
A Solution Manual For

Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS page 95	3. 2
2	Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS Supplementary Problems. page 101	S. 15
3	Chapter 12. VARIATION OF PARAMETERS. page 104	2 5
4	Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109	34
5	Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248	43
6	Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274	61

1	Chapter 11. THE METHOD OF	
	UNDETERMINED COEFFICIENTS. page 9	5
1.1	problem Problem 11.1	Ş
1.2	problem Problem 11.2	4
1.3	problem Problem 11.3	F
1.4	problem Problem 11.4	6
1.5	problem Problem 11.5	7
1.6	problem Problem 11.6	8
1.7	problem Problem 11.7	ç
1.8	problem Problem 11.8	10
1.9	problem Problem 11.10	
1.10	problem Problem 11.12	12
1.11	problem Problem 11.13	13
1.12	problem Problem 11.14	14

1.1 problem Problem 11.1

Internal problem ID [5163]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95

Problem number: Problem 11.1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = 4x^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

 $dsolve(diff(y(x),x$2)-diff(y(x),x)-2*y(x)=4*x^2,y(x), singsol=all)$

$$y(x) = e^{2x}c_2 + e^{-x}c_1 - 2x^2 + 2x - 3$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 31

DSolve[$y''[x]-y'[x]-2*y[x]==4*x^2,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to -2x^2 + 2x + c_1e^{-x} + c_2e^{2x} - 3$$

1.2 problem Problem 11.2

Internal problem ID [5164]

 $\bf Book:$ Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

 ${\bf Section:}\ {\bf Chapter}\ 11.\ {\bf THE}\ {\bf METHOD}\ {\bf OF}\ {\bf UNDETERMINED}\ {\bf COEFFICIENTS.}\ {\bf page}\ 95$

Problem number: Problem 11.2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$y'' - y' - 2y = e^{3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=exp(3*x),y(x), singsol=all)

$$y(x) = e^{2x}c_2 + e^{-x}c_1 + \frac{e^{3x}}{4}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 31

 $\label{eq:DSolve} DSolve[y''[x]-y'[x]-2*y[x] == \texttt{Exp}[3*x], y[x], x, IncludeSingularSolutions -> \texttt{True}]$

$$y(x) \to \frac{e^{3x}}{4} + c_1 e^{-x} + c_2 e^{2x}$$

problem Problem 11.3 1.3

Internal problem ID [5165]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95

Problem number: Problem 11.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - y' - 2y = \sin\left(2x\right)$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=sin(2*x),y(x), singsol=all)

$$y(x) = e^{2x}c_2 + e^{-x}c_1 + \frac{\cos(2x)}{20} - \frac{3\sin(2x)}{20}$$

Solution by Mathematica

Time used: 0.116 (sec). Leaf size: 37

 $DSolve[y''[x]-y'[x]-2*y[x] == Sin[2*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-x} + c_2 e^{2x} + \frac{1}{20} (\cos(2x) - 3\sin(2x))$$

1.4 problem Problem 11.4

Internal problem ID [5166]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95

Problem number: Problem 11.4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 6y' + 25y = 2\sin\left(\frac{t}{2}\right) - \cos\left(\frac{t}{2}\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

 $dsolve(diff(y(t),t)^2)-6*diff(y(t),t)+25*y(t)=2*sin(t/2)-cos(t/2),y(t), singsol=all)$

$$y(t) = e^{3t} \sin(4t) c_2 + e^{3t} \cos(4t) c_1 + \frac{56 \sin(\frac{t}{2})}{663} - \frac{20 \cos(\frac{t}{2})}{663}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 51

DSolve[y''[t]-6*y'[t]+25*y[t]==2*Sin[t/2]-Cos[t/2],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{663} \left(56 \sin\left(\frac{t}{2}\right) - 20 \cos\left(\frac{t}{2}\right) \right) + c_2 e^{3t} \cos(4t) + c_1 e^{3t} \sin(4t)$$

1.5 problem Problem 11.5

Internal problem ID [5167]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95

Problem number: Problem 11.5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$y'' - 6y' + 25y = 64 e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(diff(y(t),t)^2)-6*diff(y(t),t)+25*y(t)=64*exp(-t),y(t), singsol=all)$

$$y(t) = e^{3t} \sin(4t) c_2 + e^{3t} \cos(4t) c_1 + 2e^{-t}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 37

DSolve[y''[t]-6*y'[t]+25*y[t]==64*Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t} (c_2 e^{4t} \cos(4t) + c_1 e^{4t} \sin(4t) + 2)$$

1.6 problem Problem 11.6

Internal problem ID [5168]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95

Problem number: Problem 11.6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - 6y' + 25y = 50t^3 - 36t^2 - 63t + 18$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $dsolve(diff(y(t),t$2)-6*diff(y(t),t)+25*y(t)=50*t^3-36*t^2-63*t+18,y(t), singsol=all)$

$$y(t) = e^{3t} \sin(4t) c_2 + e^{3t} \cos(4t) c_1 + 2t^3 - 3t$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 38

DSolve[y''[t]-6*y'[t]+25*y[t]==50*t^3-36*t^2-63*t+18,y[t],t,IncludeSingularSolutions -> True

$$y(t) \to 2t^3 - 3t + c_2 e^{3t} \cos(4t) + c_1 e^{3t} \sin(4t)$$

1.7 problem Problem 11.7

Internal problem ID [5169]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95

Problem number: Problem 11.7.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, linear, nonhomogeneous]]

$$y''' - 6y'' + 11y' - 6y = 2x e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+11*diff(y(x),x)-6*y(x)=2*x*exp(-x),y(x), singsol=all)

$$y(x) = -\frac{(12x+13)e^{-x}}{144} + e^x c_1 + e^{2x} c_2 + c_3 e^{3x}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: $42\,$

$$y(x) \rightarrow -\frac{1}{144}e^{-x}(12x+13) + c_1e^x + c_2e^{2x} + c_3e^{3x}$$

1.8 problem Problem 11.8

Internal problem ID [5170]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95

Problem number: Problem 11.8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' = 9x^2 + 2x - 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x$2)=9*x^2+2*x-1,y(x), singsol=all)$

$$y(x) = \frac{3}{4}x^4 + \frac{1}{3}x^3 - \frac{1}{2}x^2 + c_1x + c_2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 33

DSolve[y''[x]==9*x^2+2*x-1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{3x^4}{4} + \frac{x^3}{3} - \frac{x^2}{2} + c_2x + c_1$$

1.9 problem Problem 11.10

Internal problem ID [5171]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95

Problem number: Problem 11.10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 5y = 2e^{5x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)-5*y(x)=2*exp(5*x),y(x), singsol=all)

$$y(x) = e^{\sqrt{5}x}c_2 + e^{-\sqrt{5}x}c_1 + \frac{e^{5x}}{10}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 40

DSolve[y''[x]-5*y[x]==2*Exp[5*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{5x}}{10} + c_1 e^{\sqrt{5}x} + c_2 e^{-\sqrt{5}x}$$

1.10 problem Problem 11.12

Internal problem ID [5172]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95

Problem number: Problem 11.12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 5y = (x - 1)\sin(x) + (1 + x)\cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x)-5*y(x)=(x-1)*sin(x)+(x+1)*cos(x),y(x), singsol=all)

$$y(x) = -\frac{3\cos(x)x}{13} - \frac{69\cos(x)}{338} - \frac{2\sin(x)x}{13} + \frac{71\sin(x)}{338} + c_1e^{5x}$$

✓ Solution by Mathematica

Time used: 0.229 (sec). Leaf size: 36

 $DSolve[y'[x]-5*y[x]==(x-1)*Sin[x]+(x+1)*Cos[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{338}((71 - 52x)\sin(x) - 3(26x + 23)\cos(x)) + c_1e^{5x}$$

1.11 problem Problem 11.13

Internal problem ID [5173]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

 ${\bf Section}:$ Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95

Problem number: Problem 11.13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - 5y = 3e^x - 2x + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x)-5*y(x)=3*exp(x)-2*x+1,y(x), singsol=all)

$$y(x) = \frac{2x}{5} - \frac{3}{25} - \frac{3e^x}{4} + c_1e^{5x}$$

✓ Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 29

 $DSolve[y'[x]-5*y[x]==3*Exp[x]-2*x+1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o \frac{2x}{5} - \frac{3e^x}{4} + c_1 e^{5x} - \frac{3}{25}$$

1.12 problem Problem 11.14

Internal problem ID [5174]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95

Problem number: Problem 11.14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - 5y = x^2 e^x - x e^{5x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

 $dsolve(diff(y(x),x)-5*y(x)=x^2*exp(x)-x*exp(5*x),y(x), singsol=all)$

$$y(x) = \left(-\frac{x^2}{2} - \frac{x^2 e^{-4x}}{4} - \frac{e^{-4x}x}{8} - \frac{e^{-4x}}{32} + c_1\right) e^{5x}$$

✓ Solution by Mathematica

Time used: 0.209 (sec). Leaf size: 39

 $DSolve[y'[x]-5*y[x]==x^2*Exp[x]-x*Exp[5*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{1}{32}e^{x}(8x^{2}+4x+1) + e^{5x}(-\frac{x^{2}}{2}+c_{1})$$

2 Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

2.1	problem	Problem	11.44																16
2.2	problem	Problem	11.45	· .															17
2.3	problem	Problem	11.46	.															18
2.4	problem	Problem	11.47																19
2.5	problem	Problem	11.48	3.															20
2.6	problem	Problem	11.49																21
2.7	problem	Problem	11.50) .															22
2.8	problem	Problem	11.51																23
2.9	problem	Problem	11.52	2.															24

2.1 problem Problem 11.44

Internal problem ID [5175]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-

mentary Problems. page 101

Problem number: Problem 11.44.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + y = x^2 - 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=x^2-1,y(x), singsol=all)$

$$y(x) = e^x c_2 + e^x x c_1 + x^2 + 4x + 5$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 26

DSolve[$y''[x]-2*y'[x]+y[x]==x^2-1,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to x^2 + x(4 + c_2 e^x) + c_1 e^x + 5$$

2.2 problem Problem 11.45

Internal problem ID [5176]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-

mentary Problems. page 101

Problem number: Problem 11.45.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + y = 4e^{2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=4*exp(2*x),y(x), singsol=all)

$$y(x) = e^x c_2 + e^x x c_1 + 4 e^{2x}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 21

DSolve[y''[x]-2*y'[x]+y[x]==4*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x (4e^x + c_2 x + c_1)$$

2.3 problem Problem 11.46

Internal problem ID [5177]

 $\bf Book:$ Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

Problem number: Problem 11.46.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = 4\cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=4*cos(x),y(x), singsol=all)

$$y(x) = e^x c_2 + e^x x c_1 - 2\sin(x)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 21

 $DSolve[y''[x]-2*y'[x]+y[x]==4*Cos[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -2\sin(x) + e^x(c_2x + c_1)$$

2.4 problem Problem 11.47

Internal problem ID [5178]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-

mentary Problems. page 101

Problem number: Problem 11.47.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + y = 3e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=3*exp(x),y(x), singsol=all)

$$y(x) = e^x c_2 + e^x x c_1 + \frac{3e^x x^2}{2}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 27

DSolve[y''[x]-2*y'[x]+y[x]==3*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}e^x(3x^2 + 2c_2x + 2c_1)$$

2.5 problem Problem 11.48

Internal problem ID [5179]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

 ${\bf Section}:$ Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

Problem number: Problem 11.48.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = x e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=x*exp(x),y(x), singsol=all)

$$y(x) = e^x c_2 + e^x x c_1 + \frac{e^x x^3}{6}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 25

DSolve[y''[x]-2*y'[x]+y[x]==x*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{6}e^x(x^3 + 6c_2x + 6c_1)$$

2.6 problem Problem 11.49

Internal problem ID [5180]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-

mentary Problems. page 101

Problem number: Problem 11.49.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x)-y(x)=exp(x),y(x), singsol=all)

$$y(x) = (x + c_1) e^x$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 13

DSolve[y'[x]-y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^x(x+c_1)$$

2.7 problem Problem 11.50

Internal problem ID [5181]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-

mentary Problems. page 101

Problem number: Problem 11.50.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = e^{2x}x + 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve(diff(y(x),x)-y(x)=x*exp(2*x)+1,y(x), singsol=all)

$$y(x) = e^{2x}x - e^{2x} - 1 + e^x c_1$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 22

DSolve[y'[x]-y[x]==x*Exp[2*x]+1,y[x],x,IncludeSingularSolutions \rightarrow True]

$$y(x) \to e^{2x}(x-1) + c_1 e^x - 1$$

2.8 problem Problem 11.51

Internal problem ID [5182]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101

Problem number: Problem 11.51.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = \sin(x) + \cos(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x)-y(x)=sin(x)+cos(2*x),y(x), singsol=all)

$$y(x) = e^{x}c_{1} - \frac{\cos(x)}{2} - \frac{\sin(x)}{2} + \frac{2\sin(2x)}{5} - \frac{\cos(2x)}{5}$$

✓ Solution by Mathematica

Time used: 0.16 (sec). Leaf size: 37

DSolve[y'[x]-y[x]==Sin[x]+Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{10}(-5\sin(x) + 4\sin(2x) - 5\cos(x) - 2\cos(2x) + 10c_1e^x)$$

2.9 problem Problem 11.52

Internal problem ID [5183]

 $\bf Book:$ Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-

mentary Problems. page 101

Problem number: Problem 11.52.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - 3y'' + 3y' - y = e^x + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)+3*diff(y(x),x)-y(x)=exp(x)+1,y(x), singsol=all)

$$y(x) = \frac{e^x x^3}{6} - 1 + e^x c_1 + c_2 e^x x + c_3 e^x x^2$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 31

 $DSolve[y'''[x]-3*y''[x]+3*y'[x]-y[x]==Exp[x]+1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -1 + e^x \left(\frac{x^3}{6} + c_3 x^2 + c_2 x + c_1\right)$$

3	Chapter 12. VARIATION OF PARAMETERS.
	page 104

3.1	problem Problem 12.1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
3.2	problem Problem 12.2																														27
3.3	problem Problem 12.3																														28
3.4	problem Problem 12.4																														29
3.5	problem Problem 12.5																														30
3.6	problem Problem 12.6																														31
3.7	problem Problem 12.7					•																							•		32
3.8	problem Problem 12.8																														33

3.1 problem Problem 12.1

Internal problem ID [5184]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104

Problem number: Problem 12.1.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' + y' = \sec(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 98

dsolve(diff(y(x),x\$3)+diff(y(x),x)=sec(x),y(x), singsol=all)

$$\begin{aligned} y(x) &= \sin \left(x \right) - \cos \left(x \right)x + \sin \left(x \right)c_1 - \cos \left(x \right)c_2 \\ &+ \frac{i \left(2i\ln \left(2 \right)\sin \left(x \right) + \mathrm{e}^{ix}\ln \left(\frac{\mathrm{e}^{ix}}{\mathrm{e}^{2ix}+1} \right) + \mathrm{e}^{ix} - 4\arctan \left(\mathrm{e}^{ix} \right) - \mathrm{e}^{-ix}\ln \left(\frac{\mathrm{e}^{ix}}{\mathrm{e}^{2ix}+1} \right) - \mathrm{e}^{-ix} \right)}{2} \\ &+ c_3 \end{aligned}$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 57

DSolve[y'''[x]+y'[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -(x + c_2)\cos(x) - \log\left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right) + \log\left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right) + \sin(x)(\log(\cos(x)) + c_1) + c_3$$

3.2 problem Problem 12.2

Internal problem ID [5185]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104

Problem number: Problem 12.2.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, missing y]]

$$y''' - 3y'' + 2y' = \frac{e^x}{1 + e^{-x}}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

dsolve(diff(y(x),x\$3)-3*diff(y(x),x\$2)+2*diff(y(x),x)=exp(x)/(1+exp(-x)),y(x), singsol=all)

$$y(x) = e^{x}c_{2} + e^{x}\ln(e^{-x}) + \frac{e^{x}}{2} + \frac{e^{2x}c_{1}}{2} - \frac{x}{2} - \frac{\ln(1 + e^{-x})}{2}$$
$$-\frac{e^{2x}\ln(1 + e^{-x})}{2} - \ln(1 + e^{-x})e^{x} + c_{3}$$

✓ Solution by Mathematica

Time used: 0.137 (sec). Leaf size: 59

$$y(x) \to \frac{1}{2} \left(-2e^{2x} \operatorname{arctanh}(2e^x + 1) - (2e^x + 1) \log(e^x + 1) + e^x (c_2 e^x + 1 + 2c_1) \right) + c_3$$

3.3 problem Problem 12.3

Internal problem ID [5186]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104

Problem number: Problem 12.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - 2y' + y = \frac{e^x}{x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=exp(x)/x,y(x), singsol=all)

$$y(x) = e^{x}c_{2} + e^{x}xc_{1} + e^{x}x(-1 + \ln(x))$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 22

 $DSolve[y''[x]-2*y'[x]+y[x] == Exp[x]/x, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^x(x \log(x) + (-1 + c_2)x + c_1)$$

3.4 problem Problem 12.4

Internal problem ID [5187]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104

Problem number: Problem 12.4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = e^{3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=exp(3*x),y(x), singsol=all)

$$y(x) = e^{2x}c_2 + e^{-x}c_1 + \frac{e^{3x}}{4}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 31

DSolve[y''[x]-y'[x]-2*y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{3x}}{4} + c_1 e^{-x} + c_2 e^{2x}$$

3.5 problem Problem 12.5

Internal problem ID [5188]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104

Problem number: Problem 12.5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 4x = \sin\left(2t\right)^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve(diff(x(t),t$2)+4*x(t)=sin(2*t)^2,x(t), singsol=all)$

$$x(t) = \sin(2t) c_2 + \cos(2t) c_1 + \frac{1}{8} + \frac{\cos(4t)}{24}$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 31

DSolve[x''[t]+4*x[t]==Sin[2*t]^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{24}\cos(4t) + c_1\cos(2t) + c_2\sin(2t) + \frac{1}{8}$$

3.6 problem Problem 12.6

Internal problem ID [5189]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104

Problem number: Problem 12.6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$t^2N'' - 2tN' + 2N = t\ln(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $\label{eq:decomposition} \\ \mbox{dsolve}(\mbox{t^2*diff}(\mbox{N(t)},\mbox{t$\$2$}) - 2 * \mbox{t*diff}(\mbox{N(t)},\mbox{t}) + 2 * \mbox{N(t)} = \mbox{t*ln(t)},\mbox{N(t)}, \mbox{ singsol=all)} \\$

$$N(t) = t^{2}c_{2} + tc_{1} - \frac{t(\ln(t)^{2} + 2\ln(t) + 2)}{2}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 30

DSolve[t^2*n''[t]-2*t*n'[t]+2*n[t]==t*Log[t],n[t],t,IncludeSingularSolutions -> True]

$$n(t) \to -\frac{1}{2}t\log^2(t) - t\log(t) + t(c_2t - 1 + c_1)$$

3.7 problem Problem 12.7

Internal problem ID [5190]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104

Problem number: Problem 12.7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{4y}{x} = x^4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)+(4/x)*y(x)=x^4,y(x), singsol=all)$

$$y(x) = \frac{\frac{x^9}{9} + c_1}{x^4}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 19

DSolve[y'[x]+ $(4/x)*y[x]==x^4,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) o rac{x^5}{9} + rac{c_1}{x^4}$$

3.8 problem Problem 12.8

Internal problem ID [5191]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. page 104

Problem number: Problem 12.8.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _quadrature]]

$$y'''' = 5x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$4)=5*x,y(x), singsol=all)

$$y(x) = \frac{1}{24}x^5 + \frac{1}{6}c_1x^3 + \frac{3}{10}c_1^2x + \frac{1}{2}c_2x^2 + c_3x + c_4$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 31

DSolve[y'''[x]==5*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x^5}{24} + c_4 x^3 + c_3 x^2 + c_2 x + c_1$$

4	Chapter 12. VARIATION OF PARAMETERS.
	Supplementary Problems. page 109

4.1	problem Problem 12.9	35
4.2	problem Problem 12.10	36
4.3	problem Problem 12.11	37
4.4	problem Problem 12.12	38
4.5	problem Problem 12.13	39
4.6	problem Problem 12.14	40
4.7	problem Problem 12.15	41
4.8	problem Problem 12.16	42

4.1 problem Problem 12.9

Internal problem ID [5192]

 $\bf Book:$ Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

 ${\bf Section:}\ {\bf Chapter}\ 12.\ {\bf VARIATION}\ {\bf OF}\ {\bf PARAMETERS.}\ {\bf Supplementary}\ {\bf Problems.}\ {\bf page}\ 109$

Problem number: Problem 12.9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - 2y' + y = \frac{e^x}{x^5}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=exp(x)/x^5,y(x), singsol=all)$

$$y(x) = e^x c_2 + e^x x c_1 + \frac{e^x}{12x^3}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 25

DSolve[y''[x]-2*y'[x]+y[x]==Exp[x]/ x^5 ,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{12}e^x \left(\frac{1}{x^3} + 12c_2x + 12c_1\right)$$

4.2 problem Problem 12.10

Internal problem ID [5193]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

 ${\bf Section:}\ {\bf Chapter}\ 12.\ {\bf VARIATION}\ {\bf OF}\ {\bf PARAMETERS.}\ {\bf Supplementary}\ {\bf Problems.}\ {\bf page}\ 109$

Problem number: Problem 12.10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sec(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+y(x)=sec(x),y(x), singsol=all)

$$y(x) = \sin(x) c_2 + c_1 \cos(x) + \sin(x) x - \ln(\sec(x)) \cos(x)$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 22

DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (x + c_2)\sin(x) + \cos(x)(\log(\cos(x)) + c_1)$$

4.3 problem Problem 12.11

Internal problem ID [5194]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109 **Problem number**: Problem 12.11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = e^{3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=exp(3*x),y(x), singsol=all)

$$y(x) = e^{2x}c_2 + e^{-x}c_1 + \frac{e^{3x}}{4}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 31

 $\label{eq:DSolve} DSolve[y''[x]-y'[x]-2*y[x] == \texttt{Exp}[3*x], y[x], x, IncludeSingularSolutions -> \texttt{True}]$

$$y(x) \to \frac{e^{3x}}{4} + c_1 e^{-x} + c_2 e^{2x}$$

4.4 problem Problem 12.12

Internal problem ID [5195]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109

Problem number: Problem 12.12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$y'' - 60y' - 900y = 5e^{10x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$2)-60*diff(y(x),x)-900*y(x)=5*exp(10*x),y(x), singsol=all)

$$y(x) = e^{30(1+\sqrt{2})x}c_2 + e^{-30(\sqrt{2}-1)x}c_1 - \frac{e^{10x}}{280}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 45

 $DSolve[y''[x]-60*y'[x]-900*y[x]==5*Exp[10*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{e^{10x}}{280} + c_1 e^{-30(\sqrt{2}-1)x} + c_2 e^{30(1+\sqrt{2})x}$$

4.5 problem Problem 12.13

Internal problem ID [5196]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

 ${\bf Section} \hbox{: } {\bf Chapter 12. \ VARIATION \ OF \ PARAMETERS. \ Supplementary \ Problems. \ page \ 109}$

Problem number: Problem 12.13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 7y' = -3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)-7*diff(y(x),x)=-3,y(x), singsol=all)

$$y(x) = \frac{e^{7x}c_1}{7} + \frac{3x}{7} + c_2$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 24

DSolve[y''[x]-7*y'[x]==-3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{3x}{7} + \frac{1}{7}c_1e^{7x} + c_2$$

4.6 problem Problem 12.14

Internal problem ID [5197]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109 **Problem number**: Problem 12.14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$y'' + \frac{y'}{x} - \frac{y}{x^2} = \ln(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x\$2)+1/x*diff(y(x),x)-1/x^2*y(x)=ln(x),y(x), singsol=all)$

$$y(x) = c_1 x + \frac{c_2}{x} + \frac{x^2(3\ln(x) - 4)}{9}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 32

DSolve[$y''[x]+1/x*y'[x]-1/x^2*y[x]==Log[x],y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to -\frac{4x^2}{9} + \frac{1}{3}x^2\log(x) + c_2x + \frac{c_1}{x}$$

4.7 problem Problem 12.15

Internal problem ID [5198]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

 ${\bf Section:}\ {\bf Chapter}\ 12.\ {\bf VARIATION}\ {\bf OF}\ {\bf PARAMETERS.}\ {\bf Supplementary}\ {\bf Problems.}\ {\bf page}\ 109$

Problem number: Problem 12.15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, missing y]]

$$x^2y'' - y'x = x^3e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)=x^3*exp(x),y(x), singsol=all)$

$$y(x) = \frac{c_1 x^2}{2} + e^x x - e^x + c_2$$

✓ Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 24

DSolve[x^2*y''[x]-x*y'[x]==x^3*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1 x^2}{2} + e^x (x - 1) + c_2$$

4.8 problem Problem 12.16

Internal problem ID [5199]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 12. VARIATION OF PARAMETERS. Supplementary Problems. page 109

Problem number: Problem 12.16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{y}{x} = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(diff(y(x),x)-1/x*y(x)=x^2,y(x), singsol=all)$

$$y(x) = \left(\frac{x^2}{2} + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 17

DSolve[y'[x]-1/x*y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^3}{2} + c_1 x$$

5 Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

5.1	problem	Problem	24.17	7.	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	44
5.2	problem	${\bf Problem}$	24.18	3.																					45
5.3	problem	${\bf Problem}$	24.19) .																					46
5.4	problem	${\bf Problem}$	24.26	3 .																					47
5.5	problem	${\bf Problem}$	24.27	7.																					48
5.6	problem	${\bf Problem}$	24.28	3.																					49
5.7	problem	${\bf Problem}$	24.29) .																					50
5.8	problem	${\bf Problem}$	24.30) .																					51
5.9	problem	${\bf Problem}$	24.3	L .																					52
5.10	problem	${\bf Problem}$	24.32	2.																					53
5.11	problem	${\bf Problem}$	24.33	3.																					54
5.12	problem	${\bf Problem}$	24.35	5.																					56
5.13	problem	${\bf Problem}$	24.36	3 .																					57
5.14	problem	${\bf Problem}$	24.37	7.																					58
5.15	problem	${\bf Problem}$	24.44	1.																					59
5.16	problem	Problem	24.46	3.																					60

5.1 problem Problem 24.17

Internal problem ID [5200]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems.

page 248

Problem number: Problem 24.17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 2y = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: $8\,$

dsolve([diff(y(x),x)+2*y(x)=0,y(0) = 1],y(x), singsol=all)

$$y(x) = e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 10

 $DSolve[\{y'[x]+2*y[x]==0,\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-2x}$$

5.2 problem Problem 24.18

Internal problem ID [5201]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems.

page 248

Problem number: Problem 24.18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 2y = 2$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(y(x),x)+2*y(x)=2,y(0) = 1],y(x), singsol=all)

$$y(x) = 1$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 6

 $DSolve[\{y'[x]+2*y[x]==2,\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 1$$

5.3 problem Problem 24.19

Internal problem ID [5202]

 $\textbf{Book} \hbox{: } \textbf{Schaums Outline Differential Equations, 4th edition. Bronson and Costa. } \textbf{McGraw}$

Hill 2014

 ${f Section}$: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems.

page 248

Problem number: Problem 24.19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = e^x$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([diff(y(x),x)+2*y(x)=exp(x),y(0) = 1],y(x), singsol=all)

$$y(x) = \frac{(e^{3x} + 2) e^{-2x}}{3}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 21

 $DSolve[\{y'[x]+2*y[x]==Exp[x],\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{3}e^{-2x}(e^{3x} + 2)$$

5.4 problem Problem 24.26

Internal problem ID [5203]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems.

page 248

Problem number: Problem 24.26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 6

dsolve([diff(y(x),x\$2)-y(x)=0,y(0) = 1, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = e^x$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 26

 $DSolve[\{y''[x]-y[x]==Sin[x],\{y[0]==1,y'[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{4} \left(-e^{-x} + 5e^x - 2\sin(x) \right)$$

5.5 problem Problem 24.27

Internal problem ID [5204]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = \sin\left(x\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $\label{eq:decomposition} $$ dsolve([diff(y(x),x$2)-y(x)=sin(x),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)$$

$$y(x) = -\frac{3e^{-x}}{4} + \frac{3e^{x}}{4} - \frac{\sin(x)}{2}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 26

 $DSolve[\{y''[x]-y[x]=Sin[x],\{y[0]==1,y'[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{4} \left(-e^{-x} + 5e^x - 2\sin(x) \right)$$

5.6 problem Problem 24.28

Internal problem ID [5205]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

 ${\bf Section:}\ {\bf Chapter}\ 24.\ {\bf Solutions}\ {\bf of}\ {\bf linear}\ {\bf DE}\ {\bf by}\ {\bf Laplace}\ {\bf transforms.}\ {\bf Supplementary}\ {\bf Problems}.$

page 248

Problem number: Problem 24.28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y = e^x$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 20

dsolve([diff(y(x),x\$2)-y(x)=exp(x),y(0) = 1, D(y)(0) = 0],y(x), singsol=all)

$$y(x) = \frac{3e^{-x}}{4} + \frac{(2x+1)e^x}{4}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 27

 $DSolve[\{y''[x]-y[x]==Exp[x],\{y[0]==1,y'[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{4}e^{-x}(e^{2x}(2x+1)+3)$$

5.7 problem Problem 24.29

Internal problem ID [5206]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems.

page 248

Problem number: Problem 24.29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' - 3y = \sin\left(2x\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 27

 $\frac{dsolve([diff(y(x),x\$2)+2*diff(y(x),x)-3*y(x)=sin(2*x),y(0) = 0, D(y)(0) = 0],y(x), singsol=3.5}{dsolve([diff(y(x),x\$2)+2*diff(y(x),x)-3*y(x)=sin(2*x),y(0) = 0, D(y)(0) = 0],y(x), singsol=3.5}{dsolve([diff(x),x\$2)+2*diff(y(x),x)-3*y(x)=sin(2*x),y(0) = 0, D(y)(0) = 0],y(x), singsol=3.5}{dsolve([diff(x),x\$2)+2*diff(y(x),x)-3*y(x)=sin(2*x),y(0) = 0, D(y)(0) = 0],y(x), singsol=3.5}{dsolve([diff(x),x\$2)+2*diff(y(x),x)-3*y(x)=sin(2*x),y(0) = 0, D(y)(0) = 0],y(x), singsol=3.5}{dsolve([diff(x),x\$2)+2*diff(x)-2*diff($

$$y(x) = -\frac{4e^{-3x}\left(\left(\cos(2x) + \frac{7\sin(2x)}{4}\right)e^{3x} - \frac{13e^{4x}}{8} + \frac{5}{8}\right)}{65}$$

✓ Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 36

$$y(x) \to \frac{1}{130} \left(-13e^{-x} + 5e^{3x} - 14\sin(2x) + 8\cos(2x) \right)$$

5.8 problem Problem 24.30

Internal problem ID [5207]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \sin(x)$$

With initial conditions

$$[y(0) = 0, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

 $\label{eq:decomposition} $$ dsolve([diff(y(x),x$2)+y(x)=sin(x),y(0) = 0, D(y)(0) = 2],y(x), singsol=all)$$

$$y(x) = \frac{5\sin(x)}{2} - \frac{\cos(x)x}{2}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 19

 $DSolve[\{y''[x]+y[x]==Sin[x],\{y[0]==0,y'[0]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}(5\sin(x) - x\cos(x))$$

5.9 problem Problem 24.31

Internal problem ID [5208]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems.

page 248

Problem number: Problem 24.31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' + y = 0$$

With initial conditions

$$[y(0) = 4, y'(0) = -3]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 31

dsolve([diff(y(x),x\$2)+diff(y(x),x)+y(x)=0,y(0) = 4, D(y)(0) = -3],y(x), singsol=all)

$$y(x) = -\frac{2e^{-\frac{x}{2}}\left(\sqrt{3}\sin\left(\frac{\sqrt{3}x}{2}\right) - 6\cos\left(\frac{\sqrt{3}x}{2}\right)\right)}{3}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 47

DSolve[{y''[x]+y'[x]+y[x]==0,{y[0]==4,y'[0]==-3}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{2}{3}e^{-x/2} \left(\sqrt{3}\sin\left(\frac{\sqrt{3}x}{2}\right) - 6\cos\left(\frac{\sqrt{3}x}{2}\right)\right)$$

5.10 problem Problem 24.32

Internal problem ID [5209]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems.

page 248

Problem number: Problem 24.32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + 5y = 3e^{-2x}$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

$$y(x) = \frac{(4\cos(2x) + 13\sin(2x))e^{-x}}{10} + \frac{3e^{-2x}}{5}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 34

DSolve[{y''[x]+2*y'[x]+5*y[x]==3*Exp[-2*x],{y[0]==1,y'[0]==1}},y[x],x,IncludeSingularSolution

$$y(x) \to \frac{1}{10}e^{-2x}(13e^x\sin(2x) + 4e^x\cos(2x) + 6)$$

5.11 problem Problem 24.33

Internal problem ID [5210]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems.

page 248

Problem number: Problem 24.33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 5y' - 3y = \text{Heaviside}(x - 4)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 70

$$y(x) = \frac{\text{Heaviside}(x-4)\left(5\sqrt{37}e^{\frac{(x-4)\left(-5+\sqrt{37}\right)}{2}} + 37e^{\frac{(x-4)\left(-5+\sqrt{37}\right)}{2}} - 5\sqrt{37}e^{-\frac{(x-4)\left(5+\sqrt{37}\right)}{2}} - 74 + 37e^{-\frac{(x-4)\left(5+\sqrt{37}\right)}{2}}\right)}{222}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 70

 $DSolve[\{y''[x]+5*y'[x]-3*y[x]==UnitStep[x-4],\{y[0]==0,y'[0]==0\}\},y[x],x,IncludeSingularSolut]$

$$y(x)$$

$$\to \left\{ \begin{array}{cc} \frac{1}{222} \left(-74 + \left(37 + 5\sqrt{37} \right) e^{\frac{1}{2} \left(-5 + \sqrt{37} \right) (x - 4)} + \left(37 - 5\sqrt{37} \right) e^{-\frac{1}{2} \left(5 + \sqrt{37} \right) (x - 4)} \right) & x > 4 \\ 0 & \text{True} \end{array} \right.$$

5.12 problem Problem 24.35

Internal problem ID [5211]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems.

page 248

Problem number: Problem 24.35.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y = 5$$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

dsolve([diff(y(x),x\$3)-y(x)=5,y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 0],y(x), singsol=all)

$$y(x) = -5 + \frac{5e^x}{3} + \frac{10e^{-\frac{x}{2}}\cos\left(\frac{\sqrt{3}x}{2}\right)}{3}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 34

DSolve[{y'''[x]-y[x]==5,{y[0]==0,y'[0]==0,y''[0]==0}},y[x],x,IncludeSingularSolutions -> Tru

$$y(x) \rightarrow \frac{5}{3} \left(e^x + 2e^{-x/2} \cos\left(\frac{\sqrt{3}x}{2}\right) - 3 \right)$$

5.13 problem Problem 24.36

Internal problem ID [5212]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems.

page 248

Problem number: Problem 24.36.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0, y''(0) = 0, y'''(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

$$y(x) = \frac{e^{-x}}{4} + \frac{e^x}{4} + \frac{\cos(x)}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

DSolve[{y''''[x]-y[x]==0,{y[0]==1,y'[0]==0,y''[0]==0,y'''[0]==0}},y[x],x,IncludeSingularSolu

$$y(x) \to \frac{1}{4} (e^{-x} + e^x + 2\cos(x))$$

5.14 problem Problem 24.37

Internal problem ID [5213]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems.

page 248

Problem number: Problem 24.37.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 3y'' + 3y' - y = x^2 e^x$$

With initial conditions

$$[y(0) = 1, y'(0) = 2, y''(0) = 3]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

 $dsolve([diff(y(x),x$3)-3*diff(y(x),x$2)+3*diff(y(x),x)-y(x)=x^2*exp(x),y(0) = 1, D(y)(0) = 2$

$$y(x) = e^x \left(1 + \frac{1}{60} x^5 + x \right)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 20

$$y(x) \to \frac{1}{60}e^x(x^5 + 60x + 60)$$

5.15 problem Problem 24.44

Internal problem ID [5214]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw

Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems.

page 248

Problem number: Problem 24.44.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + 4x' + 4x = 0$$

With initial conditions

$$[x(0) = 2, x'(0) = -2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

dsolve([diff(x(t),t\$2)+4*diff(x(t),t)+4*x(t)=0,x(0) = 2, D(x)(0) = -2],x(t), singsol=all)

$$x(t) = 2e^{-2t}(1+t)$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 47

$$x(t) \to \frac{2}{7}e^{-3t/2} \left(\sqrt{7}\sin\left(\frac{\sqrt{7}t}{2}\right) + 7\cos\left(\frac{\sqrt{7}t}{2}\right)\right)$$

5.16 problem Problem 24.46

Internal problem ID [5215]

 $\bf Book:$ Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248

Problem number: Problem 24.46.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$q'' + 9q' + 14q = \frac{\sin(t)}{2}$$

With initial conditions

$$[q(0) = 0, q'(0) = 1]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

$$q(t) = -\frac{101 e^{-7t}}{500} + \frac{11 e^{-2t}}{50} - \frac{9 \cos(t)}{500} + \frac{13 \sin(t)}{500}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 32

DSolve[{q''[t]+9*q'[t]+14*q[t]==1/2*Sin[t],{q[0]==0,q'[0]==1}},q[t],t,IncludeSingularSolution

$$q(t) \to \frac{1}{500} \left(-101e^{-7t} + 110e^{-2t} + 13\sin(t) - 9\cos(t) \right)$$

6 Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

6.1	problem	Problem	27.	28	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	62
6.2	problem	${\bf Problem}$	27.	30																						63
6.3	$\operatorname{problem}$	${\bf Problem}$	27.	36																						64
6.4	$\operatorname{problem}$	${\bf Problem}$	27.	37																						65
6.5	$\operatorname{problem}$	${\bf Problem}$	27.	38																						66
6.6	$\operatorname{problem}$	${\bf Problem}$	27.	39																						67
6.7	$\operatorname{problem}$	${\bf Problem}$	27.	40																						68
6.8	$\operatorname{problem}$	${\bf Problem}$	27.	41																						69
6.9	$\operatorname{problem}$	${\bf Problem}$	27.	42																						70
6.10	problem	Problem	27.	48																						71

6.1 problem Problem 27.28

Internal problem ID [5216]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(1+x)y'' + \frac{y'}{x} + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 49

Order:=6; dsolve((x+1)*diff(y(x),x\$2)+1/x*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = (\ln(x) c_2 + c_1) \left(1 - \frac{1}{9}x^3 + \frac{1}{24}x^4 - \frac{1}{50}x^5 + O(x^6) \right)$$
$$+ \left(x + \frac{2}{27}x^3 - \frac{11}{144}x^4 + \frac{33}{1000}x^5 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 82

AsymptoticDSolveValue[$(1+x)*y''[x]+1/x*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(-\frac{x^5}{50} + \frac{x^4}{24} - \frac{x^3}{9} + 1 \right)$$

+ $c_2 \left(\frac{33x^5}{1000} - \frac{11x^4}{144} + \frac{2x^3}{27} + \left(-\frac{x^5}{50} + \frac{x^4}{24} - \frac{x^3}{9} + 1 \right) \log(x) + x \right)$

6.2 problem Problem 27.30

Internal problem ID [5217]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.30.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^3y'' + y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

```
Order:=6;
dsolve(x^3*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);
```

No solution found

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 222

AsymptoticDSolveValue[
$$x^3*y''[x]+y[x]==0,y[x],\{x,0,5\}$$
]

$$y(x) \rightarrow c_{1}e^{-\frac{2i}{\sqrt{x}}}x^{3/4} \left(-\frac{468131288625ix^{9/2}}{8796093022208} + \frac{66891825ix^{7/2}}{4294967296} - \frac{72765ix^{5/2}}{8388608} + \frac{105ix^{3/2}}{8192} + \frac{33424574007825x^{5}}{281474976710656} - \frac{14783093325x^{4}}{549755813888} + \frac{2837835x^{3}}{268435456} - \frac{4725x^{2}}{524288} + \frac{15x}{512} - \frac{3i\sqrt{x}}{16} + 1\right) + c_{2}e^{\frac{2i}{\sqrt{x}}}x^{3/4} \left(\frac{468131288625ix^{9/2}}{8796093022208} - \frac{66891825ix^{7/2}}{4294967296} + \frac{72765ix^{5/2}}{8388608} - \frac{105ix^{3/2}}{8192} + \frac{33424574007825x^{5}}{281474976710656} - \frac{105ix^{3/2}}{281474976710656} + \frac{105ix^{3/2}}{2814$$

6.3 problem Problem 27.36

Internal problem ID [5218]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.36.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

 $AsymptoticDSolveValue[y''[x]+x*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(x - \frac{x^4}{12} \right) + c_1 \left(1 - \frac{x^3}{6} \right)$$

6.4 problem Problem 27.37

Internal problem ID [5219]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.37.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' - 2y'x - 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

Order:=6;

dsolve(diff(y(x),x2)-2*x*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + x^2 + \frac{1}{2}x^4\right)y(0) + \left(x + \frac{2}{3}x^3 + \frac{4}{15}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

 $AsymptoticDSolveValue[y''[x]-2*x*y'[x]-2*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_2 \left(\frac{4x^5}{15} + \frac{2x^3}{3} + x\right) + c_1 \left(\frac{x^4}{2} + x^2 + 1\right)$$

6.5 problem Problem 27.38

Internal problem ID [5220]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + x^2y' + 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; $dsolve(diff(y(x),x$2)+x^2*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{x^3}{3}\right)y(0) + \left(x - \frac{1}{4}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x^2*y'[x]+2*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{4} \right) + c_1 \left(1 - \frac{x^3}{3} \right)$$

6.6 problem Problem 27.39

Internal problem ID [5221]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.39.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - x^2y' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

Order:=6; $dsolve(diff(y(x),x$2)-x^2*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{24}x^4 + \frac{1}{20}x^5\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{1}{120}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[$y''[x]-x^2*y'[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_2 \left(\frac{x^5}{120} + \frac{x^4}{12} + \frac{x^3}{6} + x \right) + c_1 \left(\frac{x^5}{20} + \frac{x^4}{24} + \frac{x^2}{2} + 1 \right)$$

6.7 problem Problem 27.40

Internal problem ID [5222]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.40.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + 2yx^2 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

Order:=6;

dsolve(diff(y(x),x2)+2*x2*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^4}{6}\right)y(0) + \left(x - \frac{1}{10}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+2*x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^5}{10} \right) + c_1 \left(1 - \frac{x^4}{6} \right)$$

6.8 problem Problem 27.41

Internal problem ID [5223]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.41.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^{2}-1)y'' + y'x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

Order:=6; $dsolve((x^2-1)*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{1}{2}x^2 - \frac{1}{8}x^4\right)y(0) + D(y)\left(0\right)x + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 27

 $AsymptoticDSolveValue[(x^2-1)*y''[x]+x*y'[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(-\frac{x^4}{8} - \frac{x^2}{2} + 1 \right) + c_2 x$$

6.9 problem Problem 27.42

Internal problem ID [5224]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274

Problem number: Problem 27.42.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' - yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)-x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^3}{6}\right)y(0) + \left(x + \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]-x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^4}{12} + x\right) + c_1 \left(\frac{x^3}{6} + 1\right)$$

6.10 problem Problem 27.48

Internal problem ID [5225]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014

Section: Chapter 27. Power series solutions of linear DE with variable coefficients. Supple-

mentary Problems. page 274 **Problem number**: Problem 27.48.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y'x + yx^2 = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

Order:=6; dsolve([diff(y(x),x\$2)-2*x*diff(y(x),x)+x^2*y(x)=0,y(0) = 1, D(y)(0) = -1],y(x),type='series'

$$y(x) = 1 - x - \frac{1}{3}x^3 - \frac{1}{12}x^4 - \frac{1}{20}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 29

AsymptoticDSolveValue[$\{y''[x]-2*x*y'[x]+x^2*y[x]==0,\{y[0]==1,y'[0]==-1\}\},y[x],\{x,0,5\}$]

$$y(x) \rightarrow -\frac{x^5}{20} - \frac{x^4}{12} - \frac{x^3}{3} - x + 1$$