A Solution Manual For

Ordinary Differential Equations, Robert H. Martin, 1983

Nasser M. Abbasi

March 3, 2024

Contents

1	Problem 1.1-2, page 6	2
2	Problem 1.1-3, page 6	10
3	Problem 1.1-4, page 7	17
4	Problem 1.1-5, page 7	20
5	Problem 1.1-6, page 7	22
6	Problem 1.2-1, page 12	27
7	Problem 1.2-2, page 12	37
8	Problem 1.2-3, page 12	44

1 Problem 1.1-2, page 6

1.1	problem 1.1-2 (a)																	3
1.2	problem 1.1-2 (b)																	4
1.3	problem 1.1-2 (c)																	5
1.4	problem 1.1-2 (d)																	6
1.5	problem 1.1-2 (e)																	7
1.6	problem 1.1-2 (f)																	8
1.7	problem 1.1-2 (g)																	9

1.1 problem 1.1-2 (a)

Internal problem ID [2447]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = t^2 + 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(t),t)=t^2+3,y(t), singsol=all)$

$$y(t) = \frac{1}{3}t^3 + 3t + c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: $18\,$

DSolve[y'[t]==t^2+3,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{t^3}{3} + 3t + c_1$$

1.2 problem 1.1-2 (b)

Internal problem ID [2448]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = t e^{2t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(t),t)=t*exp(2*t),y(t), singsol=all)

$$y(t) = \frac{(2t-1)e^{2t}}{4} + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

DSolve[y'[t]==t*Exp[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{4}e^{2t}(2t-1) + c_1$$

1.3 problem 1.1-2 (c)

Internal problem ID [2449]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \sin\left(3t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)=sin(3*t),y(t), singsol=all)

$$y(t) = -\frac{\cos(3t)}{3} + c_1$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 16

DSolve[y'[t]==Sin[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{1}{3}\cos(3t) + c_1$$

1.4 problem 1.1-2 (d)

Internal problem ID [2450]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \sin\left(t\right)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(t),t)=sin(t)^2,y(t), singsol=all)$

$$y(t) = \frac{t}{2} + c_1 - \frac{\sin(2t)}{4}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 21

DSolve[y'[t]==Sin[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{t}{2} - \frac{1}{4}\sin(2t) + c_1$$

1.5 problem 1.1-2 (e)

Internal problem ID [2451]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \frac{t}{t^2 + 4}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(t),t)=t/(t^2+4),y(t), singsol=all)$

$$y(t) = \frac{\ln(t^2 + 4)}{2} + c_1$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 18

DSolve[y'[t]==t/(t^2+4),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \frac{1}{2} \log \left(t^2 + 4\right) + c_1$$

1.6 problem 1.1-2 (f)

Internal problem ID [2452]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \ln\left(t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(t),t)=ln(t),y(t), singsol=all)

$$y(t) = t \ln(t) - t + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 15

DSolve[y'[t]==Log[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -t + t \log(t) + c_1$$

1.7 problem 1.1-2 (g)

Internal problem ID [2453]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-2, page 6 Problem number: 1.1-2 (g).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \frac{t}{\sqrt{t} + 1}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

dsolve(diff(y(t),t)=t/(sqrt(t)+1),y(t), singsol=all)

$$y(t) = \frac{2t^{\frac{3}{2}}}{3} - t + 2\sqrt{t} - 2\ln\left(\sqrt{t} + 1\right) + c_1$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 25

DSolve[y'[t]==1/(1+Sqrt[t]),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 2\sqrt{t} - 2\log\left(\sqrt{t} + 1\right) + c_1$$

2 Problem 1.1-3, page 6

2.1	problem 1.1-3 (a)																	11
2.2	problem 1.1-3 (b)																	12
2.3	problem 1.1-3 (c)																	13
2.4	problem 1.1-3 (d)																	14
2.5	problem 1.1-3 (e)																	15
2.6	problem 1.1-3 (f)																	16

2.1 problem 1.1-3 (a)

Internal problem ID [2454]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-3, page 6 Problem number: 1.1-3 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y = -4$$

With initial conditions

$$[y(0) = 5]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

dsolve([diff(y(t),t)=2*y(t)-4,y(0) = 5],y(t), singsol=all)

$$y(t) = 2 + 3e^{2t}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 14

 $DSolve[\{y'[t]==2*y[t]-4,y[0]==5\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 3e^{2t} + 2$$

2.2 problem 1.1-3 (b)

Internal problem ID [2455]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-3, page 6 Problem number: 1.1-3 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^3 = 0$$

With initial conditions

$$[y(1) = 3]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 13

 $dsolve([diff(y(t),t)=-y(t)^3,y(1)=3],y(t), singsol=all)$

$$y(t) = \frac{3}{\sqrt{18t - 17}}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 16

DSolve[{y'[t]==-y[t]^3,y[1]==3},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{3}{\sqrt{18t - 17}}$$

2.3 problem 1.1-3 (c)

Internal problem ID [2456]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-3, page 6 Problem number: 1.1-3 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - \frac{\mathrm{e}^t}{y} = 0$$

With initial conditions

$$[y(\ln(2)) = -8]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 14

dsolve([diff(y(t),t)=exp(t)/y(t),y(ln(2)) = -8],y(t), singsol=all)

$$y(t) = -\sqrt{2e^t + 60}$$

✓ Solution by Mathematica

Time used: 0.594 (sec). Leaf size: 21

DSolve[{y'[t]==Exp[t]/y[t],y[Log[2]]==-8},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\sqrt{2}\sqrt{e^t + 30}$$

2.4 problem 1.1-3 (d)

Internal problem ID [2457]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-3, page 6 Problem number: 1.1-3 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = t e^{2t}$$

With initial conditions

$$[y(1) = 5]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

dsolve([diff(y(t),t)=t*exp(2*t),y(1) = 5],y(t), singsol=all)

$$y(t) = \frac{(2t-1)e^{2t}}{4} + 5 - \frac{e^2}{4}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 27

DSolve[{y'[t]==t*Exp[2*t],y[1]==5},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{4} (e^{2t}(2t-1) - e^2 + 20)$$

2.5 problem 1.1-3 (e)

Internal problem ID [2458]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-3, page 6 Problem number: 1.1-3 (e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \sin{(t)^2}$$

With initial conditions

$$\left[y\left(\frac{\pi}{6}\right) = 3\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

 $dsolve([diff(y(t),t)=sin(t)^2,y(1/6*Pi) = 3],y(t), singsol=all)$

$$y(t) = \frac{t}{2} + 3 - \frac{\pi}{12} + \frac{\sqrt{3}}{8} - \frac{\sin(2t)}{4}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 31

 $\label{eq:DSolve} DSolve [\{y'[t] == Sin[t]^2, y[Pi/6] == 3\}, y[t], t, Include Singular Solutions \ -> \ True] \\$

$$y(t) \to \frac{1}{24} \Big(3\Big(4t + \sqrt{3} + 24\Big) - 6\sin(2t) - 2\pi \Big)$$

2.6 problem 1.1-3 (f)

Internal problem ID [2459]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-3, page 6 Problem number: 1.1-3 (f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = 8e^{4t} + t$$

With initial conditions

$$[y(0) = 12]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(t),t)=8*exp(4*t)+t,y(0) = 12],y(t), singsol=all)

$$y(t) = \frac{t^2}{2} + 2e^{4t} + 10$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 21

DSolve[{y'[t]==8*Exp[4*t]+t,y[0]==12},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{2} (t^2 + 4e^{4t} + 20)$$

3	Problem 1.1-4, page 7	
3.1	problem 1.1-4 (a)	18
3.2	problem 1.1-4 (b)	19

3.1 problem 1.1-4 (a)

Internal problem ID [2460]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-4, page 7 Problem number: 1.1-4 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve(diff(y(t),t)=y(t)/t,y(t), singsol=all)

$$y(t) = tc_1$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 14

DSolve[y'[t]==y[t]/t,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow c_1 t$$

$$y(t) \to 0$$

3.2 problem 1.1-4 (b)

Internal problem ID [2461]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-4, page 7 Problem number: 1.1-4 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + \frac{t}{y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(t),t)=-t/y(t),y(t), singsol=all)

$$y(t) = \sqrt{-t^2 + c_1}$$

$$y(t) = -\sqrt{-t^2 + c_1}$$

✓ Solution by Mathematica

Time used: 0.105 (sec). Leaf size: 39

DSolve[y'[t]==-t/y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\sqrt{-t^2 + 2c_1}$$

$$y(t) \to \sqrt{-t^2 + 2c_1}$$

4	Problem 1.1-5, page 7	
4.1	problem 1.1-5	2

4.1 problem 1.1-5

Internal problem ID [2462]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-5, page 7 Problem number: 1.1-5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve(diff(y(t),t)=y(t)^2-y(t),y(t), singsol=all)$

$$y(t) = \frac{1}{1 + c_1 e^t}$$

✓ Solution by Mathematica

Time used: 0.242 (sec). Leaf size: 25

DSolve[y'[t]==y[t]^2-y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{1 + e^{t + c_1}}$$

$$y(t) \to 0$$

$$y(t) \rightarrow 1$$

5 Problem 1.1-6, page 7

5.1	problem 1.1-6 (a)) .																2	3
5.2	problem 1.1-6 (b)) .																2	4
5.3	problem 1.1-6 (c)																	2	5
5.4	problem 1.1-6 (d)	١.																2	6

5.1 problem 1.1-6 (a)

Internal problem ID [2463]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-6, page 7 Problem number: 1.1-6 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'-y=-1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(t),t)=y(t)-1,y(t), singsol=all)

$$y(t) = 1 + c_1 e^t$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 18

DSolve[y'[t]==y[t]-1,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 1 + c_1 e^t$$

$$y(t) \rightarrow 1$$

5.2 problem 1.1-6 (b)

Internal problem ID [2464]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-6, page 7 Problem number: 1.1-6 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)=1-y(t),y(t), singsol=all)

$$y(t) = 1 + e^{-t}c_1$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 20

DSolve[y'[t]==1-y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 1 + c_1 e^{-t}$$

$$y(t) \rightarrow 1$$

5.3 problem 1.1-6 (c)

Internal problem ID [2465]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-6, page 7 Problem number: 1.1-6 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^3 + y^2 = 0$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=y(t)^3-y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{\text{LambertW}\left(-c_1 e^{t-1}\right) + 1}$$

✓ Solution by Mathematica

Time used: 0.227 (sec). Leaf size: 38

DSolve[y'[t]==y[t]^3-y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \text{InverseFunction}\left[\frac{1}{\#1} + \log(1 - \#1) - \log(\#1)\&\right][t + c_1]$$

$$y(t) \to 0$$

$$y(t) \to 1$$

5.4 problem 1.1-6 (d)

Internal problem ID [2466]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.1-6, page 7 Problem number: 1.1-6 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 8

 $dsolve(diff(y(t),t)=1-y(t)^2,y(t), singsol=all)$

$$y(t) = \tanh\left(t + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.713 (sec). Leaf size: 44

DSolve[y'[t]==1-y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) o rac{e^{2t} - e^{2c_1}}{e^{2t} + e^{2c_1}}$$

$$y(t) \rightarrow -1$$

$$y(t) \rightarrow 1$$

6 Problem 1.2-1, page 12

6.1	problem 1.2-1 (a	a)																28
6.2	problem 1.2-1 (l	b)																29
6.3	problem 1.2-1 (d	c)																30
6.4	problem 1.2-1 (d	(b																31
6.5	problem 1.2-1 (e	e)																32
6.6	problem 1.2-1 (f	f)																33
6.7	problem 1.2-1 (§	g)																34
6.8	problem 1.2-1 (l	h)																35
6.9	problem 1.2-1 (i	i)																36

6.1 problem 1.2-1 (a)

Internal problem ID [2467]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - y(t^2 + 1) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(t),t)=(t^2+1)*y(t),y(t), singsol=all)$

$$y(t)=c_1\mathrm{e}^{rac{t\left(t^2+3
ight)}{3}}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 24

DSolve[y'[t]==(t^2+1)*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 e^{\frac{t^3}{3} + t}$$

$$y(t) \to 0$$

6.2 problem 1.2-1 (b)

Internal problem ID [2468]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(t),t)=-y(t),y(t), singsol=all)

$$y(t) = e^{-t}c_1$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 18

DSolve[y'[t]==-y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 e^{-t}$$

$$y(t) \to 0$$

6.3 problem 1.2-1 (c)

Internal problem ID [2469]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = e^{-3t}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve(diff(y(t),t)=2*y(t)+exp(-3*t),y(t), singsol=all)

$$y(t) = \left(-\frac{\mathrm{e}^{-5t}}{5} + c_1\right) \mathrm{e}^{2t}$$

✓ Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 23

DSolve[y'[t]==2*y[t]+Exp[-3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{e^{-3t}}{5} + c_1 e^{2t}$$

6.4 problem 1.2-1 (d)

Internal problem ID [2470]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = e^{2t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)=2*y(t)+exp(2*t),y(t), singsol=all)

$$y(t) = (t + c_1) e^{2t}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 15

DSolve[y'[t]==2*y[t]+Exp[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow e^{2t}(t+c_1)$$

6.5 problem 1.2-1 (e)

Internal problem ID [2471]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(t),t)=-y(t)+t,y(t), singsol=all)

$$y(t) = t - 1 + e^{-t}c_1$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 16

DSolve[y'[t]==-y[t]+t,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to t + c_1 e^{-t} - 1$$

6.6 problem 1.2-1 (f)

Internal problem ID [2472]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$ty' + 2y = \sin\left(t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(t*diff(y(t),t)+2*y(t)=sin(t),y(t), singsol=all)

$$y(t) = \frac{\sin(t) - \cos(t)t + c_1}{t^2}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 19

DSolve[t*y'[t]+2*y[t]==Sin[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{\sin(t) - t\cos(t) + c_1}{t^2}$$

6.7 problem 1.2-1 (g)

Internal problem ID [2473]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (g).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - y\tan(t) = \sec(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)=y(t)*tan(t)+sec(t),y(t), singsol=all)

$$y(t) = \frac{t + c_1}{\cos(t)}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 12

DSolve[y'[t]==y[t]*Tan[t]+Sec[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to (t + c_1)\sec(t)$$

6.8 problem 1.2-1 (h)

Internal problem ID [2474]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (h).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{2ty}{t^2 + 1} = t + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(diff(y(t),t)=2*t/(t^2+1)*y(t)+t+1,y(t), singsol=all)$

$$y(t) = \left(\frac{\ln(t^2 + 1)}{2} + \arctan(t) + c_1\right)(t^2 + 1)$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 26

 $DSolve[y'[t] == 2*t/(t^2+1)*y[t]+t+1,y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow \left(t^2 + 1\right) \left(\arctan(t) + \frac{1}{2}\log\left(t^2 + 1\right) + c_1\right)$$

6.9 problem 1.2-1 (i)

Internal problem ID [2475]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-1, page 12 Problem number: 1.2-1 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - y\tan(t) = \sec(t)^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(diff(y(t),t)=y(t)*tan(t)+sec(t)^3,y(t), singsol=all)$

$$y(t) = \frac{\tan(t) + c_1}{\cos(t)}$$

✓ Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 13

DSolve[y'[t]==y[t]*Tan[t]+Sec[t]^3,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \sec(t)(\tan(t) + c_1)$$

7 Problem 1.2-2, page 12

7.1	problem 1.2-2 (a)	38
7.2	problem 1.2-2 (b)	39
7.3	problem 1.2-2 (c)	40
7.4	problem 1.2-2 (d)	41
7.5	problem 1.2-2 (e)	42
7.6	problem 1.2-2 (f)	43

7.1 problem 1.2-2 (a)

Internal problem ID [2476]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-2, page 12 Problem number: 1.2-2 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

dsolve([diff(y(t),t)=y(t),y(0) = 2],y(t), singsol=all)

$$y(t) = 2e^t$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 10

DSolve[{y'[t]==y[t],y[0]==2},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 2e^t$$

7.2 problem 1.2-2 (b)

Internal problem ID [2477]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-2, page 12 Problem number: 1.2-2 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y = 0$$

With initial conditions

$$[y(\ln(3)) = 3]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve([diff(y(t),t)=2*y(t),y(ln(3))=3],y(t), singsol=all)

$$y(t) = \frac{e^{2t}}{3}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 14

 $\label{eq:DSolve} DSolve[\{y'[t]==2*y[t],y[Log[3]]==3\},y[t],t,IncludeSingularSolutions \ -> \ True]$

$$y(t) o rac{e^{2t}}{3}$$

7.3 problem 1.2-2 (c)

Internal problem ID [2478]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-2, page 12 Problem number: 1.2-2 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - y = t^3$$

With initial conditions

$$[y(1) = -2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve([t*diff(y(t),t)=y(t)+t^3,y(1) = -2],y(t), singsol=all)$

$$y(t) = \frac{(t^2 - 5)t}{2}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 27

 $DSolve[\{y'[t]==y[t]+t^3,y[1]==-2\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow -t^3 - 3t^2 - 6t + 14e^{t-1} - 6$$

7.4 problem 1.2-2 (d)

Internal problem ID [2479]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-2, page 12 Problem number: 1.2-2 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + y\tan(t) = \sec(t)$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 6

dsolve([diff(y(t),t)=-tan(t)*y(t)+sec(t),y(0) = 0],y(t), singsol=all)

$$y(t) = \sin\left(t\right)$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 7

DSolve[{y'[t]==-Tan[t]*y[t]+Sec[t],y[0]==0},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \sin(t)$$

7.5 problem 1.2-2 (e)

Internal problem ID [2480]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-2, page 12 Problem number: 1.2-2 (e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2y}{t+1} = 0$$

With initial conditions

$$[y(0) = 6]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

dsolve([diff(y(t),t)=2/(1+t)*y(t),y(0) = 6],y(t), singsol=all)

$$y(t) = 6(t+1)^2$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 12

 $\label{eq:DSolve} DSolve[\{y'[t]==2/(1+t)*y[t],y[0]==6\},y[t],t,IncludeSingularSolutions \ -> \ True]$

$$y(t) \to 6(t+1)^2$$

7.6 problem 1.2-2 (f)

Internal problem ID [2481]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-2, page 12 Problem number: 1.2-2 (f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$ty' + y = t^3$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve([t*diff(y(t),t)=-y(t)+t^3,y(1)=2],y(t), singsol=all)$

$$y(t) = \frac{t^4 + 7}{4t}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 27

 $DSolve[\{y'[t]==-y[t]+t^3,y[1]==2\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to t^3 - 3t^2 + 6t + 4e^{1-t} - 6$$

8 Problem 1.2-3, page 12

8.1	problem 1.2-3 (a)																	45
8.2	problem 1.2-3 (b)																	46
8.3	problem 1.2-3 (c)																	47
8.4	problem 1.2-3 (d)																_	48

8.1 problem 1.2-3 (a)

Internal problem ID [2482]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-3, page 12 Problem number: 1.2-3 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + 4\tan(2t)y = \tan(2t)$$

With initial conditions

$$\left[y\left(\frac{\pi}{8}\right) = 2\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(t),t)+4*tan(2*t)*y(t)=tan(2*t),y(1/8*Pi) = 2],y(t), singsol=all)

$$y(t) = \frac{7\cos(2t)^2}{2} + \frac{1}{4}$$

✓ Solution by Mathematica

Time used: 0.098 (sec). Leaf size: 15

DSolve[{y'[t]+4*Tan[2*t]*y[t]==Tan[2*t],y[Pi/8]==2},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{7}{4}\cos(4t) + 2$$

8.2 problem 1.2-3 (b)

Internal problem ID [2483]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-3, page 12 Problem number: 1.2-3 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$t\ln(t)y' + y = t\ln(t)$$

With initial conditions

$$[y(e) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve([t*ln(t)*diff(y(t),t)=t*ln(t)-y(t),y(exp(1)) = 1],y(t), singsol=all)

$$y(t) = \frac{t \ln(t) - t + 1}{\ln(t)}$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 19

DSolve[{t*Log[t]*y'[t]==t*Log[t]-y[t],y[Exp[1]]==1},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{-t + t \log(t) + 1}{\log(t)}$$

8.3 problem 1.2-3 (c)

Internal problem ID [2484]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-3, page 12 Problem number: 1.2-3 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{2y}{-t^2 + 1} = 3$$

With initial conditions

$$\left[y\left(\frac{1}{2}\right) = 1\right]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 34

 $dsolve([diff(y(t),t)=2/(1-t^2)*y(t)+3,y(1/2) = 1],y(t), singsol=all)$

$$y(t) = \frac{(t+1)(18t - 36\ln(t+1) - 11 + 36\ln(3) - 36\ln(2))}{6t - 6}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 34

 $DSolve[\{y'[t]==2/(1-t^2)*y[t]+3,y[1/2]==1\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{(t+1)\left(18t - 36\log(t+1) - 11 + 36\log\left(\frac{3}{2}\right)\right)}{6(t-1)}$$

8.4 problem 1.2-3 (d)

Internal problem ID [2485]

Book: Ordinary Differential Equations, Robert H. Martin, 1983

Section: Problem 1.2-3, page 12 Problem number: 1.2-3 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \cot(t) y = 6\cos(t)^2$$

With initial conditions

$$\left[y\left(\frac{\pi}{4}\right) = 3\right]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 18

 $dsolve([diff(y(t),t)=-cot(t)*y(t)+6*cos(t)^2,y(1/4*Pi) = 3],y(t), singsol=all)$

$$y(t) = -2\csc(t)\left(\cos(t)^3 - \sqrt{2}\right)$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 23

DSolve[{y'[t]==-Cot[t]*y[t]+6*Cos[t]^2,y[Pi/4]==3},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 2\sqrt{2}\csc(t) - 2\cos^2(t)\cot(t)$$