y(x),x)=x*exp(y(x)/x)+x+y(x),y(x), singsol=all)

$$y(x) = \left(\ln\left(-rac{x}{x \operatorname{e}^{c_1} - 1}
ight) + c_1
ight)x$$

✓ Solution by Mathematica

Time used: 4.512 (sec). Leaf size: 38

DSolve[x*y'[x]==x*Exp[y[x]/x]+x+y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x \log\left(\frac{1}{2}\left(-1 + \tanh\left(\frac{1}{2}(-\log(x) - c_1)\right)\right)\right)$$

 $y(x) \to i\pi x$

6.24 problem Exercise 12.24, page 103

Internal problem ID [4545]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.24, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y\cos\left(x\right) = \mathrm{e}^{-\sin\left(x\right)}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x)+y(x)*cos(x)=exp(-sin(x)),y(x), singsol=all)

$$y(x) = (x + c_1) e^{-\sin(x)}$$

✓ Solution by Mathematica

Time used: 0.123 (sec). Leaf size: 16

DSolve[y'[x]+y[x]*Cos[x]==Exp[-Sin[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (x+c_1)e^{-\sin(x)}$$

6.25 problem Exercise 12.25, page 103

Internal problem ID [4546]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.25, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$xy' - y(\ln(yx) - 1) = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve(x*diff(y(x),x)-y(x)*(ln(x*y(x))-1)=0,y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^{\frac{x}{c_1}}}{x}$$

✓ Solution by Mathematica

Time used: 0.186 (sec). Leaf size: 24

DSolve[x*y'[x]-y[x]*(Log[x*y[x]]-1)==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{e^{e^{c_1}x}}{x}$$

 $y(x) o rac{1}{x}$

6.26 problem Exercise 12.26, page 103

Internal problem ID [4547]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.26, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Bernoulli]

$$x^3y' - y^2 - x^2y = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve(x^3*diff(y(x),x)-y(x)^2-x^2*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{x^2}{c_1 x + 1}$$

✓ Solution by Mathematica

Time used: 0.129 (sec). Leaf size: 22

DSolve[x^3*y'[x]-y[x]^2-x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{x^2}{1+c_1 x}$$

 $y(x)
ightarrow 0$

6.27 problem Exercise 12.27, page 103

Internal problem ID [4548]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.27, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$xy' + ay = -b\,x^n$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(x*diff(y(x),x)+a*y(x)+b*x^n=0,y(x), singsol=all)

$$y(x) = -\frac{b x^n}{a+n} + x^{-a}c_1$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 25

DSolve[x*y'[x]+a*y[x]+b*x^n==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{bx^n}{a+n} + c_1 x^{-a}$$

6.28 problem Exercise 12.28, page 103

Internal problem ID [4549]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.28, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$xy' - x\sin\left(\frac{y}{x}\right) - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

dsolve(x*diff(y(x),x)-x*sin(y(x)/x)-y(x)=0,y(x), singsol=all)

$$y(x) = rctan\left(rac{2xc_1}{c_1^2x^2+1}, -rac{c_1^2x^2-1}{c_1^2x^2+1}
ight)x$$

Solution by Mathematica

Time used: 0.321 (sec). Leaf size: 52

DSolve[x*y'[x]-x*Sin[y[x]/x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{aligned} y(x) &\to -x \arccos(-\tanh(\log(x) + c_1)) \\ y(x) &\to x \arccos(-\tanh(\log(x) + c_1)) \\ y(x) &\to 0 \\ y(x) &\to -\pi x \\ y(x) &\to \pi x \end{aligned}$$

6.29 problem Exercise 12.29, page 103

Internal problem ID [4550]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number: Exercise 12.29, page 103.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y^2 - 3yx + (yx - x^2)y' = 2x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 59

 $dsolve((x*y(x)-x^2)*diff(y(x),x)+y(x)^2-3*x*y(x)-2*x^2=0,y(x), singsol=all)$

$$y(x) = \frac{c_1 x^2 - \sqrt{2c_1^2 x^4 + 1}}{c_1 x}$$
$$y(x) = \frac{c_1 x^2 + \sqrt{2c_1^2 x^4 + 1}}{c_1 x}$$

Solution by Mathematica

Time used: 0.625 (sec). Leaf size: 99

DSolve[(x*y[x]-x^2)*y'[x]+y[x]^2-3*x*y[x]-2*x^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x - \frac{\sqrt{2x^4 + e^{2c_1}}}{x}$$
$$y(x) \rightarrow x + \frac{\sqrt{2x^4 + e^{2c_1}}}{x}$$
$$y(x) \rightarrow x - \frac{\sqrt{2}\sqrt{x^4}}{x}$$
$$y(x) \rightarrow \frac{\sqrt{2}\sqrt{x^4}}{x} + x$$

6.30 problem Exercise 12.30, page 103

Internal problem ID [4551]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.30, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_Abel, '2nd type', 'class B']]

$$(3+6yx+x^2)y'+3y^2+2yx=-2x$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 71

dsolve((6*x*y(x)+x²+3)*diff(y(x),x)+3*y(x)²+2*x*y(x)+2*x=0,y(x), singsol=all)

$$y(x) = \frac{-x^2 - 3 + \sqrt{x^4 - 12x^3 - 12c_1x + 6x^2 + 9}}{6x}$$
$$y(x) = -\frac{x^2 + \sqrt{x^4 - 12x^3 - 12c_1x + 6x^2 + 9} + 3}{6x}$$

Solution by Mathematica

Time used: 0.477 (sec). Leaf size: 83

DSolve[(6*x*y[x]+x^2+3)*y'[x]+3*y[x]^2+2*x*y[x]+2*x==0,y[x],x,IncludeSingularSolutions -> Tr

$$y(x) \rightarrow -\frac{x^2 + \sqrt{x^4 - 12x^3 + 6x^2 + 36c_1x + 9} + 3}{6x}$$
$$y(x) \rightarrow -\frac{x^2 - \sqrt{x^4 - 12x^3 + 6x^2 + 36c_1x + 9} + 3}{6x}$$

6.31 problem Exercise 12.31, page 103

Internal problem ID [4552]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.31, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$x^2y' + y^2 + yx = -x^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x^2*diff(y(x),x)+y(x)^2+x*y(x)+x^2=0,y(x), singsol=all)$

$$y(x) = -rac{x(\ln (x) + c_1 - 1)}{\ln (x) + c_1}$$

Solution by Mathematica

Time used: 0.139 (sec). Leaf size: 31

DSolve[x²*y'[x]+y[x]²+x*y[x]+x²==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow rac{x(\log(x) - 1 - c_1)}{-\log(x) + c_1}$$

 $y(x) \rightarrow -x$

6.32 problem Exercise 12.32, page 103

Internal problem ID [4553]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.32, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x^2 - 1) y' + 2yx = \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve((x^2-1)*diff(y(x),x)+2*x*y(x)-cos(x)=0,y(x), singsol=all)

$$y(x) = \frac{\sin(x) + c_1}{(x-1)(x+1)}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 18

DSolve[(x^2-1)*y'[x]+2*x*y[x]-Cos[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\sin(x) + c_1}{x^2 - 1}$$

6.33 problem Exercise 12.33, page 103

Internal problem ID [4554]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.33, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_Abel, '2nd type', 'class B']]

$$\left(x^2y-1\right)y'+y^2x=1$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 50

 $dsolve((x^2*y(x)-1)*diff(y(x),x)+x*y(x)^2-1=0,y(x), singsol=all)$

$$y(x) = \frac{1 + \sqrt{-2c_1x^2 + 2x^3 + 1}}{x^2}$$
$$y(x) = -\frac{-1 + \sqrt{-2c_1x^2 + 2x^3 + 1}}{x^2}$$

Solution by Mathematica

Time used: 0.505 (sec). Leaf size: 57

DSolve[(x²*y[x]-1)*y'[x]+x*y[x]²-1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1 - \sqrt{2x^3 + c_1 x^2 + 1}}{x^2}$$
$$y(x) \to \frac{1 + \sqrt{2x^3 + c_1 x^2 + 1}}{x^2}$$

6.34 problem Exercise 12.34, page 103

Internal problem ID [4555]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.34, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left(x^2-1\right)y'+yx-3y^2x=0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve((x^2-1)*diff(y(x),x)+x*y(x)-3*x*y(x)^2=0,y(x), singsol=all)

$$y(x) = \frac{1}{3 + \sqrt{x - 1}\sqrt{x + 1}c_1}$$

✓ Solution by Mathematica

Time used: 2.214 (sec). Leaf size: 35

DSolve[(x^2-1)*y'[x]+x*y[x]-3*x*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{1}{3 + e^{c_1}\sqrt{x^2 - 1}}$$

 $y(x)
ightarrow 0$
 $y(x)
ightarrow rac{1}{3}$

6.35 problem Exercise 12.35, page 103

Internal problem ID [4556]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.35, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left(x^2 - 1\right)y' - 2xy\ln\left(y\right) = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve((x^2-1)*diff(y(x),x)-2*x*y(x)*ln(y(x))=0,y(x), singsol=all)$

$$y(x) = e^{c_1(x+1)(x-1)}$$

Solution by Mathematica

Time used: 0.223 (sec). Leaf size: 22

DSolve[(x^2-1)*y'[x]-2*x*y[x]*Log[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{e^{c_1}(x^2-1)}$$

 $y(x) \rightarrow 1$

6.36 problem Exercise 12.36, page 103

Internal problem ID [4557]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.36, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$(1+x^2+y^2)y'+2yx=-x^2-3$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 570

dsolve((x²+y(x)²+1)*diff(y(x),x)+2*x*y(x)+x²+3=0,y(x), singsol=all)

$$\begin{split} y(x) &= \frac{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}{2} \\ &- \frac{2(x^2 + 1)}{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}{2} \\ y(x) &= -\frac{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}{4} \\ &+ \frac{x^2 + 1}{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}} \\ &- \frac{i\sqrt{3}\left(\frac{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}}{2} \\ y(x) &= -\frac{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}}{4} \\ &+ \frac{x^2 + 1}{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}}{2} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}}{2} + \frac{2x^2 + 2}{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}}{2} + \frac{2x^2 + 2}{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}}{2} + \frac{2x^2 + 2}{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6 + 6c_1x^3 + 30x^4 + 9c_1^2 + 54c_1x + 93x^2 + 4}\right)^{\frac{1}{3}}} \\ &+ \frac{1}{\left(-4x^3 - 12c_1 - 36x + 4\sqrt{5x^6$$

✓ Solution by Mathematica

Time used: 5.385 (sec). Leaf size: 411

DSolve[(x^2+y[x]^2+1)*y'[x]+2*x*y[x]+x^2+3==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\rightarrow \frac{\sqrt[3]{-27x^3 + \sqrt{4 (9x^2 + 9)^3 + 729 (x^3 + 9x - 3c_1)^2} - 243x + 81c_1}}{3\sqrt[3]{2}}{3\sqrt[3]{2}} \\ &- \frac{3\sqrt[3]{2}(x^2 + 1)}{\sqrt[3]{-27x^3 + \sqrt{4 (9x^2 + 9)^3 + 729 (x^3 + 9x - 3c_1)^2} - 243x + 81c_1}}{3(1 + i\sqrt{3}) (x^2 + 1)} \\ y(x) &\rightarrow \frac{3(1 + i\sqrt{3}) (x^2 + 1)}{2^{2/3}\sqrt[3]{-27x^3 + \sqrt{4 (9x^2 + 9)^3 + 729 (x^3 + 9x - 3c_1)^2} - 243x + 81c_1}} \\ &+ \frac{(-1 + i\sqrt{3}) \sqrt[3]{-27x^3 + \sqrt{4 (9x^2 + 9)^3 + 729 (x^3 + 9x - 3c_1)^2} - 243x + 81c_1}}{6\sqrt[3]{2}} \\ y(x) &\rightarrow \frac{3(1 - i\sqrt{3}) (x^2 + 1)}{2^{2/3}\sqrt[3]{-27x^3 + \sqrt{4 (9x^2 + 9)^3 + 729 (x^3 + 9x - 3c_1)^2} - 243x + 81c_1}} \\ &- \frac{(1 + i\sqrt{3}) \sqrt[3]{-27x^3 + \sqrt{4 (9x^2 + 9)^3 + 729 (x^3 + 9x - 3c_1)^2} - 243x + 81c_1}}{6\sqrt[3]{2}} \end{split}$$

6.37 problem Exercise 12.37, page 103

Internal problem ID [4558]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.37, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$\cos(x) y' + y = -(\sin(x) + 1) \cos(x)$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x)*cos(x)+y(x)+(1+sin(x))*cos(x)=0,y(x), singsol=all)

$$y(x) = \frac{-2\ln(\sec(x) + \tan(x)) + 2\ln(\cos(x)) + \sin(x) + c_1}{\sec(x) + \tan(x)}$$

✓ Solution by Mathematica

Time used: 0.671 (sec). Leaf size: 40

DSolve[y'[x]*Cos[x]+y[x]+(1+Sin[x])*Cos[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow e^{-2 ext{arctanh}(an(rac{x}{2}))} \left(\sin(x) + 4 \log\left(\cos\left(rac{x}{2}
ight) - \sin\left(rac{x}{2}
ight)
ight) + c_1
ight)$$

6.38 problem Exercise 12.38, page 103

Internal problem ID [4559]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number: Exercise 12.38, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact, _rational, [_Abel, '2nd ty

$$(2yx + 4x^3) y' + y^2 + 12x^2y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 50

dsolve((2*x*y(x)+4*x^3)*diff(y(x),x)+y(x)^2+12*x^2*y(x)=0,y(x), singsol=all)

$$y(x) = \frac{-2x^3 + \sqrt{4x^6 + c_1 x}}{x}$$
$$y(x) = -\frac{2x^3 + \sqrt{4x^6 + c_1 x}}{x}$$

Solution by Mathematica

Time used: 0.441 (sec). Leaf size: 58

DSolve[(2*x*y[x]+4*x^3)*y'[x]+y[x]^2+12*x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{2x^3 + \sqrt{x(4x^5 + c_1)}}{x}$$
$$y(x) \to \frac{-2x^3 + \sqrt{x(4x^5 + c_1)}}{x}$$

6.39 problem Exercise 12.39, page 103

Internal problem ID [4560]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number: Exercise 12.39, page 103.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]'], [_At

$$\left(x^2-y\right)y'=-x$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

 $dsolve((x^2-y(x))*diff(y(x),x)+x=0,y(x), singsol=all)$

$$y(x) = x^{2} + rac{ ext{LambertW}\left(4c_{1}e^{-2x^{2}-1}
ight)}{2} + rac{1}{2}$$

Solution by Mathematica

Time used: 5.105 (sec). Leaf size: 40

DSolve[(x^2-y[x])*y'[x]+x==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 + \frac{1}{2} \left(1 + W \left(-e^{-2x^2 - 1 + c_1} \right) \right)$$

 $y(x) \to x^2 + \frac{1}{2}$

6.40 problem Exercise 12.40, page 103

Internal problem ID [4561]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number: Exercise 12.40, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$\left(x^2-y\right)y'-4yx=0$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 53

 $dsolve((x^2-y(x))*diff(y(x),x)-4*x*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1 \left(c_1 - \sqrt{c_1^2 - 4x^2}\right)}{2} - x^2$$
$$y(x) = \frac{c_1 \left(c_1 + \sqrt{c_1^2 - 4x^2}\right)}{2} - x^2$$

✓ Solution by Mathematica

Time used: 2.441 (sec). Leaf size: 246

DSolve[(x^2-y[x])*y'[x]-4*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to x^2 \left(1 + \frac{2 - 2i}{\frac{i\sqrt{2}}{\sqrt{x^2 \cosh\left(\frac{2c_1}{9}\right) + x^2 \sinh\left(\frac{2c_1}{9}\right) - i}} - (1 - i)} \right) \\ y(x) &\to x^2 \left(1 + \frac{2 - 2i}{(-1 + i) - \frac{i\sqrt{2}}{\sqrt{x^2 \cosh\left(\frac{2c_1}{9}\right) + x^2 \sinh\left(\frac{2c_1}{9}\right) - i}}} \right) \\ y(x) &\to x^2 \left(1 + \frac{2 - 2i}{(-1 + i) - \frac{\sqrt{2}}{\sqrt{x^2 \cosh\left(\frac{2c_1}{9}\right) + x^2 \sinh\left(\frac{2c_1}{9}\right) + i}}} \right) \\ y(x) &\to x^2 \left(1 + \frac{2 - 2i}{\frac{\sqrt{2}}{\sqrt{x^2 \cosh\left(\frac{2c_1}{9}\right) + x^2 \sinh\left(\frac{2c_1}{9}\right) + i}} - (1 - i)} \right) \\ y(x) &\to 0 \\ y(x) &\to -x^2 \end{split}$$

6.41 problem Exercise 12.41, page 103

Internal problem ID [4562]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.41, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$yy'x + y^2 = -x^2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 39

 $dsolve(x*y(x)*diff(y(x),x)+x^2+y(x)^2=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{-2x^4 + 4c_1}}{2x}$$
$$y(x) = \frac{\sqrt{-2x^4 + 4c_1}}{2x}$$

✓ Solution by Mathematica

Time used: 0.211 (sec). Leaf size: 46

DSolve[x*y[x]*y'[x]+x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -rac{\sqrt{-rac{x^4}{2}+c_1}}{x}$$
 $y(x)
ightarrow rac{\sqrt{-rac{x^4}{2}+c_1}}{x}$

6.42 problem Exercise 12.42, page 103

Internal problem ID [4563]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.42, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$2yy'x - y^2 = -3x^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(2*x*y(x)*diff(y(x),x)+3*x^2-y(x)^2=0,y(x), singsol=all)$

$$y(x) = \sqrt{c_1 x - 3x^2}$$
$$y(x) = -\sqrt{c_1 x - 3x^2}$$

Solution by Mathematica

Time used: 0.306 (sec). Leaf size: 35

DSolve[2*x*y[x]*y'[x]+3*x^2-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$egin{aligned} y(x) &
ightarrow -\sqrt{x(-3x+c_1)} \ y(x) &
ightarrow \sqrt{x(-3x+c_1)} \end{aligned}$$

6.43 problem Exercise 12.43, page 103

Internal problem ID [4564]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods Problem number: Evereice 12.42, page 102

Problem number: Exercise 12.43, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$\left(2y^3x-x^4
ight)y'+2yx^3-y^4=0$$

Solution by Maple

Time used: $0.015~(\mathrm{sec}).$ Leaf size: 447

dsolve((2*x*y(x)^3-x^4)*diff(y(x),x)+2*x^3*y(x)-y(x)^4=0,y(x), singsol=all)

$$\begin{split} y(x) &= \frac{12^{\frac{1}{3}} \left(x \left(-9c_1 x^2 + \sqrt{3} \sqrt{\frac{x(27c_1^2 x^3 - 4)}{c_1}} \right) c_1^2 \right)^{\frac{1}{3}}}{6c_1} \\ &+ \frac{x12^{\frac{2}{3}}}{6 \left(x \left(-9c_1 x^2 + \sqrt{3} \sqrt{\frac{x(27c_1^2 x^3 - 4)}{c_1}} \right) c_1^2 \right)^{\frac{1}{3}}} \\ y(x) &= -\frac{12^{\frac{1}{3}} \left(x \left(-9c_1 x^2 + \sqrt{3} \sqrt{\frac{x(27c_1^2 x^3 - 4)}{c_1}} \right) c_1^2 \right)^{\frac{1}{3}}}{12 \left(x \left(-9c_1 x^2 + \sqrt{3} \sqrt{\frac{x(27c_1^2 x^3 - 4)}{c_1}} \right) c_1^2 \right)^{\frac{1}{3}}} \\ &- \frac{x12^{\frac{2}{3}}}{12 \left(x \left(-9c_1 x^2 + \sqrt{3} \sqrt{\frac{x(27c_1^2 x^3 - 4)}{c_1}} \right) c_1^2 \right)^{\frac{1}{3}}}{6 \left(x \left(-9c_1 x^2 + \sqrt{3} \sqrt{\frac{x(27c_1^2 x^3 - 4)}{c_1}} \right) c_1^2 \right)^{\frac{1}{3}}} \\ &- \frac{x12^{\frac{2}{3}}}{6c_1} - \frac{x12^{\frac{2}{3}}}{12 \left(x \left(-9c_1 x^2 + \sqrt{3} \sqrt{\frac{x(27c_1^2 x^3 - 4)}{c_1}} \right) c_1^2 \right)^{\frac{1}{3}}}{12 \left(x \left(-9c_1 x^2 + \sqrt{3} \sqrt{\frac{x(27c_1^2 x^3 - 4)}{c_1}} \right) c_1^2 \right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}} \left(\frac{12^{\frac{1}{3}} \left(x \left(-9c_1 x^2 + \sqrt{3} \sqrt{\frac{x(27c_1^2 x^3 - 4)}{c_1}} \right) c_1^2 \right)^{\frac{1}{3}}}{6c_1} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(-9c_1 x^2 + \sqrt{3} \sqrt{\frac{x(27c_1^2 x^3 - 4)}{c_1}} \right) c_1^2 \right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}} \left(\frac{12^{\frac{1}{3}} \left(x \left(-9c_1 x^2 + \sqrt{3} \sqrt{\frac{x(27c_1^2 x^3 - 4)}{c_1}} \right) c_1^2 \right)^{\frac{1}{3}}}{6c_1} - \frac{x12^{\frac{2}{3}}}{6 \left(x \left(-9c_1 x^2 + \sqrt{3} \sqrt{\frac{x(27c_1^2 x^3 - 4)}{c_1} \right) c_1^2 \right)^{\frac{1}{3}}} \\ &+ \frac{2} \end{array}$$
✓ Solution by Mathematica

Time used: 60.224 (sec). Leaf size: 331

DSolve[(2*x*y[x]^3-x^4)*y'[x]+2*x^3*y[x]-y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \frac{\sqrt[3]{2} \left(-9 x^3 + \sqrt{81 x^6 - 12 e^{3 c_1} x^3}\right)^{2/3} + 2\sqrt[3]{3} e^{c_1} x}{6^{2/3} \sqrt[3]{-9 x^3} + \sqrt{81 x^6 - 12 e^{3 c_1} x^3}} \\ y(x) &\to \frac{i\sqrt[3]{2} \sqrt[6]{3} \left(\sqrt{3} + i\right) \left(-9 x^3 + \sqrt{81 x^6 - 12 e^{3 c_1} x^3}\right)^{2/3} - 2 \left(\sqrt{3} + 3i\right) e^{c_1} x}{2 \ 2^{2/3} 3^{5/6} \sqrt[3]{-9 x^3} + \sqrt{81 x^6 - 12 e^{3 c_1} x^3}} \\ y(x) &\to \frac{\sqrt[3]{2} \sqrt[6]{3} \left(-1 - i\sqrt{3}\right) \left(-9 x^3 + \sqrt{81 x^6 - 12 e^{3 c_1} x^3}\right)^{2/3} - 2 \left(\sqrt{3} - 3i\right) e^{c_1} x}{2 \ 2^{2/3} 3^{5/6} \sqrt[3]{-9 x^3} + \sqrt{81 x^6 - 12 e^{3 c_1} x^3}} \end{split}$$

6.44 problem Exercise 12.44, page 103

Internal problem ID [4565]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.44, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$(-1+yx)^{2} xy' + (1+x^{2}y^{2}) y = 0$$

Solution by Maple

Time used: 0.094 (sec). Leaf size: 34

dsolve((x*y(x)-1)^2*x*diff(y(x),x)+(x^2*y(x)^2+1)*y(x)=0,y(x), singsol=all)

$$y(x) = rac{\mathrm{e}^{\mathrm{RootOf}(-2\,\mathrm{e}^{-Z}\ln(x) - \mathrm{e}^{2-Z} + 2\,\mathrm{e}^{-Z}c_1 + 2_Z\,\mathrm{e}^{-Z} + 1)}}{x}$$

✓ Solution by Mathematica

Time used: 0.108 (sec). Leaf size: 25

DSolve[(x*y[x]-1)^2*x*y'[x]+(x^2*y[x]^2+1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$ext{Solve}igg[xy(x) - rac{1}{xy(x)} - 2\log(y(x)) = c_1, y(x)igg]$$

6.45 problem Exercise 12.45, page 103

Internal problem ID [4566]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number: Exercise 12.45, page 103.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$(x^2 + y^2) y' + 2x(y + 2x) = 0$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 417

dsolve((x²+y(x)²)*diff(y(x),x)+2*x*(2*x+y(x))=0,y(x), singsol=all)

y(x)

y(x)

Solution by Mathematica

Time used: 18.874 (sec). Leaf size: 593

$$\begin{split} y(x) & \rightarrow \frac{\sqrt[3]{-4x^3 + \sqrt{20x^6 - 8e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}{\sqrt[3]{2}} - \frac{\sqrt[3]{2}x^2}{\sqrt[3]{-4x^3 + \sqrt{20x^6 - 8e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}}{\sqrt[3]{-4x^3 + \sqrt{20x^6 - 8e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}} \\ y(x) & \rightarrow \frac{\sqrt[3]{2}(2 + 2i\sqrt{3})x^2 + i2^{2/3}(\sqrt{3} + i)(-4x^3 + \sqrt{20x^6 - 8e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1})}{4\sqrt[3]{-4x^3 + \sqrt{20x^6 - 8e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}} \\ y(x) & \rightarrow \frac{(1 - i\sqrt{3})x^2}{2^{2/3}\sqrt[3]{-4x^3 + \sqrt{20x^6 - 8e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}}{2\sqrt[3]{2}} \\ y(x) & \rightarrow \frac{\sqrt[3]{\sqrt{5}\sqrt{x^6} - 2x^3}} - \frac{x^2}{\sqrt[3]{\sqrt{5}\sqrt{x^6} - 2x^3}}} \\ y(x) & \rightarrow \frac{(1 - i\sqrt{3})x^2 + (-1 - i\sqrt{3})(\sqrt{5}\sqrt{x^6} - 2x^3)}{2\sqrt[3]{\sqrt{5}\sqrt{x^6} - 2x^3}}} \\ y(x) & \rightarrow \frac{(1 + i\sqrt{3})x^2 + i(\sqrt{3} + i)(\sqrt{5}\sqrt{x^6} - 2x^3)^{2/3}}{2\sqrt[3]{\sqrt{5}\sqrt{x^6} - 2x^3}}} \end{split}$$

6.46 problem Exercise 12.46, page 103

Internal problem ID [4567]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number: Exercise 12.46, page 103.
ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact, _rational, _Bernoulli]

$$3xy^2y' + y^3 = 2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 99

dsolve($3*x*y(x)^2*diff(y(x),x)+y(x)^3-2*x=0,y(x)$, singsol=all)

$$y(x) = \frac{\left(\left(x^2 + c_1\right)x^2\right)^{\frac{1}{3}}}{x}$$
$$y(x) = -\frac{\left(\left(x^2 + c_1\right)x^2\right)^{\frac{1}{3}}}{2x} - \frac{i\sqrt{3}\left(\left(x^2 + c_1\right)x^2\right)^{\frac{1}{3}}}{2x}$$
$$y(x) = -\frac{\left(\left(x^2 + c_1\right)x^2\right)^{\frac{1}{3}}}{2x} + \frac{i\sqrt{3}\left(\left(x^2 + c_1\right)x^2\right)^{\frac{1}{3}}}{2x}$$

✓ Solution by Mathematica

Time used: 0.224 (sec). Leaf size: 72

DSolve[3*x*y[x]^2*y'[x]+y[x]^3-2*x==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \frac{\sqrt[3]{x^2 + c_1}}{\sqrt[3]{x}} \\ y(x) &\to -\frac{\sqrt[3]{-1}\sqrt[3]{x^2 + c_1}}{\sqrt[3]{x}} \\ y(x) &\to \frac{(-1)^{2/3}\sqrt[3]{x^2 + c_1}}{\sqrt[3]{x}} \end{split}$$

6.47 problem Exercise 12.47, page 103

Internal problem ID [4568]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number: Exercise 12.47, page 103.

ODE order: 1.

ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$2y^3y' + y^2x = x^3$$

Solution by Maple

Time used: $0.453~(\mathrm{sec}).$ Leaf size: 711

dsolve $(2*y(x)^3*diff(y(x),x)+x*y(x)^2-x^3=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{2\left(2 + x^{6}c_{1}^{3} + 2\sqrt{x^{6}c_{1}^{3} + 1}\right)^{\frac{1}{3}} + \frac{2x^{4}c_{1}^{2}}{\left(2 + x^{6}c_{1}^{3} + 2\sqrt{x^{6}c_{1}^{3} + 1}\right)^{\frac{1}{3}} - 2c_{1}x^{2}}}{2\sqrt{c_{1}}}}$$

$$y(x) = \frac{\sqrt{2\left(2 + x^{6}c_{1}^{3} + 2\sqrt{x^{6}c_{1}^{3} + 1}\right)^{\frac{1}{3}} + \frac{2x^{4}c_{1}^{2}}{\left(2 + x^{6}c_{1}^{3} + 2\sqrt{x^{6}c_{1}^{3} + 1}\right)^{\frac{1}{3}} - 2c_{1}x^{2}}}{2\sqrt{c_{1}}}}{2\sqrt{c_{1}}}$$

$$y(x) = \frac{\sqrt{-\left(2 + x^{6}c_{1}^{3} + 2\sqrt{x^{6}c_{1}^{3} + 1}\right)^{\frac{1}{3}} - \frac{x^{4}c_{1}^{2}}{\left(2 + x^{6}c_{1}^{3} + 2\sqrt{x^{6}c_{1}^{3} + 1}\right)^{\frac{1}{3}}} - 2c_{1}x^{2} - 2i\sqrt{3}\left(\frac{\left(2 + x^{6}c_{1}^{3} + 2\sqrt{x^{6}c_{1}^{3} + 1}\right)^{\frac{1}{3}}}{2\sqrt{c_{1}}} - \frac{2\sqrt{c_{1}}}{2\sqrt{c_{1}}}\right)}{2\sqrt{c_{1}}}$$

$$y(x) = \frac{\sqrt{-\left(2+x^6c_1^3+2\sqrt{x^6c_1^3+1}\right)^{\frac{1}{3}} - \frac{x^4c_1^2}{\left(2+x^6c_1^3+2\sqrt{x^6c_1^3+1}\right)^{\frac{1}{3}}} - 2c_1x^2 - 2i\sqrt{3}\left(\frac{\left(2+x^6c_1^3+2\sqrt{x^6c_1^3+1}\right)^{\frac{1}{3}}}{2} - \frac{2}{2\left(2+x^6c_1^3+2\sqrt{x^6c_1^3+1}\right)^{\frac{1}{3}}} - \frac{2}{2\sqrt{c_1}}}{2\sqrt{c_1}}\right)}$$

$$y(x) = \frac{\sqrt{-\left(2 + x^6 c_1^3 + 2\sqrt{x^6 c_1^3 + 1}\right)^{\frac{1}{3}} - \frac{x^4 c_1^2}{\left(2 + x^6 c_1^3 + 2\sqrt{x^6 c_1^3 + 1}\right)^{\frac{1}{3}}} - 2c_1 x^2 + 2i\sqrt{3} \left(\frac{\left(2 + x^6 c_1^3 + 2\sqrt{x^6 c_1^3 + 1}\right)^{\frac{1}{3}}}{2} - \frac{2\sqrt{2}}{2\sqrt{c_1}}\right)^{\frac{1}{3}}}{2\sqrt{c_1}}$$

$$y(x) = \frac{\sqrt{-\left(2+x^6c_1^3+2\sqrt{x^6c_1^3+1}\right)^{\frac{1}{3}} - \frac{x^4c_1^2}{\left(2+x^6c_1^3+2\sqrt{x^6c_1^3+1}\right)^{\frac{1}{3}}} - 2c_1x^2 + 2i\sqrt{3}\left(\frac{\left(2+x^6c_1^3+2\sqrt{x^6c_1^3+1}\right)^{\frac{1}{3}}}{2} - \frac{x^4c_1^2}{2\left(2+x^6c_1^3+2\sqrt{x^6c_1^3+1}\right)^{\frac{1}{3}}} - \frac{x^4c_1^2}{2\sqrt{c_1}}\right)}{2\sqrt{c_1}}$$

✓ Solution by Mathematica

Time used: 60.13 (sec). Leaf size: 714

DSolve[2*y[x]^3*y'[x]+x*y[x]^2-x^3==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) & \to -\frac{\sqrt{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}}{\sqrt{2}} - \frac{x^2 + \frac{x^4}{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}}}{\sqrt{2}} \\ y(x) & \to \frac{\sqrt{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}}{\sqrt{2}} - \frac{x^2 + \frac{x^4}{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}}}{\sqrt{2}} \\ y(x) & \to \\ -\frac{1}{2}\sqrt{\left(-1 - i\sqrt{3}\right)\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}} - 2x^2 + \frac{i\left(\sqrt{3} + i\right)x^4}{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}}} \\ y(x) & \to \\ -\frac{1}{2}\sqrt{\left(-1 - i\sqrt{3}\right)\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}} - 2x^2 + \frac{i\left(\sqrt{3} + i\right)x^4}{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}} \\ y(x) & \to \\ -\frac{1}{2}\sqrt{i\left(\sqrt{3} + i\right)\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}} - 2x^2 + \frac{(-1 - i\sqrt{3})x^4}{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}} \\ y(x) & \to \\ -\frac{1}{2}\sqrt{i\left(\sqrt{3} + i\right)\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}} - 2x^2 + \frac{(-1 - i\sqrt{3})x^4}{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}} \\ y(x) & \to \\ -\frac{1}{2}\sqrt{i\left(\sqrt{3} + i\right)\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}} - 2x^2 + \frac{(-1 - i\sqrt{3})x^4}{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}} \\ y(x) & \to \\ -\frac{1}{2}\sqrt{i\left(\sqrt{3} + i\right)\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}} - 2x^2 + \frac{(-1 - i\sqrt{3})x^4}{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}} \\ y(x) & \to \\ -\frac{1}{2}\sqrt{i\left(\sqrt{3} + i\right)\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}} - 2x^2 + \frac{(-1 - i\sqrt{3})x^4}{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}} \\ y(x) & \to \\ -\frac{1}{2}\sqrt{i\left(\sqrt{3} + i\right)\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}} - 2x^2 + \frac{(-1 - i\sqrt{3})x^4}{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}} \\ y(x) & \to \\ -\frac{1}{2}\sqrt{i\left(\sqrt{3} + i\right)\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}} - 2x^2 + \frac{(-1 - i\sqrt{3})x^4}{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}} \\ y(x) & \to \\ -\frac{1}{2}\sqrt{i\left(\sqrt{3} + i\right)\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}} - 2x^2 + \frac{(-1 - i\sqrt{3})x^4}{\sqrt[3]{x^6 + 2\sqrt{e^{24c_1} - e^{12c_1}x^6} - 2e^{12c_1}}$$

6.48 problem Exercise 12.48, page 103

Internal problem ID [4569]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.48, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$(2y^{3}x + yx + x^{2})y' - yx + y^{2} = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve((2*x*y(x)^3+x*y(x)+x^2)*diff(y(x),x)-x*y(x)+y(x)^2=0,y(x), singsol=all)

$$y(x) = e^{\text{RootOf}(-e^3 - z - e^{-z} \ln(x) + e^{-z}c_1 - ze^{-z} + x)}$$

Solution by Mathematica

Time used: 0.225 (sec). Leaf size: 23

DSolve[(2*x*y[x]^3+x*y[x]+x^2)*y'[x]-x*y[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> Tru

Solve
$$\left[y(x)^2 - rac{x}{y(x)} + \log(y(x)) + \log(x) = c_1, y(x)
ight]$$

6.49 problem Exercise 12.49, page 103

Internal problem ID [4570]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.49, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left(2y^3+y\right)y'=2x^3+x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 113

 $dsolve((2*y(x)^3+y(x))*diff(y(x),x)-2*x^3-x=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{-2 - 2\sqrt{4x^4 + 4x^2 + 8c_1 + 1}}}{2}$$
$$y(x) = \frac{\sqrt{-2 - 2\sqrt{4x^4 + 4x^2 + 8c_1 + 1}}}{2}$$
$$y(x) = -\frac{\sqrt{-2 + 2\sqrt{4x^4 + 4x^2 + 8c_1 + 1}}}{2}$$
$$y(x) = \frac{\sqrt{-2 + 2\sqrt{4x^4 + 4x^2 + 8c_1 + 1}}}{2}$$

✓ Solution by Mathematica

Time used: 2.313 (sec). Leaf size: 151

DSolve[(2*y[x]^3+y[x])*y'[x]-2*x^3-x==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to -\frac{\sqrt{-1 - \sqrt{4x^4 + 4x^2 + 1 + 8c_1}}}{\sqrt{2}} \\ y(x) &\to \frac{\sqrt{-1 - \sqrt{4x^4 + 4x^2 + 1 + 8c_1}}}{\sqrt{2}} \\ y(x) &\to -\frac{\sqrt{-1 + \sqrt{4x^4 + 4x^2 + 1 + 8c_1}}}{\sqrt{2}} \\ y(x) &\to \frac{\sqrt{-1 + \sqrt{4x^4 + 4x^2 + 1 + 8c_1}}}{\sqrt{2}} \\ \end{split}$$

6.50 problem Exercise 12.50, page 103

Internal problem ID [4571]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods

Problem number: Exercise 12.50, page 103. ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - e^{-y+x} = -e^x$$

Solution by Maple

Time used: 0.125 (sec). Leaf size: 20

dsolve(diff(y(x),x)-exp(x-y(x))+exp(x)=0,y(x), singsol=all)

$$y(x) = -e^{x} + \ln(-1 + e^{e^{x} + c_{1}}) - c_{1}$$

Solution by Mathematica

Time used: 2.135 (sec). Leaf size: 23

DSolve[y'[x]-Exp[x-y[x]]+Exp[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow \log \left(1 + e^{-e^x + c_1}
ight)$$

 $y(x)
ightarrow 0$

7 Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

7.1	problem Exercise	20.1, page 220		 	 • • •	•	195
7.2	problem Exercise	20.2, page 220		 	 •••	•	196
7.3	problem Exercise	20.3, page 220		 	 • • •	•	197
7.4	problem Exercise	20.5, page 220		 	 • • •	•	198
7.5	problem Exercise	20.6, page 220		 	 • • •	•	199
7.6	problem Exercise	20.7, page 220		 	 • • •	•	200
7.7	problem Exercise	20.8, page 220		 	 • • •	•	201
7.8	problem Exercise	20.9, page 220		 	 • • •	•	202
7.9	problem Exercise	20.10, page 220		 	 • • •	•	203
7.10	problem Exercise	20.11, page 220		 	 •••	•	204
7.11	problem Exercise	20.12, page 220		 	 • • •	•	205
7.12	problem Exercise	20.13, page 220		 	 •••		206
7.13	problem Exercise	20.14, page 220		 	 • • •	•	207
7.14	problem Exercise	20.15, page 220		 	 • • •	•	208
7.15	problem Exercise	20.16, page 220		 	 •••		209
7.16	problem Exercise	20.17, page 220		 	 • • •	•	210
7.17	problem Exercise	20.18, page 220		 	 •••	•	211
7.18	problem Exercise	20.19, page 220		 	 •••		212
7.19	problem Exercise	20.20, page 220		 	 • • •	•	213
7.20	problem Exercise	20.21, page 220		 	 • • •	•	214
7.21	problem Exercise	20.22, page 220		 	 • • •	•	215
7.22	problem Exercise	20.23, page 220		 	 • • •	•	216
7.23	problem Exercise	20.24, page 220		 	 • • •	•	217
7.24	problem Exercise	20.25, page 220		 	 • • •	•	218
7.25	problem Exercise	20.26, page 220		 	 • • •	•	219
7.26	problem Exercise	20.27, page 220		 	 • • •	•	220
7.27	problem Exercise	20.28, page 220		 	 • • •	•	221
7.28	problem Exercise	20.29, page 220		 	 • • •	•	222
7.29	problem Exercise	20.30, page 220		 	 • • •	•	223
7.30	problem Exercise	20, problem 31, page	220 .	 	 •••	•	224
7.31	problem Exercise	20, problem 32, page	220 .	 	 • • •	•	225
7.32	problem Exercise	20, problem 33, page	220.	 	 •••	•	226
7.33	problem Exercise	20, problem 34, page	220.	 	 •••	•	227
7.34	problem Exercise	20, problem 35, page	220.	 	 •••	•	228

7.1 problem Exercise 20.1, page 220

Internal problem ID [4572]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.1, page 220. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 19

DSolve[y''[x]+2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o c_2 - rac{1}{2}c_1 e^{-2x}$$

7.2 problem Exercise 20.2, page 220

Internal problem ID [4573]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.2, page 220. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 3y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^x + c_2 \mathrm{e}^{2x}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 18

DSolve[y''[x]-3*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(c_2e^x + c_1)$$

7.3 problem Exercise 20.3, page 220

Internal problem ID [4574]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.3, page 220. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^x + c_2 \mathrm{e}^{-x}$$

Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 20

DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x}$$

7.4 problem Exercise 20.5, page 220

Internal problem ID [4575]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.5, page 220. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$6y'' - 11y' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(6*diff(y(x),x\$2)-11*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{\frac{4x}{3}} + c_2 \mathrm{e}^{\frac{x}{2}}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 35

DSolve[y''[x]-11*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o e^{-\frac{1}{2}\left(\sqrt{105}-11\right)x} \left(c_2 e^{\sqrt{105}x} + c_1\right)$$

7.5 problem Exercise 20.6, page 220

Internal problem ID [4576]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.6, page 220. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{(\sqrt{2}-1)x} + c_2 e^{-(1+\sqrt{2})x}$$

Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 34

DSolve[y''[x]+2*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow e^{-\left(\left(1+\sqrt{2}
ight)x
ight)}\left(c_2e^{2\sqrt{2}x}+c_1
ight)$$

7.6 problem Exercise 20.7, page 220

Internal problem ID [4577]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.7, page 220. ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' - 10y' - 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)-10*diff(y(x),x)-6*y(x)=0,y(x), singsol=all)

$$y(x) = e^{3x}c_1 + c_2 e^{\left(-2+\sqrt{2}\right)x} + c_3 e^{-\left(2+\sqrt{2}\right)x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 43

DSolve[y'''[x]+y''[x]-10*y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-\left(\left(2+\sqrt{2}\right)x\right)} + c_2 e^{\left(\sqrt{2}-2\right)x} + c_3 e^{3x}$$

7.7 problem Exercise 20.8, page 220

Internal problem ID [4578]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.8, page 220. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y''' - 4y'' + 4y' = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$4)-diff(y(x),x\$3)-4*diff(y(x),x\$2)+4*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + e^x c_2 + c_3 e^{-2x} + c_4 e^{2x}$$

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 36

DSolve[y'''[x]-y'''[x]-4*y''[x]+4*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -rac{1}{2}c_1e^{-2x} + c_2e^x + rac{1}{2}c_3e^{2x} + c_4$$

7.8 problem Exercise 20.9, page 220

Internal problem ID [4579]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.9, page 220. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 4y''' + y'' - 4y' - 2y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve(diff(y(x),x\$4)+4*diff(y(x),x\$3)+diff(y(x),x\$2)-4*diff(y(x),x)-2*y(x)=0,y(x), singsol=

$$y(x) = c_1 e^x + c_2 e^{-x} + c_3 e^{\left(-2+\sqrt{2}\right)x} + c_4 e^{-\left(2+\sqrt{2}\right)x}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 49

DSolve[y''''[x]+4*y'''[x]+y''[x]-4*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-\left(\left(2+\sqrt{2}\right)x\right)} + c_2 e^{\left(\sqrt{2}-2\right)x} + c_3 e^{-x} + c_4 e^{x}$$

7.9 problem Exercise 20.10, page 220

Internal problem ID [4580]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.10, page 220. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - a^2 y = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

 $dsolve(diff(y(x),x$4)-a^2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 e^{\sqrt{a}x} + c_2 e^{-\sqrt{a}x} + c_3 \sin(\sqrt{a}x) + c_4 \cos(\sqrt{a}x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 53

DSolve[y''''[x]-a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 e^{-\sqrt{a}x} + c_4 e^{\sqrt{a}x} + c_1 \cos\left(\sqrt{a}x\right) + c_3 \sin\left(\sqrt{a}x\right)$$

7.10 problem Exercise 20.11, page 220

Internal problem ID [4581]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.11, page 220. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2ky' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$2)-2*k*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{\left(k + \sqrt{k^2 + 2}\right)x} + c_2 e^{\left(k - \sqrt{k^2 + 2}\right)x}$$

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 44

DSolve[y''[x]-2*k*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{\left(k - \sqrt{k^2 + 2}\right)x} + c_2 e^{\left(\sqrt{k^2 + 2} + k\right)x}$$

7.11 problem Exercise 20.12, page 220

Internal problem ID [4582]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.12, page 220. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4ky' - 12k^2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x$2)+4*k*diff(y(x),x)-12*k^2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 e^{-6kx} + c_2 e^{2kx}$$

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 24

DSolve[y''[x]+4*k*y'[x]-12*k^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-6kx} (c_2 e^{8kx} + c_1)$$

7.12 problem Exercise 20.13, page 220

Internal problem ID [4583]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.13, page 220. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _quadrature]]

$$y'''' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$4)=0,y(x), singsol=all)

$$y(x) = rac{1}{6}c_1x^3 + rac{1}{2}c_2x^2 + c_3x + c_4$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[y''''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(x(c_4x + c_3) + c_2) + c_1$$

7.13 problem Exercise 20.14, page 220

Internal problem ID [4584]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.14, page 220. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y' + 4y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-2x} + c_2 e^{-2x} x$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 18

DSolve[y''[x]+4*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x}(c_2x + c_1)$$

7.14 problem Exercise 20.15, page 220

Internal problem ID [4585]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.15, page 220. ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$3y''' + 5y'' + y' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(3*diff(y(x),x\$3)+5*diff(y(x),x\$2)+diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{\frac{x}{3}} + c_2 e^{-x} + c_3 e^{-x} x$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

DSolve[3*y'''[x]+5*y''[x]+y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} (c_1 e^{4x/3} + c_3 x + c_2)$$

7.15 problem Exercise 20.16, page 220

Internal problem ID [4586]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.16, page 220. ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 6y'' + 12y' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+12*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{2x} x + c_3 e^{2x} x^2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 23

DSolve[y'''[x]-6*y''[x]+12*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x}(x(c_3x + c_2) + c_1)$$

7.16 problem Exercise 20.17, page 220

Internal problem ID [4587]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.17, page 220. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2ay' + ya^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x$2)-2*a*diff(y(x),x)+a^2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \mathrm{e}^{ax} + c_2 \mathrm{e}^{ax} x$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 18

DSolve[y''[x]-2*a*y'[x]+a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{ax}(c_2x + c_1)$$

7.17 problem Exercise 20.18, page 220

Internal problem ID [4588]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.18, page 220. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{\prime\prime\prime\prime} + 3y^{\prime\prime\prime} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve(diff(y(x),x\$4)+3*diff(y(x),x\$3)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 x + c_3 x^2 + c_4 e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 28

DSolve[y'''[x]+3*y'''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{1}{27}c_1e^{-3x} + x(c_4x + c_3) + c_2$$

7.18 problem Exercise 20.19, page 220

Internal problem ID [4589]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.19, page 220. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 2y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$4)-2*diff(y(x),x\$2)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 x + c_3 e^{\sqrt{2}x} + c_4 e^{-\sqrt{2}x}$$

Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 42

DSolve[y'''[x]-2*y''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{1}{2} e^{-\sqrt{2}x} \Big(c_1 e^{2\sqrt{2}x} + c_2 \Big) + c_4 x + c_3$$

7.19 problem Exercise 20.20, page 220

Internal problem ID [4590]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.20, page 220. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 2y''' - 11y'' - 12y' + 36y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$3)-11*diff(y(x),x\$2)-12*diff(y(x),x)+36*y(x)=0,y(x), sin

$$y(x) = c_1 e^{-3x} + c_2 e^{-3x} x + c_3 e^{2x} + c_4 e^{2x} x$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 35

DSolve[y''' [x]+2*y''' [x]-11*y'' [x]-12*y' [x]+36*y[x]==0,y[x],x,IncludeSingularSolutions -> T

$$y(x) \rightarrow e^{-3x} (c_3 e^{5x} + x (c_4 e^{5x} + c_2) + c_1)$$

7.20 problem Exercise 20.21, page 220

Internal problem ID [4591]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.21, page 220. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$36y'''' - 37y'' + 4y' + 5y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

dsolve(36*diff(y(x),x\$4)-37*diff(y(x),x\$2)+4*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-x} + c_2 e^{\frac{x}{2}} + c_3 e^{-\frac{x}{3}} + c_4 e^{\frac{5x}{6}}$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 44

DSolve[36*y'''[x]-37*y''[x]+4*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{-x} (c_1 e^{11x/6} + c_2 e^{2x/3} + c_3 e^{3x/2} + c_4)$$

7.21 problem Exercise 20.22, page 220

Internal problem ID [4592]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.22, page 220. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 8y'' + 36y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 48

dsolve(diff(y(x),x\$4)-8*diff(y(x),x\$2)+36*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{\sqrt{5}x} \sin(x) - c_2 e^{-\sqrt{5}x} \sin(x) + c_3 e^{\sqrt{5}x} \cos(x) + c_4 e^{-\sqrt{5}x} \cos(x)$$

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 142

DSolve[y'''[x]-8*y''[x]+36*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) \to e^{-\sqrt{6}x \cos\left(\frac{1}{2} \arctan\left(\frac{\sqrt{5}}{2}\right)\right)} \Biggl(\left(c_3 e^{2\sqrt{6}x \cos\left(\frac{1}{2} \arctan\left(\frac{\sqrt{5}}{2}\right)\right)} \\ &+ c_2 \Biggr) \cos\left(\sqrt{6}x \sin\left(\frac{1}{2} \arctan\left(\frac{\sqrt{5}}{2}\right)\right)\right) \\ &+ \sin\left(\sqrt{6}x \sin\left(\frac{1}{2} \arctan\left(\frac{\sqrt{5}}{2}\right)\right)\right) \Biggl(c_1 e^{2\sqrt{6}x \cos\left(\frac{1}{2} \arctan\left(\frac{\sqrt{5}}{2}\right)\right)} + c_4\Biggr) \Biggr) \end{split}$$
7.22 problem Exercise 20.23, page 220

Internal problem ID [4593]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.23, page 220. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 5y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x \sin(2x) + c_2 e^x \cos(2x)$$

Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 24

DSolve[y''[x]-2*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(c_2\cos(2x) + c_1\sin(2x))$$

7.23 problem Exercise 20.24, page 220

Internal problem ID [4594]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.24, page 220. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y''-y'+y=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$2)-diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right) + c_2 \mathrm{e}^{\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right)$$

Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 42

DSolve[y''[x]-y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{x/2} \left(c_1 \cos\left(\frac{\sqrt{3}x}{2}\right) + c_2 \sin\left(\frac{\sqrt{3}x}{2}\right) \right)$$

7.24 problem Exercise 20.25, page 220

Internal problem ID [4595]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.25, page 220. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 5y'' + 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(x),x\$4)+5*diff(y(x),x\$2)+6*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin\left(\sqrt{2}x\right) + c_2 \cos\left(\sqrt{2}x\right) + c_3 \sin\left(\sqrt{3}x\right) + c_4 \cos\left(\sqrt{3}x\right)$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 50

DSolve[y'''[x]+5*y''[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_3 \cos\left(\sqrt{2}x\right) + c_1 \cos\left(\sqrt{3}x\right) + c_4 \sin\left(\sqrt{2}x\right) + c_2 \sin\left(\sqrt{3}x\right)$$

7.25 problem Exercise 20.26, page 220

Internal problem ID [4596]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.26, page 220. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 20y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+20*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} \sin(4x) + c_2 e^{2x} \cos(4x)$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 26

DSolve[y''[x]-4*y'[x]+20*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x}(c_2\cos(4x) + c_1\sin(4x))$$

7.26 problem Exercise 20.27, page 220

Internal problem ID [4597]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.27, page 220. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 4y'' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

dsolve(diff(y(x),x\$4)+4*diff(y(x),x\$2)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin\left(\sqrt{2}x\right) + c_2 \cos\left(\sqrt{2}x\right) + c_3 \sin\left(\sqrt{2}x\right)x + c_4 \cos\left(\sqrt{2}x\right)x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 38

DSolve[y'''[x]+4*y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (c_2 x + c_1) \cos\left(\sqrt{2}x\right) + (c_4 x + c_3) \sin\left(\sqrt{2}x\right)$$

7.27 problem Exercise 20.28, page 220

Internal problem ID [4598]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.28, page 220. ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 8y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve(diff(y(x),x3)+8*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-2x} + c_2 e^x \sin\left(\sqrt{3}x\right) + c_3 e^x \cos\left(\sqrt{3}x\right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 42

DSolve[y'''[x]+8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^{-2x} + c_3 e^x \cos\left(\sqrt{3}x\right) + c_2 e^x \sin\left(\sqrt{3}x\right)$$

7.28 problem Exercise 20.29, page 220

Internal problem ID [4599]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.29, page 220. ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 4y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$4)+4*diff(y(x),x\$2)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 x + c_3 \sin(2x) + c_4 \cos(2x)$$

Solution by Mathematica

Time used: 0.118 (sec). Leaf size: 32

DSolve[y''''[x]+4*y''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_4 x - \frac{1}{4}c_1 \cos(2x) - \frac{1}{4}c_2 \sin(2x) + c_3$$

7.29 problem Exercise 20.30, page 220

Internal problem ID [4600]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20.30, page 220. ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(5)} + 2y''' + y' = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve(diff(y(x),x\$5)+2*diff(y(x),x\$3)+diff(y(x),x)=0,y(x), singsol=all)

 $y(x) = c_1 + c_2 \sin(x) + c_3 \cos(x) + c_4 \sin(x) x + c_5 \cos(x) x$

Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 35

DSolve[y''''[x]+2*y'''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (-c_4x + c_2 - c_3)\cos(x) + (c_2x + c_1 + c_4)\sin(x) + c_5$$

7.30 problem Exercise 20, problem 31, page 220

Internal problem ID [4601]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients Problem number: Exercise 20. problem 31. page 220

Problem number: Exercise 20, problem 31, page 220.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' = 0$$

With initial conditions

$$[y(1) = 2, y'(1) = -1]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve([diff(y(x),x\$2)=0,y(1) = 2, D(y)(1) = -1],y(x), singsol=all)

$$y(x) = 3 - x$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 10

DSolve[{y''[x]==0,{y[1]==2,y'[1]==-1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 3-x$$

7.31 problem Exercise 20, problem 32, page 220

Internal problem ID [4602]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20, problem 32, page 220.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y' + 4y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=0,y(0) = 1, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = e^{-2x}(3x+1)$$

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 16

DSolve[{y''[x]+4*y'[x]+4*y[x]==0,{y[0]==1,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True

$$y(x) \to e^{-2x}(3x+1)$$

7.32 problem Exercise 20, problem 33, page 220

Internal problem ID [4603]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20, problem 33, page 220.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 5y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+5*y(x)=0,y(0) = 2, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = rac{\mathrm{e}^{x}(-\sin{(2x)} + 4\cos{(2x)})}{2}$$

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 25

DSolve[{y''[x]-2*y'[x]+5*y[x]==0,{y[0]==2,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow \frac{1}{2}e^x(4\cos(2x) - \sin(2x))$$

7.33 problem Exercise 20, problem 34, page 220

Internal problem ID [4604]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20, problem 34, page 220.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 20y = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right)=1,y'\left(\frac{\pi}{2}\right)=1\right]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve([diff(y(x),x\$2)-4*diff(y(x),x)+20*y(x)=0,y(1/2*Pi) = 1, D(y)(1/2*Pi) = 1],y(x), sings

$$y(x) = \frac{(-\sin(4x) + 4\cos(4x))e^{2x-\pi}}{4}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 31

DSolve[{y''[x]-4*y'[x]+20*y[x]==0,{y[Pi/2]==1,y'[Pi/2]==1}},y[x],x,IncludeSingularSolutions

$$y(x) \to \frac{1}{4}e^{2x-\pi}(4\cos(4x) - \sin(4x))$$

7.34 problem Exercise 20, problem 35, page 220

Internal problem ID [4605]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients

Problem number: Exercise 20, problem 35, page 220.
ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$3y''' + 5y'' + y' - y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1, y''(0) = -1]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve([3*diff(y(x),x\$3)+5*diff(y(x),x\$2)+diff(y(x),x)-y(x)=0,y(0) = 0, D(y)(0) = 1, (D@@2)(0) = 0, D(y)(0) = 1, (D@@2)(0) = 0, D(y)(0) = 0, D(y)(

$$y(x) = \frac{\left(9 e^{\frac{4x}{3}} + 4x - 9\right) e^{-x}}{16}$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 28

DSolve[{3*y'''[x]+5*y''[x]+y'[x]-y[x]==0,{y[0]==0,y'[0]==1,y''[0]==-1}},y[x],x,IncludeSingul

$$y(x) \to \frac{1}{16}e^{-x}(4x + 9e^{4x/3} - 9)$$

8 Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

8.1	problem	Exercise	$21.3,\mathrm{page}~231$			•		•		•	•	•		• •	•	•	•	 •		•	230
8.2	problem	Exercise	$21.4,\mathrm{page}~231$			•				•	•	•			•	•		 •			231
8.3	$\operatorname{problem}$	Exercise	21.5, page 231			•		•		•	•	•			•	•		 •			232
8.4	$\operatorname{problem}$	Exercise	21.6, page 231			•				•	•	•			•	•					233
8.5	$\operatorname{problem}$	Exercise	21.7, page 231			•		•		•	•	•			•	•		 •	•		234
8.6	$\operatorname{problem}$	Exercise	$21.8,\mathrm{page}~231$	•	•••	•	•	•		•	•	•			•	•		 •	•		235
8.7	problem	Exercise	$21.9,\mathrm{page}~231$	•	•••	•	•	•		•	•	•			•	•	•	 •	•	•	236
8.8	${\rm problem}$	Exercise	$21.10,\mathrm{page}~23$	1	•••	•	•	•	• •	•	•	•		• •	•	•	•	 •	•		237
8.9	${\rm problem}$	Exercise	$21.11,\mathrm{page}~23$	1	•••	•	•	•	• •	•	•	•		• •	•	•	•	 •	•		238
8.10	${\rm problem}$	Exercise	$21.13, \mathrm{page} \ 23$	1	•••	•		•		•	•	•		• •	•	•		 •	•		239
8.11	${\rm problem}$	Exercise	$21.14,\mathrm{page}~23$	1	•••	•	•	•	• •	•	•	•		• •	•	•	•	 •	•		240
8.12	${\rm problem}$	Exercise	$21.15,\mathrm{page}~23$	1	•••	•		•		•	•	•		• •	•	•		 •	•		241
8.13	${\rm problem}$	Exercise	$21.16,\mathrm{page}~23$	1	•••	•		•		•	•	•		• •	•	•		 •	•		242
8.14	${\rm problem}$	Exercise	$21.17,\mathrm{page}~23$	1	•••	•		•		•	•	•		• •	•	•		 •	•		243
8.15	${\rm problem}$	Exercise	$21.19, \mathrm{page} \ 23$	1	•••	•		•		•	•	•		• •	•	•		 •	•		244
8.16	${\rm problem}$	Exercise	$21.20,\mathrm{page}~23$	1	•••	•	•	•		•	•	•		• •	•	•	•	 •			245
8.17	${\rm problem}$	Exercise	$21.21,\mathrm{page}~23$	1	•••	•	•	•		•	•	•		• •	•	•	•	 •			246
8.18	${\rm problem}$	Exercise	$21.22, \mathrm{page} \ 23$	1	•••	•	•	•		•	•	•		• •	•	•	•	 •			247
8.19	problem	Exercise	$21.24,\mathrm{page}~23$	1	•••	•	•	•		•	•	•			•	•	•	 •	•	•	248
8.20	${\rm problem}$	Exercise	$21.27,\mathrm{page}~23$	1	•••	•	•	•	• •	•	•	•		• •	•	•	•	 •	•		249
8.21	problem	Exercise	$21.28,\mathrm{page}~23$	1	•••	•	•	•		•	•	•			•	•	•	 •	•	•	250
8.22	problem	Exercise	$21.29,\mathrm{page}~23$	1	•••	•	•	•		•	•	•			•	•	•	 •	•	•	251
8.23	problem	Exercise	$21.31,\mathrm{page}~23$	1	•••	•	•	•		•	•	•			•	•	•	 •	•	•	252
8.24	${\rm problem}$	Exercise	$21.32,\mathrm{page}~23$	1	•••	•	•	•		•	•	•	•••	• •	•	•	•	 •	•		253
8.25	${\rm problem}$	Exercise	$21.33,\mathrm{page}\ 23$	1	• •	•	•	•	• •	•	•	•		• •	•	•	•			•	254

8.1 problem Exercise 21.3, page 231

Internal problem ID [4606]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.3, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 3y' + 2y = 4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=4,y(x), singsol=all)

$$y(x) = -c_1 e^{-2x} + c_2 e^{-x} + 2$$

 \checkmark Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 23

DSolve[y''[x]+3*y'[x]+2*y[x]==4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-2x} + c_2 e^{-x} + 2$$

8.2 problem Exercise 21.4, page 231

Internal problem ID [4607]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.4, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 3y' + 2y = 12 e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=12*exp(x),y(x), singsol=all)

$$y(x) = -c_1 e^{-2x} + 2 e^x + c_2 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 27

DSolve[y''[x]+3*y'[x]+2*y[x]==12*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (2e^{3x} + c_2e^x + c_1)$$

8.3 problem Exercise 21.5, page 231

Internal problem ID [4608]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.5, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 3y' + 2y = e^{ix}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=exp(I*x),y(x), singsol=all)

$$y(x) = \left(\left(\frac{1}{10} - \frac{3i}{10} \right) e^{ix+x} - c_1 e^{-x} + c_2 \right) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 37

DSolve[y''[x]+3*y'[x]+2*y[x]==Exp[I*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow \left(rac{1}{10} - rac{3i}{10}
ight) e^{ix} + c_1 e^{-2x} + c_2 e^{-x}$$

8.4 problem Exercise 21.6, page 231

Internal problem ID [4609]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.6, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = \sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=sin(x),y(x), singsol=all)

$$y(x) = -c_1 e^{-2x} - \frac{3\cos(x)}{10} + \frac{\sin(x)}{10} + c_2 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 32

DSolve[y''[x]+3*y'[x]+2*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{10} (\sin(x) - 3\cos(x) + 10e^{-2x}(c_2e^x + c_1))$$

8.5 problem Exercise 21.7, page 231

Internal problem ID [4610]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients Problem number: Exercise 21.7, page 231

Problem number: Exercise 21.7, page 231.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = \cos\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=cos(x),y(x), singsol=all)

$$y(x) = -c_1 e^{-2x} + \frac{\cos(x)}{10} + \frac{3\sin(x)}{10} + c_2 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 32

DSolve[y''[x]+3*y'[x]+2*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{10} (3\sin(x) + \cos(x) + 10e^{-2x}(c_2e^x + c_1))$$

8.6 problem Exercise 21.8, page 231

Internal problem ID [4611]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.8, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = 8 + 6e^x + 2\sin(x)$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=8+6*exp(x)+2*sin(x),y(x), singsol=all)

$$y(x) = -c_1 e^{-2x} + 4 + e^x - \frac{3\cos(x)}{5} + \frac{\sin(x)}{5} + c_2 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.165 (sec). Leaf size: 38

DSolve[y''[x]+3*y'[x]+2*y[x]==8+6*Exp[x]+2*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x + \frac{\sin(x)}{5} - \frac{3\cos(x)}{5} + c_1 e^{-2x} + c_2 e^{-x} + 4$$

8.7 problem Exercise 21.9, page 231

Internal problem ID [4612]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.9, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' + y = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

 $dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=x^2,y(x), singsol=all)$

$$y(x) = e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right) c_2 + e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right) c_1 + x^2 - 2x$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 54

DSolve[y''[x]+y'[x]+y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{-x/2} \left(e^{x/2} (x-2)x + c_2 \cos\left(\frac{\sqrt{3}x}{2}\right) + c_1 \sin\left(\frac{\sqrt{3}x}{2}\right) \right)$$

8.8 problem Exercise 21.10, page 231

Internal problem ID [4613]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients Problem number: Exercise 21.10, page 231

Problem number: Exercise 21.10, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' - 8y = 9x e^x + 10 e^{-x}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-8*y(x)=9*x*exp(x)+10*exp(-x),y(x), singsol=all)

$$y(x) = e^{4x}c_2 + c_1e^{-2x} - e^xx - 2e^{-x}$$

✓ Solution by Mathematica

Time used: 0.145 (sec). Leaf size: 35

DSolve[y''[x]-2*y'[x]-8*y[x]==9*x*Exp[x]+10*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} \left(-e^{3x}x - 2e^x + c_2 e^{6x} + c_1 \right)$$

8.9 problem Exercise 21.11, page 231

Internal problem ID [4614]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.11, page 231.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 3y' = 2e^{2x}\sin\left(x\right)$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)=2*exp(2*x)*sin(x),y(x), singsol=all)

$$y(x) = \frac{e^{3x}c_1}{3} - \frac{e^{2x}\cos(x)}{5} - \frac{3e^{2x}\sin(x)}{5} + c_2$$

✓ Solution by Mathematica

Time used: 0.245 (sec). Leaf size: 33

DSolve[y''[x]-3*y'[x]==2*Exp[2*x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{15}e^{2x}(-9\sin(x) - 3\cos(x) + 5c_1e^x) + c_2$$

8.10 problem Exercise 21.13, page 231

Internal problem ID [4615]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.13, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + y' = x^2 + 2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x$2)+diff(y(x),x)=x^2+2*x,y(x), singsol=all)$

$$y(x) = rac{x^3}{3} - c_1 \mathrm{e}^{-x} + c_2$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 24

DSolve[y''[x]+y'[x]==x^2+2*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{x^3}{3}-c_1e^{-x}+c_2$$

8.11 problem Exercise 21.14, page 231

Internal problem ID [4616]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.14, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + y' = x + \sin\left(2x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$2)+diff(y(x),x)=x+sin(2*x),y(x), singsol=all)

$$y(x) = \frac{x^2}{2} - c_1 e^{-x} - \frac{\sin(2x)}{5} - \frac{\cos(2x)}{10} - x + c_2$$

✓ Solution by Mathematica

Time used: 0.359 (sec). Leaf size: 43

DSolve[y''[x]+y'[x]==x+Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x^2}{2} - x - \frac{1}{5}\sin(2x) - \frac{1}{10}\cos(2x) - c_1e^{-x} + c_2$$

8.12 problem Exercise 21.15, page 231

Internal problem ID [4617]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients Problem number: Evereige 21.15, page 221

Problem number: Exercise 21.15, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 4x\sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+y(x)=4*x*sin(x),y(x), singsol=all)

$$y(x) = c_2 \sin(x) + c_1 \cos(x) - x(x \cos(x) - \sin(x))$$

Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 27

DSolve[y''[x]+y[x]==4*x*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \left(-x^2 + \frac{1}{2} + c_1\right)\cos(x) + (x + c_2)\sin(x)$$

8.13 problem Exercise 21.16, page 231

Internal problem ID [4618]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients Problem number: Exercise 21.16, page 221

Problem number: Exercise 21.16, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = x\sin\left(2x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$2)+4*y(x)=x*sin(2*x),y(x), singsol=all)

$$y(x) = \sin(2x)c_2 + c_1\cos(2x) + \frac{\sin(2x)x}{16} - \frac{x^2\cos(2x)}{8}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 38

DSolve[y''[x]+4*y[x]==x*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{64} \left(\left(-8x^2 + 1 + 64c_1 \right) \cos(2x) + 4(x + 16c_2) \sin(2x) \right)$$

8.14 problem Exercise 21.17, page 231

Internal problem ID [4619]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.17, page 231.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = x^2 e^{-x}$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=x^2*exp(-x),y(x), singsol=all)$

$$y(x) = c_2 e^{-x} + e^{-x} c_1 x + \frac{x^4 e^{-x}}{12}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 27

DSolve[y''[x]+2*y'[x]+y[x]==x^2*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{12}e^{-x} (x^4 + 12c_2x + 12c_1)$$

8.15 problem Exercise 21.19, page 231

Internal problem ID [4620]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.19, page 231.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = e^{-2x} + x^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 40

 $dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=exp(-2*x)+x^2,y(x), singsol=all)$

$$y(x) = -c_1 e^{-2x} - \frac{3x}{2} + \frac{7}{4} - x e^{-2x} - e^{-2x} + \frac{x^2}{2} + c_2 e^{-x}$$

 \checkmark Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 41

DSolve[y''[x]+3*y'[x]+2*y[x]==Exp[-2*x]+x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{4}(2x^2 - 6x + 7) + e^{-2x}(-x - 1 + c_1) + c_2e^{-x}$$

8.16 problem Exercise 21.20, page 231

Internal problem ID [4621]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.20, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3y' + 2y = x \operatorname{e}^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=x*exp(-x),y(x), singsol=all)

$$y(x) = \left(c_1 e^x + \frac{5 e^{-2x}}{36} + \frac{x e^{-2x}}{6} + c_2\right) e^x$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 34

DSolve[y''[x]-3*y'[x]+2*y[x]==x*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{36}e^{-x}(6x+5) + c_1e^x + c_2e^{2x}$$

8.17 problem Exercise 21.21, page 231

Internal problem ID [4622]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.21, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' - 6y = x + e^{2x}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$2)+diff(y(x),x)-6*y(x)=x+exp(2*x),y(x), singsol=all)

$$y(x) = e^{-3x}c_2 + c_1e^{2x} - \frac{1}{36} + \frac{(-1+5x)e^{2x}}{25} - \frac{x}{6}$$

✓ Solution by Mathematica

Time used: 0.085 (sec). Leaf size: 40

DSolve[y''[x]+y'[x]-6*y[x]==x+Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{36}(-6x-1) + c_1 e^{-3x} + e^{2x} \left(\frac{x}{5} - \frac{1}{25} + c_2\right)$$

8.18 problem Exercise 21.22, page 231

Internal problem ID [4623]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients

Problem number: Exercise 21.22, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sin\left(x\right) + \mathrm{e}^{-x}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+y(x)=sin(x)+exp(-x),y(x), singsol=all)

$$y(x) = c_2 \sin(x) + c_1 \cos(x) + \frac{e^{-x}}{2} - \frac{x \cos(x)}{2}$$

✓ Solution by Mathematica

Time used: 0.337 (sec). Leaf size: 36

DSolve[y''[x]+y[x]==Sin[x]+Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{4} \left(2e^{-x} + \sin(x) - 2x\cos(x) + 4c_1\cos(x) + 4c_2\sin(x) \right)$$

8.19 problem Exercise 21.24, page 231

Internal problem ID [4624]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients Problem number: Exercise 21.24, page 231

Problem number: Exercise 21.24, page 231. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sin\left(x\right)^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(x),x$2)+y(x)=sin(x)^2,y(x), singsol=all)$

$$y(x) = c_2 \sin(x) + c_1 \cos(x) + \frac{1}{2} + \frac{\cos(2x)}{6}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 27

DSolve[y''[x]+y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{6}(\cos(2x) + 6c_1\cos(x) + 6c_2\sin(x) + 3)$$

8.20 problem Exercise 21.27, page 231

Internal problem ID [4625]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients
Problem number: Exercise 21.27, page 231.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sin\left(x\right)\sin\left(2x\right)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+y(x)=sin(2*x)*sin(x),y(x), singsol=all)

$$y(x) = c_2 \sin(x) + c_1 \cos(x) + \frac{\sin(x) (-\cos(x) \sin(x) + x)}{4}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 33

DSolve[y''[x]+y[x]==Sin[2*x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{16}(\cos(3x) + (-1 + 16c_1)\cos(x) + 4(x + 4c_2)\sin(x))$$

8.21 problem Exercise 21.28, page 231

Internal problem ID [4626]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients
Problem number: Exercise 21.28, page 231.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 5y' - 6y = e^{3x}$$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve([diff(y(x),x\$2)-5*diff(y(x),x)-6*y(x)=exp(3*x),y(0) = 2, D(y)(0) = 1],y(x), singsol=a

$$y(x) = \frac{45 \,\mathrm{e}^{-x}}{28} + \frac{10 \,\mathrm{e}^{6x}}{21} - \frac{\mathrm{e}^{3x}}{12}$$

Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 30

DSolve[{y''[x]-5*y'[x]-6*y[x]==Exp[3*x],{y[0]==2,y'[0]==1}},y[x],x,IncludeSingularSolutions

$$y(x) \to \frac{1}{84}e^{-x} \left(-7e^{4x} + 40e^{7x} + 135\right)$$

8.22 problem Exercise 21.29, page 231

Internal problem ID [4627]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients
Problem number: Exercise 21.29, page 231.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y' - 2y = 5\sin\left(x\right)$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve([diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=5*sin(x),y(0) = 1, D(y)(0) = -1],y(x), singsol=al

$$y(x) = rac{\mathrm{e}^{-x}}{6} + rac{\mathrm{e}^{2x}}{3} + rac{\cos{(x)}}{2} - rac{3\sin{(x)}}{2}$$

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 30

DSolve[{y''[x]-y'[x]-2*y[x]==5*Sin[x],{y[0]==1,y'[0]==-1}},y[x],x,IncludeSingularSolutions -

$$y(x) \to \frac{1}{6} \left(e^{-x} + 2e^{2x} - 9\sin(x) + 3\cos(x) \right)$$
8.23 problem Exercise 21.31, page 231

Internal problem ID [4628]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients
Problem number: Exercise 21.31, page 231.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = 8\cos\left(x\right)$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right) = -1, y'\left(\frac{\pi}{2}\right) = 1\right]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 17

dsolve([diff(y(x),x\$2)+9*y(x)=8*cos(x),y(1/2*Pi) = -1, D(y)(1/2*Pi) = 1],y(x), singsol=all)

$$y(x) = \sin(3x) + \frac{2\cos(3x)}{3} + \cos(x)$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 20

DSolve[{y''[x]+9*y[x]==8*Cos[x],{y[Pi/2]==-1,y'[Pi/2]==1}},y[x],x,IncludeSingularSolutions -

$$y(x) \to \sin(3x) + \cos(x) + \frac{2}{3}\cos(3x)$$

8.24 problem Exercise 21.32, page 231

Internal problem ID [4629]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients
Problem number: Exercise 21.32, page 231.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 5y' + 6y = e^x(2x - 3)$$

With initial conditions

$$[y(0) = 1, y'(0) = 3]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

dsolve([diff(y(x),x\$2)-5*diff(y(x),x)+6*y(x)=exp(x)*(2*x-3),y(0) = 1, D(y)(0) = 3],y(x), sin

$$y(x) = e^{2x} + e^x x$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 35

DSolve[{y''[x]-5*y'[x]-6*y[x]==Exp[x]*(2*x-3),{y[0]==1,y'[0]==3}},y[x],x,IncludeSingularSolu

$$y(x) \rightarrow \frac{1}{175}e^{-x} \left(-7e^{2x}(5x-9) + 87e^{7x} + 25\right)$$

8.25 problem Exercise 21.33, page 231

Internal problem ID [4630]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients Problem number: Exercise 21.33, page 231

Problem number: Exercise 21.33, page 231.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 3y' + 2y = \mathrm{e}^{-x}$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

dsolve([diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=exp(-x),y(0) = 1, D(y)(0) = -1],y(x), singsol=a

$$y(x) = -rac{5e^{2x}}{3} + rac{5e^{x}}{2} + rac{e^{-x}}{6}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 31

DSolve[{y''[x]-3*y'[x]+2*y[x]==Exp[-x], {y[0]==1,y'[0]==-1}}, y[x], x, IncludeSingularSolutions

$$y(x) o rac{e^{-x}}{6} + rac{5e^x}{2} - rac{5e^{2x}}{3}$$

9 Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

9.1	problem	Exercise	22.1, page	240.	•••		•	•••		 	•			 •	256
9.2	problem	Exercise	22.2, page	240.	•••		•	•••		 	•			 •	257
9.3	problem	Exercise	22.3, page	240.	•••		•	•••		 	•			 •	258
9.4	problem	Exercise	22.4, page	240.	•••		•	•••		 	•			 •	259
9.5	problem	Exercise	22.5, page	240.	•••			•••		 	•			 •	260
9.6	problem	Exercise	22.6, page	240.	•••		•	•••		 	•			 •	261
9.7	problem	Exercise	22.7, page	240.	•••			•••		 	•	•		 •	262
9.8	problem	Exercise	22.8, page	240.	•••		•	•••		 	•			 •	263
9.9	problem	Exercise	22.9, page	240.	•••		•	•••		 	•			 •	264
9.10	problem	Exercise	22.10, pag	ge 240	••			•••		 	•	•		 •	265
9.11	problem	Exercise	22.11, pag	ge 240			•	•••		 	•			 •	266
9.12	problem	Exercise	22.12, pag	ge 240	••			•••		 	•	•		 •	267
9.13	problem	Exercise	22.13, pag	ge 240			•	•••		 	•			 •	268
9.14	problem	Exercise	22.14, pag	ge 240			•	•••		 	•			 •	269
9.15	problem	Exercise	22.15, pag	ge 240			•	•••		 	•			 •	270
9.16	problem	Exercise	22, proble	m 16,	pag	e 240).			 	•			 •	271
9.17	problem	Exercise	22, proble	m 17,	pag	e 240).			 	•			 •	272
9.18	problem	Exercise	22, proble	m 18,	pag	e 240).			 	•			 •	273
9.19	problem	Exercise	22, proble	m 19,	pag	e 240).		 •	 	•	•		 •	274
9.20	problem	Exercise	22, proble	m 20,	pag	e 240).		 •	 	•	•		 •	275

9.1 problem Exercise 22.1, page 240

Internal problem ID [4631]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.1, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sec\left(x\right)$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+y(x)=sec(x),y(x), singsol=all)

 $y(x) = c_2 \sin(x) + c_1 \cos(x) + x \sin(x) - \ln(\sec(x)) \cos(x)$

Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 22

DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (x + c_2)\sin(x) + \cos(x)(\log(\cos(x)) + c_1)$$

9.2 problem Exercise 22.2, page 240

Internal problem ID [4632]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.2, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \cot\left(x\right)$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+y(x)=cot(x),y(x), singsol=all)

 $y(x) = c_2 \sin(x) + c_1 \cos(x) + \sin(x) \ln(\csc(x) - \cot(x))$

Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 33

DSolve[y''[x]+y[x]==Cot[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow c_1 \cos(x) + \sin(x) \left(\log \left(\sin \left(rac{x}{2}
ight)
ight) - \log \left(\cos \left(rac{x}{2}
ight)
ight) + c_2
ight)$$

9.3 problem Exercise 22.3, page 240

Internal problem ID [4633]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.3, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sec\left(x\right)^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(x),x$2)+y(x)=sec(x)^2,y(x), singsol=all)$

 $y(x) = c_2 \sin(x) + c_1 \cos(x) + \ln(\sec(x)) + \tan(x)) \sin(x) - 1$

Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 28

DSolve[y''[x]+y[x]==Sec[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow 2\sin(x)\operatorname{arctanh}\left(\tan\left(\frac{x}{2}\right)\right) + c_1\cos(x) + c_2\sin(x) - 1$$

9.4 problem Exercise 22.4, page 240

Internal problem ID [4634]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.4, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = \sin\left(x\right)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(diff(y(x),x$2)-y(x)=sin(x)^2,y(x), singsol=all)$

$$y(x) = e^{x}c_{2} + c_{1}e^{-x} + \frac{\cos(x)^{2}}{5} - \frac{3}{5}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 30

DSolve[y''[x]-y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{10}(\cos(2x) - 5) + c_1 e^x + c_2 e^{-x}$$

9.5 problem Exercise 22.5, page 240

Internal problem ID [4635]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.5, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sin\left(x\right)^2$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve(diff(y(x),x$2)+y(x)=sin(x)^2,y(x), singsol=all)$

$$y(x) = c_2 \sin(x) + c_1 \cos(x) + \frac{1}{2} + \frac{\cos(2x)}{6}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 27

DSolve[y''[x]+y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{6}(\cos(2x) + 6c_1\cos(x) + 6c_2\sin(x) + 3)$$

9.6 problem Exercise 22.6, page 240

Internal problem ID [4636]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.6, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 3y' + 2y = 12 e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=12*exp(x),y(x), singsol=all)

$$y(x) = -c_1 e^{-2x} + 2 e^x + c_2 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 27

DSolve[y''[x]+3*y'[x]+2*y[x]==12*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (2e^{3x} + c_2 e^x + c_1)$$

9.7 problem Exercise 22.7, page 240

Internal problem ID [4637]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.7, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = x^2 e^{-x}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=x^2*exp(-x),y(x), singsol=all)$

$$y(x) = c_2 e^{-x} + e^{-x} c_1 x + \frac{x^4 e^{-x}}{12}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 27

DSolve[y''[x]+2*y'[x]+y[x]==x^2*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to rac{1}{12}e^{-x} (x^4 + 12c_2x + 12c_1)$$

9.8 problem Exercise 22.8, page 240

Internal problem ID [4638]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.8, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 4x\sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+y(x)=4*x*sin(x),y(x), singsol=all)

$$y(x) = c_2 \sin(x) + c_1 \cos(x) - x(x \cos(x) - \sin(x))$$

Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 27

DSolve[y''[x]+y[x]==4*x*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow \left(-x^2+rac{1}{2}+c_1
ight)\cos(x)+(x+c_2)\sin(x)$$

9.9 problem Exercise 22.9, page 240

Internal problem ID [4639]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.9, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = e^{-x} \ln(x)$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=exp(-x)*ln(x),y(x), singsol=all)

$$y(x) = c_2 e^{-x} + e^{-x} c_1 x + \frac{x^2 (2 \ln (x) - 3) e^{-x}}{4}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 36

DSolve[y''[x]+2*y'[x]+y[x]==Exp[-x]*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{4}e^{-x} \left(-3x^2 + 2x^2\log(x) + 4c_2x + 4c_1\right)$$

9.10 problem Exercise 22.10, page 240

Internal problem ID [4640]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.10, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \csc\left(x\right)$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+y(x)=csc(x),y(x), singsol=all)

 $y(x) = c_2 \sin(x) + c_1 \cos(x) - \ln(\csc(x)) \sin(x) - x \cos(x)$

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 24

DSolve[y''[x]+y[x]==Csc[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (-x + c_1)\cos(x) + \sin(x)(\log(\sin(x)) + c_2)$$

9.11 problem Exercise 22.11, page 240

Internal problem ID [4641]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.11, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \tan\left(x\right)^2$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $dsolve(diff(y(x),x$2)+y(x)=tan(x)^2,y(x), singsol=all)$

 $y(x) = c_2 \sin(x) + c_1 \cos(x) - 2 + \ln(\sec(x)) + \tan(x)) \sin(x)$

Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 23

DSolve[y''[x]+y[x]==Tan[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \sin(x)\operatorname{arctanh}(\sin(x)) + c_1\cos(x) + c_2\sin(x) - 2$$

9.12 problem Exercise 22.12, page 240

Internal problem ID [4642]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.12, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = \frac{\mathrm{e}^{-x}}{x}$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=exp(-x)/x,y(x), singsol=all)

$$y(x) = c_2 e^{-x} + e^{-x} c_1 x + x(\ln(x) - 1) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 24

DSolve[y''[x]+2*y'[x]+y[x]==Exp[-x]/x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x}(x\log(x) + (-1 + c_2)x + c_1)$$

9.13 problem Exercise 22.13, page 240

Internal problem ID [4643]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.13, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \csc\left(x\right)\sec\left(x\right)$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

dsolve(diff(y(x),x\$2)+y(x)=sec(x)*csc(x),y(x), singsol=all)

 $y(x) = c_2 \sin(x) + c_1 \cos(x) + \sin(x) \ln(\csc(x) - \cot(x)) - \ln(\sec(x) + \tan(x)) \cos(x)$

Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 30

DSolve[y''[x]+y[x]==Sec[x]*Csc[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\sin(x)\operatorname{arctanh}(\cos(x)) + c_1\cos(x) + c_2\sin(x) + \cos(x)\left(-\coth^{-1}(\sin(x))\right)$$

9.14 problem Exercise 22.14, page 240

Internal problem ID [4644]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.14, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = e^x \ln (x)$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=exp(x)*ln(x),y(x), singsol=all)

$$y(x) = e^{x}c_{2} + e^{x}c_{1}x + \frac{e^{x}x^{2}(2\ln(x) - 3)}{4}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 34

DSolve[y''[x]-2*y'[x]+y[x]==Exp[x]*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{4}e^{x} \left(-3x^{2}+2x^{2}\log(x)+4c_{2}x+4c_{1}\right)$$

9.15 problem Exercise 22.15, page 240

Internal problem ID [4645]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22.15, page 240. ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3y' + 2y = \cos\left(\mathrm{e}^{-x}\right)$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=cos(exp(-x)),y(x), singsol=all)

$$y(x) = (c_1 e^x - e^x - e^x \cos(e^{-x}) + c_2) e^x$$

Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 29

DSolve[y''[x]-3*y'[x]+2*y[x]==Cos[Exp[-x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^x \left(-e^x \cos\left(e^{-x}\right) + c_2 e^x + c_1\right)$$

9.16 problem Exercise 22, problem 16, page 240

Internal problem ID [4646]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22, problem 16, page 240.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - xy' + y = x$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

 $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=x,y(x), singsol=all)$

$$y(x) = c_2 x + x \ln(x) c_1 + \frac{\ln(x)^2 x}{2}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 25

DSolve[x^2*y''[x]-x*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{1}{2} x \left(\log^2(x) + 2c_2 \log(x) + 2c_1
ight)$$

problem Exercise 22, problem 17, page 240 9.17

Internal problem ID [4647]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22, problem 17, page 240. **ODE order**: 2. **ODE degree**: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$y^{\prime\prime}-\frac{2y^{\prime}}{x}+\frac{2y}{x^{2}}=x\ln\left(x\right)$$

Solution by Maple 1

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x$2)-2/x*diff(y(x),x)+2/x^2*y(x)=x*ln(x),y(x), singsol=all)$

$$y(x) = c_1 x + c_2 x^2 + rac{x^3 (2 \ln (x) - 3)}{4}$$

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 32

DSolve[y''[x]-2/x*y'[x]+2/x^2*y[x]==x*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{4}x(-3x^2 + 2x^2\log(x) + 4c_2x + 4c_1)$$

9.18 problem Exercise 22, problem 18, page 240

Internal problem ID [4648]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22, problem 18, page 240.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + xy' - 4y = x^3$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve(x^2*diff(y(x),x^2)+x*diff(y(x),x)-4*y(x)=x^3,y(x), singsol=all)$

$$y(x) = \frac{c_2}{x^2} + c_1 x^2 + \frac{x^3}{5}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 25

DSolve[x²*y''[x]+x*y'[x]-4*y[x]==x³,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^3}{5} + c_2 x^2 + \frac{c_1}{x^2}$$

9.19 problem Exercise 22, problem 19, page 240

Internal problem ID [4649]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22, problem 19, page 240.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^2y'' + xy' - y = x^2\mathrm{e}^{-x}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(x^2*diff(y(x),x^2)+x*diff(y(x),x)-y(x)=x^2*exp(-x),y(x), singsol=all)$

$$y(x) = rac{c_1}{x} + c_2 x + rac{{
m e}^{-x}(x+1)}{x}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 27

DSolve[x²*y''[x]+x*y'[x]-y[x]==x²*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{c_2 x^2 + e^{-x}(x+1) + c_1}{x}$$

9.20 problem Exercise 22, problem 20, page 240

Internal problem ID [4650]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963 Section: Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters

Problem number: Exercise 22, problem 20, page 240.ODE order: 2.ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$2x^2y'' + 3xy' - y = \frac{1}{x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(2*x^2*diff(y(x),x\$2)+3*x*diff(y(x),x)-y(x)=1/x,y(x), singsol=all)

$$y(x) = rac{c_1}{x} + c_2 \sqrt{x} - rac{3\ln{(x)} + 2}{9x}$$

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 31

DSolve[2*x²*y''[x]+3*x*y'[x]-y[x]==1/x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{9c_2 x^{3/2} - 3\log(x) - 2 + 9c_1}{9x}$$

10 Chapter 8. Special second order equations. Lesson 35. Independent variable x absent

10.1 problem Exercise 35.1, page 504	277
10.2 problem Exercise 35.2, page 504	278
10.3 problem Exercise 35.3, page 504	279
10.4 problem Exercise 35.4, page 504	280
10.5 problem Exercise 35.5, page 504	281
10.6 problem Exercise 35.6, page 504	282
10.7 problem Exercise 35.7, page 504	284
10.8 problem Exercise 35.8, page 504	285
10.9 problem Exercise 35.9, page 504	286
10.10 problem Exercise 35.10, page 504	287
10.11 problem Exercise 35.11, page 504	288
10.12 problem Exercise 35.12, page 504	290
10.13 problem Exercise 35.13, page 504	291
10.14 problem Exercise 35.14, page 504	292
10.15 problem Exercise 35.15, page 504	293
10.16 problem Exercise 35.16, page 504	294
10.17 problem Exercise 35.17, page 504	295
10.18 problem Exercise 35.18, page 504	296
10.19 problem Exercise 35.19, page 504	297
10.20 problem Exercise 35.20, page 504	298
10.21 problem Exercise 35.21, page 504	299
10.22 problem Exercise 35.23(a), page 504	300
10.23 problem Exercise 35.23(b), page 504	301
10.24 problem Exercise 35.23(c), page 504	302

10.1 problem Exercise 35.1, page 504

Internal problem ID [4651]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.1, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _

$$y'' - 2yy' = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)=2*y(x)*diff(y(x),x),y(x), singsol=all)

$$y(x) = rac{ an\left(rac{c_2+x}{c_1}
ight)}{c_1}$$

✓ Solution by Mathematica

Time used: 9.872 (sec). Leaf size: 24

DSolve[y''[x]==2*y[x]*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \sqrt{c_1} \tan\left(\sqrt{c_1}(x+c_2)\right)$$

10.2 problem Exercise 35.2, page 504

Internal problem ID [4652]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.2, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$y^3y'' = k$$

Solution by Maple

Time used: 0.141 (sec). Leaf size: 70

dsolve(y(x)^3*diff(y(x),x\$2)=k,y(x), singsol=all)

$$y(x) = \frac{\sqrt{c_1 \left(c_1^2 c_2^2 + 2c_1^2 c_2 x + c_1^2 x^2 + k\right)}}{c_1}$$
$$y(x) = -\frac{\sqrt{c_1 \left(c_1^2 c_2^2 + 2c_1^2 c_2 x + c_1^2 x^2 + k\right)}}{c_1}$$

✓ Solution by Mathematica

Time used: 2.878 (sec). Leaf size: 63

DSolve[y[x]^3*y''[x]==k,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -rac{\sqrt{k+c_1^2(x+c_2)^2}}{\sqrt{c_1}}$$

 $y(x)
ightarrow rac{\sqrt{k+c_1^2(x+c_2)^2}}{\sqrt{c_1}}$

$$y(x) \rightarrow$$
 Indeterminate

10.3 problem Exercise 35.3, page 504

Internal problem ID [4653]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.3, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$yy'' - {y'}^2 = -1$$

Solution by Maple

Time used: 0.14 (sec). Leaf size: 79

 $dsolve(y(x)*diff(y(x),x$2)=(diff(y(x),x))^2-1,y(x), singsol=all)$

$$y(x) = \frac{c_1 \left(e^{-\frac{2c_2}{c_1}} e^{-\frac{2x}{c_1}} - 1 \right) e^{\frac{c_2}{c_1}} e^{\frac{x}{c_1}}}{2}$$
$$y(x) = \frac{c_1 \left(e^{\frac{2c_2}{c_1}} e^{\frac{2x}{c_1}} - 1 \right) e^{-\frac{c_2}{c_1}} e^{-\frac{x}{c_1}}}{2}$$

Solution by Mathematica

Time used: 60.201 (sec). Leaf size: 85

DSolve[y[x]*y''[x]==(y'[x])^2-1,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to -\frac{ie^{-c_1} \tanh\left(e^{c_1}(x+c_2)\right)}{\sqrt{-\mathrm{sech}^2\left(e^{c_1}(x+c_2)\right)}} \\ y(x) &\to \frac{ie^{-c_1} \tanh\left(e^{c_1}(x+c_2)\right)}{\sqrt{-\mathrm{sech}^2\left(e^{c_1}(x+c_2)\right)}} \end{split}$$

10.4 problem Exercise 35.4, page 504

Internal problem ID [4654]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.4, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x^2y'' + xy' = 1$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $dsolve(x^2*diff(y(x),x^2)+x*(diff(y(x),x))=1,y(x), singsol=all)$

$$y(x) = rac{\ln (x)^2}{2} + c_1 \ln (x) + c_2$$

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 21

DSolve[x^2*y''[x]+x*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow rac{\log^2(x)}{2} + c_1\log(x) + c_2$$

10.5 problem Exercise 35.5, page 504

Internal problem ID [4655]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.5, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' - y' = x^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x*diff(y(x),x$2)-diff(y(x),x)=x^2,y(x), singsol=all)$

$$y(x) = rac{1}{3}x^3 + rac{1}{2}c_1x^2 + c_2$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 24

DSolve[x*y''[x]-y'[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^3}{3} + \frac{c_1 x^2}{2} + c_2$$

10.6 problem Exercise 35.6, page 504

Internal problem ID [4656]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.6, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible

$$(1+y) y'' - 3{y'}^2 = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 59

 $dsolve((y(x)+1)*diff(y(x),x$2)=3*(diff(y(x),x))^2,y(x), singsol=all)$

$$y(x) = -1$$

$$y(x) = -\frac{\sqrt{-2c_1x - 2c_2} - 1}{\sqrt{-2c_1x - 2c_2}}$$

$$y(x) = -\frac{\sqrt{-2c_1x - 2c_2} + 1}{\sqrt{-2c_1x - 2c_2}}$$

Solution by Mathematica

Time used: 1.485 (sec). Leaf size: 107

DSolve[(y[x]+1)*y''[x]==3*(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to -\frac{2c_1 x + \sqrt{2}\sqrt{-c_1(x+c_2)} + 2c_2 c_1}{2c_1(x+c_2)} \\ y(x) &\to \frac{-2c_1 x + \sqrt{2}\sqrt{-c_1(x+c_2)} - 2c_2 c_1}{2c_1(x+c_2)} \\ y(x) &\to -1 \\ y(x) &\to \text{Indeterminate} \end{split}$$

10.7 problem Exercise 35.7, page 504

Internal problem ID [4657]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.7, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$r'' + \frac{k}{r^2} = 0$$

Solution by Maple

Time used: 0.062 (sec). Leaf size: 369

 $dsolve(diff(r(t),t$2)=-k/(r(t)^2),r(t), singsol=all)$

$$r(t) = \frac{c_1 \left(c_1^2 k^2 - 2kc_1 e^{\text{RootOf}\left(\text{csgn}\left(\frac{1}{c_1}\right) c_1^4 k^2 + 2 Z c_1^3 k e^{-Z} - \text{csgn}\left(\frac{1}{c_1}\right) e^{2 Z c_1^2 - 2 \text{ csgn}\left(\frac{1}{c_1}\right) e^{-Z c_2} - 2 \text{ csgn}\left(\frac{1}{c_1}\right) e^{-Z t} \right)}{r(t)} + e^{2 \text{RootOf}\left(\text{csgn}\left(\frac{1}{c_1}\right) e^{-Z c_2} - 2 \text{ csgn}\left(\frac{1}{c_1}\right) e^{-Z c_2} - 2 \text{ csgn}\left(\frac{1}{c_1}\right) e^{-Z t} \right)}$$

$$=\frac{c_{1}\left(c_{1}^{2}k^{2}-2kc_{1}e^{\text{RootOf}\left(\text{csgn}\left(\frac{1}{c_{1}}\right)c_{1}^{4}k^{2}+2_Zc_{1}^{3}k\,e^{-Z}-\text{csgn}\left(\frac{1}{c_{1}}\right)e^{2_Z}c_{1}^{2}+2\,\text{csgn}\left(\frac{1}{c_{1}}\right)e^{-Z}c_{2}+2\,\text{csgn}\left(\frac{1}{c_{1}}\right)e^{-Z}t\right)}{e^{-Z}t}+e^{2\text{RootOf}\left(\text{csgn}\left(\frac{1}{c_{1}}\right)e^{-Z}t\right)}$$

Solution by Mathematica

Time used: 0.169 (sec). Leaf size: 65

DSolve[r''[t]==-k/(r[t]^2),r[t],t,IncludeSingularSolutions -> True]

Solve
$$\left[\left(\frac{r(t)\sqrt{\frac{2k}{r(t)} + c_1}}{c_1} - \frac{2k \operatorname{arctanh}\left(\frac{\sqrt{\frac{2k}{r(t)} + c_1}}{\sqrt{c_1}}\right)}{c_1^{3/2}} \right)^2 = (t + c_2)^2, r(t) \right]$$

10.8 problem Exercise 35.8, page 504

Internal problem ID [4658]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.8, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$y''-\frac{3y^2k}{2}=0$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 15

 $dsolve(diff(y(x),x$2)=3/2*k*y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{4 \operatorname{WeierstrassP}(x + c_1, 0, c_2)}{k}$$

× Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y''[x]==3/2*(k*y[x]^2),y[x],x,IncludeSingularSolutions -> True]

Not solved

10.9 problem Exercise 35.9, page 504

Internal problem ID [4659]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.9, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$y'' - 2ky^3 = 0$$

Solution by Maple

Time used: 0.032 (sec). Leaf size: 20

 $dsolve(diff(y(x),x$2)=2*k*y(x)^3,y(x), singsol=all)$

$$y(x) = c_2 \operatorname{JacobiSN}\left(\left(\sqrt{-k} x + c_1\right) c_2, i\right)$$

✓ Solution by Mathematica

Time used: 61.304 (sec). Leaf size: 115

DSolve[y''[x]==2*k*y[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{i\mathrm{sn}\left((-1)^{3/4}\sqrt{\sqrt{k}\sqrt{c_1}(x+c_2)^2} \middle| -1\right)}{\sqrt{\frac{i\sqrt{k}}{\sqrt{c_1}}}}$$
$$y(x) \rightarrow \frac{i\mathrm{sn}\left((-1)^{3/4}\sqrt{\sqrt{k}\sqrt{c_1}(x+c_2)^2} \middle| -1\right)}{\sqrt{\frac{i\sqrt{k}}{\sqrt{c_1}}}}$$

10.10 problem Exercise 35.10, page 504

Internal problem ID [4660]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.10, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [

$$yy'' + {y'}^2 - y' = 0$$

Solution by Maple

Time used: 0.125 (sec). Leaf size: 37

 $dsolve(y(x)*diff(y(x),x$2)+(diff(y(x),x))^2-diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = -c_1 \left(\text{LambertW} \left(-\frac{e^{-1}e^{-\frac{c_2}{c_1}}e^{-\frac{x}{c_1}}}{c_1} \right) + 1 \right)$$

Solution by Mathematica

Time used: 60.084 (sec). Leaf size: 32

DSolve[y[x]*y''[x]+(y'[x])^2-y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow -c_1 \left(1 + W \left(-rac{e^{-rac{x+c_1+c_2}{c_1}}}{c_1}
ight)
ight)$$
10.11 problem Exercise 35.11, page 504

Internal problem ID [4661]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.11, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$r'' - \frac{h^2}{r^3} + \frac{k}{r^2} = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 441

 $dsolve(diff(r(t),t$2)= h^2/r(t)^3-k/r(t)^2,r(t), singsol=all)$

$$r(t) = \frac{c_1 \left(c_1^2 k^2 - 2kc_1 e^{\text{RootOf}\left(\text{csgn}\left(\frac{1}{c_1}\right)c_1^4 k^2 + 2_Z c_1^3 k e^{-Z} - \text{csgn}\left(\frac{1}{c_1}\right)e^{2_Z} c_1^2 + \text{csgn}\left(\frac{1}{c_1}\right)c_1^2 h^2 - 2 \operatorname{csgn}\left(\frac{1}{c_1}\right)e^{-Z} c_2 - 2 \operatorname{csgn}\left(\frac{1}{c_1}\right)e^{-Z} t\right)}{r(t)} + e^{2z} e^{2z}$$

$$=\frac{c_1\left(c_1^2k^2-2kc_1e^{\text{RootOf}\left(\text{csgn}\left(\frac{1}{c_1}\right)c_1^4k^2+2_Zc_1^3k\,e^{-Z}-\text{csgn}\left(\frac{1}{c_1}\right)e^{2_Z}c_1^2+\text{csgn}\left(\frac{1}{c_1}\right)c_1^2h^2+2\,\text{csgn}\left(\frac{1}{c_1}\right)e^{-Z}c_2+2\,\text{csgn}\left(\frac{1}{c_1}\right)e^{-Z}t\right)}{e^{-Z}t}+e^{2Z}c_1^2k^2+2Zc_1^2$$

Solution by Mathematica

Time used: 1.099 (sec). Leaf size: 130

DSolve[r''[t]==h^2/r[t]^3-k/r[t]^2,r[t],t,IncludeSingularSolutions -> True]

Solve
$$\begin{bmatrix} \frac{\left(\sqrt{c_1}(-h^2 + r(t)(2k + c_1r(t))) - k\sqrt{-h^2 + r(t)(2k + c_1r(t))}\operatorname{arctanh}\left(\frac{k + c_1r(t)}{\sqrt{c_1}\sqrt{-h^2 + r(t)(2k + c_1r(t))}}\right)\right)^2}{c_1^3 r(t)^2 \left(-\frac{h^2}{r(t)^2} + \frac{2k}{r(t)} + c_1\right)} = c_1^3 r(t)^2 \left(-\frac{h^2}{r(t)^2} + \frac{2k}{r(t)} + c_1\right)$$

10.12 problem Exercise 35.12, page 504

Internal problem ID [4662]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.12, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],

$$yy'' + {y'}^3 - {y'}^2 = 0$$

Solution by Maple

Time used: 0.125 (sec). Leaf size: 44

dsolve(y(x)*diff(y(x),x\$2)+(diff(y(x),x))^3-diff(y(x),x)^2=0,y(x), singsol=all)

$$egin{aligned} y(x) &= 0 \ y(x) &= c_1 \ \end{aligned}$$
 $y(x) &= e^{-rac{c_1 \, ext{LambertW} \left(rac{e^{rac{C_2}{c_1} rac{x}{c_1}}{c_1}
ight) - c_2 - x}{c_1}} \end{aligned}$

Solution by Mathematica

Time used: 22.229 (sec). Leaf size: 32

DSolve[y[x]*y''[x]+(y'[x])^3-(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{c_1} W \Big(e^{e^{-c_1}(x - e^{c_1}c_1 + c_2)} \Big)$$

10.13 problem Exercise 35.13, page 504

Internal problem ID [4663]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.13, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible

$$yy'' - 3{y'}^2 = 0$$

Solution by Maple

Time used: 0.11 (sec). Leaf size: 33

 $dsolve(y(x)*diff(y(x),x$2)-3*(diff(y(x),x))^2=0,y(x), singsol=all)$

$$\begin{split} y(x) &= 0\\ y(x) &= \frac{1}{\sqrt{-2c_1 x - 2c_2}}\\ y(x) &= -\frac{1}{\sqrt{-2c_1 x - 2c_2}} \end{split}$$

✓ Solution by Mathematica

Time used: 0.106 (sec). Leaf size: 14

DSolve[y[x]*y''[x]-(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 e^{c_1 x}$$

10.14 problem Exercise 35.14, page 504

Internal problem ID [4664]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.14, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

$$(x^2+1) y'' + {y'}^2 = -1$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 29

dsolve((1+x^2)*diff(y(x),x\$2)+(diff(y(x),x))^2+1=0,y(x), singsol=all)

$$y(x) = rac{x}{c_1} - rac{(-c_1^2 - 1)\ln(c_1x - 1)}{c_1^2} + c_2$$

Solution by Mathematica

Time used: 7.091 (sec). Leaf size: 33

DSolve[(1+x^2)*y''[x]+(y'[x])^2+1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -x \cot(c_1) + \csc^2(c_1) \log(-x \sin(c_1) - \cos(c_1)) + c_2$$

10.15 problem Exercise 35.15, page 504

Internal problem ID [4665]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.15, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$(x^{2}+1) y'' + 2x(y'+1) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve((1+x^2)*diff(y(x),x\$2)+2*x*(diff(y(x),x)+1)=0,y(x), singsol=all)

$$y(x) = -x + (c_1 + 1) \arctan(x) + c_2$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 18

DSolve[(1+x^2)*y''[x]+2*x*(y'[x]+1)==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (1+c_1)\arctan(x) - x + c_2$$

10.16 problem Exercise 35.16, page 504

Internal problem ID [4666]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.16, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible

$$(1+y) y'' - 3{y'}^2 = 0$$

With initial conditions

$$\left[y(1) = 0, y'(1) = -\frac{1}{2} \right]$$

Solution by Maple

Time used: 0.375 (sec). Leaf size: 15

dsolve([(y(x)+1)*diff(y(x),x\$2)=3*(diff(y(x),x))^2,y(1) = 0, D(y)(1) = -1/2],y(x), singsol=a

$$y(x) = \frac{-x + \sqrt{x}}{x}$$

× Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{(y[x]+1)*y''[x]==3*(y'[x])^3, {y[1]==0,y'[0]==-1/2}},y[x],x,IncludeSingularSolutions

{}

10.17 problem Exercise 35.17, page 504

Internal problem ID [4667]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.17, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [

$$y'' - y' \mathrm{e}^y = 0$$

With initial conditions

$$[y(3) = 0, y'(3) = 1]$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 12

dsolve([diff(y(x),x\$2)=diff(y(x),x)*exp(y(x)),y(3) = 0, D(y)(3) = 1],y(x), singsol=all)

$$y(x) = -\ln\left(-x+4\right)$$

Solution by Mathematica

Time used: 7.673 (sec). Leaf size: 13

DSolve[{y''[x]==y'[x]*Exp[y[x]],{y[3]==0,y'[3]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\log(4-x)$$

10.18 problem Exercise 35.18, page 504

Internal problem ID [4668]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.18, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _

$$y'' - 2yy' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

Solution by Maple

Time used: 0.109 (sec). Leaf size: 10

dsolve([diff(y(x),x\$2)=2*y(x)*diff(y(x),x),y(0) = 1, D(y)(0) = 2],y(x), singsol=all)

$$y(x) = \tan\left(x + \frac{\pi}{4}\right)$$

× Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y''[x]==2*y[x]*y'[x],{y[0]==1,y'[0]==2}},y[x],x,IncludeSingularSolutions -> True]

{}

10.19 problem Exercise 35.19, page 504

Internal problem ID [4669]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.19, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$2y'' - e^y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

Solution by Maple

Time used: 0.062 (sec). Leaf size: 15

dsolve([2*diff(y(x),x\$2)=exp(y(x)),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = 2\ln(2) + \ln\left(\frac{1}{(x-2)^2}\right)$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 15

DSolve[{2*y''[x]==Exp[y[x]],{y[0]==0,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -2\log\left(1-\frac{x}{2}\right)$$

10.20 problem Exercise 35.20, page 504

Internal problem ID [4670]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.20, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x^2y'' + y'x = 1$$

With initial conditions

$$[y(1) = 1, y'(1) = 2]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve([x^2*diff(y(x),x^2)+x*diff(y(x),x)=1,y(1) = 1, D(y)(1) = 2],y(x), singsol=all)$

$$y(x) = \frac{\ln(x)^2}{2} + 2\ln(x) + 1$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 19

DSolve[{x^2*y''[x]+x*y'[x]==1,{y[1]==1,y'[1]==2}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} (\log^2(x) + 4\log(x) + 2)$$

10.21 problem Exercise 35.21, page 504

Internal problem ID [4671]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.21, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' - y' = x^2$$

With initial conditions

$$[y(1) = 0, y'(1) = -1]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([x*diff(y(x),x\$2)-diff(y(x),x)=x^2,y(1) = 0, D(y)(1) = -1],y(x), singsol=all)

$$y(x) = \frac{1}{3}x^3 - x^2 + \frac{2}{3}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 19

DSolve[{x*y''[x]-y'[x]==x^2,{y[1]==0,y'[1]==-1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{3}(x^3 - 3x^2 + 2)$$

10.22 problem Exercise 35.23(a), page 504

Internal problem ID [4672]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(a), page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order

$$xyy'' - 2xy'^2 + yy' = 0$$

Solution by Maple

Time used: 0.125 (sec). Leaf size: 18

dsolve(x*y(x)*diff(y(x),x\$2)-2*x*(diff(y(x),x))^2+y(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = 0$$
$$y(x) = -\frac{1}{c_1 \ln (x) + c_2}$$

Solution by Mathematica

Time used: 0.243 (sec). Leaf size: 22

DSolve[x*y[x]*y''[x]-2*x*(y'[x])^2+y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{c_2}{-\log(x) + c_1}$$

 $y(x) \rightarrow 0$

10.23 problem Exercise 35.23(b), page 504

Internal problem ID [4673]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(b), page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _w

$$xyy'' + xy'^2 - yy' = 0$$

Solution by Maple

Time used: 0.11 (sec). Leaf size: 35

dsolve(x*y(x)*diff(y(x),x\$2)+x*(diff(y(x),x))^2-y(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = 0$$

$$y(x) = \sqrt{c_1 x^2 + 2c_2}$$

$$y(x) = -\sqrt{c_1 x^2 + 2c_2}$$

Solution by Mathematica

Time used: 0.241 (sec). Leaf size: 18

DSolve[x*y[x]*y''[x]+x*(y'[x])^2-y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 \sqrt{x^2 + c_1}$$

10.24 problem Exercise 35.23(c), page 504

Internal problem ID [4674]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(c), page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducib]

$$xyy'' - 2xy'^{2} + (1+y)y' = 0$$

Solution by Maple

Time used: 0.204 (sec). Leaf size: 22

dsolve(x*y(x)*diff(y(x),x\$2)-2*x*(diff(y(x),x))^2+(1+y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$egin{aligned} y(x) &= 0 \ y(x) &= c_1 anh\left(rac{\ln{(x)} - c_2}{2c_1}
ight) \end{aligned}$$

Solution by Mathematica

Time used: 20.549 (sec). Leaf size: 52

DSolve[x*y[x]*y''[x]-2*x*(y'[x])^2+(1+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow \frac{\tan\left(\frac{\sqrt{c_1}(\log(x) - c_2)}{\sqrt{2}}\right)}{\sqrt{2}\sqrt{c_1}}$$
$$y(x) \rightarrow \frac{1}{2}(\log(x) - c_2)$$