A Solution Manual For

Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 1. Introduction. Exercises page 14	3
2	Chapter 1. Introduction. Exercises 1.3, page 27	27
3	Chapter 2. The Initial Value Problem. Exercises 2.1, page 40	46
4	Chapter 2. The Initial Value Problem. Exercises 2.2, page 53	7 0
5	Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57	96
6	Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63	107
7	Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71	125
8	Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115	140
9	Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186	189
10	Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210	207
11	Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218	222
12	Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221	23 0
13	Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248	235
14	Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255	250
15	Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265	259
16	Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273	268
17	Chapter 7. Systems of First-Order Differential Equations. Exercises page 329	276
18	Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379	287

19 Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432

Chapter 1. Introduction. Exercises page 14 1 1.1 problem 15 4 1.2 5 problem 16 1.3 6 problem 17 7 1.4 problem 18 1.5 8 problem 19 1.6 problem 20 9 10 1.7 problem 21 11 1.8 problem 22 12 1.9 problem 23 1.10 problem 24 13 1.11 problem 25 14 1.12 problem 26 15 1.13 problem 27 16 1.14 problem 28 17 1.15 problem 29 18 1.16 problem 30 19 20 1.17 problem 31 1.18 problem 32 21 1.19 problem 33 22 23 1.20 problem 34 1.21 problem 35 24 1.22 problem 36 251.23 problem 37 26

1.1 problem 15

Internal problem ID [12254]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' + xy' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + c_2 x$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 16

 $DSolve[x^2*y''[x]+x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1}{x} + c_2 x$$

1.2 problem 16

Internal problem ID [12255]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xy'-y=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve(x*diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y(x) = c_1 x$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 14

DSolve[x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x$$

$$y(x) \to 0$$

1.3 problem 17

Internal problem ID [12256]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$2x^2y'' + 3xy' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(2*x^2*diff(y(x),x$2)+3*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + c_2 \sqrt{x}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 20

 $DSolve[2*x^2*y''[x]+3*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{c_2 x^{3/2} + c_1}{x}$$

1.4 problem 18

Internal problem ID [12257]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 3y' + 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^x$$

Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 18

DSolve[y''[x]-3*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(c_2 e^x + c_1)$$

1.5 problem 19

Internal problem ID [12258]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)-2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^2 + \frac{c_2}{x}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 18

DSolve[x^2*y''[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_2 x^3 + c_1}{x}$$

1.6 problem 20

Internal problem ID [12259]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + \frac{1}{2y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x)+1/(2*y(x))=0,y(x), singsol=all)

$$y(x) = \sqrt{-x + c_1}$$

$$y(x) = -\sqrt{-x + c_1}$$

✓ Solution by Mathematica

Time used: 0.113 (sec). Leaf size: 35

 $DSolve[y'[x]+1/(2*y[x])==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\sqrt{-x+2c_1}$$

$$y(x) \to \sqrt{-x + 2c_1}$$

1.7 problem 21

Internal problem ID [12260]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{x} = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x)-y(x)/x=1,y(x), singsol=all)

$$y(x) = x(\ln(x) + c_1)$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 12

DSolve[y'[x]-y[x]/x==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(\log(x) + c_1)$$

1.8 problem 22

Internal problem ID [12261]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$y' - 2\sqrt{|y|} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x)-2*sqrt(abs(y(x)))=0,y(x), singsol=all)

$$x - \frac{\left(\begin{cases} -2\sqrt{-y(x)} & y(x) \le 0\\ 2\sqrt{y(x)} & 0 < y(x) \end{cases}}{2} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.291 (sec). Leaf size: 31

DSolve[y'[x]-Sqrt[Abs[y[x]]]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{1}{\sqrt{|K[1]|}} dK[1] \& \right] [x + c_1]$$

 $y(x) \to 0$

1.9 problem 23

Internal problem ID [12262]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 23.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^2y' + 2yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve(x^2*diff(y(x),x)+2*x*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x^2}$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 16

DSolve[x^2*y'[x]+2*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{c_1}{x^2}$$

$$y(x) \to 0$$

1.10 problem 24

Internal problem ID [12263]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

 $dsolve(diff(y(x),x)-y(x)^2=1,y(x), singsol=all)$

$$y(x) = \tan\left(x + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.213 (sec). Leaf size: 24

DSolve[y'[x]-y[x]^2==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \tan(x + c_1)$$

$$y(x) \to -i$$

$$y(x) \to i$$

1.11 problem 25

Internal problem ID [12264]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$2x^2y'' + xy' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(2*x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x + \frac{c_2}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 18

DSolve[2*x^2*y''[x]+x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1}{\sqrt{x}} + c_2 x$$

1.12 problem 26

Internal problem ID [12265]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$xy' = \sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

dsolve(x*diff(y(x),x)-sin(x)=0,y(x), singsol=all)

$$y(x) = \operatorname{Si}(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 10

DSolve[x*y'[x]-Sin[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \mathrm{Si}(x) + c_1$$

1.13 problem 27

Internal problem ID [12266]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x)+3*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 18

DSolve[y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-3x}$$

$$y(x) \to 0$$

1.14 problem 28

Internal problem ID [12267]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 3y' - 10y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)-10*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{5x} + c_2 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 22

 $DSolve[y''[x]-3*y'[x]-10*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-2x} (c_2 e^{7x} + c_1)$$

1.15 problem 29

Internal problem ID [12268]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-x} + c_2 x e^{-x}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 18

DSolve[y''[x]+2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x}(c_2x + c_1)$$

1.16 problem 30

Internal problem ID [12269]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 30.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 7y'' + 12y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$3)-7*diff(y(x),x\$2)+12*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + e^{3x}c_2 + e^{4x}c_3$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 30

 $DSolve[y'''[x]-7*y''[x]+12*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{3}c_1e^{3x} + \frac{1}{4}c_2e^{4x} + c_3$$

1.17 problem 31

Internal problem ID [12270]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2xy' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $\label{eq:decomposition} dsolve(2*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \sqrt{x}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 18

DSolve[2*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \sqrt{x}$$

$$y(x) \to 0$$

1.18 problem 32

Internal problem ID [12271]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x^2y'' - xy' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_2 x^2 + c_1$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 17

DSolve[x^2*y''[x]-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1 x^2}{2} + c_2$$

1.19 problem 33

Internal problem ID [12272]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' + 6xy' + 4y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)+6*x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x^4} + \frac{c_2}{x}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 18

 $DSolve[x^2*y''[x]+6*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_2 x^3 + c_1}{x^4}$$

1.20 problem 34

Internal problem ID [12273]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' - 5xy' + 9y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^3 + c_2 x^3 \ln(x)$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 18

 $DSolve[x^2*y''[x]-5*x*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to x^3 (3c_2 \log(x) + c_1)$$

1.21 problem 35

Internal problem ID [12274]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 35.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 - 4y = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)^2-4*y(x)=0,y(x), singsol=all)$

$$y(x) = 0$$

 $y(x) = c_1^2 - 2c_1x + x^2$

✓ Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 38

 $DSolve[(y'[x])^2-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{1}{4}(-2x + c_1)^2$$

$$y(x) \to \frac{1}{4}(2x + c_1)^2$$

$$y(x) \to 0$$

1.22 problem 36

Internal problem ID [12275]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 36.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[homogeneous, 'class G']]

$$y'^2 - 9yx = 0$$

Time used: 0.016 (sec). Leaf size: 101

 $dsolve(diff(y(x),x)^2-9*x*y(x)=0,y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = -x^3 - 2(-x^2 - \sqrt{c_1 x}) x + c_1$$

$$y(x) = -x^3 - 2(-x^2 + \sqrt{c_1 x}) x + c_1$$

$$y(x) = -x^3 + 2(x^2 - \sqrt{c_1 x}) x + c_1$$

$$y(x) = -x^3 + 2(x^2 + \sqrt{c_1 x}) x + c_1$$

✓ Solution by Mathematica

Time used: 0.087 (sec). Leaf size: 46

 $DSolve[(y'[x])^2-9*x*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{4} \left(-2x^{3/2} + c_1 \right)^2$$
$$y(x) \to \frac{1}{4} \left(2x^{3/2} + c_1 \right)^2$$
$$y(x) \to 0$$

1.23 problem 37

Internal problem ID [12276]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises page 14

Problem number: 37.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 = x^6$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)^2=x^6,y(x), singsol=all)$

$$y(x) = \frac{x^4}{4} + c_1$$

$$y(x) = -\frac{x^4}{4} + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 29

DSolve[(y'[x])^2==x^6,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{x^4}{4} + c_1$$

$$y(x) \to \frac{x^4}{4} + c_1$$

2	Chap	ter	1.	Lr	ıt	r)(ıt	10	ct	i	O.	\mathbf{n}	•	Ŀ	X	e	r	Cì	İS	\mathbf{e}	S	1	3,	1)	aį	g	e	2	7
2.1	problem	1								•											•										28
2.2	problem ?	2																													29
2.3	problem	3																													30
2.4	problem 4	4																													31
2.5	problem	5																													32
2.6	problem	6																													33
2.7	problem '	7																													34
2.8	problem	8 a(i)					•																								35
2.9	problem	8 a(ii)) .																												36
2.10	problem 8	8 b(i)																													37
2.11	problem	8 b(ii)) .																												38
2.12	problem 9	9					•																								39
2.13	problem	10 (a)																													40
2.14	problem	10 (b)) .																												41
2.15	problem	10 (c)	•				•																								42
2.16	problem	10 (d)) .				•																								43
2.17	problem	10 (e)																													44
2.18	problem	10 (f)																													45

2.1 problem 1

Internal problem ID [12277]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $\label{eq:decomposition} dsolve(diff(y(x),x)-2*x*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 \mathrm{e}^{x^2}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 18

DSolve[y'[x]-2*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^{x^2}$$

$$y(x) \to 0$$

2.2 problem 2

Internal problem ID [12278]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = x^2 + 2x - 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)+y(x)=x^2+2*x-1,y(x), singsol=all)$

$$y(x) = x^2 - 1 + c_1 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 18

 $DSolve[y'[x]+y[x]==x^2+2*x-1,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2 + c_1 e^{-x} - 1$$

2.3 problem 3

Internal problem ID [12279]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-diff(y(x),x)-6*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{3x} + c_2 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 22

DSolve[y''[x]-y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (c_2 e^{5x} + c_1)$$

2.4 problem 4

Internal problem ID [12280]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 4.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - x\sqrt{y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(x),x)=x*y(x)^(1/2),y(x), singsol=all)$

$$\sqrt{y(x)} - \frac{x^2}{4} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.2 (sec). Leaf size: 24

 $DSolve[y'[x] == x*y[x]^(1/2), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{16} (x^2 + 2c_1)^2$$
$$y(x) \to 0$$

2.5 problem 5

Internal problem ID [12281]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-y(x)=0,y(x), singsol=all)

$$y(x) = e^x c_1 + e^{-x} c_2$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 20

DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x}$$

2.6 problem 6

Internal problem ID [12282]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y^{\frac{2}{3}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)=3*y(x)^(2/3),y(x), singsol=all)$

$$y(x)^{\frac{1}{3}} - c_1 - x = 0$$

✓ Solution by Mathematica

Time used: 0.166 (sec). Leaf size: 22

 $DSolve[y'[x] == 3*y[x]^(2/3), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{27} (3x + c_1)^3$$

$$y(x) \to 0$$

2.7 problem 7

Internal problem ID [12283]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 7.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xy' \ln(x) - (\ln(x) + 1) y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve((x*ln(x))*diff(y(x),x)-(1+ln(x))*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 x \ln\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.087 (sec). Leaf size: 16

DSolve[(x*Log[x])*y'[x]-(1+Log[x])*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x \log(x)$$

$$y(x) \to 0$$

2.8 problem 8 a(i)

Internal problem ID [12284]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 8 a(i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 2y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = -5]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve([diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=0,y(0) = 2, D(y)(0) = -5],y(x), singsol=all)

$$y(x) = -e^{2x} + 3e^{-x}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 19

DSolve[{y''[x]-y'[x]-2*y[x]==0,{y[0]==2,y'[0]==-5}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -e^{-x} \left(e^{3x} - 3 \right)$$

2.9 problem 8 a(ii)

Internal problem ID [12285]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 8 a(ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 2y = 0$$

With initial conditions

$$[y(1) = 3, y'(1) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve([diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=0,y(1) = 3, D(y)(1) = -1],y(x), singsol=all)

$$y(x) = \frac{2e^{2x-2}}{3} + \frac{7e^{1-x}}{3}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 28

DSolve[{y''[x]-y'[x]-2*y[x]==0,{y[1]==3,y'[1]==-1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{7e^{1-x}}{3} + \frac{2}{3}e^{2x-2}$$

2.10 problem 8 b(i)

Internal problem ID [12286]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 8 b(i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 2y = 0$$

With initial conditions

$$[y(0) = 1, y(2) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

dsolve([diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=0,y(0) = 1, y(2) = 0],y(x), singsol=all)

$$y(x) = \frac{-e^{2x} + e^{-x+6}}{e^6 - 1}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 29

$$y(x) \to \frac{e^{-x}(e^6 - e^{3x})}{e^6 - 1}$$

2.11 problem 8 b(ii)

Internal problem ID [12287]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 8 b(ii).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(2) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve([diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=0,y(0) = 0, D(y)(2) = 1],y(x), singsol=all)

$$y(x) = \frac{e^{2-x}(e^{3x} - 1)}{2e^6 + 1}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 29

$$y(x) \to \frac{e^{2-x}(e^{3x}-1)}{1+2e^6}$$

2.12 problem 9

Internal problem ID [12288]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 9.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$x^3y''' - 3x^2y'' + 6y'x - 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x^3*diff(y(x),x$3)-3*x^2*diff(y(x),x$2)+6*x*diff(y(x),x)-6*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x^3 + c_2 x^2 + c_3 x$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 19

$$y(x) \to x(x(c_3x + c_2) + c_1)$$

2.13 problem 10 (a)

Internal problem ID [12289]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 10 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' - 4xy' + 6y = 0$$

With initial conditions

$$[y(1) = 0, y(2) = -4]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

$$y(x) = -x^3 + x^2$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 13

DSolve[{x^2*y''[x]-4*x*y'[x]+6*y[x]==0,{y[1]==0,y[2]==-4}},y[x],x,IncludeSingularSolutions -

$$y(x) \to -((x-1)x^2)$$

2.14 problem 10 (b)

Internal problem ID [12290]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 10 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' - 4xy' + 6y = 0$$

With initial conditions

$$[y(2) = 4, y'(1) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve([x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=0,y(2) = 4, D(y)(1) = 0],y(x), singsol=al(x)=0$

$$y(x) = 2x^3 - 3x^2$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 14

DSolve[{x^2*y''[x]-4*x*y'[x]+6*y[x]==0,{y'[1]==0,y[2]==4}},y[x],x,IncludeSingularSolutions -

$$y(x) \to x^2(2x-3)$$

2.15 problem 10 (c)

Internal problem ID [12291]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 10 (c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' - 4xy' + 6y = 0$$

With initial conditions

$$[y(1) = 1, y'(2) = -12]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

$$y(x) = -2x^3 + 3x^2$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 14

DSolve[{x^2*y''[x]-4*x*y'[x]+6*y[x]==0,{y[1]==1,y'[2]==-12}},y[x],x,IncludeSingularSolutions

$$y(x) \to (3-2x)x^2$$

2.16 problem 10 (d)

Internal problem ID [12292]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 10 (d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' - 4xy' + 6y = 0$$

With initial conditions

$$[y'(1) = 3, y'(2) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve([x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=0,D(y)(1) = 3, D(y)(2) = 0],y(x), singsolve([x^2*diff(y(x),x$2]-4*x*diff(y(x),x)+6*y(x)=0,D(y)(1) = 3,D(y)(2) = 0],y(x), singsolve([x^2*diff(y(x),x]-2*x*diff(y(x),x)+6*y(x)=0,D(y)(1) = 3,D(y)(2) = 0],y(x), singsolve([x^2*diff(y(x),x]-2*x*diff(y(x),x)+6*y(x)=0,D(y)(1) = 3,D(y)(2) = 0],y(x), singsolve([x^2*diff(y(x),x]-2*x*diff(y(x),x)+6*y(x)=0,D(y)(x)=0,D(y$

$$y(x) = -x^3 + 3x^2$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 13

 $DSolve[\{x^2*y''[x]-4*x*y'[x]+6*y[x]==0,\{y'[1]==3,y'[2]==0\}\},y[x],x,IncludeSingularSolutions]$

$$y(x) \to -((x-3)x^2)$$

2.17 problem 10 (e)

Internal problem ID [12293]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 10 (e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' - 4xy' + 6y = 0$$

With initial conditions

$$[y(0) = 0, y(2) = 4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve([x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=0,y(0) = 0, y(2) = 4],y(x), singsol=all)$

$$y(x) = (1 + (-2 + x) c_1) x^2$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 23

DSolve[{x^2*y''[x]-4*x*y'[x]+6*y[x]==0,{y[0]==0,y[2]==4}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{1}{2}x^2(x - c_1x + 2c_1)$$

2.18 problem 10 (f)

Internal problem ID [12294]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 1. Introduction. Exercises 1.3, page 27

Problem number: 10 (f).

ODE order: 2. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_Emden,\ _Fowler],\ [_2nd_order,\ _linear,\ `_with_symmetry_[0,Fowler],\ [_2nd_order,\ _],\ [-2nd_order,\ _],\ [-2nd_o$

$$x^2y'' - 4xy' + 6y = 0$$

With initial conditions

$$[y(0) = 2, y'(2) = -1]$$

X Solution by Maple

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

{}

3 Chapter 2. The Initial Value Problem. Exercises 2.1, page 40 3.1 47 3.2 48 3.3 49 3.4 50 3.5 513.6 52 3.7 53 3.8 54 3.9 55 56 57 58 59 60 3.15 problem 10 61 62 3.16 problem 11 63 3.17 problem 12 64 3.18 problem 13 3.19 problem 14 65 3.20 problem 15 66 3.21 problem 16 67 3.22 problem 17 69

3.1 problem 1 (A)

Internal problem ID [12295]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 1 (A).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = 1 - x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x)=1-x,y(x), singsol=all)

$$y(x) = -\frac{1}{2}x^2 + x + c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 16

DSolve[y'[x]==1-x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{x^2}{2} + x + c_1$$

3.2 problem 1 (B)

Internal problem ID [12296]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 1 (B).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = x - 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)=x-1,y(x), singsol=all)

$$y(x) = \frac{1}{2}x^2 - x + c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: $18\,$

DSolve[y'[x]==x-1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^2}{2} - x + c_1$$

3.3 problem 2 (C)

Internal problem ID [12297]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 2 (C).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y = 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

dsolve(diff(y(x),x)=1-y(x),y(x), singsol=all)

$$y(x) = 1 + c_1 \mathrm{e}^{-x}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: $20\,$

DSolve[y'[x]==1-y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 1 + c_1 e^{-x}$$

$$y(x) \to 1$$

3.4 problem 2 (D)

Internal problem ID [12298]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 2 (D).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'-y=1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x)=1+y(x),y(x), singsol=all)

$$y(x) = -1 + c_1 e^x$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 18

DSolve[y'[x]==1+y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -1 + c_1 e^x$$

$$y(x) \rightarrow -1$$

3.5 problem 3 (E)

Internal problem ID [12299]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 3 (E).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 = -4$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 24

 $dsolve(diff(y(x),x)=y(x)^2-4,y(x), singsol=all)$

$$y(x) = -\frac{2(c_1 e^{4x} + 1)}{-1 + c_1 e^{4x}}$$

✓ Solution by Mathematica

Time used: 1.066 (sec). Leaf size: 40

DSolve[y'[x]==y[x]^2-4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2 - 2e^{4(x+c_1)}}{1 + e^{4(x+c_1)}}$$

$$y(x) \rightarrow -2$$

$$y(x) \rightarrow 2$$

3.6 problem 3 (F)

Internal problem ID [12300]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 3 (F).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 4$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

 $dsolve(diff(y(x),x)=4-y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{2c_1e^{4x} + 2}{-1 + c_1e^{4x}}$$

Solution by Mathematica

Time used: 0.278 (sec). Leaf size: 45

DSolve[y'[x]==4-y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2(e^{4x} - e^{4c_1})}{e^{4x} + e^{4c_1}}$$

$$y(x) \rightarrow -2$$

$$y(x) \to 2$$

3.7 problem 4 (G)

Internal problem ID [12301]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 4 (G).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x)=x*y(x),y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{\frac{x^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 22

DSolve[y'[x] == x*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{\frac{x^2}{2}}$$

$$y(x) \to 0$$

3.8 problem 4 (H)

Internal problem ID [12302]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 4 (H).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + yx = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve(diff(y(x),x)=-x*y(x),y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{-\frac{x^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 22

DSolve[y'[x] == -x*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-\frac{x^2}{2}}$$

$$y(x) \to 0$$

3.9 problem 5 (I)

Internal problem ID [12303]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 5 (I).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [Riccati]

$$y' + y^2 = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

 $dsolve(diff(y(x),x)=x^2-y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{x\left(\text{BesselI}\left(-\frac{3}{4}, \frac{x^2}{2}\right)c_1 - \text{BesselK}\left(\frac{3}{4}, \frac{x^2}{2}\right)\right)}{c_1 \text{ BesselI}\left(\frac{1}{4}, \frac{x^2}{2}\right) + \text{BesselK}\left(\frac{1}{4}, \frac{x^2}{2}\right)}$$

✓ Solution by Mathematica

Time used: 0.184 (sec). Leaf size: 197

DSolve[y'[x]==x^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{-ix^2 \left(2 \operatorname{BesselJ}\left(-\frac{3}{4}, \frac{ix^2}{2}\right) + c_1 \left(\operatorname{BesselJ}\left(-\frac{5}{4}, \frac{ix^2}{2}\right) - \operatorname{BesselJ}\left(\frac{3}{4}, \frac{ix^2}{2}\right)\right)\right) - c_1 \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{ix^2}{2}\right)}{2x \left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{ix^2}{2}\right) + c_1 \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{ix^2}{2}\right)\right)}$$

$$y(x) \rightarrow \frac{ix^2 \operatorname{BesselJ}\left(-\frac{5}{4}, \frac{ix^2}{2}\right) - ix^2 \operatorname{BesselJ}\left(\frac{3}{4}, \frac{ix^2}{2}\right) + \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{ix^2}{2}\right)}{2x \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{ix^2}{2}\right)}$$

3.10 problem 5 (J)

Internal problem ID [12304]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 5 (J).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [Riccati]

$$y' - y^2 = -x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

 $dsolve(diff(y(x),x)=y(x)^2-x^2,y(x), singsol=all)$

$$y(x) = \frac{x\left(-\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^2}{2}\right)c_1 + \operatorname{BesselK}\left(\frac{3}{4}, \frac{x^2}{2}\right)\right)}{c_1\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^2}{2}\right) + \operatorname{BesselK}\left(\frac{1}{4}, \frac{x^2}{2}\right)}$$

✓ Solution by Mathematica

Time used: 0.178 (sec). Leaf size: 196

DSolve[y'[x]==y[x]^2-x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \\ -\frac{ix^2 \left(2 \operatorname{BesselJ}\left(-\frac{3}{4}, \frac{ix^2}{2}\right) + c_1 \left(\operatorname{BesselJ}\left(-\frac{5}{4}, \frac{ix^2}{2}\right) - \operatorname{BesselJ}\left(\frac{3}{4}, \frac{ix^2}{2}\right)\right)\right) + c_1 \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{ix^2}{2}\right)}{2x \left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{ix^2}{2}\right) + c_1 \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{ix^2}{2}\right)\right)}$$

$$y(x) \rightarrow -\frac{ix^2 \operatorname{BesselJ}\left(-\frac{5}{4}, \frac{ix^2}{2}\right) - ix^2 \operatorname{BesselJ}\left(\frac{3}{4}, \frac{ix^2}{2}\right) + \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{ix^2}{2}\right)}{2x \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{ix^2}{2}\right)}$$

3.11 problem 6

Internal problem ID [12305]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y'-y=x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x)=x+y(x),y(x), singsol=all)

$$y(x) = -x - 1 + c_1 e^x$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 16

DSolve[y'[x]==x+y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x + c_1 e^x - 1$$

3.12 problem 7

Internal problem ID [12306]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x)=x*y(x),y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{\frac{x^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 22

DSolve[y'[x] == x*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{\frac{x^2}{2}}$$

$$y(x) \to 0$$

3.13 problem 8

Internal problem ID [12307]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{x}{y} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

dsolve(diff(y(x),x)=x/y(x),y(x), singsol=all)

$$y(x) = \sqrt{x^2 + c_1}$$

$$y(x) = -\sqrt{x^2 + c_1}$$

✓ Solution by Mathematica

Time used: 0.127 (sec). Leaf size: 35

DSolve[y'[x]==x/y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\sqrt{x^2 + 2c_1}$$

$$y(x) \to \sqrt{x^2 + 2c_1}$$

3.14 problem 9

Internal problem ID [12308]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 9.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve(diff(y(x),x)=y(x)/x,y(x), singsol=all)

$$y(x) = c_1 x$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 14

$$y(x) \to c_1 x$$

$$y(x) \to 0$$

3.15 problem 10

Internal problem ID [12309]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

 $dsolve(diff(y(x),x)=1+y(x)^2,y(x), singsol=all)$

$$y(x) = \tan\left(x + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.145 (sec). Leaf size: 24

 $DSolve[y'[x]==1+y[x]^2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \tan(x+c_1)$$

$$y(x) \to -i$$

$$y(x) \to i$$

3.16 problem 11

Internal problem ID [12310]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(x),x)=y(x)^2-3*y(x),y(x), singsol=all)$

$$y(x) = \frac{3}{1 + 3c_1 e^{3x}}$$

✓ Solution by Mathematica

Time used: 0.352 (sec). Leaf size: 29

 $DSolve[y'[x] == y[x]^2 - 3*y[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{3}{1 + e^{3(x+c_1)}}$$

$$y(x) \to 0$$

$$y(x) \rightarrow 3$$

3.17 problem 12

Internal problem ID [12311]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Abel]

$$y' - y^3 = x^3$$

X Solution by Maple

 $dsolve(diff(y(x),x)=x^3+y(x)^3,y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]==x^3+y[x]^3,y[x],x,IncludeSingularSolutions -> True]

Not solved

3.18 problem 13

Internal problem ID [12312]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - |y| = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 19

dsolve(diff(y(x),x)=abs(y(x)),y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^{-x}}{c_1}$$

$$y(x) = c_1 e^x$$

✓ Solution by Mathematica

Time used: 0.229 (sec). Leaf size: 29

DSolve[y'[x]==Abs[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{1}{|K[1]|} dK[1] \& \right] [x + c_1]$$

$$y(x) \to 0$$

3.19 problem 14

Internal problem ID [12313]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - e^{-y+x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 9

dsolve(diff(y(x),x)=exp(x-y(x)),y(x), singsol=all)

$$y(x) = \ln\left(e^x + c_1\right)$$

✓ Solution by Mathematica

Time used: 1.319 (sec). Leaf size: 12

DSolve[y'[x] == Exp[x-y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \log\left(e^x + c_1\right)$$

3.20 problem 15

Internal problem ID [12314]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \ln\left(x + y\right) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

dsolve(diff(y(x),x)=ln(x+y(x)),y(x), singsol=all)

$$y(x) = e^{\text{RootOf}(c_1 e - x e - \text{Ei}_1(-Z-1))} - x$$

✓ Solution by Mathematica

Time used: 0.207 (sec). Leaf size: 22

DSolve[y'[x] == Log[x+y[x]],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\frac{\text{ExpIntegralEi}(\log(x+y(x))+1)}{e} - x = c_1, y(x)\right]$$

3.21 problem 16

Internal problem ID [12315]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 16.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ A'],\ _rational,\ [_Abel,\ Abel,\ A$

$$y' - \frac{2x - y}{x + 3y} = 0$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 53

dsolve(diff(y(x),x)=(2*x-y(x))/(x+3*y(x)),y(x), singsol=all)

$$y(x) = rac{-rac{c_1 x}{3} - rac{\sqrt{7c_1^2 x^2 + 3}}{3}}{c_1}$$
 $y(x) = rac{-rac{c_1 x}{3} + rac{\sqrt{7c_1^2 x^2 + 3}}{3}}{c_1}$

$$y(x) = rac{-rac{c_1 x}{3} + rac{\sqrt{7c_1^2 x^2 + 3}}{3}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.812 (sec). Leaf size: 114

DSolve[y'[x]==(2*x-y[x])/(x+3*y[x]),y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \frac{1}{3} \left(-x - \sqrt{7x^2 + 3e^{2c_1}} \right) \\ y(x) &\to \frac{1}{3} \left(-x + \sqrt{7x^2 + 3e^{2c_1}} \right) \\ y(x) &\to \frac{1}{3} \left(-\sqrt{7}\sqrt{x^2} - x \right) \\ y(x) &\to \frac{1}{3} \left(\sqrt{7}\sqrt{x^2} - x \right) \end{split}$$

3.22 problem 17

Internal problem ID [12316]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$y' - \frac{1}{\sqrt{15 - x^2 - y^2}} = 0$$

X Solution by Maple

 $dsolve(diff(y(x),x)=1/sqrt(15-x^2-y(x)^2),y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y'[x] == 1/Sqrt[15-x^2-y[x]^2], y[x], x, IncludeSingularSolutions \rightarrow True]$

Not solved

4 Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

4.1	problem 1	 	 				•										•	•	71
4.2	problem 2	 	 																72
4.3	problem 3	 	 																73
4.4	problem 4		 																74
4.5	problem 5		 																75
4.6	problem 6		 																76
4.7	problem 7		 																77
4.8	problem 8		 																79
4.9	problem 9		 																80
4.10	problem 10		 																81
4.11	problem 11		 							•									82
4.12	problem 12		 																83
4.13	problem 13		 							•									84
4.14	problem 14		 																85
4.15	problem 15		 																86
4.16	problem 16		 																87
4.17	problem 17		 																88
4.18	problem 18		 																89
4.19	problem 19		 							•									90
4.20	problem 20		 																91
4.21	problem 21		 																92
4.22	problem 22		 							•									93
4.23	problem 23		 																94
4.24	problem 24		 																95

4.1 problem 1

Internal problem ID [12317]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{3y}{(x-5)(x+3)} = e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

dsolve(diff(y(x),x)=3*y(x)/((x-5)*(x+3))+exp(-x),y(x), singsol=all)

$$y(x) = \frac{(x-5)^{\frac{3}{8}} \left(\int \frac{(x+3)^{\frac{3}{8}} e^{-x}}{(x-5)^{\frac{3}{8}}} dx + c_1 \right)}{(x+3)^{\frac{3}{8}}}$$

✓ Solution by Mathematica

Time used: 15.323 (sec). Leaf size: 57

 $DSolve[y'[x] == 3*y[x]/((x-5)*(x+3)) + Exp[-x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{(5-x)^{3/8} \left(\int_1^x rac{e^{-K[1]}(K[1]+3)^{3/8}}{(5-K[1])^{3/8}} dK[1] + c_1
ight)}{(x+3)^{3/8}}$$

4.2 problem 2

Internal problem ID [12318]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y' - \frac{xy}{x^2 + y^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve(diff(y(x),x)=x*y(x)/(x^2+y(x)^2),y(x), singsol=all)$

$$y(x) = \sqrt{\frac{1}{\mathrm{LambertW}(c_1 x^2)}} x$$

✓ Solution by Mathematica

Time used: 11.187 (sec). Leaf size: 49

 $DSolve[y'[x] == x*y[x]/(x^2+y[x]^2),y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{x}{\sqrt{W\left(e^{-2c_1}x^2\right)}}$$

$$y(x) \to \frac{x}{\sqrt{W\left(e^{-2c_1}x^2\right)}}$$

$$y(x) \to 0$$

4.3 problem 3

Internal problem ID [12319]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{1}{yx} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(diff(y(x),x)=1/(x*y(x)),y(x), singsol=all)

$$y(x) = \sqrt{2 \ln(x) + c_1}$$
$$y(x) = -\sqrt{2 \ln(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.1 (sec). Leaf size: $40\,$

DSolve[y'[x]==1/(x*y[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sqrt{2}\sqrt{\log(x) + c_1}$$

$$y(x) \to \sqrt{2}\sqrt{\log(x) + c_1}$$

4.4 problem 4

Internal problem ID [12320]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \ln\left(y - 1\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x)=ln(y(x)-1),y(x), singsol=all)

$$y(x) = e^{\text{RootOf}(\text{Ei}_1(--Z)+x+c_1)} + 1$$

✓ Solution by Mathematica

Time used: 0.29 (sec). Leaf size: 21

DSolve[y'[x] == Log[y[x]-1],y[x],x,IncludeSingularSolutions -> True]

 $y(x) \to \text{InverseFunction}[\text{LogIntegral}(\#1-1)\&][x+c_1]$

 $y(x) \to 2$

4.5 problem 5

Internal problem ID [12321]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 5.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$y' - \sqrt{(y+2)(y-1)} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x)=sqrt((y(x)+2)*(y(x)-1)),y(x), singsol=all)

$$x - \ln\left(y(x) + \frac{1}{2} + \sqrt{-2 + y(x)^2 + y(x)}\right) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.497 (sec). Leaf size: 41

DSolve[y'[x] == Sqrt[(y[x]+2)*(y[x]-1)], y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4} \left(-e^{-x-c_1} - 9e^{x+c_1} - 2 \right)$$

$$y(x) \rightarrow -2$$

$$y(x) \to 1$$

4.6 problem 6

Internal problem ID [12322]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 6.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{y}{y - x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x)=y(x)/(y(x)-x),y(x), singsol=all)

$$y(x) = x - \sqrt{x^2 - 2c_1}$$

$$y(x) = x + \sqrt{x^2 - 2c_1}$$

✓ Solution by Mathematica

Time used: 0.836 (sec). Leaf size: 80

 $DSolve[y'[x] == y[x]/(y[x]-x), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x - \sqrt{x^2 - e^{2c_1}}$$

$$y(x) \to x + \sqrt{x^2 - e^{2c_1}}$$

$$y(x) \to 0$$

$$y(x) \to x - \sqrt{x^2}$$

$$y(x) \to \sqrt{x^2} + x$$

4.7 problem 7

Internal problem ID [12323]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - \frac{x}{y^2} = 0$$

/

Solution by Maple

Time used: 0.015 (sec). Leaf size: 85

 $dsolve(diff(y(x),x)=x/y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{\left(12x^2 + 8c_1\right)^{\frac{1}{3}}}{2}$$

$$y(x) = -\frac{\left(12x^2 + 8c_1\right)^{\frac{1}{3}}}{4} - \frac{i\sqrt{3}\left(12x^2 + 8c_1\right)^{\frac{1}{3}}}{4}$$

$$y(x) = -\frac{\left(12x^2 + 8c_1\right)^{\frac{1}{3}}}{4} + \frac{i\sqrt{3}\left(12x^2 + 8c_1\right)^{\frac{1}{3}}}{4}$$

✓ Solution by Mathematica

Time used: 0.283 (sec). Leaf size: 79

DSolve[y'[x]==x/y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sqrt[3]{-\frac{3}{2}}\sqrt[3]{x^2 + 2c_1}$$
$$y(x) \to \sqrt[3]{\frac{3}{2}}\sqrt[3]{x^2 + 2c_1}$$
$$y(x) \to (-1)^{2/3}\sqrt[3]{\frac{3}{2}}\sqrt[3]{x^2 + 2c_1}$$

4.8 problem 8

Internal problem ID [12324]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{\sqrt{y}}{x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x)=sqrt(y(x))/x,y(x), singsol=all)

$$\sqrt{y(x)} - \frac{\ln(x)}{2} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.202 (sec). Leaf size: 21

DSolve[y'[x]==Sqrt[y[x]]/x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}(\log(x) + c_1)^2$$

$$y(x) \to 0$$

4.9 problem 9

Internal problem ID [12325]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{xy}{1-y} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve(diff(y(x),x)=x*y(x)/(1-y(x)),y(x), singsol=all)

$$y(x) = \mathrm{e}^{-\mathrm{LambertW}\left(-\mathrm{e}^{rac{x^2}{2}+c_1}
ight) + rac{x^2}{2}+c_1}$$

✓ Solution by Mathematica

Time used: 3.96 (sec). Leaf size: 29

DSolve[y'[x]==x*y[x]/(1-y[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -W\left(-e^{\frac{x^2}{2}-c_1}\right)$$
$$y(x) \to 0$$

4.10 problem 10

Internal problem ID [12326]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[homogeneous, 'class G']]

$$y' - (yx)^{\frac{1}{3}} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 120

 $dsolve(diff(y(x),x)=(x*y(x))^(1/3),y(x), singsol=all)$

$$\frac{4(xy(x))^{\frac{4}{3}}}{\left(-x^{4}+8y(x)^{2}\right)\left(2\left(xy(x)\right)^{\frac{2}{3}}-x^{2}\right)^{2}}+\frac{2x^{2}(xy(x))^{\frac{2}{3}}}{\left(-x^{4}+8y(x)^{2}\right)\left(2\left(xy(x)\right)^{\frac{2}{3}}-x^{2}\right)^{2}}+\frac{x^{4}}{\left(-x^{4}+8y(x)^{2}\right)\left(2\left(xy(x)\right)^{\frac{2}{3}}-x^{2}\right)^{2}}-c_{1}=0$$

✓ Solution by Mathematica

Time used: 4.979 (sec). Leaf size: 35

 $DSolve[y'[x] == (x*y[x])^(1/3), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{(3x^{4/3} + 4c_1)^{3/2}}{6\sqrt{6}}$$

 $y(x) \to 0$

4.11 problem 11

Internal problem ID [12327]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \sqrt{\frac{y-4}{x}} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 41

dsolve(diff(y(x),x)=sqrt((y(x)-4)/x),y(x), singsol=all)

$$-\ln\left(\frac{x-y(x)+4}{x}\right) + 2 \operatorname{arctanh}\left(\sqrt{-\frac{-y(x)+4}{x}}\right) - \ln(x) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.294 (sec). Leaf size: 29

DSolve[y'[x]==Sqrt[(y[x]-4)/x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$y(x) \rightarrow x + c_1 \sqrt{x} + 4 + \frac{{c_1}^2}{4}$$

 $y(x) \rightarrow 4$

4.12 problem 12

Internal problem ID [12328]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y' + \frac{y}{x} - y^{\frac{1}{4}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(x),x)=-y(x)/x+y(x)^(1/4),y(x), singsol=all)$

$$y(x)^{\frac{3}{4}} - \frac{3x}{7} - \frac{c_1}{x^{\frac{3}{4}}} = 0$$

✓ Solution by Mathematica

Time used: 9.843 (sec). Leaf size: 31

DSolve[$y'[x] == -y[x]/x+y[x]^(1/4),y[x],x,IncludeSingularSolutions -> True$]

$$y(x) o rac{\left(3x + rac{7c_1}{x^{3/4}}\right)^{4/3}}{7\sqrt[3]{7}}$$

4.13 problem 13

Internal problem ID [12329]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 13.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 4y = -5$$

With initial conditions

$$[y(1) = 4]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([diff(y(x),x)=4*y(x)-5,y(1) = 4],y(x), singsol=all)

$$y(x) = \frac{11e^{4x-4}}{4} + \frac{5}{4}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 20

 $DSolve[\{y'[x]==4*y[x]-5,\{y[1]==4\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{11}{4}e^{4x-4} + \frac{5}{4}$$

4.14 problem 14

Internal problem ID [12330]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 3y = 1$$

With initial conditions

$$[y(-2) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

dsolve([diff(y(x),x)+3*y(x)=1,y(-2) = 1],y(x), singsol=all)

$$y(x) = \frac{2e^{-3x-6}}{3} + \frac{1}{3}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 20

 $DSolve[\{y'[x]+3*y[x]==1,\{y[-2]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{3}e^{-3(x+2)} + \frac{1}{3}$$

4.15 problem 15

Internal problem ID [12331]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - ay = b$$

With initial conditions

$$[y(c) = d]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve([diff(y(x),x)=a*y(x)+b,y(c) = d],y(x), singsol=all)

$$y(x) = \frac{(da+b)e^{-a(c-x)} - b}{a}$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 39

 $DSolve[\{y'[x]==a*y[x]+b,\{y[c]==d\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{e^{-ac}(b(e^{ax} - e^{ac}) + ade^{ax})}{a}$$

4.16 problem 16

Internal problem ID [12332]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 16.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$y' = x^2 + e^x - \sin(x)$$

With initial conditions

$$[y(2) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve([diff(y(x),x)=x^2+exp(x)-sin(x),y(2) = -1],y(x), singsol=all)$

$$y(x) = \frac{x^3}{3} + \cos(x) + e^x - \frac{11}{3} - \cos(2) - e^2$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 30

 $DSolve[\{y'[x]==x^2+Exp[x]-Sin[x],\{y[2]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^3}{3} + e^x + \cos(x) - e^2 - \frac{11}{3} - \cos(2)$$

4.17 problem 17

Internal problem ID [12333]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - yx = \frac{1}{x^2 + 1}$$

With initial conditions

$$[y(-5) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 31

 $dsolve([diff(y(x),x)=x*y(x)+1/(1+x^2),y(-5) = 0],y(x), singsol=all)$

$$y(x) = \left(\int_{-5}^{x} \frac{e^{-\frac{-zI^2}{2}}}{-zI^2 + 1} d_{-}zI \right) e^{\frac{x^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.478 (sec). Leaf size: 41

 $DSolve[\{y'[x]==x*y[x]+1/(1+x^2),\{y[-5]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{\frac{x^2}{2}} \int_{-5}^x \frac{e^{-\frac{1}{2}K[1]^2}}{K[1]^2 + 1} dK[1]$$

4.18 problem 18

Internal problem ID [12334]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{y}{x} = \cos\left(x\right)$$

With initial conditions

$$[y(-1) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(x),x)=y(x)/x+cos(x),y(-1)=0],y(x), singsol=all)

$$y(x) = -(i\pi + \operatorname{Ci}(1) - \operatorname{Ci}(x)) x$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 14

 $DSolve[\{y'[x]==y[x]/x+Cos[x],\{y[-1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x(\text{CosIntegral}(x) - \text{CosIntegral}(-1))$$

4.19 problem 19

Internal problem ID [12335]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{y}{x} = \tan(x)$$

With initial conditions

$$[y(\pi) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve([diff(y(x),x)=y(x)/x+tan(x),y(Pi) = 0],y(x), singsol=all)

$$y(x) = \left(\int_{\pi}^{x} \frac{\tan\left(\underline{z1}\right)}{\underline{z1}} d\underline{z1}\right) x$$

✓ Solution by Mathematica

Time used: 1.98 (sec). Leaf size: 22

DSolve[{y'[x]==y[x]/x+Tan[x],{y[Pi]==0}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x \int_{\pi}^{x} \frac{\tan(K[1])}{K[1]} dK[1]$$

4.20 problem 20

Internal problem ID [12336]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{y}{-x^2 + 4} = \sqrt{x}$$

With initial conditions

$$[y(3) = 4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 41

 $dsolve([diff(y(x),x)=y(x)/(4-x^2)+sqrt(x),y(3)=4],y(x), singsol=all)$

$$y(x) = \frac{\left(45^{\frac{3}{4}} + 5\left(\int_{3}^{x} \frac{\left(-z1-2\right)^{\frac{1}{4}}\sqrt{-z1}}{\left(-z1+2\right)^{\frac{1}{4}}}d-z1\right)\right)(x+2)^{\frac{1}{4}}}{5\left(x-2\right)^{\frac{1}{4}}}$$

✓ Solution by Mathematica

Time used: 2.843 (sec). Leaf size: 202

 $DSolve[\{y'[x]==y[x]/(4-x^2)+Sqrt[x],\{y[3]==4\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{\left(\frac{1}{45} + \frac{i}{45}\right)\sqrt[4]{x+2}\left((10-10i)x^{3/2} \text{AppellF1}\left(\frac{3}{2}, \frac{3}{4}, \frac{1}{4}, \frac{5}{2}, \frac{x}{2}, -\frac{x}{2}\right) - (30-30i)\sqrt{x} \text{AppellF1}\left(\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{3}{2}, \frac{x}{2}, -\frac{x}{2}\right)}{\sqrt{x}}$$

4.21 problem 21

Internal problem ID [12337]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{y}{-x^2 + 4} = \sqrt{x}$$

With initial conditions

$$[y(1) = -3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 44

 $dsolve([diff(y(x),x)=y(x)/(4-x^2)+sqrt(x),y(1) = -3],y(x), singsol=all)$

$$y(x) = -\frac{(x+2)^{\frac{1}{4}} \left(-2 \left(\int_{1}^{x} \frac{\left(_z1-2\right)^{\frac{1}{4}} \sqrt{_z1}}{\left(_z1+2\right)^{\frac{1}{4}}} d_z1\right) + (1+i) \sqrt{2} \, 3^{\frac{3}{4}}\right)}{2 \left(x-2\right)^{\frac{1}{4}}}$$

✓ Solution by Mathematica

Time used: 0.145 (sec). Leaf size: 158

 $DSolve[\{y'[x]==y[x]/(4-x^2)+Sqrt[x],\{y[1]==-3\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{\sqrt[4]{x+2}\left(4x^{3/2}\operatorname{AppellF1}\left(\frac{3}{2},\frac{3}{4},\frac{1}{4},\frac{5}{2},\frac{x}{2},-\frac{x}{2}\right)-12\sqrt{x}\operatorname{AppellF1}\left(\frac{1}{2},\frac{3}{4},\frac{1}{4},\frac{3}{2},\frac{x}{2},-\frac{x}{2}\right)-4\operatorname{AppellF1}\left(\frac{3}{2},\frac{3}{4},\frac{1}{4},\frac{5}{2},\frac{x}{2},-\frac{x}{2}\right)}{9\sqrt[4]{2-x}}$$

4.22 problem 22

Internal problem ID [12338]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - y \cot(x) = \csc(x)$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right) = 1\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve([diff(y(x),x)=cot(x)*y(x)+csc(x),y(1/2*Pi) = 1],y(x), singsol=all)

$$y(x) = -\cos(x) + \sin(x)$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 12

DSolve[{y'[x]==Cot[x]*y[x]+Csc[x],{y[Pi/2]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x) - \cos(x)$$

4.23 problem 23

Internal problem ID [12339]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + x\sqrt{-y^2 + 1} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=-x*sqrt(1-y(x)^2),y(0) = 1],y(x), singsol=all)$

$$y(x) = 1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 6

 $DSolve[\{y'[x]=-x*Sqrt[1-y[x]^2],\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 1$$

4.24 problem 24

Internal problem ID [12340]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y' - \frac{\sqrt{x^2 + 4y}}{2} = -\frac{x}{2}$$

With initial conditions

$$[y(6) = -9]$$

✓ Solution by Maple

Time used: 0.844 (sec). Leaf size: 17

 $\label{eq:dsolve} $$ dsolve([diff(y(x),x)=(-x+sqrt(x^2+4*y(x)))/2,y(6) = -9],y(x), singsol=all)$ $$$

$$y(x) = 9 - 3x$$

$$y(x) = -\frac{x^2}{4}$$

✓ Solution by Mathematica

Time used: 0.987 (sec). Leaf size: 10

$$y(x) \to 9 - 3x$$

5 Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57

5.1	problem	1																				97
5.2	$\operatorname{problem}$	2																				98
5.3	$\operatorname{problem}$	3																				99
5.4	$\operatorname{problem}$	4												•								100
5.5	$\operatorname{problem}$	5																				101
5.6	$\operatorname{problem}$	6												•								102
5.7	$\operatorname{problem}$	7																				103
5.8	$\operatorname{problem}$	8																				104
5.9	$\operatorname{problem}$	9																				105
5.10	problem	10)																			106

5.1 problem 1

Internal problem ID [12341]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = 3x + 1$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([diff(y(x),x)=3*x+1,y(1) = 2],y(x), singsol=all)

$$y(x) = \frac{3}{2}x^2 + x - \frac{1}{2}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 17

 $DSolve[\{y'[x]==3*x+1,\{y[1]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{3x^2}{2} + x - \frac{1}{2}$$

5.2 problem 2

Internal problem ID [12342]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = x + \frac{1}{x}$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $\label{eq:decomposition} dsolve([diff(y(x),x)=x+1/x,y(1) = 2],y(x), singsol=all)$

$$y(x) = \frac{x^2}{2} + \ln(x) + \frac{3}{2}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 18

 $DSolve[\{y'[x]==x+1/x,\{y[1]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2} (x^2 + 2\log(x) + 3)$$

5.3 problem 3

Internal problem ID [12343]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = 2\sin\left(x\right)$$

With initial conditions

$$[y(\pi)=1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve([diff(y(x),x)=2*sin(x),y(Pi) = 1],y(x), singsol=all)

$$y(x) = -2\cos(x) - 1$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 11

 $DSolve[\{y'[x]==2*Sin[x],\{y[Pi]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -2\cos(x) - 1$$

5.4 problem 4

Internal problem ID [12344]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = x\sin\left(x\right)$$

With initial conditions

$$\left[y\Big(\frac{\pi}{2}\Big)=1\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([diff(y(x),x)=x*sin(x),y(1/2*Pi) = 1],y(x), singsol=all)

$$y(x) = \sin(x) - x\cos(x)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 13

DSolve[{y'[x]==x*Sin[x],{y[Pi/2]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x) - x\cos(x)$$

5.5 problem 5

Internal problem ID [12345]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57

Problem number: 5.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \frac{1}{x - 1}$$

With initial conditions

$$[y(2) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

dsolve([diff(y(x),x)=1/(x-1),y(2) = 1],y(x), singsol=all)

$$y(x) = \ln(x - 1) + 1$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 11

 $DSolve[\{y'[x]==1/(x-1),\{y[2]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \log(x-1) + 1$$

5.6 problem 6

Internal problem ID [12346]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57

Problem number: 6.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \frac{1}{x - 1}$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

dsolve([diff(y(x),x)=1/(x-1),y(0) = 1],y(x), singsol=all)

$$y(x) = \ln(x - 1) - i\pi + 1$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 16

 $DSolve[\{y'[x]==1/(x-1),\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \log(x-1) - i\pi + 1$$

5.7 problem 7

Internal problem ID [12347]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$y' = \frac{1}{x^2 - 1}$$

With initial conditions

$$[y(2) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve([diff(y(x),x)=1/(x^2-1),y(2) = 1],y(x), singsol=all)$

$$y(x) = -\operatorname{arctanh}(x) + \operatorname{arctanh}\left(\frac{1}{2}\right) - \frac{i\pi}{2} + 1$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: $28\,$

 $DSolve[\{y'[x]==1/(x^2-1),\{y[2]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}(\log(3-3x) - \log(x+1) - i\pi + 2)$$

5.8 problem 8

Internal problem ID [12348]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \frac{1}{x^2 - 1}$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $dsolve([diff(y(x),x)=1/(x^2-1),y(0) = 1],y(x), singsol=all)$

$$y(x) = -\operatorname{arctanh}(x) + 1$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 23

 $DSolve[\{y'[x]==1/(x^2-1),\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}(\log(1-x) - \log(x+1) + 2)$$

5.9 problem 9

Internal problem ID [12349]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \tan\left(x\right)$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 9

dsolve([diff(y(x),x)=tan(x),y(0) = 0],y(x), singsol=all)

$$y(x) = -\ln(\cos(x))$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 10

 $DSolve[\{y'[x]==Tan[x],\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\log(\cos(x))$$

5.10 problem 10

Internal problem ID [12350]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \tan\left(x\right)$$

With initial conditions

$$[y(\pi) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([diff(y(x),x)=tan(x),y(Pi) = 0],y(x), singsol=all)

$$y(x) = -\ln(\cos(x)) + i\pi$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 16

DSolve[{y'[x]==Tan[x],{y[Pi]==0}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\log(\cos(x)) + i\pi$$

Chapter 2. The Initial Value Problem. Exercises 6 2.3.2, page 63 6.1 108 6.2 109 6.3 110 6.4 111 6.5 6.6 6.7 114

117

115

119121

122

6.8

6.9

6.10 problem 10

6.11 problem 11

6.12 problem 12

6.13 problem 13

6.14 problem 14

6.15 problem 15

6.1 problem 1

Internal problem ID [12351]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y = 0$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

dsolve([diff(y(x),x)=3*y(x),y(0) = -1],y(x), singsol=all)

$$y(x) = -e^{3x}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 12

DSolve[$\{y'[x]==3*y[x],\{y[0]==-1\}\},y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to -e^{3x}$$

6.2 problem 2

Internal problem ID [12352]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y = 1$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(y(x),x)=-y(x)+1,y(0)=1],y(x), singsol=all)

$$y(x) = 1$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $DSolve[\{y'[x]==-y[x]+1,\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 1$$

6.3 problem 3

Internal problem ID [12353]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y = 1$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve([diff(y(x),x)=-y(x)+1,y(0)=2],y(x), singsol=all)

$$y(x) = e^{-x} + 1$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 12

 $DSolve[\{y'[x]==-y[x]+1,\{y[0]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x} + 1$$

6.4 problem 4

Internal problem ID [12354]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - x e^{-x^2 + y} = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 19

 $dsolve([diff(y(x),x)=x*exp(y(x)-x^2),y(0) = 0],y(x), singsol=all)$

$$y(x) = \ln(2) - \ln(e^{x^2} + 1) + x^2$$

✓ Solution by Mathematica

Time used: 2.407 (sec). Leaf size: 21

$$y(x) \to -\log\left(\frac{1}{2}\left(e^{-x^2}+1\right)\right)$$

6.5 problem 5

Internal problem ID [12355]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{x} = 0$$

With initial conditions

$$[y(-1) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve([diff(y(x),x)=y(x)/x,y(-1) = 2],y(x), singsol=all)

$$y(x) = -2x$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 8

 $DSolve[\{y'[x]==y[x]/x,\{y[-1]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -2x$$

6.6 problem 6

Internal problem ID [12356]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2x}{y} = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 13

 $\label{eq:decomposition} dsolve([diff(y(x),x)=2*x/y(x),y(0) = 2],y(x), \ singsol=all)$

$$y(x) = \sqrt{2x^2 + 4}$$

✓ Solution by Mathematica

Time used: 0.121 (sec). Leaf size: 20

 $DSolve[\{y'[x]==2*x/y[x],\{y[0]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \sqrt{2}\sqrt{x^2+2}$$

6.7 problem 7

Internal problem ID [12357]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 7.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 2y - y^2 = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

 $dsolve([diff(y(x),x)=-2*y(x)+y(x)^2,y(0) = 1],y(x), singsol=all)$

$$y(x) = \frac{2}{e^{2x} + 1}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 16

 $DSolve[\{y'[x]==-2*y[x]+y[x]^2,\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{e^{2x} + 1}$$

6.8 problem 8

Internal problem ID [12358]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - yx = x$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(x),x)=x*y(x)+x,y(1) = 2],y(x), singsol=all)

$$y(x) = -1 + 3e^{\frac{(x-1)(x+1)}{2}}$$

✓ Solution by Mathematica

Time used: 0.099 (sec). Leaf size: 20

 $DSolve[\{y'[x]==x*y[x]+x,\{y[1]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 3e^{\frac{1}{2}(x^2-1)} - 1$$

6.9 problem 9

Internal problem ID [12359]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 9.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x e^y + y' = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 15

dsolve([x*exp(y(x))+diff(y(x),x)=0,y(0) = 0],y(x), singsol=all)

$$y(x) = \ln(2) - \ln(x^2 + 2)$$

✓ Solution by Mathematica

Time used: 0.476 (sec). Leaf size: 16

$$y(x) \to \log(2) - \log(x^2 + 2)$$

6.10 problem 10

Internal problem ID [12360]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y - x^2 y' = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve([y(x)-x^2*diff(y(x),x)=0,y(1) = 1],y(x), singsol=all)$

$$y(x) = e^{\frac{x-1}{x}}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 14

 $DSolve[\{y[x]-x^2*y'[x]==0,\{y[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True] \\$

$$y(x) \to e^{1-\frac{1}{x}}$$

6.11 problem 11

Internal problem ID [12361]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$2yy'=1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(2*y(x)*diff(y(x),x)=1,y(x), singsol=all)

$$y(x) = \sqrt{x + c_1}$$

$$y(x) = -\sqrt{x + c_1}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 31

DSolve[2*y[x]*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sqrt{x + 2c_1}$$

$$y(x) \to \sqrt{x + 2c_1}$$

6.12 problem 12

Internal problem ID [12362]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2xyy' + y^2 = -1$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve(2*x*y(x)*diff(y(x),x)+y(x)^2=-1,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{x(-x+c_1)}}{x}$$

$$y(x) = rac{\sqrt{x(-x+c_1)}}{x}$$
 $y(x) = -rac{\sqrt{x(-x+c_1)}}{x}$

✓ Solution by Mathematica

Time used: 0.471 (sec). Leaf size: 98

DSolve[2*x*y[x]*y'[x]+y[x]^2==-1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o -rac{\sqrt{-x+e^{2c_1}}}{\sqrt{x}}$$

$$y(x) o rac{\sqrt{-x + e^{2c_1}}}{\sqrt{x}}$$

$$y(x) \to -i$$

$$y(x) \to i$$

$$y(x) o \frac{\sqrt{-x}}{\sqrt{x}}$$

$$y(x) o \frac{\sqrt{x}}{\sqrt{-x}}$$

6.13 problem 13

Internal problem ID [12363]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{1 - yx}{x^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(x),x)=(1-x*y(x))/x^2,y(x), singsol=all)$

$$y(x) = \frac{\ln(x) + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 14

DSolve[y'[x]== $(1-x*y[x])/x^2,y[x],x$,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\log(x) + c_1}{x}$$

6.14 problem 14

Internal problem ID [12364]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 14.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ A'],\ _rational,\ [_Abel,\ Abel,\ A$

$$y' + \frac{y(2x+y)}{x(x+2y)} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 69

dsolve(diff(y(x),x)=-y(x)*(2*x+y(x))/(x*(2*y(x)+x)),y(x), singsol=all)

$$y(x) = -\frac{x^2c_1^2 - \sqrt{c_1^4x^4 + 4c_1x}}{2x c_1^2}$$

$$y(x) = -\frac{x^2c_1^2 + \sqrt{c_1^4x^4 + 4c_1x}}{2x c_1^2}$$

✓ Solution by Mathematica

Time used: 1.084 (sec). Leaf size: 118

DSolve[y'[x] == -y[x]*(2*x+y[x])/(x*(2*y[x]+x)),y[x],x,IncludeSingularSolutions] -> True]

$$y(x) \to \frac{1}{2} \left(-x - \frac{\sqrt{x^3 + 4e^{c_1}}}{\sqrt{x}} \right)$$
$$y(x) \to \frac{1}{2} \left(-x + \frac{\sqrt{x^3 + 4e^{c_1}}}{\sqrt{x}} \right)$$
$$y(x) \to -\frac{x^{3/2} + \sqrt{x^3}}{2\sqrt{x}}$$

$$y(x) \to \frac{\sqrt{x^3}}{2\sqrt{x}} - \frac{x}{2}$$

6.15 problem 15

Internal problem ID [12365]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{y^2}{1 - yx} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)=y(x)^2/(1-x*y(x)),y(x), singsol=all)$

$$y(x) = e^{-LambertW(-xe^{-c_1})-c_1}$$

✓ Solution by Mathematica

Time used: 3.256 (sec). Leaf size: 25

 $DSolve[y'[x]==y[x]^2/(1-x*y[x]),y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{W(-e^{-c_1}x)}{x}$$

$$y(x) \to 0$$

7 Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

7.1	problem	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	126
7.2	$\operatorname{problem}$	2																															127
7.3	$\operatorname{problem}$	3																															128
7.4	${\bf problem}$	4																															129
7.5	${\bf problem}$	5																															130
7.6	${\bf problem}$	6																															131
7.7	$\operatorname{problem}$	7																															132
7.8	${\bf problem}$	12																															133
7.9	${\rm problem}$	13																															134
7.10	$\operatorname{problem}$	14										•					•									•					•		135
7.11	${\rm problem}$	15																															136
7.12	$\operatorname{problem}$	16										•					•									•					•		137
7.13	problem	17																															139

7.1 problem 1

Internal problem ID [12366]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 4y = 1$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([diff(y(x),x)=4*y(x)+1,y(0) = 1],y(x), singsol=all)

$$y(x) = -\frac{1}{4} + \frac{5e^{4x}}{4}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 18

 $DSolve[\{y'[x]==4*y[x]+1,\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{1}{4} \left(5e^{4x} - 1\right)$$

7.2 problem 2

Internal problem ID [12367]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - yx = 2$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

dsolve([diff(y(x),x)=x*y(x)+2,y(0) = 1],y(x), singsol=all)

$$y(x) = \left(\sqrt{\pi}\sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2}x}{2}\right) + 1\right) e^{\frac{x^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 33

 $DSolve[\{y'[x]==x*y[x]+2,\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o e^{\frac{x^2}{2}} \left(\sqrt{2\pi} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) + 1 \right)$$

7.3 problem 3

Internal problem ID [12368]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{x} = 0$$

With initial conditions

$$[y(-1) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve([diff(y(x),x)=y(x)/x,y(-1)=2],y(x), singsol=all)

$$y(x) = -2x$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 8

 $DSolve[\{y'[x]==y[x]/x,\{y[-1]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -2x$$

7.4 problem 4

Internal problem ID [12369]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 4.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{x - 1} = x^2$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve([diff(y(x),x)=y(x)/(x-1)+x^2,y(0) = 1],y(x), singsol=all)$

$$y(x) = -(x-1)\left(i\pi - \frac{x^2}{2} - x - \ln(x-1) + 1\right)$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 31

 $DSolve[\{y'[x]==y[x]/(x-1)+x^2,\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}(x-1)(x^2+2x+2\log(x-1)-2i\pi-2)$$

7.5 problem 5

Internal problem ID [12370]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{y}{x} = \sin\left(x^2\right)$$

With initial conditions

$$[y(-1) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

 $dsolve([diff(y(x),x)=y(x)/x+sin(x^2),y(-1) = -1],y(x), singsol=all)$

$$y(x) = -\frac{x(-\operatorname{Si}(x^2) - 2 + \operatorname{Si}(1))}{2}$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 20

 $DSolve[\{y'[x]==y[x]/x+Sin[x^2],\{y[-1]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}x(\mathrm{Si}(x^2) - \mathrm{Si}(1) + 2)$$

7.6 problem 6

Internal problem ID [12371]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{2y}{x} = e^x$$

With initial conditions

$$\left[y(1) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) = 2*\mbox{y}(\mbox{x})/\mbox{x} + \mbox{exp}(\mbox{x}),\mbox{y}(\mbox{1}) = 1/2],\\ \mbox{y}(\mbox{x}), \mbox{singsol=all}) \\$

$$y(x) = -\operatorname{Ei}_{1}(-x) x^{2} + \operatorname{Ei}_{1}(-1) x^{2} + \frac{x(2x e + x - 2 e^{x})}{2}$$

✓ Solution by Mathematica

Time used: 0.116 (sec). Leaf size: 31

 $DSolve[\{y'[x]==2*y[x]/x+Exp[x],\{y[1]==1/2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \frac{1}{2}x(2x \text{ ExpIntegralEi}(x) - 2 \text{ ExpIntegralEi}(1)x + 2ex + x - 2e^x)$$

7.7 problem 7

Internal problem ID [12372]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - y \cot(x) = \sin(x)$$

With initial conditions

$$\left[y\Big(\frac{\pi}{2}\Big)=0\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([diff(y(x),x)=cot(x)*y(x)+sin(x),y(1/2*Pi) = 0],y(x), singsol=all)

$$y(x) = \left(x - \frac{\pi}{2}\right)\sin\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 16

DSolve[{y'[x]==Cot[x]*y[x]+Sin[x],{y[Pi/2]==0}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{2}(\pi - 2x)\sin(x)$$

7.8 problem 12

Internal problem ID [12373]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 12.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$-yy' = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(x-y(x)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \sqrt{x^2 + c_1}$$

$$y(x) = -\sqrt{x^2 + c_1}$$

✓ Solution by Mathematica

Time used: 0.132 (sec). Leaf size: 35

 $\label{eq:DSolve} DSolve [x-y[x]*y'[x] == 0, y[x], x, Include Singular Solutions \ \ -> \ True]$

$$y(x) \rightarrow -\sqrt{x^2 + 2c_1}$$

$$y(x) \to \sqrt{x^2 + 2c_1}$$

7.9 problem **13**

Internal problem ID [12374]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y - xy' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve(y(x)-x*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 x$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 14

DSolve[y[x]-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x$$

$$y(x) \to 0$$

7.10 problem 14

Internal problem ID [12375]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-y + xy' = -x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve((x^2-y(x))+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = x(-x + c_1)$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 13

 $DSolve[(x^2-y[x])+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x(-x+c_1)$$

7.11 problem 15

Internal problem ID [12376]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$xy(1-y) - 2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(x*y(x)*(1-y(x))-2*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{1}{1 + e^{-\frac{x^2}{4}}c_1}$$

✓ Solution by Mathematica

Time used: 0.392 (sec). Leaf size: 41

DSolve [x*y[x]*(1-y[x])-2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{e^{rac{x^2}{4}}}{e^{rac{x^2}{4}} + e^{c_1}}$$

$$y(x) \to 0$$

$$y(x) \to 1$$

7.12 problem 16

Internal problem ID [12377]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$x(1-y^3) - 3y^2y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 88

 $dsolve(x*(1-y(x)^3)-3*y(x)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \left(1 + c_1 e^{-\frac{x^2}{2}}\right)^{\frac{1}{3}}$$

$$y(x) = -\frac{\left(1 + c_1 e^{-\frac{x^2}{2}}\right)^{\frac{1}{3}}}{2} - \frac{i\sqrt{3}\left(1 + c_1 e^{-\frac{x^2}{2}}\right)^{\frac{1}{3}}}{2}$$

$$y(x) = -\frac{\left(1 + c_1 e^{-\frac{x^2}{2}}\right)^{\frac{1}{3}}}{2} + \frac{i\sqrt{3}\left(1 + c_1 e^{-\frac{x^2}{2}}\right)^{\frac{1}{3}}}{2}$$

✓ Solution by Mathematica

Time used: 2.121 (sec). Leaf size: 111

DSolve[x*(1-y[x]^3)-3*y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sqrt[3]{1 + e^{-\frac{x^2}{2} + 3c_1}}$$

$$y(x) \to -\sqrt[3]{-1}\sqrt[3]{1 + e^{-\frac{x^2}{2} + 3c_1}}$$

$$y(x) \to (-1)^{2/3}\sqrt[3]{1 + e^{-\frac{x^2}{2} + 3c_1}}$$

$$y(x) \to 1$$

$$y(x) \to -\sqrt[3]{-1}$$

$$y(x) \to (-1)^{2/3}$$

7.13 problem 17

Internal problem ID [12378]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y(2x-1) + x(x+1)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(y(x)*(2*x-1)+x*(x+1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \frac{c_1 x}{\left(x+1\right)^3}$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 19

 $DSolve[y[x]*(2*x-1)+x*(x+1)*y'[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1 x}{(x+1)^3}$$

$$y(x) \to 0$$

8 Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115 8.1 8.2 8.3 8.4 problem 3 (b) . . 1458.5 146 8.6 148 8.7 149 8.8 150 8.9 151 152153154 155 156 157158 159 160 161 8.20 problem 8 (c) 1621631641658.24 problem 9 (c) 166 167 168 8.27 problem 10 (a) 169 8.28 problem 10 (b) 170 8.29 problem 10 (c) 171 8.30 problem 11 (a) 1728.31 problem 11 (b) 1738.32 problem 11 (c) 1748.33 problem 11 (d) 1758.34 problem 12 (a) 1768.35 problem 12 (b) 177 8.36 problem 12 (c) 178

8.37	problem 13 (a)																	179
8.38	problem 13 (b)																	180
8.39	problem 13 (c)																	181
8.40	problem 13 (d)																	182
8.41	problem 14 (a)																	183
8.42	problem 14 (b)																	184
8.43	problem 14 (c)																	185
8.44	problem 14 (d)																	186
8.45	problem 14 (e)																	188

8.1 problem 1

Internal problem ID [12379]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \frac{1}{x - 1}$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

dsolve([diff(y(x),x)=1/(x-1),y(0) = 1],y(x), singsol=all)

$$y(x) = \ln(x - 1) - i\pi + 1$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 16

 $DSolve[\{y'[x]==1/(x-1),\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \log(x-1) - i\pi + 1$$

8.2 problem 2

Internal problem ID [12380]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = x$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve([diff(y(x),x)=y(x)+x,y(0) = 0],y(x), singsol=all)

$$y(x) = -1 + e^x - x$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 13

DSolve[$\{y'[x]==y[x]+x,\{y[0]==0\}\},y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \rightarrow -x + e^x - 1$$

8.3 problem 3 (a)

Internal problem ID [12381]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 3 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{x} = 0$$

With initial conditions

$$[y(-1) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve([diff(y(x),x)=y(x)/x,y(-1) = 1],y(x), singsol=all)

$$y(x) = -x$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 8

 $DSolve[\{y'[x]==y[x]/x,\{y[-1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x$$

8.4 problem 3 (b)

Internal problem ID [12382]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 3 (b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{x} = 0$$

With initial conditions

$$[y(-1) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 5

dsolve([diff(y(x),x)=y(x)/x,y(-1) = -1],y(x), singsol=all)

$$y(x) = x$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 6

 $DSolve[\{y'[x]==y[x]/x,\{y[-1]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x$$

8.5 problem 4 (a)

Internal problem ID [12383]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 4 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \frac{y}{-x^2 + 1} = \sqrt{x}$$

With initial conditions

$$\left[y\left(\frac{1}{2}\right) = 1\right]$$

✓ Solution by Maple

Time used: 0.344 (sec). Leaf size: 145

$$dsolve([diff(y(x),x)=y(x)/(1-x^2)+sqrt(x),y(1/2) = 1],y(x), singsol=all)$$

$$y(x) = \frac{\left(4i\sqrt{2} \text{ EllipticF}\left(\frac{\sqrt{3}\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) - 12i\sqrt{2} \text{ EllipticE}\left(\frac{\sqrt{3}\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) + \sqrt{3}\sqrt{2} - 2\sqrt{3}\right)(x+1)}{6\sqrt{-x^2+1}} + \frac{-2\sqrt{x+1}\sqrt{-2x+2}\sqrt{-x} \text{ EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right) + 6\sqrt{x+1}\sqrt{-2x+2}\sqrt{-x} \text{ EllipticE}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{\sqrt{x} (3x-3)}$$

✓ Solution by Mathematica

Time used: 1.562 (sec). Leaf size: 215

$$DSolve[\{y'[x]==y[x]/(1-x^2)+Sqrt[x],\{y[1/2]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$$

$$y(x) \rightarrow \frac{4\sqrt{1-x^2}x^2 \text{ Hypergeometric2F1}\left(\frac{1}{2},\frac{3}{4},\frac{7}{4},x^2\right) - 4\sqrt{1-x^2}x \text{ Hypergeometric2F1}\left(\frac{1}{4},\frac{1}{2},\frac{5}{4},x^2\right) - \sqrt{2} \text{ Hypergeometric2F1}\left(\frac{1}{4},\frac{5}{4},x^2\right) - \sqrt{2} \text{ Hypergeometric2F1}\left(\frac{1}{4},\frac$$

8.6 problem 4 (b)

Internal problem ID [12384]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 4 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{-x^2 + 1} = \sqrt{x}$$

With initial conditions

$$[y(1) = 1]$$

X Solution by Maple

 $dsolve([diff(y(x),x)=y(x)/(1-x^2)+sqrt(x),y(1) = 1],y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y'[x]==y[x]/(1-x^2)+Sqrt[x],\{y[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

Not solved

8.7 problem 4 (c)

Internal problem ID [12385]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 4 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{-x^2 + 1} = \sqrt{x}$$

With initial conditions

$$[y(2) = 1]$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 136

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) = \mbox{y}(\mbox{x})/(1-\mbox{x}^2) + \mbox{sqrt}(\mbox{x}), \\ \mbox{y}(2) = 1], \\ \mbox{y}(\mbox{x}), \mbox{singsol=all}) \\$

$$y(x) = \frac{2i\left(\sqrt{2}\sqrt{3} \text{ EllipticE}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) - \frac{\sqrt{2}\sqrt{3} \text{ EllipticF}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)}{3} - \sqrt{2} + \frac{1}{2}\right)(x+1)\sqrt{3}}{3\sqrt{-x^2+1}} + \frac{-2\sqrt{x+1}\sqrt{-2x+2}\sqrt{-x} \text{ EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right) + 6\sqrt{x+1}\sqrt{-2x+2}\sqrt{-x} \text{ EllipticE}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{\sqrt{x}\left(3x-3\right)}$$

✓ Solution by Mathematica

Time used: 0.121 (sec). Leaf size: 215

 $DSolve[\{y'[x]==y[x]/(1-x^2)+Sqrt[x],\{y[2]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

 $y(x) \longrightarrow \frac{2\sqrt{1-x^2}x^2 \, \text{Hypergeometric} 2\text{F1}\left(\frac{1}{2},\frac{3}{4},\frac{7}{4},x^2\right) - 2\sqrt{1-x^2}x \, \text{Hypergeometric} 2\text{F1}\left(\frac{1}{4},\frac{1}{2},\frac{5}{4},x^2\right) - 4\sqrt{2} \, \text{Hypergeometric} 2\text{F1}\left(\frac{1}{4},\frac{1}{4},\frac{5}{4},x^2\right) - 4\sqrt{2} \, \text{Hypergeometric} 2\text{F1}\left(\frac{1}{4},\frac{1}{4},\frac{5}{4},x^2\right) - 4\sqrt{2} \, \text{Hypergeometric} 2\text{F1}\left(\frac{1}{4},\frac{5}{4},x^2\right) - 4\sqrt{2} \, \text{Hypergeometri$

8.8 problem 5 (a)

Internal problem ID [12386]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 5 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 = 0$$

With initial conditions

$$[y(-1) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $\label{eq:decomposition} dsolve([diff(y(x),x)=y(x)^2,y(-1) = 1],y(x), \ singsol=all)$

$$y(x) = -\frac{1}{x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 10

 $DSolve[\{y'[x]==y[x]^2,\{y[-1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{x}$$

8.9 problem 5 (b)

Internal problem ID [12387]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 5 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 = 0$$

With initial conditions

$$[y(-1) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=y(x)^2,y(-1) = 0],y(x), singsol=all)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 6

 $DSolve[\{y'[x]==y[x]^2,\{y[-1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

8.10 problem 5 (c)

Internal problem ID [12388]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 5 (c).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 = 0$$

With initial conditions

$$\left[y(1) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

 $dsolve([diff(y(x),x)=y(x)^2,y(1) = 1/2],y(x), singsol=all)$

$$y(x) = -\frac{1}{x-3}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 12

 $DSolve[\{y'[x]==y[x]^2,\{y[1]==1/2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{3-x}$$

8.11 problem 6 (a)

Internal problem ID [12389]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 6 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^3 = 0$$

With initial conditions

$$[y(-1) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

 $dsolve([diff(y(x),x)=y(x)^3,y(-1) = 1],y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{-2x - 1}}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 14

 $DSolve[\{y'[x]==y[x]^3,\{y[-1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{\sqrt{-2x-1}}$$

8.12 problem 6 (b)

Internal problem ID [12390]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 6 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^3 = 0$$

With initial conditions

$$[y(-1) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=y(x)^3,y(-1)=0],y(x), singsol=all)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 6

 $DSolve[\{y'[x]==y[x]^3,\{y[-1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

8.13 problem 6 (c)

Internal problem ID [12391]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 6 (c).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^3 = 0$$

With initial conditions

$$[y(-1) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

 $dsolve([diff(y(x),x)=y(x)^3,y(-1) = -1],y(x), singsol=all)$

$$y(x) = -\frac{1}{\sqrt{-2x - 1}}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 16

 $DSolve[\{y'[x]==y[x]^3,\{y[-1]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{\sqrt{-2x-1}}$$

8.14 problem 7 (a)

Internal problem ID [12392]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 7 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + \frac{3x^2}{2y} = 0$$

With initial conditions

$$[y(-1) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve([diff(y(x),x)=-3*x^2/(2*y(x)),y(-1)=1],y(x), singsol=all)$

$$y(x) = (-x)^{\frac{3}{2}}$$

✓ Solution by Mathematica

Time used: 0.144 (sec). Leaf size: 14

 $DSolve[\{y'[x]=-3*x^2/(2*y[x]),\{y[-1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \sqrt{-x^3}$$

8.15 problem 7 (b)

Internal problem ID [12393]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 7 (b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' + \frac{3x^2}{2y} = 0$$

With initial conditions

$$\left[y(-1) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve([diff(y(x),x)=-3*x^2/(2*y(x)),y(-1) = 1/2],y(x), singsol=all)$

$$y(x) = \frac{\sqrt{-4x^3 - 3}}{2}$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 20

 $DSolve[\{y'[x]==-3*x^2/(2*y[x]),\{y[-1]==1/2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}\sqrt{-4x^3 - 3}$$

8.16 problem 7 (c)

Internal problem ID [12394]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 7 (c).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + \frac{3x^2}{2y} = 0$$

With initial conditions

$$[y(-1) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

 $dsolve([diff(y(x),x)=-3*x^2/(2*y(x)),y(-1)=0],y(x), singsol=all)$

$$y(x) = \sqrt{-x^3 - 1}$$

$$y(x) = -\sqrt{-x^3 - 1}$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 33

 $DSolve[\{y'[x]=-3*x^2/(2*y[x]),\{y[-1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\sqrt{-x^3 - 1}$$

$$y(x) \to \sqrt{-x^3 - 1}$$

8.17 problem 7 (d)

Internal problem ID [12395]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 7 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + \frac{3x^2}{2y} = 0$$

With initial conditions

$$[y(-1) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve([diff(y(x),x)=-3*x^2/(2*y(x)),y(-1) = -1],y(x), singsol=all)$

$$y(x) = -(-x)^{\frac{3}{2}}$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 16

 $DSolve[\{y'[x]=-3*x^2/(2*y[x]),\{y[-1]=-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{-x^3}$$

8.18 problem 8 (a)

Internal problem ID [12396]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 8 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - \frac{\sqrt{y}}{x} = 0$$

With initial conditions

$$[y(-1) = 1]$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 29

dsolve([diff(y(x),x)=sqrt(y(x))/x,y(-1)=1],y(x), singsol=all)

$$y(x) = -\frac{i \ln(x) \pi}{2} - i\pi - \frac{\pi^2}{4} + \frac{\ln(x)^2}{4} + \ln(x) + 1$$

✓ Solution by Mathematica

Time used: 0.235 (sec). Leaf size: 43

 $DSolve[\{y'[x] == Sqrt[y[x]]/x, \{y[-1] == 1\}\}, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{4}(i\log(x) + \pi - 2i)^2$$

$$y(x) \to -\frac{1}{4}(i\log(x) + \pi + 2i)^2$$

8.19 problem 8 (b)

Internal problem ID [12397]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 8 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - \frac{\sqrt{y}}{x} = 0$$

With initial conditions

$$[y(-1) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(y(x),x)=sqrt(y(x))/x,y(-1)=0],y(x), singsol=all)

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.157 (sec). Leaf size: 24

 $DSolve[\{y'[x]==Sqrt[y[x]]/x,\{y[-1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

$$y(x) \rightarrow -\frac{1}{4}(\pi + i\log(x))^2$$

8.20 problem 8 (c)

Internal problem ID [12398]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 8 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{\sqrt{y}}{x} = 0$$

With initial conditions

$$[y(-1) = -1]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 28

dsolve([diff(y(x),x)=sqrt(y(x))/x,y(-1) = -1],y(x), singsol=all)

$$y(x) = \frac{\ln(x)^2}{4} + \frac{i(2-\pi)\ln(x)}{2} - \frac{(\pi-2)^2}{4}$$

✓ Solution by Mathematica

Time used: 0.151 (sec). Leaf size: 39

DSolve[{y'[x]==Sqrt[y[x]]/x,{y[-1]==-1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{1}{4}(i\log(x) + \pi + 2)^2$$

$$y(x) \rightarrow -\frac{1}{4}(i\log(x) + \pi - 2)^2$$

8.21 problem 8 (d)

Internal problem ID [12399]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 8 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - \frac{\sqrt{y}}{x} = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) = \mbox{sqrt}(\mbox{y}(\mbox{x}))/\mbox{x},\mbox{y}(\mbox{1}) = \mbox{1}],\mbox{y}(\mbox{x}), \mbox{singsol=all}) \\$

$$y(x) = \frac{\left(\ln\left(x\right) + 2\right)^2}{4}$$

✓ Solution by Mathematica

Time used: 0.151 (sec). Leaf size: 29

DSolve[{y'[x]==Sqrt[y[x]]/x,{y[1]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}(\log(x) - 2)^2$$

$$y(x) \to \frac{1}{4}(\log(x) + 2)^2$$

8.22 problem 9 (a)

Internal problem ID [12400]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 9 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - 3xy^{\frac{1}{3}} = 0$$

With initial conditions

$$\left[y(-1) = \frac{3}{2}\right]$$

✓ Solution by Maple

Time used: 0.516 (sec). Leaf size: 23

 $dsolve([diff(y(x),x)=3*x*y(x)^(1/3),y(-1) = 3/2],y(x), singsol=all)$

$$y(x) = \frac{\left(3^{\frac{2}{3}}2^{\frac{1}{3}} + 2x^2 - 2\right)\sqrt{23^{\frac{2}{3}}2^{\frac{1}{3}} + 4x^2 - 4}}{4}$$

✓ Solution by Mathematica

Time used: 0.374 (sec). Leaf size: 36

 $DSolve[\{y'[x]==3*x*y[x]^{(1/3)},\{y[-1]==3/2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{\left(2x^2 + \sqrt[3]{2}3^{2/3} - 2\right)^{3/2}}{2\sqrt{2}}$$

8.23 problem 9 (b)

Internal problem ID [12401]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 9 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 3xy^{\frac{1}{3}} = 0$$

With initial conditions

$$[y(-1) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 9

 $dsolve([diff(y(x),x)=3*x*y(x)^(1/3),y(-1) = 1],y(x), singsol=all)$

$$y(x) = -x^3$$

✓ Solution by Mathematica

Time used: 0.214 (sec). Leaf size: 12

 $DSolve[\{y'[x]==3*x*y[x]^{(1/3)},\{y[-1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \left(x^2\right)^{3/2}$$

8.24 problem 9 (c)

Internal problem ID [12402]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 9 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - 3xy^{\frac{1}{3}} = 0$$

With initial conditions

$$\left[y(-1) = \frac{1}{2}\right]$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 20

 $dsolve([diff(y(x),x)=3*x*y(x)^(1/3),y(-1) = 1/2],y(x), singsol=all)$

$$y(x) = \frac{\left(2x^2 + 2^{\frac{1}{3}} - 2\right)\sqrt{4x^2 + 22^{\frac{1}{3}} - 4}}{4}$$

✓ Solution by Mathematica

Time used: 0.175 (sec). Leaf size: 30

 $DSolve[\{y'[x]==3*x*y[x]^(1/3),\{y[-1]==1/2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{\left(2x^2 + \sqrt[3]{2} - 2\right)^{3/2}}{2\sqrt{2}}$$

8.25 problem 9 (d)

Internal problem ID [12403]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 9 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - 3xy^{\frac{1}{3}} = 0$$

With initial conditions

$$[y(-1) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=3*x*y(x)^(1/3),y(-1) = 0],y(x), singsol=all)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.159 (sec). Leaf size: 19

 $DSolve[\{y'[x]==3*x*y[x]^(1/3),\{y[-1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

$$y(x)
ightarrow \left(x^2 - 1\right)^{3/2}$$

8.26 problem 9 (e)

Internal problem ID [12404]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 9 (e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 3xy^{\frac{1}{3}} = 0$$

With initial conditions

$$[y(-1) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 7

 $dsolve([diff(y(x),x)=3*x*y(x)^(1/3),y(-1) = -1],y(x), singsol=all)$

$$y(x) = x^3$$

✓ Solution by Mathematica

Time used: 0.175 (sec). Leaf size: 67

 $DSolve[\{y'[x]==3*x*y[x]^(1/3),\{y[-1]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o rac{\left(2x^2 - i\sqrt{3} - 3\right)^{3/2}}{2\sqrt{2}}$$

$$y(x) o rac{\left(2x^2 + i\sqrt{3} - 3\right)^{3/2}}{2\sqrt{2}}$$

8.27 problem 10 (a)

Internal problem ID [12405]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 10 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [quadrature]

$$y' - \sqrt{(y+2)(y-1)} = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 34

dsolve([diff(y(x),x)=sqrt((y(x)+2)*(y(x)-1)),y(0) = 0],y(x), singsol=all)

$$y(x) = \frac{ie^x\sqrt{2}}{2} + \frac{e^x}{4} - \frac{i\sqrt{2}e^{-x}}{2} - \frac{1}{2} + \frac{e^{-x}}{4}$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 45

$$y(x) \to \frac{1}{4}e^{-x}(e^x - 1)\left(\left(1 + 2i\sqrt{2}\right)e^x - 1 + 2i\sqrt{2}\right)$$

8.28 problem 10 (b)

Internal problem ID [12406]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 10 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \sqrt{(y+2)(y-1)} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(y(x),x)=sqrt((y(x)+2)*(y(x)-1)),y(0) = 1],y(x), singsol=all)

$$y(x) = 1$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 23

$$y(x) \to \frac{1}{4} (3e^{-x} + 3e^x - 2)$$

8.29 problem 10 (c)

Internal problem ID [12407]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 10 (c).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \sqrt{(y+2)(y-1)} = 0$$

With initial conditions

$$[y(0) = -3]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 16

 $\label{eq:decomposition} $$ dsolve([diff(y(x),x)=sqrt(\ (y(x)+2)*(\ y(x)-1)),y(0) = -3],y(x), singsol=all)$$

$$y(x) = -\frac{1}{2} - \frac{e^x}{4} - \frac{9e^{-x}}{4}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 23

$$y(x) \to \frac{1}{4} (-9e^{-x} - e^x - 2)$$

8.30 problem 11 (a)

Internal problem ID [12408]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 11 (a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{y}{y - x} = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 7

dsolve([diff(y(x),x)=y(x)/(y(x)-x),y(1) = 2],y(x), singsol=all)

$$y(x) = 2x$$

✓ Solution by Mathematica

Time used: 0.838 (sec). Leaf size: 14

 $DSolve[\{y'[x]==y[x]/(y[x]-x),\{y[1]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \sqrt{x^2} + x$$

8.31 problem 11 (b)

Internal problem ID [12409]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 11 (b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{y}{y - x} = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $\label{eq:decomposition} dsolve([diff(y(x),x)=y(x)/(y(x)-x),y(1) = 1],y(x), \ singsol=all)$

$$y(x) = x - \sqrt{x^2 - 1}$$

$$y(x) = x + \sqrt{x^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.129 (sec). Leaf size: 33

 $DSolve[\{y'[x]==y[x]/(y[x]-x),\{y[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x - \sqrt{x^2 - 1}$$

$$y(x) \rightarrow \sqrt{x^2 - 1} + x$$

8.32 problem 11 (c)

Internal problem ID [12410]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 11 (c).

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ A'],\ _rational,\ [_Abel,\ Abel,\ A$

$$y' - \frac{y}{y - x} = 0$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(y(x),x)=y(x)/(y(x)-x),y(1) = 0],y(x), singsol=all)

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $DSolve[\{y'[x]==y[x]/(y[x]-x),\{y[1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

8.33 problem 11 (d)

Internal problem ID [12411]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 11 (d).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{y}{y - x} = 0$$

With initial conditions

$$[y(1) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $\label{eq:decomposition} dsolve([diff(y(x),x)=y(x)/(y(x)-x),y(1) = -1],y(x), \; singsol=all)$

$$y(x) = x - \sqrt{x^2 + 3}$$

✓ Solution by Mathematica

Time used: 0.127 (sec). Leaf size: 18

 $DSolve[\{y'[x]==y[x]/(y[x]-x),\{y[1]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x - \sqrt{x^2 + 3}$$

8.34 problem 12 (a)

Internal problem ID [12412]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 12 (a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y' - \frac{xy}{x^2 + y^2} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.578 (sec). Leaf size: 11

 $dsolve([diff(y(x),x)=x*y(x)/(x^2+y(x)^2),y(0) = 1],y(x), singsol=all)$

$$y(x) = \sqrt{\frac{x^2}{\text{LambertW}(x^2)}}$$

✓ Solution by Mathematica

Time used: 10.851 (sec). Leaf size: 15

$$y(x) o \frac{x}{\sqrt{W(x^2)}}$$

8.35 problem 12 (b)

Internal problem ID [12413]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 12 (b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y' - \frac{xy}{x^2 + y^2} = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(x),x)=x*y(x)/(x^2+y(x)^2),y(0) = 0],y(x), singsol=all)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $DSolve[\{y'[x]==x*y[x]/(x^2+y[x]^2),\{y[0]==0\}\},y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to 0$$

8.36 problem 12 (c)

Internal problem ID [12414]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 12 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y' - \frac{xy}{x^2 + y^2} = 0$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.313 (sec). Leaf size: 13

 $dsolve([diff(y(x),x)=x*y(x)/(x^2+y(x)^2),y(0) = -1],y(x), singsol=all)$

$$y(x) = -\sqrt{\frac{x^2}{\text{LambertW}(x^2)}}$$

✓ Solution by Mathematica

Time used: 0.443 (sec). Leaf size: 16

$$y(x) o -rac{x}{\sqrt{W(x^2)}}$$

8.37 problem 13 (a)

Internal problem ID [12415]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 13 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - x\sqrt{-y^2 + 1} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) = \mbox{x*sqrt}(1 - \mbox{y}(\mbox{x})^2), \\ \mbox{y}(0) = 1], \\ \mbox{y}(\mbox{x}), \\ \mbox{singsol=all}) \\$

$$y(x) = 1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 6

 $DSolve[\{y'[x]==x*Sqrt[1-y[x]^2],\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 1$$

8.38 problem 13 (b)

Internal problem ID [12416]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 13 (b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - x\sqrt{-y^2 + 1} = 0$$

With initial conditions

$$\left[y(0) = \frac{9}{10}\right]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 13

 $dsolve([diff(y(x),x)=x*sqrt(1-y(x)^2),y(0) = 9/10],y(x), singsol=all)$

$$y(x) = \sin\left(\frac{x^2}{2} + \arcsin\left(\frac{9}{10}\right)\right)$$

✓ Solution by Mathematica

Time used: 0.368 (sec). Leaf size: 43

 $DSolve[\{y'[x]==x*Sqrt[1-y[x]^2],\{y[0]==9/10\}\},y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to \cos\left(\frac{1}{2}\left(4\arctan\left(\frac{1}{\sqrt{19}}\right) + x^2\right)\right)$$

$$y(x) \to \cos\left(\frac{1}{2}\left(x^2 - 4\arctan\left(\frac{1}{\sqrt{19}}\right)\right)\right)$$

8.39 problem 13 (c)

Internal problem ID [12417]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 13 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - x\sqrt{-y^2 + 1} = 0$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve([diff(y(x),x)=x*sqrt(1-y(x)^2),y(0) = 1/2],y(x), singsol=all)$

$$y(x) = \sin\left(\frac{x^2}{2} + \frac{\pi}{6}\right)$$

✓ Solution by Mathematica

Time used: 0.215 (sec). Leaf size: 33

 $DSolve[\{y'[x]==x*Sqrt[1-y[x]^2],\{y[0]==1/2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \sin\left(\frac{1}{6}(\pi - 3x^2)\right)$$

$$y(x) \to \sin\left(\frac{1}{6}(3x^2 + \pi)\right)$$

8.40 problem 13 (d)

Internal problem ID [12418]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 13 (d).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - x\sqrt{-y^2 + 1} = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $dsolve([diff(y(x),x)=x*sqrt(1-y(x)^2),y(0) = 0],y(x), singsol=all)$

$$y(x) = \sin\left(\frac{x^2}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.21 (sec). Leaf size: 27

 $DSolve[\{y'[x]==x*Sqrt[1-y[x]^2],\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sin\left(\frac{x^2}{2}\right)$$

$$y(x) \to \sin\left(\frac{x^2}{2}\right)$$

8.41 problem 14 (a)

Internal problem ID [12419]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 14 (a).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y' - \frac{\sqrt{x^2 + 4y}}{2} = -\frac{x}{2}$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 15

 $\label{eq:dsolve} $$ dsolve([diff(y(x),x)=(-x+sqrt(x^2+4*y(x)))/2,y(0) = 1],y(x), singsol=all)$ $$$

$$y(x) = 1 - x$$

$$y(x) = x + 1$$

✓ Solution by Mathematica

Time used: 0.443 (sec). Leaf size: 17

 $DSolve[\{y'[x]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 1 - x$$

$$y(x) \to x + 1$$

8.42 problem 14 (b)

Internal problem ID [12420]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 14 (b).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y' - \frac{\sqrt{x^2 + 4y}}{2} = -\frac{x}{2}$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 13

 $dsolve([diff(y(x),x)=(-x+sqrt(x^2+4*y(x)))/2,y(0)=0],y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = -\frac{x^2}{4}$$

✓ Solution by Mathematica

Time used: 0.287 (sec). Leaf size: 6

$$y(x) \to 0$$

8.43 problem 14 (c)

Internal problem ID [12421]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 14 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y' - \frac{\sqrt{x^2 + 4y}}{2} = -\frac{x}{2}$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 19

 $\label{eq:dsolve} $$ dsolve([diff(y(x),x)=(-x+sqrt(x^2+4*y(x)))/2,y(0) = -1],y(x), singsol=all)$ $$$

$$y(x) = -ix - 1$$

$$y(x) = ix - 1$$

✓ Solution by Mathematica

Time used: 0.293 (sec). Leaf size: 23

 $DSolve[\{y'[x]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[0]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -1 - ix$$

$$y(x) \rightarrow -1 + ix$$

8.44 problem 14 (d)

Internal problem ID [12422]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 14 (d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y' - \frac{\sqrt{x^2 + 4y}}{2} = -\frac{x}{2}$$

With initial conditions

$$\left[y(1) = -\frac{1}{5}\right]$$

✓ Solution by Maple

Time used: 0.515 (sec). Leaf size: 69

 $dsolve([diff(y(x),x)=(-x+sqrt(x^2+4*y(x)))/2,y(1) = -1/5],y(x), singsol=all)$

$$y(x) = \frac{(x-1)\sqrt{5}}{10} - \frac{x}{2} + \frac{3}{10}$$

$$y(x) = \frac{\left(-5 + \sqrt{5}\right)\left(\sqrt{5} - 5 + 10x\right)}{100}$$

$$y(x) = -\frac{2^{\frac{1}{3}}\left(2^{\frac{1}{3}}x - \frac{\left(50 + 20\sqrt{5}\right)^{\frac{1}{3}}}{5}\right)\left(50 + 20\sqrt{5}\right)^{\frac{1}{3}}}{10}$$

✓ Solution by Mathematica

Time used: 0.301 (sec). Leaf size: 51

 $DSolve[\{y'[x]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==-2/10\}\},y[x],x,IncludeSingularSolutions \rightarrow True (-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==-2/10\}\},y[x],x,IncludeSingularSolutions \rightarrow True (-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==-2/10\}\}$

$$y(x) \to \frac{1}{100} \left(5 + \sqrt{5} \right) \left(-10x + \sqrt{5} + 5 \right)$$

 $y(x) \to \frac{1}{100} \left(\sqrt{5} - 5 \right) \left(10x + \sqrt{5} - 5 \right)$

8.45 problem 14 (e)

Internal problem ID [12423]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115

Problem number: 14 (e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y' - \frac{\sqrt{x^2 + 4y}}{2} = -\frac{x}{2}$$

With initial conditions

$$\left[y(1) = -\frac{1}{4}\right]$$

✓ Solution by Maple

Time used: 0.296 (sec). Leaf size: 17

 $\label{eq:def:def:def:def:def:def:def} $$ $$ dsolve([diff(y(x),x)=(-x+sqrt(x^2+4*y(x)))/2,y(1) = -1/4],y(x), singsol=all)$$

$$y(x) = -\frac{x^2}{4}$$

$$y(x) = \frac{1}{4} - \frac{x}{2}$$

✓ Solution by Mathematica

Time used: 0.282 (sec). Leaf size: 14

 $DSolve[\{y'[x]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==-1/4\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y'[x]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==-1/4\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y'[x]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==-1/4\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y'[x]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==-1/4\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y'[x]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==-1/4\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y'[x]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==-1/4\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y'[x]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==-1/4\}\},y[x],x,IncludeSingularSolutions \rightarrow True[\{y'[x]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]==(-x+Sqrt[x^2+4*y[x]])/2,\{y[1]=(-x+Sqrt[x^2+4*y[x]])/2,[y[1]=(-x+Sqrt[x^2+4*y[x]])/2,[y[1]=(-x+Sqrt[x^2+4*y[x]])/2,[y[1]=(-x+Sqrt[x^2+4*y[x]])/2,[y[1]=(-x+Sqrt[x^2+4*y[x]])/2,[y[1]=(-x+Sqrt[x^2+4*y[x]])/2,[y[1]=(-x+Sqrt[x^2+4*y[x]])/2,[y[1]=(-x+Sqrt[x^2+4*y[x]])/2,[y[1]=(-x+Sqrt[x^2+4*y[x]])/2,[y[1]=(-x+Sqrt[x^2+4*y[x]])/2,[y[1]=(-x+Sqrt[x^2+4*y[x]])/2,[y[1]=(-x+Sqrt[x^2+4$

$$y(x) \to \frac{1}{4}(1 - 2x)$$

9 Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

9.1	problem	Ι	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	190
9.2	problem	2																																					191
9.3	problem	3																																					192
9.4	$\operatorname{problem}$	4																																					193
9.5	problem	5																																					194
9.6	$\operatorname{problem}$	6																																					196
9.7	$\operatorname{problem}$	7																																					197
9.8	$\operatorname{problem}$	8																																					198
9.9	$\operatorname{problem}$	9																																					199
9.10	$\operatorname{problem}$	10)																																				200
9.11	$\operatorname{problem}$	13	3																																				201
9.12	$\operatorname{problem}$	14	Ļ																																				202
9.13	problem	15	<u>,</u>																																				203
9.14	$\operatorname{problem}$	16	j																																				204
9.15	$\operatorname{problem}$	17	7																																				205
9.16	problem	18	3																																				206

9.1 problem 1

Internal problem ID [12424]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3y'' - 2y' + 4y = x$$

With initial conditions

$$[y(-1) = 2, y'(-1) = 3]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 85

$$y(x) = \frac{\left(\left(49\sqrt{11}\sin\left(\frac{\sqrt{11}}{3}\right) + 187\cos\left(\frac{\sqrt{11}}{3}\right)\right)\cos\left(\frac{\sqrt{11}x}{3}\right) + 49\sin\left(\frac{\sqrt{11}x}{3}\right)\left(\sqrt{11}\cos\left(\frac{\sqrt{11}}{3}\right) - \frac{187\sin\left(\frac{\sqrt{11}}{3}\right)}{49}\right)\right)e^{-\frac{x}{4}}}{88} + \frac{x}{4} + \frac{1}{8}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 67

DSolve[{3*y''[x]-2*y'[x]+4*y[x]==x,{y[-1]==2,y'[-1]==3}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{1}{88} \left(22x + 49\sqrt{11}e^{\frac{x+1}{3}} \sin\left(\frac{1}{3}\sqrt{11}(x+1)\right) + 187e^{\frac{x+1}{3}} \cos\left(\frac{1}{3}\sqrt{11}(x+1)\right) + 11 \right)$$

9.2 problem 2

Internal problem ID [12425]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 2.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$xy''' + y'x = 4$$

With initial conditions

$$[y(1) = 0, y'(1) = 1, y''(1) = -1]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 49

$$y(x) = (4 \operatorname{Ci} (1) - 4 \operatorname{Ci} (x) + \cos (1) - \sin (1)) \cos (x) + (4 \operatorname{Si} (1) - 4 \operatorname{Si} (x) + \cos (1) + \sin (1)) \sin (x) + 4 \ln (x) - 1$$

✓ Solution by Mathematica

Time used: 0.184 (sec). Leaf size: 85

$$y(x) \to -4 \operatorname{CosIntegral}(x) \cos(x) + 4 \operatorname{CosIntegral}(1) \cos(x) - 2 \operatorname{sinc}(1) \cos(2 - x) \\ - 6 \operatorname{sinc}(1) \cos(x) + 8 \operatorname{sinc}(1) \cos(1) - 4 \operatorname{Si}(x) \sin(x) + 4 \operatorname{Si}(1) \sin(x) + 4 \log(x) \\ + \sin(1 - x) + \sin(3 - x) + 3 \sin(x + 1) + \cos(1 - x) - 1 - 4 \sin(2)$$

9.3 problem 3

Internal problem ID [12426]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x(x-3)y'' + 3y' = x^2$$

With initial conditions

$$[y(1) = 0, y'(1) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

 $dsolve([x*(x-3)*diff(y(x),x$2)+3*diff(y(x),x)=x^2,y(1) = 0, D(y)(1) = 1],y(x), singsol=all)$

$$y(x) = -\frac{1}{2} + \frac{x^2}{2}$$

✓ Solution by Mathematica

Time used: 0.08 (sec). Leaf size: 14

$$y(x) \to \frac{1}{2} \left(x^2 - 1 \right)$$

9.4 problem 4

Internal problem ID [12427]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 4.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x(x-3)y'' + 3y' = x^2$$

With initial conditions

$$[y(5) = 0, y'(5) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve([x*(x-3)*diff(y(x),x$2)+3*diff(y(x),x)=x^2,y(5) = 0, D(y)(5) = 1],y(x), singsol=all)$

$$y(x) = \frac{x^2}{2} - \frac{8x}{5} - \frac{24\ln(x-3)}{5} - \frac{9}{2} + \frac{24\ln(2)}{5}$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 29

DSolve[{x*(x-3)*y''[x]+3*y'[x]==x^2,{y[5]==0,y'[5]==1}},y[x],x,IncludeSingularSolutions -> T

$$y(x) \to \frac{1}{10} (5x^2 - 16x - 48\log(x - 3) - 45 + 48\log(2))$$

9.5 problem 5

Internal problem ID [12428]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$\sqrt{1-x}\,y'' - 4y = \sin\left(x\right)$$

With initial conditions

$$[y(-2) = 3, y'(-2) = -1]$$

✓ Solution by Maple

Time used: 0.562 (sec). Leaf size: 185

$$dsolve([sqrt(1-x)*diff(y(x),x$2)-4*y(x)=sin(x),y(-2) = 3, D(y)(-2) = -1],y(x), singsol=all)$$

$$8\pi \left(\frac{\left(\left(\int_{-2}^{\sin(2l)\sqrt{1-2l}} \frac{1}{\operatorname{Bessell}} \left(\frac{2}{3}, \frac{8\sqrt{\left(1-2l\right)^{\frac{3}{2}}}}{3} \right) }{\left(\left(1-2l\right)^{\frac{3}{2}} \right)^{\frac{1}{3}}} d_{-2} l \right) \sqrt{3} + 6 \operatorname{Bessell} \left(-\frac{1}{3}, \frac{83^{\frac{3}{4}}}{3} \right) 3^{\frac{3}{4}} - 3 \operatorname{Bessell} \left(\frac{2}{3}, \frac{83^{\frac{3}{4}}}{3} \right) }{6} \right) \left((1-x)^{\frac{3}{2}} \right)^{\frac{2}{3}} \operatorname{Bessell} \left((1-x)^{$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{Sqrt[1-x]*y''[x]-4*y[x]==Sin[x],{y[-2]==3,y'[-2]==-1}},y[x],x,IncludeSingularSolution

Not solved $\,$

9.6 problem 6

Internal problem ID [12429]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$(x^2 - 4) y'' + y \ln(x) = x e^x$$

With initial conditions

$$[y(1) = 1, y'(1) = 2]$$

X Solution by Maple

 $\frac{dsolve([(x^2-4)*diff(y(x),x$2)+ln(x)*y(x)=x*exp(x),y(1)=1,D(y)(1)=2],y(x)}{dsolve([(x^2-4)*diff(y(x),x$2)+ln(x)*y(x)=x*exp(x),y(1)=1,D(y)(1)=2],y(x)}, singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{(x^2-4)*y''[x]+Log[x]*y[x]==x*Exp[x],\{y[1]==1,y'[1]==2\}\},y[x],x,IncludeSingularSolut]$

Not solved

9.7 problem 7

Internal problem ID [12430]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \mathrm{e}^{-x} + c_2 \mathrm{e}^x$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 20

DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x}$$

9.8 problem 8

Internal problem ID [12431]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x\$2)+y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(x) + c_2 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 16

DSolve[y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \cos(x) + c_2 \sin(x)$$

9.9 problem 9

Internal problem ID [12432]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y''x^2 + 2xy' - 2y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

 $dsolve(x^2*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)$

$$y(x) = c_1 x + \frac{c_2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 16

 $DSolve[x^2*y''[x]+2*x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1}{x^2} + c_2 x$$

9.10 problem 10

Internal problem ID [12433]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible

$$2yy'' - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 27

 $dsolve(2*y(x)*diff(y(x),x$2)-diff(y(x),x)^2=0,y(x), singsol=all)$

$$y(x) = 0$$
$$y(x) = \frac{1}{4}x^2c_1^2 + \frac{1}{2}c_1xc_2 + \frac{1}{4}c_2^2$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 29

 $DSolve [2*y[x]*y''[x]-(y'[x])^2 == 0, y[x], x, Include Singular Solutions \ \ -> \ True]$

$$y(x) \to \frac{(c_1 x + 2c_2)^2}{4c_2}$$

 $y(x) \to \text{Indeterminate}$

9.11 problem 13

Internal problem ID [12434]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve([diff(y(x),x\$2)-y(x)=0,y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = \frac{\mathrm{e}^x}{2} - \frac{\mathrm{e}^{-x}}{2}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 21

 $DSolve[\{y''[x]-y[x]==0,\{y[0]==0,y'[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}e^{-x}(e^{2x}-1)$$

9.12 problem 14

Internal problem ID [12435]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 14.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0, y''(0) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 6

$$y(x) = \cos\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 7

DSolve[{y'''[x]+y'[x]==0,{y[0]==1,y'[0]==0,y''[0]==-1}},y[x],x,IncludeSingularSolutions -> T

$$y(x) \to \cos(x)$$

9.13 problem 15

Internal problem ID [12436]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y''x^2 - xy' + y = 0$$

With initial conditions

$$[y(1) = 2, y'(1) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

$$y(x) = \left(-3\ln\left(x\right) + 2\right)x$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 13

$$y(x) \to x(2 - 3\log(x))$$

9.14 problem 16

Internal problem ID [12437]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y = 31$$

With initial conditions

$$[y(0) = -9, y'(0) = 6]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve([diff(y(x),x\$2)-4*y(x)=31,y(0) = -9, D(y)(0) = 6],y(x), singsol=all)

$$y(x) = -\frac{31}{4} + \frac{7e^{2x}}{8} - \frac{17e^{-2x}}{8}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 25

DSolve[{y''[x]-4*y[x]==31,{y[0]==-9,y'[0]==6}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{8} \left(-17e^{-2x} + 7e^{2x} - 62 \right)$$

9.15 problem 17

Internal problem ID [12438]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 9y = 27x + 18$$

With initial conditions

$$[y(0) = 23, y'(0) = 21]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

$$dsolve([diff(y(x),x$2)+9*y(x)=27*x+18,y(0) = 23, D(y)(0) = 21],y(x), singsol=all)$$

$$y(x) = 2 + 21\cos(3x) + 6\sin(3x) + 3x$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 22

$$y(x) \to 3x + 6\sin(3x) + 21\cos(3x) + 2$$

9.16 problem 18

Internal problem ID [12439]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y''x^2 + xy' - 4y = -3x - \frac{3}{x}$$

With initial conditions

$$[y(1) = 3, y'(1) = -6]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

 $dsolve([x^2*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=-3*x-3/x,y(1) = 3, D(y)(1) = -6],y(x), sing(x)$

$$y(x) = \frac{-x^4 + x^3 + x + 2}{x^2}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 20

$$y(x) \to \frac{-x^4 + x^3 + x + 2}{x^2}$$

10 Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

10.1	problem	1		•	•	•		•											•		•		208
10.2	problem	2																					209
10.3	problem	3																					210
10.4	problem	4																					211
10.5	$\operatorname{problem}$	5																					212
10.6	$\operatorname{problem}$	6																					213
10.7	$\operatorname{problem}$	7																					214
10.8	$\operatorname{problem}$	8																					215
10.9	$\operatorname{problem}$	9																					216
10.10)problem	10)																•	•			217
10.11	l problem	11																					218
10.12	2problem	17	7																•	•			219
10.13	Bproblem	18	3																				220
10.14	4problem	19)																				221

10.1 problem 1

Internal problem ID [12440]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 1.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' + 4y' - 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(4*diff(y(x),x\$2)+4*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{\frac{x}{2}} + c_2 e^{-\frac{3x}{2}}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 24

DSolve [4*y''[x]+4*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x/2} (c_2 e^{2x} + c_1)$$

10.2 problem 2

Internal problem ID [12441]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 2.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 4y'' + 6y' - 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)-4*diff(y(x),x\$2)+6*diff(y(x),x)-4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^x \sin(x) + c_3 e^x \cos(x)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 26

DSolve[y'''[x]-4*y''[x]+6*y'[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(c_3e^x + c_2\cos(x) + c_1\sin(x))$$

10.3 problem 3

Internal problem ID [12442]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 3.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 16y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$4)-16*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-2x} + c_3 \sin(2x) + c_4 \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 36

DSolve[y'''[x]-16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^{2x} + c_3 e^{-2x} + c_2 \cos(2x) + c_4 \sin(2x)$$

10.4 problem 4

Internal problem ID [12443]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 4.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 16y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

dsolve(diff(y(x),x\$4)+16*y(x)=0,y(x), singsol=all)

$$y(x) = -c_1 e^{-\sqrt{2}x} \sin\left(\sqrt{2}x\right) - c_2 e^{\sqrt{2}x} \sin\left(\sqrt{2}x\right)$$
$$+ c_3 e^{-\sqrt{2}x} \cos\left(\sqrt{2}x\right) + c_4 e^{\sqrt{2}x} \cos\left(\sqrt{2}x\right)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 67

DSolve[y'''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-\sqrt{2}x} \left(\left(c_1 e^{2\sqrt{2}x} + c_2 \right) \cos\left(\sqrt{2}x\right) + \left(c_4 e^{2\sqrt{2}x} + c_3 \right) \sin\left(\sqrt{2}x\right) \right)$$

10.5 problem 5

Internal problem ID [12444]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 5.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 4y''' + 8y'' - 8y' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$4)-4*diff(y(x),x\$3)+8*diff(y(x),x\$2)-8*diff(y(x),x)+4*y(x)=0,y(x), singsc

$$y(x) = c_1 e^x \sin(x) + c_2 e^x \cos(x) + c_3 e^x \sin(x) x + c_4 e^x \cos(x) x$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 30

DSolve[y'''[x]-4*y'''[x]+8*y''[x]-8*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \to e^x((c_4x + c_3)\cos(x) + (c_2x + c_1)\sin(x))$$

10.6 problem 6

Internal problem ID [12445]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 6.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 8y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve(diff(y(x),x\$4)-8*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{2x} + c_3 e^{-x} \sin(\sqrt{3}x) + c_4 e^{-x} \cos(\sqrt{3}x)$$

✓ Solution by Mathematica

Time used: 0.658 (sec). Leaf size: 70

DSolve[y'''[x]-8*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}e^{-x} \left(2c_1e^{3x} - \left(c_2 + \sqrt{3}c_3\right)\cos\left(\sqrt{3}x\right) + \left(\sqrt{3}c_2 - c_3\right)\sin\left(\sqrt{3}x\right)\right) + c_4$$

10.7 problem 7

Internal problem ID [12446]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 7.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$36y'''' - 12y''' - 11y'' + 2y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(36*diff(y(x),x\$4)-12*diff(y(x),x\$3)-11*diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=0,y(x), sin(x)=0,y(x), sin(x)=0,y(x)=0

$$y(x) = c_1 e^{-\frac{x}{3}} + c_2 e^{-\frac{x}{3}} x + c_3 e^{\frac{x}{2}} + c_4 e^{\frac{x}{2}} x$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 41

DSolve[36*y''''[x]-12*y'''[x]-11*y''[x]+2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> T

$$y(x) \to e^{-x/3} \left(c_3 e^{5x/6} + x \left(c_4 e^{5x/6} + c_2 \right) + c_1 \right)$$

10.8 problem 8

Internal problem ID [12447]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 8.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(5)} - 3y'''' + 3y''' - 3y'' + 2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$5)-3*diff(y(x),x\$4)+3*diff(y(x),x\$3)-3*diff(y(x),x\$2)+2*diff(y(x),x)=0,y(x)

$$y(x) = c_1 + c_2 e^{2x} + e^x c_3 + c_4 \sin(x) + c_5 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 36

DSolve[y''''[x]-3*y''''[x]+3*y'''[x]-3*y''[x]+2*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to c_3 e^x + \frac{1}{2}c_4 e^{2x} - c_2 \cos(x) + c_1 \sin(x) + c_5$$

10.9 problem 9

Internal problem ID [12448]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 9.

ODE order: 5.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(5)} - y'''' + y''' + 35y'' + 16y' - 52y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 42

dsolve(diff(y(x),x\$5)-diff(y(x),x\$4)+diff(y(x),x\$3)+35*diff(y(x),x\$2)+16*diff(y(x),x)-52*y(x)+16*diff(y(x),x)+16*diff(x)+16*dif

$$y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{-2x} x + c_4 e^{2x} \sin(3x) + c_5 e^{2x} \cos(3x)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 50

DSolve[y''''[x]-y''''[x]+y'''[x]+35*y''[x]+16*y'[x]-52*y[x]==0,y[x],x,IncludeSingularSoluti

$$y(x) \to e^{-2x} (c_4 x + c_5 e^{3x} + c_2 e^{4x} \cos(3x) + c_1 e^{4x} \sin(3x) + c_3)$$

10.10 problem 10

Internal problem ID [12449]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 10.

ODE order: 8. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(8)} + 8y'''' + 16y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

dsolve(diff(y(x),x\$8)+8*diff(y(x),x\$4)+16*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-x} \sin(x) + c_2 e^{-x} \cos(x) + c_3 e^{-x} \sin(x) x + c_4 e^{-x} \cos(x) x + c_5 e^{x} \sin(x) + c_6 e^{x} \cos(x) + c_7 e^{x} \sin(x) x + c_8 e^{x} \cos(x) x$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 66

DSolve[D[y[x],{x,8}]+8*y'''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} ((c_4x + c_7e^{2x} + c_8e^{2x}x + c_3)\cos(x) + (c_2x + c_5e^{2x} + c_6e^{2x}x + c_1)\sin(x))$$

10.11 problem 11

Internal problem ID [12450]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + \alpha y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)+alpha*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(\sqrt{\alpha} x) + c_2 \cos(\sqrt{\alpha} x)$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 28

DSolve[y''[x]+a*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cos\left(\sqrt{a}x\right) + c_2 \sin\left(\sqrt{a}x\right)$$

10.12 problem 17

Internal problem ID [12451]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 17.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + (-3 - 4i)y'' + (-4 + 12i)y' + 12y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

dsolve(diff(y(x),x\$3)-(3+4*I)*diff(y(x),x\$2)-(4-12*I)*diff(y(x),x)+12*y(x)=0,y(x), singsol=2.5

$$y(x) = c_1 e^{3x} + e^{2ix}c_2 + x e^{2ix}c_3$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 29

DSolve[y'''[x]-(3+4*I)*y''[x]-(4-12*I)*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions -> T

$$y(x) \to e^{2ix}(c_2x + c_1) + c_3e^{3x}$$

10.13 problem 18

Internal problem ID [12452]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 18.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + (-3 - i)y''' + (4 + 3i)y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$4)-(3+I)*diff(y(x),x\$3)+(4+3*I)*diff(y(x),x\$2)=0,y(x), singsol=all)

$$y(x) = c_1 e^{(2-i)x} + c_2 e^{(1+2i)x} + c_3 + c_4 x$$

✓ Solution by Mathematica

Time used: 0.156 (sec). Leaf size: 46

DSolve[y'''[x]-(3+I)*y'''[x]+(4+3*I)*y''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \left(-\frac{3}{25} - \frac{4i}{25}\right) c_1 e^{(1+2i)x} + \left(\frac{3}{25} + \frac{4i}{25}\right) c_2 e^{(2-i)x} + c_4 x + c_3$$

10.14 problem 19

Internal problem ID [12453]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - iy = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve([diff(y(x),x)-I*y(x)=0,y(0) = 1],y(x), singsol=all)

$$y(x) = e^{ix}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 12

 $DSolve[\{y'[x]-I*y[x]==0,\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{ix}$$

11 Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218

11.1	problem	1																			223
11.2	$\operatorname{problem}$	2																			224
11.3	$\operatorname{problem}$	3																			225
11.4	$\operatorname{problem}$	4																			226
11.5	$\operatorname{problem}$	5																			227
11.6	$\operatorname{problem}$	6																			228
11.7	problem	7																			229

11.1 problem 1

Internal problem ID [12454]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218

Problem number: 1.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - 6y''' + 13y'' - 12y' + 4y = 2e^x - 4e^{2x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 78

dsolve(diff(y(x),x\$4)-6*diff(y(x),x\$3)+13*diff(y(x),x\$2)-12*diff(y(x),x)+4*y(x)=2*exp(x)-4*exp(x)+4*y(x)+

$$y(x) = -(-x^{2}e^{2x} + 2x^{2}e^{3x} + 12e^{3x} - 4e^{2x}x - 8xe^{3x} - 6e^{2x})e^{-x} + c_{1}e^{x} + c_{2}e^{2x} + xe^{x}c_{3} + xe^{2x}c_{4}$$

✓ Solution by Mathematica

Time used: 0.187 (sec). Leaf size: 41

DSolve[y'''[x]-6*y'''[x]+13*y''[x]-12*y'[x]+4*y[x]==2*Exp[x]-4*Exp[2*x],y[x],x,IncludeSingular (a) = 2*Exp[x]-4*Exp[2*x],y[x],x,IncludeSingular (a) = 2*Exp[x]-4*Exp[2*x],y[x]-4*Exp[2*x],x,IncludeSingular (a) = 2*Exp[x]-4*Exp[2*x],x,IncludeSingular (a) = 2*Exp[x]-4*Exp[2*x],x,IncludeSingular (a) = 2*Exp[x]-4*Exp[2*x],x,IncludeSingular (a) = 2*Exp[x]-4

$$y(x) \rightarrow e^{x}(x^{2} + e^{x}(-2x^{2} + (8 + c_{4})x - 12 + c_{3}) + (4 + c_{2})x + 6 + c_{1})$$

11.2 problem 2

Internal problem ID [12455]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218

Problem number: 2.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' + 4y'' = 24x^2 - 6x + 14 + 32\cos(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 51

 $dsolve(diff(y(x),x$4)+4*diff(y(x),x$2)=24*x^2-6*x+14+32*cos(2*x),y(x), singsol=all)$

$$y(x) = \frac{x^4}{2} - \frac{x^3}{4} + \frac{x^2}{4} - \frac{\cos(2x)c_1}{4} - \frac{\sin(2x)c_2}{4} - \frac{5\cos(2x)}{2} - 2x\sin(2x) + c_3x + c_4$$

✓ Solution by Mathematica

Time used: 1.052 (sec). Leaf size: 54

DSolve[y''''[x]+4*y''[x]==24*x^2-6*x+14+32*Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4} (2x^4 - x^3 + x^2 + 4c_4x - (12 + c_1)\cos(2x) - (8x + c_2)\sin(2x) + 4c_3)$$

11.3 problem 3

Internal problem ID [12456]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218

Problem number: 3.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 2y'' + y = 3 + \cos(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$2)+y(x)=3+cos(2*x),y(x), singsol=all)

$$y(x) = \frac{\cos(2x)}{9} + 3 + c_1 \cos(x) + c_2 \sin(x) + c_3 x \cos(x) + c_4 \sin(x) x$$

✓ Solution by Mathematica

Time used: 0.199 (sec). Leaf size: 36

 $DSolve[y''''[x]+2*y''[x]+y[x]==3+Cos[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{9}\cos(2x) + (c_2x + c_1)\cos(x) + c_3\sin(x) + c_4x\sin(x) + 3$$

11.4 problem 4

Internal problem ID [12457]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218

Problem number: 4.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' - 3y''' + 3y'' - y' = 6x - 20 - 120x^{2}e^{x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 84

 $\frac{\text{dsolve(diff(y(x),x$4)-3*diff(y(x),x$3)+3*diff(y(x),x$2)-diff(y(x),x)=6*x-20-1}{20*x^2*exp(x),y}$

$$y(x) = c_1 e^x + c_2 (e^x x - e^x) + c_3 (e^x x^2 - 2 e^x x + 2 e^x) - 3x^2 - 2x^5 e^x + 10x^4 e^x - 40 e^x x^3 + 120 e^x x^2 - 240 e^x x + 240 e^x + 2x + c_4$$

✓ Solution by Mathematica

Time used: 0.569 (sec). Leaf size: 65

$$y(x) \to -3x^{2} + e^{x} \left(-2x^{5} + 10x^{4} - 40x^{3} + (120 + c_{3})x^{2} + (-240 + c_{2} - 2c_{3})x + 240 + c_{1} - c_{2} + 2c_{3}\right) + 2x + c_{4}$$

11.5 problem 5

Internal problem ID [12458]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218

Problem number: 5.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 6y'' + 21y' - 26y = 36 e^{2x} \sin(3x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 52

dsolve(diff(y(x),x\$3)-6*diff(y(x),x\$2)+21*diff(y(x),x)-26*y(x)=36*exp(2*x)*sin(3*x),y(x), sin(x)=26*y(x)+21*diff(y(x),x)-26*y(x)=36*exp(2*x)*sin(3*x),y(x), sin(x)=26*y(x)+21*diff(y(x),x)-26*y(x)=36*exp(2*x)*sin(3*x),y(x), sin(x)=26*y(x)+21*diff(y(x),x)-26*y(x)=36*exp(2*x)*sin(3*x),y(x), sin(x)=26*y(x)+21*diff(x)=26*y(x)+21*diff(x)=26*y(x)+21*diff(x)=26*y(x)=36*exp(2*x)*sin(3*x),y(x)=26*y(x)=26

$$y(x) = -\frac{2e^{2x}\cos(3x)}{3} - 2e^{2x}\sin(3x)x + c_1e^{2x} + c_2e^{2x}\cos(3x) + c_3e^{2x}\sin(3x)$$

✓ Solution by Mathematica

Time used: 0.103 (sec). Leaf size: 34

DSolve[y'''[x]-6*y''[x]+21*y'[x]-26*y[x]==36*Exp[2*x]*Sin[3*x],y[x],x,IncludeSingularSolution

$$y(x) \to e^{2x}((-1+c_2)\cos(3x) + (-2x+c_1)\sin(3x) + c_3)$$

11.6 problem 6

Internal problem ID [12459]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218

Problem number: 6.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' + y'' - y' - y = (2x^2 + 4x + 8)\cos(x) + (6x^2 + 8x + 12)\sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 51

 $dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)-diff(y(x),x)-y(x)=(2*x^2+4*x+8)*cos(x)+(6*x^2+8*x+12)*sos(x)+(6*x^2+8*x$

$$y(x) = \cos(x) x^{2} - 2\sin(x) x^{2} - 6x\cos(x) - 4\sin(x) x$$
$$- 2\cos(x) + \sin(x) + c_{1}e^{x} + c_{2}e^{-x} + c_{3}e^{-x}x$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 55

$$y(x) \to (x^2 - 6x - 2)\cos(x) + e^{-x}(-e^x(2x^2 + 4x - 1)\sin(x) + c_2x + c_3e^{2x} + c_1)$$

11.7 problem 7

Internal problem ID [12460]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218

Problem number: 7.

ODE order: 6.
ODE degree: 1.

CAS Maple gives this as type [[high order, linear, nonhomogeneous]]

$$y^{(6)} - 12y^{(5)} + 63y'''' - 18y''' + 315y'' - 300y' + 125y = e^{x}(48\cos(x) + 96\sin(x))$$

✓ Solution by Maple

Time used: 1.547 (sec). Leaf size: 2807

$$dsolve(diff(y(x),x\$6)-12*diff(y(x),x\$5)+63*diff(y(x),x\$4)-18*diff(y(x),x\$3)+3\\ 15*diff(y(x),x\$6)+3\\ 15*diff(y(x),x\$6)+3$$
 15*diff(y(x),x\\$6)+3 15*diff(y(x)

Expression too large to display

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 292

$$y(x) \to c_3 \exp\left(x \operatorname{Root}\left[\#1^6 - 12\#1^5 + 63\#1^4 - 18\#1^3 + 315\#1^2 - 300\#1 + 125\&, 3\right]\right) + c_4 \exp\left(x \operatorname{Root}\left[\#1^6 - 12\#1^5 + 63\#1^4 - 18\#1^3 + 315\#1^2 - 300\#1 + 125\&, 4\right]\right) + c_1 \exp\left(x \operatorname{Root}\left[\#1^6 - 12\#1^5 + 63\#1^4 - 18\#1^3 + 315\#1^2 - 300\#1 + 125\&, 1\right]\right) + c_2 \exp\left(x \operatorname{Root}\left[\#1^6 - 12\#1^5 + 63\#1^4 - 18\#1^3 + 315\#1^2 - 300\#1 + 125\&, 2\right]\right) + c_5 \exp\left(x \operatorname{Root}\left[\#1^6 - 12\#1^5 + 63\#1^4 - 18\#1^3 + 315\#1^2 - 300\#1 + 125\&, 5\right]\right) + c_6 \exp\left(x \operatorname{Root}\left[\#1^6 - 12\#1^5 + 63\#1^4 - 18\#1^3 + 315\#1^2 - 300\#1 + 125\&, 5\right]\right) - \frac{48e^x(352\sin(x) + 1011\cos(x))}{229205}$$

12 Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221

12.1	problem	1																			231
12.2	$\operatorname{problem}$	2																			232
12.3	problem	3																			233
12.4	problem	4																			234

12.1 problem 1

Internal problem ID [12461]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221

Problem number: 1.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3y'' - 4y' + 12y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 5, y''(0) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

 $\frac{dsolve([diff(y(x),x\$3)-3*diff(y(x),x\$2)-4*diff(y(x),x)+12*y(x)=0,y(0) = 1, D(y)(0) = 5, (D@@G(y(x),x\$3)-3*diff(y(x),x\$2)-4*diff(y(x),x)+12*y(x)=0,y(0) = 1, D(y)(0) = 5, (D@G(y(x),x\$2)-4*diff(x)-4*diff(x$

$$y(x) = (-e^{5x} + 3e^{4x} - 1)e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 26

DSolve[{y'''[x]-3*y''[x]-4*y'[x]+12*y[x]==0,{y[0]==1,y'[0]==5,y''[0]==-1}},y[x],x,IncludeSir

$$y(x) \to -e^{-2x} \left(-3e^{4x} + e^{5x} + 1 \right)$$

12.2 problem 2

Internal problem ID [12462]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221

Problem number: 2.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 2y''' + 2y' - y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1, y''(0) = -3, y'''(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $\frac{\text{dsolve}([\text{diff}(y(x),x\$4)-2*\text{diff}(y(x),x\$3)+2*\text{diff}(y(x),x)-y(x)=0,y(0)=1,\ D(y)(0)=-1,\ (D@@2))}{\text{dsolve}([\text{diff}(y(x),x\$4)-2*\text{diff}(y(x),x\$3)+2*\text{diff}(y(x),x)-y(x)=0,y(0)=1,\ D(y)(0)=-1,\ (D@@2)(0)=-1,\ D(y)(0)=-1,\ D(y)(0$

$$y(x) = -e^{-x} + (2x^2 - 4x + 2) e^x$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 25

DSolve[{y''''[x]-2*y'''[x]+2*y'[x]-y[x]==0,{y[0]==1,y'[0]==-1,y''[0]==-3,y'''}[0]==3}},y[x],x

$$y(x) \to e^{-x} (2e^{2x}(x-1)^2 - 1)$$

12.3 problem 3

Internal problem ID [12463]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221

Problem number: 3.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - y'' + y' - y = 2 e^x$$

With initial conditions

$$[y(0) = 1, y'(0) = 3, y''(0) = -3]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

$$y(x) = (x - 2) e^x + 3\cos(x) + 4\sin(x)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

$$DSolve[\{y'''[x]-y'''[x]+y'[x]-y[x]==2*Exp[x],\{y[0]==1,y'[0]==3,y''[0]==-3\}\},y[x],x,IncludeSi=0$$

{}

12.4 problem 4

Internal problem ID [12464]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221

Problem number: 4.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$y'''' + 2y'' + y = 3x + 4$$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 1, y'''(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

dsolve([diff(y(x),x\$4)+2*diff(y(x),x\$2)+y(x)=3*x+4,y(0)=0, D(y)(0)=0, (D@@2)(y)(0)=1,

$$y(x) = 4 + (-4 + x)\cos(x) + \frac{(-3x - 8)\sin(x)}{2} + 3x$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 27

 $DSolve[\{y''''[x]+2*y''[x]+y[x]==3*x+4,\{y[0]==0,y'[0]==0,y''[0]==1,y'''[0]==1\}\},y[x],x,Include[\{y''''[x]+2*y''[x]+y[x]==3*x+4,\{y[0]==0,y''[0]==0,y''[0]==1,y'''[0]==1\}\}$

$$y(x) \to 3x - \frac{1}{2}(3x+8)\sin(x) + (x-4)\cos(x) + 4$$

13 Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

13.1	problem	1		•		•		•							•		•	•					236
13.2	problem	2																					237
13.3	problem	3																					238
13.4	problem	4																					239
13.5	problem	5																					240
13.6	problem	6																					241
13.7	$\operatorname{problem}$	7																					242
13.8	$\operatorname{problem}$	8																					243
13.9	$\operatorname{problem}$	9																					244
13.10)problem	10)																				245
13.11	l problem	11																					246
13.12	2problem	12	2																				247
13.13	Bproblem	13	3																				248
13.14	4problem	14	Į																				249

13.1 problem 1

Internal problem ID [12465]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y = 0$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 9

dsolve(diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y(x) = y(0) e^x$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 16

DSolve[y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x$$

$$y(x) \to 0$$

13.2 problem 2

Internal problem ID [12466]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 5y = 0$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)

$$y(x) = \frac{e^{x}(2y(0)\cos(2x) + (-y(0) + D(y)(0))\sin(2x))}{2}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 24

DSolve[y''[x]-2*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(c_2\cos(2x) + c_1\sin(2x))$$

13.3 problem 3

Internal problem ID [12467]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 3.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 2y = 4$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 15

dsolve(diff(y(x),x)+2*y(x)=4,y(x), singsol=all)

$$y(x) = (y(0) - 2) e^{-2x} + 2$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 20

DSolve[y'[x]+2*y[x]==4,y[x],x,IncludeSingularSolutions \rightarrow True]

$$y(x) \to 2 + c_1 e^{-2x}$$

$$y(x) \to 2$$

13.4 problem 4

Internal problem ID [12468]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 9y = 2\sin(3x)$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)-9*y(x)=2*sin(3*x),y(x), singsol=all)

$$y(x) = -\frac{\sin(3x)}{9} + y(0)\cosh(3x) + \frac{\sinh(3x)(1+3D(y)(0))}{9}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 30

DSolve[y''[x]-9*y[x]==2*Sin[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{9}\sin(3x) + c_1e^{3x} + c_2e^{-3x}$$

13.5 problem 5

Internal problem ID [12469]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = 2\sin(3x)$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)+9*y(x)=2*sin(3*x),y(x), singsol=all)

$$y(x) = -\frac{\cos(3x)(x - 3y(0))}{3} + \frac{\sin(3x)(1 + 3D(y)(0))}{9}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 33

DSolve[y''[x]+9*y[x]==2*Sin[3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \left(-\frac{x}{3} + c_1\right)\cos(3x) + \frac{1}{18}(1 + 18c_2)\sin(3x)$$

13.6 problem 6

Internal problem ID [12470]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 2y = x e^x - 3x^2$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 52

 $dsolve(diff(y(x),x$2)+diff(y(x),x)-2*y(x)=x*exp(x)-3*x^2,y(x), singsol=all)$

$$y(x) = \frac{9}{4} + \frac{3x^2}{2} + \frac{3x}{2} + \frac{e^x(9x^2 + 36y(0) + 18D(y)(0) - 6x - 106)}{54} + \frac{e^{-2x}(36y(0) - 36D(y)(0) - 31)}{108}$$

✓ Solution by Mathematica

Time used: 0.313 (sec). Leaf size: 49

DSolve[y''[x]+y'[x]-2*y[x]==x*Exp[x]-3*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{3}{4}(2x^2 + 2x + 3) + \frac{1}{54}e^x(9x^2 - 6x + 2 + 54c_2) + c_1e^{-2x}$$

13.7 problem 7

Internal problem ID [12471]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 7.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' - 2y''' + y'' = x e^x - 3x^2$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 79

 $dsolve(diff(y(x),x\$4)-2*diff(y(x),x\$3)+diff(y(x),x\$2)=x*exp(x)-3*x^2,y(x), singsol=all)$

$$\begin{split} y(x) &= -26 - 9x^2 - \frac{x^4}{4} - 2x^3 + y(0) \\ &+ \frac{\mathrm{e}^x \left(x^3 + 6xD^{(3)}(y) \left(0 \right) - 6xD^{(2)}(y) \left(0 \right) - 6x^2 - 12D^{(3)}(y) \left(0 \right) + 18D^{(2)}(y) \left(0 \right) - 18x + 156 \right)}{6} \\ &- D^{(2)}(y) \left(0 \right) \left(3 + 2x \right) + D^{(3)}(y) \left(0 \right) \left(x + 2 \right) + x(-23 + D(y) \left(0 \right) \right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.812 (sec). Leaf size: 59

$$y(x) \rightarrow -\frac{x^4}{4} - 2x^3 - 9x^2 + e^x \left(\frac{x^3}{6} - x^2 + (3 + c_2)x - 4 + c_1 - 2c_2\right) + c_4 x + c_3$$

13.8 problem 8

Internal problem ID [12472]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = e^x$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 8

dsolve([diff(y(x),x)=exp(x),y(0) = -1],y(x), singsol=all)

$$y(x) = e^x - 2$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 10

DSolve[{y'[x]==Exp[x],{y[0]==-1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x - 2$$

13.9 problem 9

Internal problem ID [12473]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = 2e^x$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 12

dsolve([diff(y(x),x)-y(x)=2*exp(x),y(0) = 1],y(x), singsol=all)

$$y(x) = (2x+1)e^x$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 14

 $DSolve[\{y'[x]-y[x]==2*Exp[x],\{y[0]==1\}\},y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to e^x(2x+1)$$

13.10 problem 10

Internal problem ID [12474]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 9y = x + 2$$

With initial conditions

$$[y(0) = -1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 21

dsolve([diff(y(x),x\$2)-9*y(x)=x+2,y(0) = -1, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = -\frac{7\cosh(3x)}{9} + \frac{10\sinh(3x)}{27} - \frac{x}{9} - \frac{2}{9}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 33

DSolve[{y''[x]-9*y[x]==x+2,{y[0]==-1,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{54}e^{-3x} \left(-6e^{3x}(x+2) - 11e^{6x} - 31\right)$$

13.11 problem 11

Internal problem ID [12475]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 9y = x + 2$$

With initial conditions

$$[y(0) = -1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 21

dsolve([diff(y(x),x\$2)+9*y(x)=x+2,y(0) = -1, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = -\frac{11\cos(3x)}{9} + \frac{8\sin(3x)}{27} + \frac{x}{9} + \frac{2}{9}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 26

DSolve[{y''[x]+9*y[x]==x+2,{y[0]==-1,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{27}(3x + 8\sin(3x) - 33\cos(3x) + 6)$$

13.12 problem 12

Internal problem ID [12476]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y' + 6y = -2\sin(3x)$$

With initial conditions

$$[y(0) = 0, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 45

 $\frac{dsolve([diff(y(x),x$2)-diff(y(x),x])+6*y(x)=-2*sin(3*x),y(0)=0,D(y)(0)=-1]}{},y(x),singsolve([diff(y(x),x$2)-diff(y(x),x])+6*y(x)=-2*sin(3*x),y(0)=0,D(y)(0)=-1]}$

$$y(x) = -\frac{13e^{\frac{x}{2}}\sqrt{23}\sin\left(\frac{\sqrt{23}x}{2}\right)}{69} + \frac{e^{\frac{x}{2}}\cos\left(\frac{\sqrt{23}x}{2}\right)}{3} - \frac{\cos(3x)}{3} + \frac{\sin(3x)}{3}$$

✓ Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 67

$$y(x) \to \frac{1}{69} \left(23\sin(3x) - 13\sqrt{23}e^{x/2}\sin\left(\frac{\sqrt{23}x}{2}\right) - 23\cos(3x) + 23e^{x/2}\cos\left(\frac{\sqrt{23}x}{2}\right) \right)$$

13.13 problem 13

Internal problem ID [12477]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + 2y = -x^2 + 1$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 18

$$y(x) = -\frac{x^2}{2} + e^x \cos(x) - x$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 20

DSolve[{y''[x]-2*y'[x]+2*y[x]==1-x^2,{y[0]==1,y'[0]==0}},y[x],x,IncludeSingularSolutions ->

$$y(x) \rightarrow e^x \cos(x) - \frac{1}{2}x(x+2)$$

13.14 problem 14

Internal problem ID [12478]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248

Problem number: 14.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' + 3y'' + 2y' = x + \cos(x)$$

With initial conditions

$$[y(0) = 1, y'(0) = -1, y''(0) = 2]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 34

$$y(x) = \frac{17e^{-2x}}{40} + \frac{x^2}{4} - \frac{3\cos(x)}{10} + \frac{\sin(x)}{10} - \frac{3x}{4} - \frac{e^{-x}}{2} + \frac{11}{8}$$

✓ Solution by Mathematica

Time used: 0.565 (sec). Leaf size: 41

DSolve[{y'''[x]+3*y''[x]+2*y'[x]==x+Cos[x],{y[0]==1,y'[0]==-1,y''[0]==2}},y[x],x,IncludeSing

$$y(x) \to \frac{1}{40} (10x^2 - 30x + 17e^{-2x} - 20e^{-x} + 4\sin(x) - 12\cos(x) + 55)$$

14 Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255

14.1	problem	7																			251
14.2	$\operatorname{problem}$	8																			252
14.3	problem	9																			253
14.4	$\operatorname{problem}$	10)																		254
14.5	problem	11																			255
14.6	$\operatorname{problem}$	12)																		256
14.7	$\operatorname{problem}$	13	,																		257
14.8	problem	14																			258

14.1 problem 7

Internal problem ID [12479]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255

Problem number: 7.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y = 6$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 15

dsolve([diff(y(x),x)-2*y(x)=6,y(0) = 2],y(x), singsol=all)

$$y(x) = 2e^{x}(\cosh(x) + 4\sinh(x))$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 14

 $DSolve[\{y'[x]-2*y[x]==6,\{y[0]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 5e^{2x} - 3$$

14.2 problem 8

Internal problem ID [12480]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255

Problem number: 8.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = e^x$$

With initial conditions

$$\left[y(0) = \frac{5}{2}\right]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 13

dsolve([diff(y(x),x)+y(x)=exp(x),y(0) = 5/2],y(x), singsol=all)

$$y(x) = \frac{5\cosh(x)}{2} - \frac{3\sinh(x)}{2}$$

✓ Solution by Mathematica

Time used: 0.066 (sec). Leaf size: 20

$$y(x) \to 2e^{-x} + \frac{e^x}{2}$$

14.3 problem 9

Internal problem ID [12481]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 9y = 1$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 12

dsolve([diff(y(x),x\$2)+9*y(x)=1,y(0) = 0, D(y)(0) = 0],y(x), singsol=all)

$$y(x) = -\frac{\cos(3x)}{9} + \frac{1}{9}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 17

 $DSolve[\{y''[x]+9*y[x]==1,\{y[0]==0,y'[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{9}\sin^2\left(\frac{3x}{2}\right)$$

14.4 problem 10

Internal problem ID [12482]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 9y = 18 e^{3x}$$

With initial conditions

$$[y(0) = -1, y'(0) = 6]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 19

dsolve([diff(y(x),x\$2)+9*y(x)=18*exp(3*x),y(0) = -1, D(y)(0) = 6],y(x), singsol=all)

$$y(x) = e^{3x} - 2\cos(3x) + \sin(3x)$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 21

$$y(x) \to e^{3x} + \sin(3x) - 2\cos(3x)$$

14.5 problem 11

Internal problem ID [12483]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 15

dsolve([diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=0,y(0) = 0, D(y)(0) = 3],y(x), singsol=all)

$$y(x) = e^{2x} - e^{-x}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 18

$$y(x) \to e^{-x} \left(e^{3x} - 1 \right)$$

14.6 problem 12

Internal problem ID [12484]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = x^2$$

With initial conditions

$$\left[y(0) = \frac{11}{4}, y'(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 26

 $dsolve([diff(y(x),x$2)-diff(y(x),x)-2*y(x)=x^2,y(0) = 11/4, D(y)(0) = 1/2],y(x), singsol=all(x,y) = 1/2, D(y)(0) = 1/2, D(y)$

$$y(x) = -\frac{x^2}{2} + \frac{x}{2} + \frac{7e^{2x}}{6} + \frac{7e^{-x}}{3} - \frac{3}{4}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 33

DSolve[{y''[x]-y'[x]-2*y[x]==x^2,{y[0]==11/4,y'[0]==1/2}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{1}{12} \left(-6x^2 + 6x + 28e^{-x} + 14e^{2x} - 9 \right)$$

14.7 problem 13

Internal problem ID [12485]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = 2\sin(x)$$

With initial conditions

$$[y(0) = -2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 14

$$y(x) = (3x - 3)e^x + \cos(x)$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 16

DSolve[{y''[x]-2*y'[x]+y[x]==2*Sin[x],{y[0]==-2,y'[0]==0}},y[x],x,IncludeSingularSolutions -

$$y(x) \rightarrow 3e^x(x-1) + \cos(x)$$

14.8 problem 14

Internal problem ID [12486]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255

Problem number: 14.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y'' + 4y' - 4y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 5, y''(0) = 5]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 20

$$\frac{dsolve([diff(y(x),x$3)-diff(y(x),x$2)+4*diff(y(x),x)-4*y(x)=0,y(0)=0,D(y)(0)=5,(D@@2)(0)}{dsolve([diff(y(x),x$3)-diff(y(x),x$2)+4*diff(y(x),x)-4*y(x)=0,y(0)=0,D(y)(0)=5,(D@@2)(0)=0}{dsolve([diff(y(x),x$3)-diff(y(x),x$2)+4*diff(y(x),x)-4*y(x)=0,y(0)=0,D(y)(0)=0}{dsolve([diff(y(x),x$3]-diff(y(x),x$2]+4*diff(y(x),x)-4*y(x)=0,y(0)=0,D(y)(0)=0}{dsolve([diff(y(x),x$3]-diff(y(x),x$2]+4*diff(y(x),x)-4*y(x)=0,y(0)=0,D(y)(0)=0}{dsolve([diff(y(x),x$3]-diff(y(x),x$2]+4*diff(y(x),x)-4*y(x)=0,y(0)=0,D(y)(0)=0}{dsolve([diff(y(x),x$3]-diff(y(x),x$2]+4*diff(y(x),x)-4*y(x)=0,y(0)=0,D(y)(0)=0}{dsolve([diff(y(x),x$3]-diff(y(x),x)-4*y(x)=0,y(0)=0,D(y)(0)=0}{dsolve([diff(y(x),x])-dsolve([diff(x),x])-dsolve([diff(x),x])$$

$$y(x) = -2\cos(x)^{2} + 4\cos(x)\sin(x) + e^{x} + 1$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 21

$$y(x) \to e^x + 2\sin(2x) - \cos(2x)$$

15 Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265

15.1	problem	4 (a)						•			•						•	•			260
15.2	$\operatorname{problem}$	4 (b)																			261
15.3	$\operatorname{problem}$	4 (c)																			263
15.4	$\operatorname{problem}$	4 (d)																			264
15.5	$\operatorname{problem}$	4 (e)																			265
15.6	$\operatorname{problem}$	4 (g)																			266
15.7	problem	4 (h)																			267

15.1 problem 4 (a)

Internal problem ID [12487]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265

Problem number: 4 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = \begin{cases} 2 & 0 \le x < 1 \\ 1 & 1 \le x \end{cases}$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 22

 $dsolve([diff(y(x),x)+2*y(x)=piecewise(0<=x \ and \ x<1,2,1<=x,1),y(0) = 1],y(x), \ singsol=all)$

$$y(x) = \begin{cases} 1 & x < 1\\ \frac{1}{2} + \frac{e^{-2x+2}}{2} & 1 \le x \end{cases}$$

✓ Solution by Mathematica

Time used: 0.113 (sec). Leaf size: 37

$$y(x)
ightarrow \ \{ \qquad e^{-2x} \qquad x \leq 0$$
 $y(x)
ightarrow \ \{ \qquad 1 \qquad 0 < x \leq 1$ $rac{1}{2}(1+e^{2-2x}) \qquad {
m True}$

15.2 problem 4 (b)

Internal problem ID [12488]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265

Problem number: 4 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - y' - 2y = \begin{cases} 1 & 2 \le x < 4 \\ 0 & \text{otherwise} \end{cases}$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 136

dsolve([diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=piecewise(2<=x and x<4,1,true,0),y(0) = 0, D(y)(0)

$$y(x) = \frac{\begin{pmatrix} e^{2x} - e^{-x} & x < 2 \\ -\frac{1}{2} - e^{-2} + e^4 & x = 2 \\ -e^{-x} + e^{2x} - \frac{3}{2} + e^{2-x} + \frac{e^{2x-4}}{2} & x < 4 \\ \frac{(2e^{12} + e^8 - 2e^4 + 2e^2 - 2)e^{-4}}{2} & x = 4 \\ -e^{-x} + e^{2x} - e^{4-x} + e^{2-x} - \frac{e^{2x-8}}{2} + \frac{e^{2x-4}}{2} & 4 < x \end{pmatrix}}$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 127

DSolve[{y''[x]-y'[x]-2*y[x]==Piecewise[{ {1,2<=x<4},{0,True}}}],{y[0]==0,y'[0]==1}},y[x],x,Ir

$$\frac{1}{3}e^{-x}(-1+e^{3x}) \qquad x \le 2$$

$$y(x) \to \left\{ \begin{array}{cc} \frac{1}{6}e^{-x-4}(-2e^4+2e^6+e^{3x}-3e^{x+4}+2e^{3x+4}) & 2 < x \le 4 \\ \frac{1}{6}e^{-x-8}(-2e^8+2e^{10}-2e^{12}-e^{3x}+e^{3x+4}+2e^{3x+8}) & \text{True} \end{array} \right.$$

15.3 problem 4 (c)

Internal problem ID [12489]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265

Problem number: 4 (c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 2y' = \begin{cases} 0 & 0 \le x < 1\\ (x - 1)^2 & 1 \le x \end{cases}$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 39

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)=piecewise(0<=x and x<1,0,1<=x,(x-1)^2),y(0) = 1, D(y)(0)

$$y(x) = \begin{cases} 1 & x < 1\\ \frac{7}{8} & x = 1\\ \frac{25}{24} + \frac{e^{2x-2}}{8} + \frac{x^2}{4} - \frac{x^3}{6} - \frac{x}{4} & 1 < x \end{cases}$$

✓ Solution by Mathematica

Time used: 0.269 (sec). Leaf size: 40

$$y(x) \to \begin{cases} 1 & x \le 1 \\ \frac{1}{24}(-4x^3 + 6x^2 - 6x + 3e^{2x-2} + 25) & \text{True} \end{cases}$$

15.4 problem 4 (d)

Internal problem ID [12490]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265

Problem number: 4 (d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = \begin{cases} 0 & 0 \le x < 1 \\ x^2 - 2x + 3 & 1 \le x \end{cases}$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 43

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=piecewise(0<=x and x<1,0,1<=x,x^2-2*x+3),y(0) = 0

$$y(x) = \begin{cases} x e^x & x < 1 \\ e + 8 & x = 1 \\ x e^x + 5 + 4(x - 3) e^{x - 1} + x^2 + 2x & 1 < x \end{cases}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 39

DSolve[{y''[x]-2*y'[x]+y[x]==Piecewise[{ {0,0<=x<1},{x^2-2*x+3,x>=1}}],{y[0]==0,y'[0]==1}},y

$$y(x) \to \{ e^x x & x \le 1 \\ x^2 + e^x x + 2x + 4e^{x-1}(x-3) + 5 \text{ True } \}$$

15.5 problem 4 (e)

Internal problem ID [12491]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265

Problem number: 4 (e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \begin{cases} 0 & 0 \le x < \pi \\ -\sin(3x) & \pi \le x \end{cases}$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.188 (sec). Leaf size: 39

dsolve([diff(y(x),x\$2)+4*y(x)=piecewise(0<=x and x<Pi,0,Pi<=x,sin(3*(x-Pi))),y(0)=1, D(y)(0)

$$y(x) = \cos(2x) + \left(\begin{cases} \frac{\sin(2x)}{2} & x < \pi \\ \frac{4\sin(2x)}{5} + \frac{\sin(3x)}{5} & \pi \le x \end{cases} \right)$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 42

DSolve[{y''[x]+4*y[x]==Piecewise[{ {0,0<=x<Pi},{Sin[3*(x-Pi)],x>=Pi}}],{y[0]==1,y'[0]==1}},y

$$y(x) \rightarrow \begin{cases} \cos(2x) + \cos(x)\sin(x) & x \le \pi \\ \frac{1}{5}(5\cos(2x) + 4\sin(2x) + \sin(3x)) & \text{True} \end{cases}$$

15.6 problem 4 (g)

Internal problem ID [12492]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265

Problem number: 4 (g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y = \begin{cases} x & 0 \le x < 1 \\ 1 & 1 \le x \end{cases}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 46

dsolve([diff(y(x),x\$2)-4*y(x)=piecewise(0<=x and x<1,x,1<=x,1),y(0) = 0, D(y)(0) = 0],y(x),

$$y(x) = \frac{\begin{cases} \sinh(2x) - 2x & x < 1\\ \sinh(2) - 4 & x = 1\\ \sinh(2x) - \sinh(2x - 2) - 2 & 1 < x \end{cases}}{8}$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 36

 $DSolve[\{y''[x]-4*y[x]==Piecewise[\{\{x,0<=x<1\},\{x,x>=1\}\}],\{y[0]==0,y'[0]==0\}\},y[x],x,IncludeS$

$$y(x) \to \begin{cases} 0 & x \le 0 \\ \frac{1}{16}e^{-2x}(-4e^{2x}x + e^{4x} - 1) & \text{True} \end{cases}$$

15.7 problem 4 (h)

Internal problem ID [12493]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265

Problem number: 4 (h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 5y = \begin{cases} x & 0 \le x < 1 \\ 1 & 1 \le x \end{cases}$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 87

dsolve([diff(y(x),x\$2)-4*diff(y(x),x)+5*y(x)=piecewise(0<=x and x<1,x,1<=x,1),y(0) = 1, D(y)

$$y(x) = \frac{\left\{ \begin{array}{ll} \left(21\cos\left(x\right) - 47\sin\left(x\right)\right) \mathrm{e}^{2x} + 5x + 4 & x < 1\\ 10 + \left(21\cos\left(1\right) - 47\sin\left(1\right)\right) \mathrm{e}^{2} & x = 1\\ \left(4\cos\left(x - 1\right) - 3\sin\left(x - 1\right)\right) \mathrm{e}^{2x - 2} + 5 + \left(21\cos\left(x\right) - 47\sin\left(x\right)\right) \mathrm{e}^{2x} & 1 < x \end{array} \right)}{25}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 51

 $DSolve[\{y''[x]-4*y'[x]+5*y[x]==Piecewise[\{\{x,0<=x<1\},\{x,x>=1\}\}],\{y[0]==1,y'[0]==0\}\},y[x],x,y=1\}$

$$y(x) \to \begin{cases} e^{2x}(\cos(x) - 2\sin(x)) & x \le 0 \\ \frac{1}{25}(5x + 21e^{2x}\cos(x) - 47e^{2x}\sin(x) + 4) & \text{True} \end{cases}$$

16 Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273

16.1	problem	1																			269
16.2	problem	2																			270
16.3	problem	3																			271
16.4	problem	4																			272
16.5	problem	5																			273
16.6	problem	6																			274
16.7	problem	7																			275

16.1 problem 1

Internal problem ID [12494]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 3y = \delta(x - 2)$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.093 (sec). Leaf size: 20

dsolve([diff(y(x),x)+3*y(x)=Dirac(x-2),y(0) = 1],y(x), singsol=all)

$$y(x) = \text{Heaviside}(x-2) e^{6-3x} + e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 21

 $DSolve[\{y'[x]+3*y[x]==DiracDelta[x-2],\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-3x} (e^6 \theta(x-2) + 1)$$

16.2 problem 2

Internal problem ID [12495]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 3y = \delta(x - 1) + 2 \text{ Heaviside } (x - 2)$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 46

dsolve([diff(y(x),x)-3*y(x)=Dirac(x-1)+2*Heaviside(x-2),y(0) = 0],y(x), singsol=all)

$$y(x) = -\frac{2 \text{ Heaviside } (x-2)}{3} + \frac{2 \text{ Heaviside } (x-2) e^{-6+3x}}{3} + \text{ Heaviside } (x-1) e^{3x-3}$$

✓ Solution by Mathematica

Time used: 0.212 (sec). Leaf size: 44

$$y(x) \to e^{3x-3}\theta(x-1) + \frac{2(e^6 - e^{3x})(\theta(2-x) - 1)}{3e^6}$$

16.3 problem 3

Internal problem ID [12496]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = \delta(x - \pi) + \delta(x - 3\pi)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 23

 $\frac{dsolve([diff(y(x),x$2)+9*y(x)=Dirac(x-Pi)+Dirac(x-3*Pi),y(0)=0,D(y)(0)=0]}{dsolve([diff(y(x),x$2)+9*y(x)=Dirac(x-Pi)+Dirac(x-3*Pi),y(0)=0,D(y)(0)=0]},y(x),singsolve([diff(y(x),x$2)+9*y(x)=Dirac(x-Pi)+Dirac(x-3*Pi),y(0)=0,D(y)(0)=0]$

$$y(x) = -\frac{(\text{Heaviside}(x - 3\pi) + \text{Heaviside}(x - \pi))\sin(3x)}{3}$$

✓ Solution by Mathematica

Time used: 0.085 (sec). Leaf size: 26

 $DSolve[\{y''[x]+9*y[x]==DiracDelta[x-Pi]+DiracDelta[x-3*Pi],\{y[0]==0,y'[0]==0\}\},y[x],x,Include[x-2+pi]=0\}$

$$y(x) \to -\frac{1}{3}(\theta(x - 3\pi) + \theta(x - \pi))\sin(3x)$$

16.4 problem 4

Internal problem ID [12497]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = 2(\delta(x - 1))$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 28

 $\frac{\text{dsolve}([\text{diff}(y(x),x\$2)-2*\text{diff}(y(x),x)+y(x)=2*\text{Dirac}(x-1),y(0)=0,\ D(y)(0)=1]}{\text{,y(x), singsol}}$

$$y(x) = 2$$
 Heaviside $(x - 1) e^{x-1}(x - 1) + x e^{x}$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 24

 $DSolve[\{y''[x]-2*y'[x]+y[x]==2*DiracDelta[x-1],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]-2*y'[x]+y[x]==2*DiracDelta[x-1],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]-2*y'[x]+y[x]==2*DiracDelta[x-1],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]-2*y'[x]+y[x]==2*DiracDelta[x-1],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]-2*y'[x]==2*DiracDelta[x-1],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]-2*y'[x]==2*DiracDelta[x-1],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]-2*y'[x]==2*DiracDelta[x-1],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]-2*y'[x]==2*DiracDelta[x-1],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]-2*y'[x]==2*DiracDelta[x]=0,y'[0]==0,y'[0]==1\}]$

$$y(x) \to e^{x-1}(2(x-1)\theta(x-1) + ex)$$

16.5 problem 5

Internal problem ID [12498]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - 2y' + 5y = \cos(x) + 2(\delta(x - \pi))$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 50

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+5*y(x)=cos(x)+2*Dirac(x-Pi),y(0) = 1, D(y)(0) = 0],y(x)

$$y(x) = \sin(2x) \text{ Heaviside } (x - \pi) e^{x - \pi} - \frac{7 e^x \sin(2x)}{20} + \frac{4 e^x \cos(2x)}{5} + \frac{\cos(x)}{5} - \frac{\sin(x)}{10}$$

✓ Solution by Mathematica

Time used: 0.506 (sec). Leaf size: 54

DSolve[{y''[x]-2*y'[x]+5*y[x]==Cos[x]+2*DiracDelta[x-Pi],{y[0]==1,y'[0]==0}},y[x],x,IncludeS

$$y(x) \to \frac{1}{10} \left(10e^{x-\pi}\theta(x-\pi)\sin(2x) - \sin(x) + 8e^x \cos(2x) + (2 - 7e^x \sin(x))\cos(x) \right)$$

16.6 problem 6

Internal problem ID [12499]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = (\delta(x - \pi))\cos(x)$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 16

dsolve([diff(y(x),x\$2)+4*y(x)=cos(x)*Dirac(x-Pi),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = -\frac{\sin(2x) (\text{Heaviside}(x - \pi) - 1)}{2}$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 19

 $DSolve[\{y''[x]+4*y[x]==Cos[x]*DiracDelta[x-Pi],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]+4*y[x]==Cos[x]*DiracDelta[x-Pi],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]+4*y[x]==Cos[x]*DiracDelta[x-Pi],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]+4*y[x]==Cos[x]*DiracDelta[x-Pi],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]+4*y[x]==Cos[x]*DiracDelta[x-Pi],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]+4*y[x]==Cos[x]*DiracDelta[x-Pi],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]+4*y[x]==Cos[x]*DiracDelta[x-Pi],\{y[0]==0,y'[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]=0,y''[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]=0,y''[0]==0,y''[0]==1\}\},y[x],x,Inc]udeSingularSolve[\{y''[x]=0,y''[0]==0,y$

$$y(x) \to (\theta(x-\pi) - 1)\sin(x)(-\cos(x))$$

16.7 problem 7

Internal problem ID [12500]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + ya^2 = (\delta(x - \pi)) f(x)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 24

 $\boxed{ \text{dsolve}([\text{diff}(y(x),x\$2)+a^2*y(x)=\text{Dirac}(x-\text{Pi})*f(x),y(0) = 0, D(y)(0) = 0],y(x), \text{ singsol=all}) }$

$$y(x) = \frac{\text{Heaviside}(x - \pi) f(\pi) \sin(a(x - \pi))}{a}$$

✓ Solution by Mathematica

Time used: 0.398 (sec). Leaf size: 26

$$y(x) \to -\frac{f(\pi)\theta(x-\pi)\sin(a(\pi-x))}{a}$$

17 Chapter 7. Systems of First-Order Differential Equations. Exercises page 329

17.1	problem	1									•								•				•		•	277
17.2	$\operatorname{problem}$	3																								278
17.3	$\operatorname{problem}$	4																								279
17.4	$\operatorname{problem}$	5						•								•					•					280
17.5	$\operatorname{problem}$	6																								281
17.6	$\operatorname{problem}$	13	(8	a)																						282
17.7	$\operatorname{problem}$	13	(1	b(i)))										•	•									283
17.8	$\operatorname{problem}$	13	(1	b(ii))																				284
17.9	$\operatorname{problem}$	13	(c(i	i)))																				285
17.10)problem	13	(c(i	ii))				_									_	_						286

17.1 problem 1

Internal problem ID [12501]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329

Problem number: 1.

ODE order: 1.
ODE degree: 1.

Solve

$$y_1'(x) = 2y_1(x) - 3y_2(x)$$

$$y_2'(x) = y_1(x) - 2y_2(x)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 31

$$y_1(x) = c_1 e^{-x} + 3c_2 e^x$$

$$y_2(x) = c_1 e^{-x} + c_2 e^x$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 72

$$y1(x) \to \frac{1}{2}e^{-x}(c_1(3e^{2x}-1)-3c_2(e^{2x}-1))$$

$$y2(x) \to \frac{1}{2}e^{-x}(c_1(e^{2x}-1)-c_2(e^{2x}-3))$$

17.2 problem 3

Internal problem ID [12502]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = y_1(x) - 2y_2(x)$$

$$y_2'(x) = y_1(x) + 3y_2(x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

$$y_1(x) = e^{2x}(\cos(x) c_1 - \cos(x) c_2 - \sin(x) c_1 - \sin(x) c_2)$$

$$y_2(x) = e^{2x}(\cos(x) c_2 + \sin(x) c_1)$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 51

$$y1(x) \to e^{2x}(c_1 \cos(x) - (c_1 + 2c_2)\sin(x))$$

$$y2(x) \to e^{2x}(c_2\cos(x) + (c_1 + c_2)\sin(x))$$

17.3 problem 4

Internal problem ID [12503]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329

Problem number: 4.

ODE order: 1.
ODE degree: 1.

Solve

$$y_1'(x) = y_1(x) + 2y_2(x) + x - 1$$

$$y_2'(x) = 3y_1(x) + 2y_2(x) - 5x - 2$$

With initial conditions

$$[y_1(0) = -2, y_2(0) = 3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

 $dsolve([diff(y_1(x),x) = y_1(x)+2*y_2(x)+x-1, diff(y_2(x),x) = 3*y_1(x)+2*y_2(x)-5*x-2*x-2*x+1.$

$$y_1(x) = -2 + 3x$$

$$y_2(x) = 3 - 2x$$

✓ Solution by Mathematica

Time used: 0.316 (sec). Leaf size: 18

DSolve[{y1'[x]==y1[x]+2*y2[x]+x-1,y2'[x]==3*y1[x]+2*y2[x]-5*x-2},{y1[0]==-2,y2[0]==3},{y1[x]

$$y1(x) \rightarrow 3x - 2$$

$$y2(x) \rightarrow 3 - 2x$$

17.4 problem 5

Internal problem ID [12504]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329

Problem number: 5.

ODE order: 1.
ODE degree: 1.

Solve

$$y_1'(x) = \frac{2y_1(x)}{x} - \frac{y_2(x)}{x^2} - 3 + \frac{1}{x} - \frac{1}{x^2}$$
$$y_2'(x) = 2y_1(x) + 1 - 6x$$

With initial conditions

$$[y_1(1) = -2, y_2(1) = -5]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

$$dsolve([diff(y_1(x),x) = 2*y_1(x)/x-y_2(x)/x^2-3+1/x-1/x^2, diff(y_2(x),x) = 2*y_1(x)+1/x^2, diff(x)+1/x^2, diff$$

$$y_1(x) = -2x$$

$$y_2(x) = -1 + x(-5x + 1)$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 19

$$DSolve[{y1'[x]==2*y1[x]/x-y2[x]/x^2-3+1/x-1/x^2,y2'[x]==2*y1[x]+1-6*x}, {y1[1]==-2,y2[1]==-5}$$

$$y1(x) \rightarrow -2x$$

$$y2(x) \to -5x^2 + x - 1$$

17.5 problem 6

Internal problem ID [12505]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329

Problem number: 6.

ODE order: 1.
ODE degree: 1.

Solve

$$y_1'(x) = \frac{5y_1(x)}{x} + \frac{4y_2(x)}{x} - 2x$$
$$y_2'(x) = -\frac{6y_1(x)}{x} - \frac{5y_2(x)}{x} + 5x$$

With initial conditions

$$[y_1(-1) = 3, y_2(-1) = -3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

 $dsolve([diff(y_1(x),x) = 5*y_1(x)/x+4*y_2(x)/x-2*x, diff(y_2(x),x) = -6*y_1(x)/x-5*y_2(x)/x-2*x]$

$$y_1(x) = -\frac{-6x^3 - 3x^2 + 6}{3x}$$

$$y_2(x) = \frac{-x^3 - x^2 + 3}{x}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 33

DSolve[{y1'[x]==5*y1[x]/x+4*y2[x]/x-2*x,y2'[x]==-6*y1[x]/x-5*y2[x]/x+5*x},{y1[-1]==3,y2[-1]=

$$y1(x) \to 2x^2 + x - \frac{2}{x}$$

$$y2(x) \to -\frac{x^3 + x^2 - 3}{x}$$

17.6 problem 13 (a)

Internal problem ID [12506]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329

Problem number: 13 (a).

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = 3y_1(x) - 2y_2(x)$$

$$y_2'(x) = -y_1(x) + y_2(x)$$

With initial conditions

$$[y_1(0) = 1, y_2(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 79

 $dsolve([diff(y_1(x),x) = 3*y_1(x)-2*y_2(x), diff(y_2(x),x) = -y_1(x)+y_2(x), y_1(0) = -y_1(x)+y_2(x), y_1(0) = -y_1(x)+y_2(x)$

$$y_1(x) = \frac{e^{\left(2+\sqrt{3}\right)x}\sqrt{3}}{2} - \frac{e^{-\left(-2+\sqrt{3}\right)x}\sqrt{3}}{2} + \frac{e^{\left(2+\sqrt{3}\right)x}}{2} + \frac{e^{-\left(-2+\sqrt{3}\right)x}}{2}$$

$$y_2(x) = -\frac{e^{(2+\sqrt{3})x}}{2} - \frac{e^{-(-2+\sqrt{3})x}}{2}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 79

 $DSolve[{y1'[x] == 3*y1[x] - 2*y2[x], y2'[x] == -y1[x] + y2[x]}, {y1[0] == 1, y2[0] == -1}, {y1[x], y2[x]}, x, I[x], y2[x], y2[x], x, I[x], y2[x],

$$y1(x) \to \frac{1}{2}e^{-\left(\left(\sqrt{3}-2\right)x\right)}\left(\left(1+\sqrt{3}\right)e^{2\sqrt{3}x}+1-\sqrt{3}\right)$$

$$y2(x) \to -\frac{1}{2}e^{-((\sqrt{3}-2)x)}(e^{2\sqrt{3}x}+1)$$

17.7 problem 13 (b(i))

Internal problem ID [12507]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329

Problem number: 13 (b(i)).

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = \sin(x) y_1(x) + \sqrt{x} y_2(x) + \ln(x)$$

$$y_2'(x) = \tan(x) y_1(x) - e^x y_2(x) + 1$$

With initial conditions

$$[y_1(1) = 1, y_2(1) = -1]$$

X Solution by Maple

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[{y1'[x] == Sin[x] * y1[x] + Sqrt[x] * y2[x] + Log[x], y2'[x] == Tan[x] * y1[x] - Exp[x] * y2[x] + 1}, {y1[x] + Log[x], y2[x] + 1}, {y1[x] + Log[x], y2[x] + 1}, {y2[x] + Log[x], y2[x] + 1}, {y3[x] + Log[x], y2[x] + 1}, {y3[x] + Log[x], y2[x] + 1}, {y3[x] + Log[x], y3[x] + Log[x$

17.8 problem 13 (b(ii))

Internal problem ID [12508]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329

Problem number: 13 (b(ii)).

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = \sin(x) y_1(x) + \sqrt{x} y_2(x) + \ln(x)$$

$$y_2'(x) = \tan(x) y_1(x) - e^x y_2(x) + 1$$

With initial conditions

$$[y_1(2) = 1, y_2(2) = -1]$$

X Solution by Maple

 $dsolve([diff(y_1(x),x) = sin(x)*y_1(x)+x^(1/2)*y_2(x)+ln(x), diff(y_2(x),x) = tan(x)*y_1(x)+tan(x)*y_1(x)+tan(x)*y_2(x)+tan(x)*y_1(x)+tan(x)*y_2(x)+tan(x)*y_1(x)+tan(x)*y_2(x)+tan(x)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

17.9 problem 13 (c(i))

Internal problem ID [12509]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329

Problem number: 13 (c(i)).

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = e^{-x}y_1(x) - \sqrt{x+1} y_2(x) + x^2$$
$$y_2'(x) = \frac{y_1(x)}{x^2 - 4x + 4}$$

With initial conditions

$$[y_1(0) = 0, y_2(0) = 1]$$

X Solution by Maple

 $dsolve([diff(y_1(x),x) = exp(-x)*y_1(x)-(1+x)^(1/2)*y_2(x)+x^2, diff(y_2(x),x) = y_1(x)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y1'[x]==Exp[-x]*y1[x]-Sqrt[x+1]*y2[x]+x^2,y2'[x]==y1[x]/(x-2)^2},{y1[0]==0,y2[0]==1}

17.10 problem 13 (c(ii))

Internal problem ID [12510]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329

Problem number: 13 (c(ii)).

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = e^{-x}y_1(x) - \sqrt{x+1} y_2(x) + x^2$$
$$y_2'(x) = \frac{y_1(x)}{x^2 - 4x + 4}$$

With initial conditions

$$[y_1(3) = 1, y_2(3) = 0]$$

X Solution by Maple

 $dsolve([diff(y_1(x),x) = exp(-x)*y_1(x)-(1+x)^(1/2)*y_2(x)+x^2, diff(y_2(x),x) = y_1(x)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y1'[x]==Exp[-x]*y1[x]-Sqrt[x+1]*y2[x]+x^2,y2'[x]==y1[x]/(x-2)^2},{y1[3]==1,y2[3]==0}

18 Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379

18.1 problem 1	
18.2 problem 2 \dots	
18.3 problem 3 \dots	
$18.4 \ problem \ 4 \ \dots \dots \dots \dots \dots$	
18.5 problem 5 a \dots	
$18.6 \hspace{0.1cm} problem \hspace{0.1cm} 5 \hspace{0.1cm} c \hspace{0.1cm} \ldots \hspace{0.1cm} $	
18.7 problem 6 a	
18.8 problem 6 c \dots	
18.9 problem 7	
$18.10 problem \ 8 \ \dots \dots \dots \dots \dots \dots$	
$18.11 problem 9 \ldots \ldots \ldots \ldots \ldots$	
$18.12 problem \ 10 \dots \dots \dots \dots$	
$18.13 problem \ 11 \dots \dots \dots \dots$	
$18.14 problem 12 \ldots \ldots \ldots \ldots$	
$18.15 problem \ 13 \dots \dots \dots \dots$	
18.16problem 14	
$18.17 problem 15 \ldots \ldots \ldots \ldots$	
18.18problem 16	

18.1 problem 1

Internal problem ID [12519]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

 ${f Section}$: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 1.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = 2y_1(x) - 3y_2(x) + 5 e^x$$

 $y'_2(x) = y_1(x) + 4y_2(x) - 2 e^{-x}$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 111

 $dsolve([diff(y_1(x),x)=2*y_1(x)-3*y_2(x)+5*exp(x),diff(y_2(x),x)=y_1(x)+4*y_2(x)-2*exp(x),diff(y_2(x),x)=y_1(x)+4*y_2(x)-2*exp(x),diff(y_2(x),x)=y_1(x)+4*y_2(x)-2*exp(x),diff(y_2(x),x)=y_1(x)+4*y_2(x)-2*exp(x),diff(y_2(x),x)=y_1(x)+4*y_2(x)-2*exp(x),diff(y_2(x),x)=y_1(x)+4*y_2(x)-2*exp(x),diff(y_2(x),x)=y_1(x)+4*y_2(x)-2*exp(x),diff(y_2(x),x)=y_1(x)+4*y_2(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp(x),diff(x)=y_1(x)-2*exp($

$$y_1(x) = e^{3x} \cos\left(\sqrt{2}x\right) \sqrt{2} c_1 - e^{3x} \sqrt{2} \sin\left(\sqrt{2}x\right) c_2 - e^{3x} \cos\left(\sqrt{2}x\right) c_2 - e^{3x} \sin\left(\sqrt{2}x\right) c_1 - \frac{5e^x}{2} + \frac{e^{-x}}{3}$$

$$y_2(x) = e^{3x} \cos\left(\sqrt{2}x\right) c_2 + e^{3x} \sin\left(\sqrt{2}x\right) c_1 + \frac{e^{-x}}{3} + \frac{5e^x}{6}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 108

DSolve[{y1'[x]==2*y1[x]-3*y2[x]+5*Exp[x],y2'[x]==y1[x]+4*y2[x]-2*Exp[-x]},{y1[x],y2[x]},x,Ir

$$y1(x) \to -\frac{1}{2}e^{x} \left(-2c_{1}e^{2x} \cos\left(\sqrt{2}x\right) + \sqrt{2}(c_{1} + 3c_{2})e^{2x} \sin\left(\sqrt{2}x\right) + 5 \right)$$
$$y2(x) \to \frac{5e^{x}}{6} + c_{2}e^{3x} \cos\left(\sqrt{2}x\right) + \frac{(c_{1} + c_{2})e^{3x} \sin\left(\sqrt{2}x\right)}{\sqrt{2}}$$

18.2 problem 2

Internal problem ID [12520]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

 ${f Section}$: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 2.

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = y_2(x) - 2y_1(x) + 2\cos(x)\sin(x)$$

$$y_2'(x) = -3y_1(x) + y_2(x) - 8\cos(x)^3 + 6\cos(x)$$

✓ Solution by Maple

Time used: 0.891 (sec). Leaf size: 146

$$dsolve([diff(y_1(x),x)=y_2(x)-2*y_1(x)+sin(2*x),diff(y_2(x),x)=-3*y_1(x)+y_2(x)-2*cos(x)-2*$$

$$y_1(x) = \frac{c_2 e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right)}{2} - \frac{c_2 \sqrt{3} e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right)}{6} + \frac{c_1 e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right)}{2} + \frac{c_1 \sqrt{3} e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right)}{6} - \frac{4\cos(2x)}{13} + \frac{7\sin(2x)}{13} - \frac{6\sin(3x)}{73} + \frac{16\cos(3x)}{73}$$

$$y_2(x) = c_2 e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right) + c_1 e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right) + \frac{9\sin(2x)}{13} + \frac{6\cos(2x)}{13} + \frac{14\cos(3x)}{73} - \frac{60\sin(3x)}{73}$$

Time used: 4.455 (sec). Leaf size: 223

 $DSolve[{y1'[x] == y2[x] - 2*y1[x] + Sin[2*x], y2'[x] == -3*y1[x] + y2[x] - 2*Cos[3*x]}, {y1[x], y2[x]}, x, In[x], y2[x], x, In[x],

$$y1(x) \to \frac{7}{13}\sin(2x) - \frac{6}{73}\sin(3x) - \frac{4}{13}\cos(2x) + \frac{16}{73}\cos(3x)$$

$$+ c_1 e^{-x/2}\cos\left(\frac{\sqrt{3}x}{2}\right) - \sqrt{3}c_1 e^{-x/2}\sin\left(\frac{\sqrt{3}x}{2}\right) + \frac{2c_2 e^{-x/2}\sin\left(\frac{\sqrt{3}x}{2}\right)}{\sqrt{3}}$$

$$y2(x) \to \frac{9}{13}\sin(2x) - \frac{60}{73}\sin(3x) + \frac{6}{13}\cos(2x) + \frac{14}{73}\cos(3x)$$

$$+ c_2 e^{-x/2}\cos\left(\frac{\sqrt{3}x}{2}\right) - 2\sqrt{3}c_1 e^{-x/2}\sin\left(\frac{\sqrt{3}x}{2}\right) + \sqrt{3}c_2 e^{-x/2}\sin\left(\frac{\sqrt{3}x}{2}\right)$$

18.3 problem 3

Internal problem ID [12521]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = 2y_2(x)$$

$$y'_2(x) = 3y_1(x)$$

$$y'_3(x) = 2y_3(x) - y_1(x)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 123

$$dsolve([diff(y_1(x),x)=2*y_2(x),diff(y_2(x),x)=3*y_1(x),diff(y_3(x),x)=2*y_3(x)-y_1(x),diff(y_3(x),x)=2*y_3(x)-y_1(x),diff(y_3(x),x)=2*y_1(x),diff(x)=2*y_1$$

$$y_1(x) = -c_2 e^{\sqrt{6}x} \sqrt{6} + c_3 e^{-\sqrt{6}x} \sqrt{6} + 2c_2 e^{\sqrt{6}x} + 2c_3 e^{-\sqrt{6}x}$$

$$y_2(x) = c_2 e^{\sqrt{6}x} \sqrt{6} - c_3 e^{-\sqrt{6}x} \sqrt{6} - 3c_2 e^{\sqrt{6}x} - 3c_3 e^{-\sqrt{6}x}$$

$$y_3(x) = c_1 e^{2x} + c_2 e^{\sqrt{6}x} + c_3 e^{-\sqrt{6}x}$$

Time used: 0.025 (sec). Leaf size: 232

DSolve[{y1'[x]==2*y2[x],y2'[x]==3*y1[x],y3'[x]==2*y3[x]-y1[x]},{y1[x],y2[x],y3[x]},x,Include

$$\begin{aligned} y1(x) &\to \frac{1}{6}e^{-\sqrt{6}x} \Big(3c_1 \Big(e^{2\sqrt{6}x} + 1 \Big) + \sqrt{6}c_2 \Big(e^{2\sqrt{6}x} - 1 \Big) \Big) \\ y2(x) &\to \frac{1}{4}e^{-\sqrt{6}x} \Big(\sqrt{6}c_1 \Big(e^{2\sqrt{6}x} - 1 \Big) + 2c_2 \Big(e^{2\sqrt{6}x} + 1 \Big) \Big) \\ y3(x) &\to \frac{1}{12}e^{-\sqrt{6}x} \Big(2\Big(c_2 \Big(-\Big(3 + \sqrt{6} \Big) e^{2\sqrt{6}x} + 6e^{\Big(2 + \sqrt{6} \Big)x} - 3 + \sqrt{6} \Big) + 6c_3 e^{\Big(2 + \sqrt{6} \Big)x} \Big) \\ &\quad - 3c_1 \Big(\Big(2 + \sqrt{6} \Big) e^{2\sqrt{6}x} - 4e^{\Big(2 + \sqrt{6} \Big)x} + 2 - \sqrt{6} \Big) \Big) \end{aligned}$$

18.4 problem 4

Internal problem ID [12522]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = 2xy_1(x) - x^2y_2(x) + 4x$$

$$y_2'(x) = y_1(x) e^x + 3 e^{-x}y_2(x) - 4\cos(x)^3 + 3\cos(x)$$

X Solution by Maple

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

$$DSolve[{y1'[x] == 2*x*y1[x] - x^2*y2[x] + 4*x, y2'[x] == Exp[x]*y1[x] + 3*Exp[-x]*y2[x] - Cos[3*x]}, {y1[x] + 2*x*y1[x] + 3*Exp[-x]*y2[x] - Cos[3*x]}, {y1[x] + 3*Exp[-x]*y2[x]}, {y1[x] + 3*$$

Not solved

18.5 problem 5 a

Internal problem ID [12523]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

 ${f Section}$: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 5 a.

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = 2y_1(x) - 3y_2(x)$$

$$y_2'(x) = y_1(x) - 2y_2(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

$$y_1(x) = 3c_1 e^x + c_2 e^{-x}$$

$$y_2(x) = c_1 e^x + c_2 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 81

$$y1(x) \to e^{-2x} \left(c_1 \cos \left(\sqrt{3}x \right) - \sqrt{3}c_2 \sin \left(\sqrt{3}x \right) \right)$$

$$y2(x) \rightarrow \frac{1}{3}e^{-2x} \Big(3c_2 \cos\Big(\sqrt{3}x\Big) + \sqrt{3}c_1 \sin\Big(\sqrt{3}x\Big)\Big)$$

18.6 problem 5 c

Internal problem ID [12524]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

 ${f Section}$: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 5 c.

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = 2y_1(x) - 3y_2(x) + 4x - 2$$

$$y_2'(x) = y_1(x) - 2y_2(x) + 3x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

$$y_1(x) = 3c_2e^x + c_1e^{-x} + x$$

$$y_2(x) = c_2 e^x + c_1 e^{-x} - 1 + 2x$$

✓ Solution by Mathematica

Time used: 3.724 (sec). Leaf size: 101

$$y1(x) \to -\frac{x}{7} + c_1 e^{-2x} \cos(\sqrt{3}x) - \sqrt{3}c_2 e^{-2x} \sin(\sqrt{3}x) + \frac{4}{49}$$

$$y2(x) \to \frac{10x}{7} + c_2 e^{-2x} \cos\left(\sqrt{3}x\right) + \frac{c_1 e^{-2x} \sin\left(\sqrt{3}x\right)}{\sqrt{3}} - \frac{33}{49}$$

18.7 problem 6 a

Internal problem ID [12525]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 6 a.

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = \frac{5y_1(x)}{x} + \frac{4y_2(x)}{x}$$
$$y_2'(x) = -\frac{6y_1(x)}{x} - \frac{5y_2(x)}{x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

dsolve([diff(y_1(x),x)= $5/x*y_1(x)+4/x*y_2(x)$,diff(y_2(x),x)= $-6/x*y_1(x)-5/x*y_2(x)$],[y

$$y_1(x) = -\frac{3c_1x^2 + 2c_2}{3x}$$

$$y_2(x) = \frac{c_1 x^2 + c_2}{x}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 34

DSolve[{y1'[x]==5/x*y1[x]+4/x*y2[x],y2'[x]==-6/x*y1[x]-5/x*y2[x]},{y1[x],y2[x]},x,IncludeSir

$$y1(x) \to \frac{c_1}{x} + c_2 x$$

$$y2(x) \to -\frac{3c_1}{2x} - c_2 x$$

18.8 problem 6 c

Internal problem ID [12526]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

 ${f Section}$: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 6 c.

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = \frac{5y_1(x)}{x} + \frac{4y_2(x)}{x} - 2x$$
$$y_2'(x) = -\frac{6y_1(x)}{x} - \frac{5y_2(x)}{x} + 5x$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 44

$$y_1(x) = -\frac{3c_1x^2 - 6x^3 + 2c_2}{3x}$$

$$y_2(x) = \frac{c_1 x^2 - x^3 + c_2}{x}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 44

 $DSolve[{y1'[x] == 5/x*y1[x] + 4/x*y2[x] - 2*x,y2'[x] == -6/x*y1[x] - 5/x*y2[x] + 5*x}, {y1[x],y2[x]}, x, Infinity of the content of the con$

$$y1(x) \to 2x^2 + c_2 x + \frac{c_1}{x}$$

$$y2(x) \to -x^2 - c_2 x - \frac{3c_1}{2x}$$

18.9 problem 7

Internal problem ID [12527]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = 2y_1(x) + y_2(x) - 2y_3(x)$$

$$y_2'(x) = 3y_2(x) - 2y_3(x)$$

$$y_3'(x) = 3y_1(x) + y_2(x) - 3y_3(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 65

 $dsolve([diff(y_1(x),x)=2*y_1(x)+y_2(x)-2*y_3(x),diff(y_2(x),x)=3*y_2(x)-2*y_3(x),diff(y_2(x),x)=3*y_2(x)-2*y_3(x),diff(y_2(x),x)=3*y_2(x)-2*y_3(x),diff(y_2(x),x)=3*y_2(x)-2*y_3(x),diff(y_2(x),x)=3*y_3(x),diff(y_3(x),x)=3*y_3(x),diff(x),diff(y_3(x),x)=3*y_3(x),diff(x),diff(x)=3*y_3($

$$y_1(x) = c_1 e^x + c_2 e^{2x} + \frac{c_3 e^{-x}}{2}$$

$$y_2(x) = c_1 e^x + 2c_2 e^{2x} + \frac{c_3 e^{-x}}{2}$$

$$y_3(x) = c_1 e^x + c_2 e^{2x} + c_3 e^{-x}$$

Time used: 0.012 (sec). Leaf size: 159

$$y1(x) \to e^{-x} ((e^x - 1) (c_2 e^{2x} - c_3 e^x - c_3) - c_1 (-3e^{2x} + e^{3x} + 1))$$

$$y2(x) \to e^{-x} (-(c_1 (2e^x + 1) (e^x - 1)^2) + 2c_2 e^{3x} - (c_2 + c_3)e^{2x} + c_3)$$

$$y3(x) \to e^{-x} (-(c_1 (-3e^{2x} + e^{3x} + 2)) + c_2 e^{3x} - (c_2 + c_3)e^{2x} + 2c_3)$$

18.10 problem 8

Internal problem ID [12528]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

 ${f Section}$: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 8.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = 5y_1(x) - 5y_2(x) - 5y_3(x)$$

$$y'_2(x) = -y_1(x) + 4y_2(x) + 2y_3(x)$$

$$y'_3(x) = 3y_1(x) - 5y_2(x) - 3y_3(x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 69

$$y_1(x) = e^{2x}(\sin(x) c_2 + \cos(x) c_3)$$

$$y_2(x) = -\frac{e^{2x}(2\sin(x)c_2 - \sin(x)c_3 + \cos(x)c_2 + 2\cos(x)c_3 + 5c_1)}{5}$$

$$y_3(x) = e^{2x} (\sin(x) c_2 + \cos(x) c_3 + c_1)$$

Time used: 0.026 (sec). Leaf size: 109

$$y1(x) \to e^{2x}(c_1 \cos(x) + (3c_1 - 5(c_2 + c_3))\sin(x))$$

$$y2(x) \to e^{2x}(-c_1(\sin(x) + \cos(x) - 1) + c_3(2\sin(x) + \cos(x) - 1) + c_2(2\sin(x) + \cos(x)))$$

$$y3(x) \to e^{2x}(c_1 \cos(x) + (3c_1 - 5(c_2 + c_3))\sin(x) - c_1 + c_3)$$

18.11 problem 9

Internal problem ID [12529]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 9.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = 4y_1(x) + 6y_2(x) + 6y_3(x)$$

$$y'_2(x) = y_1(x) + 3y_2(x) + 2y_3(x)$$

$$y'_3(x) = -y_1(x) - 4y_2(x) - 3y_3(x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 63

$$y_1(x) = -3c_2e^{4x} - \frac{6c_3e^{-x}}{7}$$

$$y_2(x) = -c_1 e^x - c_2 e^{4x} - \frac{2c_3 e^{-x}}{7}$$

$$y_3(x) = c_1 e^x + c_2 e^{4x} + c_3 e^{-x}$$

Time used: 0.017 (sec). Leaf size: 145

DSolve[{y1'[x]==4*y1[x]+6*y2[x]+6*y3[x],y2'[x]==1*y1[x]+3*y2[x]+2*y3[x],y3'[x]==-1*y1[x]-4*y

$$y1(x) \to \frac{1}{5}e^{-x} ((5c_1 + 6(c_2 + c_3))e^{5x} - 6(c_2 + c_3))$$

$$y2(x) \to \frac{1}{15}e^{-x} (-5(c_1 - 3c_2)e^{2x} + (5c_1 + 6(c_2 + c_3))e^{5x} - 6(c_2 + c_3))$$

$$y3(x) \to \frac{1}{3}(c_1 - 3c_2)e^x + \frac{7}{5}(c_2 + c_3)e^{-x} - \frac{1}{15}(5c_1 + 6(c_2 + c_3))e^{4x}$$

18.12 problem 10

Internal problem ID [12530]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

 ${f Section}$: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 10.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = y_1(x) + 2y_2(x) - 3y_3(x)$$

$$y'_2(x) = -3y_1(x) + 4y_2(x) - 2y_3(x)$$

$$y'_3(x) = 2y_1(x) + y_3(x)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 102

$$y_1(x) = \frac{e^{2x}(\sin(3x)c_2 - 3\sin(3x)c_3 + 3\cos(3x)c_2 + \cos(3x)c_3 + c_1)}{2}$$

$$y_2(x) = -\frac{e^{2x}(2\sin(3x)c_2 + 6\sin(3x)c_3 - 6\cos(3x)c_2 + 2\cos(3x)c_3 - 7c_1)}{4}$$

$$y_3(x) = e^{2x} (\sin(3x) c_2 + \cos(3x) c_3 + c_1)$$

Time used: 0.028 (sec). Leaf size: 176

$$y1(x) \to \frac{1}{9}e^{2x}((11c_1 - 2(c_2 + c_3))\cos(3x) - 3(c_1 - 2c_2 + 3c_3)\sin(3x) + 2(-c_1 + c_2 + c_3))$$

$$y2(x) \to \frac{1}{9}e^{2x}((7c_1 + 2c_2 - 7c_3)\cos(3x) + (-9c_1 + 6c_2 - 6c_3)\sin(3x) + 7(-c_1 + c_2 + c_3))$$

$$y3(x) \to \frac{1}{9}e^{2x}((4c_1 - 4c_2 + 5c_3)\cos(3x) + (6c_1 - 3c_3)\sin(3x) + 4(-c_1 + c_2 + c_3))$$

problem 11 18.13

Internal problem ID [12531]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 11.

ODE order: 1. ODE degree: 1.

Solve

$$y_1'(x) = -2y_1(x) - y_2(x) + y_3(x)$$

$$y_2'(x) = -y_1(x) - 2y_2(x) - y_3(x)$$

$$y_3'(x) = y_1(x) - y_2(x) - 2y_3(x)$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 51

$$y_1(x) = -2c_3e^{-3x} + c_2 + e^{-3x}c_1$$

$$y_2(x) = -c_2 - c_3 e^{-3x} + e^{-3x} c_1$$

$$y_3(x) = c_2 + c_3 e^{-3x}$$

Time used: 0.015 (sec). Leaf size: 130

$$y1(x) \to \frac{1}{3}e^{-3x} \left(c_1 \left(e^{3x} + 2 \right) - \left(c_2 - c_3 \right) \left(e^{3x} - 1 \right) \right)$$

$$y2(x) \to \frac{1}{3}e^{-3x} \left(-\left(c_1 \left(e^{3x} - 1 \right) \right) + c_2 \left(e^{3x} + 2 \right) - c_3 \left(e^{3x} - 1 \right) \right)$$

$$y3(x) \to \frac{1}{3}e^{-3x} \left(c_1 \left(e^{3x} - 1 \right) - c_2 \left(e^{3x} - 1 \right) + c_3 \left(e^{3x} + 2 \right) \right)$$

18.14 problem 12

Internal problem ID [12532]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 12.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = y_1(x) + y_2(x) + 2y_3(x)$$

$$y'_2(x) = y_1(x) + y_2(x) + 2y_3(x)$$

$$y'_3(x) = 2y_1(x) + 2y_2(x) + 4y_3(x)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 45

$$dsolve([diff(y_1(x),x)=1*y_1(x)+1*y_2(x)+2*y_3(x),diff(y_2(x),x)=1*y_1(x)+1*y_2(x)+2*y_3(x),diff(y_2(x),x)=1*y_1(x)+1*y_2(x)+2*y_3(x),diff(y_3(x),x)=1*y_1(x)+1*y_2(x)+2*y_3(x),diff(y_3(x),x)=1*y_1(x)+1*y_2(x)+2*y_3(x),diff(y_3(x),x)=1*y_1(x)+1*y_3(x)+1*$$

$$y_1(x) = \frac{c_3 e^{6x}}{2} - \frac{5c_2}{2} - c_1$$

$$y_2(x) = \frac{c_2}{2} + \frac{c_3 e^{6x}}{2} + c_1$$

$$y_3(x) = c_2 + c_3 e^{6x}$$

Time used: 0.007 (sec). Leaf size: 114

DSolve[{y1'[x]==1*y1[x]+1*y2[x]+2*y3[x],y2'[x]==1*y1[x]+1*y2[x]+2*y3[x],y3'[x]==2*y1[x]+2*y2

$$y1(x) \to \frac{1}{6} (c_1(e^{6x} + 5) + (c_2 + 2c_3) (e^{6x} - 1))$$

$$y2(x) \to \frac{1}{6} (c_1(e^{6x} - 1) + c_2(e^{6x} + 5) + 2c_3(e^{6x} - 1))$$

$$y3(x) \to \frac{1}{3} (c_1(e^{6x} - 1) + c_2(e^{6x} - 1) + c_3(2e^{6x} + 1))$$

18.15 problem 13

Internal problem ID [12533]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 13.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = 2y_1(x) + y_2(x)$$

$$y'_2(x) = -y_1(x) + 2y_2(x)$$

$$y'_3(x) = 3y_3(x) - 4y_4(x)$$

$$y'_4(x) = 4y_3(x) + 3y_4(x)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 80

$$y_1(x) = e^{2x}(\sin(x) c_2 - \cos(x) c_1)$$

$$y_2(x) = e^{2x}(\sin(x) c_1 + \cos(x) c_2)$$

$$y_3(x) = e^{3x}(\cos(4x) c_3 - \sin(4x) c_4)$$

$$y_4(x) = e^{3x}(c_4\cos(4x) + c_3\sin(4x))$$

Time used: 0.005 (sec). Leaf size: 92

 $DSolve[{y1'[x] == 2*y1[x] + 1*y2[x] + 0*y3[x] + 0*y4[x], y2'[x] == -1*y1[x] + 2*y2[x] + 0*y3[x] + 0*y4[x], y3'[x] + 0*$

$$y1(x) \to e^{2x}(c_1 \cos(x) + c_2 \sin(x))$$

$$y2(x) \to e^{2x}(c_2 \cos(x) - c_1 \sin(x))$$

$$y3(x) \to e^{3x}(c_3 \cos(4x) - c_4 \sin(4x))$$

$$y4(x) \to e^{3x}(c_4 \cos(4x) + c_3 \sin(4x))$$

18.16 problem 14

Internal problem ID [12534]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 14.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = y_2(x)$$

$$y'_2(x) = -3y_1(x) + 2y_3(x)$$

$$y'_3(x) = y_4(x)$$

$$y'_4(x) = 2y_1(x) - 5y_3(x)$$

Solution by Maple

Time used: 0.062 (sec). Leaf size: 548

 $\frac{\text{dsolve}([\text{diff}(y_1(x),x)=0*y_1(x)+1*y_2(x)+0*y_3(x)+0*y_4(x),\text{diff}(y_2(x),x)=-3*y_1(x)+0*y_4(x))}{\text{dsolve}([\text{diff}(y_1(x),x)=0*y_1(x)+1*y_2(x)+0*y_3(x)+0*y_4(x),\text{diff}(y_2(x),x)=-3*y_1(x)+0*y_4(x))}$

$$y_{1}(x) = -\frac{5c_{1}(4+\sqrt{5})^{\frac{3}{2}}\cos\left(\sqrt{4+\sqrt{5}}x\right)}{22} - \frac{5c_{2}(4-\sqrt{5})^{\frac{3}{2}}\cos\left(\sqrt{4-\sqrt{5}}x\right)}{22} - \frac{5c_{3}(4+\sqrt{5})^{\frac{3}{2}}\sin\left(\sqrt{4+\sqrt{5}}x\right)}{22} - \frac{5c_{4}(4-\sqrt{5})^{\frac{3}{2}}\sin\left(\sqrt{4-\sqrt{5}}x\right)}{22} + \frac{29c_{1}\sqrt{4+\sqrt{5}}\cos\left(\sqrt{4+\sqrt{5}}x\right)}{22} + \frac{29c_{2}\sqrt{4-\sqrt{5}}\cos\left(\sqrt{4-\sqrt{5}}x\right)}{22} + \frac{29c_{3}\sqrt{4+\sqrt{5}}\sin\left(\sqrt{4+\sqrt{5}}x\right)}{22} + \frac{29c_{4}\sqrt{4-\sqrt{5}}\sin\left(\sqrt{4-\sqrt{5}}x\right)}{22}$$

$$y_{2}(x) = -\frac{c_{3}\cos\left(\sqrt{4+\sqrt{5}}\,x\right)\sqrt{5}}{2} + \frac{c_{4}\cos\left(\sqrt{4-\sqrt{5}}\,x\right)\sqrt{5}}{2} + \frac{\sqrt{5}\sin\left(\sqrt{4+\sqrt{5}}\,x\right)c_{1}}{2} - \frac{c_{2}\sin\left(\sqrt{4-\sqrt{5}}\,x\right)\sqrt{5}}{2} + \frac{c_{3}\cos\left(\sqrt{4+\sqrt{5}}\,x\right)}{2} + \frac{c_{4}\cos\left(\sqrt{4-\sqrt{5}}\,x\right)}{2} - \frac{c_{1}\sin\left(\sqrt{4+\sqrt{5}}\,x\right)}{2} - \frac{c_{2}\sin\left(\sqrt{4-\sqrt{5}}\,x\right)}{2}$$

$$y_{3}(x) = \frac{8c_{1}\sqrt{4+\sqrt{5}}\cos\left(\sqrt{4+\sqrt{5}}x\right)}{11} + \frac{8c_{2}\sqrt{4-\sqrt{5}}\cos\left(\sqrt{4-\sqrt{5}}x\right)}{11} + \frac{8c_{3}\sqrt{4+\sqrt{5}}\sin\left(\sqrt{4+\sqrt{5}}x\right)}{11} + \frac{8c_{4}\sqrt{4-\sqrt{5}}\sin\left(\sqrt{4-\sqrt{5}}x\right)}{11} - \frac{c_{1}(4+\sqrt{5})^{\frac{3}{2}}\cos\left(\sqrt{4+\sqrt{5}}x\right)}{11} - \frac{c_{2}(4-\sqrt{5})^{\frac{3}{2}}\cos\left(\sqrt{4-\sqrt{5}}x\right)}{11} - \frac{c_{4}(4-\sqrt{5})^{\frac{3}{2}}\sin\left(\sqrt{4-\sqrt{5}}x\right)}{11} - \frac{c_{4}(4-\sqrt{5})^{\frac{3}{2}}\sin\left(\sqrt{4-\sqrt{5}}x\right)}{11}$$

$$y_4(x) = -c_1 \sin\left(\sqrt{4 + \sqrt{5}}x\right) - c_2 \sin\left(\sqrt{4 - \sqrt{5}}x\right)$$
$$+ c_3 \cos\left(\sqrt{4 + \sqrt{5}}x\right) + c_4 \cos\left(\sqrt{4 - \sqrt{5}}x\right)$$

Time used: 0.099 (sec). Leaf size: 730

$$\begin{aligned} &\mathrm{y1}(x) \to \frac{1}{2}c_3 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}\& \right] \\ &+ \frac{1}{4}c_1 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{\#1^2 e^{\#1x} + 5 e^{\#1x}}{\#1^3 + 4\#1}\& \right] \\ &+ \frac{1}{2}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^3 + 4\#1}& \right] \\ &+ \frac{1}{4}c_2 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{\#1^2 e^{\#1x} + 5 e^{\#1x}}{\#1^3 + 4\#1}& \right] \\ &\mathrm{y2}(x) \to \frac{1}{2}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{2}c_3 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{\#1^2 e^{\#1x} + 5 e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_2 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{\#1^2 e^{\#1x} + 5 e^{\#1x}}{\#1^3 + 4\#1}& \right] \\ &+ \frac{1}{4}c_1 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_3 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{2}c_2 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^3 + 4\#1}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^3 + 4\#1}& \right] \\ &+ \frac{1}{2}c_1 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^3 + 4\#1}& \right] \\ &+ \frac{1}{2}c_1 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^3 + 4\#1}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 + 4}& \right] \\ &+ \frac{1}{4}c_4 \mathrm{RootSum} \left[\#1^4 + 8\#1^2 + 11\&, \frac{e^{\#1x}}{\#1^2 +$$

18.17 problem 15

Internal problem ID [12535]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 15.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = 3y_1(x) + 2y_2(x)$$

$$y'_2(x) = -2y_1(x) + 3y_2(x)$$

$$y'_3(x) = y_3(x)$$

$$y'_4(x) = 2y_4(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 61

$$y_1(x) = e^{3x} (\sin(2x) c_2 - \cos(2x) c_1)$$

$$y_2(x) = e^{3x} (\sin(2x) c_1 + \cos(2x) c_2)$$

$$y_3(x) = c_3 e^x$$

$$y_4(x) = c_4 e^{2x}$$

Time used: 0.067 (sec). Leaf size: 255

 $DSolve[{y1'[x] == 3*y1[x] + 2*y2[x] + 0*y3[x] + 0*y4[x], y2'[x] == -2*y1[x] + 3*y2[x] + 0*y3[x] + 0*y4[x], y3'[x] + 0*$

$$y1(x) \to e^{3x}(c_1 \cos(2x) + c_2 \sin(2x))$$

 $y2(x) \to e^{3x}(c_2 \cos(2x) - c_1 \sin(2x))$
 $y3(x) \to c_3 e^x$
 $y4(x) \to c_4 e^{2x}$
 $y1(x) \to e^{3x}(c_1 \cos(2x) + c_2 \sin(2x))$
 $y2(x) \to e^{3x}(c_2 \cos(2x) - c_1 \sin(2x))$
 $y3(x) \to c_3 e^x$
 $y4(x) \to 0$
 $y1(x) \to e^{3x}(c_1 \cos(2x) + c_2 \sin(2x))$
 $y2(x) \to e^{3x}(c_2 \cos(2x) - c_1 \sin(2x))$
 $y3(x) \to 0$
 $y4(x) \to c_4 e^{2x}$
 $y1(x) \to e^{3x}(c_1 \cos(2x) + c_2 \sin(2x))$
 $y2(x) \to e^{3x}(c_2 \cos(2x) - c_1 \sin(2x))$
 $y3(x) \to 0$
 $y4(x) \to 0$

problem 16 18.18

Internal problem ID [12536]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page

379

Problem number: 16.

ODE order: 1. ODE degree: 1.

Solve

$$y'_1(x) = y_2(x) + y_4(x)$$

$$y'_2(x) = y_1(x) - y_3(x)$$

$$y'_3(x) = y_4(x)$$

$$y_4'(x) = y_3(x)$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 71

$$dsolve([diff(y_1(x),x)=0*y_1(x)+1*y_2(x)+0*y_3(x)+1*y_4(x),diff(y_2(x),x)=1*y_1(x)+0*x_1(x)+0*x_2(x)+0*x_1(x)+0*x_2(x)+0*x_1(x)+0*x_2(x)+0*x_1(x)$$

$$y_1(x) = c_1 e^x - c_2 e^{-x} + c_3 e^x - c_4 e^{-x}$$

$$y_2(x) = c_1 e^x + c_2 e^{-x}$$

$$y_3(x) = c_3 e^x - c_4 e^{-x}$$

$$y_4(x) = c_3 e^x + c_4 e^{-x}$$

Time used: 0.017 (sec). Leaf size: 148

DSolve[{y1'[x]==0*y1[x]+1*y2[x]+0*y3[x]+1*y4[x],y2'[x]==1*y1[x]+0*y2[x]-1*y3[x]+0*y4[x],y3'[

$$y1(x) \to \frac{1}{2}e^{-x} (c_1(e^{2x} + 1) + (c_2 + c_4) (e^{2x} - 1))$$

$$y2(x) \to \frac{1}{2}e^{-x} (c_1(e^{2x} - 1) + c_2e^{2x} - c_3e^{2x} + c_2 + c_3)$$

$$y3(x) \to \frac{1}{2}e^{-x} (c_3(e^{2x} + 1) + c_4(e^{2x} - 1))$$

$$y4(x) \to \frac{1}{2}e^{-x} (c_3(e^{2x} - 1) + c_4(e^{2x} + 1))$$

19 Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432

19.1	problem	1										•									32	20
19.2	$\operatorname{problem}$	2																			32	21
19.3	$\operatorname{problem}$	3																			32	22
19.4	${\bf problem}$	4																			32	23
19.5	${\bf problem}$	5																			32	24
19.6	${\bf problem}$	6																			32	25
19.7	$\operatorname{problem}$	7																			32	26
19.8	problem	8																			32	27

19.1 problem 1

Internal problem ID [12537]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432

Problem number: 1.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -2x(t) + 3y(t)$$

$$y'(t) = -x(t) + 2y(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve([diff(x(t),t)=-2*x(t)+3*y(t),diff(y(t),t)=-x(t)+2*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = c_1 e^t + 3c_2 e^{-t}$$

$$y(t) = c_1 e^t + c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 72

$$x(t) \to \frac{1}{2}e^{-t}(3c_2(e^{2t}-1)-c_1(e^{2t}-3))$$

$$y(t) \to -\frac{1}{2}e^{-t}(c_1(e^{2t}-1)+c_2(1-3e^{2t}))$$

19.2 problem 2

Internal problem ID [12538]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432

Problem number: 2.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -x(t) + 2y(t)$$

$$y'(t) = -2x(t) + 3y(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve([diff(x(t),t)=-x(t)+2*y(t),diff(y(t),t)=-2*x(t)+3*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{e^t(2c_2t + 2c_1 - c_2)}{2}$$

$$y(t) = e^t(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 42

$$x(t) \rightarrow e^t(-2c_1t + 2c_2t + c_1)$$

$$y(t) \to e^t(-2c_1t + 2c_2t + c_2)$$

19.3 problem 3

Internal problem ID [12539]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432

Problem number: 3.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -x(t) - 2y(t)$$

$$y'(t) = 2x(t) - 3y(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 78

dsolve([diff(x(t),t)=-x(t)-2*y(t),diff(y(t),t)=2*x(t)-3*y(t)],[x(t),y(t)], singsol=all)

$$x(t) = -\frac{e^{-2t}(\sqrt{3}\sin(\sqrt{3}t)c_2 - \sqrt{3}\cos(\sqrt{3}t)c_1 - \sin(\sqrt{3}t)c_1 - \cos(\sqrt{3}t)c_2)}{2}$$

$$y(t) = e^{-2t} \left(\sin \left(\sqrt{3} t \right) c_1 + \cos \left(\sqrt{3} t \right) c_2 \right)$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 96

$$x(t) \rightarrow \frac{1}{3}e^{-2t} \left(3c_1 \cos\left(\sqrt{3}t\right) + \sqrt{3}(c_1 - 2c_2)\sin\left(\sqrt{3}t\right)\right)$$

$$y(t) \rightarrow \frac{1}{3}e^{-2t} \Big(3c_2\cos\left(\sqrt{3}t\right) + \sqrt{3}(2c_1 - c_2)\sin\left(\sqrt{3}t\right)\Big)$$

19.4 problem 4

Internal problem ID [12540]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432

Problem number: 4.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -x(t) - 2y(t)$$
$$y'(t) = 5x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 50

dsolve([diff(x(t),t)=-x(t)-2*y(t),diff(y(t),t)=5*x(t)+1*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{3c_1 \cos(3t)}{5} - \frac{3c_2 \sin(3t)}{5} - \frac{c_1 \sin(3t)}{5} - \frac{c_2 \cos(3t)}{5}$$

$$y(t) = c_1 \sin(3t) + c_2 \cos(3t)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 54

 $DSolve[\{x'[t]==-x[t]-2*y[t],y'[t]==5*x[t]+1*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\$

$$x(t) \to c_1 \cos(3t) - \frac{1}{3}(c_1 + 2c_2)\sin(3t)$$

$$y(t) \to c_2 \cos(3t) + \frac{1}{3}(5c_1 + c_2)\sin(3t)$$

19.5 problem 5

Internal problem ID [12541]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432

Problem number: 5.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -x(t) + 2y(t)$$

$$y'(t) = -2x(t) - y(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 46

dsolve([diff(x(t),t)=-x(t)+2*y(t),diff(y(t),t)=-2*x(t)-1*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -e^{-t}(\cos(2t) c_1 - \sin(2t) c_2)$$

$$y(t) = e^{-t}(\cos(2t) c_2 + \sin(2t) c_1)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 51

$$x(t) \to e^{-t}(c_1 \cos(2t) + c_2 \sin(2t))$$

$$y(t) \to e^{-t}(c_2 \cos(2t) - c_1 \sin(2t))$$

19.6 problem 6

Internal problem ID [12542]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432

Problem number: 6.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = x(t) - 2y(t)$$

$$y'(t) = 2x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

dsolve([diff(x(t),t)=x(t)-2*y(t),diff(y(t),t)=2*x(t)+1*y(t)],[x(t),y(t)], singsol=all)

$$x(t) = e^{t}(\cos(2t) c_1 - \sin(2t) c_2)$$

$$y(t) = e^{t}(\cos(2t) c_{2} + \sin(2t) c_{1})$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 47

$$x(t) \to e^t(c_1 \cos(2t) - c_2 \sin(2t))$$

$$y(t) \to e^t(c_2\cos(2t) + c_1\sin(2t))$$

19.7 problem 7

Internal problem ID [12543]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432

Problem number: 7.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -5x(t) - y(t) + 2$$

$$y'(t) = 3x(t) - y(t) - 3$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 39

 $\frac{dsolve([diff(x(t),t)=-5*x(t)-y(t)+2,diff(y(t),t)=3*x(t)-1*y(t)-3],[x(t),y(t)]}{dsolve([diff(x(t),t)=-5*x(t)-y(t)+2,diff(y(t),t)=3*x(t)-1*y(t)-3],[x(t),y(t)]}, singsol=all)$

$$x(t) = \frac{e^{-4t}c_1}{2} - \frac{e^{-2t}c_2}{3} + \frac{5}{8}$$

$$y(t) = -\frac{9}{8} - \frac{e^{-4t}c_1}{2} + e^{-2t}c_2$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 93

$$x(t) \to \frac{1}{48}e^{-4t} (30e^{4t} - (1 + 24c_1 + 24c_2)e^{2t} + 3 + 72c_1 + 24c_2)$$

$$y(t) \to \frac{1}{16}e^{-4t} \left(-18e^{4t} + (1 + 24c_1 + 24c_2)e^{2t} - 1 - 24c_1 - 8c_2\right)$$

19.8 problem 8

Internal problem ID [12544]

Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010 **Section**: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432

Problem number: 8.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 3x(t) - 2y(t) - 6$$

$$y'(t) = 4x(t) - y(t) + 2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 60

 $\frac{dsolve([diff(x(t),t)=3*x(t)-2*y(t)-6,diff(y(t),t)=4*x(t)-1*y(t)+2],[x(t),y(t)]}{dsolve([diff(x(t),t)=3*x(t)-2*y(t)-6,diff(y(t),t)=4*x(t)-1*y(t)+2],[x(t),y(t)]}, singsol=allore([diff(x(t),t)=3*x(t)-2*y(t)-6,diff(y(t),t)=4*x(t)-1*y(t)+2],[x(t),y(t)], singsol=allore([diff(x(t),t)=3*x(t)-2*y(t)-6,diff(y(t),t)=4*x(t)-1*y(t)+2],[x(t),y(t)], singsol=allore([diff(x(t),t)=3*x(t)-2*y(t)-6,diff(y(t),t)=4*x(t)-1*y(t)+2],[x(t),y(t)], singsol=allore([diff(x(t),t)=3*x(t)-2*y(t)-6,diff(y(t),t)=4*x(t)-1*y(t)+2],[x(t),y(t)], singsol=allore([diff(x(t),t)=3*x(t)-2*y(t)-6,diff(y(t),t)=4*x(t)-1*y(t)+2],[x(t),y(t)], singsol=allore([diff(x(t),t)=3*x(t)-2*y(t$

$$x(t) = -2 - \frac{e^{t}(\sin(2t) c_{1} - \sin(2t) c_{2} - \cos(2t) c_{1} - \cos(2t) c_{2})}{2}$$

$$y(t) = -6 + e^{t}(\sin(2t) c_{2} + \cos(2t) c_{1})$$

✓ Solution by Mathematica

Time used: 0.358 (sec). Leaf size: 64

$$x(t) \to c_1 e^t \cos(2t) + (c_1 - c_2)e^t \sin(2t) - 2$$

$$y(t) \to c_2 e^t \cos(2t) + (2c_1 - c_2)e^t \sin(2t) - 6$$