A Solution Manual For # Ordinary Differential Equations, Robert H. Martin, 1983 Nasser M. Abbasi March 3, 2024 ## Contents | 1 | Problem 1.1-2, page 6 | 2 | |---|------------------------|----| | 2 | Problem 1.1-3, page 6 | 10 | | 3 | Problem 1.1-4, page 7 | 17 | | 4 | Problem 1.1-5, page 7 | 20 | | 5 | Problem 1.1-6, page 7 | 22 | | 6 | Problem 1.2-1, page 12 | 27 | | 7 | Problem 1.2-2, page 12 | 37 | | 8 | Problem 1.2-3, page 12 | 44 | ## 1 Problem 1.1-2, page 6 | 1.1 | problem 1.1-2 (a) | | | | | | | | | | | | | | | | | 3 | |-----|-------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---| | 1.2 | problem 1.1-2 (b) | | | | | | | | | | | | | | | | | 4 | | 1.3 | problem 1.1-2 (c) | | | | | | | | | | | | | | | | | 5 | | 1.4 | problem 1.1-2 (d) | | | | | | | | | | | | | | | | | 6 | | 1.5 | problem 1.1-2 (e) | | | | | | | | | | | | | | | | | 7 | | 1.6 | problem 1.1-2 (f) | | | | | | | | | | | | | | | | | 8 | | 1.7 | problem 1.1-2 (g) | | | | | | | | | | | | | | | | | 9 | ## 1.1 problem 1.1-2 (a) Internal problem ID [2447] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (a). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' = t^2 + 3$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 14 $dsolve(diff(y(t),t)=t^2+3,y(t), singsol=all)$ $$y(t) = \frac{1}{3}t^3 + 3t + c_1$$ ✓ Solution by Mathematica Time used: 0.003 (sec). Leaf size: $18\,$ DSolve[y'[t]==t^2+3,y[t],t,IncludeSingularSolutions -> True] $$y(t) \to \frac{t^3}{3} + 3t + c_1$$ ## 1.2 problem 1.1-2 (b) Internal problem ID [2448] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (b). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' = t e^{2t}$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 17 dsolve(diff(y(t),t)=t*exp(2*t),y(t), singsol=all) $$y(t) = \frac{(2t-1)e^{2t}}{4} + c_1$$ ✓ Solution by Mathematica Time used: 0.004 (sec). Leaf size: 22 DSolve[y'[t]==t*Exp[2*t],y[t],t,IncludeSingularSolutions -> True] $$y(t) \to \frac{1}{4}e^{2t}(2t-1) + c_1$$ ## 1.3 problem 1.1-2 (c) Internal problem ID [2449] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (c). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' = \sin\left(3t\right)$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 12 dsolve(diff(y(t),t)=sin(3*t),y(t), singsol=all) $$y(t) = -\frac{\cos(3t)}{3} + c_1$$ ✓ Solution by Mathematica Time used: 0.005 (sec). Leaf size: 16 DSolve[y'[t]==Sin[3*t],y[t],t,IncludeSingularSolutions -> True] $$y(t) \to -\frac{1}{3}\cos(3t) + c_1$$ ## 1.4 problem 1.1-2 (d) Internal problem ID [2450] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (d). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' = \sin\left(t\right)^2$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 15 $dsolve(diff(y(t),t)=sin(t)^2,y(t), singsol=all)$ $$y(t) = \frac{t}{2} + c_1 - \frac{\sin(2t)}{4}$$ ✓ Solution by Mathematica Time used: 0.012 (sec). Leaf size: 21 DSolve[y'[t]==Sin[t]^2,y[t],t,IncludeSingularSolutions -> True] $$y(t) \to \frac{t}{2} - \frac{1}{4}\sin(2t) + c_1$$ ## 1.5 problem 1.1-2 (e) Internal problem ID [2451] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (e). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' = \frac{t}{t^2 + 4}$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 14 $dsolve(diff(y(t),t)=t/(t^2+4),y(t), singsol=all)$ $$y(t) = \frac{\ln(t^2 + 4)}{2} + c_1$$ ✓ Solution by Mathematica Time used: 0.006 (sec). Leaf size: 18 DSolve[y'[t]==t/(t^2+4),y[t],t,IncludeSingularSolutions -> True] $$y(t) \rightarrow \frac{1}{2} \log \left(t^2 + 4\right) + c_1$$ ## 1.6 problem 1.1-2 (f) Internal problem ID [2452] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (f). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' = \ln\left(t\right)$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 13 dsolve(diff(y(t),t)=ln(t),y(t), singsol=all) $$y(t) = t \ln(t) - t + c_1$$ ✓ Solution by Mathematica Time used: 0.004 (sec). Leaf size: 15 DSolve[y'[t]==Log[t],y[t],t,IncludeSingularSolutions -> True] $$y(t) \to -t + t \log(t) + c_1$$ ### 1.7 problem 1.1-2 (g) Internal problem ID [2453] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (g). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' = \frac{t}{\sqrt{t} + 1}$$ ✓ Solution by Maple Time used: 0.015 (sec). Leaf size: 27 dsolve(diff(y(t),t)=t/(sqrt(t)+1),y(t), singsol=all) $$y(t) = \frac{2t^{\frac{3}{2}}}{3} - t + 2\sqrt{t} - 2\ln\left(\sqrt{t} + 1\right) + c_1$$ ✓ Solution by Mathematica Time used: 0.012 (sec). Leaf size: 25 DSolve[y'[t]==1/(1+Sqrt[t]),y[t],t,IncludeSingularSolutions -> True] $$y(t) \rightarrow 2\sqrt{t} - 2\log\left(\sqrt{t} + 1\right) + c_1$$ ## 2 Problem 1.1-3, page 6 | 2.1 | problem 1.1-3 (a) | | | | | | | | | | | | | | | | | 11 | |-----|-------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|----| | 2.2 | problem 1.1-3 (b) | | | | | | | | | | | | | | | | | 12 | | 2.3 | problem 1.1-3 (c) | | | | | | | | | | | | | | | | | 13 | | 2.4 | problem 1.1-3 (d) | | | | | | | | | | | | | | | | | 14 | | 2.5 | problem 1.1-3 (e) | | | | | | | | | | | | | | | | | 15 | | 2.6 | problem 1.1-3 (f) | | | | | | | | | | | | | | | | | 16 | ## 2.1 problem 1.1-3 (a) Internal problem ID [2454] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-3, page 6 Problem number: 1.1-3 (a). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' - 2y = -4$$ With initial conditions $$[y(0) = 5]$$ ✓ Solution by Maple Time used: 0.015 (sec). Leaf size: 12 dsolve([diff(y(t),t)=2*y(t)-4,y(0) = 5],y(t), singsol=all) $$y(t) = 2 + 3e^{2t}$$ ✓ Solution by Mathematica Time used: 0.025 (sec). Leaf size: 14 $DSolve[\{y'[t]==2*y[t]-4,y[0]==5\},y[t],t,IncludeSingularSolutions \rightarrow True]$ $$y(t) \to 3e^{2t} + 2$$ ## 2.2 problem 1.1-3 (b) Internal problem ID [2455] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-3, page 6 Problem number: 1.1-3 (b). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' + y^3 = 0$$ With initial conditions $$[y(1) = 3]$$ ✓ Solution by Maple Time used: 0.047 (sec). Leaf size: 13 $dsolve([diff(y(t),t)=-y(t)^3,y(1)=3],y(t), singsol=all)$ $$y(t) = \frac{3}{\sqrt{18t - 17}}$$ ✓ Solution by Mathematica Time used: 0.005 (sec). Leaf size: 16 DSolve[{y'[t]==-y[t]^3,y[1]==3},y[t],t,IncludeSingularSolutions -> True] $$y(t) \to \frac{3}{\sqrt{18t - 17}}$$ ### 2.3 problem 1.1-3 (c) Internal problem ID [2456] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-3, page 6 Problem number: 1.1-3 (c). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [separable] $$y' - \frac{\mathrm{e}^t}{y} = 0$$ With initial conditions $$[y(\ln(2)) = -8]$$ ✓ Solution by Maple Time used: 0.094 (sec). Leaf size: 14 dsolve([diff(y(t),t)=exp(t)/y(t),y(ln(2)) = -8],y(t), singsol=all) $$y(t) = -\sqrt{2e^t + 60}$$ ✓ Solution by Mathematica Time used: 0.594 (sec). Leaf size: 21 DSolve[{y'[t]==Exp[t]/y[t],y[Log[2]]==-8},y[t],t,IncludeSingularSolutions -> True] $$y(t) \rightarrow -\sqrt{2}\sqrt{e^t + 30}$$ ## 2.4 problem 1.1-3 (d) Internal problem ID [2457] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-3, page 6 Problem number: 1.1-3 (d). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' = t e^{2t}$$ With initial conditions $$[y(1) = 5]$$ ✓ Solution by Maple Time used: 0.031 (sec). Leaf size: 21 dsolve([diff(y(t),t)=t*exp(2*t),y(1) = 5],y(t), singsol=all) $$y(t) = \frac{(2t-1)e^{2t}}{4} + 5 - \frac{e^2}{4}$$ ✓ Solution by Mathematica Time used: 0.007 (sec). Leaf size: 27 DSolve[{y'[t]==t*Exp[2*t],y[1]==5},y[t],t,IncludeSingularSolutions -> True] $$y(t) \to \frac{1}{4} (e^{2t}(2t-1) - e^2 + 20)$$ ### 2.5 problem 1.1-3 (e) Internal problem ID [2458] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-3, page 6 Problem number: 1.1-3 (e). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' = \sin{(t)^2}$$ With initial conditions $$\left[y\left(\frac{\pi}{6}\right) = 3\right]$$ ✓ Solution by Maple Time used: 0.015 (sec). Leaf size: 23 $dsolve([diff(y(t),t)=sin(t)^2,y(1/6*Pi) = 3],y(t), singsol=all)$ $$y(t) = \frac{t}{2} + 3 - \frac{\pi}{12} + \frac{\sqrt{3}}{8} - \frac{\sin(2t)}{4}$$ ✓ Solution by Mathematica Time used: 0.008 (sec). Leaf size: 31 $\label{eq:DSolve} DSolve [\{y'[t] == Sin[t]^2, y[Pi/6] == 3\}, y[t], t, Include Singular Solutions \ -> \ True] \\$ $$y(t) \to \frac{1}{24} \Big(3\Big(4t + \sqrt{3} + 24\Big) - 6\sin(2t) - 2\pi \Big)$$ ## 2.6 problem 1.1-3 (f) Internal problem ID [2459] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-3, page 6 Problem number: 1.1-3 (f). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' = 8e^{4t} + t$$ With initial conditions $$[y(0) = 12]$$ ✓ Solution by Maple Time used: 0.016 (sec). Leaf size: 17 dsolve([diff(y(t),t)=8*exp(4*t)+t,y(0) = 12],y(t), singsol=all) $$y(t) = \frac{t^2}{2} + 2e^{4t} + 10$$ ✓ Solution by Mathematica Time used: 0.011 (sec). Leaf size: 21 DSolve[{y'[t]==8*Exp[4*t]+t,y[0]==12},y[t],t,IncludeSingularSolutions -> True] $$y(t) \to \frac{1}{2} (t^2 + 4e^{4t} + 20)$$ | 3 | Problem 1.1-4, page 7 | | |-----|-----------------------|----| | 3.1 | problem 1.1-4 (a) | 18 | | 3.2 | problem 1.1-4 (b) | 19 | ## 3.1 problem 1.1-4 (a) Internal problem ID [2460] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-4, page 7 Problem number: 1.1-4 (a). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_separable] $$y' - \frac{y}{t} = 0$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 7 dsolve(diff(y(t),t)=y(t)/t,y(t), singsol=all) $$y(t) = tc_1$$ ✓ Solution by Mathematica Time used: 0.022 (sec). Leaf size: 14 DSolve[y'[t]==y[t]/t,y[t],t,IncludeSingularSolutions -> True] $$y(t) \rightarrow c_1 t$$ $$y(t) \to 0$$ ## 3.2 problem 1.1-4 (b) Internal problem ID [2461] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-4, page 7 Problem number: 1.1-4 (b). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_separable] $$y' + \frac{t}{y} = 0$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 27 dsolve(diff(y(t),t)=-t/y(t),y(t), singsol=all) $$y(t) = \sqrt{-t^2 + c_1}$$ $$y(t) = -\sqrt{-t^2 + c_1}$$ ✓ Solution by Mathematica Time used: 0.105 (sec). Leaf size: 39 DSolve[y'[t]==-t/y[t],y[t],t,IncludeSingularSolutions -> True] $$y(t) \rightarrow -\sqrt{-t^2 + 2c_1}$$ $$y(t) \to \sqrt{-t^2 + 2c_1}$$ | 4 | Problem 1.1-5, page 7 | | |-----|-----------------------|---| | 4.1 | problem 1.1-5 | 2 | ## 4.1 problem 1.1-5 Internal problem ID [2462] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-5, page 7 Problem number: 1.1-5. ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' - y^2 + y = 0$$ ✓ Solution by Maple Time used: 0.016 (sec). Leaf size: 12 $dsolve(diff(y(t),t)=y(t)^2-y(t),y(t), singsol=all)$ $$y(t) = \frac{1}{1 + c_1 e^t}$$ ✓ Solution by Mathematica Time used: 0.242 (sec). Leaf size: 25 DSolve[y'[t]==y[t]^2-y[t],y[t],t,IncludeSingularSolutions -> True] $$y(t) \to \frac{1}{1 + e^{t + c_1}}$$ $$y(t) \to 0$$ $$y(t) \rightarrow 1$$ ## 5 Problem 1.1-6, page 7 | 5.1 | problem 1.1-6 (a) |) . | | | | | | | | | | | | | | | | 2 | 3 | |-----|-------------------|-----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|---| | 5.2 | problem 1.1-6 (b) |) . | | | | | | | | | | | | | | | | 2 | 4 | | 5.3 | problem 1.1-6 (c) | | | | | | | | | | | | | | | | | 2 | 5 | | 5.4 | problem 1.1-6 (d) | ١. | | | | | | | | | | | | | | | | 2 | 6 | ## 5.1 problem 1.1-6 (a) Internal problem ID [2463] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-6, page 7 Problem number: 1.1-6 (a). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y'-y=-1$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 10 dsolve(diff(y(t),t)=y(t)-1,y(t), singsol=all) $$y(t) = 1 + c_1 e^t$$ ✓ Solution by Mathematica Time used: 0.023 (sec). Leaf size: 18 DSolve[y'[t]==y[t]-1,y[t],t,IncludeSingularSolutions -> True] $$y(t) \rightarrow 1 + c_1 e^t$$ $$y(t) \rightarrow 1$$ ## 5.2 problem 1.1-6 (b) Internal problem ID [2464] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-6, page 7 Problem number: 1.1-6 (b). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' + y = 1$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 12 dsolve(diff(y(t),t)=1-y(t),y(t), singsol=all) $$y(t) = 1 + e^{-t}c_1$$ ✓ Solution by Mathematica Time used: 0.023 (sec). Leaf size: 20 DSolve[y'[t]==1-y[t],y[t],t,IncludeSingularSolutions -> True] $$y(t) \to 1 + c_1 e^{-t}$$ $$y(t) \rightarrow 1$$ ## 5.3 problem 1.1-6 (c) Internal problem ID [2465] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-6, page 7 Problem number: 1.1-6 (c). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' - y^3 + y^2 = 0$$ ✓ Solution by Maple Time used: 0.125 (sec). Leaf size: 16 $dsolve(diff(y(t),t)=y(t)^3-y(t)^2,y(t), singsol=all)$ $$y(t) = \frac{1}{\text{LambertW}\left(-c_1 e^{t-1}\right) + 1}$$ ✓ Solution by Mathematica Time used: 0.227 (sec). Leaf size: 38 DSolve[y'[t]==y[t]^3-y[t]^2,y[t],t,IncludeSingularSolutions -> True] $$y(t) \rightarrow \text{InverseFunction}\left[\frac{1}{\#1} + \log(1 - \#1) - \log(\#1)\&\right][t + c_1]$$ $$y(t) \to 0$$ $$y(t) \to 1$$ ## 5.4 problem 1.1-6 (d) Internal problem ID [2466] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.1-6, page 7 Problem number: 1.1-6 (d). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' + y^2 = 1$$ ✓ Solution by Maple Time used: 0.015 (sec). Leaf size: 8 $dsolve(diff(y(t),t)=1-y(t)^2,y(t), singsol=all)$ $$y(t) = \tanh\left(t + c_1\right)$$ ✓ Solution by Mathematica Time used: 0.713 (sec). Leaf size: 44 DSolve[y'[t]==1-y[t]^2,y[t],t,IncludeSingularSolutions -> True] $$y(t) o rac{e^{2t} - e^{2c_1}}{e^{2t} + e^{2c_1}}$$ $$y(t) \rightarrow -1$$ $$y(t) \rightarrow 1$$ ## 6 Problem 1.2-1, page 12 | 6.1 | problem 1.2-1 (a | a) | | | | | | | | | | | | | | | | 28 | |-----|------------------|----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|----| | 6.2 | problem 1.2-1 (l | b) | | | | | | | | | | | | | | | | 29 | | 6.3 | problem 1.2-1 (d | c) | | | | | | | | | | | | | | | | 30 | | 6.4 | problem 1.2-1 (d | (b | | | | | | | | | | | | | | | | 31 | | 6.5 | problem 1.2-1 (e | e) | | | | | | | | | | | | | | | | 32 | | 6.6 | problem 1.2-1 (f | f) | | | | | | | | | | | | | | | | 33 | | 6.7 | problem 1.2-1 (§ | g) | | | | | | | | | | | | | | | | 34 | | 6.8 | problem 1.2-1 (l | h) | | | | | | | | | | | | | | | | 35 | | 6.9 | problem 1.2-1 (i | i) | | | | | | | | | | | | | | | | 36 | ## 6.1 problem 1.2-1 (a) Internal problem ID [2467] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (a). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_separable] $$y' - y(t^2 + 1) = 0$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 15 $dsolve(diff(y(t),t)=(t^2+1)*y(t),y(t), singsol=all)$ $$y(t)=c_1\mathrm{e}^{ rac{t\left(t^2+3 ight)}{3}}$$ ✓ Solution by Mathematica Time used: 0.025 (sec). Leaf size: 24 DSolve[y'[t]==(t^2+1)*y[t],y[t],t,IncludeSingularSolutions -> True] $$y(t) \to c_1 e^{\frac{t^3}{3} + t}$$ $$y(t) \to 0$$ ## 6.2 problem 1.2-1 (b) Internal problem ID [2468] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (b). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' + y = 0$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 10 dsolve(diff(y(t),t)=-y(t),y(t), singsol=all) $$y(t) = e^{-t}c_1$$ ✓ Solution by Mathematica Time used: 0.021 (sec). Leaf size: 18 DSolve[y'[t]==-y[t],y[t],t,IncludeSingularSolutions -> True] $$y(t) \to c_1 e^{-t}$$ $$y(t) \to 0$$ #### 6.3 problem 1.2-1 (c) Internal problem ID [2469] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (c). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [[_linear, 'class A']] $$y' - 2y = e^{-3t}$$ ✓ Solution by Maple Time used: 0.016 (sec). Leaf size: 17 dsolve(diff(y(t),t)=2*y(t)+exp(-3*t),y(t), singsol=all) $$y(t) = \left(-\frac{\mathrm{e}^{-5t}}{5} + c_1\right) \mathrm{e}^{2t}$$ ✓ Solution by Mathematica Time used: 0.065 (sec). Leaf size: 23 DSolve[y'[t]==2*y[t]+Exp[-3*t],y[t],t,IncludeSingularSolutions -> True] $$y(t) \to -\frac{e^{-3t}}{5} + c_1 e^{2t}$$ ## 6.4 problem 1.2-1 (d) Internal problem ID [2470] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (d). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [[_linear, 'class A']] $$y' - 2y = e^{2t}$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 12 dsolve(diff(y(t),t)=2*y(t)+exp(2*t),y(t), singsol=all) $$y(t) = (t + c_1) e^{2t}$$ ✓ Solution by Mathematica Time used: 0.041 (sec). Leaf size: 15 DSolve[y'[t]==2*y[t]+Exp[2*t],y[t],t,IncludeSingularSolutions -> True] $$y(t) \rightarrow e^{2t}(t+c_1)$$ ## 6.5 problem 1.2-1 (e) Internal problem ID [2471] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (e). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [[_linear, 'class A']] $$y' + y = t$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 13 dsolve(diff(y(t),t)=-y(t)+t,y(t), singsol=all) $$y(t) = t - 1 + e^{-t}c_1$$ ✓ Solution by Mathematica Time used: 0.026 (sec). Leaf size: 16 DSolve[y'[t]==-y[t]+t,y[t],t,IncludeSingularSolutions -> True] $$y(t) \to t + c_1 e^{-t} - 1$$ #### 6.6 problem 1.2-1 (f) Internal problem ID [2472] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (f). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_linear] $$ty' + 2y = \sin\left(t\right)$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 17 dsolve(t*diff(y(t),t)+2*y(t)=sin(t),y(t), singsol=all) $$y(t) = \frac{\sin(t) - \cos(t)t + c_1}{t^2}$$ ✓ Solution by Mathematica Time used: 0.034 (sec). Leaf size: 19 DSolve[t*y'[t]+2*y[t]==Sin[t],y[t],t,IncludeSingularSolutions -> True] $$y(t) \to \frac{\sin(t) - t\cos(t) + c_1}{t^2}$$ ## 6.7 problem 1.2-1 (g) Internal problem ID [2473] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (g). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_linear] $$y' - y\tan(t) = \sec(t)$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 12 dsolve(diff(y(t),t)=y(t)*tan(t)+sec(t),y(t), singsol=all) $$y(t) = \frac{t + c_1}{\cos(t)}$$ ✓ Solution by Mathematica Time used: 0.04 (sec). Leaf size: 12 DSolve[y'[t]==y[t]*Tan[t]+Sec[t],y[t],t,IncludeSingularSolutions -> True] $$y(t) \to (t + c_1)\sec(t)$$ #### 6.8 problem 1.2-1 (h) Internal problem ID [2474] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (h). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [linear] $$y' - \frac{2ty}{t^2 + 1} = t + 1$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 22 $dsolve(diff(y(t),t)=2*t/(t^2+1)*y(t)+t+1,y(t), singsol=all)$ $$y(t) = \left(\frac{\ln(t^2 + 1)}{2} + \arctan(t) + c_1\right)(t^2 + 1)$$ ✓ Solution by Mathematica Time used: 0.035 (sec). Leaf size: 26 $DSolve[y'[t] == 2*t/(t^2+1)*y[t]+t+1,y[t],t,IncludeSingularSolutions \rightarrow True]$ $$y(t) \rightarrow \left(t^2 + 1\right) \left(\arctan(t) + \frac{1}{2}\log\left(t^2 + 1\right) + c_1\right)$$ #### 6.9 problem 1.2-1 (i) Internal problem ID [2475] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (i). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_linear] $$y' - y\tan(t) = \sec(t)^3$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 13 $dsolve(diff(y(t),t)=y(t)*tan(t)+sec(t)^3,y(t), singsol=all)$ $$y(t) = \frac{\tan(t) + c_1}{\cos(t)}$$ ✓ Solution by Mathematica Time used: 0.057 (sec). Leaf size: 13 DSolve[y'[t]==y[t]*Tan[t]+Sec[t]^3,y[t],t,IncludeSingularSolutions -> True] $$y(t) \to \sec(t)(\tan(t) + c_1)$$ # 7 Problem 1.2-2, page 12 | 7.1 | problem 1.2-2 (a) | 38 | |-----|-------------------|----| | 7.2 | problem 1.2-2 (b) | 39 | | 7.3 | problem 1.2-2 (c) | 40 | | 7.4 | problem 1.2-2 (d) | 41 | | 7.5 | problem 1.2-2 (e) | 42 | | 7.6 | problem 1.2-2 (f) | 43 | ### 7.1 problem 1.2-2 (a) Internal problem ID [2476] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-2, page 12 Problem number: 1.2-2 (a). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' - y = 0$$ With initial conditions $$[y(0) = 2]$$ ✓ Solution by Maple Time used: 0.016 (sec). Leaf size: 8 dsolve([diff(y(t),t)=y(t),y(0) = 2],y(t), singsol=all) $$y(t) = 2e^t$$ ✓ Solution by Mathematica Time used: 0.023 (sec). Leaf size: 10 DSolve[{y'[t]==y[t],y[0]==2},y[t],t,IncludeSingularSolutions -> True] $$y(t) \to 2e^t$$ # 7.2 problem 1.2-2 (b) Internal problem ID [2477] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-2, page 12 Problem number: 1.2-2 (b). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_quadrature] $$y' - 2y = 0$$ With initial conditions $$[y(\ln(3)) = 3]$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 10 dsolve([diff(y(t),t)=2*y(t),y(ln(3))=3],y(t), singsol=all) $$y(t) = \frac{e^{2t}}{3}$$ ✓ Solution by Mathematica Time used: 0.022 (sec). Leaf size: 14 $\label{eq:DSolve} DSolve[\{y'[t]==2*y[t],y[Log[3]]==3\},y[t],t,IncludeSingularSolutions \ -> \ True]$ $$y(t) o rac{e^{2t}}{3}$$ #### 7.3 problem 1.2-2 (c) Internal problem ID [2478] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-2, page 12 Problem number: 1.2-2 (c). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [linear] $$y' - y = t^3$$ With initial conditions $$[y(1) = -2]$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 12 $dsolve([t*diff(y(t),t)=y(t)+t^3,y(1) = -2],y(t), singsol=all)$ $$y(t) = \frac{(t^2 - 5)t}{2}$$ ✓ Solution by Mathematica Time used: 0.048 (sec). Leaf size: 27 $DSolve[\{y'[t]==y[t]+t^3,y[1]==-2\},y[t],t,IncludeSingularSolutions \rightarrow True]$ $$y(t) \rightarrow -t^3 - 3t^2 - 6t + 14e^{t-1} - 6$$ ### 7.4 problem 1.2-2 (d) Internal problem ID [2479] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-2, page 12 Problem number: 1.2-2 (d). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_linear] $$y' + y\tan(t) = \sec(t)$$ With initial conditions $$[y(0) = 0]$$ ✓ Solution by Maple Time used: 0.015 (sec). Leaf size: 6 dsolve([diff(y(t),t)=-tan(t)*y(t)+sec(t),y(0) = 0],y(t), singsol=all) $$y(t) = \sin\left(t\right)$$ ✓ Solution by Mathematica Time used: 0.04 (sec). Leaf size: 7 DSolve[{y'[t]==-Tan[t]*y[t]+Sec[t],y[0]==0},y[t],t,IncludeSingularSolutions -> True] $$y(t) \to \sin(t)$$ #### 7.5 problem 1.2-2 (e) Internal problem ID [2480] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-2, page 12 Problem number: 1.2-2 (e). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_separable] $$y' - \frac{2y}{t+1} = 0$$ With initial conditions $$[y(0) = 6]$$ ✓ Solution by Maple Time used: 0.016 (sec). Leaf size: 11 dsolve([diff(y(t),t)=2/(1+t)*y(t),y(0) = 6],y(t), singsol=all) $$y(t) = 6(t+1)^2$$ ✓ Solution by Mathematica Time used: 0.027 (sec). Leaf size: 12 $\label{eq:DSolve} DSolve[\{y'[t]==2/(1+t)*y[t],y[0]==6\},y[t],t,IncludeSingularSolutions \ -> \ True]$ $$y(t) \to 6(t+1)^2$$ #### 7.6 problem 1.2-2 (f) Internal problem ID [2481] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-2, page 12 Problem number: 1.2-2 (f). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_linear] $$ty' + y = t^3$$ With initial conditions $$[y(1) = 2]$$ ✓ Solution by Maple Time used: 0.016 (sec). Leaf size: 14 $dsolve([t*diff(y(t),t)=-y(t)+t^3,y(1)=2],y(t), singsol=all)$ $$y(t) = \frac{t^4 + 7}{4t}$$ ✓ Solution by Mathematica Time used: 0.048 (sec). Leaf size: 27 $DSolve[\{y'[t]==-y[t]+t^3,y[1]==2\},y[t],t,IncludeSingularSolutions \rightarrow True]$ $$y(t) \to t^3 - 3t^2 + 6t + 4e^{1-t} - 6$$ # 8 Problem 1.2-3, page 12 | 8.1 | problem 1.2-3 (a) | | | | | | | | | | | | | | | | | 45 | |-----|-------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|----| | 8.2 | problem 1.2-3 (b) | | | | | | | | | | | | | | | | | 46 | | 8.3 | problem 1.2-3 (c) | | | | | | | | | | | | | | | | | 47 | | 8.4 | problem 1.2-3 (d) | | | | | | | | | | | | | | | | _ | 48 | #### 8.1 problem 1.2-3 (a) Internal problem ID [2482] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-3, page 12 Problem number: 1.2-3 (a). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_separable] $$y' + 4\tan(2t)y = \tan(2t)$$ With initial conditions $$\left[y\left(\frac{\pi}{8}\right) = 2\right]$$ ✓ Solution by Maple Time used: 0.016 (sec). Leaf size: 14 dsolve([diff(y(t),t)+4*tan(2*t)*y(t)=tan(2*t),y(1/8*Pi) = 2],y(t), singsol=all) $$y(t) = \frac{7\cos(2t)^2}{2} + \frac{1}{4}$$ ✓ Solution by Mathematica Time used: 0.098 (sec). Leaf size: 15 DSolve[{y'[t]+4*Tan[2*t]*y[t]==Tan[2*t],y[Pi/8]==2},y[t],t,IncludeSingularSolutions -> True] $$y(t) \to \frac{7}{4}\cos(4t) + 2$$ #### 8.2 problem 1.2-3 (b) Internal problem ID [2483] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-3, page 12 Problem number: 1.2-3 (b). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [linear] $$t\ln(t)y' + y = t\ln(t)$$ With initial conditions $$[y(e) = 1]$$ ✓ Solution by Maple Time used: 0.0 (sec). Leaf size: 18 dsolve([t*ln(t)*diff(y(t),t)=t*ln(t)-y(t),y(exp(1)) = 1],y(t), singsol=all) $$y(t) = \frac{t \ln(t) - t + 1}{\ln(t)}$$ ✓ Solution by Mathematica Time used: 0.036 (sec). Leaf size: 19 DSolve[{t*Log[t]*y'[t]==t*Log[t]-y[t],y[Exp[1]]==1},y[t],t,IncludeSingularSolutions -> True] $$y(t) \to \frac{-t + t \log(t) + 1}{\log(t)}$$ #### 8.3 problem 1.2-3 (c) Internal problem ID [2484] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-3, page 12 Problem number: 1.2-3 (c). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [linear] $$y' - \frac{2y}{-t^2 + 1} = 3$$ With initial conditions $$\left[y\left(\frac{1}{2}\right) = 1\right]$$ ## ✓ Solution by Maple Time used: 0.047 (sec). Leaf size: 34 $dsolve([diff(y(t),t)=2/(1-t^2)*y(t)+3,y(1/2) = 1],y(t), singsol=all)$ $$y(t) = \frac{(t+1)(18t - 36\ln(t+1) - 11 + 36\ln(3) - 36\ln(2))}{6t - 6}$$ ✓ Solution by Mathematica Time used: 0.041 (sec). Leaf size: 34 $DSolve[\{y'[t]==2/(1-t^2)*y[t]+3,y[1/2]==1\},y[t],t,IncludeSingularSolutions \rightarrow True]$ $$y(t) \to \frac{(t+1)\left(18t - 36\log(t+1) - 11 + 36\log\left(\frac{3}{2}\right)\right)}{6(t-1)}$$ #### 8.4 problem 1.2-3 (d) Internal problem ID [2485] Book: Ordinary Differential Equations, Robert H. Martin, 1983 Section: Problem 1.2-3, page 12 Problem number: 1.2-3 (d). ODE order: 1. ODE degree: 1. CAS Maple gives this as type [_linear] $$y' + \cot(t) y = 6\cos(t)^2$$ With initial conditions $$\left[y\left(\frac{\pi}{4}\right) = 3\right]$$ ✓ Solution by Maple Time used: 0.047 (sec). Leaf size: 18 $dsolve([diff(y(t),t)=-cot(t)*y(t)+6*cos(t)^2,y(1/4*Pi) = 3],y(t), singsol=all)$ $$y(t) = -2\csc(t)\left(\cos(t)^3 - \sqrt{2}\right)$$ ✓ Solution by Mathematica Time used: 0.06 (sec). Leaf size: 23 DSolve[{y'[t]==-Cot[t]*y[t]+6*Cos[t]^2,y[Pi/4]==3},y[t],t,IncludeSingularSolutions -> True] $$y(t) \rightarrow 2\sqrt{2}\csc(t) - 2\cos^2(t)\cot(t)$$