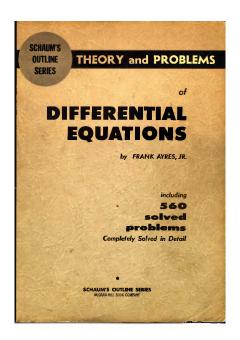
A Solution Manual For

Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952



Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 2. Solutions of differential equations. Supplemetary problems. Page 11	3
2	Chapter 4. Equations of first order and first degree (Variable separable). Supplemetary problems. Page 22	14
3	Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary problems. Page 33	44
4	Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary problems. Page 39	90
5	Chapter 9. Equations of first order and higher degree. Supplemetary problems. Page 65	12 3
6	Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74	149
7	Chapter 12. Linear equations of order n. Supplemetary problems. Page 81	167
8	Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary problems. Page 86	178
9	Chapter 14. Linear equations with constant coefficients. Supplemetary problems. Page 92	189
10	Chapter 15. Linear equations with constant coefficients (Variation of parameters). Supplemetary problems. Page 98	202
11	Chapter 16. Linear equations with constant coefficients (Short methods). Supplemetary problems. Page 107	215
12	Chapter 17. Linear equations with variable coefficients (Cauchy and Legndre). Supplemetary problems. Page 110	230
13	Chapter 18. Linear equations with variable coefficients (Equations of second order). Supplemetary problems. Page 120	237

14	Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary problems. Page 132	2 55
15	Chapter 21. System of simultaneous linear equations. Supplemetary problems. Page 163	27 4
16	Chapter 25. Integration in series. Supplemetary problems. Page 205	28 1
17	Chapter 26. Integration in series (singular points). Supplemetary problems. Page 218	292
18	Chapter 27. The Legendre, Bessel and Gauss Equations. Supplemetary	Ţ
	problems. Page 230	308

1 Chapter 2. Solutions of differential equations. Supplemetary problems. Page 11

1.1	problem 13	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
1.2	problem 14																																		5
1.3	problem 15																																		6
1.4	problem 16																																		7
1.5	problem 17																																		8
1.6	problem 18																																		9
1.7	problem 19																																		10
1.8	problem 20																																		11
1.9	problem 21																																		12
1.10	problem 22																																		13

1.1 problem 13

Internal problem ID [5226]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 2. Solutions of differential equations. Supplemetary problems. Page 11

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(x*diff(y(x),x)=2*y(x),y(x), singsol=all)

$$y = c_1 x^2$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 16

DSolve[x*y'[x]==2*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x^2$$

$$y(x) \to 0$$

1.2 problem 14

Internal problem ID [5227]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 2. Solutions of differential equations. Supplemetary problems. Page 11

Problem number: 14.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$yy' = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(y(x)*diff(y(x),x)+x=0,y(x), singsol=all)

$$y = \sqrt{-x^2 + c_1}$$
$$y = -\sqrt{-x^2 + c_1}$$

✓ Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 39

DSolve[y[x]*y'[x]+x==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sqrt{-x^2 + 2c_1}$$

$$y(x) \to \sqrt{-x^2 + 2c_1}$$

1.3 problem 15

Internal problem ID [5228]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 2. Solutions of differential equations. Supplemetary problems. Page 11

Problem number: 15.

ODE order: 1. ODE degree: 4.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y - y'x - {y'}^4 = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 19

 $dsolve(y(x)=x*diff(y(x),x)+diff(y(x),x)^4,y(x), singsol=all)$

$$y = c_1^4 + c_1 x$$

$$y = c_1 x^{\frac{4}{3}}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 75

DSolve[y[x] == x*y'[x]+(y'[x])^4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1(x + c_1^3)$$

$$y(x) \to -\frac{3}{4} \left(-\frac{1}{2}\right)^{2/3} x^{4/3}$$

$$y(x) \to -\frac{3x^{4/3}}{4\ 2^{2/3}}$$

$$y(x) o \frac{3\sqrt[3]{-1}x^{4/3}}{4\ 2^{2/3}}$$

1.4 problem 16

Internal problem ID [5229]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 2. Solutions of differential equations. Supplemetary problems. Page 11

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$2y'x^3 - y(y^2 + 3x^2) = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

 $dsolve(2*x^3*diff(y(x),x)=y(x)*(y(x)^2+3*x^2),y(x), singsol=all)$

$$y = \frac{\sqrt{(-x + c_1) x} x}{-x + c_1}$$
$$y = -\frac{\sqrt{(-x + c_1) x} x}{-x + c_1}$$

$$y = -\frac{\sqrt{(-x + c_1) x} x}{-x + c_1}$$

Solution by Mathematica

Time used: 0.179 (sec). Leaf size: 47

DSolve $[2*x^3*y'[x]==y[x]*(y[x]^2+3*x^2), y[x], x, Include Singular Solutions -> True]$

$$y(x) \to -\frac{x^{3/2}}{\sqrt{-x+c_1}}$$

$$y(x) \to \frac{x^{3/2}}{\sqrt{-x+c_1}}$$

$$y(x) \to 0$$

1.5 problem 17

Internal problem ID [5230]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 2. Solutions of differential equations. Supplemetary problems. Page 11

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y = c_1 e^x + x e^x c_2$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 16

DSolve[y''[x]-2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^x(c_2x + c_1)$$

1.6 problem 18

Internal problem ID [5231]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 2. Solutions of differential equations. Supplemetary problems. Page 11

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x-1)y'' - y'x + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve((x-1)*diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y = c_1 x + c_2 e^x$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 17

 $DSolve[(x-1)*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^x - c_2 x$$

1.7 problem 19

Internal problem ID [5232]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 2. Solutions of differential equations. Supplemetary problems. Page 11

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-y(x)=0,y(x), singsol=all)

$$y = c_1 e^{-x} + c_2 e^x$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 20

DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x}$$

1.8 problem 20

Internal problem ID [5233]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 2. Solutions of differential equations. Supplemetary problems. Page 11

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y = 4 - x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-y(x)=4-x,y(x), singsol=all)

$$y = c_2 e^{-x} + c_1 e^x - 4 + x$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: $22\,$

DSolve[y''[x]-y[x]==4-x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + c_1 e^x + c_2 e^{-x} - 4$$

1.9 problem 21

Internal problem ID [5234]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 2. Solutions of differential equations. Supplemetary problems. Page 11

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 3y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y = c_1 e^{2x} + c_2 e^x$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 18

 $DSolve[y''[x]-3*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^x(c_2 e^x + c_1)$$

1.10 problem 22

Internal problem ID [5235]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 2. Solutions of differential equations. Supplemetary problems. Page 11

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3y' + 2y = 2e^x(1-x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=2*exp(x)*(1-x),y(x), singsol=all)

$$y = \left(c_1 \mathrm{e}^x + x^2 + c_2\right) \mathrm{e}^x$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 21

$$y(x) \to e^x(x^2 + c_2e^x + c_1)$$

2 Chapter 4. Equations of first order and first degree (Variable separable). Supplemetary problems. Page 22

2.1	problem 24														•					15
2.2	problem 25													•						16
2.3	problem 26																			17
2.4	problem 27																			18
2.5	problem 28																			19
2.6	problem 29																			20
2.7	problem 30																			21
2.8	problem 31																			24
2.9	problem 32																			25
2.10	problem 34																			26
2.11	problem 35																			27
2.12	problem 37																			28
2.13	problem 38																			29
2.14	problem 39																			30
2.15	problem 40																			31
2.16	problem 41																			32
2.17	problem 42																			33
2.18	problem 43																			34
2.19	problem 44																			35
2.20	problem 45									•				•						37
2.21	problem 46									•				•						38
2.22	problem 47																			39
2.23	problem 48									•				•						40
2.24	problem 49																			41
2.25	problem 51																			42
2.26	problem 52																			43

2.1 problem 24

Internal problem ID [5236]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $\label{eq:dsolve} $$\operatorname{dsolve}(4*y(x)+x*\operatorname{diff}(y(x),x)=0,y(x), $$singsol=all)$$

$$y = \frac{c_1}{x^4}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 16

DSolve[4*y[x]+x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1}{x^4}$$

$$y(x) \to 0$$

2.2 problem 25

Internal problem ID [5237]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22

Problem number: 25.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2y + (-x^2 + 4) y' = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve((1+2*y(x))+(4-x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = -\frac{1}{2} + \frac{\sqrt{x-2}\,c_1}{\sqrt{x+2}}$$

✓ Solution by Mathematica

Time used: 0.076 (sec). Leaf size: 35

 $DSolve[(1+2*y[x])+(4-x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{1}{2} + \frac{c_1\sqrt{2-x}}{\sqrt{x+2}}$$

$$y(x) \to -\frac{1}{2}$$

2.3 problem 26

Internal problem ID [5238]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 26.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y^2 - x^2 y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(y(x)^2-x^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{x}{c_1 x + 1}$$

✓ Solution by Mathematica

Time used: 0.115 (sec). Leaf size: 21

 $DSolve[y[x]^2-x^2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x}{1 - c_1 x}$$

$$y(x) \to 0$$

2.4 problem 27

Internal problem ID [5239]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y - y'(1+x) = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve((1+y(x))-(1+x)*diff(y(x),x)=0,y(x), singsol=all)

$$y = -1 + (x+1)c_1$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 18

 $DSolve[(1+y[x])-(1+x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -1 + c_1(x+1)$$

$$y(x) \to -1$$

2.5 problem 28

Internal problem ID [5240]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$xy^2 + y + \left(yx^2 - x\right)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

 $dsolve((x*y(x)^2+y(x))+(x^2*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = x e^{-\text{LambertW}(-x^2 e^{-2c_1}) - 2c_1}$$

✓ Solution by Mathematica

Time used: 13.386 (sec). Leaf size: 33

 $DSolve[(x*y[x]^2+y[x])+(x^2*y[x]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{W\left(e^{-1 + \frac{9c_1}{2^{2/3}}}x^2\right)}{x}$$
$$y(x) \to 0$$

2.6 problem 29

Internal problem ID [5241]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x \sin\left(\frac{y}{x}\right) - y \cos\left(\frac{y}{x}\right) + x \cos\left(\frac{y}{x}\right) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve((x*sin(y(x)/x)-y(x)*cos(y(x)/x))+(x*cos(y(x)/x))*diff(y(x),x)=0,y(x), singsol=all)

$$y = x \arcsin\left(\frac{1}{xc_1}\right)$$

✓ Solution by Mathematica

Time used: 12.962 (sec). Leaf size: 21

$$y(x) \to x \arcsin\left(\frac{e^{c_1}}{x}\right)$$

$$y(x) \to 0$$

2.7 problem 30

Internal problem ID [5242]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22

Problem number: 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational]

$$y^{2}(x^{2}+2) + (x^{3}+y^{3})(-y'x+y) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 1062

 $dsolve(y(x)^2*(x^2+2)+(x^3+y(x)^3)*(y(x)-x*diff(y(x),x))=0,y(x), singsol=all)$

$$y = \frac{\left(27x^3 + 3\sqrt{-24c_1^3x^6 - 72c_1^2x^6 \ln(x) + 72c_1^2x^4 - 72c_1x^6 \ln(x)^2 + 144c_1x^4 \ln(x) - 72c_1x^2 - 24x^6 \ln(x)^3 + 3\left(-\frac{2c_1x^2}{3} - \frac{2x^2 \ln(x)}{3} + \frac{2}{3}\right)}{3\left(-\frac{2c_1x^2}{3} - \frac{2x^2 \ln(x)}{3} + \frac{2}{3}\right)} - \frac{3\left(-\frac{2c_1x^2}{3} - \frac{2x^2 \ln(x)}{3} + \frac{2}{3}\right)}{\left(27x^3 + 3\sqrt{-24c_1^3x^6 - 72c_1^2x^6 \ln(x) + 72c_1^2x^4 - 72c_1x^6 \ln(x)^2 + 144c_1x^4 \ln(x) - 72c_1x^2 - 24x^6 \ln(x)^2 + \frac{6}{27x^3 + 3\sqrt{-24c_1^3x^6 - 72c_1^2x^6 \ln(x) + 72c_1^2x^4 - 72c_1x^6 \ln(x)^2 + 144c_1x^4 \ln(x) - 72c_1x^2 - 24x^6 \ln(x)^2 + \frac{6}{27x^3 + 3\sqrt{-24c_1^3x^6 - 72c_1^2x^6 \ln(x) + 72c_1^2x^4 - 72c_1x^6 \ln(x)^2 + 144c_1x^4 \ln(x) - 72c_1x^2 - 24x^6 \ln(x)^2 + \frac{144c_1x^4 \ln(x) - 72c_1x^2 - 24x^6 \ln(x)^2 + \frac{144c_1x^$$

✓ Solution by Mathematica

Time used: 54.35 (sec). Leaf size: 396

$$y(x) \rightarrow \frac{6x^{2} \log(x) + 6c_{1}x^{2} + 3^{2/3} \left(9x^{3} + \frac{1}{3}\sqrt{729x^{6} + (-6x^{2} \log(x) - 6c_{1}x^{2} + 6)^{3}}\right)^{2/3} - 6}{3\sqrt[3]{3}\sqrt[3]{9x^{3} + \frac{1}{3}\sqrt{729x^{6} + (-6x^{2} \log(x) - 6c_{1}x^{2} + 6)^{3}}}$$

$$y(x) \rightarrow \frac{i(\sqrt{3} + i)\sqrt[3]{9x^{3} + \frac{1}{3}\sqrt{729x^{6} + (-6x^{2} \log(x) - 6c_{1}x^{2} + 6)^{3}}}{2 3^{2/3}}$$

$$-\frac{i\sqrt[3]{2}(\sqrt{3} - i)(x^{2} \log(x) + c_{1}x^{2} - 1)}{\sqrt[3]{54x^{3} + 2\sqrt{729x^{6} + (-6x^{2} \log(x) - 6c_{1}x^{2} + 6)^{3}}}}$$

$$y(x) \rightarrow \frac{i\sqrt[3]{2}(\sqrt{3} + i)(x^{2} \log(x) + c_{1}x^{2} - 1)}{\sqrt[3]{54x^{3} + 2\sqrt{729x^{6} + (-6x^{2} \log(x) - 6c_{1}x^{2} + 6)^{3}}}}$$

$$-\frac{(1 + i\sqrt{3})\sqrt[3]{54x^{3} + 2\sqrt{729x^{6} + (-6x^{2} \log(x) - 6c_{1}x^{2} + 6)^{3}}}}{6\sqrt[3]{2}}$$

2.8 problem 31

Internal problem ID [5243]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22

Problem number: 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _dAlembert]

$$y\sqrt{x^2 + y^2} - x(x + \sqrt{x^2 + y^2})y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 51

 $dsolve(y(x)*sqrt(x^2+y(x)^2)-x*(x+sqrt(x^2+y(x)^2))*diff(y(x),x)=0,y(x), singsol=all)$

$$\ln\left(\frac{2x(x+\sqrt{x^2+y^2})}{y}\right) - \ln(y) - \frac{\sqrt{x^2+y^2}}{x} - \ln(x) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.319 (sec). Leaf size: 43

Solve
$$\left[\sqrt{\frac{y(x)^2}{x^2} + 1} + \log\left(\sqrt{\frac{y(x)^2}{x^2} + 1} - 1\right) = -\log(x) + c_1, y(x)\right]$$

2.9 problem 32

Internal problem ID [5244]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 32.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y + (2x + 2y + 1)y' = -x - 1$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 25

dsolve((x+y(x)+1)+(2*x+2*y(x)+1)*diff(y(x),x)=0,y(x), singsol=all)

$$y = e^{-\operatorname{LambertW}(2e^{-c_1}e^x) + x - c_1} - x$$

✓ Solution by Mathematica

Time used: 4.251 (sec). Leaf size: 30

$$y(x) \rightarrow \frac{1}{2} \left(-2x + W\left(-e^{x-1+c_1} \right) \right)$$

 $y(x) \rightarrow -x$

2.10 problem 34

Internal problem ID [5245]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 34.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2y - y'(4-x) = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve((1+2*y(x))-(4-x)*diff(y(x),x)=0,y(x), singsol=all)

$$y = \frac{4x - \frac{1}{2}x^2 + c_1}{(x - 4)^2}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 34

DSolve[(1+2*y[x])-(4-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{-x^2 + 8x + 2c_1}{2(x-4)^2}$$

$$y(x) \to -\frac{1}{2}$$

2.11 problem 35

Internal problem ID [5246]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22

Problem number: 35.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left(x^2+1\right)y'+yx=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve((x*y(x))+(1+x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{c_1}{\sqrt{x^2 + 1}}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: $22\,$

 $DSolve[(x*y[x])+(1+x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1}{\sqrt{x^2 + 1}}$$

$$y(x) \to 0$$

2.12 problem 37

Internal problem ID [5247]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 37.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class A']]

$$2yx + (2x + 3y)y' = 0$$

X Solution by Maple

dsolve((x*2*y(x))+(2*x+3*y(x))*diff(y(x),x)=0,y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(x*2*y[x])+(2*x+3*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Not solved

2.13 problem 38

Internal problem ID [5248]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22

Problem number: 38.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$2y'x - 2y - \sqrt{x^2 + 4y^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(2*x*diff(y(x),x)-2*y(x)=sqrt(x^2+4*y(x)^2),y(x), singsol=all)$

$$\frac{2y}{x^2} + \frac{\sqrt{x^2 + 4y^2}}{x^2} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.394 (sec). Leaf size: 27

$$y(x) \to \frac{1}{4}e^{-2c_1}(-1 + e^{4c_1}x^2)$$

2.14 problem 39

Internal problem ID [5249]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 39.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$3y + (7y - 3x + 3)y' = 7x - 7$$

✓ Solution by Maple

Time used: 0.453 (sec). Leaf size: 705

dsolve((3*y(x)-7*x+7)+(7*y(x)-3*x+3)*diff(y(x),x)=0,y(x), singsol=all)

Expression too large to display

✓ Solution by Mathematica

Time used: 60.746 (sec). Leaf size: 7785

 $DSolve[(3*y[x]-7*x+7)+(7*y[x]-3*x+3)*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

Too large to display

2.15 problem 40

Internal problem ID [5250]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Problem number: 40.

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xyy' - (1+y)(1-x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

dsolve(x*y(x)*diff(y(x),x)=(y(x)+1)*(1-x),y(x), singsol=all)

$$y = -\text{LambertW}\left(-\frac{c_1 e^{x-1}}{x}\right) - 1$$

✓ Solution by Mathematica

Time used: 6.202 (sec). Leaf size: 29

 $DSolve[x*y[x]*y'[x] == (y[x]+1)*(1-x), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -1 - W\left(-\frac{e^{x-1-c_1}}{x}\right)$$

 $y(x) \to -1$

2.16 problem 41

Internal problem ID [5251]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22

Problem number: 41.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 + xyy' = x^2$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

 $dsolve((y(x)^2-x^2)+x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = -\frac{\sqrt{2x^4 + 4c_1}}{2x}$$

$$y = \frac{\sqrt{2x^4 + 4c_1}}{2x}$$

Solution by Mathematica

Time used: 0.199 (sec). Leaf size: 46

DSolve[$(y[x]^2-x^2)+x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to -\frac{\sqrt{\frac{x^4}{2} + c_1}}{x}$$
$$y(x) \to \frac{\sqrt{\frac{x^4}{2} + c_1}}{x}$$

$$y(x) \to \frac{\sqrt{\frac{x^4}{2} + c_1}}{x}$$

2.17 problem 42

Internal problem ID [5252]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 42.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$y(1 + 2yx) + x(1 - yx)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve(y(x)*(1+2*x*y(x))+x*(1-x*y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y = -\frac{1}{\text{LambertW}\left(-\frac{c_1}{x^3}\right)x}$$

✓ Solution by Mathematica

Time used: 6.645 (sec). Leaf size: 35

 $DSolve[y[x]*(1+2*x*y[x])+x*(1-x*y[x])*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow -rac{1}{xW\left(rac{e^{-1+rac{9c_1}{2^2/3}}}{x^3}
ight)}$$

$$y(x) \to 0$$

2.18 problem 43

Internal problem ID [5253]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22

Problem number: 43.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(-x^2+1)\cot(y)y'=-1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

 $dsolve(1+(1-x^2)*cot(y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \arcsin\left(\frac{\sqrt{-x^2 + 1}\,c_1}{x + 1}\right)$$

✓ Solution by Mathematica

Time used: 0.125 (sec). Leaf size: 27

 $DSolve[1+(1-x^2)*Cot[y[x]]*y'[x] == 0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \arcsin\left(\frac{e^{c_1}\sqrt{1-x}}{\sqrt{x+1}}\right)$$

2.19 problem 44

Internal problem ID [5254]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22

Problem number: 44.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _Bernoulli]

$$y^3 + 3xy^2y' = -x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 120

 $dsolve((x^3+y(x)^3)+3*x*y(x)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{\left(\left(-2x^4 + 8c_1\right)x^2\right)^{\frac{1}{3}}}{2x}$$

$$y = -\frac{\left(\left(-2x^4 + 8c_1\right)x^2\right)^{\frac{1}{3}}}{4x} - \frac{i\sqrt{3}\left(\left(-2x^4 + 8c_1\right)x^2\right)^{\frac{1}{3}}}{4x}$$

$$y = -\frac{\left(\left(-2x^4 + 8c_1\right)x^2\right)^{\frac{1}{3}}}{4x} + \frac{i\sqrt{3}\left(\left(-2x^4 + 8c_1\right)x^2\right)^{\frac{1}{3}}}{4x}$$

✓ Solution by Mathematica

Time used: 0.212 (sec). Leaf size: 99

 $DSolve[(x^3+y[x]^3)+3*x*y[x]^2*y'[x] == 0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{\sqrt[3]{-x^4 + 4c_1}}{2^{2/3}\sqrt[3]{x}}$$
$$y(x) \to -\frac{\sqrt[3]{-1}\sqrt[3]{-x^4 + 4c_1}}{2^{2/3}\sqrt[3]{x}}$$
$$y(x) \to \frac{(-1)^{2/3}\sqrt[3]{-x^4 + 4c_1}}{2^{2/3}\sqrt[3]{x}}$$

2.20 problem 45

Internal problem ID [5255]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22

Problem number: 45.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$2y - (3x + 2y - 1)y' = -3x - 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve((3*x+2*y(x)+1)-(3*x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y = -\frac{3x}{2} - \frac{2 \text{LambertW} \left(-\frac{e^{\frac{1}{4}}e^{-\frac{25x}{4}}c_1}{4}\right)}{5} + \frac{1}{10}$$

✓ Solution by Mathematica

Time used: 4.841 (sec). Leaf size: 43

$$y(x) \to \frac{1}{10} \left(-4W \left(-e^{-\frac{25x}{4} - 1 + c_1} \right) - 15x + 1 \right)$$

 $y(x) \to \frac{1}{10} - \frac{3x}{2}$

2.21 problem 46

Internal problem ID [5256]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 46.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x + 2y = 0$$

With initial conditions

$$[y(2) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve([x*diff(y(x),x)+2*y(x)=0,y(2)=1],y(x), singsol=all)

$$y = \frac{4}{x^2}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 10

 $DSolve[\{x*y'[x]+2*y[x]==0,\{y[2]==1\}\},y[x],x,IncludeSingularSolutions \ -> \ True]$

$$y(x) \to \frac{4}{x^2}$$

2.22 problem 47

Internal problem ID [5257]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 47.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 + xyy' = -x^2$$

With initial conditions

$$[y(1) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

 $dsolve([(x^2+y(x)^2)+x*y(x)*diff(y(x),x)=0,y(1)=-1],y(x), singsol=all)$

$$y = -\frac{\sqrt{-2x^4 + 6}}{2x}$$

✓ Solution by Mathematica

Time used: 0.202 (sec). Leaf size: 26

 $DSolve[\{(x^2+y[x]^2)+x*y[x]*y'[x]==0,\{y[1]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{3-x^4}}{\sqrt{2}x}$$

2.23 problem 48

Internal problem ID [5258]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 48.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\cos(y) + (1 + e^{-x})\sin(y)y' = 0$$

With initial conditions

$$\left[y(0) = \frac{\pi}{4}\right]$$

✓ Solution by Maple

Time used: 0.391 (sec). Leaf size: 14

dsolve([cos(y(x))+(1+exp(-x))*sin(y(x))*diff(y(x),x)=0,y(0)=1/4*Pi],y(x), singsol=all)

$$y = \arccos\left(\frac{\sqrt{2}\left(e^x + 1\right)}{4}\right)$$

✓ Solution by Mathematica

Time used: 46.229 (sec). Leaf size: 20

$$y(x) \to \arccos\left(\frac{e^x + 1}{2\sqrt{2}}\right)$$

2.24 problem 49

Internal problem ID [5259]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22 **Problem number**: 49.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

$$y^2 + yx - y'x = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 22

 $dsolve([(y(x)^2+x*y(x))-x*diff(y(x),x)=0,y(1)=1],y(x), singsol=all)$

$$y = \frac{e^x}{\operatorname{Ei}_1(-x) + e - \operatorname{Ei}_1(-1)}$$

✓ Solution by Mathematica

Time used: 0.161 (sec). Leaf size: 19

 $DSolve[\{(y[x]^2+x*y[x])-x*y'[x]==0,\{y[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{e^x}{-\operatorname{ExpIntegralEi}(x) + \operatorname{ExpIntegralEi}(1) + e}$$

2.25 problem 51

Internal problem ID [5260]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22

Problem number: 51.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$y' + 2(2x + 3y)^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve(diff(y(x),x)= -2*(2*x+3*y(x))^2,y(x), singsol=all)$

$$y = -\frac{(2\sqrt{3}x + \tanh(2(-x + c_1)\sqrt{3}))\sqrt{3}}{9}$$

✓ Solution by Mathematica

Time used: 0.142 (sec). Leaf size: 59

 $DSolve[y'[x] == -2*(2*x+3*y[x])^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{9} \left(-6x - \frac{6}{\sqrt{3} + 12c_1 e^{4\sqrt{3}x}} + \sqrt{3} \right)$$

 $y(x) \to \frac{1}{9} \left(\sqrt{3} - 6x \right)$

2.26 problem 52

Internal problem ID [5261]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 4. Equations of first order and first degree (Variable separable). Sup-

plemetary problems. Page 22

Problem number: 52.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(y)]']]

$$-2\sin(y) + (2x - 4\sin(y) - 3)\cos(y)y' = -x - 3$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 22

dsolve((x-2*sin(y(x))+3)+(2*x-4*sin(y(x))-3)*cos(y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y = \arcsin\left(\frac{9 \operatorname{LambertW}\left(\frac{e^{-\frac{8x}{9}}e^{-\frac{1}{3}}c_{1}}{9}\right)}{8} + \frac{x}{2} + \frac{3}{8}\right)$$

✓ Solution by Mathematica

Time used: 60.95 (sec). Leaf size: 73

DSolve[(x-2*Sin[y[x]]+3)+(2*x-4*Sin[y[x]]-3)*Cos[y[x]]*y'[x]==0,y[x],x,IncludeSingularSoluti]

$$y(x) \to \arcsin\left(\frac{1}{8}\left(9W\left(-\frac{1}{9}e^{-\frac{2}{9}(4x+3-8c_1)}\right)+4x+3\right)\right)$$

$$y(x) \to \arcsin\left(\frac{1}{8}\left(9W\left(-\frac{1}{9}e^{-\frac{2}{9}(4x+3-8c_1)}\right)+4x+3\right)\right)$$

3 Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary problems. Page 33

3.1	problem	23	(a)	•	•	•	•		•	•		•				 •		•	•		 •	•		•	•				•	•	46
3.2	problem	23	(d)																												47
3.3	problem	23	(e)																												48
3.4	problem	23	(h)																		 •										49
3.5	problem	23	(i) .		•				•			•																		•	50
3.6	problem	23	(j) .		•				•			•																		•	52
3.7	problem	23	(k)																		 •										55
3.8	problem	23	(m)	•			•		•		•	•		•		 •					 •								•	•	57
3.9	problem	23	(o)																		 •										58
3.10	problem	23	(p)	•					•		•	•		•		 •					 •								•	•	59
3.11	problem	24	(p)	•					•		•	•		•		 •					 •								•	•	60
	problem		` '		•				•			•					•	•			 •			•			•		•	•	61
3.13	problem	24	(d)		•				•			•					•	•			 •			•			•		•	•	62
	problem		(0)		•				•			•					•	•			 •			•			•		•	•	63
	problem		` ,		•				•			•					•	•			 •			•			•		•	•	64
	problem		` '		•							•	•		•	 •	•	•			 •	•	•	•		•	•	•		•	65
	problem		` '		•							•	•		•	 •	•	•			 •	•	•	•		•	•	•		•	66
	problem		` '	•	•	•	•		•		•	•	•		•	 •	•	•	•		 •			•		•	•	•	•	•	67
	problem		()	•	•		•		•		•	•	•	•	•	 •	•	•	•	•	 •	•	•	•		•	•	•	•	•	68
	problem		` '																												69
3.21	problem	25	(f)		•							•					•	•			 •			•		•	•				70
	problem		(0)		•							•					•	•			 •			•		•	•				71
	problem		` '																												72
	problem		` /	•	•	•	•		•		•	•	•		•	 •	•	•	•		 •			•		•	•	•	•	•	73
	problem		(0)		•							•					•	•			 •			•		•	•				74
	problem		` '		•							•	•		•	 •	•	•			 •	•	•	•		•	•	•		•	77
3.27	problem	26	(a)	•					•		•					 •					 •									•	78
3.28	problem	26	(b)	•					•		•					 •					 •									•	79
3.29	problem	26	(c)																		 •									•	80
3.30	problem	26	(d)																												81
3.31	problem	26	(e)		•							•															•				82
3.32	problem	26	(f)		•							•															•				83
3.33	problem	26	(g)																												85
2 21	problem	26	(h)																												96

3.35	problem	26	(i)																		87
3.36	problem	27																			86

3.1 problem 23 (a)

Internal problem ID [5262]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 23 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-y - y'x = -x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((x^2-y(x))-x*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{\frac{x^3}{3} + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 19

 $DSolve[(x^2-y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^2}{3} + \frac{c_1}{x}$$

3.2 problem 23 (d)

Internal problem ID [5263]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 23 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _Bernoulli]

$$y^2 + 2xyy' = -x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

 $dsolve((x^2+y(x)^2)+2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = -\frac{\sqrt{3}\sqrt{x(-x^3 + 3c_1)}}{3x}$$
$$y = \frac{\sqrt{3}\sqrt{x(-x^3 + 3c_1)}}{3x}$$

✓ Solution by Mathematica

Time used: 0.233 (sec). Leaf size: 60

 $DSolve[(x^2+y[x]^2)+2*x*y[x]*y'[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{-x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$

$$y(x) \to \frac{\sqrt{-x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$

3.3 problem 23 (e)

Internal problem ID [5264]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 23 (e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'\sin(x) + \cos(x)y = -x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve((x+y(x)*cos(x))+sin(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y = \frac{-\frac{x^2}{2} + c_1}{\sin\left(x\right)}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 19

DSolve[(x+y[x]*Cos[x])+Sin[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{2}(x^2 - 2c_1)\csc(x)$$

3.4 problem 23 (h)

Internal problem ID [5265]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 23 (h).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$3y + (3x + 4y + 5)y' = -2x - 4$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 33

dsolve((2*x+3*y(x)+4)+(3*x+4*y(x)+5)*diff(y(x),x)=0,y(x), singsol=all)

$$y = -2 - \frac{\frac{3(x-1)c_1}{4} + \frac{\sqrt{(x-1)^2c_1^2 + 8}}{4}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.134 (sec). Leaf size: 61

DSolve[(2*x+3*y[x]+4)+(3*x+4*y[x]+5)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4} \left(-\sqrt{x^2 - 2x + 25 + 16c_1} - 3x - 5 \right)$$

$$y(x) \to \frac{1}{4} \left(\sqrt{x^2 - 2x + 25 + 16c_1} - 3x - 5 \right)$$

3.5 problem 23 (i)

Internal problem ID [5266]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 23 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact, _rational]

$$\boxed{4y^3x^3 + \left(3y^2x^4 - \frac{1}{y}\right)y' = -\frac{1}{x}}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

 $dsolve((4*x^3*y(x)^3+1/x)+(3*x^4*y(x)^2-1/y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{1}{\left(-\frac{3x^4}{\text{LambertW}(-3c_1x^7)}\right)^{\frac{1}{3}}}$$

✓ Solution by Mathematica

Time used: 4.154 (sec). Leaf size: 108

DSolve[(4*x^3*y[x]^3+1/x)+(3*x^4*y[x]^2-1/y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{\sqrt[3]{-\frac{1}{3}}\sqrt[3]{W(-3e^{-3c_1}x^7)}}{x^{4/3}}$$

$$y(x) \to -\frac{\sqrt[3]{W(-3e^{-3c_1}x^7)}}{\sqrt[3]{3}x^{4/3}}$$

$$y(x) \to -\frac{(-1)^{2/3}\sqrt[3]{W(-3e^{-3c_1}x^7)}}{\sqrt[3]{3}x^{4/3}}$$

$$y(x) \to 0$$

3.6 problem 23 (j)

Internal problem ID [5267]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 23 (j).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$2uv + (u^2 + v^2)v' = -2u^2$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 417

 $dsolve(2*(u^2+u*v(u))+(u^2+v(u)^2)*diff(v(u),u)=0,v(u), singsol=all)$

$$v(u) = \frac{\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}\right)^{\frac{1}{3}}}{\sqrt{c_1}}}{\sqrt{c_1}} - \frac{2u^2c_1}{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}\right)^{\frac{1}{3}}}}{\sqrt{c_1}}$$

$$v(u) = \frac{-\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}}}{\sqrt{c_1}} + \frac{\frac{u^2c_1}{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}\right)^{\frac{1}{3}}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6c_1^3 - 4u^3c_1^{\frac{3}{2}} + 1}}\right)^{\frac{1}{3}}}}{\sqrt{c_1}} + \frac{i\sqrt{3}\left(\frac{\left(4 - 8u^3c_1^{\frac{3}{2}} + 4\sqrt{8u^6$$

✓ Solution by Mathematica

Time used: 15.565 (sec). Leaf size: 593

DSolve[2*(u^2+u*v[u])+(u^2+v[u]^2)*v'[u]==0,v[u],u,IncludeSingularSolutions -> True]

$$\begin{split} v(u) & \to \frac{\sqrt[3]{-2u^3 + \sqrt{8u^6 - 4e^{3c_1}u^3 + e^{6c_1}}} + e^{3c_1}}{\sqrt[3]{2}u^2} \\ & - \frac{\sqrt[3]{2}u^2}{\sqrt[3]{-2u^3 + \sqrt{8u^6 - 4e^{3c_1}u^3 + e^{6c_1}}} + e^{3c_1}} \\ v(u) & \to \frac{\sqrt[3]{2}(2 + 2i\sqrt{3}) \ u^2 + i2^{2/3} \left(\sqrt{3} + i\right) \left(-2u^3 + \sqrt{8u^6 - 4e^{3c_1}u^3 + e^{6c_1}} + e^{3c_1}\right)^{2/3}}{4\sqrt[3]{-2u^3 + \sqrt{8u^6 - 4e^{3c_1}u^3 + e^{6c_1}}} + e^{3c_1}} \\ v(u) & \to \frac{\left(1 - i\sqrt{3}\right) u^2}{2^{2/3} \sqrt[3]{-2u^3 + \sqrt{8u^6 - 4e^{3c_1}u^3 + e^{6c_1}}} + e^{3c_1}} \\ & - \frac{\left(1 + i\sqrt{3}\right) \sqrt[3]{-2u^3 + \sqrt{8u^6 - 4e^{3c_1}u^3 + e^{6c_1}}} + e^{3c_1}}{2\sqrt[3]{2}} \\ v(u) & \to \sqrt[3]{\sqrt{2}\sqrt{u^6} - u^3} - \frac{u^2}{\sqrt[3]{\sqrt{2}\sqrt{u^6} - u^3}}} \\ v(u) & \to \frac{\left(1 - i\sqrt{3}\right) u^2 + \left(-1 - i\sqrt{3}\right) \left(\sqrt{2}\sqrt{u^6} - u^3\right)^{2/3}}{2\sqrt[3]{\sqrt{2}\sqrt{u^6}} - u^3}} \\ v(u) & \to \frac{\left(1 + i\sqrt{3}\right) u^2 + i\left(\sqrt{3} + i\right) \left(\sqrt{2}\sqrt{u^6} - u^3\right)^{2/3}}{2\sqrt[3]{\sqrt{2}\sqrt{u^6}} - u^3}} \end{split}$$

3.7 problem 23 (k)

Internal problem ID [5268]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 23 (k).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$\int x\sqrt{x^2 + y^2} - y + \left(y\sqrt{x^2 + y^2} - x\right)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

$$\frac{(x^2+y^2)^{\frac{3}{2}}}{3} - yx + c_1 = 0$$

✓ Solution by Mathematica

Time used: 30.753 (sec). Leaf size: 319

DSolve[(x*Sqrt[x^2+y[x]^2]-y[x])+(y[x]*Sqrt[x^2+y[x]^2]-x)*y'[x]==0,y[x],x,IncludeSingularSo

$$y(x) \to \text{Root}\left[\#1^6 + 3\#1^4x^2 + \#1^2(3x^4 - 9x^2) - 18\#1c_1x + x^6 - 9c_1^2\&, 1\right]$$

$$y(x) \to \text{Root}\left[\#1^6 + 3\#1^4x^2 + \#1^2(3x^4 - 9x^2) - 18\#1c_1x + x^6 - 9c_1^2\&, 2\right]$$

$$y(x) \to \text{Root}\left[\#1^6 + 3\#1^4x^2 + \#1^2(3x^4 - 9x^2) - 18\#1c_1x + x^6 - 9c_1^2\&, 3\right]$$

$$y(x) \to \text{Root}\left[\#1^6 + 3\#1^4x^2 + \#1^2(3x^4 - 9x^2) - 18\#1c_1x + x^6 - 9c_1^2\&, 4\right]$$

$$y(x) \to \text{Root}\left[\#1^6 + 3\#1^4x^2 + \#1^2(3x^4 - 9x^2) - 18\#1c_1x + x^6 - 9c_1^2\&, 5\right]$$

$$y(x) \to \text{Root}\left[\#1^6 + 3\#1^4x^2 + \#1^2(3x^4 - 9x^2) - 18\#1c_1x + x^6 - 9c_1^2\&, 5\right]$$

$$y(x) \to \text{Root}\left[\#1^6 + 3\#1^4x^2 + \#1^2(3x^4 - 9x^2) - 18\#1c_1x + x^6 - 9c_1^2\&, 5\right]$$

3.8 problem 23 (m)

Internal problem ID [5269]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 23 (m).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$y - (y - x + 3)y' = -x - 1$$

✓ Solution by Maple

Time used: 0.093 (sec). Leaf size: 32

dsolve((x+y(x)+1)-(y(x)-x+3)*diff(y(x),x)=0,y(x), singsol=all)

$$y = -2 - \frac{-(x-1)c_1 + \sqrt{2(x-1)^2c_1^2 + 1}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.125 (sec). Leaf size: 59

 $DSolve[(x+y[x]+1)-(y[x]-x+3)*y'[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to -i\sqrt{-2x^2 + 4x - 9 - c_1} + x - 3$$

$$y(x) \to i\sqrt{-2x^2 + 4x - 9 - c_1} + x - 3$$

3.9 problem 23 (o)

Internal problem ID [5270]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 23 (o).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$y^{2} - \frac{y}{x(x+y)} + \left(\frac{1}{x+y} + 2(1+x)y\right)y' = -2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 130

$$\frac{dsolve((y(x)^2-y(x)/(x*(x+y(x)))+2)+(1/(x+y(x))+2*y(x)*(1+x))*diff(y(x),x)}{0}=0,y(x), sings(x)$$

$$y = \left(-x e^{\text{RootOf}(x^3 e^2 - Z + x^2 e^2 - Z - 2x^3 e^{-Z} + c_1 e^2 - Z - Z e^2 - Z + 2x e^2 - Z - 2x^2 e^{-Z} + x^3 + x^2) + x\right) e^{-\text{RootOf}(x^3 e^2 - Z + x^2 e^2 - Z - 2x^3 e^{-Z} + c_1 e^2 - Z - Z e^2 - Z + 2x e^2 - Z - 2x^2 e^{-Z} + x^3 + x^2)}$$

✓ Solution by Mathematica

Time used: 0.43 (sec). Leaf size: 29

DSolve[
$$(y[x]^2 - y[x]/(x*(x+y[x]))+2)+(1/(x+y[x]) + 2*y[x]*(1+x))*y'[x]==0,y[x],x,IncludeSingl$$

Solve
$$[xy(x)^2 + y(x)^2 + \log(y(x) + x) + 2x - \log(x) = c_1, y(x)]$$

3.10 problem 23 (p)

Internal problem ID [5271]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 23 (p).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$2xy e^{yx^2} + y^2 e^{xy^2} + \left(x^2 e^{yx^2} + 2xy e^{xy^2} - 2y\right)y' = -1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

 $dsolve((2*x*y(x)*exp(x^2*y(x))+ y(x)^2*exp(x*y(x)^2)+1)+(x^2*exp(x^2*y(x))+ 2*x*y(x)*exp(x*y(x)^2)+1)+(x^2*exp(x^2*y(x))+ 2*x*y(x)*exp(x^2*y(x))+ 2*x*y(x)*exp(x^2*y(x)^2)+1)+(x^2*exp(x^2*y(x))+ 2*x*y(x)*exp(x^2*y(x))+ 2*x*y(x)*exp(x)*e$

$$y = \frac{\text{RootOf}\left(e^{-Z}x^4 + e^{\frac{-Z^2}{x^3}}x^4 + c_1x^4 + x^5 - _Z^2\right)}{x^2}$$

✓ Solution by Mathematica

Time used: 0.385 (sec). Leaf size: 30

DSolve[(2*x*y[x]*Exp[x^2*y[x]]+ y[x]^2*Exp[x*y[x]^2]+1)+(x^2*Exp[x^2*y[x]]+ 2*x*y[x]*Exp[x*y

Solve
$$\left[e^{x^2y(x)} - y(x)^2 + e^{xy(x)^2} + x = c_1, y(x) \right]$$

3.11 problem 24 (p)

Internal problem ID [5272]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 24 (p).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y(x-2y) - x^2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(y(x)*(x-2*y(x))-x^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{x}{2\ln(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.145 (sec). Leaf size: 21

 $DSolve[y[x]*(x-2*y[x])-x^2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x}{2\log(x) + c_1}$$

$$y(x) \to 0$$

problem 24 (c) 3.12

Internal problem ID [5273]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 24 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 + xyy' = -x^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

 $dsolve((x^2+y(x)^2)+x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = -\frac{\sqrt{-2x^4 + 4c_1}}{2x}$$
$$y = \frac{\sqrt{-2x^4 + 4c_1}}{2x}$$

Solution by Mathematica

Time used: 0.198 (sec). Leaf size: 46

 $DSolve[(x^2+y[x]^2)+x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x)
ightarrow -rac{\sqrt{-rac{x^4}{2}+c_1}}{x}$$
 $y(x)
ightarrow rac{\sqrt{-rac{x^4}{2}+c_1}}{x}$

$$y(x) \to \frac{\sqrt{-\frac{x^4}{2} + c_1}}{x}$$

3.13 problem 24 (d)

Internal problem ID [5274]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 24 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _Bernoulli]

$$y^2 + 2xyy' = -x^2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

 $dsolve((x^2+y(x)^2)+2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = -\frac{\sqrt{3}\sqrt{x(-x^3 + 3c_1)}}{3x}$$
$$y = \frac{\sqrt{3}\sqrt{x(-x^3 + 3c_1)}}{3x}$$

✓ Solution by Mathematica

Time used: 0.207 (sec). Leaf size: 60

 $DSolve[(x^2+y[x]^2)+2*x*y[x]*y'[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{-x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$

$$y(x) \to \frac{\sqrt{-x^3 + 3c_1}}{\sqrt{3}\sqrt{x}}$$

3.14 problem 24 (g)

Internal problem ID [5275]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 24 (g).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$-\sqrt{a^2 - x^2} y' = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(1-(sqrt(a^2-x^2))*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \arctan\left(\frac{x}{\sqrt{a^2 - x^2}}\right) + c_1$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 24

DSolve[1-(Sqrt[a^2-x^2])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \arctan\left(\frac{x}{\sqrt{a^2 - x^2}}\right) + c_1$$

3.15 problem 24 (L)

Internal problem ID [5276]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 24 (L).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y - (x - y - 3)y' = -x - 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve((x+y(x)+1)-(x-y(x)-3)*diff(y(x),x)=0,y(x), singsol=all)

$$y = -2 - \tan \left(\operatorname{RootOf} \left(2 Z + \ln \left(\frac{1}{\cos \left(Z \right)^2} \right) + 2 \ln \left(x - 1 \right) + 2 c_1 \right) \right) (x - 1)$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 58

DSolve[(x+y[x]+1)-(x-y[x]-3)*y'[x] == 0, y[x], x, Include Singular Solutions -> True]

Solve
$$\left[2 \arctan \left(\frac{y(x) + x + 1}{y(x) - x + 3} \right) + \log \left(\frac{x^2 + y(x)^2 + 4y(x) - 2x + 5}{2(x - 1)^2} \right) + 2 \log(x - 1) + c_1 = 0, y(x) \right]$$

3.16 problem 25 (a)

Internal problem ID [5277]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 25 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Bernoulli]

$$-y^2 + yy' = x^2 - x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 37

 $dsolve((x-x^2-y(x)^2)+y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \sqrt{c_1 e^{2x} - x^2}$$

 $y = -\sqrt{c_1 e^{2x} - x^2}$

✓ Solution by Mathematica

Time used: 4.613 (sec). Leaf size: 47 $\,$

 $DSolve[(x-x^2-y[x]^2)+y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{-x^2 + c_1 e^{2x}}$$

$$y(x) \rightarrow \sqrt{-x^2 + c_1 e^{2x}}$$

3.17 problem 25 (b)

Internal problem ID [5278]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 25 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + 2y = 3x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve((2*y(x)-3*x)+x*diff(y(x),x)=0,y(x), singsol=all)

$$y = x + \frac{c_1}{x^2}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 13

 $DSolve[(2*y[x]-3*x)+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x + \frac{c_1}{x^2}$$

3.18 problem 25 (c)

Internal problem ID [5279]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 25 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$-y^2 + 2xyy' = -x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

 $dsolve((x-y(x)^2)+2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \sqrt{-\ln(x) x + c_1 x}$$
$$y = -\sqrt{-\ln(x) x + c_1 x}$$

✓ Solution by Mathematica

Time used: 0.212 (sec). Leaf size: $44\,$

 $\label{eq:DSolve} DSolve[(x-y[x]^2)+2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions \ -> \ True]$

$$y(x) \to -\sqrt{x}\sqrt{-\log(x) + c_1}$$

$$y(x) \to \sqrt{x}\sqrt{-\log(x) + c_1}$$

3.19 problem 25 (d)

Internal problem ID [5280]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 25 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Riccati]

$$-y - 3x^{2}(x^{2} + y^{2}) + y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve((-y(x)-3*x^2*(x^2+y(x)^2))+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \tan\left(x^3 + 3c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.184 (sec). Leaf size: 14

 $DSolve[(-y[x]-3*x^2*(x^2+y[x]^2))+x*y'[x]==0,y[x],x,IncludeSingularSolutions] \rightarrow True]$

$$y(x) \to x \tan\left(x^3 + c_1\right)$$

3.20 problem 25 (e)

Internal problem ID [5281]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 25 (e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-y'x + y = \ln\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve((y(x)-ln(x))-x*diff(y(x),x)=0,y(x), singsol=all)

$$y = c_1 x + \ln\left(x\right) + 1$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 13

 $DSolve[(y[x]-Log[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \log(x) + c_1 x + 1$$

3.21 problem 25 (f)

Internal problem ID [5282]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 25 (f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 - 2xyy' = -3x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve((3*x^2+y(x)^2)-2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \sqrt{c_1 x + 3x^2}$$
$$y = -\sqrt{c_1 x + 3x^2}$$

✓ Solution by Mathematica

Time used: 0.182 (sec). Leaf size: 42

 $DSolve[(3*x^2+y[x]^2)-2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\sqrt{x}\sqrt{3x+c_1}$$

$$y(x) \to \sqrt{x}\sqrt{3x + c_1}$$

3.22 problem 25 (g)

Internal problem ID [5283]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 25 (g).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$yx - 2y^2 - \left(x^2 - 3yx\right)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $dsolve((x*y(x)-2*y(x)^2)-(x^2-3*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y=\mathrm{e}^{\mathrm{LambertW}\left(-rac{\mathrm{e}^{rac{c_1}{3}rac{1}{3}}}{3}
ight)-rac{c_1}{3}-rac{\ln(x)}{3}}x$$

✓ Solution by Mathematica

Time used: 4.722 (sec). Leaf size: 35

$$y(x) \to -\frac{x}{3W\left(-\frac{1}{3}e^{-\frac{c_1}{3}}\sqrt[3]{x}\right)}$$

$$y(x) \to 0$$

3.23 problem 25 (h)

Internal problem ID [5284]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 25 (h).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y - (x - y)y' = -x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve((x+y(x))-(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y = \tan \left(\operatorname{RootOf} \left(-2 Z + \ln \left(\frac{1}{\cos \left(Z \right)^2} \right) + 2 \ln \left(x \right) + 2 c_1 \right) \right) x$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 36

 $DSolve[(x+y[x])-(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{1}{2}\log\left(\frac{y(x)^2}{x^2}+1\right) - \arctan\left(\frac{y(x)}{x}\right) = -\log(x) + c_1, y(x)\right]$$

3.24 problem 25 (L)

Internal problem ID [5285]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 25 (L).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$2y - 3xy^2 - y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((2*y(x)-3*x*y(x)^2)-x*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{x^2}{x^3 + c_1}$$

✓ Solution by Mathematica

Time used: 0.145 (sec). Leaf size: 22

 $DSolve[(2*y[x]-3*x*y[x]^2)-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{x^2}{x^3 + c_1}$$

$$y(x) \to 0$$

3.25 problem 25 (j)

Internal problem ID [5286]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 25 (j).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$y + x(yx^2 - 1)y' = 0$$

Solution by Maple

Time used: 0.156 (sec). Leaf size: 789

 $dsolve(y(x)+x*(x^2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{\left(\frac{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{2x^2} - \frac{c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}\right)^2 + 3}{2x^2}$$

$$y = \frac{\left(-\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)^6 \left(\frac{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} - \frac{c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}\right)^2 + 3}{2x^2}$$

$$y = \frac{\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^6 \left(\frac{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} - \frac{c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}\right)^2 + 3}{2x^2}$$

$$y = \frac{\left(-\frac{4\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} + \frac{4c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}} - 4i\sqrt{3}\left(\frac{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} + \frac{c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}\right)\right)^2} + 3}{2x^2}$$

$$y = \frac{\left(-\frac{4\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} + \frac{4c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}} + 4i\sqrt{3}\left(\frac{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} + \frac{c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}\right)\right)^2} + 3}{2x^2}$$

$$y = \frac{\left(-\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)^6 \left(-\frac{4\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} + \frac{4c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}} - 4i\sqrt{3}\left(\frac{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} + \frac{c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}\right)\right)^2}{64}}{2x^2}$$

$$y = \frac{\left(-\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)^6 \left(-\frac{4\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} + \frac{4c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}} + 4i\sqrt{3}\left(\frac{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} + \frac{c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}\right)\right)^2}{2x^2}}{64}$$

$$y = \frac{\left(-\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)^6 \left(-\frac{4\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} + \frac{4c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}} + 4i\sqrt{3}\left(\frac{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} + \frac{c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}\right)}\right)^2}{2x^2} + 3$$

$$y = \frac{\left(-\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)^6 \left(-\frac{4\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}{c_1} + \frac{4c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}} + \frac{c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}\right)} + \frac{c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}} + \frac{c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}} + \frac{c_1}{\left(x^3 + \sqrt{c_1^0 + x^6}\right)^{\frac{1}{3}}}} + \frac{c_1}{\left(x^3 + \sqrt{c_1^0 +$$

✓ Solution by Mathematica

Time used: 56.665 (sec). Leaf size: 452

DSolve[$y[x]+x*(x^2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \\ e^{-6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}} + \frac{e^{6c_1}}{\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ y(x) \\ i(\sqrt{3} + i)e^{-6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}} - \frac{(1+i\sqrt{3})e^{6c_1}}{\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)}}} \\ + \frac{4x^2}{\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{i(\sqrt{3} + i)e^{-6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ + \frac{2e^{6c_1}\sqrt[3]{-2e^{12c_1}x^6 + 2\sqrt{-e^{24c_1}x^6\left(-x^6 + e^{6c_1}\right)} + e^{18c_1}}} \\ +$$

3.26 problem 25 (k)

Internal problem ID [5287]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 25 (k).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$yx^{3} + y + (x + 4y^{4}x + 8y^{3})y' = -2x^{2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $dsolve((y(x)+x^3*y(x)+2*x^2)+(x+4*x*y(x)^4+8*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)$

$$-\frac{x^3}{3} - \ln(yx+2) - y^4 + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.188 (sec). Leaf size: 25

Solve
$$\left[\frac{x^3}{3} + y(x)^4 + \log(xy(x) + 2) = c_1, y(x)\right]$$

3.27 problem 26 (a)

Internal problem ID [5288]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 26 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x - y = x^2 e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $dsolve((-y(x)-x^2*exp(x))+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y = (e^x + c_1) x$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 13

 $DSolve[(-y[x]-x^2*Exp[x])+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x(e^x + c_1)$$

3.28 problem 26 (b)

Internal problem ID [5289]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 26 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y^2 - (x^2 + x) y' = -1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve(1+y(x)^2=(x+x^2)*diff(y(x),x),y(x), singsol=all)$

$$y = \tan(-\ln(x+1) + \ln(x) + c_1)$$

✓ Solution by Mathematica

Time used: 0.228 (sec). Leaf size: 31

DSolve $[1+y[x]^2==(x+x^2)*y'[x],y[x],x$, IncludeSingularSolutions -> True]

$$y(x) \to \tan(\log(x) - \log(x+1) + c_1)$$

$$y(x) \rightarrow -i$$

$$y(x) \to i$$

3.29 problem 26 (c)

Internal problem ID [5290]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 26 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + 2y = x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((2*y(x)-x^3)+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{\frac{x^5}{5} + c_1}{x^2}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 19

 $DSolve[(2*y[x]-x^3)+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^3}{5} + \frac{c_1}{x^2}$$

3.30 problem 26 (d)

Internal problem ID [5291]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 26 (d).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y + (-x + y^2)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

 $dsolve(y(x)+(-x+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{c_1}{2} - \frac{\sqrt{c_1^2 - 4x}}{2}$$
$$y = \frac{c_1}{2} + \frac{\sqrt{c_1^2 - 4x}}{2}$$

✓ Solution by Mathematica

Time used: 0.276 (sec). Leaf size: 54

 $DSolve[y[x]+(-x+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{1}{2} \left(c_1 - \sqrt{-4x + c_1^2} \right)$$

$$y(x) \to \frac{1}{2} \Big(\sqrt{-4x + c_1^2} + c_1 \Big)$$

$$y(x) \to 0$$

3.31 problem 26 (e)

Internal problem ID [5292]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 26 (e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$3y^3 - yx - (x^2 + 6xy^2)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $\label{localization} \\ \mbox{dsolve}((3*y(x)^3-x*y(x))-(x^2+6*x*y(x)^2)*\mbox{diff}(y(x),x)=0,y(x), \mbox{ singsol=all}) \\$

$$y = rac{\mathrm{e}^{-rac{\mathrm{LambertW}\left(rac{6}{2} \mathrm{e}^{3c_1}{x^3}
ight)}{2} + rac{3c_1}{2}}}{x}$$

✓ Solution by Mathematica

Time used: 3.943 (sec). Leaf size: 69

$$y(x) \to -\frac{\sqrt{x}\sqrt{W\left(\frac{6e^{3c_1}}{x^3}\right)}}{\sqrt{6}}$$
$$y(x) \to \frac{\sqrt{x}\sqrt{W\left(\frac{6e^{3c_1}}{x^3}\right)}}{\sqrt{6}}$$

$$y(x) \to 0$$

3.32 problem 26 (f)

Internal problem ID [5293]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 26 (f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$3x^2y^2 + 4(yx^3 - 3)y' = 0$$

✓ Solution by Maple

Time used: 0.703 (sec). Leaf size: 30

 $dsolve((3*x^2*y(x)^2)+4*(x^3*y(x)-3)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{\text{RootOf} \left(Z^{12}c_1 + 4Z^3c_1 - x^3 \right)^9 + 4}{x^3}$$

✓ Solution by Mathematica

Time used: 60.296 (sec). Leaf size: 1175

3.33 problem 26 (g)

Internal problem ID [5294]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 26 (g).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y(x+y) - x^2y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve(y(x)*(x+y(x))-x^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y = -\frac{x}{\ln(x) - c_1}$$

✓ Solution by Mathematica

Time used: 0.14 (sec). Leaf size: 21

 $DSolve[y[x]*(x+y[x])-x^2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x}{-\log(x) + c_1}$$

$$y(x) \to 0$$

3.34 problem 26 (h)

Internal problem ID [5295]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 26 (h).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$2y + 3xy^{2} + (x + 2yx^{2})y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 43

 $\label{eq:dsolve} $$ dsolve((2*y(x)+3*x*y(x)^2)+(x+2*x^2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$ $$$

$$y = \frac{-x + \sqrt{4c_1x + x^2}}{2x^2}$$
$$y = -\frac{x + \sqrt{4c_1x + x^2}}{2x^2}$$

✓ Solution by Mathematica

Time used: 0.526 (sec). Leaf size: 69

$$y(x) o -rac{x^{3/2} + \sqrt{x^2(x+4c_1)}}{2x^{5/2}}$$

$$y(x) o rac{-x^{3/2} + \sqrt{x^2(x+4c_1)}}{2x^{5/2}}$$

problem 26 (i) 3.35

Internal problem ID [5296]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 26 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y(y^2 - 2x^2) + x(2y^2 - x^2)y' = 0$$

Solution by Maple

Time used: 0.109 (sec). Leaf size: 69

 $dsolve(y(x)*(y(x)^2-2*x^2)+x*(2*y(x)^2-x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \sqrt{\frac{\frac{c_1 x^3}{2} - \frac{\sqrt{c_1^2 x^6 + 4}}{2}}{c_1 x^3}} x$$
$$y = \sqrt{\frac{\frac{c_1 x^3}{2} + \frac{\sqrt{c_1^2 x^6 + 4}}{2}}{c_1 x^3}} x$$

$$y = \sqrt{\frac{\frac{c_1 x^3}{2} + \frac{\sqrt{c_1^2 x^6 + 4}}{2}}{c_1 x^3}} x$$

✓ Solution by Mathematica

Time used: 11.861 (sec). Leaf size: 277

$$y(x) \rightarrow -\frac{\sqrt{x^2 - \frac{\sqrt{x^6 - 4e^{2c_1}}}{x}}}{\sqrt{2}}$$

$$y(x) \rightarrow \frac{\sqrt{x^2 - \frac{\sqrt{x^6 - 4e^{2c_1}}}{x}}}{\sqrt{2}}$$

$$y(x) \rightarrow -\frac{\sqrt{\frac{x^3 + \sqrt{x^6 - 4e^{2c_1}}}{x}}}{\sqrt{2}}$$

$$y(x) \rightarrow \frac{\sqrt{\frac{x^3 + \sqrt{x^6 - 4e^{2c_1}}}{x}}}{\sqrt{2}}$$

$$y(x) \rightarrow -\frac{\sqrt{x^2 - \frac{\sqrt{x^6}}{x}}}{\sqrt{2}}$$

$$y(x) \rightarrow \frac{\sqrt{x^2 - \frac{\sqrt{x^6}}{x}}}{\sqrt{2}}$$

$$y(x) \rightarrow -\frac{\sqrt{\frac{\sqrt{x^6 + x^3}}{x}}}{\sqrt{2}}$$

$$y(x) \rightarrow \frac{\sqrt{\frac{\sqrt{x^6 + x^3}}{x}}}{\sqrt{2}}$$

3.36 problem 27

Internal problem ID [5297]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary

problems. Page 33

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve(-y(x)+x*diff(y(x),x)=0,y(x), singsol=all)

$$y = c_1 x$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 14

 $DSolve[-y[x]+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x$$

$$y(x) \to 0$$

4 Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary problems. Page 39

4.1	problem	19	(a)	•												•		•			91
4.2	problem	19	(c)																		92
4.3	problem	19	(d)																		93
4.4	problem	19	(e)																		94
4.5	problem	19	(f)																		95
4.6	problem	19	(g)																		96
4.7	problem	19	(h)																		97
4.8	problem	19	(i) .													•					98
4.9	problem	19	(j) .																		100
4.10	problem	19	(k)													•					101
4.11	problem	19	(L)													•					102
4.12	problem	19	(m)																		103
4.13	problem	19	(o)													•					104
4.14	problem	19	(p)																		106
4.15	problem	19	(q)	•							•					•					107
4.16	problem	19	(r)	•												•					109
4.17	problem	19	(s)													•					110
4.18	problem	19	(t)													•					112
4.19	problem	22	(a)																		113
4.20	problem	22	(b)																		114
4.21	problem	23	(a)																		115
4.22	problem	23	(b)													•					116
4.23	problem	23	(c)													•					118
4.24	problem	23	(d)																		120
4.25	problem	23	(e)																		122

4.1 problem 19 (a)

Internal problem ID [5298]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = 2x + 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)+y(x)=2+2*x,y(x), singsol=all)

$$y = 2x + c_1 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 17

DSolve[y'[x]+y[x]==2+2*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2x + c_1 e^{-x}$$

4.2 problem 19 (c)

Internal problem ID [5299]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - y - yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x)-y(x)=x*y(x),y(x), singsol=all)

$$y = c_1 e^{\frac{x(x+2)}{2}}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 23

DSolve[y'[x]-y[x]==x*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{\frac{1}{2}x(x+2)}$$

$$y(x) \to 0$$

4.3 problem 19 (d)

Internal problem ID [5300]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-3y + y'x = (x-2)e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve((-2*y(x)-(x-2)*exp(x))+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y = \left(-\frac{e^x}{6x^2} - \frac{e^x}{6x} - \frac{\text{Ei}_1(-x)}{6} + \frac{2e^x}{3x^3} + c_1\right)x^3$$

✓ Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 33

 $DSolve[(-2*y[x]-(x-2)*Exp[x])+x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \\ -> True]$

$$y(x) \to \frac{1}{6}x^3 \left(\text{ExpIntegralEi}(x) - \frac{e^x(x^2 + x - 4)}{x^3} + 6c_1 \right)$$

4.4 problem 19 (e)

Internal problem ID [5301]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$i' - 6i = 10\sin\left(2t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(i(t),t)-6*i(t)=10*sin(2*t),i(t), singsol=all)

$$i(t) = -\frac{\cos(2t)}{2} - \frac{3\sin(2t)}{2} + e^{6t}c_1$$

✓ Solution by Mathematica

Time used: 0.094 (sec). Leaf size: 28

DSolve[i'[t]-6*i[t]==10*Sin[2*t],i[t],t,IncludeSingularSolutions -> True]

$$i(t) \to -\frac{1}{2}\cos(2t) + c_1 e^{6t} - 3\sin(t)\cos(t)$$

4.5 problem 19 (f)

Internal problem ID [5302]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Bernoulli]

$$y' + y - y^2 e^x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(x),x)+y(x)=y(x)^2*exp(x),y(x), singsol=all)$

$$y = \frac{e^{-x}}{-x + c_1}$$

✓ Solution by Mathematica

Time used: 0.204 (sec). Leaf size: 25

 $DSolve[y'[x]+y[x]==y[x]^2*Exp[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{e^{-x}}{x - c_1}$$

$$y(x) \to 0$$

4.6 problem 19 (g)

Internal problem ID [5303]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (g).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]'], [_Ab_order, '_with_symmetry_[F(x)*G(y),0]']

$$y + (yx + x - 3y)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 30

dsolve(y(x)+(x*y(x)+x-3*y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y = \text{LambertW}\left(\frac{e^{\frac{3}{x-3}}}{c_1(x-3)}\right) - \frac{3}{x-3}$$

Solution by Mathematica

Time used: 60.04 (sec). Leaf size: 31

 $DSolve[y[x]+(x*y[x]+x-3*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{3}{x-3} + W\left(\frac{c_1 e^{\frac{3}{x-3}}}{x-3}\right)$$

4.7 problem 19 (h)

Internal problem ID [5304]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (h).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x),G(x)]'], [_Abel, '

$$(2s - e^{2t}) s' - 2s e^{2t} = -2\cos(2t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 57

dsolve((2*s(t)-exp(2*t))*diff(s(t),t)=2*(s(t)*exp(2*t)-cos(2*t)),s(t), singsol=all)

$$s(t) = \frac{e^{2t}}{2} - \frac{\sqrt{e^{4t} - 4\sin(2t) - 4c_1}}{2}$$

$$s(t) = \frac{e^{2t}}{2} + \frac{\sqrt{e^{4t} - 4\sin(2t) - 4c_1}}{2}$$

✓ Solution by Mathematica

Time used: 15.59 (sec). Leaf size: 81

DSolve[(2*s[t]-Exp[2*t])*s'[t]==2*(s[t]*Exp[2*t]-Cos[2*t]),s[t],t,IncludeSingularSolutions -

$$s(t) o rac{1}{2} \Big(e^{2t} - i\sqrt{-e^{4t} + 4\sin(2t) - 4c_1} \Big)$$

$$s(t) o rac{1}{2} \Big(e^{2t} + i\sqrt{-e^{4t} + 4\sin(2t) - 4c_1} \Big)$$

4.8 problem 19 (i)

Internal problem ID [5305]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

 ${\bf Section:}\ {\bf Chapter}\ {\bf 6.}\ {\bf Equations}\ {\bf of}\ {\bf first}\ {\bf order}\ {\bf and}\ {\bf first}\ {\bf degree}\ ({\bf Linear}\ {\bf equations}).\ {\bf Supplemetary}$

problems. Page 39

Problem number: 19 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y'x + y - x^3y^6 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 265

 $dsolve(x*diff(y(x),x)+(y(x)-x^3*y(x)^6)=0,y(x), singsol=all)$

$$y = \frac{2^{\frac{1}{5}} \left(x^{2} (2c_{1}x^{2} + 5)^{4}\right)^{\frac{1}{5}}}{x (2c_{1}x^{2} + 5)}$$

$$y = \frac{\left(-\frac{\sqrt{5}}{4} - \frac{1}{4} - \frac{i\sqrt{2}\sqrt{5 - \sqrt{5}}}{4}\right) 2^{\frac{1}{5}} \left(x^{2} (2c_{1}x^{2} + 5)^{4}\right)^{\frac{1}{5}}}{x (2c_{1}x^{2} + 5)}$$

$$y = \frac{\left(-\frac{\sqrt{5}}{4} - \frac{1}{4} + \frac{i\sqrt{2}\sqrt{5 - \sqrt{5}}}{4}\right) 2^{\frac{1}{5}} \left(x^{2} (2c_{1}x^{2} + 5)^{4}\right)^{\frac{1}{5}}}{x (2c_{1}x^{2} + 5)}$$

$$y = \frac{\left(\frac{\sqrt{5}}{4} - \frac{1}{4} - \frac{i\sqrt{2}\sqrt{5 + \sqrt{5}}}{4}\right) 2^{\frac{1}{5}} \left(x^{2} (2c_{1}x^{2} + 5)^{4}\right)^{\frac{1}{5}}}{x (2c_{1}x^{2} + 5)}$$

$$y = \frac{\left(\frac{\sqrt{5}}{4} - \frac{1}{4} + \frac{i\sqrt{2}\sqrt{5 + \sqrt{5}}}{4}\right) 2^{\frac{1}{5}} \left(x^{2} (2c_{1}x^{2} + 5)^{4}\right)^{\frac{1}{5}}}{x (2c_{1}x^{2} + 5)}$$

✓ Solution by Mathematica

Time used: 0.472 (sec). Leaf size: 141

 $DSolve[x*y'[x]+(y[x]-x^3*y[x]^6)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o -rac{\sqrt[5]{-2}}{\sqrt[5]{x^3(5+2c_1x^2)}}$$

$$y(x) o rac{1}{\sqrt[5]{rac{5x^3}{2} + c_1 x^5}}$$

$$y(x) o rac{(-1)^{2/5}}{\sqrt[5]{rac{5x^3}{2} + c_1 x^5}}$$

$$y(x) \to -\frac{(-1)^{3/5}}{\sqrt[5]{\frac{5x^3}{2} + c_1 x^5}}$$

$$y(x) o rac{(-1)^{4/5}}{\sqrt[5]{rac{5x^3}{2} + c_1 x^5}}$$

$$y(x) \to 0$$

4.9 problem 19 (j)

Internal problem ID [5306]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (j).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$r' + 2r\cos(\theta) = -\sin(2\theta)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(r(theta),theta)+(2*r(theta)*cos(theta)+sin(2*theta))=0,r(theta), singsol=all)

$$r(\theta) = -\sin(\theta) + \frac{1}{2} + e^{-2\sin(\theta)}c_1$$

✓ Solution by Mathematica

Time used: 0.095 (sec). Leaf size: 22

DSolve[r'[t]+(2*r[t]*Cos[t]+Sin[2*t])==0,r[t],t,IncludeSingularSolutions -> True]

$$r(t) \to -\sin(t) + c_1 e^{-2\sin(t)} + \frac{1}{2}$$

4.10 problem 19 (k)

Internal problem ID [5307]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (k).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$y(y^2+1) - 2(1-2xy^2)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

 $dsolve(y(x)*(1+y(x)^2)=2*(1-2*x*y(x)^2)*diff(y(x),x),y(x), singsol=all)$

✓ Solution by Mathematica

Time used: 0.176 (sec). Leaf size: 36

 $DSolve[y[x]*(1+y[x]^2)==2*(1-2*x*y[x]^2)*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[x = \frac{y(x)^2 + 2\log(y(x))}{(y(x)^2 + 1)^2} + \frac{c_1}{(y(x)^2 + 1)^2}, y(x)\right]$$

4.11 problem 19 (L)

Internal problem ID [5308]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (L).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$yy' - xy^2 = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(y(x)*diff(y(x),x)-x*y(x)^2+x=0,y(x), singsol=all)$

$$y = \sqrt{e^{x^2}c_1 + 1}$$
$$y = -\sqrt{e^{x^2}c_1 + 1}$$

✓ Solution by Mathematica

Time used: 1.859 (sec). Leaf size: 53

 $DSolve[y[x]*y'[x]-x*y[x]^2+x==0,y[x],x,IncludeSingularSolutions \ -> \ True]$

$$y(x) \to -\sqrt{1 + e^{x^2 + 2c_1}}$$

$$y(x) \to \sqrt{1 + e^{x^2 + 2c_1}}$$

$$y(x) \rightarrow -1$$

$$y(x) \to 1$$

4.12 problem 19 (m)

Internal problem ID [5309]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (m).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$\left(x - x\sqrt{x^2 - y^2}\right)y' - y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

 $dsolve((x-x*sqrt(x^2-y(x)^2))*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y - \arctan\left(\frac{y}{\sqrt{-y^2 + x^2}}\right) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.518 (sec). Leaf size: 29

 $DSolve[(x-x*Sqrt[x^2-y[x]^2])*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\arctan\left(\frac{\sqrt{x^2-y(x)^2}}{y(x)}\right)+y(x)=c_1,y(x)\right]$$

4.13 problem 19 (o)

Internal problem ID [5310]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (o).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$2x' - \frac{x}{y} + x^3 \cos(y) = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 54

 $dsolve(2*diff(x(y),y)-x(y)/y+x(y)^3*cos(y)=0,x(y), singsol=all)$

$$x(y) = \frac{\sqrt{(\cos(y) + y\sin(y) + c_1)y}}{\cos(y) + y\sin(y) + c_1}$$

$$x(y) = -\frac{\sqrt{(\cos(y) + y\sin(y) + c_1)y}}{\cos(y) + y\sin(y) + c_1}$$

✓ Solution by Mathematica

Time used: 0.261 (sec). Leaf size: 53

DSolve[2*x'[y]-x[y]/y+x[y]^3*Cos[y]==0,x[y],y,IncludeSingularSolutions -> True]

$$x(y) \to -\frac{\sqrt{y}}{\sqrt{y\sin(y) + \cos(y) + c_1}}$$
$$x(y) \to \frac{\sqrt{y}}{\sqrt{y\sin(y) + \cos(y) + c_1}}$$
$$x(y) \to 0$$

4.14 problem 19 (p)

Internal problem ID [5311]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (p).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x - y(1 - x \tan(x)) = \cos(x) x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(x*diff(y(x),x)=y(x)*(1-x*tan(x))+x^2*cos(x),y(x), singsol=all)$

$$y = (x + c_1) x \cos(x)$$

✓ Solution by Mathematica

Time used: 0.081 (sec). Leaf size: 13

DSolve[x*y'[x]==y[x]*(1-x*Tan[x])+x^2*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(x+c_1)\cos(x)$$

4.15 problem 19 (q)

Internal problem ID [5312]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (q).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$y^{2} - (yx + 2y + y^{3}) y' = -2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve((2+y(x)^2)-(x*y(x)+2*y(x)+y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)$

$$x - y^2 - 2 - \sqrt{y^2 + 2} \, c_1 = 0$$

Time used: 5.808 (sec). Leaf size: 189

$$y(x) \to -\frac{\sqrt{2x - \sqrt{4c_1^2x + c_1^4} - 4 + c_1^2}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{2x - \sqrt{4c_1^2x + c_1^4} - 4 + c_1^2}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{2x + \sqrt{4c_1^2x + c_1^4} - 4 + c_1^2}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{2x + \sqrt{4c_1^2x + c_1^4} - 4 + c_1^2}}{\sqrt{2}}$$

$$y(x) \to -i\sqrt{2}$$

$$y(x) \to i\sqrt{2}$$

4.16 problem 19 (r)

Internal problem ID [5313]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (r).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(y)]']]

$$y^{2} - \left(\arctan\left(y\right) - x\right)y' = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve((1+y(x)^2)=(arctan(y(x))-x)*diff(y(x),x),y(x), singsol=all)$

$$y = \tan\left(\text{LambertW}\left(-c_1e^{-x-1}\right) + x + 1\right)$$

✓ Solution by Mathematica

Time used: 60.157 (sec). Leaf size: 21

 $DSolve[(1+y[x]^2) == (ArcTan[y[x]]-x)*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \tan\left(W\left(c_1\left(-e^{-x-1}\right)\right) + x + 1\right)$$

4.17 problem 19 (s)

Internal problem ID [5314]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (s).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$2xy^5 - y + 2y'x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 131

 $dsolve((2*x*y(x)^5-y(x))+2*x*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{\sqrt{-3\sqrt{12x^3 + 9c_1} x}}{\sqrt{12x^3 + 9c_1}}$$

$$y = \frac{\sqrt{3}\sqrt{\sqrt{12x^3 + 9c_1} x}}{\sqrt{12x^3 + 9c_1}}$$

$$y = -\frac{\sqrt{-3\sqrt{12x^3 + 9c_1} x}}{\sqrt{12x^3 + 9c_1}}$$

$$y = -\frac{\sqrt{3}\sqrt{\sqrt{12x^3 + 9c_1} x}}{\sqrt{12x^3 + 9c_1}}$$

Time used: 0.214 (sec). Leaf size: 109

DSolve[(2*x*y[x]^5-y[x])+2*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{\sqrt{x}}{\sqrt[4]{\frac{4x^3}{3} + c_1}}$$
$$y(x) \rightarrow -\frac{i\sqrt{x}}{\sqrt[4]{\frac{4x^3}{3} + c_1}}$$
$$y(x) \rightarrow \frac{i\sqrt{x}}{\sqrt[4]{\frac{4x^3}{3} + c_1}}$$

$$y(x)
ightarrow rac{\sqrt{x}}{\sqrt[4]{rac{4x^3}{3} + c_1}}$$

$$y(x) \to 0$$

4.18 problem 19 (t)

Internal problem ID [5315]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 19 (t).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$\sin(y) - (2y\cos(y) - x(\sec(y) + \tan(y)))y' = -1$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 22

$$x - \frac{y^2 + c_1}{\sec(y) + \tan(y)} = 0$$

✓ Solution by Mathematica

Time used: 1.489 (sec). Leaf size: 66

DSolve[(1+Sin[y[x]])==(2*y[x]*Cos[y[x]]-x*(Sec[y[x]]+Tan[y[x]]))*y'[x],y[x],x,IncludeSingularing and a second context of the context of the

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{3\pi}{2}$$

$$Solve \left[x = y(x)^2 e^{-2\operatorname{arctanh}\left(\tan\left(\frac{y(x)}{2}\right)\right)} + c_1 e^{-2\operatorname{arctanh}\left(\tan\left(\frac{y(x)}{2}\right)\right)}, y(x) \right]$$

$$y(x) \to -\frac{\pi}{2}$$

4.19 problem 22 (a)

Internal problem ID [5316]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 22 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x - 2y = x^3 e^x$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve([x*diff(y(x),x)=2*y(x)+x^3*exp(x),y(1) = 0],y(x), singsol=all)$

$$y = (e^x - e) x^2$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 16

 $DSolve[\{x*y'[x]==2*y[x]+x^3*Exp[x],\{y[1]==0\}\},y[x],x,IncludeSingularSolutions] \rightarrow True]$

$$y(x) \rightarrow (e^x - e) x^2$$

4.20 problem 22 (b)

Internal problem ID [5317]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 22 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$Li' + Ri = E\sin(2t)$$

With initial conditions

$$[i(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 43

dsolve([L*diff(i(t),t)+R*i(t)=E*sin(2*t),i(0) = 0],i(t), singsol=all)

$$i(t) = -\frac{2E\left(L\cos(2t) - Le^{-\frac{Rt}{L}} - \frac{\sin(2t)R}{2}\right)}{4L^2 + R^2}$$

✓ Solution by Mathematica

Time used: 0.152 (sec). Leaf size: 49

DSolve[{L*i'[t]+R*i[t]==e*Sin[2*t],{i[0]==0}},i[t],t,IncludeSingularSolutions -> True]

$$i(t) \rightarrow rac{2e\left(L\left(e^{-rac{Rt}{L}} + \sin^2(t)\right) - L\cos^2(t) + R\sin(t)\cos(t)\right)}{4L^2 + R^2}$$

4.21 problem 23 (a)

Internal problem ID [5318]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 23 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$y'\cos(y) x^2 - 2\sin(y) x = -1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

 $dsolve(x^2*cos(y(x))*diff(y(x),x)=2*x*sin(y(x))-1,y(x), singsol=all)$

$$y = -\arcsin\left(\frac{3c_1x^3 - 1}{3x}\right)$$

✓ Solution by Mathematica

Time used: 10.185 (sec). Leaf size: 21

DSolve[x^2*Cos[y[x]]*y'[x]==2*x*Sin[y[x]]-1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \arcsin\left(\frac{1}{3x} + 2c_1x^2\right)$$

4.22 problem 23 (b)

Internal problem ID [5319]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 23 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$4x^{2}yy' - 3x(3y^{2} + 2) - 2(3y^{2} + 2)^{3} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 177

 $dsolve(4*x^2*y(x)*diff(y(x),x)=3*x*(3*y(x)^2+2)+2*(3*y(x)^2+2)^3,y(x), singsol=all)$

$$y = -\frac{\sqrt{-\frac{6\left(3c_1x^8 + \sqrt{-3c_1^2x^{17} + c_1x^9} - 1\right)}{3c_1x^8 - 1}}}{3}$$

$$y = \frac{\sqrt{-\frac{6\left(3c_1x^8 + \sqrt{-3c_1^2x^{17} + c_1x^9} - 1\right)}{3}}{3}}{3}$$

$$y = -\frac{\sqrt{6}\sqrt{\frac{-3c_1x^8 + \sqrt{-3c_1^2x^{17} + c_1x^9} + 1}{3c_1x^8 - 1}}}{3}$$

$$y = \frac{\sqrt{6}\sqrt{\frac{-3c_1x^8 + \sqrt{-3c_1^2x^{17} + c_1x^9} + 1}}{3c_1x^8 - 1}}{3}$$

Time used: 19.518 (sec). Leaf size: 277

DSolve[4*x^2*y[x]*y'[x]==3*x*(3*y[x]^2+2)+2*(3*y[x]^2+2)^3,y[x],x,IncludeSingularSolutions -

$$y(x) \to -\frac{1}{3}\sqrt{2}\sqrt{-\frac{3x^8 + \sqrt{3}\sqrt{-x^9(x^8 + 72c_1)} + 216c_1}{x^8 + 72c_1}}$$

$$y(x) \to \frac{1}{3}\sqrt{2}\sqrt{-\frac{3x^8 + \sqrt{3}\sqrt{-x^9(x^8 + 72c_1)} + 216c_1}{x^8 + 72c_1}}$$

$$y(x) \to -\frac{1}{3}\sqrt{2}\sqrt{\frac{-3x^8 + \sqrt{3}\sqrt{-x^9(x^8 + 72c_1)} - 216c_1}{x^8 + 72c_1}}$$

$$y(x) \to \frac{1}{3}\sqrt{2}\sqrt{\frac{-3x^8 + \sqrt{3}\sqrt{-x^9(x^8 + 72c_1)} - 216c_1}{x^8 + 72c_1}}$$

$$y(x) \to -i\sqrt{\frac{2}{3}}$$

$$y(x) \to i\sqrt{\frac{2}{3}}$$

4.23 problem 23 (c)

Internal problem ID [5320]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 23 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$xy^3 - y^3 + 3xy^2y' = x^2e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 140

 $dsolve((x*y(x)^3-y(x)^3-x^2*exp(x))+(3*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{e^{-x}((4e^{2x} + 8c_1) x e^{2x})^{\frac{1}{3}}}{2}$$

$$y = -\frac{e^{-x}((4e^{2x} + 8c_1) x e^{2x})^{\frac{1}{3}}}{4} - \frac{i\sqrt{3}e^{-x}((4e^{2x} + 8c_1) x e^{2x})^{\frac{1}{3}}}{4}$$

$$y = -\frac{e^{-x}((4e^{2x} + 8c_1) x e^{2x})^{\frac{1}{3}}}{4} + \frac{i\sqrt{3}e^{-x}((4e^{2x} + 8c_1) x e^{2x})^{\frac{1}{3}}}{4}$$

Time used: 0.854 (sec). Leaf size: 117

DSolve[(x*y[x]^3-y[x]^3-x^2*Exp[x])+(3*x*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to -\sqrt[3]{-\frac{1}{2}}e^{-x/3}\sqrt[3]{x}\sqrt[3]{e^{2x} + 2c_1}$$
$$y(x) \to \frac{e^{-x/3}\sqrt[3]{x}\sqrt[3]{e^{2x} + 2c_1}}{\sqrt[3]{2}}$$
$$y(x) \to \frac{(-1)^{2/3}e^{-x/3}\sqrt[3]{x}\sqrt[3]{e^{2x} + 2c_1}}{\sqrt[3]{2}}$$

4.24 problem 23 (d)

Internal problem ID [5321]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 23 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Abel]

$$y' + x(x + y) - x^3(x + y)^3 = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 66

 $dsolve(diff(y(x),x)+x*(x+y(x))=x^3*(x+y(x))^3-1,y(x), singsol=all)$

$$y = -\frac{e^{-\frac{x^2}{2}}}{\sqrt{c_1 + (x^2 + 1)e^{-x^2}}} - x$$

$$y = \frac{e^{-\frac{x^2}{2}}}{\sqrt{c_1 + (x^2 + 1)e^{-x^2}}} - x$$

Time used: 10.062 (sec). Leaf size: 85

DSolve[y'[x]+x*(x+y[x])==x^3*(x+y[x])^3-1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x - \frac{e^{-\frac{x^2}{2}}}{\sqrt{e^{-x^2}(x^2+1) + c_1}}$$
$$y(x) \to -x + \frac{e^{-\frac{x^2}{2}}}{\sqrt{e^{-x^2}(x^2+1) + c_1}}$$
$$y(x) \to -x$$

4.25 problem 23 (e)

Internal problem ID [5322]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary

problems. Page 39

Problem number: 23 (e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$y + e^{y} + (1 + e^{y})y' = e^{-x}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 36

dsolve((y(x)+exp(y(x))-exp(-x))+(1+exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)

$$y = -\left(\text{LambertW}\left(e^{-c_1e^{-x}}e^{x e^{-x}}\right)e^x + c_1 - x\right)e^{-x}$$

✓ Solution by Mathematica

Time used: 6.265 (sec). Leaf size: 33

$$y(x) \to e^{-x} \left(-e^x W \left(e^{e^{-x}(x+c_1)} \right) + x + c_1 \right)$$

5 Chapter 9. Equations of first order and higher degree. Supplemetary problems. Page 65

5.1	problem 17	•																	124
5.2	problem 18																		125
5.3	problem 19																		126
5.4	problem 20																		127
5.5	problem 21																		129
5.6	problem 22																		131
5.7	problem 23																		133
5.8	problem 24																		134
5.9	problem 25																		136
5.10	problem 26	•																	138
5.11	problem 27																		140
5.12	problem 28																		142
5.13	problem 29																		144
5.14	problem 30																		145
5.15	problem 31																		147

5.1 problem 17

Internal problem ID [5323]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 17.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_separable]

$$x^2y'^2 + xyy' - 6y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $\label{local-control} \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x})\mbox{,x})\mbox{-2+x*y}(\mbox{x})\mbox{*diff}(\mbox{y}(\mbox{x})\mbox{,x})\mbox{-6*y}(\mbox{x})\mbox{-2=0,y}(\mbox{x}), \\ \mbox{singsol=all}) \\$

$$y = c_1 x^2$$

$$y = \frac{c_1}{x^3}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 26

DSolve[x^2*(y'[x])^2+x*y[x]*y'[x]-6*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{c_1}{x^3}$$

$$y(x) \to c_1 x^2$$

$$y(x) \to 0$$

5.2 problem 18

Internal problem ID [5324]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 18.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$xy'^{2} + (y - 1 - x^{2})y' - x(-1 + y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(x*diff(y(x),x)^2+(y(x)-1-x^2)*diff(y(x),x)-x*(y(x)-1)=0,y(x), singsol=all)$

$$y = \frac{x^2}{2} + c_1$$

$$y = \frac{x + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 32

 $DSolve[x*(y'[x])^2+(y[x]-1-x^2)*y'[x]-x*(y[x]-1)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^2}{2} + c_1$$

$$y(x) \to \frac{x + c_1}{x}$$

$$y(x) \to 1$$

5.3 problem 19

Internal problem ID [5325]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 19.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'^2 - 2yy' = -4x$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 29

 $dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+4*x=0,y(x), singsol=all)$

$$y = -2x$$

$$y = 2x$$

$$y = -\frac{\left(-\frac{x^2}{c_1^2} - 4\right)c_1}{2}$$

✓ Solution by Mathematica

Time used: 0.274 (sec). Leaf size: 43

 $DSolve[x*(y'[x])^2-2*y[x]*y'[x]+4*x==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow -2x \cosh(-\log(x) + c_1)$$

$$y(x) \to -2x \cosh(\log(x) + c_1)$$

$$y(x) \rightarrow -2x$$

$$y(x) \to 2x$$

5.4 problem 20

Internal problem ID [5326]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 20.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$3x^4y'^2 - y'x - y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 147

 $dsolve(3*x^4*diff(y(x),x)^2-x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y = -\frac{1}{12x^2}$$

$$y = \frac{-c_1^2 - c_1(-c_1 + 2ix\sqrt{3}) - 6x^2}{6c_1^2x^2}$$

$$y = \frac{-c_1^2 - c_1(-c_1 - 2ix\sqrt{3}) - 6x^2}{6c_1^2x^2}$$

$$y = \frac{c_1(c_1 + 2ix\sqrt{3}) - 6x^2 - c_1^2}{6c_1^2x^2}$$

$$y = \frac{c_1(c_1 - 2ix\sqrt{3}) - 6x^2 - c_1^2}{6c_1^2x^2}$$

Time used: 0.512 (sec). Leaf size: 123

 $DSolve [3*x^4*y'[x]^2-x*y'[x]-y[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

Solve
$$\left[-\frac{x\sqrt{12x^2y(x) + 1}\operatorname{arctanh}\left(\sqrt{12x^2y(x) + 1}\right)}{\sqrt{12x^4y(x) + x^2}} - \frac{1}{2}\log(y(x)) = c_1, y(x) \right]$$
Solve
$$\left[\frac{x\sqrt{12x^2y(x) + 1}\operatorname{arctanh}\left(\sqrt{12x^2y(x) + 1}\right)}{\sqrt{12x^4y(x) + x^2}} - \frac{1}{2}\log(y(x)) = c_1, y(x) \right]$$

$$y(x) \to 0$$

5.5 problem 21

Internal problem ID [5327]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 21.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$8yy'^2 - 2y'x + y = 0$$

/

Solution by Maple

Time used: 0.047 (sec). Leaf size: 185

 $dsolve(8*y(x)*diff(y(x),x)^2-2*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y = -\frac{\sqrt{2}x}{4}$$

$$y = \frac{\sqrt{2}x}{4}$$

$$y = 0$$

$$\ln(x) - \sqrt{\frac{x^2 - 8y^2}{x^2}} + \operatorname{arctanh}\left(\frac{1}{\sqrt{\frac{x^2 - 8y^2}{x^2}}}\right) + \frac{\sqrt{2}\sqrt{\frac{\left(\sqrt{2}x + 4y\right)\left(\sqrt{2}x - 4y\right)}{x^2}}}{2} + \ln\left(\frac{y}{x}\right) - c_1 = 0$$

$$\ln(x) + \sqrt{\frac{x^2 - 8y^2}{x^2}} - \operatorname{arctanh}\left(\frac{1}{\sqrt{\frac{x^2 - 8y^2}{x^2}}}\right) - \frac{\sqrt{2}\sqrt{\frac{\left(\sqrt{2}x + 4y\right)\left(\sqrt{2}x - 4y\right)}{x^2}}}{2} + \ln\left(\frac{y}{x}\right) - c_1 = 0$$

Time used: 0.347 (sec). Leaf size: 174

DSolve[8*y[x]*y'[x]^2-2*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to -\frac{e^{4c_1}\sqrt{e^{8c_1}-2ix}}{2\sqrt{2}} \\ y(x) &\to \frac{e^{4c_1}\sqrt{e^{8c_1}-2ix}}{2\sqrt{2}} \\ y(x) &\to -\frac{e^{4c_1}\sqrt{2ix+e^{8c_1}}}{2\sqrt{2}} \\ y(x) &\to \frac{e^{4c_1}\sqrt{2ix+e^{8c_1}}}{2\sqrt{2}} \\ y(x) &\to 0 \\ y(x) &\to -\frac{x}{2\sqrt{2}} \end{split}$$

 $y(x) \to \frac{x}{2\sqrt{2}}$

5.6 problem 22

Internal problem ID [5328]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems. Page 65

Problem number: 22.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$y^2y'^2 + 3y'x - y = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 119

 $dsolve(y(x)^2*diff(y(x),x)^2+3*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$\begin{split} y &= \frac{\left(-18x^2\right)^{\frac{1}{3}}}{2} \\ y &= -\frac{\left(-18x^2\right)^{\frac{1}{3}}}{4} - \frac{i\sqrt{3}\left(-18x^2\right)^{\frac{1}{3}}}{4} \\ y &= -\frac{\left(-18x^2\right)^{\frac{1}{3}}}{4} + \frac{i\sqrt{3}\left(-18x^2\right)^{\frac{1}{3}}}{4} \\ y &= 0 \\ y &= \operatorname{RootOf}\left(-\ln\left(x\right) + \int^{-Z} -\frac{3\left(4\underline{a^3} + 3\sqrt{4\underline{a^3} + 9} + 9\right)}{2\underline{a}\left(4\underline{a^3} + 9\right)} d\underline{a} + c_1\right)x^{\frac{2}{3}} \end{split}$$

Time used: 0.574 (sec). Leaf size: 239

 $DSolve[y[x]^2*y'[x]^2+3*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{\frac{c_1}{3}} \sqrt[3]{-3x + e^{c_1}}$$

$$y(x) \to -\sqrt[3]{-1} e^{\frac{c_1}{3}} \sqrt[3]{-3x + e^{c_1}}$$

$$y(x) \to (-1)^{2/3} e^{\frac{c_1}{3}} \sqrt[3]{-3x + e^{c_1}}$$

$$y(x) \to e^{\frac{c_1}{3}} \sqrt[3]{3x + e^{c_1}}$$

$$y(x) \to -\sqrt[3]{-1} e^{\frac{c_1}{3}} \sqrt[3]{3x + e^{c_1}}$$

$$y(x) \to (-1)^{2/3} e^{\frac{c_1}{3}} \sqrt[3]{3x + e^{c_1}}$$

$$y(x) \to 0$$

$$y(x) \to -\left(-\frac{3}{2}\right)^{2/3} x^{2/3}$$

$$y(x) \to -\left(\frac{3}{2}\right)^{2/3} x^{2/3}$$

$$y(x) \to \frac{\sqrt[3]{-1} 3^{2/3} x^{2/3}}{2^{2/3}}$$

5.7 problem **23**

Internal problem ID [5329]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 23.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y'^2 - y'x + y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $\label{eq:diff} dsolve(diff(y(x),x)^2-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y = \frac{x^2}{4}$$
$$y = -c_1^2 + c_1 x$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 25

 $DSolve[y'[x]^2-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1(x-c_1)$$

$$y(x) o rac{x^2}{4}$$

5.8 problem **24**

Internal problem ID [5330]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 24.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$16y^3y'^2 - 4y'x + y = 0$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 97

 $dsolve(16*y(x)^3*diff(y(x),x)^2-4*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y = -\frac{\sqrt{-2x}}{2}$$

$$y = \frac{\sqrt{-2x}}{2}$$

$$y = -\frac{\sqrt{2}\sqrt{x}}{2}$$

$$y = \frac{\sqrt{2}\sqrt{x}}{2}$$

y = 0

$$y = \text{RootOf}\left(-\ln(x) + \int^{-Z} -\frac{2(4_a^4 - \sqrt{-4_a^4 + 1} - 1)}{_a(4_a^4 - 1)}d_a + c_1\right)\sqrt{x}$$

Time used: 0.563 (sec). Leaf size: 303

DSolve[16*y[x]^3*y'[x]^2-4*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -e^{\frac{c_1}{4}} \sqrt[4]{e^{c_1} - ix}$$

$$y(x) \rightarrow -ie^{\frac{c_1}{4}} \sqrt[4]{e^{c_1} - ix}$$

$$y(x)
ightarrow ie^{rac{c_1}{4}} \sqrt[4]{e^{c_1} - ix}$$

$$y(x) \to e^{\frac{c_1}{4}} \sqrt[4]{e^{c_1} - ix}$$

$$y(x) \to -e^{\frac{c_1}{4}} \sqrt[4]{ix + e^{c_1}}$$

$$y(x) \to -ie^{\frac{c_1}{4}} \sqrt[4]{ix + e^{c_1}}$$

$$y(x) \to ie^{\frac{c_1}{4}} \sqrt[4]{ix + e^{c_1}}$$

$$y(x) \to e^{\frac{c_1}{4}} \sqrt[4]{ix + e^{c_1}}$$

$$y(x) \to 0$$

$$y(x) \to -\frac{\sqrt{x}}{\sqrt{2}}$$

$$y(x) \to -\frac{i\sqrt{x}}{\sqrt{2}}$$

$$y(x) o rac{i\sqrt{x}}{\sqrt{2}}$$

$$y(x) o \frac{\sqrt{x}}{\sqrt{2}}$$

5.9 problem **25**

Internal problem ID [5331]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 25.

ODE order: 1. ODE degree: 5.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Clairaut]

$$xy'^{5} - yy'^{4} + (x^{2} + 1)y'^{3} - 2xyy'^{2} + (x + y^{2})y' - y = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 37

 $dsolve(x*diff(y(x),x)^5-y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^2+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^4+(1+x^2)*diff(x)^4+(1+x^2)*diff(x)^4+(1+$

$$y = c_1^3 + c_1 x$$

$$y=c_1x^{\frac{3}{2}}$$

$$y = c_1 x + \frac{1}{c_1}$$

$$y = c_1 \sqrt{x}$$

Time used: 0.042 (sec). Leaf size: 142

DSolve[x*y'[x]^5-y[x]*y'[x]^4+(1+x^2)*y'[x]^3-2*x*y[x]*y'[x]^2+(x+y[x]^2)*y'[x]-y[x]==0,y[x]

$$y(x) \to c_1 x + \frac{1}{c_1}$$

$$y(x) \to c_1 \left(x + c_1^2 \right)$$

$$y(x) \to \text{Indeterminate}$$

$$y(x) \rightarrow -x - 1$$

$$y(x) \to -2\sqrt{x}$$

$$y(x) \to 2\sqrt{x}$$

$$y(x) \to -\frac{2ix^{3/2}}{3\sqrt{3}}$$

$$y(x) \to \frac{2ix^{3/2}}{3\sqrt{3}}$$

$$y(x) \to x + 1$$

$$y(x) \rightarrow -\sqrt{-(x-1)^2}$$

$$y(x) \rightarrow \sqrt{-(x-1)^2}$$

5.10 problem 26

Internal problem ID [5332]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 26.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'^2 - yy' - y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

 $\label{eq:decomposition} \\ \mbox{dsolve}(\mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x})^2-\mbox{y}(\mbox{x})*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})-\mbox{y}(\mbox{x})=0,\\ \mbox{y}(\mbox{x}),\mbox{singsol=all}) \\$

$$y = 0$$

$$y = \frac{\left(\text{LambertW}\left(\frac{x \, e}{c_1}\right) - 1\right)^2 x}{\text{LambertW}\left(\frac{x \, e}{c_1}\right)}$$

Time used: 2.255 (sec). Leaf size: 158

DSolve $[x*y'[x]^2-y[x]*y'[x]-y[x]==0,y[x],x$, IncludeSingularSolutions -> True]

$$Solve \left[-\frac{y(x)}{4x} + \frac{1}{4}\sqrt{\frac{y(x)}{x}}\sqrt{\frac{y(x)}{x} + 4} - \log\left(\sqrt{\frac{y(x)}{x} + 4} - \sqrt{\frac{y(x)}{x}}\right) = -\frac{\log(x)}{2} + c_1, y(x) \right]$$

$$Solve \left[\frac{1}{4}\left(\frac{y(x)}{x} + \sqrt{\frac{y(x)}{x}}\sqrt{\frac{y(x)}{x} + 4} - 4\log\left(\sqrt{\frac{y(x)}{x} + 4} - \sqrt{\frac{y(x)}{x}}\right) \right) = \frac{\log(x)}{2} + c_1, y(x) \right]$$

$$+ c_1, y(x)$$

$$y(x) \to 0$$

5.11 problem 27

Internal problem ID [5333]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 27.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y - 2y'x - y^2{y'}^3 = 0$$

✓ Solution by Maple

Time used: 0.485 (sec). Leaf size: 107

 $dsolve(y(x)=2*x*diff(y(x),x)+y(x)^2*diff(y(x),x)^3,y(x), singsol=all)$

$$y = -\frac{2 \cdot 2^{\frac{1}{4}} 3^{\frac{1}{4}} (-x^3)^{\frac{1}{4}}}{3}$$

$$y = \frac{2 \cdot 2^{\frac{1}{4}} 3^{\frac{1}{4}} (-x^3)^{\frac{1}{4}}}{3}$$

$$y = -\frac{2i \cdot 2^{\frac{1}{4}} 3^{\frac{1}{4}} (-x^3)^{\frac{1}{4}}}{3}$$

$$y = \frac{2i \cdot 2^{\frac{1}{4}} 3^{\frac{1}{4}} (-x^3)^{\frac{1}{4}}}{3}$$

$$y = 0$$

$$y = \sqrt{c_1^3 + 2c_1 x}$$

$$y = -\sqrt{c_1^3 + 2c_1 x}$$

Time used: 0.111 (sec). Leaf size: 119

 $DSolve[y[x] == 2*x*y'[x] + y[x]^2*y'[x]^3, y[x], x, IncludeSingularSolutions -> True]$

$$y(x) \to -\sqrt{2c_1x + c_1^3}$$

$$y(x) \to \sqrt{2c_1x + c_1^3}$$

$$y(x) \to (-1 - i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

$$y(x) \to (1 - i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

$$y(x) \to (-1 + i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

$$y(x) \to (1 + i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

5.12 problem 28

Internal problem ID [5334]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 28.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$y'^2 - y'x - y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 77

 $\label{eq:diff} dsolve(diff(y(x),x)^2-x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$\frac{c_1}{\sqrt{2x - 2\sqrt{x^2 + 4y}}} + \frac{2x}{3} + \frac{\sqrt{x^2 + 4y}}{3} = 0$$

$$\frac{c_1}{\sqrt{2x+2\sqrt{x^2+4y}}} + \frac{2x}{3} - \frac{\sqrt{x^2+4y}}{3} = 0$$

Time used: 60.129 (sec). Leaf size: 1003

DSolve[$y'[x]^2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True$]

$$\begin{split} y(x) & \to \frac{\left(x^2 + \sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}\right)^2 + 8e^{3c_1}x}}{4\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}}} \\ y(x) & \to \frac{1}{8}\left(4x^2 - \frac{i\left(\sqrt{3} - i\right)x(x^3 + 8e^{3c_1}\right)}{\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}}} \right. \\ & \quad + i\left(\sqrt{3} + i\right)\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}} \\ & \quad + i\left(\sqrt{3} + i\right)x(x^3 + 8e^{3c_1}\right) \\ y(x) & \to \frac{1}{8}\left(4x^2 + \frac{i\left(\sqrt{3} + i\right)x(x^3 + 8e^{3c_1}\right)}{\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}}} \right. \\ & \quad - \left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}} \\ & \quad - \left(1 + i\sqrt{3}\right)\sqrt[3]{-x^6 + 20e^{3c_1}x^3 + 8\sqrt{e^{3c_1}\left(-x^3 + e^{3c_1}\right)^3} + 8e^{6c_1}}} \\ y(x) & \quad \rightarrow \frac{2\sqrt[3]{2}x^4 + 2^{2/3}\left(-2x^6 - 10e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}\right)}{8\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}} \\ y(x) & \rightarrow \frac{1}{16}\left(8x^2 + \frac{2\sqrt[3]{2}\left(1 + i\sqrt{3}\right)x(-x^3 + 2e^{3c_1}\right)}{\sqrt[3]{-2x^6 - 10e^{3c_1}x^3} + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}}} \\ & \quad + i2^{2/3}\left(\sqrt{3} + i\right)\sqrt[3]{-2x^6 - 10e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}} \\ & \quad - 2^{2/3}\left(1 + i\sqrt{3}\right)\sqrt[3]{-2x^6 - 10e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}} \\ & \quad - 2^{2/3}\left(1 + i\sqrt{3}\right)\sqrt[3]{-2x^6 - 10e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}} \\ & \quad - 2^{2/3}\left(1 + i\sqrt{3}\right)\sqrt[3]{-2x^6 - 10e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}} \\ & \quad - 2^{2/3}\left(1 + i\sqrt{3}\right)\sqrt[3]{-2x^6 - 10e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}}} \\ & \quad - 2^{2/3}\left(1 + i\sqrt{3}\right)\sqrt[3]{-2x^6 - 10e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}} \\ & \quad - 2^{2/3}\left(1 + i\sqrt{3}\right)\sqrt[3]{-2x^6 - 10e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}} \\ & \quad + i\sqrt{2}\left(1 + i\sqrt{3}\right)\sqrt[3]{-2x^6 - 10e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^3} + e^{6c_1}} \\ & \quad + i\sqrt{2}\left(1 + i\sqrt{3}\right)\sqrt[3]{-2x^6 - 10e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(4x^3 + e^{3c_1}\right)^$$

5.13 problem 29

Internal problem ID [5335]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 29.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$y - (1 + y')x - {y'}^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

 $dsolve(y(x)=(1+diff(y(x),x))*x+diff(y(x),x)^2,y(x), singsol=all)$

$$y = \left(\text{LambertW}\left(\frac{c_1 e^{\frac{x}{2} - 1}}{2}\right) - \frac{x}{2} + 2\right) x + \left(\text{LambertW}\left(\frac{c_1 e^{\frac{x}{2} - 1}}{2}\right) - \frac{x}{2} + 1\right)^2$$

✓ Solution by Mathematica

Time used: 1.048 (sec). Leaf size: 177

DSolve[y[x]==(1+y'[x])*x+y'[x]^2,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[-\sqrt{x^2 + 4y(x) - 4x} + 2\log\left(\sqrt{x^2 + 4y(x) - 4x} - x + 2\right) - 2\log\left(-x\sqrt{x^2 + 4y(x) - 4x} + x^2 + 4y(x) - 2x - 4\right) + x = c_1, y(x) \right]$$
Solve
$$\left[-4\operatorname{arctanh}\left(\frac{(x-5)\sqrt{x^2 + 4y(x) - 4x} - x^2 - 4y(x) + 7x - 6}{(x-3)\sqrt{x^2 + 4y(x) - 4x} - x^2 - 4y(x) + 5x - 2}\right) + \sqrt{x^2 + 4y(x) - 4x} + x = c_1, y(x) \right]$$

5.14 problem 30

Internal problem ID [5336]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 30.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y - 2y' - \sqrt{{y'}^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 221

 $dsolve(y(x)=2*diff(y(x),x)+sqrt(1+diff(y(x),x)^2),y(x), singsol=all)$

$$x + \frac{\sqrt{(y+1)^2 - 2y + 2}}{2} - \operatorname{arcsinh}\left(\frac{\sqrt{3}y}{3}\right)$$

$$- \operatorname{arctanh}\left(\frac{6 - 2y}{4\sqrt{(y+1)^2 - 2y + 2}}\right) - \frac{\sqrt{(y-1)^2 + 2y + 2}}{2}$$

$$+ \operatorname{arctanh}\left(\frac{6 + 2y}{4\sqrt{(y-1)^2 + 2y + 2}}\right) - \ln(y-1) - \ln(y+1) - c_1 = 0$$

$$x - \frac{\sqrt{(y+1)^2 - 2y + 2}}{2} + \operatorname{arcsinh}\left(\frac{\sqrt{3}y}{3}\right)$$

$$+ \operatorname{arctanh}\left(\frac{6 - 2y}{4\sqrt{(y+1)^2 - 2y + 2}}\right) + \frac{\sqrt{(y-1)^2 + 2y + 2}}{2}$$

$$- \operatorname{arctanh}\left(\frac{6 + 2y}{4\sqrt{(y-1)^2 + 2y + 2}}\right) - \ln(y-1) - \ln(y+1) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 60.301 (sec). Leaf size: 4821

 $\label{eq:DSolve} DSolve[y[x] == 2*y'[x] + Sqrt[1+y'[x]^2], y[x], x, IncludeSingularSolutions \rightarrow True]$

Too large to display

5.15 problem 31

Internal problem ID [5337]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 9. Equations of first order and higher degree. Supplemetary problems.

Page 65

Problem number: 31.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y{y'}^2 - y'x + 3y = 0$$

/

Solution by Maple

Time used: 2.609 (sec). Leaf size: 153

 $\label{eq:decomposition} \\ \mbox{dsolve}(\mbox{y}(\mbox{x})*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})^2-\mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x})+3*\mbox{y}(\mbox{x})=0,\\ \mbox{y}(\mbox{x}),\mbox{singsol=all}) \\$

$$=0$$

$$\ln\left(x\right) - \frac{\operatorname{arctanh}\left(\frac{1}{\sqrt{\frac{x^2 - 12y^2}{x^2}}}\right)}{4} + \frac{5 \operatorname{arctanh}\left(\frac{\sqrt{\frac{x^2 - 12y^2}{x^2}}}{5}\right)}{4} + \frac{5 \ln\left(\frac{2x^2 + y^2}{x^2}\right)}{8} - \frac{\ln\left(\frac{y}{x}\right)}{4} - c_1 = 0$$

$$\ln\left(x\right) + \frac{\operatorname{arctanh}\left(\frac{1}{\sqrt{\frac{x^2-12y^2}{x^2}}}\right)}{4} - \frac{5 \operatorname{arctanh}\left(\frac{\sqrt{\frac{x^2-12y^2}{x^2}}}{5}\right)}{4} + \frac{5 \ln\left(\frac{2x^2+y^2}{x^2}\right)}{8} - \frac{\ln\left(\frac{y}{x}\right)}{4} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 60.281 (sec). Leaf size: 1131

DSolve[$y[x]*y'[x]^2-x*y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \rightarrow -\sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$y(x) \rightarrow \sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$-\sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$y(x) \rightarrow \sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$-\sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$y(x) \rightarrow \sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$-\sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$\rightarrow \sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$-\sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$-\sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$-\sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$-\sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$-\sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$-\sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

$$-\sqrt{\text{Root}} \left[62208\#1^5 + 622080\#1^4x^2 + \#1^3 \left(2488320x^4 - 864e^{8c_1}\right) + \#1^2 \left(4976640x^6 + 16416e^{8c_1}x^2\right) + y(x)\right]$$

6 Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74

0.1	problem 10	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	roc
6.2	problem 11																																				151
6.3	problem 12																																				153
6.4	problem 13																																				154
6.5	problem 14																																				155
6.6	problem 15																																				158
6.7	problem 16																																				160
6.8	problem 17																																				163
6.9	problem 18																																				164
6.10	problem 19																																				165

6.1 problem 10

Internal problem ID [5338]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74

Problem number: 10.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y - y'x + 2y'^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(y(x)=diff(y(x),x)*x-2*diff(y(x),x)^2,y(x), singsol=all)$

$$y = \frac{x^2}{8}$$
$$y = -2c_1^2 + c_1 x$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 25

 $DSolve[y[x] == y'[x] * x - 2 * y'[x]^2, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to c_1(x - 2c_1)$$

$$y(x) \to \frac{x^2}{8}$$

6.2 problem 11

Internal problem ID [5339]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74 Problem number: 11.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$y^2y'^2 + 3y'x - y = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 119

 $dsolve(y(x)^2*diff(y(x),x)^2+3*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y = \frac{(-18x^2)^{\frac{1}{3}}}{2}$$

$$y = -\frac{(-18x^2)^{\frac{1}{3}}}{4} - \frac{i\sqrt{3}(-18x^2)^{\frac{1}{3}}}{4}$$

$$y = -\frac{(-18x^2)^{\frac{1}{3}}}{4} + \frac{i\sqrt{3}(-18x^2)^{\frac{1}{3}}}{4}$$

$$y = 0$$

$$y = \text{RootOf}\left(-\ln(x) + \int^{-Z} -\frac{3(4_a^3 - 3\sqrt{4_a^3 + 9} + 9)}{2_a(4_a^3 + 9)}d_a + c_1\right)x^{\frac{2}{3}}$$

✓ Solution by Mathematica

Time used: 0.597 (sec). Leaf size: 239

 $DSolve[y[x]^2*y'[x]^2+3*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{\frac{c_1}{3}} \sqrt[3]{-3x + e^{c_1}}$$

$$y(x) \to -\sqrt[3]{-1} e^{\frac{c_1}{3}} \sqrt[3]{-3x + e^{c_1}}$$

$$y(x) \to (-1)^{2/3} e^{\frac{c_1}{3}} \sqrt[3]{-3x + e^{c_1}}$$

$$y(x) \to e^{\frac{c_1}{3}} \sqrt[3]{3x + e^{c_1}}$$

$$y(x) \to -\sqrt[3]{-1} e^{\frac{c_1}{3}} \sqrt[3]{3x + e^{c_1}}$$

$$y(x) \to (-1)^{2/3} e^{\frac{c_1}{3}} \sqrt[3]{3x + e^{c_1}}$$

$$y(x) \to 0$$

$$y(x) \to -\left(-\frac{3}{2}\right)^{2/3} x^{2/3}$$

$$y(x) \to -\left(\frac{3}{2}\right)^{2/3} x^{2/3}$$

$$y(x) \to \frac{\sqrt[3]{-1} 3^{2/3} x^{2/3}}{2^{2/3}}$$

6.3 problem 12

Internal problem ID [5340]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74

Problem number: 12.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'^2 - 2yy' = -4x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

 $dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+4*x=0,y(x), singsol=all)$

$$y = -2x$$

$$y = 2x$$

$$y = -\frac{\left(-\frac{x^2}{c_1^2} - 4\right)c_1}{2}$$

✓ Solution by Mathematica

Time used: 0.271 (sec). Leaf size: 43

 $DSolve[x*y'[x]^2-2*y[x]*y'[x]+4*x==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -2x \cosh(-\log(x) + c_1)$$

$$y(x) \rightarrow -2x \cosh(\log(x) + c_1)$$

$$y(x) \rightarrow -2x$$

$$y(x) \to 2x$$

6.4 problem **13**

Internal problem ID [5341]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74

Problem number: 13.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[homogeneous, 'class A'], rational, dAlembert]

$$xy'^2 - 2yy' + 2y = -x$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 36

 $dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+x+2*y(x)=0,y(x), singsol=all)$

$$y = -\frac{\left(\frac{(x+c_1)^2}{c_1^2} + 1\right)x}{-\frac{2(x+c_1)}{c_1} + 2}$$
$$y = c_1 x$$

✓ Solution by Mathematica

Time used: 0.153 (sec). Leaf size: 78

 $DSolve[x*y'[x]^2-2*y[x]*y'[x]+x+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{1}{2}e^{-c_1}x^2 + x - e^{c_1}$$

$$y(x) \to -e^{c_1}x^2 + x - \frac{e^{-c_1}}{2}$$

$$y(x) \to x - \sqrt{2}x$$

$$y(x) \to \left(1 + \sqrt{2}\right)x$$

6.5 problem 14

Internal problem ID [5342]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74

Problem number: 14.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$(3y-1)^2 y'^2 - 4y = 0$$

Solution by Maple

y

Time used: 0.031 (sec). Leaf size: 689

 $dsolve((3*y(x)-1)^2*diff(y(x),x)^2=4*y(x),y(x), singsol=all)$

$$y = 0$$

$$y$$

$$= \left(\frac{\left(108c_1 - 108x + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 - 12}\right)^{\frac{1}{3}}}{6} + \frac{2}{\left(108c_1 - 108x + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 - 12}\right)^{\frac{1}{3}}}\right)}$$

$$= \left(-\frac{\left(\frac{108c_1 - 108x + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 - 12}\right)^{\frac{1}{3}}}{12} - \frac{1}{\left(108c_1 - 108x + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 - 12}\right)^{\frac{1}{3}}}\right)}$$

$$= \left(-\frac{\left(108c_1 - 108x + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 - 12}\right)^{\frac{1}{3}}}{12} - \frac{1}{\left(108c_1 - 108x + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 + 12}\right)^{\frac{1}{3}}}\right)^{\frac{1}{3}}} - \frac{1}{\left(108c_1 - 108x + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 + 12}\right)^{\frac{1}{3}}}\right)^{\frac{1}{3}}} - \frac{1}{\left(108c_1 - 108x + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 + 12}\right)^{\frac{1}{3}}}\right)^{\frac{1}{3}}} - \frac{1}{\left(108c_1 - 108x + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 + 12}\right)^{\frac{1}{3}}}\right)^{\frac{1}{3}}} - \frac{1}{\left(108c_1 - 108x + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 + 12}\right)^{\frac{1}{3}}}\right)^{\frac{1}{3}}}$$

$$= \left(\frac{\left(108x - 108c_1 + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 - 12}\right)^{\frac{1}{3}}}{6} + \frac{2}{\left(108x - 108c_1 + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 - 12}\right)^{\frac{1}{3}}}\right)^{\frac{1}{3}}}$$

$$= \left(-\frac{\left(108x - 108c_1 + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 - 12}\right)^{\frac{1}{3}}}{12} - \frac{1}{\left(108x - 108c_1 + 12\sqrt{81c_1^2 - 162c_1x + 81x^2 + 81x^2}\right)^{\frac{1}{3}}}\right)$$

$$= \left(-\frac{\left(108x - 108c_1 + 12\sqrt{81c_1^2 - 162c_1x^{\frac{156}{81}x^2 - 12}}\right)^{\frac{1}{3}}}{12} - \frac{1}{\left(108x - 108c_1 + 12\sqrt{81c_1^2 - 162c_1x + 81x^2}\right)^{\frac{1}{3}}}\right)^{\frac{1}{3}}} - \frac{1}{\left(108x - 108c_1 + 12\sqrt{81c_1^2 - 162c_1x + 81x^2}\right)^{\frac{1}{3}}}\right)^{\frac{1}{3}}} - \frac{1}{\left(108x - 108c_1 + 12\sqrt{81c_1^2 - 162c_1x + 81x^2}\right)^{\frac{1}{3}}}$$

✓ Solution by Mathematica

Time used: 4.472 (sec). Leaf size: 892

DSolve[(3*y[x]-1)^2*y'[x]^2==4*y[x],y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) & \rightarrow \frac{\left(2 + \sqrt[3]{108x^2 + 3\sqrt{3}\sqrt{(-2x + c_1)^2\left(108x^2 - 108c_1x - 16 + 27c_1^2\right)} - 108c_1x - 8 + 27c_1^2\right)^2}{6\sqrt[3]{108x^2 + 3\sqrt{3}\sqrt{(-2x + c_1)^2\left(108x^2 - 108c_1x - 16 + 27c_1^2\right)} - 108c_1x - 8 + 27c_1^2} \\ y(x) & \rightarrow \frac{1}{24} \left(2i\left(\sqrt{3} + i\right)^3\sqrt{108x^2 + 3\sqrt{3}\sqrt{(-2x + c_1)^2\left(108x^2 - 108c_1x - 16 + 27c_1^2\right)} - 108c_1x - 8 + 27c_1^2} + \frac{-8 - 8i\sqrt{3}}{\sqrt[3]{108x^2 + 3\sqrt{3}\sqrt{(-2x + c_1)^2\left(108x^2 - 108c_1x - 16 + 27c_1^2\right)}} - 108c_1x - 8 + 27c_1^2} + 16\right) \\ y(x) & \rightarrow \frac{1}{24} \left(-2\left(1 + i\sqrt{3}\right)^3\sqrt{108x^2 + 3\sqrt{3}\sqrt{(-2x + c_1)^2\left(108x^2 - 108c_1x - 16 + 27c_1^2\right)}} - 108c_1x - 8 + 27c_1^2} + \frac{-8 + 8i\sqrt{3}}{\sqrt[3]{108x^2 + 3\sqrt{3}\sqrt{(-2x + c_1)^2\left(108x^2 - 108c_1x - 16 + 27c_1^2\right)}} - 108c_1x - 8 + 27c_1^2} + 16\right) \\ y(x) & \rightarrow \frac{1}{24} \left(2 + \sqrt[3]{108x^2 + 3\sqrt{3}\sqrt{(2x + c_1)^2\left(108x^2 + 108c_1x - 16 + 27c_1^2\right)}} + 108c_1x - 8 + 27c_1^2} + 16\right) \\ y(x) & \rightarrow \frac{1}{24} \left(2i\left(\sqrt{3} + \frac{1}{24}\right)^3\sqrt{108x^2 + 3\sqrt{3}\sqrt{(2x + c_1)^2\left(108x^2 + 108c_1x - 16 + 27c_1^2\right)}} + 108c_1x - 8 + 27c_1^2}{8(1 + i\sqrt{3})} \right) \\ & \rightarrow \frac{1}{24} \left(2i\left(\sqrt{3} + \frac{1}{24}\right)^3\sqrt{108x^2 + 3\sqrt{3}\sqrt{(2x + c_1)^2\left(108x^2 + 108c_1x - 16 + 27c_1^2\right)}} + 108c_1x - 8 + 27c_1^2}{8(1 + i\sqrt{3})} \right) \\ & \rightarrow \frac{1}{24} \left(2i\left(\sqrt{3} + \frac{1}{24}\right)^3\sqrt{108x^2 + 3\sqrt{3}\sqrt{(2x + c_1)^2\left(108x^2 + 108c_1x - 16 + 27c_1^2\right)}} + 108c_1x - 8 + 27c_1^2}{8(1 + i\sqrt{3})} \\ & \rightarrow \frac{1}{24} \left(2i\left(\sqrt{3} + \frac{1}{24}\right)^3\sqrt{108x^2 + 3\sqrt{3}\sqrt{(2x + c_1)^2\left(108x^2 + 108c_1x - 16 + 27c_1^2\right)}} + 108c_1x - 8 + 27c_1^2}{8(1 + i\sqrt{3})} \right) \\ & \rightarrow \frac{1}{24} \left(2i\left(\sqrt{3} + \frac{1}{24}\right)^3\sqrt{108x^2 + 3\sqrt{3}\sqrt{(2x + c_1)^2\left(108x^2 + 108c_1x - 16 + 27c_1^2\right)}} + 108c_1x - 8 + 27c_1^2}{8(1 + i\sqrt{3})} \right) \\ & \rightarrow \frac{1}{24} \left(2i\left(\sqrt{3} + \frac{1}{24}\right)^3\sqrt{108x^2 + 3\sqrt{3}\sqrt{(2x + c_1)^2\left(108x^2 + 108c_1x - 16 + 27c_1^2\right)}} + 108c_1x - 8 + 27c_1^2}{8(1 + i\sqrt{3})} \right) \\ & \rightarrow \frac{1}{24} \left(2i\left(\sqrt{3} + \frac{1}{24}\right)^3\sqrt{108x^2 + 3\sqrt{3}\sqrt{(2x + c_1)^2\left(108x^2 + 108c_1x - 16 + 27c_1^2\right)}} + 108c_1x - 8 + 27c_1^2}{8(1 + i\sqrt{3})} \right) \\ & \rightarrow \frac{1}{24} \left(2i\left(\sqrt{3} + \frac{1}{24}\right)^3\sqrt{108x^2 + 3\sqrt{3}\sqrt{(2x + c_1)^2\left(108x^2 + 108c_1x - 16 + 27c_1^2\right)}} + 108c_1x - 8 + 27c_1^2}{8(1 + i\sqrt$$

6.6 problem 15

Internal problem ID [5343]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74

Problem number: 15.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y + y'x - x^4y'^2 = 0$$

✓ Solution by Maple

Time used: 0.25 (sec). Leaf size: 135

 $dsolve(y(x)=-x*diff(y(x),x)+x^4*diff(y(x),x)^2,y(x), singsol=all)$

$$y = -\frac{1}{4x^2}$$

$$y = \frac{-c_1(2ix - c_1) - c_1^2 - 2x^2}{2c_1^2x^2}$$

$$y = \frac{-c_1(-2ix - c_1) - c_1^2 - 2x^2}{2c_1^2x^2}$$

$$y = \frac{c_1(2ix + c_1) - 2x^2 - c_1^2}{2c_1^2x^2}$$

$$y = \frac{c_1(-2ix + c_1) - 2x^2 - c_1^2}{2c_1^2x^2}$$

✓ Solution by Mathematica

Time used: 0.498 (sec). Leaf size: 123

DSolve[$y[x] == -x*y'[x] + x^4*y'[x]^2, y[x], x, IncludeSingularSolutions -> True$]

Solve
$$\left[-\frac{x\sqrt{4x^2y(x)+1}\operatorname{arctanh}\left(\sqrt{4x^2y(x)+1}\right)}{\sqrt{4x^4y(x)+x^2}} - \frac{1}{2}\log(y(x)) = c_1, y(x) \right]$$
Solve
$$\left[\frac{x\sqrt{4x^2y(x)+1}\operatorname{arctanh}\left(\sqrt{4x^2y(x)+1}\right)}{\sqrt{4x^4y(x)+x^2}} - \frac{1}{2}\log(y(x)) = c_1, y(x) \right]$$

$$y(x) \to 0$$

6.7 problem 16

Internal problem ID [5344]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74

Problem number: 16.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$2y - {y'}^2 - 4y'x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 696

 $dsolve(2*y(x)=diff(y(x),x)^2+4*x*diff(y(x),x),y(x), singsol=all)$

$$y = \frac{\left(\frac{\left(12c_1 - 8x^3 + 4\sqrt{-12c_1x^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2x^2}{\left(12c_1 - 8x^3 + 4\sqrt{-12c_1x^3 + 9c_1^2}\right)^{\frac{1}{3}}} - x\right)^2}{2} + 2\left(\frac{\left(12c_1 - 8x^3 + 4\sqrt{-12c_1x^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2x^2}{\left(12c_1 - 8x^3 + 4\sqrt{-12c_1x^3 + 9c_1^2}\right)^{\frac{1}{3}}} - x\right)^2}{2} - x$$

$$\left(-\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{4}-\frac{x^{2}}{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}-x-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{i\sqrt{3}\left($$

$$+2\left(-\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{4}-\frac{x^{2}}{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}\right)$$

$$-x-\frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{2x^{2}}{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}\right)}{2}}{2}$$

$$= \frac{\left(-\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{4} - \frac{x^{2}}{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}} - x + \frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2} - \frac{x^{2}}{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}} - x + \frac{i\sqrt{3}\left(\frac{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}{2} - \frac{x^{2}}{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}} - \frac{1}{2}x^{2} - \frac{x^{2}}{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}} - \frac{x^{2}}{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{1}^{2}}\right)^{\frac{1}{3}}}} - \frac{x^{2}}{\left(12c_{1}-8x^{3}+4\sqrt{-12c_{1}x^{3}+9c_{$$

2

✓ Solution by Mathematica

Time used: 60.241 (sec). Leaf size: 1344

DSolve[2*y[x]==y'[x]^2+4*x*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) & \to \frac{1}{2} \left(-x^2 \right. \\ & + \frac{x(x^3 + 2\sqrt{2}e^{3c_1})}{\sqrt[3]{-x^6 + 5\sqrt{2}e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(-16\sqrt{2}x^9 + 24e^{3c_1}x^6 - 6\sqrt{2}e^{6c_1}x^3 + e^{9c_1}\right) + e^{6c_1}}} \\ & + \sqrt[3]{-x^6 + 5\sqrt{2}e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(-16\sqrt{2}x^9 + 24e^{3c_1}x^6 - 6\sqrt{2}e^{6c_1}x^3 + e^{9c_1}\right) + e^{6c_1}}} \\ y(x) & \to \frac{1}{4} \left(-2x^2 \right. \\ & - \frac{(1 + i\sqrt{3})x(x^3 + 2\sqrt{2}e^{3c_1})}{\sqrt[3]{-x^6 + 5\sqrt{2}e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(-16\sqrt{2}x^9 + 24e^{3c_1}x^6 - 6\sqrt{2}e^{6c_1}x^3 + e^{9c_1}\right) + e^{6c_1}} \\ & + i\left(\sqrt{3}x^6 + 5\sqrt{2}e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(-16\sqrt{2}x^9 + 24e^{3c_1}x^6 - 6\sqrt{2}e^{6c_1}x^3 + e^{9c_1}\right) + e^{6c_1}} \\ y(x) & \to \frac{1}{4} \left(-2x^2 \right. \\ & + \frac{i(\sqrt{3} + 16)2x(x^3 + 2\sqrt{2}e^{3c_1})}{\sqrt[3]{-x^6 + 5\sqrt{2}e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(-16\sqrt{2}x^9 + 24e^{3c_1}x^6 - 6\sqrt{2}e^{6c_1}x^3 + e^{9c_1}\right) + e^{6c_1}} \\ & + \frac{i(\sqrt{3} + 16)2x(x^3 + 2\sqrt{2}e^{3c_1})}{\sqrt[3]{-x^6 + 5\sqrt{2}e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(-16\sqrt{2}x^9 + 24e^{3c_1}x^6 - 6\sqrt{2}e^{6c_1}x^3 + e^{9c_1}\right) + e^{6c_1}}} \\ & + \frac{i(\sqrt{3} + 16)2x(x^3 + 2\sqrt{2}e^{3c_1})}{\sqrt[3]{-x^6 + 5\sqrt{2}e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(-16\sqrt{2}x^9 + 24e^{3c_1}x^6 - 6\sqrt{2}e^{6c_1}x^3 + e^{9c_1}\right) + e^{6c_1}}} \\ & + \frac{e^{3c_1}}{\sqrt[3]{-x^6 + 5\sqrt{2}e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(-16\sqrt{2}x^9 + 24e^{3c_1}x^6 - 6\sqrt{2}e^{6c_1}x^3 + e^{9c_1}\right) + e^{6c_1}}}}{\sqrt[3]{-x^6 + 5\sqrt{2}e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(-16\sqrt{2}x^9 + 24e^{3c_1}x^6 - 6\sqrt{2}e^{6c_1}x^3 + e^{9c_1}\right) + e^{6c_1}}} \\ & + \frac{e^{3c_1}}{\sqrt[3]{-x^6 + 5\sqrt{2}e^{3c_1}x^3 + \sqrt{e^{3c_1}\left(-16\sqrt{2}x^9 + 24e^{3c_1}x^6 - 6\sqrt{2}e^{6c_1}x^3 + e^{9c_1}\right) + e^{6c_1}}}}$$

6.8 problem 17

Internal problem ID [5345]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74

Problem number: 17.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y(3-4y)^2y'^2+4y=4$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 58

 $dsolve(y(x)*(3-4*y(x))^2*diff(y(x),x)^2=4*(1-y(x)),y(x), singsol=all)$

$$y = 1$$

$$x + \frac{y^{2}(y-1)}{\sqrt{-y(y-1)}} - c_{1} = 0$$

$$x - \frac{y^{2}(y-1)}{\sqrt{-y(y-1)}} - c_{1} = 0$$

✓ Solution by Mathematica

Time used: 60.264 (sec). Leaf size: 3751

 $DSolve[y[x]*(3-4*y[x])^2*y'[x]^2==4*(1-y[x]),y[x],x,IncludeSingularSolutions \rightarrow True]$

Too large to display

6.9 problem 18

Internal problem ID [5346]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74

Problem number: 18.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y'^3 - 4y'x^4 + 8yx^3 = 0$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 26

 $dsolve(diff(y(x),x)^3-4*x^4*diff(y(x),x)+8*x^3*y(x)=0,y(x), singsol=all)$

$$y = \frac{x^2}{2c_1} - \frac{1}{8c_1^3}$$
$$y = c_1 x^3$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]^3-4*x^4*y'[x]+8*x^3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

Timed out

6.10 problem 19

Internal problem ID [5347]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74 Problem number: 19.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$(y'^{2} + 1)(x - y)^{2} - (x + yy')^{2} = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 106

 $dsolve((diff(y(x),x)^2+1)*(x-y(x))^2=(x+y(x)*diff(y(x),x))^2,y(x), singsol=all)$

$$y = 0$$

$$y = \text{RootOf}\left(-2\ln(x) - \left(\int^{-Z} \frac{2_a^2 + \sqrt{2_a^3 - 4_a^2 + 2_a}}{_a\left(_a^2 + 1\right)} d_a\right) + 2c_1\right) x$$

$$y = \text{RootOf}\left(-2\ln(x) + \int^{-Z} \frac{\sqrt{2}\sqrt{_a\left(_a - 1\right)^2} - 2_a^2}{_a\left(_a^2 + 1\right)} d_a + 2c_1\right) x$$

✓ Solution by Mathematica

Time used: 4.36 (sec). Leaf size: 167

 $DSolve[(y'[x]^2+1)*(x-y[x])^2==(x+y[x]*y'[x])^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) & \to -\sqrt{-x\left(x+2e^{\frac{c_1}{2}}\right)} - e^{\frac{c_1}{2}} \\ y(x) & \to \sqrt{-x\left(x+2e^{\frac{c_1}{2}}\right)} - e^{\frac{c_1}{2}} \\ y(x) & \to e^{\frac{c_1}{2}} - \sqrt{x\left(-x+2e^{\frac{c_1}{2}}\right)} \\ y(x) & \to \sqrt{x\left(-x+2e^{\frac{c_1}{2}}\right)} + e^{\frac{c_1}{2}} \\ y(x) & \to -\sqrt{-x^2} \\ y(x) & \to \sqrt{-x^2} \end{split}$$

7 Chapter 12. Linear equations of order n. Supplemetary problems. Page 81

7.1	problem 10	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	168
7.2	problem 11																																169
7.3	problem 12																																170
7.4	problem 13																																171
7.5	problem 14																																172
7.6	problem 15																																173
7.7	problem 16																																174
7.8	problem 17																																175
7.9	problem 18																																176
7.10	problem 19																																177

7.1 problem 10

Internal problem ID [5348]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 12. Linear equations of order n. Supplemetary problems. Page 81

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+diff(y(x),x)-6*y(x)=0,y(x), singsol=all)

$$y = c_1 e^{2x} + c_2 e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 22

 $DSolve[y''[x]+y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-3x} (c_2 e^{5x} + c_1)$$

7.2 problem 11

Internal problem ID [5349]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 12. Linear equations of order n. Supplemetary problems. Page 81

Problem number: 11.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 6y'' + 12y' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+12*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)

$$y = c_1 e^{2x} + x e^{2x} c_2 + x^2 e^{2x} c_3$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 23

 $DSolve[y'''[x]-6*y''[x]+12*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{2x}(x(c_3x + c_2) + c_1)$$

7.3 problem 12

Internal problem ID [5350]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 12. Linear equations of order n. Supplemetary problems. Page 81

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 3y' + 2y = e^{5x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=exp(5*x),y(x), singsol=all)

$$y = \left(\frac{e^{4x}}{12} + c_1 e^x + c_2\right) e^x$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 29

DSolve[y''[x]-3*y'[x]+2*y[x]==Exp[5*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{5x}}{12} + c_1 e^x + c_2 e^{2x}$$

7.4 problem 13

Internal problem ID [5351]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 12. Linear equations of order n. Supplemetary problems. Page 81

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = \cos(x) x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)+9*y(x)=x*cos(x),y(x), singsol=all)

$$y = c_2 \sin(3x) + c_1 \cos(3x) + \frac{\sin(x)}{32} + \frac{x \cos(x)}{8}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 32

DSolve[y''[x]+9*y[x]==x*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{32}(\sin(x) + 4x\cos(x)) + c_1\cos(3x) + c_2\sin(3x)$$

7.5 problem 14

Internal problem ID [5352]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 12. Linear equations of order n. Supplemetary problems. Page 81

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' - 3y'x + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)$

$$y = c_1 x^2 + \ln\left(x\right) x^2 c_2$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 18

DSolve $[x^2*y''[x]-3*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to x^2(2c_2\log(x) + c_1)$$

7.6 problem 15

Internal problem ID [5353]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 12. Linear equations of order n. Supplemetary problems. Page 81

Problem number: 15.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, with linear symmetries]]

$$x^3y''' + y'x - y = 3x^4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(x^3*diff(y(x),x$3)+x*diff(y(x),x)-y(x)=3*x^4,y(x), singsol=all)$

$$y = \frac{x^4}{9} + c_1 x + c_2 \ln(x) x + c_3 \ln(x)^2 x$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 31

DSolve $[x^3*y'''[x]+x*y'[x]-y[x]==3*x^4,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{x^4}{9} + c_1 x + c_3 x \log^2(x) + c_2 x \log(x)$$

7.7 problem 16

Internal problem ID [5354]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 12. Linear equations of order n. Supplemetary problems. Page 81

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$xy'' - y' + 4yx^3 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

 $dsolve(x*diff(y(x),x$2)-diff(y(x),x)+4*x^3*y(x)=0,y(x), singsol=all)$

$$y = c_1 \sin\left(x^2\right) + c_2 \cos\left(x^2\right)$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 20

 $DSolve[x*y''[x]-y'[x]+4*x^3*y[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to c_1 \cos(x^2) + c_2 \sin(x^2)$$

7.8 problem 17

Internal problem ID [5355]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 12. Linear equations of order n. Supplemetary problems. Page 81

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

$$y'' + y'^2 = -1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $dsolve(diff(y(x),x$2)+diff(y(x),x)^2+1=0,y(x), singsol=all)$

$$y = \ln\left(-\frac{c_1 \tan(x) - c_2}{\sec(x)}\right)$$

✓ Solution by Mathematica

Time used: 1.861 (sec). Leaf size: 16

DSolve[y''[x]+y'[x]^2+1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \log(\cos(x - c_1)) + c_2$$

7.9 problem 18

Internal problem ID [5356]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 12. Linear equations of order n. Supplemetary problems. Page 81

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [

$$yy'' + {y'}^2 = 2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

 $dsolve(y(x)*diff(y(x),x$2)+diff(y(x),x)^2=2,y(x), singsol=all)$

$$y = \sqrt{-2c_1x + 2x^2 + 2c_2}$$
$$y = -\sqrt{-2c_1x + 2x^2 + 2c_2}$$

✓ Solution by Mathematica

Time used: 6.295 (sec). Leaf size: 101

DSolve[y[x]*y''[x]+y'[x]^2==2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sqrt{4(x+c_2)^2 - e^{2c_1}}}{\sqrt{2}}$$
$$y(x) \to \sqrt{2(x+c_2)^2 - \frac{e^{2c_1}}{2}}$$
$$y(x) \to -\sqrt{2}\sqrt{(x+c_2)^2}$$
$$y(x) \to \sqrt{2}\sqrt{(x+c_2)^2}$$

7.10 problem 19

Internal problem ID [5357]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 12. Linear equations of order n. Supplemetary problems. Page 81

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],

$$yy'' + y'^3 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve(y(x)*diff(y(x),x$2)+diff(y(x),x)^3=0,y(x), singsol=all)$

$$y = 0$$

 $y = c_1$
 $y = e^{\text{LambertW}((x+c_2)e^{c_1}e^{-1})-c_1+1}$

✓ Solution by Mathematica

Time used: 60.091 (sec). Leaf size: 26

DSolve[y[x]*y''[x]+y'[x]^3==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x + c_2}{W(e^{-1-c_1}(x + c_2))}$$

8 Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary problems. Page 86

8.1	problem 16		•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	17	9
8.2	problem 17																											18	C
8.3	problem 18																											18	1
8.4	problem 19																											18	2
8.5	problem 20																											18	3
8.6	$problem\ 21$																											18	4
8.7	problem 22																											18	5
8.8	problem 23																											18	6
8.9	problem 24																											18	7
8.10	problem 25																											18	8

8.1 problem 16

Internal problem ID [5358]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary

problems. Page 86

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' - 15y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)-15*y(x)=0,y(x), singsol=all)

$$y = c_1 e^{3x} + c_2 e^{-5x}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 22

 $DSolve[y''[x]+2*y'[x]-15*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-5x} (c_2 e^{8x} + c_1)$$

8.2 problem 17

Internal problem ID [5359]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary

problems. Page 86

Problem number: 17.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' - 2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)-2*diff(y(x),x)=0,y(x), singsol=all)

$$y = c_1 + e^{-2x}c_2 + e^x c_3$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 25

 $DSolve[y'''[x]+y''[x]-2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{2}c_1e^{-2x} + c_2e^x + c_3$$

8.3 problem 18

Internal problem ID [5360]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary

problems. Page 86

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 6y' + 9y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)

$$y = c_1 e^{-3x} + c_2 x e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 18

DSolve[y''[x]+6*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x}(c_2x + c_1)$$

8.4 problem 19

Internal problem ID [5361]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary

problems. Page 86

Problem number: 19.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 6y''' + 12y'' - 8y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve(diff(y(x),x\$4)-6*diff(y(x),x\$3)+12*diff(y(x),x\$2)-8*diff(y(x),x)=0,y(x), singsol=all)

$$y = c_1 + c_2 e^{2x} + x e^{2x} c_3 + x^2 e^{2x} c_4$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 43

DSolve[y'''[x]-6*y'''[x]+12*y''[x]-8*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}e^{2x}(c_3(2x^2 - 2x + 1) + c_2(2x - 1) + 2c_1) + c_4$$

8.5 problem 20

Internal problem ID [5362]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary

problems. Page 86

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 13y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+13*y(x)=0,y(x), singsol=all)

$$y = c_1 e^{2x} \sin(3x) + c_2 e^{2x} \cos(3x)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 26

DSolve[y''[x]-4*y'[x]+13*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x}(c_2\cos(3x) + c_1\sin(3x))$$

8.6 problem 21

Internal problem ID [5363]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary

problems. Page 86

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 25y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)+25*y(x)=0,y(x), singsol=all)

$$y = c_1 \sin(5x) + c_2 \cos(5x)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 20

DSolve[y''[x]+25*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \cos(5x) + c_2 \sin(5x)$$

8.7 problem 22

Internal problem ID [5364]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary

problems. Page 86

Problem number: 22.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y'' + 9y' - 9y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)+9*diff(y(x),x)-9*y(x)=0,y(x), singsol=all)

$$y = c_1 e^x + c_2 \sin(3x) + c_3 \cos(3x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

$$y(x) \to c_3 e^x + c_1 \cos(3x) + c_2 \sin(3x)$$

8.8 problem 23

Internal problem ID [5365]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary

problems. Page 86

Problem number: 23.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 4y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$4)+4*diff(y(x),x\$2)=0,y(x), singsol=all)

$$y = c_1 + c_2 x + c_3 \sin(2x) + c_4 \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 32

DSolve[y'''[x]+4*y''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_4 x - \frac{1}{4}c_1 \cos(2x) - \frac{1}{4}c_2 \sin(2x) + c_3$$

8.9 problem 24

Internal problem ID [5366]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary

problems. Page 86

Problem number: 24.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 6y''' + 13y'' - 12y' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$4)-6*diff(y(x),x\$3)+13*diff(y(x),x\$2)-12*diff(y(x),x)+4*y(x)=0,y(x), sing(x,y)+2*y(x,y)=0,y(x), sing(x,y)+2*y(x,y)=0,y(x), sing(x,y)+2*y(x)=0,y(x),y(x)=0,y(x),y(x)=0,y(x)

$$y = c_1 e^{2x} + x e^{2x} c_2 + e^x c_3 + c_4 e^x x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 29

$$y(x) \rightarrow e^{x}(c_3e^{x} + x(c_4e^{x} + c_2) + c_1)$$

8.10 problem 25

Internal problem ID [5367]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary

problems. Page 86

Problem number: 25.

ODE order: 6. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(6)} + 9y'''' + 24y'' + 16y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

dsolve(diff(y(x),x\$6)+9*diff(y(x),x\$4)+24*diff(y(x),x\$2)+16*y(x)=0,y(x), singsol=all)

$$y = c_1 \sin(x) + c_2 \cos(x) + c_3 \sin(2x) + c_4 \cos(2x) + c_5 \sin(2x) + c_6 \cos(2x) + c_$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 40

DSolve[y''''[x]+9*y'''[x]+24*y''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (c_2x + c_1)\cos(2x) + c_6\sin(x) + \cos(x)(2(c_4x + c_3)\sin(x) + c_5)$$

9 Chapter 14. Linear equations with constant coefficients. Supplemetary problems. Page 92

9.1	problem 11																		190
9.2	problem 12																		191
9.3	problem 13																		192
9.4	problem 14																		193
9.5	problem 15																		194
9.6	problem 16																		195
9.7	problem 17																		196
9.8	problem 18																		197
9.9	problem 19																		198
9.10	problem 20																		199
9.11	problem 21																		200
0 12	problem 22																		201

9.1 problem 11

Internal problem ID [5368]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 14. Linear equations with constant coefficients. Supplemetary problems.

Page 92

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 3y = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+3*y(x)=1,y(x), singsol=all)

$$y = c_2 e^{3x} + c_1 e^x + \frac{1}{3}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 23

 $DSolve[y''[x]-4*y'[x]+3*y[x]==1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^x + c_2 e^{3x} + \frac{1}{3}$$

9.2 problem 12

Internal problem ID [5369]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 14. Linear equations with constant coefficients. Supplemetary problems.

Page 92

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' = 5$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)=5,y(x), singsol=all)

$$y = \frac{c_1 e^{4x}}{4} - \frac{5x}{4} + c_2$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 24

DSolve[y''[x]-4*y'[x]==5,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{5x}{4} + \frac{1}{4}c_1e^{4x} + c_2$$

9.3 problem 13

Internal problem ID [5370]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 14. Linear equations with constant coefficients. Supplemetary problems.

Page 92

Problem number: 13.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 4y'' = 5$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$3)-4*diff(y(x),x\$2)=5,y(x), singsol=all)

$$y = \frac{c_1 e^{4x}}{16} - \frac{5x^2}{8} + c_2 x + c_3$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 30

DSolve[y'''[x]-4*y''[x]==5,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{5x^2}{8} + c_3x + \frac{1}{16}c_1e^{4x} + c_2$$

9.4 problem 14

Internal problem ID [5371]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 14. Linear equations with constant coefficients. Supplemetary problems.

Page 92

Problem number: 14.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(5)} - 4y''' = 5$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

dsolve(diff(y(x),x\$5)-4*diff(y(x),x\$3)=5,y(x), singsol=all)

$$y = -\frac{5x^3}{24} + \frac{c_1e^{2x}}{8} + \frac{c_3x^2}{2} - \frac{e^{-2x}c_2}{8} + c_4x + c_5$$

✓ Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 47

DSolve[y''''[x]-4*y'''[x]==5,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{5x^3}{24} + c_5x^2 + c_4x + \frac{1}{8}c_1e^{2x} - \frac{1}{8}c_2e^{-2x} + c_3$$

9.5 problem 15

Internal problem ID [5372]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 14. Linear equations with constant coefficients. Supplemetary problems.

Page 92

Problem number: 15.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 4y' = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$3)-4*diff(y(x),x)=x,y(x), singsol=all)

$$y = -\frac{x^2}{8} + \frac{c_1 e^{2x}}{2} - \frac{e^{-2x} c_2}{2} + c_3$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 37

DSolve[y'''[x]-4*y'[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{x^2}{8} + \frac{1}{2}c_1e^{2x} - \frac{1}{2}c_2e^{-2x} + c_3$$

9.6 problem 16

Internal problem ID [5373]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 14. Linear equations with constant coefficients. Supplemetary problems.

Page 92

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 6y' + 9y = e^{2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)-6*diff(y(x),x)+9*y(x)=exp(2*x),y(x), singsol=all)

$$y = c_1 x e^{3x} + c_2 e^{3x} + e^{2x}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 24

DSolve[y''[x]-6*y'[x]+9*y[x]==Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x}(1 + e^x(c_2x + c_1))$$

9.7 problem 17

Internal problem ID [5374]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 14. Linear equations with constant coefficients. Supplemetary problems.

Page 92

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' - 2y = -2x^2 + 2x + 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x$2)+diff(y(x),x)-2*y(x)=2*(1+x-x^2),y(x), singsol=all)$

$$y = c_1 e^x + e^{-2x} c_2 + x^2$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 23

 $DSolve[y''[x]+y'[x]-2*y[x]==2*(1+x-x^2),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2 + c_1 e^{-2x} + c_2 e^x$$

9.8 problem 18

Internal problem ID [5375]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 14. Linear equations with constant coefficients. Supplemetary problems.

Page 92

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = 4x e^x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)-y(x)=4*x*exp(x),y(x), singsol=all)

$$y = c_2 e^{-x} + c_1 e^x + (x - 1) x e^x$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 30

DSolve[y''[x]-y[x]==4*x*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x \left(x^2 - x + \frac{1}{2} + c_1\right) + c_2 e^{-x}$$

9.9 problem 19

Internal problem ID [5376]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 14. Linear equations with constant coefficients. Supplemetary problems.

Page 92

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = \sin(x)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(diff(y(x),x$2)-y(x)=sin(x)^2,y(x), singsol=all)$

$$y = c_2 e^{-x} + c_1 e^x + \frac{\cos(x)^2}{5} - \frac{3}{5}$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 30

 $DSolve[y''[x]-y[x]==Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{1}{10}(\cos(2x) - 5) + c_1 e^x + c_2 e^{-x}$$

9.10 problem 20

Internal problem ID [5377]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 14. Linear equations with constant coefficients. Supplemetary problems.

Page 92

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = \frac{1}{(1 + e^{-x})^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve(diff(y(x), x\$2)-y(x)=(1+exp(-x))^(-2),y(x), singsol=all)

$$y = c_2 e^{-x} + c_1 e^x + \frac{e^x}{2} - 1 + \ln(e^x + 1)e^{-x} + \frac{e^{-x}}{2}$$

✓ Solution by Mathematica

Time used: 0.085 (sec). Leaf size: 42

 $DSolve[y''[x]-y[x]==(1+Exp[-x])^{(-2)},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}e^{-x}(-2e^x + 2\log(e^x + 1) + 2c_1e^{2x} + 1 + 2c_2)$$

9.11 problem 21

Internal problem ID [5378]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 14. Linear equations with constant coefficients. Supplemetary problems.

Page 92

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \csc\left(x\right)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+y(x)=csc(x),y(x), singsol=all)

$$y = \sin(x) c_2 + \cos(x) c_1 - \ln(\csc(x)) \sin(x) - x \cos(x)$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 86

DSolve[y''[x]-y[x]==Csc[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \left(\frac{1}{2} + \frac{i}{2}\right) e^{ix} \left(\text{Hypergeometric2F1} \left(\frac{1}{2} - \frac{i}{2}, 1, \frac{3}{2} - \frac{i}{2}, e^{2ix} \right) + i \, \text{Hypergeometric2F1} \left(\frac{1}{2} + \frac{i}{2}, 1, \frac{3}{2} + \frac{i}{2}, e^{2ix} \right) \right) + c_1 e^x + c_2 e^{-x}$$

9.12 problem 22

Internal problem ID [5379]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 14. Linear equations with constant coefficients. Supplemetary problems.

Page 92

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3y' + 2y = \sin\left(e^{-x}\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=sin(exp(-x)),y(x), singsol=all)

$$y = (c_1 e^x - e^x \sin(e^{-x}) + c_2) e^x$$

✓ Solution by Mathematica

Time used: 0.085 (sec). Leaf size: 29

DSolve[y''[x]-3*y'[x]+2*y[x]==Sin[Exp[-x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x (-e^x \sin(e^{-x}) + c_2 e^x + c_1)$$

10 Chapter 15. Linear equations with constant coefficients (Variation of parameters). Supplemetary problems. Page 98

10.1 problem 10												•	•					203
10.2 problem 11																		204
10.3 problem 12																		205
10.4 problem 13																		206
10.5 problem 14																		207
10.6 problem 15																		208
10.7 problem 16																		209
10.8 problem 17																		210
10.9 problem 18																		211
10.10problem 19																		212
10.11 problem 20																		213
10.12 problem 21																		21/

10.1 problem 10

Internal problem ID [5380]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 15. Linear equations with constant coefficients (Variation of parameters).

Supplemetary problems. Page 98

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \csc\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+y(x)=csc(x),y(x), singsol=all)

$$y = \sin(x) c_2 + \cos(x) c_1 - \ln(\csc(x)) \sin(x) - x \cos(x)$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 24

DSolve[y''[x]+y[x]==Csc[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (-x + c_1)\cos(x) + \sin(x)(\log(\sin(x)) + c_2)$$

10.2 problem 11

Internal problem ID [5381]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 15. Linear equations with constant coefficients (Variation of parameters).

Supplemetary problems. Page 98

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = 4\sec(x)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

 $dsolve(diff(y(x),x\$2)+4*y(x)=4*sec(x)^2,y(x), singsol=all)$

 $y = c_2 \sin(2x) + c_1 \cos(2x) + (-8\cos(x)^2 + 4) \ln(\sec(x)) + 8\cos(x)\sin(x)x - 4\sin(x)^2$

✓ Solution by Mathematica

Time used: 0.075 (sec). Leaf size: 44

DSolve[y''[x]+4*y[x]==4*Sec[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2\sin(2x)\arctan(\tan(x)) + 2x\sin(2x) + c_2\sin(2x) + \cos(2x)(4\log(\cos(x)) + 2 + c_1) - 2$$

10.3 problem 12

Internal problem ID [5382]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 15. Linear equations with constant coefficients (Variation of parameters).

Supplemetary problems. Page 98

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 3y = \frac{1}{1 + e^{-x}}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 56

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+3*y(x)=1/(1+exp(-x)),y(x), singsol=all)

$$y = c_2 e^{3x} + c_1 e^x - \frac{e^{3x} \ln(e^x + 1)}{2} + \frac{e^{3x} \ln(e^x)}{2} + \frac{\ln(1 + e^{-x}) e^x}{2} + \frac{e^{2x}}{2} - \frac{e^x}{4}$$

✓ Solution by Mathematica

Time used: 0.077 (sec). Leaf size: 49

DSolve[y''[x]-4*y'[x]+3*y[x]==1/(1+Exp[-x]),y[x],x,IncludeSingularSolutions \rightarrow True]

$$y(x) \to \frac{1}{4}e^x \left(-4(e^{2x}-1)\operatorname{arctanh}(2e^x+1) + 2e^x + 4c_2e^{2x} - 1 + 4c_1\right)$$

10.4 problem 13

Internal problem ID [5383]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 15. Linear equations with constant coefficients (Variation of parameters).

Supplemetary problems. Page 98

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = \sin(e^{-x}) e^{-x} + \cos(e^{-x})$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$2)-y(x)=exp(-x)*sin(exp(-x))+cos(exp(-x)),y(x), singsol=all)

$$y = c_2 e^{-x} + c_1 e^x - 2\cos\left(\frac{e^{-x}}{2}\right) e^x \sin\left(\frac{e^{-x}}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.166 (sec). Leaf size: 31

DSolve[y''[x]-y[x]==Exp[-x]*Sin[Exp[-x]]+Cos[Exp[-x]],y[x],x,IncludeSingularSolutions -> Tru

$$y(x) \to -e^x \sin(e^{-x}) + c_1 e^x + c_2 e^{-x}$$

10.5 problem 14

Internal problem ID [5384]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 15. Linear equations with constant coefficients (Variation of parameters).

Supplemetary problems. Page 98

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = \frac{1}{(1 + e^{-x})^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

 $dsolve(diff(y(x),x$2)-y(x)=1/(1+exp(-x))^2,y(x), singsol=all)$

$$y = c_2 e^{-x} + c_1 e^x + \frac{e^x}{2} - 1 + \ln(e^x + 1)e^{-x} + \frac{e^{-x}}{2}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 42

 $DSolve[y''[x]-y[x]==1/(1+Exp[-x])^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}e^{-x}(-2e^x + 2\log(e^x + 1) + 2c_1e^{2x} + 1 + 2c_2)$$

10.6 problem 15

Internal problem ID [5385]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 15. Linear equations with constant coefficients (Variation of parameters).

Supplemetary problems. Page 98

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y = 2 + e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)+2*y(x)=2+exp(x),y(x), singsol=all)

$$y = c_1 \cos\left(\sqrt{2}x\right) + c_2 \sin\left(\sqrt{2}x\right) + 1 + \frac{e^x}{3}$$

✓ Solution by Mathematica

Time used: 0.216 (sec). Leaf size: 36

 $DSolve[y''[x]+2*y[x]==2+Exp[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{e^x}{3} + c_1 \cos\left(\sqrt{2}x\right) + c_2 \sin\left(\sqrt{2}x\right) + 1$$

10.7 problem 16

Internal problem ID [5386]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 15. Linear equations with constant coefficients (Variation of parameters).

Supplemetary problems. Page 98

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = e^x \sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)-y(x)=exp(x)*sin(2*x),y(x), singsol=all)

$$y = c_2 e^{-x} + c_1 e^x - \frac{e^x(\cos(2x) + \sin(2x))}{8}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 37

DSolve[y''[x]-y[x]==Exp[x]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x} - \frac{1}{8} e^x (\sin(2x) + \cos(2x) + 2)$$

10.8 problem 17

Internal problem ID [5387]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 15. Linear equations with constant coefficients (Variation of parameters).

Supplemetary problems. Page 98

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = x^2 + \sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

 $dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+2*y(x)=x^2+sin(x),y(x), singsol=all)$

$$y = \cos(x) e^{-x} c_1 + \sin(x) e^{-x} c_2 + \frac{x^2}{2} - \frac{2\cos(x)}{5} + \frac{\sin(x)}{5} - x + \frac{1}{2}$$

✓ Solution by Mathematica

Time used: 0.308 (sec). Leaf size: 50

 $DSolve[y''[x]+2*y'[x]+2*y[x] == x^2 + Sin[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{10}e^{-x} \left(5e^x(x-1)^2 + (-4e^x + 10c_2)\cos(x) + 2(e^x + 5c_1)\sin(x)\right)$$

10.9 problem 18

Internal problem ID [5388]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 15. Linear equations with constant coefficients (Variation of parameters).

Supplemetary problems. Page 98

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 9y = x + e^{2x} - \sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$2)-9*y(x)=x+exp(2*x)-sin(2*x),y(x), singsol=all)

$$y = c_2 e^{3x} + c_1 e^{-3x} - \frac{e^{2x}}{5} + \frac{\sin(2x)}{13} - \frac{x}{9}$$

✓ Solution by Mathematica

Time used: 0.846 (sec). Leaf size: 44

DSolve[y''[x]-9*y[x]==x+Exp[2*x]-Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{x}{9} - \frac{e^{2x}}{5} + \frac{1}{13}\sin(2x) + c_1e^{3x} + c_2e^{-3x}$$

10.10 problem 19

Internal problem ID [5389]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 15. Linear equations with constant coefficients (Variation of parameters).

Supplemetary problems. Page 98

Problem number: 19.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' + 3y'' + 2y' = x^2 + 4x + 8$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $dsolve(diff(y(x),x$3)+3*diff(y(x),x$2)+2*diff(y(x),x)=x^2+4*x+8,y(x), singsol=all)$

$$y = \frac{x^2}{4} + \frac{x^3}{6} + \frac{c_1 e^{-2x}}{2} - c_2 e^{-x} + \frac{11x}{4} + c_3$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 47

 $DSolve[y'''[x]+3*y''[x]+2*y'[x]==x^2+4*x+8,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{x^3}{6} + \frac{x^2}{4} + \frac{11x}{4} - \frac{1}{2}c_1e^{-2x} - c_2e^{-x} + c_3$$

10.11 problem 20

Internal problem ID [5390]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 15. Linear equations with constant coefficients (Variation of parameters).

Supplemetary problems. Page 98

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = -2\sin(x) + 4\cos(x)x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)+y(x)=-2*sin(x)+4*x*cos(x),y(x), singsol=all)

$$y = \sin(x) c_2 + \cos(x) c_1 + \sin(x) x^2 + 2x \cos(x) - \sin(x)$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 32

DSolve[y''[x]+y[x]==-2*Sin[x]+4*x*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} (2x^2 - 1 + 2c_2) \sin(x) + (2x + c_1) \cos(x)$$

10.12 problem 21

Internal problem ID [5391]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 15. Linear equations with constant coefficients (Variation of parameters).

Supplemetary problems. Page 98

Problem number: 21.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - y'' - 4y' + 4y = 2x^2 - 4x - 1 + 2x^2e^{2x} + 5xe^{2x} + e^{2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 46

 $dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=2*x^2-4*x-1+2*x^2*exp(2*x)+5*x*exp(2*x)+5*x*exp(2*x)+5*x*exp(2*x)+6*x*exp($

$$y = \frac{(12x^2e^{2x} + 4x^3e^{4x})e^{-2x}}{24} + c_1e^x + e^{-2x}c_2 + e^{2x}c_3$$

✓ Solution by Mathematica

Time used: 0.519 (sec). Leaf size: 44

 $DSolve[y'''[x]-y''[x]-4*y'[x]+4*y[x] == 2*x^2-4*x-1+2*x^2*Exp[2*x]+5*x*Exp[2*x]+Exp[2*x], y[x],$

$$y(x) \to \frac{1}{6} (e^{2x}x + 3) x^2 + c_1 e^{-2x} + c_2 e^x + c_3 e^{2x}$$

11 Chapter 16. Linear equations with constant coefficients (Short methods). Supplemetary problems. Page 107

11.1 problem	26	•				•		•		 •	•	•		•	•	•	•	•	•	•	•	•	216
11.2 problem	27												 										217
11.3 problem	28												 										218
11.4 problem	29												 										219
11.5 problem	30												 										220
11.6 problem	31												 										221
11.7 problem																							
11.8 problem	33		•													•				•			223
11.9 problem	34		•													•				•			224
$11.10 \\ problem$	36		•													•				•			225
$11.11 \\ problem$																							
$11.12 \\ problem$	38	•											 										227
$11.13 \\ problem$	39		•													•				•			228
$11.14 \\ problem$	40												 									•	229

11.1 problem 26

Internal problem ID [5392]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Sup-

plemetary problems. Page 107

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' + y = e^{3x} + 6e^x - 3e^{-2x} + 5$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 55

dsolve(diff(y(x),x\$2)+diff(y(x),x)+y(x)=exp(3*x)+6*exp(x)-3*exp(-2*x)+5,y(x), singsol=all)

$$y = e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right) c_2 + e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right) c_1 + \frac{e^{-2x}(26e^{3x} + e^{5x} + 65e^{2x} - 13)}{13}$$

✓ Solution by Mathematica

Time used: 6.996 (sec). Leaf size: 70

$$y(x) \to -e^{-2x} + 2e^x + \frac{e^{3x}}{13} + c_2 e^{-x/2} \cos\left(\frac{\sqrt{3}x}{2}\right) + c_1 e^{-x/2} \sin\left(\frac{\sqrt{3}x}{2}\right) + 5$$

11.2 problem 27

Internal problem ID [5393]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Sup-

plemetary problems. Page 107

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)-y(x)=exp(x),y(x), singsol=all)

$$y = c_1 e^x + c_2 e^{-x} + \frac{x e^x}{2}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 29

DSolve[y''[x]-y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x \left(\frac{x}{2} - \frac{1}{4} + c_1\right) + c_2 e^{-x}$$

11.3 problem 28

Internal problem ID [5394]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Sup-

plemetary problems. Page 107

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 4y = e^x + e^{2x}x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=exp(x)+x*exp(2*x),y(x), singsol=all)

$$y = c_2 e^{2x} + c_1 x e^{2x} + \frac{(x^3 e^x + 6) e^x}{6}$$

✓ Solution by Mathematica

Time used: 0.161 (sec). Leaf size: 31

DSolve[y''[x]-4*y'[x]+4*y[x]==Exp[x]+x*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{6}e^x (6 + e^x (x^3 + 6c_2x + 6c_1))$$

11.4 problem 29

Internal problem ID [5395]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Supplemetary problems. Page 107

Problem number: 29.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - y = \sin(2x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

dsolve(diff(y(x),x\$4)-y(x)=sin(2*x),y(x), singsol=all)

$$y = \frac{\sin(2x)}{15} + \cos(x)c_1 + c_2e^x + c_3\sin(x) + c_4e^{-x}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 37

DSolve[y''''[x]-y[x]==Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_3 e^{-x} + c_4 \sin(x) + \cos(x) \left(\frac{2\sin(x)}{15} + c_2\right)$$

11.5 problem 30

Internal problem ID [5396]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Supplemetary problems. Page 107

Problem number: 30.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + y = \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 73

dsolve(diff(y(x),x\$3)+y(x)=cos(x),y(x), singsol=all)

$$y = -\frac{\cos(x)}{2(2+\sqrt{3})(\sqrt{3}-2)} + \frac{\sin(x)}{2(2+\sqrt{3})(\sqrt{3}-2)} + c_1 e^{-x} + c_2 \cos\left(\frac{\sqrt{3}x}{2}\right) e^{\frac{x}{2}} + c_3 \sin\left(\frac{\sqrt{3}x}{2}\right) e^{\frac{x}{2}}$$

✓ Solution by Mathematica

Time used: 0.515 (sec). Leaf size: 68

DSolve[y'''[x]+y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sin(x)}{2} + \frac{\cos(x)}{2} + c_1 e^{-x} + c_3 e^{x/2} \cos\left(\frac{\sqrt{3}x}{2}\right) + c_2 e^{x/2} \sin\left(\frac{\sqrt{3}x}{2}\right)$$

11.6 problem 31

Internal problem ID [5397]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Supplemetary problems. Page 107

Problem number: 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+4*y(x)=sin(2*x),y(x), singsol=all)

$$y = c_2 \sin(2x) + c_1 \cos(2x) - \frac{x \cos(2x)}{4}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 33

DSolve[y''[x]+4*y[x]==Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \left(-\frac{x}{4} + c_1\right)\cos(2x) + \frac{1}{8}(1 + 16c_2)\sin(x)\cos(x)$$

11.7 problem 32

Internal problem ID [5398]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Supplemetary problems. Page 107

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 5y = \cos\left(\sqrt{5}\,x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

dsolve(diff(y(x),x\$2)+5*y(x)=cos(sqrt(5)*x),y(x), singsol=all)

$$y = \sin\left(x\sqrt{5}\right)c_2 + c_1\cos\left(x\sqrt{5}\right) + \frac{\cos\left(x\sqrt{5}\right)}{10} + \frac{\sqrt{5}x\sin\left(x\sqrt{5}\right)}{10}$$

✓ Solution by Mathematica

Time used: 0.16 (sec). Leaf size: 45

 $DSolve[y''[x]+5*y[x] == Cos[Sqrt[5]*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \left(\frac{1}{20} + c_1\right) \cos\left(\sqrt{5}x\right) + \frac{1}{10}\left(\sqrt{5}x + 10c_2\right) \sin\left(\sqrt{5}x\right)$$

11.8 problem 33

Internal problem ID [5399]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Supplemetary problems. Page 107

Problem number: 33.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + y'' + y' + y = e^{x} + e^{-x} + \sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)+diff(y(x),x)+y(x)=exp(x)+exp(-x)+sin(x),y(x), singsol=axion(x)+

$$y = -\frac{x\cos(x)}{4} + \left(-\frac{x}{4} + \frac{1}{4}\right)\sin(x) + \frac{xe^{-x}}{2} + \frac{e^{x}}{4} + \frac{e^{-x}}{2} + \cos(x)c_{1} + \sin(x)c_{2} + c_{3}e^{-x}$$

✓ Solution by Mathematica

Time used: 0.265 (sec). Leaf size: 55

DSolve[y'''[x]+y''[x]+y'[x]+y[x]==Exp[x]+Exp[-x]+Sin[x],y[x],x,IncludeSingularSolutions -> T

$$y(x) \to \frac{1}{8} \left(2e^{-x} \left(2x + e^{2x} + 2 + 4c_3 \right) + \left(-2x - 1 + 8c_1 \right) \cos(x) + \left(-2x + 3 + 8c_2 \right) \sin(x) \right)$$

11.9 problem 34

Internal problem ID [5400]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Sup-

plemetary problems. Page 107

Problem number: 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x$2)-y(x)=x^2,y(x), singsol=all)$

$$y = c_1 e^x + c_2 e^{-x} - x^2 - 2$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 26

DSolve[y''[x]-y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -x^2 + c_1 e^x + c_2 e^{-x} - 2$$

11.10 problem 36

Internal problem ID [5401]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Supplemetary problems. Page 107

Problem number: 36.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y = x^3 + x^2 + e^{-2x} + \cos(3x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

 $\label{eq:diff} $$ $ dsolve(diff(y(x),x$2)+2*y(x)=x^3+x^2+exp(-2*x)+cos(3*x),y(x), singsol=all) $$ $ dsolve(diff(x),x$2 $ dsolve(x)=x^2+exp(-2*x)+cos(3*x),y(x), singsol=all) $$ $ dsolve(x)=x^2+exp(x)=x^2+ex$

$$y = c_1 \cos\left(\sqrt{2}x\right) + c_2 \sin\left(\sqrt{2}x\right) + \frac{e^{-2x}}{6} - \frac{\cos(3x)}{7} - \frac{1}{2} - \frac{3x}{2} + \frac{x^2}{2} + \frac{x^3}{2}$$

✓ Solution by Mathematica

Time used: 4.775 (sec). Leaf size: 69

 $DSolve[y''[x]+2*y[x]==x^3+x^2+Exp[-2*x]+Cos[3*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{42} \Big(21x^3 + 21x^2 - 63x + 7e^{-2x} + 9\sin(x)\sin(2x) - 6\cos^3(x) + 42c_1\cos\left(\sqrt{2}x\right) + 42c_2\sin\left(\sqrt{2}x\right) - 21 \Big)$$

11.11 problem 37

Internal problem ID [5402]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Sup-

plemetary problems. Page 107

Problem number: 37.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' - y = \cos(x) e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-y(x)=exp(x)*cos(x),y(x), singsol=all)

$$y = e^{x(1+\sqrt{2})}c_2 + c_1e^{-x(\sqrt{2}-1)} - \frac{\cos(x)e^x}{3}$$

✓ Solution by Mathematica

Time used: 0.159 (sec). Leaf size: 56

DSolve[y''[x]-2*y'[x]-y[x]==Exp[x]*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{1}{3}e^{-\sqrt{2}x} \left(-e^{\left(1+\sqrt{2}\right)x}\cos(x) + 3e^x \left(c_2 e^{2\sqrt{2}x} + c_1\right) \right)$$

11.12 problem 38

Internal problem ID [5403]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Supplemetary problems. Page 107

Problem number: 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 4y = \frac{e^{2x}}{x^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$2)-4*\text{diff}(y(x),x)+4*y(x)=\exp(2*x)/x^2,y(x), \text{ singsol=all}) \\$

$$y = c_2 e^{2x} + c_1 x e^{2x} + e^{2x} (-1 - \ln(x))$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 23

 $DSolve[y''[x]-4*y'[x]+4*y[x] == Exp[2*x]/x^2,y[x],x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{2x}(-\log(x) + c_2x - 1 + c_1)$$

11.13 problem 39

Internal problem ID [5404]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Supplemetary problems. Page 107

Problem number: 39.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = x e^{3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)-y(x)=x*exp(3*x),y(x), singsol=all)

$$y = c_2 e^{-x} + c_1 e^x + \frac{(4x - 3) e^{3x}}{32}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 34

DSolve[y''[x]-y[x]==x*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{32}e^{3x}(4x-3) + c_1e^x + c_2e^{-x}$$

11.14 problem 40

Internal problem ID [5405]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 16. Linear equations with constant coefficients (Short methods). Sup-

plemetary problems. Page 107

Problem number: 40.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 5y' + 6y = e^{-2x} \sec(x)^2 (1 + 2\tan(x))$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 69

 $dsolve(diff(y(x),x$2)+5*diff(y(x),x)+6*y(x)=exp(-2*x)*sec(x)^2*(1+2*tan(x)),y(x), singsol=al(x)+al(x$

$$y = e^{-2x}c_2 + c_1e^{-3x} + \frac{2e^{-2x}\left(\left(\tan(x)^2 + \tan(x) - 2\right)e^{2ix} + \frac{\tan(x)\left(e^{4ix} + 1\right)(\tan(x) + 1\right)}{2}\right)}{e^{4ix} + 2e^{2ix} + 1}$$

✓ Solution by Mathematica

Time used: 0.147 (sec). Leaf size: 26

$$y(x) \to e^{-3x} (e^x \tan(x) + c_2 e^x + c_1)$$

12 Chapter 17. Linear equations with variable coefficients (Cauchy and Legndre). Supplemetary problems. Page 110

12.1	problem	6																			23
12.2	problem	7																			232
12.3	problem	8																			233
12.4	problem	9																			234
12.5	problem	10)																		235
12.6	problem	11																			236

12.1 problem 6

Internal problem ID [5406]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 17. Linear equations with variable coefficients (Cauchy and Legndre).

Supplemetary problems. Page 110

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - 3y'x + 4y = x + \ln(x) x^{2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*y(x)=x+x^2*ln(x),y(x), singsol=all)$

$$y = c_2 x^2 + x^2 \ln(x) c_1 + \frac{x(\ln(x)^3 x + 6)}{6}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 30

$$y(x) \to \frac{1}{6}x(x\log^3(x) + 6c_1x + 12c_2x\log(x) + 6)$$

12.2 problem 7

Internal problem ID [5407]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 17. Linear equations with variable coefficients (Cauchy and Legndre).

Supplemetary problems. Page 110

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - 2y'x + 2y = \ln(x)^{2} - \ln(x^{2})$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=(ln(x))^2-ln(x^2),y(x), singsol=all)$

$$y = c_2 x^2 + c_1 x + \frac{\ln(x)^2}{2} + \frac{3\ln(x)}{2} - \frac{\ln(x^2)}{2} + \frac{1}{4}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 38

$$y(x) \to \frac{1}{4} (-2\log(x^2) + 2\log^2(x) + 6\log(x) + 1) + c_2x^2 + c_1x$$

12.3 problem 8

Internal problem ID [5408]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 17. Linear equations with variable coefficients (Cauchy and Legndre).

Supplemetary problems. Page 110

Problem number: 8.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^{3}y''' + 2x^{2}y'' = x + \sin(\ln(x))$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

 $dsolve(x^3*diff(y(x),x$3)+2*x^2*diff(y(x),x$2)=x+sin(ln(x)),y(x), singsol=all)$

$$y=-c_{1}\ln \left(x
ight) -rac{- an\left(rac{\ln \left(x
ight) }{2}
ight) -1}{1+ an\left(rac{\ln \left(x
ight) }{2}
ight) ^{2}}+\ln \left(x
ight) x-x+c_{2}x+c_{3}$$

✓ Solution by Mathematica

Time used: 0.173 (sec). Leaf size: 36

DSolve[x^3*y'''[x]+2*x^2*y''[x]==x+Sin[Log[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}(\sin(\log(x)) + \cos(\log(x)) + 2((-1+c_3)x + (x-c_1)\log(x) + c_2))$$

12.4 problem 9

Internal problem ID [5409]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 17. Linear equations with variable coefficients (Cauchy and Legndre). Supplemetary problems. Page 110

Problem number: 9.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$x^3y''' + y'x - y = 3x^4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(x^3*diff(y(x),x$3)+x*diff(y(x),x)-y(x)=3*x^4,y(x), singsol=all)$

$$y = \frac{x^4}{9} + c_1 x + c_2 \ln(x) x + c_3 \ln(x)^2 x$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 31

 $DSolve[x^3*y'''[x]+x*y'[x]-y[x]==3*x^4,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^4}{9} + c_1 x + c_3 x \log^2(x) + c_2 x \log(x)$$

12.5 problem 10

Internal problem ID [5410]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 17. Linear equations with variable coefficients (Cauchy and Legndre). Supplementary problems. Page 110

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$(1+x)^{2}y'' + y'(1+x) - y = \ln(1+x)^{2} + x - 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

$$dsolve((x+1)^2*diff(y(x),x$2)+(x+1)*diff(y(x),x)-y(x)=(ln(x+1))^2+x-1,y(x), singsol=all)$$

$$y = \frac{c_1}{x+1} + (x+1)c_2 - \frac{4\ln(x+1)^2 x - 2\ln(x+1)x^2 + 4\ln(x+1)^2 - 4\ln(x+1)x - 2\ln(x+1) + 3}{4(x+1)}$$

✓ Solution by Mathematica

Time used: 0.262 (sec). Leaf size: 72

$$y(x) \to \frac{(-1+2c_1+2ic_2)x^2-4(x+1)\log^2(x+1)+2(x+1)^2\log(x+1)+(-2+4c_1+4ic_2)x-1+4c_1}{4(x+1)}$$

12.6 problem 11

Internal problem ID [5411]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 17. Linear equations with variable coefficients (Cauchy and Legndre).

Supplemetary problems. Page 110

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$(1+2x)^2y'' - 2(1+2x)y' - 12y = 6x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

 $dsolve((2*x+1)^2*diff(y(x),x$2)-2*(2*x+1)*diff(y(x),x)-12*y(x)=6*x,y(x), singsol=all)$

$$y = \frac{c_1}{2x+1} + (2x+1)^3 c_2 - \frac{24x^2 + 8x + 1}{32(2x+1)}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 41

DSolve[(2*x+1)^2*y''[x]-2*(2*x+1)*y'[x]-12*y[x]==6*x,y[x],x,IncludeSingularSolutions -> True

$$y(x) \to \frac{-24x^2 - 8x + 32c_1(2x+1)^4 - 1 + 32c_2}{32(2x+1)}$$

13 Chapter 18. Linear equations with variable coefficients (Equations of second order). Supplemetary problems. Page 120

13.1 problem 21		•		•		 			•	•		 		•	•		•			•	238
13.2 problem 22						 						 									239
13.3 problem 23						 						 									240
13.4 problem 24						 						 									241
13.5 problem 25						 						 									242
13.6 problem 26						 						 									243
13.7 problem 27						 						 									244
13.8 problem 28						 						 									245
13.9 problem 29						 						 									246
13.10problem 30						 						 									247
13.11problem 31						 						 									248
13.12problem 32						 						 									249
13.13problem 33						 						 									250
13.14problem 35						 						 									251
13.15problem 36						 						 									252
13.16problem 37						 						 									253
13 17problem 38																					254

13.1 problem 21

Internal problem ID [5412]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Laguerre]

$$xy'' - (x+2)y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(x*diff(y(x),x\$2)-(x+2)*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y = c_1 e^x + c_2 (x^2 + 2x + 2)$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 24

 $DSolve[x*y''[x]-(x+2)*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^x - c_2 (x^2 + 2x + 2)$$

13.2 problem 22

Internal problem ID [5413]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 1) y'' - 2y'x + 2y = 2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve((1+x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=2,y(x), singsol=all)$

$$y = c_2 x + (x^2 - 1) c_1 + 1$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 22

 $DSolve[(1+x^2)*y''[x]-2*x*y'[x]+2*y[x]==2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -c_1(x-i)^2 + c_2x + 1$$

13.3 problem 23

Internal problem ID [5414]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 4) y'' - 2y'x + 2y = 8$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $\label{eq:dsolve} $$ dsolve((x^2+4)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=8,y(x), singsol=all)$$

$$y = c_2 x + (x^2 - 4) c_1 + 4$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 22

 $DSolve[(x^2+4)*y''[x]-2*x*y'[x]+2*y[x]==8,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1(x-2i)^2 - c_2x + 4$$

13.4 problem 24

Internal problem ID [5415]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$(1+x)y'' - (2x+3)y' + (x+2)y = (x^2+2x+1)e^{2x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $dsolve((x+1)*diff(y(x),x$2)-(2*x+3)*diff(y(x),x)+(x+2)*y(x)=(x^2+2*x+1)*exp(2*x),y(x), sings(x+1)*diff(y(x),x$2)-(2*x+3)*diff(y(x),x)+(x+2)*y(x)=(x^2+2*x+1)*exp(2*x),y(x), sings(x+1)*diff(y(x),x)+(x+2)*y(x)=(x^2+2*x+1)*exp(2*x),y(x), sings(x+1)*exp(2*x),y(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)=(x^2+2*x+1)*exp(x)$

$$y = c_2 e^x + e^x x(x+2) c_1 + x e^{2x}$$

✓ Solution by Mathematica

Time used: 0.117 (sec). Leaf size: 32

$$y(x) \to \frac{1}{2}e^x(2e^xx + ec_2(x+2)x + 2ec_1)$$

13.5 problem 25

Internal problem ID [5416]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2\tan(x)y' - 10y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-2*tan(x)*diff(y(x),x)-10*y(x)=0,y(x), singsol=all)

$$y = c_1 \sec(x) \sinh(3x) + c_2 \sec(x) \cosh(3x)$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 29

DSolve[y''[x]-2*Tan[x]*y'[x]-10*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{6}e^{-3x}(c_2e^{6x} + 6c_1)\sec(x)$$

13.6 problem 26

Internal problem ID [5417]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' - x(2x+3)y' + (x^{2}+3x+3)y = (-x^{2}+6)e^{x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

 $dsolve(x^2*diff(y(x),x$2)-x*(2*x+3)*diff(y(x),x)+(x^2+3*x+3)*y(x)=(6-x^2)*exp(x),y(x), sings(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x),y(x)=(6-x^2)*exp(x$

$$y = x e^x c_2 + x^3 e^x c_1 + e^x (x^2 + 2)$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 30

DSolve $[x^2*y''[x]-x*(2*x+3)*y'[x]+(x^2+3*x+3)*y[x]==(6-x^2)*Exp[x],y[x],x,Inc]$ udeSingularSol

$$y(x) \to \frac{1}{2}e^x(c_2x^3 + 2x^2 + 2c_1x + 4)$$

13.7 problem 27

Internal problem ID [5418]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4x^{2}y'' + 4y'x^{3} + (x^{2} + 1)^{2}y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(4*x^2*diff(y(x),x$2)+4*x^3*diff(y(x),x)+(x^2+1)^2*y(x)=0,y(x), singsol=all)$

$$y = c_1 \sqrt{x} e^{-\frac{x^2}{4}} + c_2 \sqrt{x} e^{-\frac{x^2}{4}} \ln(x)$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 28

$$y(x) \to e^{-\frac{x^2}{4}} \sqrt{x} (c_2 \log(x) + c_1)$$

13.8 problem 28

Internal problem ID [5419]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^{2}y'' + (-4x^{2} + x)y' + (4x^{2} - 2x + 1)y = (x^{2} - x + 1)e^{x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve(x^2*diff(y(x),x$2)+(x-4*x^2)*diff(y(x),x)+(1-2*x+4*x^2)*y(x)=(x^2-x+1)*exp(x),y(x), s(x)=(x^2+x^2+x^2)*y(x)=(x^2-x+1)*exp(x),y(x),s(x)=(x^2+x^2+x^2)*y(x)=(x^2-x+1)*exp(x),y(x)=(x^2+x^2+x^2)*y(x)=(x^2-x+1)*exp(x),y(x)=(x^2-x+1)*exp(x)=(x$

$$y = x^i e^{2x} c_2 + c_1 x^{-i} e^{2x} + e^x$$

✓ Solution by Mathematica

Time used: 0.184 (sec). Leaf size: 104

 $DSolve[x^2*y''[x]+(x-4*x^2)*y'[x]+(1-2*x+4*x^2)*y[x]==(x^2-x+1)*Exp[x],y[x],x,IncludeSingularity = (x^2-x+1)*Exp[x],y[x],x,IncludeSingularity = (x^2-x+1)*Exp[x],x,IncludeSingularity = (x^2-$

$$y(x) \to \frac{1}{2}e^{2x}x^{-i}(ix^{2i}\Gamma(-i,x) - ix^{2i}\Gamma(1-i,x) + ix^{2i}\Gamma(2-i,x) - ic_2x^{2i} - i\Gamma(i,x) + i\Gamma(1+i,x) - i\Gamma(2+i,x) + 2c_1)$$

13.9 problem 29

Internal problem ID [5420]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$xy'' - y' + 4yx^3 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x*diff(y(x),x$2)-diff(y(x),x)+4*x^3*y(x)=0,y(x), singsol=all)$

$$y = c_1 \sin\left(x^2\right) + c_2 \cos\left(x^2\right)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 20

 $DSolve[x*y''[x]-y'[x]+4*x^3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow c_1 \cos\left(x^2\right) + c_2 \sin\left(x^2\right)$$

13.10 problem 30

Internal problem ID [5421]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^4y'' + 2y'x^3 + y = \frac{1+x}{x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $\label{eq:dsolve} $$ dsolve(x^4*diff(y(x),x$2)+2*x^3*diff(y(x),x)+y(x)=(1+x)/x,y(x), singsol=all)$ $$$

$$y = c_2 \sin\left(\frac{1}{x}\right) + c_1 \cos\left(\frac{1}{x}\right) + \frac{x+1}{x}$$

✓ Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 25

 $DSolve[x^4*y''[x]+2*x^3*y'[x]+y[x]==(1+x)/x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{1}{x} + c_1 \cos\left(rac{1}{x}
ight) - c_2 \sin\left(rac{1}{x}
ight) + 1$$

13.11 problem 31

Internal problem ID [5422]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x^8y'' + 4x^7y' + y = \frac{1}{x^3}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(x^8*diff(y(x),x$2)+4*x^7*diff(y(x),x)+y(x)=1/x^3,y(x), singsol=all)$

$$y = c_2 \sin\left(\frac{1}{3x^3}\right) + c_1 \cos\left(\frac{1}{3x^3}\right) + \frac{1}{x^3}$$

✓ Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 32

 $DSolve[x^8*y''[x]+4*x^7*y'[x]+y[x]==1/x^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{1}{x^3} + c_1 \cos\left(rac{1}{3x^3}
ight) - c_2 \sin\left(rac{1}{3x^3}
ight)$$

13.12 problem 32

Internal problem ID [5423]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(\sin(x) x + \cos(x)) y'' - y' \cos(x) x + \cos(x) y = x$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 23

dsolve((x*sin(x)+cos(x))*diff(y(x),x\$2)-x*cos(x)*diff(y(x),x)+y(x)*cos(x)=x,y(x), singsol=al(x)+al(x

$$y = \left(-\frac{c_1 \cos(x)}{x} - \frac{\sin(x)}{x} + c_2\right) x$$

✓ Solution by Mathematica

Time used: 0.764 (sec). Leaf size: 20

DSolve[(x*Sin[x]+Cos[x])*y''[x]-x*Cos[x]*y'[x]+y[x]*Cos[x]==x,y[x],x,IncludeSingularSolution]

$$y(x) \rightarrow -\sin(x) + c_1 x - c_2 \cos(x)$$

13.13 problem 33

Internal problem ID [5424]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$xy'' - 3y' + \frac{3y}{x} = x + 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(x*diff(y(x),x\$2)-3*diff(y(x),x)+3*y(x)/x=x+2,y(x), singsol=all)

$$y = \left(-x - \ln(x) + \frac{c_1 x^2}{2} + c_2\right) x$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 30

DSolve[x*y''[x]-3*y'[x]+3*y[x]/x==x+2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}x(2c_2x^2 - 2x - 2\log(x) - 1 + 2c_1)$$

13.14 problem 35

Internal problem ID [5425]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(1+x)y'' - (4+3x)y' + 3y = (3x+2)e^{3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve((x+1)*diff(y(x),x\$2)-(3*x+4)*diff(y(x),x)+3*y(x)=(3*x+2)*exp(3*x),y(x), singsol=all)

$$y = \left(x + \frac{4}{3}\right)c_2 + c_1e^{3x} + xe^{3x}$$

✓ Solution by Mathematica

Time used: 0.364 (sec). Leaf size: 48

$$y(x) \to e^{3x} \left(x + \frac{2}{3} \right) + \frac{c_1 e^{3x+3}}{\sqrt{2}} - \frac{1}{9} \sqrt{2} c_2 (3x+4)$$

13.15 problem 36

Internal problem ID [5426]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 36.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - 4y'x + (9x^{2} + 6)y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

 $dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+(6+9*x^2)*y(x)=0,y(x), singsol=all)$

$$y = c_1 x^2 \sin(3x) + c_2 x^2 \cos(3x)$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 37

 $DSolve[x^2*y''[x]-4*x*y'[x]+(6+9*x^2)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{6}e^{-3ix}x^2(6c_1 - ic_2e^{6ix})$$

13.16 problem 37

Internal problem ID [5427]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 37.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$xy'' + 2y' + 4yx = 4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(x*diff(y(x),x\$2)+2*diff(y(x),x)+4*x*y(x)=4,y(x), singsol=all)

$$y = \frac{c_2 \sin(2x)}{x} + \frac{c_1 \cos(2x)}{x} + \frac{1}{x}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 38

DSolve [x*y''[x]+2*y'[x]+4*x*y[x]==4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{4c_1e^{-2ix} - ic_2e^{2ix} + 4}{4x}$$

13.17 problem 38

Internal problem ID [5428]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 18. Linear equations with variable coefficients (Equations of second order).

Supplemetary problems. Page 120

Problem number: 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2}+1)y'' - 2y'x + 2y = \frac{-x^{2}+1}{x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

 $dsolve((1+x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=(1-x^2)/x,y(x), singsol=all)$

$$y = c_2 x + (x^2 - 1) c_1 + (1 + \ln(x)) x$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 27

 $DSolve[(1+x^2)*y''[x]-2*x*y'[x]+2*y[x]==(1-x^2)/x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x(\log(x) + 1) - c_1(x - i)^2 + c_2x$$

14 Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary problems. Page 132

14.1 problem 22	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	 	•	•	•	•	•	•	•	•	256
14.2 problem 23					 																 									257
14.3 problem 24					 																 									258
14.4 problem 25					 																 									259
14.5 problem 26					 																 									260
14.6 problem 27					 																 									261
14.7 problem 28					 																 									262
14.8 problem 29					 																 									263
14.9 problem 30					 																 									264
14.10problem 31					 																 									265
14.11 problem 32					 																 									266
14.12problem 33					 																 									267
14.13problem 34					 																 									270
14.14problem 35					 																 									272
14.15problem 36					 								 								 									273

14.1 problem 22

Internal problem ID [5429]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

$$y'' + y'^2 = -1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $dsolve(diff(y(x),x$2)+diff(y(x),x)^2+1=0,y(x), singsol=all)$

$$y = \ln\left(-\frac{c_1 \tan(x) - c_2}{\sec(x)}\right)$$

✓ Solution by Mathematica

Time used: 1.79 (sec). Leaf size: 16

DSolve[y''[x]+y'[x]^2+1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \log(\cos(x-c_1)) + c_2$$

14.2 problem 23

Internal problem ID [5430]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$(x^2 + 1) y'' + 2y'x = \frac{2}{x^3}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((1+x^2)*diff(y(x),x$2)+2*x*diff(y(x),x)=2*x^(-3),y(x), singsol=all)$

$$y = (c_1 + 1) \arctan(x) + \frac{1}{x} + c_2$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 18

$$y(x) \to (1 + c_1)\arctan(x) + \frac{1}{x} + c_2$$

14.3 problem 24

Internal problem ID [5431]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' - y' = -\frac{2}{x} - \ln(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(x*diff(y(x),x\$2)-diff(y(x),x)=-2/x-ln(x),y(x), singsol=all)

$$y = \frac{c_1 x^2}{2} + \ln(x) x + \ln(x) + c_2$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 23

DSolve[x*y''[x]-y'[x]==-2/x-Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1 x^2}{2} + (x+1)\log(x) + c_2$$

14.4 problem 25

Internal problem ID [5432]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 25.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' + y'' = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x$3)+diff(y(x),x$2)=x^2,y(x), singsol=all)$

$$y = \frac{x^4}{12} + x^2 - \frac{x^3}{3} + e^{-x}c_1 + c_2x + c_3$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 37

DSolve[y'''[x]+y''[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x^4}{12} - \frac{x^3}{3} + x^2 + c_3 x + c_1 e^{-x} + c_2$$

14.5 problem 26

Internal problem ID [5433]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],

$$yy'' + y'^3 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $\label{local_decomposition} \\ \mbox{dsolve}(\mbox{$y(x)$*diff}(\mbox{$y(x)$,x}) + \mbox{diff}(\mbox{$y(x)$,x})^3 = 0, \\ \mbox{$y(x)$, singsol=all)$} \\$

$$y=0$$
 $y=c_1$
 $y=\mathrm{e}^{\mathrm{LambertW}((x+c_2)\mathrm{e}^{c_1}\mathrm{e}^{-1})-c_1+1}$

✓ Solution by Mathematica

Time used: 60.092 (sec). Leaf size: 26

DSolve[y[x]*y''[x]+y'[x]^3==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x + c_2}{W(e^{-1-c_1}(x + c_2))}$$

14.6 problem 27

Internal problem ID [5434]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _

$$yy'' + y'^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $\label{local_decomposition} \\ \mbox{dsolve}(\mbox{$y(x)$*diff}(\mbox{$y(x)$,x}) + \mbox{diff}(\mbox{$y(x)$,x})^2 = 0, \\ \mbox{$y(x)$, singsol=all)$} \\$

$$y = 0$$
$$y = \sqrt{2c_1x + 2c_2}$$
$$y = -\sqrt{2c_1x + 2c_2}$$

✓ Solution by Mathematica

Time used: 0.172 (sec). Leaf size: 20

DSolve[y[x]*y''[x]+y'[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 \sqrt{2x - c_1}$$

14.7 problem 28

Internal problem ID [5435]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

$$yy'' - y'^{2}(1 - y'\cos(y) + yy'\sin(y)) = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 22

 $dsolve(y(x)*diff(y(x),x$2)=diff(y(x),x)^2*(1-diff(y(x),x)*cos(y(x))+y(x)*diff(y(x),x)*sin(y(x),x)*diff(y(x)$

$$y = c_1$$

 $\sin(y) + c_1 \ln(y) - x - c_2 = 0$

✓ Solution by Mathematica

Time used: 0.425 (sec). Leaf size: 63

 $y(x) \rightarrow \text{InverseFunction}[\sin(\#1) + c_1 \log(\#1)\&][x + c_2]$

 $y(x) \to \text{InverseFunction}[\sin(\#1) - c_1 \log(\#1)\&][x + c_2]$

 $y(x) \rightarrow \text{InverseFunction}[\sin(\#1) + c_1 \log(\#1)\&][x + c_2]$

14.8 problem 29

Internal problem ID [5436]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 29.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$(2x - 3) y''' - (6x - 7) y'' + 4y'x - 4y = 8$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

dsolve((2*x-3)*diff(y(x),x\$3)-(6*x-7)*diff(y(x),x\$2)+4*x*diff(y(x),x)-4*y(x)=8,y(x), singsol(x),x

$$y = -2 + c_1 x + c_2 e^x + c_3 e^{2x}$$

✓ Solution by Mathematica

Time used: 0.159 (sec). Leaf size: 26

DSolve[(2*x-3)*y'''[x]-(6*x-7)*y''[x]+4*x*y'[x]-4*y[x]==8,y[x],x,IncludeSingularSolutions ->

$$y(x) \rightarrow c_1 x + c_2 e^x - c_3 e^{2x} - 2$$

14.9 problem 30

Internal problem ID [5437]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 30.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$(2x^3 - 1)y''' - 6x^2y'' + 6y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve((2*x^3-1)*diff(y(x),x$3)-6*x^2*diff(y(x),x$2)+6*x*diff(y(x),x)=0,y(x),\\ singsol=all)$

$$y = c_1 + c_2 x^2 + c_3 x (x^3 + 4)$$

✓ Solution by Mathematica

Time used: 1.357 (sec). Leaf size: 31

$$y(x) \rightarrow -\frac{c_2 x^4}{4} + \frac{c_1 x^2}{2} - c_2 x + c_3$$

14.10 problem 31

Internal problem ID [5438]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

$$yy'' - y'^2 - y^2 \ln(y) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(y(x)*diff(y(x),x$2)-diff(y(x),x)^2=y(x)^2*ln(y(x)),y(x), singsol=all)$

$$y = e^{\frac{e^{-2x}c_1e^x}{2}}e^{-\frac{c_2e^x}{2}}$$

✓ Solution by Mathematica

Time used: 2.66 (sec). Leaf size: 73

DSolve[y[x]*y''[x]-y'[x]^2==y[x]^2*Log[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \exp\left(-\frac{1}{2}\sqrt{c_1}e^{-x-c_2}\left(-1 + e^{2(x+c_2)}\right)\right)$$

$$y(x) \to \exp\left(\frac{1}{2}\sqrt{c_1}e^{-x-c_2}\left(-1 + e^{2(x+c_2)}\right)\right)$$

14.11 problem 32

Internal problem ID [5439]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_s

$$(x+2y)y'' + 2y'^2 + 2y' = 2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 49

 $dsolve((x+2*y(x))*diff(y(x),x$2)+2*diff(y(x),x)^2+2*diff(y(x),x)=2,y(x), singsol=all)$

$$y = -\frac{x}{2} - \frac{\sqrt{-4c_1x + 5x^2 + 4c_2}}{2}$$
$$y = -\frac{x}{2} + \frac{\sqrt{-4c_1x + 5x^2 + 4c_2}}{2}$$

✓ Solution by Mathematica

Time used: 0.645 (sec). Leaf size: 77

DSolve[(x+2*y[x])*y''[x]+2*y'[x]^2+2*y'[x]==2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{2}x \left(1 + \sqrt{\frac{1}{x^2}}\sqrt{5x^2 + 4c_2x + 4c_1}\right)$$

$$y(x) \to \frac{1}{2}x \left(-1 + \sqrt{\frac{1}{x^2}}\sqrt{5x^2 + 4c_2x + 4c_1}\right)$$

14.12 problem 33

Internal problem ID [5440]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _nonlinear]]

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 1500

 $dsolve((1+2*y(x)+3*y(x)^2)*diff(y(x),x$3)+6*diff(y(x),x)*(diff(y(x),x$2)+diff(y(x),x)^2+3*y(x)^2+3*y$

$$y = \frac{\left(224 + 36x^4 - 432c_1x^2 - 432c_1^2 - 864c_2x + 864c_3 + 12\sqrt{9x^8 - 216c_1x^6 + 1080c_1^2x^4 - 432c_2x^5 + 2592c_2^2x^5 - 3}{3\left(224 + 36x^4 - 432c_1x^2 - 432c_1^2 - 864c_2x + 864c_3 + 12\sqrt{9x^8 - 216c_1x^6 + 1080c_1^2x^4 - 432c_2x^5 + 2592c_2^2x^5 - 3}\right)}$$

$$y = \frac{\left(224 + 36x^4 - 432c_1x^2 - 432c_1^2 - 864c_2x + 864c_3 + 12\sqrt{9x^8 - 216c_1x^6 + 1080c_1^2x^4 - 432c_2x^5 + 2592c_2^2x^5 + 2592c_2^2x^4 - 432c_2x^5 + 2592c_2^2x^5 - 2592c_2^2x^4 - 432c_2x^5 + 2592c_2^2x^2 - 2432c_1^2 - 864c_2x + 864c_3 + 12\sqrt{9x^8 - 216c_1x^6 + 1080c_1^2x^4 - 432c_2x^5 + 2592c_2^2x^2 + 2$$

✓ Solution by Mathematica

Time used: 0.369 (sec). Leaf size: 523

DSolve[
$$(1+2*y[x]+3*y[x]^2)*y'''[x]+6*y'[x]*(y''[x]+y'[x]^2+3*y[x]*y''[x])==x,y[x],x,Include$$

$$y(x) \rightarrow \frac{2^{2/3} \left(9x^4 + 108c_1x^2 + \sqrt{2048 + (9x^4 + 108c_1x^2 + 27c_3x + 56 + 216c_2)^2} + 27c_3x + 56 + 216c_2\right)^{2/3} - 4}{12\sqrt[3]{9x^4 + 108c_1x^2 + \sqrt{2048 + (9x^4 + 108c_1x^2 - 27c_3x + 56 + 216c_2)^2}} + 27c_3x + 56 + 216c_2)^{2/3} - 4}$$

$$y(x) \rightarrow \frac{1}{24} \left(i2^{2/3} \left(\sqrt{3} + i\right)\sqrt[3]{9x^4 + 108c_1x^2 + \sqrt{2048 + (9x^4 + 108c_1x^2 + 27c_3x + 56 + 216c_2)^2} + 27c_3x + 56 + 216c_2}\right) + \frac{16\sqrt[3]{2}(1 + i\sqrt{3})}{\sqrt[3]{9x^4 + 108c_1x^2 + \sqrt{2048 + (9x^4 + 108c_1x^2 + 27c_3x + 56 + 216c_2)^2} + 27c_3x + 56 + 216c_2}}{-8}$$

$$y(x) \rightarrow \frac{1}{24} \left(-2^{2/3} \left(1 + i\sqrt{3}\right)\sqrt[3]{9x^4 + 108c_1x^2 + \sqrt{2048 + (9x^4 + 108c_1x^2 + 27c_3x + 56 + 216c_2)^2} + 27c_3x + 56 + 216c_2}\right) + \frac{16\sqrt[3]{2}(1 - i\sqrt{3})}{\sqrt[3]{9x^4 + 108c_1x^2 + \sqrt{2048 + (9x^4 + 108c_1x^2 + 27c_3x + 56 + 216c_2)^2} + 27c_3x + 56 + 216c_2}}{-8}$$

14.13 problem 34

Internal problem ID [5441]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplementary

problems. Page 132

Problem number: 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_s

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 150

 $dsolve(3*x*(y(x)^2*diff(y(x),x$3)+6*y(x)*diff(y(x),x)*diff(y(x),x$2)+2*diff(y(x),x)^3)$

$$y = \frac{\left(-8c_3x^3 + 8\ln(x)x + 12c_1x + 8c_2 - 4x\right)^{\frac{1}{3}}}{2}$$

$$y = -\frac{\left(-8c_3x^3 + 8\ln(x)x + 12c_1x + 8c_2 - 4x\right)^{\frac{1}{3}}}{4}$$

$$-\frac{i\sqrt{3}\left(-8c_3x^3 + 8\ln(x)x + 12c_1x + 8c_2 - 4x\right)^{\frac{1}{3}}}{4}$$

$$y = -\frac{\left(-8c_3x^3 + 8\ln(x)x + 12c_1x + 8c_2 - 4x\right)^{\frac{1}{3}}}{4}$$

$$+\frac{i\sqrt{3}\left(-8c_3x^3 + 8\ln(x)x + 12c_1x + 8c_2 - 4x\right)^{\frac{1}{3}}}{4}$$

✓ Solution by Mathematica

Time used: 0.297 (sec). Leaf size: 121

$$y(x) \to -\sqrt[3]{-\frac{1}{6}}\sqrt[3]{6c_3x^3 + 6x\log(x) + (3+9c_2)x + 2c_1}$$
$$y(x) \to \sqrt[3]{c_3x^3 + x\log(x) + \frac{1}{2}(1+3c_2)x + \frac{c_1}{3}}$$
$$y(x) \to (-1)^{2/3}\sqrt[3]{c_3x^3 + x\log(x) + \frac{1}{2}(1+3c_2)x + \frac{c_1}{3}}$$

14.14 problem 35

Internal problem ID [5442]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplementary

problems. Page 132

Problem number: 35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_s

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 51

dsolve(y(x)*diff(y(x),x\$3)+3*diff(y(x),x)*diff(y(x),x\$2)-2*y(x)*diff(y(x),x\$2)-2*diff(y(x),x\$2)

$$y = \sqrt{-2c_3e^x x + e^{2x} + 2c_2e^x - 2c_1}$$
$$y = -\sqrt{-2c_3e^x x + e^{2x} + 2c_2e^x - 2c_1}$$

✓ Solution by Mathematica

Time used: 0.387 (sec). Leaf size: 65

 $DSolve[y[x]*y'''[x]+3*y'[x]*y''[x]-2*y[x]*y''[x]-2*y'[x]^2+y[x]^2+y[x]*y'[x]==Exp[2*x],y[x],x,Inclustical formula (a) and the context of th$

$$y(x) \to -\sqrt{e^{2x} + e^x(c_3x + 2c_2) + 2c_1}$$

$$y(x) \to \sqrt{e^{2x} + e^x(c_3x + 2c_2) + 2c_1}$$

14.15 problem 36

Internal problem ID [5443]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary

problems. Page 132

Problem number: 36.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

$$2(1+y)y'' + 2y'^{2} + y^{2} + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

 $dsolve(2*(y(x)+1)*diff(y(x),x$2)+2*diff(y(x),x)^2+y(x)^2+2*y(x)=0,y(x), singsol=all)$

$$y = -1 - \sqrt{1 + 2c_2 \cos(x) - 2c_1 \sin(x)}$$

$$y = -1 + \sqrt{1 + 2c_2 \cos(x) - 2c_1 \sin(x)}$$

✓ Solution by Mathematica

Time used: 24.469 (sec). Leaf size: 5629

DSolve[2*(y[x]+1)*y''[x]+2*y'[x]^2+y[x]^2+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

Too large to display

15 Chapter 21. System of simultaneous linear equations. Supplemetary problems. Page 163

15.1	problem 1	.0		•		•											•		•	•		•	275
15.2	problem 1	1																					276
15.3	problem 1	2																					277
15.4	problem 1	.3																					278
15.5	problem 1	7			_									_									279

15.1 problem 10

Internal problem ID [5444]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 21. System of simultaneous linear equations. Supplemetary problems. Page

163

Problem number: 10.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + e^{2t} - e^{t}$$

 $y'(t) = -x(t) + y(t) + e^{2t}$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 52

dsolve([diff(x(t),t)-diff(y(t),t)+y(t)=-exp(t),x(t)+diff(y(t),t)-y(t)=exp(2*t)],[x(t),y(t)]

$$x(t) = \frac{e^{2t}}{3} + 2e^{-t}c_2 - \frac{e^t}{2}$$
$$y(t) = e^{-t}c_2 + c_1e^t + \frac{2e^{2t}}{3} + \frac{e^tt}{2} - \frac{e^t}{4}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 72

$$x(t) o rac{1}{6}e^t(2e^t - 3) + c_1e^{-t}$$
 $y(t) o rac{2e^{2t}}{3} + rac{c_1e^{-t}}{2} + rac{1}{4}e^t(2t - 1 - 2c_1 + 4c_2)$

15.2 problem 11

Internal problem ID [5445]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 21. System of simultaneous linear equations. Supplemetary problems. Page

163

Problem number: 11.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) - t^{2} + 2y(t) + t$$
$$y'(t) = t^{2} - 3y(t) - 5x(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 54

 $dsolve([diff(x(t),t)+2*x(t)+diff(y(t),t)+y(t)=t,5*x(t)+diff(y(t),t)+3*y(t)=t^2],[x(t),y(t)]$

$$x(t) = -t^2 - \frac{\cos(t) c_2}{5} + \frac{\sin(t) c_1}{5} + t + 3 - \frac{3\sin(t) c_2}{5} - \frac{3\cos(t) c_1}{5}$$
$$y(t) = \sin(t) c_2 + \cos(t) c_1 + 2t^2 - 3t - 4$$

✓ Solution by Mathematica

Time used: 0.122 (sec). Leaf size: 61

DSolve[{x'[t]+2*x[t]+y'[t]+y[t]==t,5*x[t]+y'[t]+3*y[t]==t^2},{x[t],y[t]},t,IncludeSingularSo

$$x(t) \to -t^2 + t + c_1 \cos(t) + (3c_1 + 2c_2)\sin(t) + 3$$

$$y(t) \rightarrow 2t^2 - 3t + c_2 \cos(t) - (5c_1 + 3c_2)\sin(t) - 4$$

15.3 problem 12

Internal problem ID [5446]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 21. System of simultaneous linear equations. Supplemetary problems. Page 163

Problem number: 12.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 4 - 5x(t) - y(t) - e^{t}$$
$$y'(t) = 2x(t) - 3y(t) + e^{t} - 1$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 72

$$x(t) = -\frac{e^{-4t}\sin(t)c_2}{2} + \frac{e^{-4t}\cos(t)c_2}{2} - \frac{e^{-4t}\cos(t)c_1}{2} - \frac{e^{-4t}\sin(t)c_1}{2} - \frac{5e^t}{26} + \frac{13}{17}$$
$$y(t) = e^{-4t}\sin(t)c_2 + e^{-4t}\cos(t)c_1 + \frac{3}{17} + \frac{2e^t}{13}$$

✓ Solution by Mathematica

Time used: 0.239 (sec). Leaf size: 79

$$x(t) \to -\frac{5e^t}{26} + c_1 e^{-4t} \cos(t) - (c_1 + c_2) e^{-4t} \sin(t) + \frac{13}{17}$$
$$y(t) \to \frac{2e^t}{13} + c_2 e^{-4t} \cos(t) + (2c_1 + c_2) e^{-4t} \sin(t) + \frac{3}{17}$$

15.4 problem 13

Internal problem ID [5447]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 21. System of simultaneous linear equations. Supplemetary problems. Page

163

Problem number: 13.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) + y'(t) = x(t) - 3y(t) - 1 + e^{-t}$$

$$x'(t) + y'(t) = -2x(t) - 3y(t) + e^{2t} + 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 42

dsolve([diff(x(t),t)-x(t)+diff(y(t),t)+3*y(t)=exp(-t)-1,diff(x(t),t)+2*x(t)+diff(y(t),t)+3*y(t)=exp(-t)-1,diff(x(t),t)+2*x(t)+diff(y(t),t)+3*y(t)=exp(-t)-1,diff(x(t),t)+2*x(t)+diff(y(t),t)+3*y(t)=exp(-t)-1,diff(x(t),t)+2*x(t)+diff(y(t),t)+3*y(t)=exp(-t)-1,diff(x(t),t)+2*x(t)+diff(y(t),t)+3*y(t)=exp(-t)-1,diff(x(t),t)+2*x(t)+diff(y(t),t)+3*y(t)=exp(-t)-1,diff(x(t),t)+2*x(t)+diff(y(t),t)+3*y(t)=exp(-t)-1,diff(x(t),t)+2*x(t)+diff(y(t),t)+3*y(t)=exp(-t)-1,diff(x(t),t)+2*x(t)+diff(y(t),t)+3*y(t)=exp(-t)-1,diff(x(t),t)+2*x(t)+diff(y(t),t)+3*y(t)=exp(-t)-1,diff(x(t),t)+2*x(t)+diff(x(t),t)+3*y(t)=exp(-t)-1,diff(x(t),t)+2*x(t)+diff(x(t),t)+3*y(t)=exp(-t)-1,diff(x(t

$$x(t) = \frac{e^{2t}}{3} + \frac{2}{3} - \frac{e^{-t}}{3}$$
$$y(t) = -\frac{1}{9} - \frac{e^{2t}}{15} + \frac{e^{-t}}{6} + e^{-3t}c_1$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 62

 $DSolve[\{x'[t]-x[t]+y'[t]+3*y[t]==Exp[-t]-1,x'[t]+2*x[t]+y'[t]+3*y[t]==Exp[2*t]+1\},\{x[t],y[t]=x[t]+2*x[t]+1\}$

$$x(t) \rightarrow \frac{1}{3}e^{-t} \left(2e^t + e^{3t} - 1\right)$$

$$y(t) \rightarrow \frac{e^{-t}}{6} - \frac{e^{2t}}{15} + \frac{1}{16}c_1e^{-3t} - \frac{1}{9}$$

15.5 problem 17

Internal problem ID [5448]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 21. System of simultaneous linear equations. Supplemetary problems. Page

163

Problem number: 17.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 1 + x(t) + \frac{e^t}{2}$$
$$y'(t) = -2y(t) + \frac{e^t}{2}$$
$$z'(t) = 2 - z(t) + \frac{e^t}{2}$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 45

dsolve([diff(x(t),t)-x(t)+diff(y(t),t)+2*y(t)=1+exp(t),diff(y(t),t)+2*y(t)+diff(z(t),t)+z(t)))

$$x(t) = -1 + \frac{e^t(2c_1 + t)}{2}$$

$$y(t) = \frac{\mathrm{e}^t}{6} + \mathrm{e}^{-2t}c_2$$

$$z(t) = 2 + \frac{e^t}{4} + e^{-t}c_3$$

✓ Solution by Mathematica

Time used: 0.116 (sec). Leaf size: 60

DSolve[{x'[t]-x[t]+y'[t]+2*y[t]==1+Exp[t],y'[t]+2*y[t]+z'[t]+z[t]==2+Exp[t],x'[t]-x[t]+z'[t]

$$x(t) \to -1 + e^t \left(\frac{t}{2} + c_1\right)$$
$$y(t) \to \frac{e^t}{6} + c_2 e^{-2t}$$
$$z(t) \to \frac{e^t}{4} + (4 + c_3)e^{-t} + 2$$

16 Chapter 25. Integration in series. Supplemetary problems. Page 205

16.1	problem	9 .																			282
16.2	problem	10A	_																		283
16.3	problem	10B	,																		284
16.4	problem	11											•								285
16.5	problem	12											•								286
16.6	problem	13											•								287
16.7	problem	14																			288
16.8	problem	15																			289
16.9	problem	16																			290
16.10)problem	17																			291

16.1 problem 9

Internal problem ID [5449]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 25. Integration in series. Supplemetary problems. Page 205

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$1 - x)y' + y = x^2$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

Order:=6; dsolve((1-x)*diff(y(x),x)=x^2-y(x),y(x),type='series',x=0);

$$y = (1 - x) y(0) + \frac{x^3}{3} + \frac{x^4}{6} + \frac{x^5}{10} + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 33

AsymptoticDSolveValue[$(1-x)*y'[x]==x^2-y[x],y[x],\{x,0,5\}$]

$$y(x) \to \frac{x^5}{10} + \frac{x^4}{6} + \frac{x^3}{3} + c_1(1-x)$$

16.2 problem 10A

Internal problem ID [5450]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 25. Integration in series. Supplemetary problems. Page 205

Problem number: 10A.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x - 2y = 1 - x$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(x*diff(y(x),x)=1-x+2*y(x),y(x),type='series',x=1);

$$y = y(1) x^{2} - \frac{(-1+x)^{2}}{2}$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 28

AsymptoticDSolveValue[$x*y'[x] == 1-x+2*y[x],y[x],\{x,1,5\}$]

$$y(x) \to -\frac{1}{2}(x-1)^2 + c_1((x-1)^2 + 2(x-1) + 1)$$

16.3 problem 10B

Internal problem ID [5451]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 25. Integration in series. Supplemetary problems. Page 205

Problem number: 10B.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x - 2y = 1 - x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(x*diff(y(x),x)=1-x+2*y(x),y(x), singsol=all)

$$y = -\frac{1}{2} + x + c_1 x^2$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 16

DSolve[x*y'[x]==1-x+2*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x^2 + x - \frac{1}{2}$$

16.4 problem 11

Internal problem ID [5452]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 25. Integration in series. Supplemetary problems. Page 205

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$y' - 3y = 2x^2$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 42

Order:=6; dsolve(diff(y(x),x)=2*x^2+3*y(x),y(x),type='series',x=0);

$$y = \left(1 + 3x + \frac{9}{2}x^2 + \frac{9}{2}x^3 + \frac{27}{8}x^4 + \frac{81}{40}x^5\right)y(0) + \frac{2x^3}{3} + \frac{x^4}{2} + \frac{3x^5}{10} + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 61

AsymptoticDSolveValue[$y'[x]==2*x^2+3*y[x],y[x],\{x,0,5\}$]

$$y(x) o \frac{3x^5}{10} + \frac{x^4}{2} + \frac{2x^3}{3} + c_1 \left(\frac{81x^5}{40} + \frac{27x^4}{8} + \frac{9x^3}{2} + \frac{9x^2}{2} + 3x + 1 \right)$$

16.5 problem 12

Internal problem ID [5453]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 25. Integration in series. Supplemetary problems. Page 205

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x+1)y' - y = x^2 - 2x$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

Order:=6; dsolve((x+1)*diff(y(x),x)=x^2-2*x+y(x),y(x),type='series',x=0);

$$y = (1+x)y(0) - x^2 + \frac{2x^3}{3} - \frac{x^4}{3} + \frac{x^5}{5} + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 36

AsymptoticDSolveValue[$(x+1)*y'[x]==x^2-2*x+y[x],y[x],\{x,0,5\}$]

$$y(x) o \frac{x^5}{5} - \frac{x^4}{3} + \frac{2x^3}{3} - x^2 + c_1(x+1)$$

16.6 problem 13

Internal problem ID [5454]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 25. Integration in series. Supplemetary problems. Page 205

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+x*y(x)=0,y(x),type='series',x=0);

$$y = \left(1 - \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{12}x^4\right)y'(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{12} \right) + c_1 \left(1 - \frac{x^3}{6} \right)$$

16.7 problem 14

Internal problem ID [5455]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 25. Integration in series. Supplemetary problems. Page 205

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + 2yx^2 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve(diff(y(x),x\$2)+2*x^2*y(x)=0,y(x),type='series',x=0);

$$y = \left(1 - \frac{x^4}{6}\right)y(0) + \left(x - \frac{1}{10}x^5\right)y'(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+2*x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_2 \left(x - rac{x^5}{10}
ight) + c_1 \left(1 - rac{x^4}{6}
ight)$$

16.8 problem 15

Internal problem ID [5456]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 25. Integration in series. Supplemetary problems. Page 205

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y'x + yx^2 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

Order:=6; $dsolve(diff(y(x),x$2)-x*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);$

$$y = \left(1 - \frac{x^4}{12}\right)y(0) + \left(x + \frac{1}{6}x^3 - \frac{1}{40}x^5\right)y'(0) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 35

AsymptoticDSolveValue[$y''[x]-x*y'[x]+x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 \left(1 - rac{x^4}{12} \right) + c_2 \left(-rac{x^5}{40} + rac{x^3}{6} + x \right)$$

16.9 problem 16

Internal problem ID [5457]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 25. Integration in series. Supplemetary problems. Page 205

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(-x^2+1)y''-2y'x+p(p+1)y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 101

Order:=6; dsolve((1-x^2)*diff(y(x),x\$2)-2*x*diff(y(x),x)+p*(p+1)*y(x)=0,y(x),type='series',x=0);

$$\begin{split} y &= \left(1 - \frac{p(p+1)\,x^2}{2} + \frac{p(p^3 + 2p^2 - 5p - 6)\,x^4}{24}\right)y(0) \\ &\quad + \left(x - \frac{\left(p^2 + p - 2\right)x^3}{6} + \frac{\left(p^4 + 2p^3 - 13p^2 - 14p + 24\right)x^5}{120}\right)y'(0) + O\left(x^6\right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 120

$$y(x) \to c_2 \left(\frac{1}{120} (p^2 + p)^2 x^5 + \frac{7}{60} (-p^2 - p) x^5 + \frac{1}{6} (-p^2 - p) x^3 + \frac{x^5}{5} + \frac{x^3}{3} + x\right)$$
$$+ c_1 \left(\frac{1}{24} (p^2 + p)^2 x^4 + \frac{1}{4} (-p^2 - p) x^4 + \frac{1}{2} (-p^2 - p) x^2 + 1\right)$$

16.10 problem 17

Internal problem ID [5458]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 25. Integration in series. Supplemetary problems. Page 205

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + yx^2 = x^2 + x + 1$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

Order:=6; dsolve(diff(y(x),x\$2)+x^2*y(x)=1+x+x^2,y(x),type='series',x=0);

$$y = \left(1 - \frac{x^4}{12}\right)y(0) + \left(x - \frac{1}{20}x^5\right)y'(0) + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{12} + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 49

AsymptoticDSolveValue[$y''[x]+x^2*y[x]==1+x+x^2,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(x - \frac{x^5}{20}\right) + \frac{x^4}{12} + c_1 \left(1 - \frac{x^4}{12}\right) + \frac{x^3}{6} + \frac{x^2}{2}$$

17 Chapter 26. Integration in series (singular points). Supplemetary problems. Page 218

17.1 problem 11		 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	293
17.2 problem 12																																		294
17.3 problem 13																																		295
17.4 problem 14																																•		296
17.5 problem 15																																		297
17.6 problem 16																																•		298
17.7 problem 17																																		300
17.8 problem 18																																•		301
17.9 problem 19																																•		302
17.10 problem 20																																		304
17.11 problem 21								_																		_								306

17.1 problem 11

Internal problem ID [5459]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 26. Integration in series (singular points). Supplemetary problems. Page

218

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2(x^{3} + x^{2})y'' - (-3x^{2} + x)y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

Order:=6; $dsolve(2*(x^2+x^3)*diff(y(x),x$2)-(x-3*x^2)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);$

$$y = (-x^5 + x^4 - x^3 + x^2 - x + 1) (c_1\sqrt{x} + c_2x) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 58

AsymptoticDSolveValue $[2*(x^2+x^3)*y''[x]-(x-3*x^2)*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_1 x(-x^5 + x^4 - x^3 + x^2 - x + 1) + c_2 \sqrt{x}(-x^5 + x^4 - x^3 + x^2 - x + 1)$$

17.2 problem 12

Internal problem ID [5460]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 26. Integration in series (singular points). Supplemetary problems. Page 218

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4xy'' + 2(1-x)y' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 44

Order:=6; dsolve(4*x*diff(y(x),x\$2)+2*(1-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y = c_1 \sqrt{x} \left(1 + \frac{1}{3}x + \frac{1}{15}x^2 + \frac{1}{105}x^3 + \frac{1}{945}x^4 + \frac{1}{10395}x^5 + O(x^6) \right)$$
$$+ c_2 \left(1 + \frac{1}{2}x + \frac{1}{8}x^2 + \frac{1}{48}x^3 + \frac{1}{384}x^4 + \frac{1}{3840}x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 85

AsymptoticDSolveValue $[4*x*y''[x]+2*(1-x)*y'[x]-y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \sqrt{x} \left(\frac{x^5}{10395} + \frac{x^4}{945} + \frac{x^3}{105} + \frac{x^2}{15} + \frac{x}{3} + 1 \right) + c_2 \left(\frac{x^5}{3840} + \frac{x^4}{384} + \frac{x^3}{48} + \frac{x^2}{8} + \frac{x}{2} + 1 \right)$$

17.3 problem 13

Internal problem ID [5461]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 26. Integration in series (singular points). Supplemetary problems. Page

218

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2x^{2}y'' - y'x + (-x^{2} + 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

Order:=6; $dsolve(2*x^2*diff(y(x),x$2)-x*diff(y(x),x)+(1-x^2)*y(x)=0,y(x),type='series',x=0);$

$$y = c_1 \sqrt{x} \left(1 + \frac{1}{6} x^2 + \frac{1}{168} x^4 + \mathcal{O}\left(x^6\right) \right) + c_2 x \left(1 + \frac{1}{10} x^2 + \frac{1}{360} x^4 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 48

$$y(x) \to c_1 x \left(\frac{x^4}{360} + \frac{x^2}{10} + 1\right) + c_2 \sqrt{x} \left(\frac{x^4}{168} + \frac{x^2}{6} + 1\right)$$

17.4 problem 14

Internal problem ID [5462]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 26. Integration in series (singular points). Supplemetary problems. Page 218

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' + y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

Order:=6; dsolve(x*diff(y(x),x\$2)+diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y = (\ln(x) c_2 + c_1) \left(1 - \frac{1}{4}x^2 + \frac{1}{64}x^4 + O(x^6) \right) + \left(\frac{1}{4}x^2 - \frac{3}{128}x^4 + O(x^6) \right) c_2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 60

 $A symptotic D Solve Value [x*y''[x]+y'[x]+x*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{x^4}{64} - \frac{x^2}{4} + 1\right) + c_2 \left(-\frac{3x^4}{128} + \frac{x^2}{4} + \left(\frac{x^4}{64} - \frac{x^2}{4} + 1\right) \log(x)\right)$$

17.5 problem 15

Internal problem ID [5463]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 26. Integration in series (singular points). Supplemetary problems. Page

218

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - y'x + (x^{2} + 1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

$$y = x \left((\ln(x) c_2 + c_1) \left(1 - \frac{1}{4} x^2 + \frac{1}{64} x^4 + O(x^6) \right) + \left(\frac{1}{4} x^2 - \frac{3}{128} x^4 + O(x^6) \right) c_2 \right)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 65

AsymptoticDSolveValue[$x^2*y''[x]-x*y'[x]+(x^2+1)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 x \left(\frac{x^4}{64} - \frac{x^2}{4} + 1\right) + c_2 \left(x \left(\frac{x^2}{4} - \frac{3x^4}{128}\right) + x \left(\frac{x^4}{64} - \frac{x^2}{4} + 1\right) \log(x)\right)$$

17.6 problem 16

Internal problem ID [5464]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952

Section: Chapter 26. Integration in series (singular points). Supplemetary problems. Page 218

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$xy'' - 2y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 56

Order:=6; dsolve(x*diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y = c_1 x^3 \left(1 - \frac{1}{4} x + \frac{1}{40} x^2 - \frac{1}{720} x^3 + \frac{1}{20160} x^4 - \frac{1}{806400} x^5 + \mathcal{O}(x^6) \right)$$

$$+ c_2 \left(\ln(x) \left(-x^3 + \frac{1}{4} x^4 - \frac{1}{40} x^5 + \mathcal{O}(x^6) \right) \right)$$

$$+ \left(12 + 6x + 3x^2 - \frac{5}{16} x^4 + \frac{39}{800} x^5 + \mathcal{O}(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 79

$$y(x) \to c_1 \left(\frac{1}{48} (x - 4) x^3 \log(x) + \frac{1}{576} \left(-19 x^4 + 16 x^3 + 144 x^2 + 288 x + 576 \right) \right)$$
$$+ c_2 \left(\frac{x^7}{20160} - \frac{x^6}{720} + \frac{x^5}{40} - \frac{x^4}{4} + x^3 \right)$$

17.7 problem 17

Internal problem ID [5465]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 26. Integration in series (singular points). Supplemetary problems. Page 218

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' + 2y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

Order:=6;

dsolve(x*diff(y(x),x\$2)+2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y = c_1 \left(1 - \frac{1}{6}x^2 + \frac{1}{120}x^4 + \mathcal{O}\left(x^6\right) \right) + \frac{c_2 \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + \mathcal{O}\left(x^6\right) \right)}{x}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 42

AsymptoticDSolveValue[$x*y''[x]+2*y'[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 \left(\frac{x^3}{24} - \frac{x}{2} + \frac{1}{x} \right) + c_2 \left(\frac{x^4}{120} - \frac{x^2}{6} + 1 \right)$$

17.8 problem 18

Internal problem ID [5466]

 $\bf Book:$ Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 26. Integration in series (singular points). Supplemetary problems. Page

218

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}(x+1)y'' + x(x+1)y' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

Order:=6; dsolve(x^2*(x+1)*diff(y(x),x\$2)+x*(x+1)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

$$y = c_1 x \left(1 - \frac{1}{3} x + \frac{1}{6} x^2 - \frac{1}{10} x^3 + \frac{1}{15} x^4 - \frac{1}{21} x^5 + \mathcal{O}\left(x^6\right) \right) + \frac{c_2 (-2 - 2x + \mathcal{O}\left(x^6\right))}{x}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 45

AsymptoticDSolveValue[$x^2*(x+1)*y''[x]+x*(x+1)*y'[x]-y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{15} - \frac{x^4}{10} + \frac{x^3}{6} - \frac{x^2}{3} + x\right) + c_1 \left(\frac{1}{x} + 1\right)$$

17.9 problem 19

Internal problem ID [5467]

 ${f Book}$: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 26. Integration in series (singular points). Supplemetary problems. Page 218

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$2xy'' + y' - y = 1 + x$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 60

Order:=6; dsolve(2*x*diff(y(x),x\$2)+diff(y(x),x)-y(x)=x+1,y(x),type='series',x=0);

$$y = c_1 \sqrt{x} \left(1 + \frac{1}{3}x + \frac{1}{30}x^2 + \frac{1}{630}x^3 + \frac{1}{22680}x^4 + \frac{1}{1247400}x^5 + O(x^6) \right)$$
$$+ c_2 \left(1 + x + \frac{1}{6}x^2 + \frac{1}{90}x^3 + \frac{1}{2520}x^4 + \frac{1}{113400}x^5 + O(x^6) \right)$$
$$+ x \left(1 + \frac{1}{3}x + \frac{1}{45}x^2 + \frac{1}{1260}x^3 + \frac{1}{56700}x^4 + O(x^5) \right)$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 246

AsymptoticDSolveValue $[2*x*y''[x]+y'[x]-y[x]==x+1,y[x],\{x,0,5\}]$

$$\begin{split} y(x) & \to c_1 \bigg(\frac{x^5}{113400} + \frac{x^4}{2520} + \frac{x^3}{90} + \frac{x^2}{6} + x + 1 \bigg) \\ & + c_2 \sqrt{x} \bigg(\frac{x^5}{1247400} + \frac{x^4}{22680} + \frac{x^3}{630} + \frac{x^2}{30} + \frac{x}{3} + 1 \bigg) + \sqrt{x} \bigg(\frac{x^5}{1247400} + \frac{x^4}{22680} + \frac{x^3}{630} \\ & + \frac{x^2}{30} + \frac{x}{3} + 1 \bigg) \bigg(\frac{23x^{11/2}}{311850} + \frac{29x^{9/2}}{11340} + \frac{16x^{7/2}}{315} + \frac{7x^{5/2}}{15} + \frac{4x^{3/2}}{3} \\ & + 2\sqrt{x} \bigg) + \bigg(\frac{x^5}{113400} + \frac{x^4}{2520} + \frac{x^3}{90} + \frac{x^2}{6} + x + 1 \bigg) \bigg(-\frac{x^6}{133650} - \frac{37x^5}{113400} - \frac{11x^4}{1260} - \frac{11x^3}{90} - \frac{2x^2}{3} - x \bigg) \end{split}$$

17.10 problem 20

Internal problem ID [5468]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

 ${\bf Section} \colon$ Chapter 26. Integration in series (singular points). Supplemetary problems. Page

218

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$2x^3y'' + y'x^2 + y = 0$$

With the expansion point for the power series method at $x = \infty$.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 117

Order:=6; dsolve(2*x^3*diff(y(x),x\$2)+x^2*diff(y(x),x)+y(x)=0,y(x),type='series',x=Infinity);

$$y = \left(1 - \frac{(x - \text{Infinity})^2}{4 \, \text{Infinity}^3} + \frac{7(x - \text{Infinity})^3}{24 \, \text{Infinity}^4} + \frac{(-59 \, \text{Infinity} + 2) \, (x - \text{Infinity})^4}{192 \, \text{Infinity}^6} \right)$$

$$+ \frac{(605 \, \text{Infinity} - 52) \, (x - \text{Infinity})^5}{1920 \, \text{Infinity}^7} \right) y(\text{Infinity}) + \left(x - \text{Infinity} - \frac{(x - \text{Infinity})^2}{4 \, \text{Infinity}} + \frac{(3 \, \text{Infinity}^2 - 2 \, \text{Infinity}) \, (x - \text{Infinity})^3}{24 \, \text{Infinity}^4} - \frac{5 \left(\text{Infinity} - \frac{28}{15}\right) \, (x - \text{Infinity})^4}{64 \, \text{Infinity}^4} + \frac{\left(105 \, \text{Infinity}^3 - 370 \, \text{Infinity}^2 + 4 \, \text{Infinity}\right) \, (x - \text{Infinity})^5}{1920 \, \text{Infinity}^7} \right) y'(\text{Infinity}) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 96

 $A symptotic DSolve Value [2*x^3*y''[x]+x^2*y'[x]+y[x]==0,y[x], \{x, Infinity, 5\}]$

$$y(x) \to c_2 \left(\frac{1}{6x^{3/2}} - \frac{1}{90x^{5/2}} + \frac{1}{2520x^{7/2}} - \frac{1}{113400x^{9/2}} + \sqrt{x} - \frac{1}{\sqrt{x}} \right) + c_1 \left(-\frac{1}{1247400x^5} + \frac{1}{22680x^4} - \frac{1}{630x^3} + \frac{1}{30x^2} - \frac{1}{3x} + 1 \right)$$

17.11 problem 21

Internal problem ID [5469]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 26. Integration in series (singular points). Supplemetary problems. Page

218

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{3}y'' + (x^{2} + x)y' - y = 0$$

With the expansion point for the power series method at $x = \infty$.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 179

Order:=6; $dsolve(x^3*diff(y(x),x$2)+(x^2+x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=Infinity);$

$$y = \left(1 + \frac{(x - \text{Infinity})^2}{2 \, \text{Infinity}^3} + \frac{(-4 \, \text{Infinity} - 1) \, (x - \text{Infinity})^3}{6 \, \text{Infinity}^5} \right. \\ + \frac{\left(18 \, \text{Infinity}^2 + 10 \, \text{Infinity} + 1\right) \, (x - \text{Infinity})^4}{24 \, \text{Infinity}^7} \\ + \frac{\left(-96 \, \text{Infinity}^3 - 86 \, \text{Infinity}^2 - 18 \, \text{Infinity} - 1\right) \, (x - \text{Infinity})^5}{120 \, \text{Infinity}^9} \right) y(\text{Infinity}) \\ + \left(x - \text{Infinity} + \frac{\left(- \, \text{Infinity}^2 - \, \text{Infinity}\right) \, (x - \, \text{Infinity})^2}{2 \, \text{Infinity}^3} \right. \\ + \frac{\left(2 \, \text{Infinity}^3 + 5 \, \text{Infinity}^2 + \, \text{Infinity}\right) \, (x - \, \text{Infinity})^3}{6 \, \text{Infinity}^5} \\ + \frac{\left(-6 \, \text{Infinity}^4 - 26 \, \text{Infinity}^3 - 11 \, \text{Infinity}^2 - \, \text{Infinity}\right) \, (x - \, \text{Infinity})^4}{24 \, \text{Infinity}^7} \\ + \frac{\left(24 \, \text{Infinity}^5 + 154 \, \text{Infinity}^4 + 102 \, \text{Infinity}^3 + 19 \, \text{Infinity}^2 + \, \text{Infinity}\right) \, (x - \, \text{Infinity})^5}{120 \, \text{Infinity}^9} \right) y'(\text{Infinity})$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 124

 $A symptotic DSolve Value [x^3*y''[x]+(x^2+x)*y'[x]-y[x]==0, y[x], \{x, Infinity, 5\}]$

$$y(x) \to c_1 \left(\frac{1}{120x^5} + \frac{1}{24x^4} + \frac{1}{6x^3} + \frac{1}{2x^2} + \frac{1}{x} + 1 \right) + c_2 \left(-\frac{137}{7200x^5} - \frac{\log(x)}{120x^5} - \frac{25}{288x^4} - \frac{\log(x)}{24x^4} - \frac{11}{36x^3} - \frac{\log(x)}{6x^3} - \frac{3}{4x^2} - \frac{\log(x)}{2x^2} - \frac{1}{x} - \frac{\log(x)}{x} - \log(x) \right)$$

18	Chapt	Chapter 27. The Legendre, Bessel and Gauss						
	Equat	ions. Supplemetary problems. Page 230						
18.1	problem 20							

18.1 problem 20

Internal problem ID [5470]

Book: Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank

Ayres. McGraw Hill 1952

Section: Chapter 27. The Legendre, Bessel and Gauss Equations. Supplemetary problems.

Page 230

Problem number: 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$z'' + tz' + \left(t^2 - \frac{1}{9}\right)z = 0$$

With the expansion point for the power series method at t = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

$$z(t) = \left(1 + \frac{1}{18}t^2 - \frac{179}{1944}t^4\right)z(0) + \left(t - \frac{4}{27}t^3 - \frac{139}{4860}t^5\right)D(z)(0) + O(t^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$z''[t]+t*z'[t]+(t^2-1/9)*z[t]==0,z[t],\{t,0,5\}$]

$$z(t)
ightharpoonup c_2 \left(-\frac{139t^5}{4860} - \frac{4t^3}{27} + t \right) + c_1 \left(-\frac{179t^4}{1944} + \frac{t^2}{18} + 1 \right)$$