A Solution Manual For

A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Nasser M. Abbasi

May 16, 2024

Contents

1	Section 1. Basic concepts and definitions. Exercises page 18	4
2	Section 2. The method of isoclines. Exercises page 27	20
3	Section 3. The method of successive approximation. Exercises page 31	41
4	Section 4. Equations with variables separable and equations reducible to them. Exercises page 38	47
5	Section 5. Homogeneous equations. Exercises page 44	83
6	Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54	105
7	Section 7, Total differential equations. The integrating factor. Exercises page 61	145
8	Section 8. First order not solved for the derivative. Exercises page 6	7176
9	Section 8.3. The Lagrange and Clairaut equations. Exercises page 7	219 9
10	Section 9. The Riccati equation. Exercises page 75	213
11	Section 11. Singular solutions of differential equations. Exercises page 92	218
12	Section 12. Miscellaneous problems. Exercises page 93	239
13	Chapter 2 (Higher order ODE's). Section 13. Basic concepts and definitions. Exercises page 98	285
14	Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of depression of their order. Exercises page 107	295
15	Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121	334
16	Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132	357

17	Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137	436
18	Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Initial value problem. Exercises page 140	477
19	Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143	506
20	Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coefficients. The Lagrange method. Exercises page 148	525
21	Chapter 2 (Higher order ODE's). Section 16. The method of isoclines for differential equations of the second order. Exercises page 158	562
22	Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises page 163	574
23	Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation in series. Power series. Exercises page 171	593
24	Chapter 2 (Higher order ODE's). Section 18.2. Expanding a solution in generalized power series. Bessels equation. Exercises page 177	610
25	Chapter 2 (Higher order ODE's). Section 18.3. Finding periodic solutions of linear differential equations. Exercises page 187	622
26	Chapter 3 (Systems of differential equations). Section 19. Basic concepts and definitions. Exercises page 199	628
27	Chapter 3 (Systems of differential equations). Section 20. The method of elimination. Exercises page 212	638
28	Chapter 3 (Systems of differential equations). Section 21. Finding integrable combinations. Exercises page 219	650

29	Chapter 3 (Systems of differential equations). Section 22. Integration of homogeneous linear systems with constant coefficients. Eulers method. Exercises page 230	659
30	Chapter 3 (Systems of differential equations). Section 23. Methods of integrating nonhomogeneous linear systems with constant coefficients. Exercises page 234	668
31	Chapter 3 (Systems of differential equations). Section 23.2 The method of undetermined coefficients. Exercises page 239	674
32	Chapter 3 (Systems of differential equations). Section 23.3 d Alemberts method. Exercises page 243 $$	685
33	Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation with constant coefficients. Exercises page 249	691

1 Section 1. Basic concepts and definitions. Exercises page 18

1.1	problem 2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
1.2	problem 3																																					6
1.3	problem 4																																					7
1.4	problem 5																																					8
1.5	problem 6																																					9
1.6	problem 7																																					11
1.7	problem 8																																					12
1.8	problem 9																																					13
1.9	problem 10)																																				14
1.10	problem 11	L																																				15
1.11	problem 13	3			•																																	16
1.12	problem 14	Į.																																				17
1.13	problem 15	5																																				18
1.14	problem 16	3																																				19

1.1 problem 2

Internal problem ID [14934]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_Riccati, _special]]

$$y' - y^2 = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

 $dsolve(diff(y(x),x)=x^2+y(x)^2,y(x), singsol=all)$

$$y(x) = -\frac{x\left(\text{BesselJ}\left(-\frac{3}{4}, \frac{x^2}{2}\right)c_1 + \text{BesselY}\left(-\frac{3}{4}, \frac{x^2}{2}\right)\right)}{c_1 \text{ BesselJ}\left(\frac{1}{4}, \frac{x^2}{2}\right) + \text{BesselY}\left(\frac{1}{4}, \frac{x^2}{2}\right)}$$

✓ Solution by Mathematica

Time used: 0.132 (sec). Leaf size: 169

 $DSolve[y'[x] == x^2 + y[x]^2, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \rightarrow \frac{x^2 \left(-2 \operatorname{BesselJ}\left(-\frac{3}{4}, \frac{x^2}{2}\right) + c_1\left(\operatorname{BesselJ}\left(\frac{3}{4}, \frac{x^2}{2}\right) - \operatorname{BesselJ}\left(-\frac{5}{4}, \frac{x^2}{2}\right)\right)\right) - c_1 \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{x^2}{2}\right)}{2x \left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{x^2}{2}\right) + c_1 \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{x^2}{2}\right)\right)}$$

$$y(x) \rightarrow -\frac{x^2 \operatorname{BesselJ}\left(-\frac{5}{4}, \frac{x^2}{2}\right) - x^2 \operatorname{BesselJ}\left(\frac{3}{4}, \frac{x^2}{2}\right) + \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{x^2}{2}\right)}{2x \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{x^2}{2}\right)}$$

1.2 problem 3

Internal problem ID [14935]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{x}{y} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x)=x/y(x),y(x), singsol=all)

$$y(x) = \sqrt{x^2 + c_1}$$
$$y(x) = -\sqrt{x^2 + c_1}$$

✓ Solution by Mathematica

Time used: 0.106 (sec). Leaf size: 35

DSolve[y'[x]==x/y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sqrt{x^2 + 2c_1}$$
$$y(x) \to \sqrt{x^2 + 2c_1}$$

6

1.3 problem 4

Internal problem ID [14936]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y - 3y^{\frac{1}{3}} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve(diff(y(x),x)=y(x)+3*y(x)^(1/3),y(x), singsol=all)$

$$3 + y(x)^{\frac{2}{3}} - e^{\frac{2x}{3}}c_1 = 0$$

✓ Solution by Mathematica

Time used: 2.285 (sec). Leaf size: 39

DSolve[y'[x]==y[x]+3*y[x]^(1/3),y[x],x,IncludeSingularSolutions -> True]

$$y(x)
ightarrow \left(-3 + e^{rac{2(x+c_1)}{3}}
ight)^{3/2}$$
 $y(x)
ightarrow 0$ $y(x)
ightarrow -3i\sqrt{3}$

1.4 problem 5

Internal problem ID [14937]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \sqrt{-y + x} = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 50

dsolve(diff(y(x),x)=sqrt(x-y(x)),y(x), singsol=all)

$$x + \ln(-y(x) + x - 1) + 2\sqrt{-y(x) + x} + \ln(-1 + \sqrt{-y(x) + x}) - \ln(1 + \sqrt{-y(x) + x}) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 7.657 (sec). Leaf size: 53

DSolve[y'[x]==Sqrt[x-y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -W\left(e^{-\frac{x}{2}-1-\frac{c_1}{2}}\right)^2 - 2W\left(e^{-\frac{x}{2}-1-\frac{c_1}{2}}\right) + x - 1$$

 $y(x) \to x - 1$

1.5 problem 6

Internal problem ID [14938]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$y' - \sqrt{x^2 - y} = -x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 171

 $dsolve(diff(y(x),x)=sqrt(x^2-y(x))-x,y(x), singsol=all)$

$$\frac{250\left(x^{6}c_{1}y(x)^{2} + \frac{12x^{4}c_{1}y(x)^{3}}{5} + \frac{48x^{2}c_{1}y(x)^{4}}{25} + \frac{64c_{1}y(x)^{5}}{125} - \frac{1}{125}\right)(x^{2} - y(x))^{\frac{3}{2}}(x^{2} + 4y(x)) - 250\left(x^{6}c_{1}y(x)^{2} + \frac{1}{25}\right)}{\left(5x^{2} + 4y(x)\right)^{3}y(x)^{2}\left(-\sqrt{x^{2} - y(x)} + x\right)^{2}\left(3x + 2\sqrt{x^{2} - y(x)} + x\right)^{2}}$$

$$= 0$$

✓ Solution by Mathematica

Time used: 4.748 (sec). Leaf size: 416

DSolve[y'[x]==Sqrt[x^2-y[x]]-x,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \operatorname{Root}\left[64\#1^5 + 240\#1^4x^2 + 300\#1^3x^4 + \#1^2\left(125x^6 - 40e^{5c_1}x\right) - 10\#1e^{5c_1}x^3 \right. \\ &\quad \left. - 4e^{5c_1}x^5 + e^{10c_1}\&, 1\right] \\ y(x) &\to \operatorname{Root}\left[64\#1^5 + 240\#1^4x^2 + 300\#1^3x^4 + \#1^2\left(125x^6 - 40e^{5c_1}x\right) - 10\#1e^{5c_1}x^3 \right. \\ &\quad \left. - 4e^{5c_1}x^5 + e^{10c_1}\&, 2\right] \\ y(x) &\to \operatorname{Root}\left[64\#1^5 + 240\#1^4x^2 + 300\#1^3x^4 + \#1^2\left(125x^6 - 40e^{5c_1}x\right) - 10\#1e^{5c_1}x^3 \right. \\ &\quad \left. - 4e^{5c_1}x^5 + e^{10c_1}\&, 3\right] \\ y(x) &\to \operatorname{Root}\left[64\#1^5 + 240\#1^4x^2 + 300\#1^3x^4 + \#1^2\left(125x^6 - 40e^{5c_1}x\right) - 10\#1e^{5c_1}x^3 \right. \\ &\quad \left. - 4e^{5c_1}x^5 + e^{10c_1}\&, 4\right] \\ y(x) &\to \operatorname{Root}\left[64\#1^5 + 240\#1^4x^2 + 300\#1^3x^4 + \#1^2\left(125x^6 - 40e^{5c_1}x\right) - 10\#1e^{5c_1}x^3 \right. \\ &\quad \left. - 4e^{5c_1}x^5 + e^{10c_1}\&, 4\right] \\ y(x) &\to \operatorname{Root}\left[64\#1^5 + 240\#1^4x^2 + 300\#1^3x^4 + \#1^2\left(125x^6 - 40e^{5c_1}x\right) - 10\#1e^{5c_1}x^3 \right. \\ &\quad \left. - 4e^{5c_1}x^5 + e^{10c_1}\&, 5\right] \\ y(x) &\to 0 \end{split}$$

problem 7 1.6

Internal problem ID [14939]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \sqrt{1 - y^2} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

 $dsolve(diff(y(x),x)=sqrt(1-y(x)^2),y(x), singsol=all)$

$$y(x) = \sin\left(c_1 + x\right)$$

Solution by Mathematica

Time used: 0.216 (sec). Leaf size: 28

DSolve[y'[x]==Sqrt[1-y[x]^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \cos(x + c_1)$$

 $y(x) \to -1$

$$y(x) \rightarrow -1$$

$$y(x) \to 1$$

$$y(x) \to \text{Interval}[\{-1,1\}]$$

1.7 problem 8

Internal problem ID [14940]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{y+1}{-y+x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

dsolve(diff(y(x),x)=(y(x)+1)/(x-y(x)),y(x), singsol=all)

$$y(x) = \frac{-1 - x - \text{LambertW}(-(1+x)e^{-c_1})}{\text{LambertW}(-(1+x)e^{-c_1})}$$

Solution by Mathematica

Time used: 0.132 (sec). Leaf size: 34

 $DSolve[y'[x] == (y[x]+1)/(x-y[x]), y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[x = (y(x) + 1) \left(-\frac{1}{y(x) + 1} - \log(y(x) + 1) \right) + c_1(y(x) + 1), y(x) \right]$$

1.8 problem 9

Internal problem ID [14941]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$y' - \sin(y) = -\cos(x)$$

X Solution by Maple

dsolve(diff(y(x),x)=sin(y(x))-cos(x),y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y'[x] == Sin[y[x]] - Cos[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

Not solved

1.9 problem 10

Internal problem ID [14942]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + \cot(y) = 1$$

✓ Solution by Maple

Time used: 0.14 (sec). Leaf size: 29

dsolve(diff(y(x),x)=1-cot(y(x)),y(x), singsol=all)

$$x + \frac{\ln\left(\csc(y(x))^2\right)}{4} + \frac{\pi}{4} - \frac{\ln\left(-1 + \cot(y(x))\right)}{2} - \frac{y(x)}{2} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.376 (sec). Leaf size: 69

 $\label{eq:DSolve} DSolve[y'[x] == 1-Cot[y[x]], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow \text{InverseFunction}\left[\left(\frac{1}{4} + \frac{i}{4}\right)\log(-\tan(\#1) + i) - \frac{1}{2}\log(1 - \tan(\#1))\right.$$

$$\left. + \left(\frac{1}{4} - \frac{i}{4}\right)\log(\tan(\#1) + i)\&\right]\left[-x + c_1\right]$$

$$y(x) \rightarrow \frac{\pi}{4}$$

1.10 problem 11

Internal problem ID [14943]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - (3x - y)^{\frac{1}{3}} = -1$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 86

dsolve(diff(y(x),x)= $(3*x-y(x))^(1/3)-1$,y(x), singsol=all)

$$x + \frac{3(3x - y(x))^{\frac{2}{3}}}{2} + 32\ln\left(-4 + (3x - y(x))^{\frac{1}{3}}\right)$$
$$-16\ln\left((3x - y(x))^{\frac{2}{3}} + 4(3x - y(x))^{\frac{1}{3}} + 16\right)$$
$$+16\ln\left(-64 + 3x - y(x)\right) + 12(3x - y(x))^{\frac{1}{3}} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.203 (sec). Leaf size: 55

 $DSolve[y'[x] == (3*x-y[x])^(1/3)-1, y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{3}{2}(3x - y(x))^{2/3} + 12\sqrt[3]{3x - y(x)} + 48\log\left(\sqrt[3]{3x - y(x)} - 4\right) + x = c_1, y(x)\right]$$

1.11 problem 13

Internal problem ID [14944]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$y' - \sin(yx) = 0$$

With initial conditions

$$[y(0) = 0]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(y(x),x)=sin(x*y(x)),y(0) = 0],y(x), singsol=all)

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $DSolve[\{y'[x] == Sin[x*y[x]], \{y[0] == 0\}\}, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

1.12 problem 14

Internal problem ID [14945]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + y = \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(x*diff(y(x),x)+y(x)=cos(x),y(x), singsol=all)

$$y(x) = \frac{\sin(x) + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 14

DSolve[x*y'[x]+y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{\sin(x) + c_1}{x}$$

1.13 problem 15

Internal problem ID [14946]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x)+2*y(x)=exp(x),y(x), singsol=all)

$$y(x) = \frac{(e^{3x} + 3c_1)e^{-2x}}{3}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 21 $\,$

DSolve[y'[x]+2*y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^x}{3} + c_1 e^{-2x}$$

1.14 problem 16

Internal problem ID [14947]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 1. Basic concepts and definitions. Exercises page 18

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left| \left(-x^2 + 1 \right) y' + yx = 2x \right|$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve((1-x^2)*diff(y(x),x)+x*y(x)=2*x,y(x), singsol=all)$

$$y(x) = \sqrt{-1 + x} \sqrt{1 + x} c_1 + 2$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: $24\,$

 $DSolve[(1-x^2)*y'[x]+x*y[x]==2*x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 2 + c_1 \sqrt{x^2 - 1}$$
$$y(x) \to 2$$

2 Section 2. The method of isoclines. Exercises page 27 2.1 problem 21 21 22 2.2problem 22 2.3 23 problem 23 2.4 problem 24 24 25 2.5 problem 25 2.6 26 problem 26 2.7 problem 27 27 2.8 problem 28 28 2.9 problem 29 29 2.10 problem 30 30 2.11 problem 31 31 32 2.12 problem 32 33 2.13 problem 33 2.14 problem 34 34 35 2.15 problem 35 2.16 problem 36 36 2.17 problem 37 37 2.18 problem 38 38 39 2.19 problem 39

40

2.20 problem 40

2.1 problem 21

Internal problem ID [14948]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = x + 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve(diff(y(x),x)=x+1,y(x), singsol=all)

$$y(x) = \frac{1}{2}x^2 + x + c_1$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 16

DSolve[y'[x]==x+1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^2}{2} + x + c_1$$

2.2 problem 22

Internal problem ID [14949]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x)=x+y(x),y(x), singsol=all)

$$y(x) = -x - 1 + c_1 e^x$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 16

DSolve[y'[x]==x+y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -x + c_1 e^x - 1$$

2.3 problem 23

Internal problem ID [14950]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y'-y=-x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(x),x)=y(x)-x,y(x), singsol=all)

$$y(x) = x + 1 + c_1 e^x$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 14

DSolve[y'[x]==y[x]-x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x + c_1 e^x + 1$$

2.4 problem 24

Internal problem ID [14951]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = \frac{x}{2} + \frac{3}{2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x)=1/2*(x-2*y(x)+3),y(x), singsol=all)

$$y(x) = \frac{x}{2} + 1 + c_1 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 20

DSolve[y'[x]==1/2*(x-2*y[x]+3),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x}{2} + c_1 e^{-x} + 1$$

2.5 problem 25

Internal problem ID [14952]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - (y - 1)^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)=(y(x)-1)^2,y(x), singsol=all)$

$$y(x) = \frac{c_1 + x - 1}{c_1 + x}$$

✓ Solution by Mathematica

Time used: 0.107 (sec). Leaf size: 22

 $DSolve[y'[x] == (y[x]-1)^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x - 1 + c_1}{x + c_1}$$
$$y(x) \to 1$$

25

2.6 problem 26

Internal problem ID [14953]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - (y-1)x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve(diff(y(x),x)=(y(x)-1)*x,y(x), singsol=all)

$$y(x) = 1 + c_1 e^{\frac{x^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 24

 $DSolve[y'[x] == (y[x]-1)*x, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow 1 + c_1 e^{rac{x^2}{2}} \ y(x)
ightarrow 1$$

2.7 problem 27

Internal problem ID [14954]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [Riccati]

$$y' + y^2 = x^2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 44

 $dsolve(diff(y(x),x)=x^2-y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{x\left(\text{BesselI}\left(-\frac{3}{4}, \frac{x^2}{2}\right)c_1 - \text{BesselK}\left(\frac{3}{4}, \frac{x^2}{2}\right)\right)}{c_1 \text{ BesselI}\left(\frac{1}{4}, \frac{x^2}{2}\right) + \text{BesselK}\left(\frac{1}{4}, \frac{x^2}{2}\right)}$$

✓ Solution by Mathematica

Time used: 0.114 (sec). Leaf size: 197

DSolve[y'[x]==x^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{-ix^2 \left(2 \operatorname{BesselJ}\left(-\frac{3}{4}, \frac{ix^2}{2}\right) + c_1 \left(\operatorname{BesselJ}\left(-\frac{5}{4}, \frac{ix^2}{2}\right) - \operatorname{BesselJ}\left(\frac{3}{4}, \frac{ix^2}{2}\right)\right)\right) - c_1 \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{ix^2}{2}\right)}{2x \left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{ix^2}{2}\right) + c_1 \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{ix^2}{2}\right)\right)}$$

$$y(x) \rightarrow \frac{ix^2 \operatorname{BesselJ}\left(-\frac{5}{4}, \frac{ix^2}{2}\right) - ix^2 \operatorname{BesselJ}\left(\frac{3}{4}, \frac{ix^2}{2}\right) + \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{ix^2}{2}\right)}{2x \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{ix^2}{2}\right)}$$

2.8 problem 28

Internal problem ID [14955]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \cos\left(-y + x\right) = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 14

dsolve(diff(y(x),x)=cos(x-y(x)),y(x), singsol=all)

$$y(x) = x - 2 \operatorname{arccot}(c_1 - x)$$

✓ Solution by Mathematica

Time used: 0.45 (sec). Leaf size: 40

DSolve[y'[x]==Cos[x-y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + 2 \cot^{-1} \left(x - \frac{c_1}{2} \right)$$
$$y(x) \to x + 2 \cot^{-1} \left(x - \frac{c_1}{2} \right)$$
$$y(x) \to x$$

2.9 problem 29

Internal problem ID [14956]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = -x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(x),x)=y(x)-x^2,y(x), singsol=all)$

$$y(x) = x^2 + 2x + 2 + c_1 e^x$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 19

DSolve[y'[x]==y[x]-x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 + 2x + c_1 e^x + 2$$

2.10 problem 30

Internal problem ID [14957]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = x^2 + 2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)=x^2+2*x-y(x),y(x), singsol=all)$

$$y(x) = x^2 + c_1 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 17

DSolve[y'[x]==x^2+2*x-y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 + c_1 e^{-x}$$

2.11 problem 31

Internal problem ID [14958]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y+1}{x-1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(x),x)=(y(x)+1)/(x-1),y(x), singsol=all)

$$y(x) = -1 + (-1 + x) c_1$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 18

DSolve[y'[x]==(y[x]+1)/(x-1),y[x],x,IncludeSingularSolutions \rightarrow True]

$$y(x) \to -1 + c_1(x-1)$$

$$y(x) \to -1$$

2.12 problem 32

Internal problem ID [14959]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 32.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{y+x}{-y+x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve(diff(y(x),x)=(x+y(x))/(x-y(x)),y(x), singsol=all)

$$y(x) = \tan (\text{RootOf}(-2_Z + \ln (\sec (_Z)^2) + 2\ln (x) + 2c_1)) x$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 36

 $DSolve[y'[x] == (x+y[x])/(x-y[x]), y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{1}{2}\log\left(\frac{y(x)^2}{x^2}+1\right) - \arctan\left(\frac{y(x)}{x}\right) = -\log(x) + c_1, y(x)\right]$$

2.13 problem 33

Internal problem ID [14960]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 33.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = 1 - x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(x),x)=1-x,y(x), singsol=all)

$$y(x) = -\frac{1}{2}x^2 + x + c_1$$

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 16

DSolve[y'[x]==1-x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{x^2}{2} + x + c_1$$

2.14 problem 34

Internal problem ID [14961]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 34.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = 2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x)=2*x-y(x),y(x), singsol=all)

$$y(x) = 2x - 2 + c_1 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 18

DSolve[y'[x]==2*x-y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2x + c_1 e^{-x} - 2$$

2.15 problem 35

Internal problem ID [14962]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 35.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x)=x^2+y(x),y(x), singsol=all)$

$$y(x) = -x^2 - 2x - 2 + c_1 e^x$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 21

DSolve[y'[x]==x^2+y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x^2 - 2x + c_1 e^x - 2$$

problem 36 2.16

Internal problem ID [14963]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 36.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + \frac{y}{x} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(diff(y(x),x)=-y(x)/x,y(x), singsol=all)

$$y(x) = \frac{c_1}{x}$$

Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 16

DSolve[y'[x]==-y[x]/x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1}{x}$$
$$y(x) \to 0$$

$$y(x) \rightarrow 0$$

2.17 problem 37

Internal problem ID [14964]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 37.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve(diff(y(x),x)=1,y(x), singsol=all)

$$y(x) = c_1 + x$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 9

DSolve[y'[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + c_1$$

2.18 problem 38

Internal problem ID [14965]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 38.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = \frac{1}{x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

dsolve(diff(y(x),x)=1/x,y(x), singsol=all)

$$y(x) = \ln(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 10

DSolve[y'[x]==1/x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \log(x) + c_1$$

problem 39 2.19

Internal problem ID [14966]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 39.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

dsolve(diff(y(x),x)=y(x),y(x), singsol=all)

$$y(x) = c_1 e^x$$

Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 16

DSolve[y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x$$
$$y(x) \to 0$$

$$y(x) \to 0$$

2.20 problem 40

Internal problem ID [14967]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 2. The method of isoclines. Exercises page 27

Problem number: 40.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(diff(y(x),x)=y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{1}{c_1 - x}$$

✓ Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 18

DSolve[y'[x]==y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{x+c_1}$$
$$y(x) \to 0$$

3	Section 3. The method of successive	
	approximation. Exercises page 31	
3.1	problem 41	2
3.2	problem 42	3
3.3	problem 43	4

3.4

3.1 problem 41

Internal problem ID [14968]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 3. The method of successive approximation. Exercises page 31

Problem number: 41.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [Riccati]

$$y' + y^2 = x^2$$

With initial conditions

$$[y(-1) = 0]$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 55

 $dsolve([diff(y(x),x)=x^2-y(x)^2,y(-1) = 0],y(x), singsol=all)$

$$y(x) = \frac{x \left(\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^2}{2}\right) \operatorname{BesselK}\left(\frac{3}{4}, \frac{1}{2}\right) - \operatorname{BesselK}\left(\frac{3}{4}, \frac{x^2}{2}\right) \operatorname{BesselI}\left(-\frac{3}{4}, \frac{1}{2}\right) \right)}{\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^2}{2}\right) \operatorname{BesselI}\left(-\frac{3}{4}, \frac{1}{2}\right) + \operatorname{BesselK}\left(\frac{3}{4}, \frac{1}{2}\right) \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^2}{2}\right)}$$

✓ Solution by Mathematica

Time used: 0.115 (sec). Leaf size: 211

 $DSolve[\{y'[x]==x^2-y[x]^2,\{y[-1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

 $y(x) \rightarrow \frac{i\left(x^{2}\left(-\operatorname{BesselJ}\left(-\frac{5}{4},\frac{i}{2}\right)+i\operatorname{BesselJ}\left(-\frac{1}{4},\frac{i}{2}\right)+\operatorname{BesselJ}\left(\frac{3}{4},\frac{i}{2}\right)\right)\operatorname{BesselJ}\left(-\frac{3}{4},\frac{ix^{2}}{2}\right)+x^{2}\operatorname{BesselJ}\left(-\frac{3}{4},\frac{i}{2}\right)\operatorname{BesselJ}\left(-\frac{3}{4},\frac{i}{2}\right)\operatorname{BesselJ}\left(-\frac{3}{4},\frac{ix^{2}}{2}\right)+\left(-\operatorname{BesselJ}\left(-\frac{5}{4},\frac{i}{2}\right)+i\operatorname{BesselJ}\left(-\frac{5}{4},\frac{i}{2}\right)$

3.2 problem 42

Internal problem ID [14969]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 3. The method of successive approximation. Exercises page 31

Problem number: 42.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_Riccati, _special]]

$$y' - y^2 = x$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 35

 $dsolve([diff(y(x),x)=x+y(x)^2,y(0)=0],y(x), singsol=all)$

$$y(x) = \frac{\sqrt{3} \operatorname{AiryAi}(1, -x) + \operatorname{AiryBi}(1, -x)}{\sqrt{3} \operatorname{AiryAi}(-x) + \operatorname{AiryBi}(-x)}$$

✓ Solution by Mathematica

Time used: 1.269 (sec). Leaf size: 80

 $DSolve[\{y'[x]==x+y[x]^2,\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{x^{3/2} \operatorname{BesselJ}\left(-\frac{4}{3}, \frac{2x^{3/2}}{3}\right) - x^{3/2} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2x^{3/2}}{3}\right) + \operatorname{BesselJ}\left(-\frac{1}{3}, \frac{2x^{3/2}}{3}\right)}{2x \operatorname{BesselJ}\left(-\frac{1}{3}, \frac{2x^{3/2}}{3}\right)}$$

3.3 problem 43

Internal problem ID [14970]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 3. The method of successive approximation. Exercises page 31

Problem number: 43.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y'-y=x$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $\label{eq:decomposition} dsolve([diff(y(x),x)=x+y(x),y(0) = 1],y(x), singsol=all)$

$$y(x) = -x - 1 + 2e^x$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 15

 $DSolve[\{y'[x]==x+y[x],\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x + 2e^x - 1$$

3.4 problem **44**

Internal problem ID [14971]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 3. The method of successive approximation. Exercises page 31

Problem number: 44.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = -2x^2 - 3$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $dsolve([diff(y(x),x)=2*y(x)-2*x^2-3,y(0)=2],y(x), singsol=all)$

$$y(x) = x^2 + x + 2$$

✓ Solution by Mathematica

Time used: 0.091 (sec). Leaf size: 11

 $DSolve[\{y'[x]==2*y[x]-2*x^2-3,\{y[0]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x^2 + x + 2$$

3.5 problem 45

Internal problem ID [14972]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 3. The method of successive approximation. Exercises page 31

Problem number: 45.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + y = 2x$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve([x*diff(y(x),x)=2*x-y(x),y(1) = 2],y(x), singsol=all)

$$y(x) = x + \frac{1}{x}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 10

 $\label{eq:DSolve} DSolve [\{x*y'[x]==2*x-y[x],\{y[1]==2\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x + \frac{1}{x}$$

4 Section 4. Equations with variables separable and equations reducible to them. Exercises page 38

4.1	problem 46																48
4.2	problem 47											 •					49
4.3	problem 48											 •					51
4.4	problem 49											 •					52
4.5	problem 50											 •					53
4.6	problem 51																54
4.7	problem 52																55
4.8	problem 53											 •					56
4.9	problem 54											 •					57
4.10	problem 55																58
4.11	problem 56																59
4.12	problem 57																60
4.13	problem 58			 													61
4.14	problem 59			 													62
4.15	problem 60			 													63
4.16	problem 61			 													64
4.17	problem 62																65
4.18	problem 63																66
4.19	problem 81			 													67
4.20	problem 85			 													68
4.21	problem 86																69
4.22	problem 87																70
4.23	problem 88																71
4.24	problem 89			 													72
4.25	problem 90																73
4.26	problem 91																74
4.27	problem 92			 													75
4.28	problem 93																76
4.29	problem 94																77
4.30	problem 95																78
4.31	problem 96			 													79
4.32	problem 97			 													80
4.33	problem 98			 													81
4.34	problem 99																82

problem 46 4.1

Internal problem ID [14973]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 46.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y^2 + (x^2 + 1) y' = -1$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve((1+y(x)^2)+(1+x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\tan(\arctan(x) + c_1)$$

Solution by Mathematica

Time used: 0.234 (sec). Leaf size: 29

 $DSolve[(1+y[x]^2)+(1+x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\tan(\arctan(x) - c_1)$$

 $y(x) \to -i$

$$y(x) \rightarrow -i$$

$$y(x) \to i$$

4.2 problem 47

Internal problem ID [14974]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 47.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y^2 + xyy' = -1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

 $dsolve((1+y(x)^2)+(x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = rac{\sqrt{-x^2 + c_1}}{x}$$
 $y(x) = -rac{\sqrt{-x^2 + c_1}}{x}$

/

Solution by Mathematica

Time used: 0.347 (sec). Leaf size: 96

 $DSolve[(1+y[x]^2)+(x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{-x^2 + e^{2c_1}}}{x}$$

$$y(x) \to \frac{\sqrt{-x^2 + e^{2c_1}}}{x}$$

$$y(x) \to -i$$

$$y(x) \to i$$

$$y(x) \to \frac{x}{\sqrt{-x^2}}$$

$$y(x) \to \frac{\sqrt{-x^2}}{x}$$

4.3 problem 48

Internal problem ID [14975]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 48.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'\sin(x) - y\cos(x) = 0$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right) = 1\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 6

dsolve([diff(y(x),x)*sin(x)-y(x)*cos(x)=0,y(1/2*Pi) = 1],y(x), singsol=all)

$$y(x) = \sin\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 7

DSolve[{y'[x]*Sin[x]-y[x]*Cos[x]==0,{y[Pi/2]==1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sin(x)$$

4.4 problem 49

Internal problem ID [14976]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 49.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y^2 - y'x = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve((1+y(x)^2)=x*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \tan\left(\ln\left(x\right) + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.167 (sec). Leaf size: 25

DSolve[(1+y[x]^2)==x*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \tan(\log(x) + c_1)$$

$$y(x) \rightarrow -i$$

$$y(x) \rightarrow i$$

4.5 problem 50

Internal problem ID [14977]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 50.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x\sqrt{1+y^2} + yy'\sqrt{x^2+1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(x*sqrt(1+y(x)^2)+y(x)*diff(y(x),x)*sqrt(1+x^2)=0,y(x), singsol=all)$

$$\sqrt{x^2 + 1} + \sqrt{1 + y(x)^2} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.29 (sec). Leaf size: 75

DSolve[x*Sqrt[1+y[x]^2]+y[x]*y'[x]*Sqrt[1+x^2]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sqrt{x^2 + c_1 \left(-2\sqrt{x^2 + 1} + c_1\right)}$$

$$y(x) \to \sqrt{x^2 + c_1 \left(-2\sqrt{x^2 + 1} + c_1\right)}$$

$$y(x) \to -i$$

$$y(x) \to i$$

4.6 problem 51

Internal problem ID [14978]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 51.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x\sqrt{1-y^2} + y\sqrt{-x^2 + 1}y' = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([x*sqrt(1-y(x)^2)+y(x)*sqrt(1-x^2)*diff(y(x),x)=0,y(0) = 1],y(x), singsol=all)$

$$y(x) = 1$$

✓ Solution by Mathematica

Time used: 3.582 (sec). Leaf size: 32

DSolve[{x*Sqrt[1-y[x]^2]+y[x]*Sqrt[1-x^2]*y'[x]==0,{y[0]==1}},y[x],x,IncludeSingularSolution

$$y(x) \to 1$$

 $y(x) \to \sqrt{x^2 + 2\sqrt{1 - x^2} - 1}$

4.7 problem 52

Internal problem ID [14979]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 52.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$e^{-y}y'=1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(exp(-y(x))*diff(y(x),x)=1,y(x), singsol=all)

$$y(x) = \ln\left(-\frac{1}{c_1 + x}\right)$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 16

DSolve[Exp[-y[x]]*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\log(-x-c_1)$$

4.8 problem 53

Internal problem ID [14980]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 53.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\int \ln(y) \, y + y' x = 1$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.922 (sec). Leaf size: 38

dsolve([y(x)*ln(y(x))+x*diff(y(x),x)=1,y(1) = 1],y(x), singsol=all)

$$y(x) = \text{RootOf}\left(\int_{1}^{-Z} \frac{1}{\ln(\underline{a})\underline{a} - 1} d\underline{a} + \ln(x)\right)$$

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y[x]*Log[y[x]]+x*y'[x]==1,\{y[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True] \\$

{}

4.9 problem 54

Internal problem ID [14981]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 54.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - a^{y+x} = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 22

 $dsolve(diff(y(x),x)=a^(x+y(x)),y(x), singsol=all)$

$$y(x) = rac{\ln\left(-rac{1}{c_1\ln(a) + a^x}
ight)}{\ln\left(a
ight)}$$

✓ Solution by Mathematica

Time used: 3.796 (sec). Leaf size: 24

DSolve[y'[x]==a^(x+y[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{\log(-a^x - c_1\log(a))}{\log(a)}$$

4.10 problem 55

Internal problem ID [14982]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 55.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$e^{y}(x^{2}+1)y'-2x(e^{y}+1)=0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 13

 $\label{eq:dsolve} $$ dsolve(exp(y(x))*(1+x^2)*diff(y(x),x)-2*x*(1+exp(y(x)))=0,y(x), singsol=all)$ $$$

$$y(x) = \ln \left(c_1 x^2 + c_1 - 1 \right)$$

✓ Solution by Mathematica

Time used: 0.638 (sec). Leaf size: 27

$$y(x) \to \log \left(-1 + e^{c_1}(x^2 + 1)\right)$$

 $y(x) \to i\pi$

4.11 problem 56

Internal problem ID [14983]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 56.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2x\sqrt{1-y^2} - (x^2+1)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve(2*x*sqrt(1-y(x)^2)=diff(y(x),x)*(1+x^2),y(x), singsol=all)$

$$y(x) = \sin(\ln(x^2 + 1) + 2c_1)$$

✓ Solution by Mathematica

Time used: 0.271 (sec). Leaf size: 33

DSolve[2*x*Sqrt[1-y[x]^2]==y'[x]*(1+x^2),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \cos\left(\log\left(x^2+1\right)+c_1\right)$$

$$y(x) \rightarrow -1$$

$$y(x) \to 1$$

$$y(x) \to \text{Interval}[\{-1,1\}]$$

4.12 problem 57

Internal problem ID [14984]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 57.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$e^{x} \sin(y)^{3} + (e^{2x} + 1) \cos(y) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

 $dsolve(exp(x)*sin(y(x))^3+(1+exp(2*x))*cos(y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \arctan\left(rac{\sqrt{2}\,\sqrt{rac{1}{c_1 + rctan(\mathrm{e}^x)}}}{2}
ight)$$
 $y(x) = -\arctan\left(rac{\sqrt{2}\,\sqrt{rac{1}{c_1 + rctan(\mathrm{e}^x)}}}{2}
ight)$

✓ Solution by Mathematica

Time used: 1.83 (sec). Leaf size: 56

DSolve[Exp[x]*Sin[y[x]]^3+(1+Exp[2*x])*Cos[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to -\csc^{-1}\left(\sqrt{2}\sqrt{\arctan\left(e^x\right) - 4c_1}\right)$$
$$y(x) \to \csc^{-1}\left(\sqrt{2}\sqrt{\arctan\left(e^x\right) - 4c_1}\right)$$
$$y(x) \to 0$$

4.13 problem 58

Internal problem ID [14985]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 58.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\sin(x) y^{2} + \cos(x)^{2} \ln(y) y' = 0$$

✓ Solution by Maple

Time used: 0.36 (sec). Leaf size: 21

 $\label{localization} dsolve(y(x)^2*sin(x)+cos(x)^2*ln(y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\text{LambertW}\left(-\left(\sec\left(x\right) + c_1\right)e^{-1}\right)}{\sec\left(x\right) + c_1}$$

✓ Solution by Mathematica

Time used: 60.174 (sec). Leaf size: 29

DSolve[y[x]^2*Sin[x]+Cos[x]^2*Log[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{\cos(x)W\left(rac{-\sec(x)+c_1}{e}
ight)}{-1+c_1\cos(x)}$$

4.14 problem 59

Internal problem ID [14986]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 59.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \sin\left(-y + x\right) = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 23

dsolve(diff(y(x),x)=sin(x-y(x)),y(x), singsol=all)

$$y(x) = x - 2\arctan\left(\frac{2 - x + c_1}{c_1 - x}\right)$$

✓ Solution by Mathematica

Time used: 0.415 (sec). Leaf size: 64

DSolve[y'[x]==Sin[x-y[x]],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[y(x) - \sec(x - y(x)) \left(2\sqrt{\cos^2(x - y(x))} \arcsin\left(\frac{\sqrt{1 - \sin(x - y(x))}}{\sqrt{2}} \right) + \sin(x - y(x)) + 1 \right) = c_1, y(x) \right]$$

4.15 problem 60

Internal problem ID [14987]

 $\mathbf{Book} :$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 60.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - yb = ax + c$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x)=a*x+b*y(x)+c,y(x), singsol=all)

$$y(x) = \frac{e^{bx}c_1b^2 + (-ax - c)b - a}{b^2}$$

✓ Solution by Mathematica

Time used: 0.105 (sec). Leaf size: 28

DSolve[y'[x] == a*x+b*y[x]+c,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{abx + a + bc}{b^2} + c_1 e^{bx}$$

4.16 problem 61

Internal problem ID [14988]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 61.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$(y+x)^2 y' = a^2$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 24

 $dsolve((x+y(x))^2*diff(y(x),x)=a^2,y(x), singsol=all)$

$$y(x) = a \text{ RootOf } (\tan (\underline{Z}) a - \underline{Z}a + c_1 - x) - c_1$$

✓ Solution by Mathematica

Time used: 0.113 (sec). Leaf size: 21 $\,$

DSolve[(x+y[x])^2*y'[x]==a^2,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[y(x) - a \arctan\left(\frac{y(x) + x}{a}\right) = c_1, y(x)\right]$$

4.17 problem 62

Internal problem ID [14989]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 62.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + y - a(yx+1) = 0$$

With initial conditions

$$\left[y\left(\frac{1}{a}\right) = -a\right]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{y(x)} + \mbox{x*diff}(\mbox{y(x)}, \mbox{x}) = \mbox{a*(1+x*y(x))}, \\ \mbox{y(1/a)} = -\mbox{a}], \\ \mbox{y(x)}, \mbox{ singsol=all)} \\$

$$y(x) = -\frac{1}{x}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 10

$$y(x) \to -\frac{1}{x}$$

4.18 problem 63

Internal problem ID [14990]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 63.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y^2 + 2x\sqrt{ax - x^2}y' = -a^2$$

With initial conditions

$$[y(a) = 0]$$

✓ Solution by Maple

Time used: 0.562 (sec). Leaf size: 22

 $dsolve([(a^2+y(x)^2)+2*x*sqrt(a*x-x^2)*diff(y(x),x)=0,y(a) = 0],y(x), singsol=all)$

$$y(x) = \tan\left(\frac{a-x}{\sqrt{x(a-x)}}\right)a$$

✓ Solution by Mathematica

Time used: 31.916 (sec). Leaf size: 23

DSolve[{(a^2+y[x]^2)+2*x*Sqrt[a*x-x^2]*y'[x]==0,{y[a]==0}},y[x],x,IncludeSingularSolutions -

$$y(x) \to a \tan \left(\frac{\sqrt{x(a-x)}}{x} \right)$$

4.19 problem 81

Internal problem ID [14991]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 81.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y}{x} = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve([diff(y(x),x)=y(x)/x,y(0) = 0],y(x), singsol=all)

$$y(x) = c_1 x$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 6

 $DSolve[\{y'[x]==y[x]/x,\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

problem 85 4.20

Internal problem ID [14992]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 85.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$\cos(y') = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(cos(diff(y(x),x))=0,y(x), singsol=all)

$$y(x) = \frac{\pi x}{2} + c_1$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 27

DSolve[Cos[y'[x]]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\pi x}{2} + c_1$$

 $y(x) \to \frac{\pi x}{2} + c_1$

$$y(x)
ightarrow rac{\pi x}{2} + c_1$$

68

4.21 problem 86

Internal problem ID [14993]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 86.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$e^{y'}=1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

dsolve(exp(diff(y(x),x))=1,y(x), singsol=all)

$$y(x) = c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 7

DSolve[Exp[y'[x]]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1$$

4.22 problem 87

Internal problem ID [14994]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 87.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$\sin\left(y'\right) = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(sin(diff(y(x),x))=x,y(x), singsol=all)

$$y(x) = x \arcsin(x) + \sqrt{-x^2 + 1} + c_1$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 23

DSolve[Sin[y'[x]] == x, y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to x \arcsin(x) + \sqrt{1 - x^2} + c_1$$

4.23 problem 88

Internal problem ID [14995]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 88.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$\ln\left(y'\right)=x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

dsolve(ln(diff(y(x),x))=x,y(x), singsol=all)

$$y = e^x + c_1$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 11

DSolve[Log[y'[x]] == x, y[x], x, IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^x + c_1$$

4.24 problem 89

Internal problem ID [14996]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 89.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

 $\tan\left(y'\right)=0$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve(tan(diff(y(x),x))=0,y(x), singsol=all)

 $y = c_1$

✓ Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 7

DSolve[Tan[y'[x]]==0,y[x],x,IncludeSingularSolutions -> True]

 $y(x) \rightarrow c_1$

4.25 problem 90

Internal problem ID [14997]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 90.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$e^{y'} = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(exp(diff(y(x),x))=x,y(x), singsol=all)

$$y = x \ln(x) - x + c_1$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 15

DSolve[Exp[y'[x]] == x, y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to -x + x \log(x) + c_1$$

4.26 problem 91

Internal problem ID [14998]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 91.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$\tan\left(y'\right) = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(tan(diff(y(x),x))=x,y(x), singsol=all)

$$y = x \arctan(x) - \frac{\ln(x^2 + 1)}{2} + c_1$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 163

DSolve[Tan[y'[x]] == x, y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sqrt{x^2} \log(x^2 + 1)}{2x} - x \cos^{-1}\left(-\frac{1}{\sqrt{x^2 + 1}}\right) + c_1$$

$$y(x) \to -\frac{\sqrt{x^2} \log(x^2 + 1)}{2x} + x \cos^{-1}\left(\frac{1}{\sqrt{x^2 + 1}}\right) + c_1$$

$$y(x) \to \frac{\sqrt{x^2} \log(x^2 + 1)}{2x} + x \cos^{-1}\left(-\frac{1}{\sqrt{x^2 + 1}}\right) + c_1$$

$$y(x) \to \frac{\sqrt{x^2} \log(x^2 + 1)}{2x} - x \cos^{-1}\left(\frac{1}{\sqrt{x^2 + 1}}\right) + c_1$$

4.27 problem 92

Internal problem ID [14999]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 92.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^2 y' \cos(y) = -1$$

With initial conditions

$$\left[y(\infty) = \frac{16\pi}{3}\right]$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 21

 $dsolve([x^2*diff(y(x),x)*cos(y(x))+1=0,y(infinity) = 16/3*Pi],y(x), singsol=all)$

$$y = \arcsin\left(\frac{\sqrt{3}x - 2}{2x}\right) + 5\pi$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{x^2*y'[x]*Cos[y[x]]+1==0,{y[Infinity]==16/3*Pi}},y[x],x,IncludeSingularSolutions ->

4.28 problem 93

Internal problem ID [15000]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 93.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^2y' + \cos(2y) = 1$$

With initial conditions

$$\left[y(\infty) = \frac{10\pi}{3}\right]$$

✓ Solution by Maple

Time used: 0.375 (sec). Leaf size: 23

 $dsolve([x^2*diff(y(x),x)+cos(2*y(x))=1,y(infinity) = 10/3*Pi],y(x), singsol=all)$

$$y = \frac{7\pi}{2} - \arctan\left(\frac{\sqrt{3}x + 6}{3x}\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{x^2*y'[x]+Cos[2*y[x]]==1,{y[Infinity]==10/3*Pi}},y[x],x,IncludeSingularSolutions ->

4.29 problem 94

Internal problem ID [15001]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 94.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x^3 - \sin(y) = 1$$

With initial conditions

$$[y(\infty) = 5\pi]$$

X Solution by Maple

 $dsolve([x^3*diff(y(x),x)-sin(y(x))=1,y(infinity) = 5*Pi],y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{x^3*y'[x]-Sin[y[x]]==1,{y[Infinity]==5*Pi}},y[x],x,IncludeSingularSolutions -> True]

4.30 problem 95

Internal problem ID [15002]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 95.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x^{2} + 1) y' - \frac{\cos(2y)^{2}}{2} = 0$$

With initial conditions

$$\left[y(-\infty) = \frac{7\pi}{2}\right]$$

✓ Solution by Maple

Time used: 0.437 (sec). Leaf size: 17

 $dsolve([(1+x^2)*diff(y(x),x)-1/2*cos(2*y(x))^2=0,y(-infinity) = 7/2*Pi],y(x), singsol=all)$

$$y = \frac{\arctan\left(\arctan\left(x\right) + \frac{\pi}{2}\right)}{2} + \frac{7\pi}{2}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[{(1+x^2)*y'[x]-1/2*Cos[2*y[x]]^2==0, {y[-Infinity]==7/2*Pi}}, y[x], x, IncludeSingularSolve[{(1+x^2)*y'[x]-1/2*Cos[2*y[x]]^2==0, {y[-Infinity]==7/2*Pi}}]$

4.31 problem 96

Internal problem ID [15003]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them. Exercises page 38

Problem number: 96.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$e^y - e^{4y}y' = 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

dsolve(exp(y(x))=exp(4*y(x))*diff(y(x),x)+1,y(x), singsol=all)

$$x - \frac{e^{3y}}{3} - \frac{e^{2y}}{2} - e^y - \ln(e^y - 1) + c_1 = 0$$

Solution by Mathematica

Time used: 0.366 (sec). Leaf size: 48

DSolve[Exp[y[x]] == Exp[4*y[x]]*y'[x]+1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \text{InverseFunction} \left[\frac{1}{6} e^{\#1} \left(3e^{\#1} + 2e^{2\#1} + 6 \right) + \log \left(e^{\#1} - 1 \right) \& \right] [x + c_1]$$

 $y(x) \to 0$

4.32 problem 97

Internal problem ID [15004]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 97.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x+1)y'-y=-1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve((x+1)*diff(y(x),x)=y(x)-1,y(x), singsol=all)

$$y = c_1 x + c_1 + 1$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 18

DSolve[(x+1)*y'[x]==y[x]-1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 1 + c_1(x+1)$$

$$y(x) \to 1$$

problem 98 4.33

Internal problem ID [15005]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 98.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2x(\pi + y) = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x)=2*x*(Pi+y(x)),y(x), singsol=all)

$$y = -\pi + c_1 e^{x^2}$$

Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 24

DSolve[y'[x]==2*x*(Pi+y[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\pi + c_1 e^{x^2}$$
$$y(x) \to -\pi$$

81

4.34 problem 99

Internal problem ID [15006]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 4. Equations with variables separable and equations reducible to them.

Exercises page 38

Problem number: 99.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^2y' + \sin(2y) = 1$$

With initial conditions

$$\left[y(\infty) = \frac{11\pi}{4}\right]$$

✓ Solution by Maple

Time used: 0.219 (sec). Leaf size: 20

 $dsolve([x^2*diff(y(x),x)+sin(2*y(x))=1,y(infinity) = 11/4*Pi],y(x), singsol=all)$

$$y = -\arctan\left(\frac{x+2}{x-2}\right) + 3\pi$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{x^2*y'[x]+Sin[2*y[x]]==1,{y[Infinity]==11/4*Pi}},y[x],x,IncludeSingularSolutions ->

Section 5. Homogeneous equations. Exercises page 44 5.1 5.25.3 5.4 5.5 5.6 5.7 5.8 5.9

problem 100 5.1

Internal problem ID [15007]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 100.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'x - y - x\cos\left(\frac{y}{x}\right)^2 = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

 $dsolve(x*diff(y(x),x)=y(x)+x*cos(y(x)/x)^2,y(x), singsol=all)$

$$y = \arctan\left(\ln\left(x\right) + c_1\right)x$$

Solution by Mathematica

Time used: 0.434 (sec). Leaf size: 35

 $DSolve[x*y'[x] == y[x] + x*Cos[y[x]/x]^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \tan^{-1}(\log(x) + 2c_1)$$
$$y(x) \to -\frac{\pi x}{2}$$
$$y(x) \to \frac{\pi x}{2}$$

$$y(x) \to -\frac{\pi x}{2}$$

$$y(x) o rac{\pi x}{2}$$

5.2 problem 101

Internal problem ID [15008]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 101.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x - y = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve((x-y(x))+x*diff(y(x),x)=0,y(x), singsol=all)

$$y = x(c_1 - \ln(x))$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 14

DSolve[(x-y[x])+x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x(-\log(x) + c_1)$$

problem 102 **5.3**

Internal problem ID [15009]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 102.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y'x - y(\ln(y) - \ln(x)) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve(x*diff(y(x),x)=y(x)*(ln(y(x))-ln(x)),y(x), singsol=all)

$$y = e^{c_1 x + 1} x$$

Solution by Mathematica

Time used: 0.226 (sec). Leaf size: 24

DSolve[x*y'[x]==y[x]*(Log[y[x]]-Log[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to xe^{1+e^{c_1}x}$$

 $y(x) \to ex$

$$y(x) \to ex$$

5.4 problem 103

Internal problem ID [15010]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 103.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$x^2y' - y^2 + yx = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x)=y(x)^2-x*y(x)+x^2,y(x), singsol=all)$

$$y = \frac{x(\ln(x) + c_1 - 1)}{\ln(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 25

 $\label{eq:DSolve} DSolve[x^2*y'[x] == y[x]^2 - x*y[x] + x^2, y[x], x, IncludeSingularSolutions \ -> \ True]$

$$y(x) \to \frac{x(\log(x) - 1 + c_1)}{\log(x) + c_1}$$
$$y(x) \to x$$

5.5 problem 104

Internal problem ID [15011]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 104.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$y'x - y - \sqrt{y^2 - x^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(x*diff(y(x),x)=y(x)+sqrt(y(x)^2-x^2),y(x), singsol=all)$

$$\frac{-c_1x^2 + y + \sqrt{y^2 - x^2}}{x^2} = 0$$

✓ Solution by Mathematica

Time used: 0.409 (sec). Leaf size: 14

DSolve[x*y'[x]==y[x]+Sqrt[y[x]^2-x^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x \cosh(\log(x) + c_1)$$

5.6 problem 105

Internal problem ID [15012]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 105.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$2x^2y' - y^2 = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(2*x^2*diff(y(x),x)=x^2+y(x)^2,y(x), singsol=all)$

$$y = \frac{x(\ln(x) + c_1 - 2)}{\ln(x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.122 (sec). Leaf size: 29

DSolve[2*x^2*y'[x]==x^2+y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x(\log(x) - 2 + 2c_1)}{\log(x) + 2c_1}$$
$$y(x) \to x$$

5.7 problem 106

Internal problem ID [15013]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 106.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd ty

$$-3y + (2y - 3x)y' = -4x$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 51

dsolve((4*x-3*y(x))+(2*y(x)-3*x)*diff(y(x),x)=0,y(x), singsol=all)

$$y = \frac{3c_1x - \sqrt{c_1^2x^2 + 4}}{2c_1}$$
$$y = \frac{3c_1x + \sqrt{c_1^2x^2 + 4}}{2c_1}$$

✓ Solution by Mathematica

Time used: 0.388 (sec). Leaf size: 95

 $DSolve[(4*x-3*y[x])+(2*y[x]-3*x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2} \left(3x - \sqrt{x^2 + 4e^{c_1}} \right)$$
$$y(x) \to \frac{1}{2} \left(3x + \sqrt{x^2 + 4e^{c_1}} \right)$$
$$y(x) \to \frac{1}{2} \left(3x - \sqrt{x^2} \right)$$
$$y(x) \to \frac{1}{2} \left(\sqrt{x^2 + 3x} \right)$$

5.8 problem 107

Internal problem ID [15014]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 107.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, [_Abel, '2nd ty

$$y + (y + x)y' = x$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 51

dsolve((y(x)-x)+(y(x)+x)*diff(y(x),x)=0,y(x), singsol=all)

$$y = \frac{-c_1 x - \sqrt{2c_1^2 x^2 + 1}}{c_1}$$
$$y = \frac{-c_1 x + \sqrt{2c_1^2 x^2 + 1}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.427 (sec). Leaf size: 94

 $DSolve[(y[x]-x)+(y[x]+x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x - \sqrt{2x^2 + e^{2c_1}}$$

$$y(x) \to -x + \sqrt{2x^2 + e^{2c_1}}$$

$$y(x) \to -\sqrt{2}\sqrt{x^2} - x$$

$$y(x) \to \sqrt{2}\sqrt{x^2} - x$$

5.9 problem 108

Internal problem ID [15015]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 108.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y + (1 - x)y' = -x + 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(x+y(x)-2+(1-x)*diff(y(x),x)=0,y(x), singsol=all)

$$y = (-1+x)\ln(-1+x) + 1 + c_1(-1+x)$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 21

DSolve [x+y[x]-2+(1-x)*y'[x]==0,y[x],x, IncludeSingularSolutions -> True]

$$y(x) \to (x-1)\left(\frac{1}{x-1} + \log(x-1) + c_1\right)$$

5.10 problem 109

Internal problem ID [15016]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 109.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$3y - (3x - 7y - 3)y' = 7x - 7$$

✓ <u>Solution</u> by Maple

Time used: 0.203 (sec). Leaf size: 1814

dsolve((3*y(x)-7*x+7)-(3*x-7*y(x)-3)*diff(y(x),x)=0,y(x), singsol=all)

Expression too large to display

✓ Solution by Mathematica

Time used: 60.866 (sec). Leaf size: 7785

DSolve[(3*y[x]-7*x+7)-(3*x-7*y[x]-3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Too large to display

5.11 problem 110

Internal problem ID [15017]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 110.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$y + (x - y + 4) y' = -x + 2$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 30

dsolve((x+y(x)-2)+(x-y(x)+4)*diff(y(x),x)=0,y(x), singsol=all)

$$y = \frac{-\sqrt{2(x+1)^2 c_1^2 + 1} + (x+4) c_1}{c_1}$$

✓ Solution by Mathematica

Time used: 0.124 (sec). Leaf size: 59

DSolve[(x+y[x]-2)+(x-y[x]+4)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -i\sqrt{-2x^2 - 4x - 16 - c_1} + x + 4$$

 $y(x) \rightarrow i\sqrt{-2x^2 - 4x - 16 - c_1} + x + 4$

5.12 problem 111

Internal problem ID [15018]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 111.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$y + (x - y - 2)y' = -x$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 30

dsolve((x+y(x))+(x-y(x)-2)*diff(y(x),x)=0,y(x), singsol=all)

$$y = \frac{-\sqrt{2(-1+x)^2 c_1^2 + 1} + (x-2) c_1}{c_1}$$

✓ Solution by Mathematica

Time used: 0.117 (sec). Leaf size: 59

 $DSolve[(x+y[x])+(x-y[x]-2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -i\sqrt{-2x^2 + 4x - 4 - c_1} + x - 2$$

 $y(x) \rightarrow i\sqrt{-2x^2 + 4x - 4 - c_1} + x - 2$

5.13 problem 112

Internal problem ID [15019]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 112.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$3y + (3x + 2y - 5)y' = -2x + 5$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 33

dsolve((2*x+3*y(x)-5)+(3*x+2*y(x)-5)*diff(y(x),x)=0,y(x), singsol=all)

$$y = \frac{-\sqrt{5(-1+x)^2 c_1^2 + 4 + (-3x+5) c_1}}{2c_1}$$

✓ Solution by Mathematica

Time used: 0.129 (sec). Leaf size: 65

DSolve[(2*x+3*y[x]-5)+(3*x+2*y[x]-5)*y'[x]==0,y[x],x,IncludeSingularSolutions] -> True]

$$y(x) \to \frac{1}{2} \left(-\sqrt{5x^2 - 10x + 25 + 4c_1} - 3x + 5 \right)$$
$$y(x) \to \frac{1}{2} \left(\sqrt{5x^2 - 10x + 25 + 4c_1} - 3x + 5 \right)$$

5.14 problem 113

Internal problem ID [15020]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 113.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$4y + (4x + 2y + 1)y' = -8x - 1$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

dsolve((8*x+4*y(x)+1)+(4*x+2*y(x)+1)*diff(y(x),x)=0,y(x), singsol=all)

$$y = -2x - \frac{1}{2} - \frac{\sqrt{-4c_1 + 4x + 1}}{2}$$
$$y = -2x - \frac{1}{2} + \frac{\sqrt{-4c_1 + 4x + 1}}{2}$$

Solution by Mathematica

Time used: 0.105 (sec). Leaf size: 55

DSolve[(8*x+4*y[x]+1)+(4*x+2*y[x]+1)*y'[x] == 0, y[x], x, IncludeSingularSolutions] -> True]

$$y(x) \to \frac{1}{2} \left(-4x - \sqrt{4x + 1 + 4c_1} - 1 \right)$$

 $y(x) \to \frac{1}{2} \left(-4x + \sqrt{4x + 1 + 4c_1} - 1 \right)$

$$y(x) \to \frac{1}{2} \left(-4x + \sqrt{4x + 1 + 4c_1} - 1 \right)$$

5.15 problem 114

Internal problem ID [15021]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 114.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$-2y + (3x - 6y + 2)y' = 1 - x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve((x-2*y(x)-1)+(3*x-6*y(x)+2)*diff(y(x),x)=0,y(x), singsol=all)

$$y = -\frac{\operatorname{LambertW}\left(-3\operatorname{e}^{\frac{5x}{2} - \frac{5c_1}{2}}\right)}{3} + \frac{x}{2}$$

✓ Solution by Mathematica

Time used: 4.144 (sec). Leaf size: 38

 $DSolve[(x-2*y[x]-1)+(3*x-6*y[x]+2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{6} \left(3x - 2W \left(-e^{\frac{5x}{2} - 1 + c_1} \right) \right)$$
$$y(x) \to \frac{x}{2}$$

5.16 problem 115

Internal problem ID [15022]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 115.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _exact, _rational, [_Abel, '2nd ty

$$y + (y - 1 + x)y' = -x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

dsolve((x+y(x))+(x+y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y = 1 - x - \sqrt{2c_1 - 2x + 1}$$
$$y = 1 - x + \sqrt{2c_1 - 2x + 1}$$

✓ Solution by Mathematica

Time used: 0.123 (sec). Leaf size: 43

 $DSolve[(x+y[x])+(x+y[x]-1)*y'[x] == 0, y[x], x, Include Singular Solutions \ \ -> \ True]$

$$y(x) \to -x - \sqrt{-2x + 1 + c_1} + 1$$

 $y(x) \to -x + \sqrt{-2x + 1 + c_1} + 1$

5.17 problem 116

Internal problem ID [15023]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 116.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$2xy'(-y^2 + x) + y^3 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $dsolve(2*x*diff(y(x),x)*(x-y(x)^2)+y(x)^3=0,y(x), singsol=all)$

$$y(x) = rac{\mathrm{e}^{rac{c_1}{2}}}{\sqrt{-rac{\mathrm{e}^{c_1}}{x \, \mathrm{LambertW}\left(-rac{\mathrm{e}^{c_1}}{x}
ight)}}}$$

✓ Solution by Mathematica

Time used: 6.48 (sec). Leaf size: 60

DSolve $[2*x*y'[x]*(x-y[x]^2)+y[x]^3==0,y[x],x$, Include Singular Solutions -> True

$$y(x)
ightarrow -i\sqrt{x}\sqrt{W\left(-rac{e^{c_1}}{x}
ight)}$$
 $y(x)
ightarrow i\sqrt{x}\sqrt{W\left(-rac{e^{c_1}}{x}
ight)}$
 $y(x)
ightarrow 0$

5.18 problem 117

Internal problem ID [15024]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 117.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$4y^6 - 6y^5xy' = -x^3$$

/ 5

Solution by Maple

Time used: 0.0 (sec). Leaf size: 127

 $dsolve(4*y(x)^6+x^3=6*x*y(x)^5*diff(y(x),x),y(x), singsol=all)$

$$y(x) = (x^{3}(c_{1}x - 1))^{\frac{1}{6}}$$

$$y(x) = -(x^{3}(c_{1}x - 1))^{\frac{1}{6}}$$

$$y(x) = -\frac{(1 + i\sqrt{3})(x^{3}(c_{1}x - 1))^{\frac{1}{6}}}{2}$$

$$y(x) = \frac{(i\sqrt{3} - 1)(x^{3}(c_{1}x - 1))^{\frac{1}{6}}}{2}$$

$$y(x) = -\frac{(i\sqrt{3} - 1)(x^{3}(c_{1}x - 1))^{\frac{1}{6}}}{2}$$

$$y(x) = \frac{(1 + i\sqrt{3})(x^{3}(c_{1}x - 1))^{\frac{1}{6}}}{2}$$

✓ Solution by Mathematica

Time used: 0.276 (sec). Leaf size: 144

DSolve[4*y[x]^6+x^3==6*x*y[x]^5*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\sqrt{x} \sqrt[6]{-1 + c_1 x}$$

$$y(x) \to \sqrt{x} \sqrt[6]{-1 + c_1 x}$$

$$y(x) \to -\sqrt[3]{-1}\sqrt{x}\sqrt[6]{-1+c_1x}$$

$$y(x) \to \sqrt[3]{-1}\sqrt{x}\sqrt[6]{-1+c_1x}$$

$$y(x) \to -(-1)^{2/3} \sqrt{x} \sqrt[6]{-1 + c_1 x}$$

$$y(x) \to (-1)^{2/3} \sqrt{x} \sqrt[6]{-1 + c_1 x}$$

5.19 problem 118

Internal problem ID [15025]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 118.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$y(1+\sqrt{y^4x^2+1})+2y'x=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

 $dsolve(y(x)*(1+sqrt(x^2*y(x)^4+1))+2*x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\operatorname{RootOf}\left(-\ln\left(x\right) + c_1 - 2\left(\int^{-Z} \frac{1}{\underline{a}\sqrt{\underline{a}^4 + 1}}d\underline{\underline{a}}\right)\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.624 (sec). Leaf size: $80\,$

DSolve[y[x]*(1+Sqrt[x^2*y[x]^4+1])+2*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o -rac{i\sqrt{2}e^{rac{c_1}{2}}}{\sqrt{-x^2 + e^{2c_1}}} \ y(x) o rac{i\sqrt{2}e^{rac{c_1}{2}}}{\sqrt{-x^2 + e^{2c_1}}} \ y(x) o 0$$

5.20 problem 119

Internal problem ID [15026]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 5. Homogeneous equations. Exercises page 44

Problem number: 119.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y^{3} + 3(y^{3} - x)y^{2}y' = -x$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 35

 $dsolve((x+y(x)^3)+3*(y(x)^3-x)*y(x)^2*diff(y(x),x)=0,y(x), singsol=all)$

$$\ln\left(x
ight) - c_1 + rac{\ln\left(rac{y(x)^6 + x^2}{x^2}
ight)}{2} - \arctan\left(rac{y(x)^3}{x}
ight) = 0$$

✓ Solution by Mathematica

Time used: 0.154 (sec). Leaf size: 27

 $DSolve[(x+y[x]^3)+3*(y[x]^3-x)*y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\arctan\left(\frac{x}{y(x)^3}\right) + \frac{1}{2}\log\left(x^2 + y(x)^6\right) = c_1, y(x)\right]$$

6 Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

6.1	problem 125.	 			•			 •								107
6.2	problem 126 .	 														108
6.3	problem 127 .	 														109
6.4	problem 128 .	 														110
6.5	problem 129 .	 														111
6.6	problem 130 .	 														112
6.7	problem 131 .	 						 •								113
6.8	problem 132 .	 						 •								114
6.9	problem 133 .	 			•			 •				•				115
6.10	problem 134 .	 			•							•				116
	problem 135.															117
6.12	problem 136 .	 			•							•				118
6.13	problem 137.	 						 •		•		•				119
	problem 138.															120
	problem 148 .															121
	problem 149.															122
	problem 150.															123
	problem 151 .															124
	problem 152.															125
	problem 153.															126
	problem 154.															127
	problem 155.															128
	problem 156 .															129
	problem 157.															130
	problem 158.															131
	problem 159 .															132
	problem 160 .															133
	problem 161.															134
	problem 162.															135
	problem 163.															136
	problem 164.															137
	problem 165.															139
	problem 166 .															140
	problem 167.															141
	problem 168.															142
6.36	problem 169.	 		 		 										143

6.37^{-1}	problem 170			 																													14	14
J	PIODICIII IIO	•	 •	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_	•

6.1 problem 125

Internal problem ID [15027]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 125.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x)+2*y(x)=exp(-x),y(x), singsol=all)

$$y(x) = (e^x + c_1) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 17

 $DSolve[y'[x]+2*y[x] == Exp[-x], y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to e^{-2x}(e^x + c_1)$$

6.2 problem 126

Internal problem ID [15028]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 126.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$-y'x - y = -x^2$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve([x^2-x*diff(y(x),x)=y(x),y(1) = 0],y(x), singsol=all)$

$$y(x) = \frac{x^3 - 1}{3x}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: $17\,$

 $\label{eq:DSolve} DSolve \ [\{x^2-x*y'[x]==y[x],\{y[1]==0\}\},y[x],x,Include Singular Solutions \ -> \ True]$

$$y(x) \to \frac{x^3 - 1}{3x}$$

6.3 problem 127

Internal problem ID [15029]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 127.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - 2yx = 2x e^{x^2}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)-2*x*y(x)=2*x*exp(x^2),y(x), singsol=all)$

$$y(x) = \left(x^2 + c_1\right) e^{x^2}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 17

$$y(x) \to e^{x^2} (x^2 + c_1)$$

6.4 problem 128

Internal problem ID [15030]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 128.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2yx = e^{-x^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $\label{eq:def-def-def} $\operatorname{dsolve}(\operatorname{diff}(y(x),x)+2*x*y(x)=\exp(-x^2),y(x), \ \operatorname{singsol=all})$$

$$y(x) = (x + c_1) e^{-x^2}$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 17

 $DSolve[y'[x]+2*x*y[x] == Exp[-x^2], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x^2}(x+c_1)$$

6.5 problem 129

Internal problem ID [15031]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 129.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$\cos(x) y' - \sin(x) y = 2x$$

With initial conditions

$$[y(0) = 0]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(y(x),x)*\cos(x)-y(x)*\sin(x)=2*x,y(0) = 0],y(x), \ \mbox{singsol=all}) \\$

$$y(x) = x^2 \sec(x)$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 11

 $DSolve[\{y'[x]*Cos[x]-y[x]*Sin[x]==2*x,\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x^2 \sec(x)$$

6.6 problem 130

Internal problem ID [15032]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 130.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x - 2y = \cos(x) x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(x*diff(y(x),x)-2*y(x)=x^3*cos(x),y(x), singsol=all)$

$$y(x) = \left(\sin\left(x\right) + c_1\right)x^2$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 14

DSolve $[x*y'[x]-2*y[x]==x^3*Cos[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow x^2(\sin(x) + c_1)$$

6.7 problem 131

Internal problem ID [15033]

 \mathbf{Book} : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 131.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \tan(x) y = \frac{1}{\cos(x)^3}$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve([diff(y(x),x)-y(x)*tan(x)=1/cos(x)^3,y(0) = 0],y(x), singsol=all)$

$$y(x) = \sec(x)\tan(x)$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 10

$$y(x) \to \tan(x)\sec(x)$$

6.8 problem 132

Internal problem ID [15034]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 132.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x \ln(x) y' - y = 3x^3 \ln(x)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(x),x)*x*ln(x)-y(x)=3*x^3*(ln(x))^2,y(x), singsol=all)$

$$y(x) = \left(x^3 + c_1\right) \ln\left(x\right)$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 14

DSolve[y'[x]*x*Log[x]-y[x]==3*x^3*(Log[x])^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (x^3 + c_1) \log(x)$$

6.9 problem 133

Internal problem ID [15035]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 133.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$(-y^2 + 2x) y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve((2*x-y(x)^2)*diff(y(x),x)=2*y(x),y(x), singsol=all)$

$$y(x) = c_1 - \sqrt{c_1^2 - 2x}$$

 $y(x) = c_1 + \sqrt{c_1^2 - 2x}$

✓ Solution by Mathematica

Time used: 0.253 (sec). Leaf size: 46

DSolve[(2*x-y[x]^2)*y'[x]==2*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 - \sqrt{-2x + c_1^2}$$

 $y(x) \to \sqrt{-2x + c_1^2} + c_1$
 $y(x) \to 0$

6.10 problem 134

Internal problem ID [15036]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 134.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + y\cos(x) = \cos(x)$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

dsolve([diff(y(x),x)+y(x)*cos(x)-cos(x),y(0) = 1],y(x), singsol=all)

$$y(x) = 1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 6

$$y(x) \to 1$$

6.11 problem 135

Internal problem ID [15037]

 $\mathbf{Book} :$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 135.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y' - \frac{y}{2\ln(y)y + y - x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

dsolve(diff(y(x),x)=y(x)/(2*y(x)*ln(y(x))+y(x)-x),y(x), singsol=all)

$$y(x) = e^{\text{RootOf}(Ze^2 - Z - xe^{-Z} + c_1)}$$

✓ Solution by Mathematica

Time used: 0.141 (sec). Leaf size: 19

 $DSolve[y'[x]==y[x]/(2*y[x]*Log[y[x]]+y[x]-x),y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[x = y(x)\log(y(x)) + \frac{c_1}{y(x)}, y(x)\right]$$

6.12 problem 136

Internal problem ID [15038]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 136.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$\left(\frac{e^{-y^2}}{2} - yx\right)y' = 1$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 34

 $\label{eq:decomposition} \\ \mbox{dsolve}((\mbox{exp}(-(\mbox{y}(\mbox{x})^2))/2-\mbox{x*y}(\mbox{x}))*\\ \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})-1=0,\mbox{y}(\mbox{x}), \mbox{ singsol=all}) \\$

$$\frac{\left(-\sqrt{\pi}\,\sqrt{2}\,\operatorname{erf}\left(\frac{\sqrt{2}\,y(x)}{2}\right)-4c_1\right)\operatorname{e}^{-\frac{y(x)^2}{2}}}{4}+x=0$$

✓ Solution by Mathematica

Time used: 0.211 (sec). Leaf size: 32

DSolve[$(\text{Exp}[-(y[x]^2)/2]-x*y[x])*y'[x]-1==0,y[x],x,IncludeSingularSolutions} \rightarrow True$

Solve
$$\left[x = e^{-\frac{1}{2}y(x)^2}y(x) + c_1e^{-\frac{1}{2}y(x)^2}, y(x)\right]$$

6.13 problem 137

Internal problem ID [15039]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 137.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - y e^x = 2x e^{e^x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x)-y(x)*exp(x)=2*x*exp(exp(x)),y(x), singsol=all)

$$y(x) = \left(x^2 + c_1\right) e^{e^x}$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 17

DSolve[y'[x]-y[x]*Exp[x]==2*x*Exp[Exp[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{e^x} (x^2 + c_1)$$

6.14 problem 138

Internal problem ID [15040]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 138.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + yx e^x = e^{(1-x)e^x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $\label{eq:decomposition} dsolve(diff(y(x),x) + x * y(x) * exp(x) = exp((1-x) * exp(x)), y(x), singsol = all)$

$$y(x) = (x + c_1) e^{-(-1+x)e^x}$$

✓ Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 20

DSolve[y'[x]+x*y[x]*Exp[x]==Exp[(1-x)*Exp[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-e^x(x-1)}(x+c_1)$$

6.15 problem 148

Internal problem ID [15041]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 148.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y \ln(2) = 2^{\sin(x)} (\cos(x) - 1) \ln(2)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $\label{localization} dsolve(diff(y(x),x)-y(x)*ln(2)=2^(sin(x))*(cos(x)-1)*ln(2),y(x), \; singsol=all)$

$$y(x) = 2^x c_1 + 2^{\sin(x)}$$

✓ Solution by Mathematica

Time used: 0.368 (sec). Leaf size: 16

 $DSolve[y'[x]-y[x]*Log[2] == 2^(Sin[x])*(Cos[x]-1)*Log[2], y[x], x, IncludeSingular \\ Solutions -> Track (Sin[x])*(Cos[x]-1)*(Cos[x$

$$y(x) \to 2^{\sin(x)} + c_1 2^x$$

6.16 problem 149

Internal problem ID [15042]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 149.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = -2e^{-x}$$

With initial conditions

$$[y(\infty) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

 $\label{eq:decomposition} \\ \mbox{dsolve([diff(y(x),x)-y(x)=-2*exp(-x),y(infinity) = 0],y(x), singsol=all)} \\$

$$y(x) = e^{-x}$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 10

DSolve[{y'[x]-y[x]==-2*Exp[-x],{y[Infinity]==0}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x}$$

6.17 problem 150

Internal problem ID [15043]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 150.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'\sin(x) - y\cos(x) = -\frac{\sin(x)^2}{x^2}$$

With initial conditions

$$[y(\infty) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

 $dsolve([diff(y(x),x)*sin(x)-y(x)*cos(x)=-sin(x)^2/x^2,y(infinity)=0],y(x), singsol=all)$

$$y(x) = \frac{\sin(x)}{x}$$

✓ Solution by Mathematica

Time used: 0.075 (sec). Leaf size: 19

$$y(x) \to \sin(x) \left(\text{Interval}[\{0, \text{Indeterminate}\}, \{\text{Indeterminate}, 0\}] + \frac{1}{x} \right)$$

6.18 problem 151

Internal problem ID [15044]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 151.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x^2 y' \cos\left(\frac{1}{x}\right) - y \sin\left(\frac{1}{x}\right) = -1$$

With initial conditions

$$[y(\infty) = 1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 13

 $dsolve([x^2*diff(y(x),x)*cos(1/x)-y(x)*sin(1/x)=-1,y(infinity) = 1],y(x), singsol=all)$

$$y(x) = \sin\left(\frac{1}{x}\right) + \cos\left(\frac{1}{x}\right)$$

✓ Solution by Mathematica

Time used: 0.113 (sec). Leaf size: 14

 $DSolve [\{x^2*y'[x]*Cos[1/x]-y[x]*Sin[1/x]==-1,\{y[Infinity]==1\}\},y[x],x,Include \\ Singular Solution for the property of the$

$$y(x) \to \sin\left(\frac{1}{x}\right) + \cos\left(\frac{1}{x}\right)$$

6.19 problem 152

Internal problem ID [15045]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 152.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$2y'x - y = 1 - \frac{2}{\sqrt{x}}$$

With initial conditions

$$[y(\infty) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([2*x*diff(y(x),x)-y(x)=1-2/sqrt(x),y(infinity) = -1],y(x), singsol=all)

$$y(x) = -\frac{\sqrt{x} - 1}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 12

DSolve[{2*x*y'[x]-y[x]==1-2/Sqrt[x],{y[Infinity]==-1}},y[x],x,IncludeSingularSolutions -> Tr

$$y(x) o rac{1}{\sqrt{x}} - 1$$

6.20 problem 153

Internal problem ID [15046]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 153.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$2y'x + y = (x^2 + 1) e^x$$

With initial conditions

$$[y(-\infty) = 1]$$

✓ Solution by Maple

Time used: 0.188 (sec). Leaf size: 11

 $dsolve([2*x*diff(y(x),x)+y(x)=(x^2+1)*exp(x),y(-infinity) = 1],y(x), singsol=all)$

$$y(x) = \frac{\infty i}{\sqrt{\text{signum}(x)}}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

{}

6.21 problem 154

Internal problem ID [15047]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 154.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'x + y = 2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(x*diff(y(x),x)+y(x)=2*x,y(x), singsol=all)

$$y(x) = x + \frac{c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 13

DSolve[x*y'[x]+y[x]==2*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + \frac{c_1}{x}$$

6.22 problem 155

Internal problem ID [15048]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 155.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y'\sin(x) + y\cos(x) = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $\label{eq:decomposition} dsolve(\sin(x)*diff(y(x),x)+y(x)*\cos(x)=1,y(x), \ singsol=all)$

$$y(x) = (x + c_1)\csc(x)$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 12

DSolve[Sin[x]*y'[x]+y[x]*Cos[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (x + c_1) \csc(x)$$

6.23 problem 156

Internal problem ID [15049]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 156.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$\cos(x) y' - \sin(x) y = -\sin(2x)$$

With initial conditions

$$\left[y\left(\frac{\pi}{2}\right) = 0\right]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 6

dsolve([cos(x)*diff(y(x),x)-y(x)*sin(x)=-sin(2*x),y(1/2*Pi) = 0],y(x), singsol=all)

$$y(x) = \cos(x)$$

✓ Solution by Mathematica

Time used: 0.133 (sec). Leaf size: 7

DSolve[{Cos[x]*y'[x]-y[x]*Sin[x]==-Sin[2*x],{y[Pi/2]==0}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to \cos(x)$$

6.24 problem 157

Internal problem ID [15050]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 157.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + 2yx - 2y^2x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)+2*x*y(x)=2*x*y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{1}{1 + e^{x^2} c_1}$$

/ Solution by Mathematica

Time used: 0.204 (sec). Leaf size: 27

DSolve[y'[x]+2*x*y[x]==2*x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{1 + e^{x^2 + c_1}}$$
$$y(x) \to 0$$

$$y(x) \to 1$$

6.25 problem 158

Internal problem ID [15051]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 158.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$3y^2xy' - 2y^3 = x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 57

 $dsolve(3*x*y(x)^2*diff(y(x),x)-2*y(x)^3=x^3,y(x), singsol=all)$

$$y(x) = ((x + c_1) x^2)^{\frac{1}{3}}$$

$$y(x) = -\frac{((x + c_1) x^2)^{\frac{1}{3}} (1 + i\sqrt{3})}{2}$$

$$y(x) = \frac{((x + c_1) x^2)^{\frac{1}{3}} (i\sqrt{3} - 1)}{2}$$

✓ Solution by Mathematica

Time used: 0.18 (sec). Leaf size: 66

DSolve[3*x*y[x]^2*y'[x]-2*y[x]^3==x^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^{2/3} \sqrt[3]{x + c_1}$$

$$y(x) \to -\sqrt[3]{-1} x^{2/3} \sqrt[3]{x + c_1}$$

$$y(x) \to (-1)^{2/3} x^{2/3} \sqrt[3]{x + c_1}$$

6.26 problem 159

Internal problem ID [15052]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 159.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$\left(x^3 + e^y\right)y' = 3x^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $dsolve((x^3+exp(y(x)))*diff(y(x),x)=3*x^2,y(x), singsol=all)$

$$y(x) = \ln \left(\frac{x^3}{\text{LambertW}\left(\frac{x^3}{c_1}\right)} \right)$$

✓ Solution by Mathematica

Time used: 3.536 (sec). Leaf size: 19

DSolve[(x^3+Exp[y[x]])*y'[x]==3*x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to W(e^{-c_1}x^3) + c_1$$

6.27 problem 160

Internal problem ID [15053]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 160.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + 3yx - y e^{x^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve(diff(y(x),x)+3*x*y(x)=y(x)*exp(x^2),y(x), singsol=all)$

$$y(x) = c_1 e^{-\frac{3x^2}{2} + \frac{\sqrt{\pi} \text{ erfi}(x)}{2}}$$

✓ Solution by Mathematica

Time used: 0.075 (sec). Leaf size: 33

 $DSolve[y'[x]+3*x*y[x]==y[x]*Exp[x^2],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow c_1 e^{rac{1}{2}\left(\sqrt{\pi} \mathrm{erfi}(x) - 3x^2
ight)} \ y(x)
ightarrow 0$$

6.28 problem 161

Internal problem ID [15054]

 $\mathbf{Book} :$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 161.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$y' - 2y e^x - 2\sqrt{y e^x} = 0$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 53

dsolve(diff(y(x),x)-2*y(x)*exp(x)=2*sqrt(y(x)*exp(x)),y(x), singsol=all)

$$\frac{y(x) e^{\frac{x}{2} - e^{x}} - \left(\int e^{\frac{x}{2} - e^{x}} dx\right) \sqrt{y(x) e^{x}} + c_{1} \sqrt{y(x) e^{x}}}{\sqrt{y(x) e^{x}}} = 0$$

✓ Solution by Mathematica

Time used: 0.215 (sec). Leaf size: $56\,$

DSolve[y'[x]-2*y[x]*Exp[x]==2*Sqrt[y[x]*Exp[x]],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left\lceil \frac{2\left(\sqrt{\pi}\sqrt{y(x)}\mathrm{erf}\left(\frac{\sqrt{e^xy(x)}}{\sqrt{y(x)}}\right) - e^{-e^x}y(x)\right)}{\sqrt{y(x)}} = c_1, y(x) \right\rceil$$

6.29 problem 162

Internal problem ID [15055]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 162.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$2y'\ln(x) + \frac{y}{x} - \frac{\cos(x)}{y} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

dsolve(2*diff(y(x),x)*ln(x)+y(x)/x=cos(x)/y(x),y(x), singsol=all)

$$y(x) = \frac{\sqrt{\ln(x)(\sin(x) + c_1)}}{\ln(x)}$$
$$y(x) = -\frac{\sqrt{\ln(x)(\sin(x) + c_1)}}{\ln(x)}$$

✓ Solution by Mathematica

Time used: 0.311 (sec). Leaf size: 42

DSolve[2*y'[x]*Log[x]+y[x]/x==Cos[x]/y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o -rac{\sqrt{\sin(x) + c_1}}{\sqrt{\log(x)}}$$
 $y(x) o rac{\sqrt{\sin(x) + c_1}}{\sqrt{\log(x)}}$

6.30 problem 163

Internal problem ID [15056]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 163.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$2y' \sin(x) + y \cos(x) - \sin(x)^{2} y^{3} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(2*diff(y(x),x)*sin(x)+y(x)*cos(x)=y(x)^3*sin(x)^2,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{(-x + c_1)\sin(x)}}$$
$$y(x) = -\frac{1}{\sqrt{(-x + c_1)\sin(x)}}$$

✓ Solution by Mathematica

Time used: 0.516 (sec). Leaf size: $43\,$

DSolve[2*y'[x]*Sin[x]+y[x]*Cos[x]==y[x]^3*Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{\sqrt{(-x+c_1)\sin(x)}}$$
$$y(x) \to \frac{1}{\sqrt{-((x-c_1)\sin(x))}}$$
$$y(x) \to 0$$

6.31 problem 164

Internal problem ID [15057]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 164.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$(1 + x^2 + y^2) y' + yx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 113

 $dsolve((x^2+y(x)^2+1)*diff(y(x),x)+x*y(x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{-x^2 - 1 - \sqrt{x^4 + 2x^2 - 4c_1}}$$

$$y(x) = \sqrt{-x^2 - 1 + \sqrt{x^4 + 2x^2 - 4c_1}}$$

$$y(x) = -\sqrt{-x^2 - 1 - \sqrt{x^4 + 2x^2 - 4c_1}}$$

$$y(x) = -\sqrt{-x^2 - 1 + \sqrt{x^4 + 2x^2 - 4c_1}}$$

Solution by Mathematica

Time used: 2.437 (sec). Leaf size: 146

 $DSolve[(x^2+y[x]^2+1)*y'[x]+x*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{-x^2 - \sqrt{x^4 + 2x^2 + 1 + 4c_1} - 1}$$

$$y(x) \to \sqrt{-x^2 - \sqrt{x^4 + 2x^2 + 1 + 4c_1} - 1}$$

$$y(x) \to -\sqrt{-x^2 + \sqrt{x^4 + 2x^2 + 1 + 4c_1} - 1}$$

$$y(x) \to \sqrt{-x^2 + \sqrt{x^4 + 2x^2 + 1 + 4c_1} - 1}$$

$$y(x) \to 0$$

6.32 problem 165

Internal problem ID [15058]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 165.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - y\cos(x) - y^2\cos(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)-y(x)*cos(x)=y(x)^2*cos(x),y(x), singsol=all)$

$$y(x) = \frac{1}{e^{-\sin(x)}c_1 - 1}$$

✓ Solution by Mathematica

Time used: 0.359 (sec). Leaf size: 35

 $DSolve[y'[x]-y[x]*Cos[x]==y[x]^2*Cos[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{e^{\sin(x)+c_1}}{-1+e^{\sin(x)+c_1}}$$

$$y(x) \to -1$$

$$y(x) \to 0$$

6.33 problem 166

Internal problem ID [15059]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 166.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$y' - \tan(y) - \frac{e^x}{\cos(y)} = 0$$

X Solution by Maple

dsolve(diff(y(x),x)-tan(y(x))=exp(x)/cos(y(x)),y(x), singsol=all)

No solution found

✓ Solution by Mathematica

Time used: 11.451 (sec). Leaf size: 14

DSolve[y'[x]-Tan[y[x]]==Exp[x]/Cos[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \arcsin\left(e^x(x+c_1)\right)$$

6.34 problem 167

Internal problem ID [15060]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 167.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$y' - y(e^x + \ln(y)) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

dsolve(diff(y(x),x)=y(x)*(exp(x)+ln(y(x))),y(x), singsol=all)

$$y(x) = e^{e^x(x+c_1)}$$

✓ Solution by Mathematica

Time used: 0.372 (sec). Leaf size: 15

DSolve[y'[x]==y[x]*(Exp[x]+Log[y[x]]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{e^x(x+c_1)}$$

6.35 problem 168

Internal problem ID [15061]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 168.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(y)]']]

$$\cos(y) y' + \sin(y) = x + 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve(diff(y(x),x)*cos(y(x))+sin(y(x))=x+1,y(x), singsol=all)

$$y(x) = -\arcsin\left(-x + c_1 e^{-x}\right)$$

✓ Solution by Mathematica

Time used: 13.261 (sec). Leaf size: 17

DSolve[y'[x]*Cos[y[x]]+Sin[y[x]]==x+1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \arcsin\left(x - c_1 e^{-x}\right)$$

6.36 problem 169

Internal problem ID [15062]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54

Problem number: 169.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$yy' - (x-1)e^{-\frac{y^2}{2}} = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

 $dsolve(y(x)*diff(y(x),x)+1=(x-1)*exp(-y(x)^2/2),y(x), singsol=all)$

$$y(x) = \sqrt{2} \sqrt{\ln(-c_1 e^{-x} + x - 2)}$$
$$y(x) = -\sqrt{2} \sqrt{\ln(-c_1 e^{-x} + x - 2)}$$

✓ Solution by Mathematica

Time used: 7.375 (sec). Leaf size: 60

$$y(x) \to -\sqrt{2}\sqrt{-x + \log(e^x(x-2) + c_1)}$$

 $y(x) \to \sqrt{2}\sqrt{-x + \log(e^x(x-2) + c_1)}$

6.37 problem 170

Internal problem ID [15063]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Section 6. Linear equations of the first order. The Bernoulli equation. Exercises

page 54

Problem number: 170.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$y' + x \sin(2y) - 2x e^{-x^2} \cos(y)^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)+x*sin(2*y(x))=2*x*exp(-x^2)*cos(y(x))^2,y(x), singsol=all)$

$$y(x) = \arctan\left(\left(x^2 + 2c_1\right)e^{-x^2}\right)$$

✓ Solution by Mathematica

Time used: 10.038 (sec). Leaf size: 70

$$y(x) \to \arctan\left(e^{-x^2}(x^2 + c_1)\right)$$
$$y(x) \to -\frac{1}{2}\pi e^{x^2}\sqrt{e^{-2x^2}}$$
$$y(x) \to \frac{1}{2}\pi e^{x^2}\sqrt{e^{-2x^2}}$$

7 Section 7, Total differential equations. The integrating factor. Exercises page 61

7.1	problem 175										•				•				146
7.2	problem 176																		148
7.3	problem 177																		150
7.4	problem 178																		151
7.5	problem 179												 •						152
7.6	problem 180												•						153
7.7	problem 181																		155
7.8	problem 182																		157
7.9	problem 184												•						158
7.10	problem 185																		159
7.11	problem 186																		160
7.12	problem 187																		161
7.13	problem 188																		162
7.14	problem 189												•						164
7.15	problem 190																		165
7.16	problem 191																		166
7.17	problem 192																		167
7.18	problem 193																		168
7.19	problem 194																		169
7.20	problem 195												•						170
7.21	problem 196												•						171
7.22	problem 197																		173
7.23	problem 198							 											174

7.1 problem 175

Internal problem ID [15064]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 175.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$x(2x^{2} + y^{2}) + y(x^{2} + 2y^{2}) y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 125

 $\label{eq:dsolve} $$ dsolve(x*(2*x^2+y(x)^2)+y(x)*(x^2+2*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all) $$ dsolve(x*(2*x^2+y(x)^2)+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all) $$ dsolve(x*(2*x^2+y(x)^2)+y(x)^2)*diff(x) $$ dsolve(x*(2*x^2+y(x)^2)+y(x)^2)*diff(x) $$ dsolve(x*(2*x^2+y(x)^2)+y(x)^2) $$ dsolve(x*(2*x^2+y(x)^2)+y(x)^2)*diff(x) $$ dsolve(x*(2*x^2+y(x)^2)+y(x)^2) $$ d$

$$y(x) = -\frac{\sqrt{-2c_1x^2 - 2\sqrt{-3c_1^2x^4 + 4}}}{2\sqrt{c_1}}$$

$$y(x) = \frac{\sqrt{-2c_1x^2 - 2\sqrt{-3c_1^2x^4 + 4}}}{2\sqrt{c_1}}$$

$$y(x) = -\frac{\sqrt{-2c_1x^2 + 2\sqrt{-3c_1^2x^4 + 4}}}{2\sqrt{c_1}}$$

$$y(x) = \frac{\sqrt{-2c_1x^2 + 2\sqrt{-3c_1^2x^4 + 4}}}{2\sqrt{c_1}}$$

✓ Solution by Mathematica

Time used: 23.583 (sec). Leaf size: 303

$$y(x) \to -\frac{\sqrt{-x^2 - \sqrt{-3x^4 + 4e^{2c_1}}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{-x^2 - \sqrt{-3x^4 + 4e^{2c_1}}}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{-x^2 + \sqrt{-3x^4 + 4e^{2c_1}}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{-x^2 + \sqrt{-3x^4 + 4e^{2c_1}}}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{-\sqrt{3}\sqrt{-x^4} - x^2}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{-\sqrt{3}\sqrt{-x^4} - x^2}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{\sqrt{3}\sqrt{-x^4} - x^2}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{\sqrt{3}\sqrt{-x^4} - x^2}}{\sqrt{2}}$$

7.2 problem 176

Internal problem ID [15065]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 176.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$6y^{2}x + (6x^{2}y + 4y^{3})y' = -3x^{2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 125

 $dsolve((3*x^2+6*x*y(x)^2)+(6*x^2*y(x)+4*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{-6x^2 - 2\sqrt{9x^4 - 4x^3 - 4c_1}}}{2}$$

$$y(x) = \frac{\sqrt{-6x^2 - 2\sqrt{9x^4 - 4x^3 - 4c_1}}}{2}$$

$$y(x) = -\frac{\sqrt{-6x^2 + 2\sqrt{9x^4 - 4x^3 - 4c_1}}}{2}$$

$$y(x) = \frac{\sqrt{-6x^2 + 2\sqrt{9x^4 - 4x^3 - 4c_1}}}{2}$$

✓ Solution by Mathematica

Time used: 5.982 (sec). Leaf size: 163

DSolve[(3*x^2+6*x*y[x]^2)+(6*x^2*y[x]+4*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to -\frac{\sqrt{-3x^2 - \sqrt{9x^4 - 4x^3 + 4c_1}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{-3x^2 - \sqrt{9x^4 - 4x^3 + 4c_1}}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{-3x^2 + \sqrt{9x^4 - 4x^3 + 4c_1}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{-3x^2 + \sqrt{9x^4 - 4x^3 + 4c_1}}}{\sqrt{2}}$$

7.3 problem 177

Internal problem ID [15066]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 177.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$\frac{x}{\sqrt{x^2 + y^2}} + \frac{1}{y} + \left(\frac{y}{\sqrt{x^2 + y^2}} + \frac{1}{y} - \frac{x}{y^2}\right)y' = -\frac{1}{x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $dsolve((x/sqrt(x^2+y(x)^2)+1/x+1/y(x))+(y(x)/sqrt(x^2+y(x)^2)+1/y(x)-x/y(x)^2)*diff(y(x),x)=(x^2+y(x)^2)+1/x+1/y(x)+1/y$

$$\frac{y(x)\ln(y(x)) + \left(\sqrt{x^2 + y(x)^2} + c_1 + \ln(x)\right)y(x) + x}{y(x)} = 0$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(x/Sqrt[x^2+y[x]^2]+1/x+1/y[x])+(y[x]/Sqrt[x^2+y[x]^2]+1/y[x]-x/y[x]^2)*y'[x]==0,y[x]$

Not solved

7.4 problem 178

Internal problem ID [15067]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 178.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$3x^{2} \tan(y) - \frac{2y^{3}}{x^{3}} + \left(x^{3} \sec(y)^{2} + 4y^{3} + \frac{3y^{2}}{x^{2}}\right) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve((3*x^2*tan(y(x))-2*y(x)^3/x^3)+(x^3*sec(y(x))^2+4*y(x)^3+3*y(x)^2/x^2)*diff(y(x))$

$$x^{3} \tan (y(x)) + \frac{y(x)^{3}}{r^{2}} + y(x)^{4} + c_{1} = 0$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(3*x^2*Tan[y[x]]-2*y[x]^3/x^3)+(x^3*Sec[y[x]]^2+4*y[x]^3+3*y[x]^2/x^2)*y'[x]==0,$

Not solved

7.5 problem 179

Internal problem ID [15068]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 179.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _exact, _rational]

$$x^{2} + y^{2} - \frac{(x^{2} + y^{2})y'}{y^{2}x} = -2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

 $dsolve((2*x+ (x^2+y(x)^2)/(x^2*y(x))) = ((x^2+y(x)^2)/(x*y(x)^2))*diff(y(x),x),y(x), sings(x)$

$$y(x) = -\frac{\left(-x^2 + \sqrt{x^4 + 4c_1x^2 + 4c_1^2 + 4} - 2c_1\right)x}{2}$$
$$y(x) = \frac{\left(x^2 + 2c_1 + \sqrt{x^4 + 4c_1x^2 + 4c_1^2 + 4}\right)x}{2}$$

✓ Solution by Mathematica

Time used: 0.364 (sec). Leaf size: 78

 $DSolve[(2*x+ (x^2+y[x]^2)/(x^2*y[x])) == ((x^2+y[x]^2)/(x*y[x]^2))*y'[x],y[x],x,IncludeSing(x)$

$$y(x) \to \frac{1}{2}x \left(x^2 - \sqrt{x^4 + 2c_1x^2 + 4 + c_1^2} + c_1\right)$$
$$y(x) \to \frac{1}{2}x \left(x^2 + \sqrt{x^4 + 2c_1x^2 + 4 + c_1^2} + c_1\right)$$
$$y(x) \to 0$$

7.6 problem 180

Internal problem ID [15069]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 180.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$\frac{\sin(2x)}{y} + \left(y - \frac{\sin(x)^2}{y^2}\right)y' = -x$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 401

$$dsolve((sin(2*x)/y(x)+x)+(y(x)-sin(x)^2/y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$$

$$y(x) = \frac{\left(-108 + 108\cos\left(2x\right) + 12\sqrt{12x^6 + 72c_1x^4 + 144x^2c_1^2 + 96c_1^3 + 81 - 162\cos\left(2x\right) + 81\cos\left(2x\right)^2}\right)^{\frac{2}{3}} - 1}{6\left(-108 + 108\cos\left(2x\right) + 12\sqrt{12x^6 + 72c_1x^4 + 144x^2c_1^2 + 96c_1^3 + 81 - 162\cos\left(2x\right) + 81\cos\left(2x\right)}\right)}$$

$$y(x) = \frac{\left(\frac{i\sqrt{3}}{12} + \frac{1}{12}\right)\left(-108 + 108\cos\left(2x\right) + 12\sqrt{12x^6 + 72c_1x^4 + 144x^2c_1^2 + 96c_1^3 + 81 - 162\cos\left(2x\right) + 81\cos\left(2x\right) + 81\cos\left(2x\right) + 81\cos\left(2x\right) + 12\sqrt{12x^6 + 72c_1x^4 + 144x^2c_1^2 + 96c_1^3 + 81 - 162\cos\left(2x\right) + 81\cos\left(2x\right) + 9(x)}}{\left(-108 + 108\cos\left(2x\right) + 12\sqrt{12x^6 + 72c_1x^4 + 144x^2c_1^2 + 96c_1^3 + 81 - 162\cos\left(2x\right) + 81\cos\left(2x\right) + 9(x)\right)}}$$

$$= \frac{\left(-108 + 108\cos\left(2x\right) + 12\sqrt{12x^6 + 72c_1x^4 + 144x^2c_1^2 + 96c_1^3 + 81 - 162\cos\left(2x\right) + 81\cos\left(2x\right) + 9(x)\right)}{\left(-108 + 108\cos\left(2x\right) + 12\sqrt{12x^6 + 72c_1x^4 + 144x^2c_1^2 + 96c_1^3 + 81 - 162\cos\left(2x\right) + 81\cos\left(2x\right) + 9(x)\right)}}$$

✓ Solution by Mathematica

Time used: 6.373 (sec). Leaf size: 394

$$y(x) \rightarrow \frac{\sqrt[3]{2} \left(2\sqrt{3}\sqrt{27 \sin^4(x) + (x^2 - c_1)^3} + 9 \cos(2x) - 9\right)^{2/3} - 2\sqrt[3]{3}(x^2 - c_1)}{6^{2/3}\sqrt[3]{2\sqrt{3}}\sqrt{27 \sin^4(x) + (x^2 - c_1)^3} + 9 \cos(2x) - 9}$$

$$y(x)$$

$$\rightarrow \frac{6\sqrt[3]{2}(1 + i\sqrt{3})(x^2 - c_1) + i6^{2/3}(\sqrt{3} + i)\left(2\sqrt{3}\sqrt{27 \sin^4(x) + (x^2 - c_1)^3} + 9 \cos(2x) - 9\right)^{2/3}}{12\sqrt[3]{3}\sqrt[3]{2\sqrt{3}}\sqrt{27 \sin^4(x) + (x^2 - c_1)^3} + 9 \cos(2x) - 9}$$

$$y(x)$$

$$\rightarrow \frac{6\sqrt[3]{2}(1 - i\sqrt{3})(x^2 - c_1) - 6^{2/3}(1 + i\sqrt{3})\left(2\sqrt{3}\sqrt{27 \sin^4(x) + (x^2 - c_1)^3} + 9 \cos(2x) - 9\right)^{2/3}}{12\sqrt[3]{3}\sqrt[3]{2\sqrt{3}}\sqrt{27 \sin^4(x) + (x^2 - c_1)^3} + 9 \cos(2x) - 9}$$

$$y(x) \rightarrow 0$$

7.7 problem 181

Internal problem ID [15070]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 181.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$-y + (2y - x + 3y^2) y' = -3x^2 + 2x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 637

$$dsolve((3*x^2-2*x-y(x))+(2*y(x)-x+3*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$$

$$y(x) = \frac{\left(-36x - 108x^3 + 108x^2 - 108c_1 - 8 + 12\sqrt{81x^6 - 162x^5 + 162c_1x^3 + 135x^4 - 162c_1x^2 - 54x^3 + 81c_1^2} + \frac{6}{2x + \frac{2}{3}} + \frac{6}{\left(-36x - 108x^3 + 108x^2 - 108c_1 - 8 + 12\sqrt{81x^6 - 162x^5 + 162c_1x^3 + 135x^4 - 162c_1x^2 - 54x^3 + 81c_1x^2 - \frac{1}{3}} \right)}{y(x)}$$

$$= \frac{i\left(4 - \left(-36x - 108x^3 + 108x^2 - 108c_1 - 8 + 12\sqrt{81x^6 - 162x^5 + 135x^4 + (162c_1 - 54)x^3 + (-162c_1x^3 + 135x^4 - 162c_1x^3 + 135x^4 - 162c_1x^3 + 135x^4 + (162c_1 - 54)x^3 + (-162c_1x^3 + 135x^4 - 162c_1x^3 + 135x^4 - 162c_1x^3 + 135x^4 + (162c_1 - 54)x^3 + (-162c_1x^3 + 135x^4 - 162c_1x^3 + 135x^4 - 162c_1x^3 + 135x^4 + (162c_1 - 54)x^3 + (-162c_1x^3 + 135x^4 - 162c_1x^3 + 135x^4 + (162c_1 - 54)x^3 + (-162c_1x^3 + 135x^4 - 162c_1x^3 + 135x^4 + (162c_1 - 54)x^3 + (-162c_1x^3 + 135x^4 - 162c_1x^3 + 135x^4 + (162c_1 - 54)x^3 + (-162c_1x^3 + 135x^4 + (-162c_1x^3 + (-162c_1x^3 + 135x^4 + (-162c_1x^3 + (-162c_1x^3 + 135x^4 + (-162c_1x^3 + (-162c_1x^3 + (-162c_1x^3 + (-162c_1x^3 + (-162c_1x^3$$

$$y(x) = \frac{i\left(\left(-36x - 108x^3 + 108x^2 - 108c_1 - 8 + 12\sqrt{81x^6 - 162x^5 + 135x^4 + (162c_1 - 54)x^3 + (-162c_1 - 18x^3 + 12x^4 + 12x^$$

✓ Solution by Mathematica

Time used: 5.636 (sec). Leaf size: 478

$$\begin{split} y(x) & \to \frac{1}{6} \left(-\frac{2\sqrt[3]{2}(3x+1)}{\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1}}{-2^{2/3}\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1}}{-2} \right) \\ y(x) & \to \frac{1}{12} \left(\frac{2\sqrt[3]{2}(1+i\sqrt{3})\left(3x+1\right)}{\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1}}{+2^{2/3}\left(1-i\sqrt{3}\right)\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1}}{-4} \right) \\ y(x) & \to \frac{1}{12} \left(\frac{2\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)}{\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1}}{+2^{2/3}\left(1+i\sqrt{3}\right)\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1}} \right) \\ & \to \frac{1}{12} \left(\frac{2\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)}{\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1}}{+2^{2/3}\left(1+i\sqrt{3}\right)\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1}} \right) \\ & \to \frac{1}{12} \left(\frac{2\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)}{\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1}} \right) \\ & \to \frac{1}{12} \left(\frac{2\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)}{\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1} \right) \\ & \to \frac{1}{12} \left(\frac{2\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)}{\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1} \right) \\ & \to \frac{1}{12} \left(\frac{2\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)}{\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1} \right) \\ & \to \frac{1}{12} \left(\frac{2\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)}{\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1} \right) \\ & \to \frac{1}{12} \left(\frac{2\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)}{\sqrt[3]{27x^3 - 27x^2 + \sqrt{-4(3x+1)^3 + (27x^3 - 27x^2 + 9x + 2 + 27c_1)^2} + 9x + 2 + 27c_1} \right) \\ & \to \frac{1}{12} \left(\frac{2\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)}{\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)} \right) \\ & \to \frac{1}{12} \left(\frac{2\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)}{\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)} \right) \\ & \to \frac{1}{12} \left(\frac{2\sqrt[3]{2}(1-i\sqrt{3})\left(3x+1\right)}$$

7.8 problem 182

Internal problem ID [15071]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 182.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\frac{xy}{\sqrt{x^2+1}} + 2yx - \frac{y}{x} + \left(\sqrt{x^2+1} + x^2 - \ln(x)\right)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 64

 $dsolve((x*y(x)/sqrt(1+x^2) + 2*x*y(x) - y(x)/x) + (sqrt(1+x^2) + x^2-ln(x))*diff(y(x),x) = (sqrt(1+x^2) + x^2-ln(x))*$

$$y(x) = c_1 \mathrm{e}^{-\left(\int rac{2\sqrt{x^2+1}}{\sqrt{x^2+1}} rac{x^2+x^2}{x} - \sqrt{x^2+1}} dx
ight)} dx$$

✓ Solution by Mathematica

Time used: 7.409 (sec). Leaf size: 94

DSolve[(
$$x*y[x]/Sqrt[1+x^2] + 2*x*y[x] - y[x]/x)+(Sqrt[1+x^2] + x^2-Log[x])*y'[x]==0,y[x]$$

$$y(x) \to c_1 \exp\left(\int_1^x \frac{\sqrt{K[1]^2 + 1} - K[1]^2 \left(2\sqrt{K[1]^2 + 1} + 1\right)}{K[1] \left(\left(\sqrt{K[1]^2 + 1} + 1\right) K[1]^2 - \sqrt{K[1]^2 + 1} \log(K[1]) + 1\right)} dK[1]\right)$$

$$y(x) \to 0$$

7.9 problem 184

Internal problem ID [15072]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 184.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$\sin(y) + \sin(x) y + \left(\cos(y) x - \cos(x) + \frac{1}{y}\right) y' = -\frac{1}{x}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

 $\frac{dsolve((sin(y(x))+y(x)*sin(x)+1/x)+(x*cos(y(x))-cos(x)+1/y(x))*diff(y(x),x)=0,y(x),sing(x)+1/y(x)}{dsolve((sin(y(x))+y(x)*sin(x)+1/x)+(x*cos(y(x))-cos(x)+1/y(x))*diff(y(x),x)=0,y(x),sing(x)+1/x}$

$$-y(x)\cos(x) + \sin(y(x))x + \ln(x) + \ln(y(x)) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.332 (sec). Leaf size: 23 $\,$

$$Solve[log(y(x)) + x sin(y(x)) - y(x) cos(x) + log(x) = c_1, y(x)]$$

7.10 problem 185

Internal problem ID [15073]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 185.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$\frac{y + \sin(x)\cos(yx)^2}{\cos(yx)^2} + \left(\frac{x}{\cos(yx)^2} + \sin(y)\right)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

 $\frac{dsolve(((y(x)+sin(x)*cos(x*y(x))^2)/cos(x*y(x))^2)+(x/cos(x*y(x))^2+sin(y(x)))*diff(y(x)))}{dsolve(((y(x)+sin(x)*cos(x*y(x)))^2)+(x/cos(x*y(x))^2+sin(y(x)))*diff(y(x)))}$

$$\tan(xy(x)) - \cos(x) - \cos(y(x)) + c_1 = 0$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[((y[x]+Sin[x]*Cos[x*y[x]]^2)/Cos[x*y[x]]^2)+(x/Cos[x*y[x]]^2+Sin[y[x]])*y'[x]=0$

Not solved

7.11 problem 186

Internal problem ID [15074]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 186.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$\frac{2x}{y^3} + \frac{(y^2 - 3x^2)y'}{y^4} = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 1.5 (sec). Leaf size: 5

 $dsolve([(2*x/y(x)^3)+((y(x)^2-3*x^2)/y(x)^4)*diff(y(x),x)=0,y(1)=1],y(x), singsol=all)$

$$y(x) = x$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[{(2*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)*y'[x]==0,{y[1]==1}},y[x],x,IncludeSingularSolve[{(2*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)*y'[x]==0,{y[1]==1}},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)*y'[x]==0,{y[1]==1}},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)*y'[x]==0,{y[1]==1}},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)*y'[x]==0,{y[1]==1}},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)*y'[x]==0,{y[1]==1}},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)*y'[x]==0,{y[1]==1}},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)*y'[x]==0,{y[1]==1}},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]^4)},y[x],x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]},x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]},x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]},x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]},x,IncludeSingularSolve[{(3*x/y[x]^3)+((y[x]^2-3*x^2)/y[x]},x,Inc$

Timed out

7.12 problem 187

Internal problem ID [15075]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 187.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$y(x^2 + y^2 + a^2) y' + x(y^2 - a^2 + x^2) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 129

 $dsolve((y(x)*(x^2+y(x)^2+a^2))*diff(y(x),x)+x*(x^2+y(x)^2-a^2)=0,y(x), singsol=all)$

$$y(x) = \sqrt{-a^2 - x^2 - 2\sqrt{a^2x^2 - c_1}}$$

$$y(x) = \sqrt{-a^2 - x^2 + 2\sqrt{a^2x^2 - c_1}}$$

$$y(x) = -\sqrt{-a^2 - x^2 - 2\sqrt{a^2x^2 - c_1}}$$

$$y(x) = -\sqrt{-a^2 - x^2 + 2\sqrt{a^2x^2 - c_1}}$$

✓ Solution by Mathematica

Time used: 2.374 (sec). Leaf size: 165

$$y(x) \to -\sqrt{-a^2 - \sqrt{a^4 + 4a^2x^2 + 4c_1} - x^2}$$

$$y(x) \to \sqrt{-a^2 - \sqrt{a^4 + 4a^2x^2 + 4c_1} - x^2}$$

$$y(x) \to -\sqrt{-a^2 + \sqrt{a^4 + 4a^2x^2 + 4c_1} - x^2}$$

$$y(x) \to \sqrt{-a^2 + \sqrt{a^4 + 4a^2x^2 + 4c_1} - x^2}$$

7.13 problem 188

Internal problem ID [15076]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 188.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$3x^{2}y + y^{3} + (x^{3} + 3y^{2}x) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 274

 $dsolve((3*x^2*y(x)+y(x)^3)+(x^3+3*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{12^{\frac{1}{3}} \left(x^4 c_1^2 12^{\frac{1}{3}} - \left(\left(\sqrt{3} \sqrt{4 c_1^4 x^8 + 27} + 9 \right) x^2 c_1 \right)^{\frac{2}{3}} \right)}{6 c_1 x \left(\left(\sqrt{3} \sqrt{4 c_1^4 x^8 + 27} + 9 \right) x^2 c_1 \right)^{\frac{1}{3}}}$$

$$y(x) = -\frac{3^{\frac{1}{3}} 2^{\frac{2}{3}} \left(\left(1 + i \sqrt{3} \right) \left(\left(\sqrt{3} \sqrt{4 c_1^4 x^8 + 27} + 9 \right) x^2 c_1 \right)^{\frac{2}{3}} + c_1^2 2^{\frac{2}{3}} x^4 \left(i 3^{\frac{5}{6}} - 3^{\frac{1}{3}} \right) \right)}{12 \left(\left(\sqrt{3} \sqrt{4 c_1^4 x^8 + 27} + 9 \right) x^2 c_1 \right)^{\frac{1}{3}} x c_1}$$

$$y(x) = \frac{\left(\left(i \sqrt{3} - 1 \right) \left(\left(\sqrt{3} \sqrt{4 c_1^4 x^8 + 27} + 9 \right) x^2 c_1 \right)^{\frac{2}{3}} + c_1^2 \left(i 3^{\frac{5}{6}} + 3^{\frac{1}{3}} \right) 2^{\frac{2}{3}} x^4 \right) 3^{\frac{1}{3}} 2^{\frac{2}{3}}}{12 \left(\left(\sqrt{3} \sqrt{4 c_1^4 x^8 + 27} + 9 \right) x^2 c_1 \right)^{\frac{1}{3}} x c_1}$$

✓ Solution by Mathematica

Time used: 60.214 (sec). Leaf size: 338

$$y(x) \rightarrow \frac{-2\sqrt[3]{3}x^2 + \sqrt[3]{2}\left(\frac{\sqrt{12x^8 + 81e^{2c_1}} + 9e^{c_1}}{x}\right)^{2/3}}{6^{2/3}\sqrt[3]{\frac{\sqrt{12x^8 + 81e^{2c_1}} + 9e^{c_1}}{x}}}$$

$$y(x) \rightarrow \frac{i2^{2/3}\sqrt[3]{3}\left(\sqrt{3} + i\right)\left(\frac{\sqrt{12x^8 + 81e^{2c_1}} + 9e^{c_1}}{x}\right)^{2/3} + 2\sqrt[3]{2}\sqrt[6]{3}\left(\sqrt{3} + 3i\right)x^2}}{12\sqrt[3]{\frac{\sqrt{12x^8 + 81e^{2c_1}} + 9e^{c_1}}{x}}}$$

$$y(x) \rightarrow \frac{2\sqrt[3]{2}\sqrt[6]{3}\left(\sqrt{3} - 3i\right)x^2 - i2^{2/3}\sqrt[3]{3}\left(\sqrt{3} - i\right)\left(\frac{\sqrt{12x^8 + 81e^{2c_1}} + 9e^{c_1}}{x}\right)^{2/3}}{12\sqrt[3]{\frac{\sqrt{12x^8 + 81e^{2c_1}} + 9e^{c_1}}{x}}}$$

7.14 problem 189

Internal problem ID [15077]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 189.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x),G(x)]'], [_Abel

$$-x^{2}y + x^{2}(y - x)y' = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 51

 $dsolve((1-x^2*y(x))+x^2*(y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x^2 + \sqrt{x(x^3 - 2c_1x + 2)}}{x}$$
$$y(x) = \frac{x^2 - \sqrt{x(x^3 - 2c_1x + 2)}}{x}$$

✓ Solution by Mathematica

Time used: 0.493 (sec). Leaf size: $66\,$

 $DSolve[(1-x^2*y[x])+x^2*(y[x]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x + \sqrt{-\frac{1}{x^2}} \sqrt{-x(x^3 + c_1 x + 2)}$$

$$y(x) \to x - \sqrt{-\frac{1}{x^2}} \sqrt{-x(x^3 + c_1 x + 2)}$$

7.15 problem 190

Internal problem ID [15078]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 190.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y - y'x = -x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve((x^2+y(x))-x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = (x + c_1) x$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 11

DSolve[(x^2+y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow x(x+c_1)$$

7.16 problem 191

Internal problem ID [15079]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 191.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$y^2 - 2xyy' = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve((x+y(x)^2)-2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{(c_1 + \ln(x)) x}$$
$$y(x) = -\sqrt{(c_1 + \ln(x)) x}$$

✓ Solution by Mathematica

Time used: 0.178 (sec). Leaf size: 40

 $DSolve[(x+y[x]^2)-2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{x}\sqrt{\log(x) + c_1}$$

 $y(x) \to \sqrt{x}\sqrt{\log(x) + c_1}$

7.17 problem 192

Internal problem ID [15080]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 192.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$2x^{2}y + 2y + (2x^{3} + 2x)y' = -5$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve((2*x^2*y(x)+2*y(x)+5)+(2*x^3+2*x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-\frac{5\arctan(x)}{2} + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 21

$$y(x) \to \frac{-5\arctan(x) + 2c_1}{2x}$$

7.18 problem 193

Internal problem ID [15081]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 193.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$-2y^{3}x + 3y'y^{2}x^{2} = -x^{4}\ln(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 84

 $dsolve((x^4*ln(x)-2*x*y(x)^3)+(3*x^2*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \left(-x^{2}(x \ln(x) - c_{1} - x)\right)^{\frac{1}{3}}$$

$$y(x) = -\frac{\left(-x^{2}(x \ln(x) - c_{1} - x)\right)^{\frac{1}{3}} \left(1 + i\sqrt{3}\right)}{2}$$

$$y(x) = \frac{\left(-x^{2}(x \ln(x) - c_{1} - x)\right)^{\frac{1}{3}} \left(i\sqrt{3} - 1\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.485 (sec). Leaf size: 77

$$y(x) \to \sqrt[3]{x^2(x + x(-\log(x)) + c_1)}$$

$$y(x) \to -\sqrt[3]{-1}\sqrt[3]{x^2(x + x(-\log(x)) + c_1)}$$

$$y(x) \to (-1)^{2/3}\sqrt[3]{x^2(x + x(-\log(x)) + c_1)}$$

7.19 problem 194

Internal problem ID [15082]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 194.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$\cos(y) y' + \sin(y) = -\sin(x) - x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve((x+sin(x)+sin(y(x)))+(cos(y(x)))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\arcsin\left(x + \frac{\sin(x)}{2} - \frac{\cos(x)}{2} - 1 + c_1e^{-x}\right)$$

✓ Solution by Mathematica

Time used: 33.179 (sec). Leaf size: 61

$$y(x) \to \arcsin\left(\frac{1}{2}(-2x - \sin(x) + \cos(x) + 2c_1e^{-x} + 2)\right)$$

$$y(x) \rightarrow -\arcsin\left(\frac{1}{2}(2x+\sin(x)-\cos(x)-2c_1e^{-x}-2)\right)$$

7.20 problem 195

Internal problem ID [15083]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 195.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$2y^{2}x - 3y^{3} + (7 - 3y^{2}x)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 65

 $dsolve((2*x*y(x)^2-3*y(x)^3)+(7-3*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x^2 + c_1 + \sqrt{x^4 + 2c_1x^2 + c_1^2 - 84x}}{6x}$$
$$y(x) = \frac{x^2 - \sqrt{x^4 + 2c_1x^2 + c_1^2 - 84x} + c_1}{6x}$$

✓ Solution by Mathematica

Time used: 0.406 (sec). Leaf size: 86

$$y(x) \to \frac{x^2 - \sqrt{x^4 + 2c_1x^2 - 84x + c_1^2} + c_1}{6x}$$
$$y(x) \to \frac{x^2 + \sqrt{x^4 + 2c_1x^2 - 84x + c_1^2} + c_1}{6x}$$
$$y(x) \to 0$$

7.21 problem 196

Internal problem ID [15084]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 196.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$3y^{2} + (2y^{3} - 6yx)y' = x$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 101

 $dsolve((3*y(x)^2-x)+(2*y(x)^3-6*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{-2\sqrt{c_1(c_1 - 8x)} + 2c_1 - 4x}}{2}$$

$$y(x) = \frac{\sqrt{-2\sqrt{c_1(c_1 - 8x)} + 2c_1 - 4x}}{2}$$

$$y(x) = -\frac{\sqrt{2\sqrt{c_1(c_1 - 8x)} + 2c_1 - 4x}}{2}$$

$$y(x) = \frac{\sqrt{2\sqrt{c_1(c_1 - 8x)} + 2c_1 - 4x}}{2}$$

✓ Solution by Mathematica

Time used: 11.553 (sec). Leaf size: 185

DSolve[(3*y[x]^2-x)+(2*y[x]^3-6*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sqrt{-2x - e^{\frac{c_1}{2}}\sqrt{8x + e^{c_1}} - e^{c_1}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{-2x - e^{\frac{c_1}{2}}\sqrt{8x + e^{c_1}} - e^{c_1}}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{-2x + e^{\frac{c_1}{2}}\sqrt{8x + e^{c_1}} - e^{c_1}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{-2x + e^{\frac{c_1}{2}}\sqrt{8x + e^{c_1}} - e^{c_1}}}{\sqrt{2}}$$

7.22 problem 197

Internal problem ID [15085]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 197.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

$$y^2 - 2xyy' = -x^2 - 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

 $dsolve((x^2+y(x)^2+1)-(2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{c_1 x + x^2 - 1}$$
$$y(x) = -\sqrt{c_1 x + x^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.26 (sec). Leaf size: 37

 $DSolve[(x^2+y[x]^2+1)-(2*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{x^2 + c_1 x - 1}$$
$$y(x) \to \sqrt{x^2 + c_1 x - 1}$$

7.23 problem 198

Internal problem ID [15086]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 7, Total differential equations. The integrating factor. Exercises page 61

Problem number: 198.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]'], [_Ab

$$yx + (x^2 + y) y' = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 55

 $dsolve((x -x*y(x))+(y(x)+x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{2c_1 + 1 - \sqrt{2c_1x^2 + 2c_1 + 1}}{2c_1}$$
$$y(x) = \frac{2c_1 + 1 + \sqrt{2c_1x^2 + 2c_1 + 1}}{2c_1}$$

✓ Solution by Mathematica

Time used: 4.513 (sec). Leaf size: 295

 $DSolve[(x-x*y[x])+(y[x]+x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) &\to -x^2 + \frac{1}{\frac{1}{x^2+1}} - \frac{1+i}{(x^2+1)\sqrt{-2(x^2+1)\cosh\left(\frac{2c_1}{9}\right) - 2(x^2+1)\sinh\left(\frac{2c_1}{9}\right) + 2i}} \\ y(x) &\to -x^2 + \frac{1}{\frac{1}{x^2+1}} + \frac{1+i}{(x^2+1)\sqrt{-2(x^2+1)\cosh\left(\frac{2c_1}{9}\right) - 2(x^2+1)\sinh\left(\frac{2c_1}{9}\right) + 2i}} \\ y(x) &\to -x^2 + \frac{1}{\frac{1}{x^2+1}} - \frac{1+i}{\sqrt{2}(x^2+1)\sqrt{(x^2+1)\cosh\left(\frac{2c_1}{9}\right) + (x^2+1)\sinh\left(\frac{2c_1}{9}\right) + i}} \\ y(x) &\to -x^2 + \frac{1}{\frac{1}{x^2+1}} + \frac{1+i}{\sqrt{2}(x^2+1)\sqrt{(x^2+1)\cosh\left(\frac{2c_1}{9}\right) + (x^2+1)\sinh\left(\frac{2c_1}{9}\right) + i}} \\ y(x) &\to -x^2 + \frac{1}{x^2+1} + \frac{1+i}{\sqrt{2}(x^2+1)\sqrt{(x^2+1)\cosh\left(\frac{2c_1}{9}\right) + (x^2+1)\sinh\left(\frac{2c_1}{9}\right) + i}} \\ y(x) &\to 1 \\ y(x) &\to \frac{1}{2} \left(1 - x^2\right) \end{split}$$

8 Section 8. First order not solved for the derivative. Exercises page 67

problem	199	•			•			•						•			•		•					•				•					•		177
problem	200																																		178
problem	201																																		179
problem	202																																		180
problem	203																																		181
problem	204																																		182
problem	205																																		183
problem	206																																		184
problem	207																																		185
problem	208																																		186
problem	209																																		187
problem	210																																		188
problem	211																																		189
problem	212																																		190
problem	213																																		191
problem	214																																		192
problem	215																																		193
problem	216																																		195
problem	217																																		196
problem	218																																		197
	problem	problem 200 problem 201 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 216 problem 217 problem 218	problem 200 . problem 201 . problem 202 . problem 203 . problem 204 . problem 205 . problem 206 . problem 207 . problem 209 . problem 210 . problem 211 . problem 212 . problem 213 . problem 214 . problem 215 . problem 216 . problem 217 .	problem 200 problem 201 problem 202 problem 203 problem 205 problem 206 problem 207 problem 209 problem 210 problem 211 problem 212 problem 214 problem 215 problem 216 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 216 problem 217 problem 217 problem 218	problem 200	problem 200	problem 200	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 216 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 216 problem 217 problem 218	problem 200	problem 200	problem 200 problem 201 problem 202 problem 202 problem 203 problem 204 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 216 problem 217 problem 218 problem 218	problem 200	problem 200	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 213 problem 214 problem 215 problem 216 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 213 problem 214 problem 215 problem 216 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 213 problem 214 problem 215 problem 216 problem 217 problem 218	problem 200	problem 200	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 216 problem 216 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 216 problem 216 problem 217 problem 218	problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 216 problem 217 problem 218	problem 200	problem 200 . problem 201 . problem 202 . problem 203 . problem 204 . problem 205 . problem 206 . problem 207 . problem 208 . problem 209 . problem 210 . problem 211 . problem 212 . problem 213 . problem 214 . problem 215 . problem 216 . problem 217 . problem 218 .	problem 199 problem 200 problem 201 problem 202 problem 203 problem 204 problem 205 problem 206 problem 207 problem 208 problem 209 problem 210 problem 211 problem 212 problem 213 problem 214 problem 215 problem 216 problem 217 problem 218 problem 219

problem 199 8.1

Internal problem ID [15087]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 199.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$4y'^2 = 9x$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $dsolve(4*diff(y(x),x)^2-9*x=0,y(x), singsol=all)$

$$y(x) = -x^{rac{3}{2}} + c_1 \ y(x) = x^{rac{3}{2}} + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 27

DSolve[4*y'[x]^2-9*x==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x^{3/2} + c_1$$

 $y(x) \to x^{3/2} + c_1$

$$y(x) \to x^{3/2} + c_1$$

problem 200 8.2

Internal problem ID [15088]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 200.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_separable]

$$y'^{2} - 2yy' - y^{2}(e^{2x} - 1) = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

 $dsolve(diff(y(x),x)^2-2*y(x)*diff(y(x),x)=y(x)^2*(exp(2*x)-1),y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = c_1 e^{x - e^x}$$

$$y(x) = 0$$

 $y(x) = c_1 e^{x-e^x}$
 $y(x) = c_1 e^{x+e^x}$

Solution by Mathematica

Time used: 0.103 (sec). Leaf size: 36

DSolve[y'[x]^2-2*y[x]*y'[x]==y[x]^2*(Exp[2*x]-1),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{x-e^x}$$

$$y(x) \rightarrow c_1 e^{x+e^x}$$

$$y(x) \to 0$$

problem 201 8.3

Internal problem ID [15089]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 201.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 - 2y'x = 8x^2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve(diff(y(x),x)^2-2*x*diff(y(x),x)-8*x^2=0,y(x), singsol=all)$

$$y(x) = 2x^2 + c_1$$

 $y(x) = -x^2 + c_1$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 25

DSolve[y'[x]^2-2*x*y'[x]-8*x^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x^2 + c_1$$
$$y(x) \to 2x^2 + c_1$$

$$y(x) \to 2x^2 + c_1$$

problem 202 8.4

Internal problem ID [15090]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 202.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_separable]

$$x^2y'^2 + 3xyy' + 2y^2 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x)^2+3*x*y(x)*diff(y(x),x)+2*y(x)^2=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x}$$
$$y(x) = \frac{c_1}{x^2}$$

$$y(x) = \frac{\ddot{c}_1}{x^2}$$

Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 26

DSolve $[x^2*y'[x]^2+3*x*y[x]*y'[x]+2*y[x]^2==0,y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to \frac{c_1}{x^2}$$
$$y(x) \to \frac{c_1}{x}$$
$$y(x) \to 0$$

$$y(x) o rac{c_1}{x}$$

$$y(x) \to 0$$

8.5 problem 203

Internal problem ID [15091]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 203.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^{2} - (2x + y)y' + yx = -x^{2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $\label{local-condition} \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})^2-(2*\mbox{x}+\mbox{y}(\mbox{x}))*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})+\mbox{x}^2+\mbox{x}*\mbox{y}(\mbox{x})=0\,,\mbox{y}(\mbox{x})\,, \\ \mbox{singsol=all}) \\ \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})^2-(2*\mbox{x}+\mbox{y}(\mbox{x}))*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})+\mbox{x}^2+\mbox{x}*\mbox{y}(\mbox{x})=0\,,\mbox{y}(\mbox{x})\,, \\ \mbox{singsol=all}) \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})^2-(2*\mbox{x}+\mbox{y}(\mbox{x}))*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})+\mbox{x}^2+\mbox{x}*\mbox{y}(\mbox{x})=0\,,\mbox{y}(\mbox{x})\,, \\ \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})^2-(2*\mbox{x}+\mbox{y}(\mbox{x}))*\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})+\mbox{x}^2+\mbox{$

$$y(x) = \frac{x^2}{2} + c_1$$

 $y(x) = -x - 1 + e^x c_1$

Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 30

 $DSolve[y'[x]^2-(2*x+y[x])*y'[x]+x^2+x*y[x]==0,y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to \frac{x^2}{2} + c_1$$
$$y(x) \to -x + c_1 e^x - 1$$

8.6 problem 204

Internal problem ID [15092]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 204.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_exponential_symmetries]]

$$y'^3 + (x+2)e^y = 0$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 87

 $dsolve(diff(y(x),x)^3+(x+2)*exp(y(x))=0,y(x), singsol=all)$

$$y(x) = 3\ln(12) - 3\ln\left((6+3x)(2+x)^{\frac{1}{3}} + 4c_1\right)$$

$$y(x) = 3\ln(24) - 3\ln\left(-3\left(1+i\sqrt{3}\right)(2+x)^{\frac{4}{3}} + 8c_1\right)$$

$$y(x) = 3\ln(24) - 3\ln\left(3\left(i\sqrt{3} - 1\right)(2+x)^{\frac{4}{3}} + 8c_1\right)$$

✓ Solution by Mathematica

Time used: 6.699 (sec). Leaf size: 126

 $DSolve[y'[x]^3+(x+2)*Exp[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]$

$$\begin{split} y(x) &\to -3\log\left(\frac{1}{12}\left(3\sqrt[3]{x+2}x+6\sqrt[3]{x+2}-4c_1\right)\right) \\ y(x) &\to -3\log\left(\frac{1}{12}\left(-3\sqrt[3]{-1}\sqrt[3]{x+2}x-6\sqrt[3]{-1}\sqrt[3]{x+2}-4c_1\right)\right) \\ y(x) &\to -3\log\left(\frac{1}{12}\left(3(-1)^{2/3}\sqrt[3]{x+2}x+6(-1)^{2/3}\sqrt[3]{x+2}-4c_1\right)\right) \end{split}$$

8.7 problem 205

Internal problem ID [15093]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 205.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [_quadrature]

$$y'^3 - yy'^2 + x^2y' - x^2y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

 $dsolve(diff(y(x),x)^3=y(x)*diff(y(x),x)^2-x^2*diff(y(x),x)+x^2*y(x),y(x), singsol=all)$

$$y(x) = -rac{ix^2}{2} + c_1$$
 $y(x) = rac{ix^2}{2} + c_1$
 $y(x) = \mathrm{e}^x c_1$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 43

DSolve[y'[x]^3==y[x]*y'[x]^2-x^2*y'[x]+x^2*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^x$$

 $y(x) \rightarrow c_1 - \frac{ix^2}{2}$
 $y(x) \rightarrow \frac{ix^2}{2} + c_1$

8.8 problem 206

Internal problem ID [15094]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 206.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y'^2 - yy' = -e^x$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 34

 $dsolve(diff(y(x),x)^2-y(x)*diff(y(x),x)+exp(x)=0,y(x), singsol=all)$

$$y(x) = -2 e^{rac{x}{2}} \ y(x) = 2 e^{rac{x}{2}} \ y(x) = rac{e^x c_1^2 + 1}{c_1}$$

✓ Solution by Mathematica

Time used: 60.203 (sec). Leaf size: 59

 $DSolve[y'[x]^2-y[x]*y'[x]+Exp[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{-e^{-c_1}(-e^x + e^{c_1})^2}$$

 $y(x) \to \sqrt{-e^{-c_1}(e^x - e^{c_1})^2}$

8.9 problem 207

Internal problem ID [15095]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 207.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$y'^2 - 4y'x + 2y = -2x^2$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 77

 $dsolve(diff(y(x),x)^2-4*x*diff(y(x),x)+2*y(x)+2*x^2=0,y(x), singsol=all)$

$$y(x) = x^{2}$$

$$y(x) = \frac{1}{2}x^{2} + c_{1}x - \frac{1}{2}c_{1}^{2}$$

$$y(x) = \frac{1}{2}x^{2} - c_{1}x - \frac{1}{2}c_{1}^{2}$$

$$y(x) = \frac{1}{2}x^{2} - c_{1}x - \frac{1}{2}c_{1}^{2}$$

$$y(x) = \frac{1}{2}x^{2} + c_{1}x - \frac{1}{2}c_{1}^{2}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]^2-4*x*y'[x]+2*y[x]+2*x^2==0,y[x],x,IncludeSingularSolutions -> True]

Timed out

8.10 problem 208

Internal problem ID [15096]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 208.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$y - y'^2 e^{y'} = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 38

 $dsolve(y(x)=diff(y(x),x)^2*exp(diff(y(x),x)),y(x), singsol=all)$

$$y(x) = 0$$

$$y(x) = \frac{(x - c_1) \left(\text{LambertW} \left((x - c_1) e\right) - 1\right)^2}{\text{LambertW} \left((x - c_1) e\right)}$$

✓ Solution by Mathematica

Time used: 0.283 (sec). Leaf size: 102

DSolve[y[x]==y'[x]^2*Exp[y'[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \text{InverseFunction} \left[\frac{\#1}{W\left(-\frac{\sqrt{\#1}}{2}\right)} + \frac{\#1}{2W\left(-\frac{\sqrt{\#1}}{2}\right)^2} \& \right] [2x + c_1]$$

$$y(x) \to \text{InverseFunction} \left[\frac{\#1}{W\left(\frac{\sqrt{\#1}}{2}\right)} + \frac{\#1}{2W\left(\frac{\sqrt{\#1}}{2}\right)^2} \& \right] [2x + c_1]$$

$$y(x) \to 0$$

8.11 problem 209

Internal problem ID [15097]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 209.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$y' = e^{\frac{y'}{y}}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 25

dsolve(diff(y(x),x)=exp(diff(y(x),x)/y(x)),y(x), singsol=all)

$$y(x) = -\text{LambertW}\left(c_1 e^{-x}\right) e^{-\frac{1}{\text{LambertW}\left(c_1 e^{-x}\right)}}$$

✓ Solution by Mathematica

Time used: 0.066 (sec). Leaf size: 33

DSolve[y'[x] == Exp[y'[x]/y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \text{InverseFunction}\left[\frac{1}{W\left(-\frac{1}{\#1}\right)} - \log\left(W\left(-\frac{1}{\#1}\right)\right)\&\right][-x + c_1]$$

8.12 problem 210

Internal problem ID [15098]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 210.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$-\ln\left(y'\right) - \sin\left(y'\right) = -x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve(x=ln(diff(y(x),x))+sin(diff(y(x),x)),y(x), singsol=all)

$$y(x) = \int \text{RootOf}(-x + \ln(\underline{Z}) + \sin(\underline{Z})) dx + c_1$$

✓ Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 33

DSolve[x==Log[y'[x]]+Sin[y'[x]],y[x],x,IncludeSingularSolutions -> True]

Solve[
$$\{y(x) = K[1] + K[1]\sin(K[1]) + \cos(K[1]) + c_1, x = \log(K[1]) + \sin(K[1])\}, \{y(x), K[1]\}$$
]

8.13 problem 211

Internal problem ID [15099]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 211.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$-y'^2 + 2y' = -x + 2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 37

 $dsolve(x=diff(y(x),x)^2-2*diff(y(x),x)+2,y(x), singsol=all)$

$$y(x) = \frac{(-2x+2)\sqrt{-1+x}}{3} + x + c_1$$
$$y(x) = \frac{(2x-2)\sqrt{-1+x}}{3} + x + c_1$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 39

DSolve[x==y'[x]^2-2*y'[x]+2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{2}{3}(x-1)^{3/2} + x + c_1$$

 $y(x) \to \frac{2}{3}(x-1)^{3/2} + x + c_1$

8.14 problem 212

Internal problem ID [15100]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 212.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$y - y' \ln \left(y' \right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 63

dsolve(y(x)=diff(y(x),x)*ln(diff(y(x),x)),y(x), singsol=all)

$$y(x) = \left(-1 - \sqrt{1 - 2c_1 + 2x}\right) e^{-1 - \sqrt{1 - 2c_1 + 2x}}$$
$$y(x) = \left(-1 + \sqrt{1 - 2c_1 + 2x}\right) e^{-1 + \sqrt{1 - 2c_1 + 2x}}$$

Solution by Mathematica

Time used: 4.166 (sec). Leaf size: 83

DSolve[y[x]==y'[x]*Log[y'[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -e^{-1-\sqrt{2x+1+2c_1}} \left(1 + \sqrt{2x+1+2c_1} \right)$$

$$y(x) \to e^{-1+\sqrt{2x+1+2c_1}} \left(-1 + \sqrt{2x+1+2c_1} \right)$$

$$y(x) \to 0$$

$$y(x) \to e^{-1+\sqrt{2x+1+2c_1}} \left(-1+\sqrt{2x+1+2c_1}\right)$$

$$y(x) \to 0$$

8.15 problem 213

Internal problem ID [15101]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 213.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$y - (y' - 1) e^{y'} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve(y(x)=(diff(y(x),x)-1)*exp(diff(y(x),x)),y(x), singsol=all)

$$y(x) = -1$$

 $y(x) = (\ln (x - c_1) - 1) (x - c_1)$

✓ Solution by Mathematica

Time used: 0.435 (sec). Leaf size: 22

DSolve[y[x] == (y'[x]-1)*Exp[y'[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (x + c_1)(-1 + \log(x + c_1))$$

 $y(x) \to -1$

8.16 problem 214

Internal problem ID [15102]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 214.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$xy'^2 - e^{\frac{1}{y'}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 71

 $dsolve(diff(y(x),x)^2*x=exp(1/diff(y(x),x)),y(x), singsol=all)$

$$y(x) = \frac{4c_1 \operatorname{LambertW}\left(-\frac{\sqrt{x}}{2}\right)^2 + 2x \operatorname{LambertW}\left(-\frac{\sqrt{x}}{2}\right) + x}{4 \operatorname{LambertW}\left(-\frac{\sqrt{x}}{2}\right)^2}$$
$$y(x) = \frac{4c_1 \operatorname{LambertW}\left(\frac{\sqrt{x}}{2}\right)^2 + 2x \operatorname{LambertW}\left(\frac{\sqrt{x}}{2}\right) + x}{4 \operatorname{LambertW}\left(\frac{\sqrt{x}}{2}\right)^2}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 67

 $DSolve[y'[x]^2*x == Exp[1/y'[x]], y[x], x, IncludeSingularSolutions -> True]$

$$y(x) \to \int_{1}^{x} \frac{1}{2W\left(-\frac{1}{2\sqrt{\frac{1}{K[1]}}}\right)} dK[1] + c_{1}$$
$$y(x) \to \int_{1}^{x} \frac{1}{2W\left(\frac{1}{2\sqrt{\frac{1}{K[2]}}}\right)} dK[2] + c_{1}$$

8.17 problem 215

Internal problem ID [15103]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 215.

ODE order: 1. ODE degree: 6.

CAS Maple gives this as type [_quadrature]

$$x\left({y'}^2+1\right)^{\frac{3}{2}}=a$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 233

 $dsolve(x*(1+diff(y(x),x)^2)^(3/2)=a,y(x), singsol=all)$

$$y(x) = \int \frac{\sqrt{(a x^{2})^{\frac{2}{3}} - x^{2}}}{x} dx + c_{1}$$

$$y(x) = -\frac{\left(\int \frac{\sqrt{-2i\sqrt{3}(a x^{2})^{\frac{2}{3}} - 2(a x^{2})^{\frac{2}{3}} - 4x^{2}}}{x} dx\right)}{2} + c_{1}$$

$$y(x) = \frac{\left(\int \frac{\sqrt{-2i\sqrt{3}(a x^{2})^{\frac{2}{3}} - 2(a x^{2})^{\frac{2}{3}} - 4x^{2}}}{x} dx\right)}{2} + c_{1}$$

$$y(x) = -\left(\int \frac{\sqrt{(a x^{2})^{\frac{2}{3}} - x^{2}}}{x} dx\right) + c_{1}$$

$$y(x) = -\frac{\sqrt{2}\left(\int \frac{\sqrt{i\sqrt{3}(a x^{2})^{\frac{2}{3}} - (a x^{2})^{\frac{2}{3}} - 2x^{2}}}{x} dx\right)}{2} + c_{1}$$

$$y(x) = \frac{\sqrt{2}\left(\int \frac{\sqrt{i\sqrt{3}(a x^{2})^{\frac{2}{3}} - (a x^{2})^{\frac{2}{3}} - 2x^{2}}}{x} dx\right)}{2} + c_{1}$$

Solution by Mathematica

Time used: 19.313 (sec). Leaf size: 375

DSolve[x*(1+y'[x]^2)^(3/2)==a,y[x],x,IncludeSingularSolutions -> True]

$$\begin{split} y(x) &\to \sqrt[3]{x} \sqrt{\frac{a^{2/3}}{x^{2/3}} - 1} \left(x^{2/3} - a^{2/3} \right) + c_1 \\ y(x) &\to \sqrt[3]{x} \sqrt{\frac{a^{2/3}}{x^{2/3}} - 1} \left(a^{2/3} - x^{2/3} \right) + c_1 \\ y(x) &\to c_1 - \frac{1}{2} \sqrt[3]{x} \sqrt{-1 + \frac{i \left(\sqrt{3} + i \right) a^{2/3}}{2x^{2/3}}} \left(2x^{2/3} + \left(1 - i\sqrt{3} \right) a^{2/3} \right) \\ y(x) &\to \frac{1}{2} \sqrt[3]{x} \sqrt{-1 + \frac{i \left(\sqrt{3} + i \right) a^{2/3}}{2x^{2/3}}} \left(2x^{2/3} + \left(1 - i\sqrt{3} \right) a^{2/3} \right) + c_1 \\ y(x) &\to c_1 - \frac{1}{2} \sqrt[3]{x} \sqrt{-1 - \frac{i \left(\sqrt{3} - i \right) a^{2/3}}{2x^{2/3}}} \left(2x^{2/3} + \left(1 + i\sqrt{3} \right) a^{2/3} \right) \\ y(x) &\to \frac{1}{2} \sqrt[3]{x} \sqrt{-1 - \frac{i \left(\sqrt{3} - i \right) a^{2/3}}{2x^{2/3}}} \left(2x^{2/3} + \left(1 + i\sqrt{3} \right) a^{2/3} \right) + c_1 \end{split}$$

8.18 problem 216

Internal problem ID [15104]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 216.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y^{\frac{2}{5}} + y'^{\frac{2}{5}} = a^{\frac{2}{5}}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 26

 $dsolve(y(x)^{(2/5)}+diff(y(x),x)^{(2/5)}=a^{(2/5)},y(x), singsol=all)$

$$x-\left(\int^{y(x)}rac{1}{\left(a^{rac{2}{5}}-_a^{rac{2}{5}}
ight)^{rac{5}{2}}}d_a
ight)-c_1=0$$

✓ Solution by Mathematica

Time used: 0.746 (sec). Leaf size: 89

 $DSolve[y[x]^{(2/5)+y'}[x]^{(2/5)==a^{(2/5)},y[x],x,IncludeSingularSolutions} \rightarrow True]$

y(x)

$$\rightarrow \text{InverseFunction} \left[5 \arctan \left(\frac{\sqrt[5]{\#1}}{\sqrt{a^{2/5} - \#1^{2/5}}} \right) + \frac{5\sqrt[5]{\#1} \left(4\#1^{2/5} - 3a^{2/5} \right)}{3 \left(a^{2/5} - \#1^{2/5} \right)^{3/2}} \& \right] [x + c_1]$$

$$y(x) \rightarrow a$$

8.19 problem 217

Internal problem ID [15105]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 217.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$-y' - \sin\left(y'\right) = -x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve(x=diff(y(x),x)+sin(diff(y(x),x)),y(x), singsol=all)

$$y(x) = \int \text{RootOf}(-x + \underline{Z} + \sin(\underline{Z})) dx + c_1$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 38

DSolve[x==y'[x]+Sin[y'[x]],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\left\{ x = K[1] + \sin(K[1]), y(x) = \frac{K[1]^2}{2} + K[1]\sin(K[1]) + \cos(K[1]) + c_1 \right\}, \{y(x), K[1]\} \right]$$

8.20 problem 218

Internal problem ID [15106]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 218.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$y - y'(1 + y'\cos(y')) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(y(x)=diff(y(x),x)*(1+diff(y(x),x)*cos(diff(y(x),x))),y(x), singsol=all)

$$y(x) = 0$$

$$x - \left(\int^{y(x)} \frac{1}{\text{RootOf}\left(\cos\left(\underline{Z}\right)\underline{Z}^2 - \underline{a} + \underline{Z}\right)} d\underline{a} \right) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.154 (sec). Leaf size: 38

 $DSolve[y[x] == y'[x]*(1+y'[x]*Cos[y'[x]]), y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$[x = \log(K[1]) + \sin(K[1]) + K[1]\cos(K[1]) + c_1, y(x) = K[1] + K[1]^2\cos(K[1]), \{y(x), K[1]\}]$$

8.21 problem 219

Internal problem ID [15107]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8. First order not solved for the derivative. Exercises page 67

Problem number: 219.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_quadrature]

$$y - \arcsin(y') - \ln(y'^2 + 1) = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 31

 $dsolve(y(x)=arcsin(diff(y(x),x))+ln(1+diff(y(x),x)^2),y(x), singsol=all)$

$$x - \left(\int^{y(x)} \csc \left(\text{RootOf} \left(-\underline{a} + \underline{Z} + \ln \left(2 - \cos \left(\underline{Z} \right)^2 \right) \right) \right) d\underline{a} \right) - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.245 (sec). Leaf size: 46

DSolve[y[x] == ArcSin[y'[x]] + Log[1+y'[x]^2],y[x],x,IncludeSingularSolutions -> True]

$$\begin{aligned} &\operatorname{Solve}\Big[\Big\{x=2\arctan(K[1])-\operatorname{arctanh}\Big(\sqrt{1-K[1]^2}\Big)\\ &+c_1,y(x)=\operatorname{arcsin}(K[1])+\log\big(K[1]^2+1\big)\Big\}\,,\{y(x),K[1]\}\Big] \end{aligned}$$

9 Section 8.3. The Lagrange and Clairaut equations. Exercises page 72

9.1	problem	220	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	200
9.2	problem	221																																	201
9.3	$\operatorname{problem}$	222																																	202
9.4	$\operatorname{problem}$	223																																	203
9.5	$\operatorname{problem}$	224																																	206
9.6	$\operatorname{problem}$	225																																	207
9.7	$\operatorname{problem}$	226																																	209
9.8	${\bf problem}$	227																																	210
9.9	$\operatorname{problem}$	228																																	211
9.10	problem	229																																	212

9.1 problem 220

Internal problem ID [15108]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8.3. The Lagrange and Clairaut equations. Exercises page 72

Problem number: 220.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$y - 2y'x - \ln(y') = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 69

dsolve(y(x)=2*x*diff(y(x),x)+ln(diff(y(x),x)),y(x), singsol=all)

$$y(x) = -1 + \sqrt{4c_1x + 1} - \ln(2) + \ln\left(\frac{-1 + \sqrt{4c_1x + 1}}{x}\right)$$
$$y(x) = -1 - \sqrt{4c_1x + 1} - \ln(2) + \ln\left(\frac{-1 - \sqrt{4c_1x + 1}}{x}\right)$$

✓ Solution by Mathematica

Time used: $0.\overline{096}$ (sec). Leaf size: 32

DSolve[y[x]==2*x*y'[x]+Log[y'[x]],y[x],x,IncludeSingularSolutions -> True]

Solve
$$[W(2xe^{y(x)}) - \log(W(2xe^{y(x)}) + 2) - y(x) = c_1, y(x)]$$

9.2 problem 221

Internal problem ID [15109]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8.3. The Lagrange and Clairaut equations. Exercises page 72

Problem number: 221.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$y - x(1 + y') - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

 $dsolve(y(x)=x*(1+diff(y(x),x))+diff(y(x),x)^2,y(x), singsol=all)$

$$y(x) = x - \frac{x^2}{4} + \text{LambertW}\left(\frac{c_1 e^{-1 + \frac{x}{2}}}{2}\right)^2 + 2 \text{LambertW}\left(\frac{c_1 e^{-1 + \frac{x}{2}}}{2}\right) + 1$$

✓ Solution by Mathematica

Time used: 2.322 (sec). Leaf size: 177

DSolve[y[x]==x*(1+y'[x])+y'[x]^2,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[-\sqrt{x^2 + 4y(x) - 4x} + 2\log\left(\sqrt{x^2 + 4y(x) - 4x} - x + 2\right) - 2\log\left(-x\sqrt{x^2 + 4y(x) - 4x} + x^2 + 4y(x) - 2x - 4\right) + x = c_1, y(x) \right]$$
Solve
$$\left[-4\operatorname{arctanh}\left(\frac{(x - 5)\sqrt{x^2 + 4y(x) - 4x} - x^2 - 4y(x) + 7x - 6}{(x - 3)\sqrt{x^2 + 4y(x) - 4x} - x^2 - 4y(x) + 5x - 2} \right) + \sqrt{x^2 + 4y(x) - 4x} + x = c_1, y(x) \right]$$

9.3 problem 222

Internal problem ID [15110]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8.3. The Lagrange and Clairaut equations. Exercises page 72

Problem number: 222.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_dAlembert]

$$y - 2y'x - \sin(y') = 0$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 44

dsolve(y(x)=2*x*diff(y(x),x)+sin(diff(y(x),x)),y(x), singsol=all)

y(x) = 0 $\left[x(\underline{T}) = \frac{-\underline{T}\sin(\underline{T}) - \cos(\underline{T}) + c_1}{\underline{T}^2}, y(\underline{T}) = \frac{-\underline{T}\sin(\underline{T}) - 2\cos(\underline{T}) + 2c_1}{\underline{T}}\right]$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 47

DSolve[y[x] == 2*x*y'[x] + Sin[y'[x]], y[x], x, IncludeSingularSolutions -> True]

$$\begin{split} & \text{Solve} \left[\left\{ x = \frac{-K[1] \sin(K[1]) - \cos(K[1])}{K[1]^2} \right. \\ & \left. + \frac{c_1}{K[1]^2}, y(x) = 2xK[1] + \sin(K[1]) \right\}, \left\{ y(x), K[1] \right\} \right] \end{split}$$

9.4 problem 223

Internal problem ID [15111]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8.3. The Lagrange and Clairaut equations. Exercises page 72

Problem number: 223.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [_dAlembert]

$$y - xy'^2 + \frac{1}{y'} = 0$$

Solution by Maple

Time used: 0.032 (sec). Leaf size: 1835

 $dsolve(y(x)=x*diff(y(x),x)^2-1/diff(y(x),x),y(x), singsol=all)$

$$\frac{12x^{3} \left(2 \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9\right)x^{2}\right)^{\frac{2}{3}}y(x)+x \left(\frac{2^{\frac{1}{3}} \left(\frac{1}{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+33^{\frac{2}{3}}\right) \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9\right)x^{2}\right)^{\frac{1}{3}}}{2}+2^{\frac{2}{3}}3^{\frac{1}{3}}} \right)^{\frac{1}{3}}}{2} + 2x \left(2^{\frac{1}{3}}3^{\frac{2}{3}}y(x)-3 \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9\right)x^{2}\right)^{\frac{1}{3}}}\right)^{\frac{1}{3}}} + 2^{\frac{2}{3}}3^{\frac{1}{3}}} \left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9}\right)x^{2}\right)^{\frac{1}{3}}} + 93^{\frac{1}{3}}2^{\frac{2}{3}}x-3 \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9\right)x^{2}\right)^{\frac{1}{3}}} + 93^{\frac{1}{3}}2^{\frac{2}{3}}x-3 \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9}\right)x^{2}\right)^{\frac{1}{3}}} - 6x \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9\right)x^{2}\right)^{\frac{1}{3}}}\right)^{\frac{1}{3}} = 0$$

$$- \frac{3x^{3} \left(\frac{8\left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9\right)x^{2}\right)^{\frac{2}{3}}y(x)}{9} + x \left(\left(\left(\frac{i3^{\frac{2}{3}}}{9}-\frac{3i}{9}\right)\sqrt{\frac{-4y(x)^{3}+27x}{x}}+i3^{\frac{1}{6}}-\frac{3i}{3}}\right)2^{\frac{1}{3}} \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9\right)x^{2}\right)^{\frac{1}{3}}}\right)^{\frac{1}{3}}}{2} \left(-\left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9\right)x^{2}\right)^{\frac{2}{3}}+y(x)\left(i3^{\frac{1}{6}}-\frac{3i}{3}}\right)2^{\frac{1}{3}} \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9\right)x^{2}\right)^{\frac{2}{3}}}\right)^{\frac{1}{3}} + \left(-i3^{\frac{2}{3}}+3^{\frac{1}{3}}}\right)xy(x)2^{\frac{2}{3}}\right)^{\frac{2}{3}} \left(\frac{\left(-3^{\frac{2}{3}}+3^{\frac{1}{3}}\right)2^{\frac{2}{3}} \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9\right)x^{2}\right)^{\frac{2}{3}}}}{2} + x \left(\left(\left(\frac{i3^{\frac{2}{3}}-3^{\frac{1}{3}}}{x}\right)x^{\frac{2}{3}}\right)^{\frac{2}{3}} + x \left(\left(\left(\frac{i3^{\frac{2}{3}}+3^{\frac{1}{3}}}{x}\right)x^{\frac{2}{3}}\right)^{\frac{2}{3}} \left(\frac{\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9\right)x^{2}}{2}\right)^{\frac{2}{3}}} + y(x)\left(i3^{\frac{1}{6}}-\frac{3i}{3}\right)2^{\frac{1}{3}} \left(\frac{1}{3} + \frac{3i}{3}\right)x^{\frac{1}{3}} \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3}+27x}{x}}+9\right)x^{2}\right)^{\frac{2}{3}}} + x \left(\left(\left(\frac{3i}{3}^{\frac{3}{3}}+3i\right)x^{\frac{1}{3}}\right)x^{\frac{1}{3}} \left(\frac{1}{3} + \frac{3i}{3}\right)x^{\frac{1}{3}} \left(\frac{$$

 $216x^{4} \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right)^{2} x^{4} \right)^{\frac{1}{3}} 3^{\frac{1}{3}} 2^{\frac{2}{3}} \left(\left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right) x^{2} \right)^{\frac{2}{3}} + y(x) \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right) 2^{\frac{1}{3}} \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right) x^{2} \right)^{\frac{2}{3}} + y(x) \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right) 2^{\frac{1}{3}} \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right) x^{2} \right)^{\frac{2}{3}} + y(x) \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right) 2^{\frac{1}{3}} \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right) x^{2} \right)^{\frac{2}{3}} + y(x) \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right) 2^{\frac{1}{3}} \left(\left(\sqrt{3} \sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right) x^{2} \right)^{\frac{2}{3}} + y(x) \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right) 2^{\frac{1}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right) x^{2} \right)^{\frac{2}{3}} + y(x) \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right) 2^{\frac{1}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right) x^{2} \right)^{\frac{2}{3}} + y(x) \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right) 2^{\frac{1}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right) x^{2} \right)^{\frac{2}{3}} + y(x) \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right) 2^{\frac{1}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right) x^{2} \right)^{\frac{2}{3}} + y(x) \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right) 2^{\frac{1}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right)^{\frac{2}{3}} \right)^{\frac{2}{3}} + y(x) \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right) 2^{\frac{1}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right)^{\frac{2}{3}} \right)^{\frac{2}{3}} + y(x) \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right)^{\frac{2}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right)^{\frac{2}{3}} \right)^{\frac{2}{3}} + y(x) \left(i3^{\frac{1}{6}} + \frac{3^{\frac{2}{3}}}{3} \right)^{\frac{2}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right)^{\frac{2}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right)^{\frac{2}{3}} \right)^{\frac{2}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right)^{\frac{2}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right)^{\frac{2}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right)^{\frac{2}{3}} \right)^{\frac{2}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right)^{\frac{2}{3}} \left(\sqrt{\frac{-4y(x)^{3} + 27x}{x}} + 9 \right)^{\frac{2}{3}} \left(\sqrt{\frac{-4y(x$

✓ Solution by Mathematica

Time used: 145.256 (sec). Leaf size: 19969

 $DSolve[y[x] == x*y'[x]^2-1/y'[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

Too large to display

9.5 problem 224

Internal problem ID [15112]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8.3. The Lagrange and Clairaut equations. Exercises page 72

Problem number: 224.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_dAlembert]

$$y - \frac{3xy'}{2} - e^{y'} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 201

dsolve(y(x)=3/2*x*diff(y(x),x)+exp(diff(y(x),x)),y(x), singsol=all)

$$y(x) = 1$$

$$27 \left(\left(-2x^2 \operatorname{LambertW}\left(\frac{2e^{\frac{2y(x)}{3x}}}{3x}\right)^2 - 4\left(x - \frac{2y(x)}{3}\right)x \operatorname{LambertW}\left(\frac{2e^{\frac{2y(x)}{3x}}}{3x}\right) - 4x^2 + \frac{8xy(x)}{3} - \frac{8y(x)^2}{9} \right) e^{\frac{-3x\operatorname{LambertW}}{3x}} \right)$$

 $\int 3x \operatorname{La}$

=0

✓ Solution by Mathematica

Time used: 0.567 (sec). Leaf size: 52

 $DSolve[y[x] == 3/2*x*y'[x] + Exp[y'[x]], y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\left\{ x = -\frac{2e^{K[1]}(K[1]^2 - 2K[1] + 2)}{K[1]^3} + \frac{c_1}{K[1]^3}, y(x) = \frac{3}{2}xK[1] + e^{K[1]} \right\}, \{y(x), K[1]\} \right]$$

9.6 problem 225

Internal problem ID [15113]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8.3. The Lagrange and Clairaut equations. Exercises page 72

Problem number: 225.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y - xy' - \frac{a}{{y'}^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 76

 $dsolve(y(x)=x*diff(y(x),x)+a/diff(y(x),x)^2,y(x), singsol=all)$

$$y(x) = rac{3 \, 2^{rac{1}{3}} (a \, x^2)^{rac{1}{3}}}{2}$$
 $y(x) = -rac{3 \, 2^{rac{1}{3}} (a \, x^2)^{rac{1}{3}} \left(1 + i \sqrt{3}
ight)}{4}$
 $y(x) = rac{3 \, 2^{rac{1}{3}} (a \, x^2)^{rac{1}{3}} \left(i \sqrt{3} - 1
ight)}{4}$
 $y(x) = rac{c_1^3 x + a}{c_1^2}$

/

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 89

 $DSolve[y[x] == x*y'[x]+a/y'[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{a}{c_1^2} + c_1 x$$

$$y(x) \to \frac{3\sqrt[3]{a}x^{2/3}}{2^{2/3}}$$

$$y(x) \to -\frac{3\sqrt[3]{-1}\sqrt[3]{a}x^{2/3}}{2^{2/3}}$$

$$y(x) \to \frac{3(-1)^{2/3}\sqrt[3]{a}x^{2/3}}{2^{2/3}}$$

9.7 problem 226

Internal problem ID [15114]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8.3. The Lagrange and Clairaut equations. Exercises page 72

Problem number: 226.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y - xy' - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

 $dsolve(y(x)=x*diff(y(x),x)+diff(y(x),x)^2,y(x), singsol=all)$

$$y(x) = -\frac{x^2}{4}$$
$$y(x) = c_1(x + c_1)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 23

DSolve[y[x]==x*y'[x]+y'[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1(x+c_1)$$

 $y(x) \to -\frac{x^2}{4}$

9.8 problem 227

Internal problem ID [15115]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8.3. The Lagrange and Clairaut equations. Exercises page 72

Problem number: 227.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

$$xy'^2 - yy' - y' = -1$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 38

 $dsolve(x*diff(y(x),x)^2-y(x)*diff(y(x),x)-diff(y(x),x)+1=0,y(x), singsol=all)$

$$y(x) = -1 - 2\sqrt{x}$$

$$y(x) = -1 + 2\sqrt{x}$$

$$y(x) = \frac{c_1^2 x - c_1 + 1}{c_1}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 46

DSolve[x*y'[x]^2-y[x]*y'[x]-y'[x]+1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x - 1 + \frac{1}{c_1}$$

 $y(x) \to \text{Indeterminate}$

$$y(x) \rightarrow -2\sqrt{x} - 1$$

$$y(x) \to 2\sqrt{x} - 1$$

9.9 problem 228

Internal problem ID [15116]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8.3. The Lagrange and Clairaut equations. Exercises page 72

Problem number: 228.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y - xy' - a\sqrt{1 + y'^2} = 0$$

✓ Solution by Maple

Time used: 0.391 (sec). Leaf size: 17

 $dsolve(y(x)=x*diff(y(x),x)+a*sqrt(1+diff(y(x),x)^2),y(x), singsol=all)$

$$y(x) = c_1 x + a \sqrt{c_1^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 27

DSolve[y[x]==x*y'[x]+a*Sqrt[1+y'[x]^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to a\sqrt{1 + c_1^2} + c_1 x$$
$$y(x) \to a$$

9.10 problem 229

Internal problem ID [15117]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 8.3. The Lagrange and Clairaut equations. Exercises page 72

Problem number: 229.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Clairaut]

$$\boxed{-\frac{1}{y'^2} = -x + \frac{y}{y'}}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

 $\label{eq:decomposition} dsolve(x=y(x)/diff(y(x),x)+1/diff(y(x),x)^2,y(x), \ singsol=all)$

$$y(x) = -2\sqrt{-x}$$

$$y(x) = 2\sqrt{-x}$$

$$y(x) = c_1 x - \frac{1}{c_1}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 47

DSolve[x==y[x]/y'[x]+1/y'[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x - \frac{1}{c_1}$$

 $y(x) \to \text{Indeterminate}$

$$y(x) \to -2i\sqrt{x}$$

$$y(x) \to 2i\sqrt{x}$$

10	Sect	tior	1	G).	,	Ι	'n	16	•	F	L i	ic	c	a	t	i	e	q	u	la	ıt	i	O]	n	•	E	C	X(eı	r(ci	S	\mathbf{e}	S	Į	36	ıge
	75																																					
10.1	problem	232																																		•		214
10.2	problem	233																																				215
10.3	problem	234																																				216
10.4	problem	235																																				217

10.1 problem 232

Internal problem ID [15118]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 9. The Riccati equation. Exercises page 75

Problem number: 232.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)]'], _Riccati]

$$y'e^{-x} + y^2 - 2ye^x = 1 - e^{2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)*exp(-x)+y(x)^2-2*y(x)*exp(x)=1-exp(2*x),y(x), singsol=all)$

$$y(x) = \frac{e^x + e^{2x}c_1 + c_1}{e^x c_1 + 1}$$

✓ Solution by Mathematica

Time used: 0.311 (sec). Leaf size: 24

$$y(x) \rightarrow e^x + \frac{1}{e^x + c_1}$$

 $y(x) \rightarrow e^x$

10.2 problem 233

Internal problem ID [15119]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 9. The Riccati equation. Exercises page 75

Problem number: 233.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)]'], _Riccati]

$$y' + y^2 - 2y\sin(x) = -\sin(x)^2 + \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)+y(x)^2-2*y(x)*sin(x)+sin(x)^2-cos(x)=0,y(x), singsol=all)$

$$y(x) = \sin(x) + \frac{1}{x - c_1}$$

✓ Solution by Mathematica

Time used: 0.257 (sec). Leaf size: 20

$$y(x) \to \sin(x) + \frac{1}{x + c_1}$$

 $y(x) \to \sin(x)$

10.3 problem 234

Internal problem ID [15120]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 9. The Riccati equation. Exercises page 75

Problem number: 234.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational, _Riccati]

$$xy' - y^2 + (2x+1)y = x^2 + 2x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

 $dsolve(x*diff(y(x),x)-y(x)^2+(2*x+1)*y(x)=x^2+2*x,y(x), singsol=all)$

$$y(x) = \frac{c_1 x^2 - x - 1}{c_1 x - 1}$$

✓ Solution by Mathematica

Time used: 0.161 (sec). Leaf size: 34

 $DSolve[x*y'[x]-y[x]^2+(2*x+1)*y[x]==x^2+2*x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^2 - c_1 x - c_1}{x - c_1}$$
$$y(x) \to x + 1$$

10.4 problem 235

Internal problem ID [15121]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 9. The Riccati equation. Exercises page 75

Problem number: 235.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\;Maple\;gives\;this\;as\;type\;[[_homogeneous,\; `class\;G'],\;_rational,\;_Riccati]}$

$$x^2y' - y^2x^2 - yx = 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $dsolve(x^2*diff(y(x),x)=x^2*y(x)^2+x*y(x)+1,y(x), singsol=all)$

$$y(x) = \frac{-\ln(x) + c_1 - 1}{x(-c_1 + \ln(x))}$$

Solution by Mathematica

Time used: 0.163 (sec). Leaf size: 33

DSolve[x^2*y'[x]==x^2*y[x]^2+x*y[x]+1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\log(x) + 1 + c_1}{x \log(x) + c_1 x}$$
$$y(x) \to -\frac{1}{x}$$

$$y(x) \to -\frac{1}{x}$$

11 Section 11. Singular solutions of differential equations. Exercises page 92

11.1	problem	260														•				219
11.2	problem	261																		220
11.3	problem	262																		221
11.4	problem	263																		222
11.5	problem	264																		223
11.6	problem	265																		224
11.7	problem	266																		226
11.8	problem	267																		228
11.9	problem	268																		229
11.10)problem	269																		230
11.11	problem	270																		233
11.12	2problem	271																		235
11.13	Bproblem	272																		236
11.14	lproblem	273																		237
11.15	problem	274																		238

11.1 problem 260

Internal problem ID [15122]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 260.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x),G(y)]']]

$$\left| \left(1 + y'^2 \right) y^2 - 4yy' = 4x \right|$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 71

 $\label{eq:decomposition} \\ \mbox{dsolve}((1+\mbox{diff}(y(x),x)^2)*y(x)^2-4*y(x)*\mbox{diff}(y(x),x)-4*x=0,y(x), \mbox{ singsol=all}) \\$

$$y(x) = -2\sqrt{x+1}$$

$$y(x) = 2\sqrt{x+1}$$

$$y(x) = \sqrt{-c_1^2 + 2c_1x - x^2 + 4x + 4}$$

$$y(x) = -\sqrt{-x^2 + (2c_1 + 4)x - c_1^2 + 4}$$

✓ Solution by Mathematica

Time used: 0.459 (sec). Leaf size: 65

$$y(x) \to -\frac{1}{2}\sqrt{-4x^2 - 4(-4 + c_1)x + 16 - c_1^2}$$

 $y(x) \to \frac{1}{2}\sqrt{-4x^2 - 4(-4 + c_1)x + 16 - c_1^2}$

11.2 problem 261

Internal problem ID [15123]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 261.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 - 4y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve(diff(y(x),x)^2-4*y(x)=0,y(x), singsol=all)$

$$y(x) = 0$$
$$y(x) = (x - c_1)^2$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 38

DSolve[y'[x]^2-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}(-2x + c_1)^2$$

 $y(x) \to \frac{1}{4}(2x + c_1)^2$
 $y(x) \to 0$

11.3 problem 262

Internal problem ID [15124]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 262.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y'^3 - 4xyy' + 8y^2 = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 29

 $dsolve(diff(y(x),x)^3-4*x*y(x)*diff(y(x),x)+8*y(x)^2=0,y(x), singsol=all)$

$$y(x) = \frac{4x^3}{27}$$
$$y(x) = 0$$
$$y(x) = \frac{(4c_1x - 1)^2}{64c_1^3}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]^3-4*x*y[x]*y'[x]+8*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

Timed out

11.4 problem 263

Internal problem ID [15125]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 263.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y'^2 - y^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

 $dsolve(diff(y(x),x)^2-y(x)^2=0,y(x), singsol=all)$

$$y(x) = e^x c_1$$
$$y(x) = c_1 e^{-x}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]^2-y'[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

Not solved

11.5 problem 264

Internal problem ID [15126]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 264.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^{\frac{2}{3}} = a$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 85

 $dsolve(diff(y(x),x)=y(x)^(2/3)+a,y(x), singsol=all)$

$$x - 3y(x)^{\frac{1}{3}} + 2\sqrt{a} \arctan\left(\frac{y(x)^{\frac{1}{3}}}{\sqrt{a}}\right) - \sqrt{a} \arctan\left(\frac{\sqrt{3}\sqrt{a} - 2y(x)^{\frac{1}{3}}}{\sqrt{a}}\right)$$

$$+ \sqrt{a} \arctan\left(\frac{2y(x)^{\frac{1}{3}} + \sqrt{3}\sqrt{a}}{\sqrt{a}}\right) - \sqrt{a} \arctan\left(\frac{y(x)}{a^{\frac{3}{2}}}\right) + c_1 = 0$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[$y'[x]=y[x]^(2/3)+a,y[x],x,IncludeSingularSolutions -> True$]

Not solved

11.6 problem 265

Internal problem ID [15127]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 265.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$(y'x + y)^{2} + 3x^{5}(y'x - 2y) = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 65

 $dsolve((x*diff(y(x),x)+y(x))^2+3*x^5*(x*diff(y(x),x)-2*y(x))=0,y(x), singsol=all)$

$$y(x) = -\frac{x^5}{4}$$

$$y(x) = \frac{c_1(x^3 + c_1)}{x}$$

$$y(x) = \frac{c_1(-x^3 + c_1)}{x}$$

$$y(x) = \frac{c_1(-x^3 + c_1)}{x}$$

$$y(x) = \frac{c_1(x^3 + c_1)}{x}$$

Time used: 1.645 (sec). Leaf size: 94

 $DSolve[(x*y'[x]+y[x])^2+3*x^5*(x*y'[x]-2*y[x])==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{i(\cosh(3c_1) + \sinh(3c_1)) (x^3 - i\cosh(3c_1) - i\sinh(3c_1))}{x}$$
$$y(x) \to \frac{i(\cosh(3c_1) + \sinh(3c_1)) (x^3 + i\cosh(3c_1) + i\sinh(3c_1))}{x}$$
$$y(x) \to 0$$

11.7 problem 266

Internal problem ID [15128]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 266.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y(y - 2xy')^2 - 2y' = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 99

 $dsolve(y(x)*(y(x)-2*x*diff(y(x),x))^2=2*diff(y(x),x),y(x), singsol=all)$

$$y(x) = -\frac{1}{2\sqrt{-x}}$$

$$y(x) = \frac{1}{2\sqrt{-x}}$$

$$y(x) = 0$$

$$y(x) = \frac{\sqrt{(x+c_1)x}}{c_1\sqrt{x}}$$

$$y(x) = \frac{\sqrt{x(x-c_1)}}{c_1\sqrt{x}}$$

$$y(x) = -\frac{\sqrt{(x+c_1)x}}{c_1\sqrt{x}}$$

$$y(x) = -\frac{\sqrt{x(x-c_1)}}{c_1\sqrt{x}}$$

Time used: 1.935 (sec). Leaf size: 158

 $DSolve[y[x]*(y[x]-2*x*y'[x])^2==2*y'[x],y[x],x,IncludeSingularSolutions -> True]$

$$\begin{split} y(x) &\to -\sqrt{2} \sqrt{e^{-2c_1} \left(2x - e^{c_1}\right)} \\ y(x) &\to \sqrt{2} \sqrt{e^{-2c_1} \left(2x - e^{c_1}\right)} \\ y(x) &\to -\sqrt{2} \sqrt{e^{-2c_1} \left(2x + e^{c_1}\right)} \\ y(x) &\to \sqrt{2} \sqrt{e^{-2c_1} \left(2x + e^{c_1}\right)} \\ y(x) &\to 0 \\ y(x) &\to -\frac{i}{2\sqrt{x}} \\ y(x) &\to \frac{i}{2\sqrt{x}} \end{split}$$

11.8 problem 267

Internal problem ID [15129]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 267.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$8y'^3 - 12y'^2 - 27y = -27x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 37

 $dsolve(8*diff(y(x),x)^3-12*diff(y(x),x)^2=27*(y(x)-x),y(x), singsol=all)$

$$y(x) = x - \frac{4}{27}$$

$$y(x) = (-x + c_1)\sqrt{x - c_1} + c_1$$

$$y(x) = (x - c_1)^{\frac{3}{2}} + c_1$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[8*y'[x]^3-12*y'[x]^2==27*(y[x]-x),y[x],x,IncludeSingularSolutions \rightarrow True]$

Timed out

11.9 problem 268

Internal problem ID [15130]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 268.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$(y'-1)^2 - y^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve((diff(y(x),x)-1)^2=y(x)^2,y(x), singsol=all)$

$$y(x) = -1 + e^x c_1$$

 $y(x) = 1 + c_1 e^{-x}$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 37

 $DSolve[(y'[x]-1)^2==y[x]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 1 + c_1 e^{-x}$$

$$y(x) \rightarrow -1 + c_1 e^x$$

$$y(x) \rightarrow -1$$

$$y(x) \to 1$$

11.10 problem 269

Internal problem ID [15131]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 269.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$y - y'^2 + xy' = x$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 845

$dsolve(y(x)=diff(y(x),x)^2-x*diff(y(x),x)+x^2/x,y(x), singsol=all)$

$$\begin{split} y(x) &= -2 \left(\frac{-1+x}{\left(-12c_1 + 4\sqrt{-4x^3 + 9c_1^2 + 12x^2 - 12x + 4}\right)^{\frac{1}{3}}} + \frac{\left(-12c_1 + 4\sqrt{-4x^3 + 9c_1^2 + 12x^2 - 12x + 4}\right)^{\frac{1}{3}}}{4} + \frac{\left(-12c_1 + 4\sqrt{-4x^3 + 9c_1^2 + 12x^2 - 12x + 4}\right)^{\frac{1}{3}}}{4} + \frac{-\frac{1}{2}}{\left(-12c_1 + 4\sqrt{-4x^3 + 9c_1^2 + 12x^2 - 12x + 4}\right)^{\frac{1}{3}}}} + \frac{1}{2} x + \frac{\left(-12c_1 + 4\sqrt{-4x^3 + 9c_1^2 + 12x^2 - 12x + 4}\right)^{\frac{1}{3}}}{4} + \frac{1}{2} x + \frac{\left(1 + \left(\frac{\left(-12c_1 + 4\sqrt{-4x^3 + 9c_1^2 + 12x^2 - 12x + 4}\right)^{\frac{1}{3}}}{2} - \frac{2(1-x)}{\left(-12c_1 + 4\sqrt{-4x^3 + 9c_1^2 + 12x^2 - 12x + 4}\right)^{\frac{1}{3}}}}{\left(-12c_1 + 4\sqrt{-4x^3 + 9c_1^2 + 12x^2 - 12x + 4}\right)^{\frac{1}{3}}} + \frac{1}{2} x + \frac{\left(1 - x\right)}{2} + \frac{\left(1 - x\right)}{4} + \frac{\left(1 - x\right)}{4} + \frac{\left(1 - x\right)}{2} + \frac{\left(1$$

Time used: 61.116 (sec). Leaf size: 2409

 $DSolve[y[x]==y'[x]^2-x*y'[x]+x^2/x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \xrightarrow{2\sqrt[3]{2}x^4 - 8\sqrt[3]{2}x^3 + 12\sqrt[3]{2}x^2 + 4x^2\sqrt[3]{-2x^6 + 12x^5 - 30x^4 + 40x^3 - 10e^{3c_1}x^3 - 30x^2 + 30e^{3c_1}x^2 + 12x - 30e^{3c_1}x^2 + 12x - 30e^{3c_1}x^3 - 30x^2 + 30e^{3c_1}x^2 + 12x - 30e^{3c_1}x + \sqrt{e^{3c_1}(4(x-1))} + \frac{1}{4}(2x^2 - 2x + 3)$$

$$+ \frac{(1 + i\sqrt{3})(x - 1)(-(x - 1)^3 + 2e^{3c_1})}{4(2x^3 - 30x^4 + 40x^3 - 10e^{3c_1}x^3 - 30x^2 + 30e^{3c_1}x^2 + 12x - 30e^{3c_1}x + \sqrt{e^{3c_1}(4(x-1))} + \frac{1}{4}(2x^2 - 2x + 3)$$

$$+ \frac{i(\sqrt{3} + i)\sqrt[3]{-2x^6 + 12x^5 - 30x^4 + 40x^3 - 10e^{3c_1}x^3 - 30x^2 + 30e^{3c_1}x^2 + 12x - 30e^{3c_1}x + \sqrt{e^{3c_1}(4(x-1))} + \frac{1}{4}(2x^2 - 2x + 3)$$

$$+ \frac{i(\sqrt{3} + i)(x - 1)((x - 1)^3 - 2e^{3c_1})}{4(\sqrt{3} - i)\sqrt[3]{-2x^6 + 12x^5 - 30x^4 + 40x^3 - 10e^{3c_1}x^3 - 30x^2 + 30e^{3c_1}x^2 + 12x - 30e^{3c_1}x + \sqrt{e^{3c_1}(4(x-1))} + \frac{1}{4}(2x^2 - 2x + 3)$$

$$+ \frac{2\sqrt[3]{2}x^4 - 8\sqrt[3]{2}x^3 + 12\sqrt[3]{2}x^2 + 4x^2\sqrt[3]{-2x^6 + 12x^5 - 30x^4 + 40x^3 + 10e^{3c_1}x^3 - 30x^2 + 30e^{3c_1}x^3 - 30x^2 - 30e^{3c_1}x^2 + 12x + 30e^{3c_1}x + \sqrt{e^{3c_1}(4(x-1))} + \frac{1}{4}(2x^2 - 2x + 3)$$

$$+ \frac{i(\sqrt{3} - i)(x - 1)((x - 1)^3 + 2e^{3c_1})}{4(x^3 + i)\sqrt[3]{-2x^6 + 12x^5 - 30x^4 + 40x^3 + 10e^{3c_1}x^3 - 30x^2 - 30e^{3c_1}x^2 + 12x + 30e^{3c_1}x + \sqrt{e^{3c_1}(-4(x-1))} + \frac{1}{4}(2x^2 - 2x + 3)}$$

$$+ \frac{i(\sqrt{3} + i)(x - 1)((x - 1)^3 + 2e^{3c_1})}{8\sqrt[3]{2}}$$

$$+ \frac{i(\sqrt{3} + i)(x - 1)((x - 1)^3 + 2e^{3c_1})}{4(x^3 + 10x^3 + 10x^3 + 10e^{3c_1}x^3 - 30x^2 - 30e^{3c_1}x^2 + 12x + 30e^{3c_1}x + \sqrt{e^{3c_1}(-4(x-1))} + \frac{1}{4}(2x^2 - 2x + 3)}$$

$$+ \frac{i(\sqrt{3} + i)(x - 1)((x - 1)^3 + 2e^{3c_1})}{8\sqrt[3]{2}}$$

$$+ \frac{i(\sqrt{3} + i)(x - 1)((x - 1)^3 + 2e^{3c_1})}{8\sqrt[3]{2}}$$

$$+ \frac{i(\sqrt{3} + i)(x - 1)((x - 1)^3 + 2e^{3c_1})}{8\sqrt[3]{2}}$$

$$+ \frac{i(\sqrt{3} + i)(x - 1)((x - 1)^3 + 2e^{3c_1})}{8\sqrt[3]{2}}$$

11.11 problem 270

Internal problem ID [15132]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 270.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$(xy' + y)^2 - y^2y' = 0$$

✓ Solution by Maple

Time used: 0.234 (sec). Leaf size: 124

 $dsolve((x*diff(y(x),x)+y(x))^2=y(x)^2*diff(y(x),x),y(x), singsol=all)$

$$y(x) = 4x$$

$$y(x) = 0$$

$$y(x) = -\frac{2c_1^2(-\sqrt{2}c_1 + x)}{-2c_1^2 + x^2}$$

$$y(x) = -\frac{2c_1^2(\sqrt{2}c_1 + x)}{-2c_1^2 + x^2}$$

$$y(x) = \frac{c_1^3\sqrt{2} - 2c_1^2x}{-2c_1^2 + 4x^2}$$

$$y(x) = \frac{c_1^2(\sqrt{2}c_1 + 2x)}{2c_1^2 - 4x^2}$$

Time used: 0.635 (sec). Leaf size: 62

 $DSolve[(x*y'[x]+y[x])^2==y[x]^2*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o -rac{4e^{-2c_1}}{2 + e^{2c_1}x}$$

 $y(x) o -rac{e^{-2c_1}}{2 + 4e^{2c_1}x}$
 $y(x) o 0$
 $y(x) o 4x$

11.12 problem 271

Internal problem ID [15133]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 271.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_quadrature]

$$y^2y'^2 + y^2 = 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 51

 $dsolve(y(x)^2*diff(y(x),x)^2+y(x)^2=1,y(x), singsol=all)$

$$y(x) = -1$$

 $y(x) = 1$
 $y(x) = \sqrt{-c_1^2 + 2c_1x - x^2 + 1}$
 $y(x) = -\sqrt{-(x - c_1 + 1)(x - c_1 - 1)}$

✓ Solution by Mathematica

Time used: 0.185 (sec). Leaf size: 119

DSolve[y[x]^2*y'[x]^2+y[x]^2==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sqrt{-x^2 - 2c_1x + 1 - c_1^2}$$

$$y(x) \to \sqrt{-x^2 - 2c_1x + 1 - c_1^2}$$

$$y(x) \to -\sqrt{-x^2 + 2c_1x + 1 - c_1^2}$$

$$y(x) \to \sqrt{-x^2 + 2c_1x + 1 - c_1^2}$$

$$y(x) \to -1$$

$$y(x) \to 1$$

11.13 problem 272

Internal problem ID [15134]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 272.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y'^2 - yy' = -e^x$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 34

 $dsolve(diff(y(x),x)^2-y(x)*diff(y(x),x)+exp(x)=0,y(x), singsol=all)$

$$y(x) = -2 e^{rac{x}{2}} \ y(x) = 2 e^{rac{x}{2}} \ y(x) = rac{e^x c_1^2 + 1}{c_1}$$

✓ Solution by Mathematica

Time used: 60.179 (sec). Leaf size: 59

 $DSolve[y'[x]^2-y[x]*y'[x]+Exp[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{-e^{-c_1}(-e^x + e^{c_1})^2}$$

 $y(x) \to \sqrt{-e^{-c_1}(e^x - e^{c_1})^2}$

11.14 problem 273

Internal problem ID [15135]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 273.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$3xy'^2 - 6yy' + 2y = -x$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 32

 $dsolve(3*x*diff(y(x),x)^2-6*y(x)*diff(y(x),x)+x+2*y(x)=0,y(x), singsol=all)$

$$y(x) = x$$

 $y(x) = -\frac{x}{3}$
 $y(x) = \frac{4c_1^2 + 2c_1x + x^2}{6c_1}$

✓ Solution by Mathematica

Time used: 0.307 (sec). Leaf size: 67

 $DSolve[3*x*y'[x]^2-6*y[x]*y'[x]+x+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{3}x \left(-1 + 2\cosh\left(-\log(x) + \sqrt{3}c_1\right)\right)$$
$$y(x) \to -\frac{1}{3}x \left(-1 + 2\cosh\left(\log(x) + \sqrt{3}c_1\right)\right)$$
$$y(x) \to -\frac{x}{3}$$
$$y(x) \to x$$

11.15 problem 274

Internal problem ID [15136]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 11. Singular solutions of differential equations. Exercises page 92

Problem number: 274.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

$$y - xy' - \sqrt{a^2y'^2 + b^2} = 0$$

✓ Solution by Maple

Time used: 0.266 (sec). Leaf size: 21

 $dsolve(y(x)=x*diff(y(x),x)+sqrt(a^2*diff(y(x),x)^2+b^2),y(x), singsol=all)$

$$y(x) = c_1 x + \sqrt{a^2 c_1^2 + b^2}$$

✓ Solution by Mathematica

Time used: 0.359 (sec). Leaf size: 37

DSolve[y[x]==x*y'[x]+Sqrt[a^2*y'[x]^2+b^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \sqrt{b^2 + a^2 c_1^2} + c_1 x$$

 $y(x) \to \sqrt{b^2}$

12 Section 12. Miscellaneous problems. Exercises page 93

12.1 problem	275				 			 										241
12.2 problem	276				 			 	•						•			242
12.3 problem	277				 			 	•						•			243
12.4 problem	278							 										244
12.5 problem	279							 										246
12.6 problem	280				 			 										248
12.7 problem	281				 			 										250
12.8 problem	282				 			 										251
12.9 problem	283				 			 										252
12.10 problem	284				 			 										253
12.11 problem	285				 			 										254
12.12 problem	286				 			 										255
12.13 problem	287				 			 										257
12.14 problem	288				 			 							•			258
12.15 problem	289				 			 										259
12.16 problem	290				 			 										260
12.17 problem	291				 			 										261
12.18 problem	292				 			 										262
12.19 problem	293							 										263
12.20 problem	294				 			 										264
12.21 problem	295				 			 										265
12.22 problem	296				 			 										266
12.23 problem	297				 			 										267
12.24 problem	298				 			 										268
12.25 problem	299				 			 										269
12.26 problem	300				 			 										270
12.27 problem	301				 			 										271
12.28 problem	302				 			 										272
12.29 problem	303				 			 										273
12.30 problem																		274
12.31 problem	305				 			 										275
12.32 problem	306				 			 										276
12.33 problem	307				 			 										277
12.34 problem																		278
12.35 problem	309				 			 										279
12.36 problem	310				 			 										280

12.37 problem	311																281
12.38 problem	312																282
12.39 problem	313																284

12.1 problem 275

Internal problem ID [15137]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 275.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$y' - (-y + x)^2 = 1$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(diff(y(x),x)=(x-y(x))^2+1,y(x), singsol=all)$

$$y(x) = \frac{c_1 x + x^2 - 1}{x + c_1}$$

Solution by Mathematica

Time used: 0.151 (sec). Leaf size: 20

DSolve[y'[x]==(x-y[x])^2+1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + \frac{1}{-x + c_1}$$

 $y(x) \to x$

12.2 problem 276

Internal problem ID [15138]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 276.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x \sin(x) y' + (\sin(x) - \cos(x) x) y = \sin(x) \cos(x) - x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve(x*sin(x)*diff(y(x),x)+(sin(x)-x*cos(x))*y(x)=sin(x)*cos(x)-x,y(x), singsol=all)

$$y(x) = \frac{\sin(x) c_1}{x} + \cos(x)$$

✓ Solution by Mathematica

Time used: 0.127 (sec). Leaf size: 16

$$y(x) \to \cos(x) + \frac{c_1 \sin(x)}{x}$$

12.3 problem 277

Internal problem ID [15139]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 277.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y' + \cos(x) y - y^n \sin(2x) = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 49

 $dsolve(diff(y(x),x)+y(x)*cos(x)=y(x)^n*sin(2*x),y(x), singsol=all)$

$$y(x) = \left(\frac{e^{\sin(x)(n-1)}c_1n - e^{\sin(x)(n-1)}c_1 + 2\sin(x)n - 2\sin(x) + 2}{n-1}\right)^{-\frac{1}{n-1}}$$

✓ Solution by Mathematica

Time used: 6.877 (sec). Leaf size: 36

DSolve[y'[x]+y[x]*Cos[x]==y[x]^n*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \left(c_1 e^{(n-1)\sin(x)} + \frac{2}{n-1} + 2\sin(x)\right)^{\frac{1}{1-n}}$$

12.4 problem 278

Internal problem ID [15140]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 278.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$3y^{2}x + (y^{3} - 3yx^{2})y' = -x^{3}$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 119

 $dsolve((x^3-3*x*y(x)^2)+(y(x)^3-3*x^2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{3c_1x^2 - \sqrt{8c_1^2x^4 + 1}}}{\sqrt{c_1}}$$
$$y(x) = \frac{\sqrt{3c_1x^2 + \sqrt{8c_1^2x^4 + 1}}}{\sqrt{c_1}}$$
$$y(x) = -\frac{\sqrt{3c_1x^2 - \sqrt{8c_1^2x^4 + 1}}}{\sqrt{c_1}}$$
$$y(x) = -\frac{\sqrt{3c_1x^2 + \sqrt{8c_1^2x^4 + 1}}}{\sqrt{c_1}}$$

Time used: 7.89 (sec). Leaf size: 245

$$y(x) \to -\sqrt{3x^2 - \sqrt{8x^4 + e^{4c_1}}}$$

$$y(x) \to \sqrt{3x^2 - \sqrt{8x^4 + e^{4c_1}}}$$

$$y(x) \to -\sqrt{3x^2 + \sqrt{8x^4 + e^{4c_1}}}$$

$$y(x) \to \sqrt{3x^2 + \sqrt{8x^4 + e^{4c_1}}}$$

$$y(x) \to -\sqrt{3x^2 - 2\sqrt{2}\sqrt{x^4}}$$

$$y(x) \to -\sqrt{3x^2 - 2\sqrt{2}\sqrt{x^4}}$$

$$y(x) \to -\sqrt{2\sqrt{2}\sqrt{x^4} + 3x^2}$$

$$y(x) \to \sqrt{2\sqrt{2}\sqrt{x^4} + 3x^2}$$

$$y(x) \to \sqrt{2\sqrt{2}\sqrt{x^4} + 3x^2}$$

12.5 problem 279

Internal problem ID [15141]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 279.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _rational, _dAlembert]

$$5yx - 4y^2 + \left(y^2 - 8yx + \frac{5x^2}{2}\right)y' = 6x^2$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 443

$$dsolve((5*x*y(x)-4*y(x)^2-6*x^2)+(y(x)^2-8*x*y(x)+25/10*x^2)*diff(y(x),x)=0,y(x), singsol=al(x)+al(x$$

$$y = \frac{\frac{\left(416x^3c_1^3 + 2 + 2\sqrt{3898c_1^6x^6 + 416x^3c_1^3 + 1}\right)^{\frac{1}{3}}}{2} + \frac{27x^2c_1^2}{\left(416x^3c_1^3 + 2 + 2\sqrt{3898c_1^6x^6 + 416x^3c_1^3 + 1}\right)^{\frac{1}{3}}} + 4c_1x}{c_1}$$

$$y = \frac{54i\sqrt{3}c_1^2x^2 - i\left(416x^3c_1^3 + 2 + 2\sqrt{3898c_1^6x^6 + 416x^3c_1^3 + 1}\right)^{\frac{2}{3}}\sqrt{3} - 54x^2c_1^2 + 16c_1x\left(416x^3c_1^3 + 2 + 2\sqrt{3898c_1^6x^6 + 416x^3c_1^3 + 2}\right)} + 2c_1x^2 + 2c_1x^2$$

Time used: 29.95 (sec). Leaf size: 741

DSolve[(5*x*y[x]-4*y[x]^2-6*x^2)+(y[x]^2-8*x*y[x]+25/10*x^2)*y'[x]==0,y[x],x,IncludeSingular

$$\begin{split} y(x) & \to \frac{\sqrt[3]{208x^3 + \sqrt{3898x^6 + 416e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}{27x^2} \\ & + \frac{27x^2}{\sqrt[3]{2}\sqrt[3]{208x^3 + \sqrt{3898x^6 + 416e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}}{2 2^{2/3}} \\ y(x) & \to -\frac{\left(1 - i\sqrt{3}\right)\sqrt[3]{208x^3 + \sqrt{3898x^6 + 416e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}}{2 2^{2/3}} \\ & - \frac{27\left(1 + i\sqrt{3}\right)x^2}{2\sqrt[3]{2}\sqrt[3]{208x^3 + \sqrt{3898x^6 + 416e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}}}{2 2^{2/3}} \\ y(x) & \to -\frac{\left(1 + i\sqrt{3}\right)\sqrt[3]{208x^3 + \sqrt{3898x^6 + 416e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}}{2 2^{2/3}} \\ & - \frac{27\left(1 - i\sqrt{3}\right)x^2}{2\sqrt[3]{2}\sqrt[3]{208x^3 + \sqrt{3898x^6 + 416e^{3c_1}x^3 + e^{6c_1}} + e^{3c_1}}}}{2 2^{2/3}} \\ y(x) & \to \frac{27 2^{2/3}x^2 + 8\sqrt[3]{\sqrt{3898}\sqrt{x^6 + 208x^3}x + \sqrt[3]{2}\left(\sqrt{3898}\sqrt{x^6} + 208x^3\right)^{2/3}}}{2\sqrt[3]{\sqrt{3898}\sqrt{x^6} + 208x^3}} \\ y(x) & \to \frac{27i2^{2/3}\sqrt{3}x^2 - 27 2^{2/3}x^2 + 16\sqrt[3]{\sqrt{3898}\sqrt{x^6} + 208x^3}x - i\sqrt[3]{2}\sqrt[3]{\left(\sqrt{3898}\sqrt{x^6} + 208x^3\right)^{2/3} - \sqrt[3]{2}\left(\sqrt{3898}\sqrt{x^6} + 208x^3\right)}} \\ y(x) & \to \frac{\left(\sqrt{3898}\sqrt{x^6} + 208x^3\right)^{2/3} \operatorname{Root}\left[\#1^3 - 16\&, 3\right] - 54\sqrt[3]{-12^{2/3}x^2 + 16\sqrt[3]{\sqrt{3898}\sqrt{x^6} + 208x^3}x}}{4\sqrt[3]{\sqrt{3898}\sqrt{x^6} + 208x^3}x} \\ & \to \frac{\left(\sqrt{3898}\sqrt{x^6} + 208x^3\right)^{2/3} \operatorname{Root}\left[\#1^3 - 16\&, 3\right] - 54\sqrt[3]{-12^{2/3}x^2 + 16\sqrt[3]{\sqrt{3898}\sqrt{x^6} + 208x^3}x}}}{4\sqrt[3]{\sqrt{3898}\sqrt{x^6} + 208x^3}x} \\ & \to \frac{\left(\sqrt{3898}\sqrt{x^6} + 208x^3\right)^{2/3} \operatorname{Root}\left[\#1^3 - 16\&, 3\right] - 54\sqrt[3]{-12^{2/3}x^2 + 16\sqrt[3]{\sqrt{3898}\sqrt{x^6} + 208x^3}x}}$$

12.6 problem 280

Internal problem ID [15142]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 280.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational]

$$3y^{2}x + (3yx^{2} - 6y^{2} - 1)y' = x^{2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 771

$$dsolve((3*x*y(x)^2-x^2)+(3*x^2*y(x)-6*y(x)^2-1)*diff(y(x),x)=0,y(x), singsol=all)$$

$$y = \frac{\left(-108x^2 - 144x^3 + 432c_1 + 27x^6 + 12\sqrt{-54x^9 + 162c_1x^6 + 144x^6 + 216x^5 - 864c_1x^3 - 27x^4 - 648c_1x^3 + 27x^4 - 648c_1x^3 - 27x^4 - 648c_1x^3 + 8x^4 - 8x^4 + 4x^4 + 4x^6 + 216x^5 - 864c_1x^3 - 27x^4 - 648c_1x^3 + 4x^2 + 4x^$$

$$y = \frac{24 + i\left(-9x^4 + \left(-108x^2 - 144x^3 + 432c_1 + 27x^6 + 12\sqrt{-54x^9 + (162c_1 + 144)x^6 + 216x^5 - 27x^4 - 8x^6}\right)}{24 + i\left(-9x^4 + \left(-108x^2 - 144x^3 + 432c_1 + 27x^6 + 12\sqrt{-54x^9 + (162c_1 + 144)x^6 + 216x^5 - 27x^4 - 8x^6}\right)\right)}$$

Time used: 7.603 (sec). Leaf size: 570

$$y(x) \rightarrow \frac{x^2}{4}$$

$$-\frac{\sqrt[3]{-\frac{27x^6}{4} + 36x^3 + 27x^2 + \sqrt{4\left(6 - \frac{9x^4}{4}\right)^3 + \left(-\frac{27x^6}{4} + 36x^3 + 27x^2 + 108c_1\right)^2 + 108c_1}}{6\sqrt[3]{2}}$$

$$+\frac{6\sqrt[3]{2}}{32^{2/3}\sqrt[3]{-\frac{27x^6}{4} + 36x^3 + 27x^2 + \sqrt{4\left(6 - \frac{9x^4}{4}\right)^3 + \left(-\frac{27x^6}{4} + 36x^3 + 27x^2 + 108c_1\right)^2 + 108c_1}}}{4\sqrt[3]{2^{2/3}\sqrt[3]{-\frac{27x^6}{4} + 36x^3 + 27x^2 + \sqrt{4\left(6 - \frac{9x^4}{4}\right)^3 + \left(-\frac{27x^6}{4} + 36x^3 + 27x^2 + 108c_1\right)^2 + 108c_1}}}$$

$$+\frac{(1 - i\sqrt{3})\sqrt[3]{-\frac{27x^6}{4} + 36x^3 + 27x^2 + \sqrt{4\left(6 - \frac{9x^4}{4}\right)^3 + \left(-\frac{27x^6}{4} + 36x^3 + 27x^2 + 108c_1\right)^2 + 108c_1}}}{62^{2/3}\sqrt[3]{-\frac{27x^6}{4} + 36x^3 + 27x^2 + \sqrt{4\left(6 - \frac{9x^4}{4}\right)^3 + \left(-\frac{27x^6}{4} + 36x^3 + 27x^2 + 108c_1\right)^2 + 108c_1}}}$$

$$+\frac{(1 + i\sqrt{3})\sqrt[3]{-\frac{27x^6}{4} + 36x^3 + 27x^2 + \sqrt{4\left(6 - \frac{9x^4}{4}\right)^3 + \left(-\frac{27x^6}{4} + 36x^3 + 27x^2 + 108c_1\right)^2 + 108c_1}}}{(1 - i\sqrt{3})\sqrt[3]{-\frac{27x^6}{4} + 36x^3 + 27x^2 + \sqrt{4\left(6 - \frac{9x^4}{4}\right)^3 + \left(-\frac{27x^6}{4} + 36x^3 + 27x^2 + 108c_1\right)^2 + 108c_1}}}$$

12.7 problem 281

Internal problem ID [15143]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 281.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$y - xy^2 \ln(x) + xy' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve((y(x)-x*y(x)^2*ln(x))+(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = -\frac{2}{(\ln(x)^2 - 2c_1) x}$$

✓ Solution by Mathematica

Time used: 0.153 (sec). Leaf size: 27

 $DSolve[(y[x]-x*y[x]^2*Log[x])+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{-x \log^2(x) + 2c_1 x}$$
$$y(x) \to 0$$

12.8 problem 282

Internal problem ID [15144]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 282.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$2xy e^{x^2} + e^{x^2}y' = x \sin(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve((2*x*y(x)*exp(x^2)-x*sin(x))+(exp(x^2))*diff(y(x),x)=0,y(x), singsol=all)$

$$y = (\sin(x) - x\cos(x) + c_1)e^{-x^2}$$

✓ Solution by Mathematica

Time used: 0.092 (sec). Leaf size: 23

DSolve[(2*x*y[x]*Exp[x^2]-x*Sin[x])+Exp[x^2]*y'[x]==0,y[x],x,IncludeSingularSolutions -> Tru

$$y(x) \to e^{-x^2} (\sin(x) - x \cos(x) + c_1)$$

12.9 problem 283

Internal problem ID [15145]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 283.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_exponential_symmetries]]

$$y' - \frac{1}{2x - y^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(x),x)=1/(2*x-y(x)^2),y(x), singsol=all)$

$$x - \frac{y^2}{2} - \frac{y}{2} - \frac{1}{4} - e^{2y}c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.135 (sec). Leaf size: 31

DSolve[y'[x]== $1/(2*x-y[x]^2)$,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[x = \frac{1}{4} (2y(x)^2 + 2y(x) + 1) + c_1 e^{2y(x)}, y(x) \right]$$

12.10 problem 284

Internal problem ID [15146]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 284.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$xy' - y' = -x^2 + 3x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(x^2+x*diff(y(x),x)=3*x+diff(y(x),x),y(x), singsol=all)$

$$y = -\frac{x^2}{2} + 2x + 2\ln(x - 1) + c_1$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 24

DSolve[x^2+x*y'[x]==3*x+y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{2}(x-1)^2 + x + 2\log(x-1) + c_1$$

12.11 problem 285

Internal problem ID [15147]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 285.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Bernoulli]

$$y'yx - y^2 = x^4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(x*y(x)*diff(y(x),x)-y(x)^2=x^4,y(x), singsol=all)$

$$y = \sqrt{x^2 + c_1} x$$
$$y = -\sqrt{x^2 + c_1} x$$

✓ Solution by Mathematica

Time used: 0.166 (sec). Leaf size: 34

DSolve[x*y[x]*y'[x]-y[x]^2==x^4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -x\sqrt{x^2 + c_1}$$

 $y(x) \rightarrow x\sqrt{x^2 + c_1}$

12.12 problem 286

Internal problem ID [15148]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 286.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$\frac{1}{x^2 - yx + y^2} - \frac{y'}{2y^2 - yx} = 0$$

✓ Solution by Maple

Time used: 0.938 (sec). Leaf size: 40

 $dsolve(1/(x^2-x*y(x)+y(x)^2)=diff(y(x),x)/(2*y(x)^2-x*y(x)),y(x), singsol=all)$

$$y = \left(\text{RootOf} \left(\underline{Z^8 c_1 x^2} + 2\underline{Z^6 c_1 x^2} - \underline{Z^4} - 2\underline{Z^2} - 1 \right)^2 + 2 \right) x$$

✓ Solution by Mathematica

Time used: 60.201 (sec). Leaf size: 1805

$$\begin{split} y(x) & \to \frac{1}{6} \left(-\sqrt{3} \sqrt{\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}} + \frac{e^{4c_1}}{\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}} \right) + \frac{e^{4c_1}}{\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}} - \frac{e^{4c_1}}{\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}} \right) \\ & + 9x \\ y(x) \\ & \to \frac{1}{6} \left(-\sqrt{3} \sqrt{\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}} + \frac{e^{4c_1}}{\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}} \right) \\ & + \sqrt{3} \sqrt{-\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}} - \frac{e^{4c_1}}{\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}} \right) \\ & + \sqrt{3} \sqrt{-\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}} - \frac{e^{4c_1}}{\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}} \right) \\ & + \sqrt{3} \sqrt{-\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}} - \frac{e^{4c_1}}{\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}} \right) \\ & + \sqrt{3} \sqrt{-\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}} - \frac{e^{4c_1}}{\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}}} \right) \\ & + \sqrt{3} \sqrt{-\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}} - \frac{e^{4c_1}}{\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}} \\ & -\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}} \right) \\ & + \sqrt{3} \sqrt{-\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}}} \\ & -\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{6c_1}}} \\ & -\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{4c_1}}} \\ & -\sqrt[3]{54e^{2c_1}x^4 + 6\sqrt{3}\sqrt{e^{4c_1}x^4\left(27x^4 + e^{4c_1}\right)} + e^{4c_1}}}$$

+9x

y(x) = 256

12.13 problem 287

Internal problem ID [15149]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 287.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(2x-1)y'-2y = \frac{1-4x}{x^2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve((2*x-1)*diff(y(x),x)-2*y(x)=(1-4*x)/x^2,y(x), singsol=all)$

$$y = (2x - 1)c_1 + \frac{1}{x}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 18

 $DSolve[(2*x-1)*y'[x]-2*y[x]==(1-4*x)/x^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{x} + 2c_1x - c_1$$

12.14 problem 288

Internal problem ID [15150]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 288.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y + (3x + y + 1)y' = -x - 3$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 29

dsolve((x-y(x)+3)+(3*x+y(x)+1)*diff(y(x),x)=0,y(x), singsol=all)

$$y = 2 - \frac{(x+1) \left(\text{LambertW} \left(-2c_1(x+1) \right) - 2 \right)}{\text{LambertW} \left(-2c_1(x+1) \right)}$$

✓ Solution by Mathematica

Time used: 0.771 (sec). Leaf size: 163

 $DSolve[(x-y[x]+3)+(3*x+y[x]+1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\frac{2^{2/3} \left(x \left(-\log \left(\frac{3 \ 2^{2/3} (y(x) + x - 1)}{y(x) + 3x + 1}\right)\right) + (x - 1) \log \left(\frac{6 \ 2^{2/3} (x + 1)}{y(x) + 3x + 1}\right) + \log \left(\frac{3 \ 2^{2/3} (y(x) + x - 1)}{y(x) + 3x + 1}\right) + y(x) \left(\log \left(\frac{6 \ y(x) + y(x) + y(x)}{y(x) + 3x + 1}\right) + y(x)\right) \left(\log \left(\frac{6 \ y(x) + y(x) + y(x)}{y(x) + 3x + 1}\right) + y(x)\right) }{9(y(x) + x - 1)}$$

12.15 problem 289

Internal problem ID [15151]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 289.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + \cos\left(\frac{y}{2} + \frac{x}{2}\right) - \cos\left(-\frac{y}{2} + \frac{x}{2}\right) = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 62

dsolve(diff(y(x),x)+cos((x+y(x))/2)=cos((x-y(x))/2),y(x), singsol=all)

$$y = 2\arctan\left(\frac{2\operatorname{e}^{-2\cos(\frac{x}{2})}c_1}{\operatorname{e}^{-4\cos(\frac{x}{2})}c_1^2 + 1}, \frac{-\operatorname{e}^{-4\cos(\frac{x}{2})}c_1^2 + 1}{\operatorname{e}^{-4\cos(\frac{x}{2})}c_1^2 + 1}\right)$$

✓ Solution by Mathematica

Time used: 0.486 (sec). Leaf size: 70

DSolve[y'[x]+Cos[(x+y[x])/2]==Cos[(x-y[x])/2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -2\arccos\left(\tanh\left(\frac{1}{2}\left(4\cos\left(\frac{x}{2}\right) - c_1\right)\right)\right)$$

$$y(x) \to 2\arccos\left(\tanh\left(\frac{1}{2}\left(4\cos\left(\frac{x}{2}\right) - c_1\right)\right)\right)$$

$$y(x) \to 0$$

$$y(x) \to -2\pi$$

$$y(x) \to 2\pi$$

12.16 problem 290

Internal problem ID [15152]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 290.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'(3x^2 - 2x) - y(6x - 2) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(x),x)*(3*x^2-2*x)-y(x)*(6*x-2)=0,y(x), singsol=all)$

$$y = c_1 x(3x - 2)$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 19

 $DSolve[y'[x]*(3*x^2-2*x)-y[x]*(6*x-2)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1(2-3x)x$$
$$y(x) \to 0$$

12.17 problem 291

Internal problem ID [15153]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 291.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Bernoulli]

$$xy^2y' - y^3 = \frac{x^4}{3}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

 $dsolve(x*y(x)^2*diff(y(x),x)-y(x)^3=1/3*x^4,y(x), singsol=all)$

$$y = (x + c_1)^{\frac{1}{3}} x$$

$$y = -\frac{(x + c_1)^{\frac{1}{3}} (1 + i\sqrt{3}) x}{2}$$

$$y = \frac{(x + c_1)^{\frac{1}{3}} (i\sqrt{3} - 1) x}{2}$$

✓ Solution by Mathematica

Time used: 0.174 (sec). Leaf size: 54

DSolve $[x*y[x]^2*y'[x]-y[x]^3==1/3*x^4,y[x],x$, IncludeSingularSolutions -> True

$$y(x) \to x\sqrt[3]{x+c_1}$$

$$y(x) \to -\sqrt[3]{-1}x\sqrt[3]{x+c_1}$$

$$y(x) \to (-1)^{2/3}x\sqrt[3]{x+c_1}$$

12.18 problem 292

Internal problem ID [15154]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 292.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _exact, _dAlembert]

$$e^{\frac{x}{y}} + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) y' = -1$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.312 (sec). Leaf size: 21

dsolve([(1+exp(x/y(x)))+(exp(x/y(x))*(1-x/y(x)))*diff(y(x),x)=0,y(1) = 1],y(x), singsol=all)

$$y = -\frac{x}{\text{LambertW}\left(\frac{x}{-1+x-e}\right)}$$

✓ Solution by Mathematica

Time used: 1.228 (sec). Leaf size: 21

$$y(x) \to -\frac{x}{W\left(\frac{x}{x-e-1}\right)}$$

12.19 problem 293

Internal problem ID [15155]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 293.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y^2 - y'yx = -x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve((x^2+y(x)^2)-x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \sqrt{2\ln(x) + c_1} x$$
$$y = -\sqrt{2\ln(x) + c_1} x$$

✓ Solution by Mathematica

Time used: 0.159 (sec). Leaf size: 36

 $DSolve[(x^2+y[x]^2)-x*y[x]*y'[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to -x\sqrt{2\log(x) + c_1}$$

 $y(x) \to x\sqrt{2\log(x) + c_1}$

12.20 problem 294

Internal problem ID [15156]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 294.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$-y + (x - y + 3) y' = -x - 2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve((x-y(x)+2)+(x-y(x)+3)*diff(y(x),x)=0,y(x), singsol=all)

$$y = x - \frac{\text{LambertW}(-c_1 e^{5+4x})}{2} + \frac{5}{2}$$

✓ Solution by Mathematica

Time used: 3.14 (sec). Leaf size: 35

$$y(x) \rightarrow -\frac{1}{2}W(-e^{4x-1+c_1}) + x + \frac{5}{2}$$

 $y(x) \rightarrow x + \frac{5}{2}$

12.21 problem 295

Internal problem ID [15157]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 295.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\;Maple\;gives\;this\;as\;type\;[[_homogeneous,\; `class\;D'],\;_rational,\;_Bernoulli]}$

$$y^2x + y - xy' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve((x*y(x)^2+y(x))-x*diff(y(x),x)=0,y(x), singsol=all)$

$$y = -\frac{2x}{x^2 - 2c_1}$$

✓ Solution by Mathematica

Time used: 0.124 (sec). Leaf size: $23\,$

 $DSolve[(x*y[x]^2+y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{2x}{x^2 - 2c_1}$$
$$y(x) \to 0$$

12.22 problem 296

Internal problem ID [15158]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 296.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Bernoulli]

$$y^2 + 2yy' = -x^2 - 2x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 37

 $dsolve((x^2+y(x)^2+2*x)+(2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \sqrt{c_1 e^{-x} - x^2}$$
$$y = -\sqrt{c_1 e^{-x} - x^2}$$

✓ Solution by Mathematica

Time used: 5.559 (sec). Leaf size: 47

 $DSolve[(x^2+y[x]^2+2*x)+(2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{-x^2 + c_1 e^{-x}}$$

 $y(x) \to \sqrt{-x^2 + c_1 e^{-x}}$

12.23 problem 297

Internal problem ID [15159]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 297.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x-1)(y^2-y+1)-(y-1)(x^2+x+1)y'=0$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 2397

$$dsolve(((x-1)*(y(x)^2-y(x)+1))=((y(x)-1)*(x^2+x+1))*diff(y(x),x),y(x), singsol=all)$$

Expression too large to display

✓ Solution by Mathematica

Time used: 0.578 (sec). Leaf size: 96

$$DSolve[((x-1)*(y[x]^2-y[x]+1)) = ((y[x]-1)*(x^2+x+1))*y'[x], y[x], x, IncludeSingularSolutions - (x-1)*(y[x]^2-y[x]+1)) = ((y[x]-1)*(x^2+x+1))*y'[x], y[x], x, IncludeSingularSolutions - (x-1)*(y[x]^2-y[x]+1)) = ((y[x]-1)*(x^2+x+1))*y'[x], y[x], x, IncludeSingularSolutions - (x-1)*(y[x]^2-y[x]+1)) = ((y[x]-1)*(x^2+x+1))*y'[x], y[x], y[x], x, IncludeSingularSolutions - (x-1)*$$

$$y(x) \rightarrow \text{InverseFunction} \left[\frac{1}{2} \log \left(\# 1^2 - \# 1 + 1 \right) \right.$$

$$\left. - \frac{\arctan \left(\frac{2 \# 1 - 1}{\sqrt{3}} \right)}{\sqrt{3}} \& \right] \left[-\sqrt{3} \arctan \left(\frac{2x + 1}{\sqrt{3}} \right) + \frac{1}{2} \log \left(x^2 + x + 1 \right) + c_1 \right]$$

$$y(x) \rightarrow \sqrt[3]{-1}$$

$$y(x) \rightarrow -(-1)^{2/3}$$

12.24 problem 298

Internal problem ID [15160]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 298.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$(x - 2yx - y^2) y' + y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve((x-2*x*y(x)-y(x)^2)*diff(y(x),x)+y(x)^2=0,y(x), singsol=all)$

$$y = \frac{1}{\text{RootOf}\left(-\underline{Z}^2x + e^{-Z}c_1 + 1\right)}$$

✓ Solution by Mathematica

Time used: 0.143 (sec). Leaf size: 23

 $DSolve[(x-2*x*y[x]-y[x]^2)*y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[x = y(x)^2 + c_1 e^{\frac{1}{y(x)}} y(x)^2, y(x) \right]$$

12.25 problem 299

Internal problem ID [15161]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 299.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(y)]'], [_Abel, '2nd type

$$\cos(x) y + (2y - \sin(x)) y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

dsolve(y(x)*cos(x)+(2*y(x)-sin(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y = -\frac{\sin(x)}{2 \operatorname{LambertW}\left(-\frac{\sin(x) \mathrm{e}^{\frac{c_1}{2}}}{2}\right)}$$

✓ Solution by Mathematica

 $\label{eq:time_used: 10.969 (sec). Leaf size: 349} Time used: 10.969 (sec). Leaf size: 349$

DSolve[y[x]*Cos[x]+(2*y[x]-Sin[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$- \frac{\sqrt[3]{-2} \left(\frac{2^{2/3} \cos(x) (4y(x) + \sin(x))}{\sqrt[3]{-\cos^3(x)} (\sin(x) - 2y(x))} + (-2)^{2/3} \right) \left(\frac{(-\cos^3(x))^{2/3} \sec^2(x) (4y(x) + \sin(x))}{\sqrt[3]{2} (\sin(x) - 2y(x))} + (-2)^{2/3} \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \left(-\log\left(\frac{\pi}{\sqrt[3]{2}} \right) \right) \left(-\log\left$$

12.26 problem 300

Internal problem ID [15162]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 300.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - e^{x+2y} = 1$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 30

dsolve(diff(y(x),x)-1=exp(x+2*y(x)),y(x), singsol=all)

$$y = -\frac{x}{2} + \frac{\ln(3)}{2} + \frac{\ln\left(\frac{e^{3x}}{-2e^{3x}+c_1}\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.931 (sec). Leaf size: 26

DSolve[y'[x]-1==Exp[x+2*y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x - \frac{1}{2} \log \left(-\frac{2}{3} (e^{3x} + 3c_1) \right)$$

12.27 problem 301

Internal problem ID [15163]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 301.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$4yx^3 - 2y^2x + (y^2 + 2yx^2 - x^4)y' = -2x^5$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 53

 $dsolve(2*(x^5+2*x^3*y(x)-y(x)^2*x)+(y(x)^2+2*x^2*y(x)-x^4)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{c_1}{2} - \frac{\sqrt{-4x^4 + 4c_1x^2 + c_1^2}}{2}$$
$$y = \frac{c_1}{2} + \frac{\sqrt{-4x^4 + 4c_1x^2 + c_1^2}}{2}$$

✓ Solution by Mathematica

Time used: 15.349 (sec). Leaf size: 87

$$y(x) \to \frac{1}{2} \left(e^{2c_1} - \sqrt{-4x^4 + 4e^{2c_1}x^2 + e^{4c_1}} \right)$$
$$y(x) \to \frac{1}{2} \left(\sqrt{-4x^4 + 4e^{2c_1}x^2 + e^{4c_1}} + e^{2c_1} \right)$$

12.28 problem 302

Internal problem ID [15164]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 302.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$\boxed{x^2y^ny' - 2xy' + y = 0}$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 32

 $dsolve(x^2*y(x)^n*diff(y(x),x)=2*x*diff(y(x),x)-y(x),y(x), singsol=all)$

$$y^{2n}(y^nx - n - 2)^n x^{-n} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.18 (sec). Leaf size: 41 $\,$

 $\textbf{DSolve}[x^2*y[x]^n*y'[x] == 2*x*y'[x] - y[x], y[x], x, Include Singular Solutions \rightarrow \textbf{True}]$

Solve
$$\left[\frac{n(\log(x) - \log(-xy(x)^n + n + 2))}{n+2} - \frac{2n\log(y(x))}{n+2} = c_1, y(x) \right]$$

12.29 problem 303

Internal problem ID [15165]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 303.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$(3y + 3x + a^2)y' - 4y = b^2 + 4x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 79

 $dsolve((3*(x+y(x))+a^2)*diff(y(x),x)=4*(x+y(x))+b^2,y(x), singsol=all)$

$$y = \frac{(4a^2 - 3b^2) \operatorname{LambertW}\left(\frac{3e^{\frac{3a^2 + 3b^2 - 49c_1 + 49x}{4a^2 - 3b^2}}}{4a^2 - 3b^2}\right)}{21} - \frac{a^2}{7} - \frac{b^2}{7} - x$$

✓ Solution by Mathematica

Time used: 60.042 (sec). Leaf size: 97

$$y(x) \to \frac{1}{21} \left(-3\left(a^2 + b^2 + 7x\right) + \left(4a^2 - 3b^2\right) W\left(-4\left(2^{\frac{3b^2}{2a^2} - 2}e^{\frac{49x - 3b^2(-1 + c_1)}{4a^2} - 1 + c_1}\right)^{\frac{4a^2}{4a^2 - 3b^2}}\right) \right)$$

12.30 problem 304

Internal problem ID [15166]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 304.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$-y^2 + 2y'yx = -x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve((x-y(x)^2)+2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \sqrt{-x \left(\ln(x) - c_1\right)}$$
$$y = -\sqrt{\left(-\ln(x) + c_1\right)x}$$

✓ Solution by Mathematica

Time used: 0.196 (sec). Leaf size: 44

 $DSolve[(x-y[x]^2)+2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{x}\sqrt{-\log(x) + c_1}$$

 $y(x) \to \sqrt{x}\sqrt{-\log(x) + c_1}$

12.31 problem 305

Internal problem ID [15167]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 305.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$xy' + y - y^2 \ln(x) = 0$$

With initial conditions

$$\left[y(1) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

 $dsolve([x*diff(y(x),x)+y(x)=y(x)^2*ln(x),y(1) = 1/2],y(x), singsol=all)$

$$y = \frac{1}{1 + x + \ln(x)}$$

✓ Solution by Mathematica

Time used: 0.142 (sec). Leaf size: 12

$$y(x) \to \frac{1}{x + \log(x) + 1}$$

12.32 problem 306

Internal problem ID [15168]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 306.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$-\cos\left(\ln\left(y\right)\right)y' = -\sin\left(\ln\left(x\right)\right)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 81

dsolve(sin(ln(x))-cos(ln(y(x)))*diff(y(x),x)=0,y(x), singsol=all)

y $= e^{\text{RootOf}\left(-2\cos(\ln(x))x^2\sin(\ln(x)) - 2\sin(\ln(x))\sin(\underline{Z})e^{-Z}x + 2\sin(\underline{Z})\cos(\ln(x))e^{-Z}x - 2e^{2\underline{Z}}\cos(\underline{Z})^2 + 4c_1x\sin(\ln(x)) - 4\cos(\ln(x))c_1x - e^{2(\underline{Z})x}\cos(\ln(x))e^{-Z}x - e^{2$

✓ Solution by Mathematica

Time used: 0.386 (sec). Leaf size: 47

DSolve[Sin[Log[x]]-Cos[Log[y[x]]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \text{InverseFunction} \left[\frac{1}{2} \#1 \sin(\log(\#1)) + \frac{1}{2} \#1 \cos(\log(\#1)) \& \right] \left[\frac{1}{2} x \sin(\log(x)) - \frac{1}{2} x \cos(\log(x)) + c_1 \right]$$

12.33 problem 307

Internal problem ID [15169]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 307.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$y' - \sqrt{\frac{9y^2 - 6y + 2}{x^2 - 2x + 5}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 71

dsolve(diff(y(x),x)=sqrt($(9*y(x)^2-6*y(x)+2)/(x^2-2*x+5)$),y(x), singsol=all)

$$-\frac{\sqrt{\frac{9y^2-6y+2}{x^2-2x+5}}\sqrt{x^2-2x+5} \operatorname{arcsinh}\left(\frac{x}{2}-\frac{1}{2}\right)}{\sqrt{9y^2-6y+2}} + \frac{\operatorname{arcsinh}\left(3y-1\right)}{3} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 5.598 (sec). Leaf size: 160

$$\begin{split} y(x) &\to \frac{1}{96} \Big(e^{3c_1} \Big(x^3 + \Big(\sqrt{x^2 - 2x + 5} - 3 \Big) \, x^2 - 2 \Big(\sqrt{x^2 - 2x + 5} - 3 \Big) \, x \\ &\quad + 2 \Big(\sqrt{x^2 - 2x + 5} - 2 \Big) \Big) - 64 e^{-3c_1} \Big(-x^3 + \Big(\sqrt{x^2 - 2x + 5} + 3 \Big) \, x^2 \\ &\quad - 2 \Big(\sqrt{x^2 - 2x + 5} + 3 \Big) \, x + 2 \Big(\sqrt{x^2 - 2x + 5} + 2 \Big) \Big) + 32 \Big) \\ y(x) &\to \frac{1}{3} - \frac{i}{3} \\ y(x) &\to \frac{1}{3} + \frac{i}{3} \end{split}$$

12.34 problem 308

Internal problem ID [15170]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 308.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$(5x - 7y + 1)y' + y = 1 - x$$

✓ Solution by Maple

Time used: 1.734 (sec). Leaf size: 92

$$dsolve((5*x-7*y(x)+1)*diff(y(x),x)+(x+y(x)-1)=0,y(x), singsol=all)$$

 $= \frac{-\operatorname{RootOf}\left(7_Z^{16} + \left(-128c_1x^4 + 256c_1x^3 - 192c_1x^2 + 64c_1x - 8c_1\right)_Z^4 - 16c_1x^4 + 32c_1x^3 - 24c_1x^2 + 26c_1x^4 + 32c_1x^3 - 24c_1x^2 + 26c_1x^4 + 32c_1x^3 - 24c_1x^3 + 26c_1x^3 - 26c_1x^3$

✓ Solution by Mathematica

Time used: 60.319 (sec). Leaf size: 8165

 $DSolve[(5*x-7*y[x]+1)*y'[x]+(x+y[x]-1)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Too large to display

12.35 problem 309

Internal problem ID [15171]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 309.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y + (2x + 2y - 1)y' = -1 - x$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 20

$$y = -x + \frac{3 \operatorname{LambertW}\left(\frac{2e^{\frac{1}{3} + \frac{x}{3}}}{3}\right)}{2} + 2$$

✓ Solution by Mathematica

Time used: 3.539 (sec). Leaf size: 28

$$y(x) \to \frac{3}{2}W\left(\frac{2}{3}e^{\frac{x+1}{3}}\right) - x + 2$$

12.36 problem 310

Internal problem ID [15172]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 310.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$y^3 + 2(x^2 - y^2x)y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

 $dsolve(y(x)^3+2*(x^2-x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y = \frac{\mathrm{e}^{\frac{c_1}{2}}}{\sqrt{-\frac{\mathrm{e}^{c_1}}{x \, \mathrm{LambertW}\left(-\frac{\mathrm{e}^{c_1}}{x}\right)}}}$$

✓ Solution by Mathematica

Time used: 2.795 (sec). Leaf size: 60

 $DSolve[y[x]^3+2*(x^2-x*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow -i\sqrt{x}\sqrt{W\left(-rac{e^{c_1}}{x}
ight)}$$
 $y(x)
ightarrow i\sqrt{x}\sqrt{W\left(-rac{e^{c_1}}{x}
ight)}$
 $y(x)
ightarrow 0$

12.37 problem 311

Internal problem ID [15173]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 311.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational]

$$y' - \frac{2(y+2)^2}{(x+y-1)^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

 $dsolve(diff(y(x),x)=2*((y(x)+2)/(x+y(x)-1))^2,y(x), singsol=all)$

$$y = -2 + (-x + 3) \tan \left(\text{RootOf} \left(-2 \underline{Z} + \ln \left(\tan \left(\underline{Z} \right) \right) + \ln \left(x - 3 \right) + c_1 \right) \right)$$

✓ Solution by Mathematica

Time used: 0.15 (sec). Leaf size: $27\,$

Solve
$$\left[2\arctan\left(\frac{3-x}{y(x)+2}\right) + \log(y(x)+2) = c_1, y(x)\right]$$

12.38 problem 312

Internal problem ID [15174]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 312.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$4x^2{y'}^2 - y^2 - y^3x = 0$$

✓ Solution by Maple

Time used: 1.187 (sec). Leaf size: 1759

 $dsolve(4*x^2*diff(y(x),x)^2-y(x)^2=x*y(x)^3,y(x), singsol=all)$

y = 0

Expression too large to display Expression too large to display

✓ Solution by Mathematica

Time used: 105.55 (sec). Leaf size: 1401

DSolve $[4*x^2*y'[x]^2-y[x]^2==x*y[x]^3,y[x],x$, IncludeSingularSolutions -> True

$$y(x) \rightarrow \text{Root} \big[\#1^8 (x^9 - 2e^{3c_1}x^6 + e^{6c_1}x^3) + \#1^7 \big(-24x^8 - 120e^{3c_1}x^5 \big) \\ + \#1^6 \big(252x^7 - 444e^{3c_1}x^4 \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^3 \big(-13608x^4 + 48e^{3c_1}x \big) + \#1^2 \big(20412x^3 - 16e^{3c_1} \big) - 17496\#1x^2 + 6561x^8, 1 \big] \\ y(x) \rightarrow \text{Root} \big[\#1^8 (x^9 - 2e^{3c_1}x^6 + e^{6c_1}x^3) + \#1^7 \big(-24x^8 - 120e^{3c_1}x^5 \big) \\ + \#1^6 \big(252x^7 - 444e^{3c_1}x^4 \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^3 \big(-13608x^4 + 48e^{3c_1}x \big) + \#1^2 \big(20412x^3 - 16e^{3c_1} \big) - 17496\#1x^2 + 6561x^8, 2 \big] \\ y(x) \rightarrow \text{Root} \big[\#1^8 (x^9 - 2e^{3c_1}x^6 + e^{6c_1}x^3) + \#1^7 \big(-24x^8 - 120e^{3c_1}x^5 \big) \\ + \#1^6 \big(252x^7 - 444e^{3c_1}x^4 \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^3 \big(-13608x^4 + 48e^{3c_1}x \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^3 \big(-13608x^4 + 48e^{3c_1}x \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^3 \big(-13608x^4 + 48e^{3c_1}x \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^3 \big(-13608x^4 + 48e^{3c_1}x \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^6 \big(252x^7 - 444e^{3c_1}x^4 \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^3 \big(-13608x^4 + 48e^{3c_1}x \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^3 \big(-13608x^4 + 48e^{3c_1}x \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^3 \big(-13608x^4 + 48e^{3c_1}x \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^3 \big(-13608x^4 + 48e^{3c_1}x \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^3 \big(-13608x^4 + 48e^{3c_1}x \big) + \#1^5 \big(-1512x^6 + 56e^{3c_1}x^3 \big) + \#1^4 \big(5670x^5 - 66e^{3c_1}x^2 \big) \\ + \#1^3 \big(-13608x^4 + 48e^{3c_1}x \big) + \#1^5 \big(-1512x^6 + 56e^{3c$$

12.39 problem 313

Internal problem ID [15175]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Section 12. Miscellaneous problems. Exercises page 93

Problem number: 313.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [_rational, _dAlembert]

$$y' + xy'^2 - y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 59

 $dsolve(diff(y(x),x)+x*diff(y(x),x)^2-y(x)=0,y(x), singsol=all)$

$$\begin{split} y &= 2 \, \mathrm{e}^{\mathrm{RootOf} \left(-x \, \mathrm{e}^{2-Z} + 2 \, \mathrm{e}^{-Z} x + _Z + c_1 - x - \mathrm{e}^{-Z} \right)} x \\ &\quad + \mathrm{RootOf} \left(-x \, \mathrm{e}^{2-Z} + 2 \, \mathrm{e}^{-Z} x + _Z + c_1 - x - \mathrm{e}^{-Z} \right) + c_1 - x \end{split}$$

✓ Solution by Mathematica

Time used: 0.881 (sec). Leaf size: 46

 $DSolve[y'[x]+x*y'[x]^2-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\left\{ x = \frac{\log(K[1]) - K[1]}{(K[1] - 1)^2} + \frac{c_1}{(K[1] - 1)^2}, y(x) = xK[1]^2 + K[1] \right\}, \{y(x), K[1]\} \right]$$

13 Chapter 2 (Higher order ODE's). Section 13. Basic concepts and definitions. Exercises page 98

13.1	problem	318		•										•	•		•			•			286
13.2	$\operatorname{problem}$	319																					287
13.3	$\operatorname{problem}$	320																					288
13.4	$\operatorname{problem}$	321												•			•						289
13.5	$\operatorname{problem}$	322																					290
13.6	${\bf problem}$	323											•	•			•					•	291
13.7	${\bf problem}$	324											•	•			•					•	292
13.8	$\operatorname{problem}$	325												•			•						293
13.9	problem	326						_															294

13.1 problem 318

Internal problem ID [15176]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 13. Basic concepts and definitions. Exer-

cises page 98

Problem number: 318.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 2\cos(x) + 2\sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)+y(x)=2*(cos(x)+sin(x)),y(x), singsol=all)

$$y = (c_1 - x + 1)\cos(x) + \sin(x)(x + c_2)$$

✓ Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 23

DSolve[y''[x]+y[x]==2*(Cos[x]+Sin[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (-x+1+c_1)\cos(x) + (x+c_2)\sin(x)$$

13.2 problem 319

Internal problem ID [15177]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 $\bf Section:$ Chapter 2 (Higher order ODE's). Section 13. Basic concepts and definitions. Exercises page 98

Problem number: 319.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _quadrature]]

$$xy'''=2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(x*diff(y(x),x\$3)=2,y(x), singsol=all)

$$y = x^{2} \ln(x) + \frac{(c_{1} - 3) x^{2}}{2} + c_{2}x + c_{3}$$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 28

DSolve[x*y'''[x]==2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 \log(x) + \left(-\frac{3}{2} + c_3\right) x^2 + c_2 x + c_1$$

13.3 problem 320

Internal problem ID [15178]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 13. Basic concepts and definitions. Exer-

cises page 98

Problem number: 320.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible

$$y'' - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve(diff(y(x),x$2)=diff(y(x),x)^2,y(x), singsol=all)$

$$y = -\ln\left(-c_1x - c_2\right)$$

✓ Solution by Mathematica

Time used: 0.165 (sec). Leaf size: 15

DSolve[y''[x]==y'[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 - \log(x + c_1)$$

13.4 problem 321

Internal problem ID [15179]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section}\colon {\bf Chapter~2}$ (Higher order ODE's). Section 13. Basic concepts and definitions. Exer-

cises page 98

Problem number: 321.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$(x-1)y''=1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve((x-1)*diff(y(x),x\$2)=1,y(x), singsol=all)

$$y = \ln(x - 1)(x - 1) + (c_1 - 1)x + c_2 + 1$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: $22\,$

DSolve[(x-1)*y''[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (x-1)\log(x-1) + (-1+c_2)x + c_1$$

13.5 problem 322

Internal problem ID [15180]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 13. Basic concepts and definitions. Exer-

cises page 98

Problem number: 322.

ODE order: 1. ODE degree: 4.

CAS Maple gives this as type [_quadrature]

$$y'^4 = 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve(diff(y(x),x)*diff(y(x),x)^3=1,y(x), singsol=all)$

$$y = -ix + c_1$$
$$y = ix + c_1$$
$$y = x + c_1$$

$$y = x + c_1$$

$$y = -x + c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 43

DSolve[y'[x]*y'[x]^3==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -x + c_1$$

$$y(x) \rightarrow c_1 - ix$$

$$y(x) \to ix + c_1$$

$$y(x) \to x + c_1$$

13.6 problem 323

Internal problem ID [15181]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 13. Basic concepts and definitions. Exer-

cises page 98

Problem number: 323.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(x),x\$2)+y(x)=0,y(x), singsol=all)

$$y = c_1 \sin(x) + c_2 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 16

DSolve[y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \cos(x) + c_2 \sin(x)$$

13.7 problem 324

Internal problem ID [15182]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 13. Basic concepts and definitions. Exer-

cises page 98

Problem number: 324.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 3y' + 2y = 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=2,y(x), singsol=all)

$$y = e^{2x}c_1 + c_2e^x + 1$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 21

DSolve[y''[x]-3*y'[x]+2*y[x]==2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{2x} + 1$$

13.8 problem 325

Internal problem ID [15183]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 13. Basic concepts and definitions. Exercises page 98

Problem number: 325.

ODE order: 2. ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - \left(1 + y'^2\right)^{\frac{3}{2}} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 49

 $dsolve(diff(y(x),x$2)=(1+diff(y(x),x)^2)^(3/2),y(x), singsol=all)$

$$y = -ix + c_1$$

$$y = ix + c_1$$

$$y = (c_1 + x + 1)(c_1 + x - 1)\sqrt{-\frac{1}{(c_1 + x + 1)(c_1 + x - 1)}} + c_2$$

✓ Solution by Mathematica

Time used: 0.253 (sec). Leaf size: 59

DSolve[$y''[x] == (1+y'[x]^2)^(3/2), y[x], x, IncludeSingularSolutions -> True$]

$$y(x) \rightarrow c_2 - i\sqrt{x^2 + 2c_1x - 1 + c_1^2}$$

 $y(x) \rightarrow i\sqrt{x^2 + 2c_1x - 1 + c_1^2} + c_2$

13.9 problem 326

Internal problem ID [15184]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 13. Basic concepts and definitions. Exer-

cises page 98

Problem number: 326.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [

$$y'^2 + yy'' = 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

 $\label{eq:diff} $$ $dsolve(diff(y(x),x)^2+y(x)*diff(y(x),x$2)=1,y(x), singsol=all)$$

$$y = \sqrt{-2c_1x + x^2 + 2c_2}$$
$$y = -\sqrt{-2c_1x + x^2 + 2c_2}$$

✓ Solution by Mathematica

Time used: 0.593 (sec). Leaf size: 79

DSolve[y'[x]^2+y[x]*y''[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sqrt{(x+c_2)^2 - e^{2c_1}} y(x) \to \sqrt{(x+c_2)^2 - e^{2c_1}} y(x) \to -\sqrt{(x+c_2)^2} y(x) \to \sqrt{(x+c_2)^2}$$

14 Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of depression of their order. Exercises page 107

14.1 problem 327	. 297
14.2 problem 328	. 298
14.3 problem 329	. 299
14.4 problem 330	. 300
14.5 problem 331	. 301
14.6 problem 332	. 302
14.7 problem 333	. 303
14.8 problem 334	. 304
14.9 problem 335	. 305
14.10 problem 336	. 306
14.11 problem 337	. 307
14.12 problem 338	. 308
14.13 problem 339	. 309
14.14problem 340	. 310
14.15 problem 341	. 311
14.16 problem 342	. 312
14.17 problem 343	. 313
14.18problem 344	. 314
14.19 problem 345	. 315
$14.20 problem \ 346 \ \dots $. 316
14.21 problem 347	. 317
14.22 problem 348	. 318
14.23 problem 349	. 319
14.24problem 350	. 320
14.25 problem 351	. 321
14.26 problem 352	. 322
14.27 problem 353	. 323
14.28 problem 354	. 324
14.29 problem 355	. 325
14.30 problem 356	. 326
14.31 problem 357	. 327
14.32 problem 358	. 328
14.33 problem 359	. 329
14.34problem 360	. 330

14.35 problem	361															 		331
14.36 problem	362															 		332
14.37 problem	363															 		333

14.1 problem 327

Internal problem ID [15185]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of depression of their order. Exercises page 107

Problem number: 327.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _quadrature]]

$$y'''' = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$4)=x,y(x), singsol=all)

$$y = \frac{x^5}{120} + \frac{c_1 x^3}{6} + \frac{c_2 x^2}{2} + \frac{(3c_1^2 + 2c_3)x}{2} + c_4$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.002 (sec). Leaf size: 31}}$

DSolve[y'''[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x^5}{120} + c_4 x^3 + c_3 x^2 + c_2 x + c_1$$

14.2 problem 328

Internal problem ID [15186]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of depression of their order. Exercises page 107

Problem number: 328.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _quadrature]]

$$y''' = x + \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$3)=x+cos(x),y(x), singsol=all)

$$y = \frac{x^4}{24} + \frac{c_1 x^2}{2} - \sin(x) + c_2 x + c_3$$

Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 29

DSolve[y'''[x]==x+Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^4}{24} + c_3 x^2 - \sin(x) + c_2 x + c_1$$

14.3 problem 329

Internal problem ID [15187]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 329.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y''(x+2)^5 = 1$$

With initial conditions

$$\left[y(-1) = \frac{1}{12}, y'(-1) = -\frac{1}{4}\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve([diff(y(x),x$2)*(x+2)^5=1,y(-1) = 1/12, D(y)(-1) = -1/4],y(x), singsol=all)$

$$y = \frac{1}{12\left(x+2\right)^3}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 14

$$y(x) \to \frac{1}{12(x+2)^3}$$

14.4 problem 330

Internal problem ID [15188]

 $\mathbf{Book}:$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 330.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' = e^x x$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $\label{eq:decomposition} $$ dsolve([diff(y(x),x$2)=x*exp(x),y(0) = 0, D(y)(0) = 0],y(x), singsol=all) $$$

$$y = (x-2)e^x + x + 2$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 15

 $DSolve[\{y''[x] == x*Exp[x], \{y[0] == 0, y'[0] == 0\}\}, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to e^x(x-2) + x + 2$$

14.5 problem 331

Internal problem ID [15189]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of depression of their order. Exercises page 107

Problem number: 331.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$y'' = 2\ln(x)x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)=2*x*ln(x),y(x), singsol=all)

$$y = -\frac{5x^3}{18} + \frac{x^3 \ln(x)}{3} + c_1 x + c_2$$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 28

DSolve[y''[x]==2*x*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{5x^3}{18} + \frac{1}{3}x^3\log(x) + c_2x + c_1$$

14.6 problem 332

Internal problem ID [15190]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 332.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' - y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(x*diff(y(x),x\$2)=diff(y(x),x),y(x), singsol=all)

$$y = c_2 x^2 + c_1$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 17

DSolve[x*y''[x]==y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1 x^2}{2} + c_2$$

14.7 problem 333

Internal problem ID [15191]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 333.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' + y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(x*diff(y(x),x\$2)+diff(y(x),x)=0,y(x), singsol=all)

$$y = c_2 \ln (x) + c_1$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 13

DSolve[x*y''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \log(x) + c_2$$

14.8 problem 334

Internal problem ID [15192]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 334.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' - \left(2x^2 + 1\right)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve(x*diff(y(x),x$2)=(1+2*x^2)*diff(y(x),x),y(x), singsol=all)$

$$y = c_1 + e^{x^2} c_2$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 19

 $DSolve[x*y''[x] == (1+2*x^2)*y'[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1 e^{x^2}}{2} + c_2$$

14.9 problem 335

Internal problem ID [15193]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of depression of their order. Exercises page 107

Problem number: 335.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' - y' = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(x*diff(y(x),x$2)=diff(y(x),x)+x^2,y(x), singsol=all)$

$$y = \frac{1}{3}x^3 + \frac{1}{2}c_1x^2 + c_2$$

Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 24

DSolve[x*y''[x]==y'[x]+x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^3}{3} + \frac{c_1 x^2}{2} + c_2$$

14.10 problem 336

Internal problem ID [15194]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 336.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x \ln(x) y'' - y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(x*ln(x)*diff(y(x),x\$2)=diff(y(x),x),y(x), singsol=all)

$$y = \ln\left(x\right)c_2x - c_2x + c_1$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 19

DSolve[x*Log[x]*y''[x]==y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1(-x) + c_1 x \log(x) + c_2$$

14.11 problem 337

Internal problem ID [15195]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of depression of their order. Exercises page 107

Problem number: 337.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [_separable]

$$yx - y' \ln\left(\frac{y'}{x}\right) = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 63

dsolve(x*y(x)=diff(y(x),x)*ln(diff(y(x),x)/x),y(x), singsol=all)

$$y = \left(-1 - \sqrt{x^2 - 2c_1 + 1}\right) e^{-1 - \sqrt{x^2 - 2c_1 + 1}}$$
$$y = \left(-1 + \sqrt{x^2 - 2c_1 + 1}\right) e^{-1 + \sqrt{x^2 - 2c_1 + 1}}$$

✓ Solution by Mathematica

Time used: 4.223 (sec). Leaf size: 83

 $DSolve[x*y[x] == y'[x]*Log[y'[x]/x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -e^{-1-\sqrt{x^2+1+2c_1}} \left(1 + \sqrt{x^2+1+2c_1} \right)$$
$$y(x) \to e^{-1+\sqrt{x^2+1+2c_1}} \left(-1 + \sqrt{x^2+1+2c_1} \right)$$
$$y(x) \to 0$$

14.12 problem 338

Internal problem ID [15196]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 338.

ODE order: 2. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_2nd_order,\ _missing_y],\ [_2nd_order,\ _reducible,\ _mu_poly_y]}$

$$2y'' - \frac{y'}{x} - \frac{x^2}{y'} = 0$$

With initial conditions

$$y(1) = \frac{\sqrt{2}}{5}, y'(1) = \frac{\sqrt{2}}{2}$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 12

 $dsolve([2*diff(y(x),x$2)=diff(y(x),x)/x+x^2/diff(y(x),x),y(1) = 1/5*2^(1/2), D(y)(1) = 1/2*2^(1/2), D(y)(1/2), D$

$$y = \frac{\sqrt{2} x^{\frac{5}{2}}}{5}$$

✓ Solution by Mathematica

Time used: 0.12 (sec). Leaf size: 26

DSolve[{2*y''[x]==y'[x]/x+x^2/y'[x],{y[1]==Sqrt[2]/5,y'[1]==Sqrt[2]/2}},y[x],x,IncludeSingul

$$y(x) \to \frac{1}{5}\sqrt{2}x^{3/2}\sqrt{x^2}$$

14.13 problem 339

Internal problem ID [15197]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 339.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _missing_y], [_3rd_order, _missing_y]

$$\frac{d^3}{dx^3}y(x) = \sqrt{1 - \left(\frac{d^2}{dx^2}y(x)\right)^2}$$

X Solution by Maple

 $dsolve(diff(y(x),x$3)=sqrt(1-diff(y(x),x$2)^2),y(x), singsol=all)$

No solution found

✓ Solution by Mathematica

Time used: 0.287 (sec). Leaf size: 34

DSolve[y'''[x]==Sqrt[1-y''[x]^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_3 x - \cos(x + c_1) + c_2$$

 $y(x) \to \text{Interval}[\{-1, 1\}] + c_3 x + c_2$

14.14 problem 340

Internal problem ID [15198]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 340.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$xy''' - y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(x*diff(y(x),x\$3)-diff(y(x),x\$2)=0,y(x), singsol=all)

$$y = c_3 x^3 + c_2 x + c_1$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 21

DSolve[x*y'''[x]-y''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_1 x^3}{6} + c_3 x + c_2$$

14.15 problem 341

Internal problem ID [15199]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of depression of their order. Exercises page 107

Problem number: 341.

ODE order: 2. ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - \sqrt{1 + y'^2} = 0$$

✓ Solution by Maple

Time used: 0.188 (sec). Leaf size: 28

 $dsolve(diff(y(x),x$2)=sqrt(1+diff(y(x),x)^2),y(x), singsol=all)$

$$y = -ix + c_1$$

 $y = ix + c_1$
 $y = \cosh(x + c_1) + c_2$

✓ Solution by Mathematica

Time used: 0.231 (sec). Leaf size: 29

DSolve[y''[x]==Sqrt[1+y'[x]^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} (e^{-x-c_1} + e^{x+c_1}) + c_2$$

14.16 problem 342

Internal problem ID [15200]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 342.

ODE order: 2. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [\ [_2nd_order\ ,\ _missing_x]\ ,\ _Liouville\ ,\ [\ _2nd_order\ ,\ _reducible\]}$

$$y'' - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(x),x$2)=diff(y(x),x)^2,y(x), singsol=all)$

$$y = -\ln\left(-c_1x - c_2\right)$$

✓ Solution by Mathematica

Time used: 1.667 (sec). Leaf size: 16

DSolve[y''[x]==1+y'[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 - \log(\cos(x + c_1))$$

14.17 problem 343

Internal problem ID [15201]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's) Section 14 Differential equa

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of depression of their order. Exercises page 107

Problem number: 343.

ODE order: 2. ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - \sqrt{-y'^2 + 1} = 0$$

✓ Solution by Maple

Time used: 2.297 (sec). Leaf size: 26

 $dsolve(diff(y(x),x$2)=sqrt(1-diff(y(x),x)^2),y(x), singsol=all)$

$$y = -x + c_1$$

 $y = x + c_1$
 $y = -\cos(x + c_1) + c_2$

✓ Solution by Mathematica

Time used: 0.166 (sec). $\overline{\text{Leaf}}$ size: 24

DSolve[y''[x]==Sqrt[1-y'[x]^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \sin(x + c_1) + c_2$$

 $y(x) \rightarrow \text{Interval}[\{-1, 1\}] + c_2$

14.18 problem 344

Internal problem ID [15202]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 344.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

$$y'' - y'^2 = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(x),x$2)=1+diff(y(x),x)^2,y(x), singsol=all)$

$$y = -\ln\left(-c_2\cos\left(x\right) + c_1\sin\left(x\right)\right)$$

✓ Solution by Mathematica

Time used: 1.595 (sec). Leaf size: 16

DSolve[y''[x]==1+y'[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 - \log(\cos(x + c_1))$$

14.19 problem 345

Internal problem ID [15203]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of depression of their order. Exercises page 107

Problem number: 345.

ODE order: 2. ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - \sqrt{y' + 1} = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 34

dsolve(diff(y(x),x\$2)=sqrt(1+diff(y(x),x)),y(x), singsol=all)

$$y = -x + c_1$$

$$y = \frac{1}{12}x^3 + \frac{1}{4}c_1x^2 + \frac{1}{4}c_1^2x - x + c_2$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 30

DSolve[y''[x]==Sqrt[1+y'[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{12}x(x^2 + 3c_1x + 3(-4 + c_1^2)) + c_2$$

14.20 problem 346

Internal problem ID [15204]

 $\mathbf{Book}:$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 346.

ODE order: 2. ODE degree: 0.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' \ln (y') = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

$$y = -\exp\operatorname{Integral}_{1}(-2i\pi Z5 e^{x}) + \exp\operatorname{Integral}_{1}(-2i\pi Z5)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y''[x]==y'[x]*Log[y'[x]],{y[0]==0,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True

{}

14.21 problem 347

Internal problem ID [15205]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 347.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' = -2$$

With initial conditions

$$[y(0) = 0, y'(0) = -2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 7

dsolve([diff(y(x),x\$2)+diff(y(x),x)+2=0,y(0) = 0, D(y)(0) = -2],y(x), singsol=all)

$$y = -2x$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 8

DSolve[{y''[x]+y'[x]+2==0,{y[0]==0,y'[0]==-2}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -2x$$

14.22 problem 348

Internal problem ID [15206]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 348.

ODE order: 2. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [\ [_2nd_order\ ,\ _missing_x]\ ,\ _Liouville\ ,\ [\ _2nd_order\ ,\ _reducible\]}$

$$y'' - y'(y'+1) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)=diff(y(x),x)*(1+diff(y(x),x)),y(x), singsol=all)

$$y = -\ln\left(-c_1 \mathrm{e}^x - c_2\right)$$

✓ Solution by Mathematica

Time used: 1.619 (sec). Leaf size: 31

 $\begin{tabular}{ll} DSolve[y''[x]==y'[x]*(1+y'[x]),y[x],x,IncludeSingularSolutions -> True] \\ \end{tabular}$

$$y(x) \rightarrow c_2 - \log \left(-1 + e^{x+c_1}\right)$$

 $y(x) \rightarrow c_2 - i\pi$

14.23 problem 349

Internal problem ID [15207]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of depression of their order. Exercises page 107

Problem number: 349.

ODE order: 2. ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$3y'' - \left(1 + {y'}^2\right)^{\frac{3}{2}} = 0$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 49

 $dsolve(3*diff(y(x),x$2)=(1+diff(y(x),x)^2)^(3/2),y(x), singsol=all)$

$$y = -ix + c_1$$

$$y = ix + c_1$$

$$y = (c_1 + x + 3) (c_1 + x - 3) \sqrt{-\frac{1}{(c_1 + x + 3) (c_1 + x - 3)}} + c_2$$

✓ Solution by Mathematica

Time used: 0.26 (sec). Leaf size: 63

DSolve $[3*y''[x]==(1+y'[x]^2)^(3/2), y[x], x, Include Singular Solutions -> True]$

$$y(x) \rightarrow c_2 - i\sqrt{x^2 + 6c_1x - 9 + 9c_1^2}$$

 $y(x) \rightarrow i\sqrt{x^2 + 6c_1x - 9 + 9c_1^2} + c_2$

14.24 problem 350

Internal problem ID [15208]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 350.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 22

 $dsolve(diff(y(x),x$3)+diff(y(x),x$2)^2=0,y(x), singsol=all)$

$$y = \ln(x + c_1)(x + c_1) + (c_2 - 1)x - c_1 + c_3$$

✓ Solution by Mathematica

Time used: 0.315 (sec). Leaf size: 28

DSolve[y'''[x]+y''[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow (-1+c_3)x + (x-c_1)\log(x-c_1) + c_2$$

14.25 problem 351

Internal problem ID [15209]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 351.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible

$$yy'' - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve(y(x)*diff(y(x),x$2)=diff(y(x),x)^2,y(x), singsol=all)$

$$y = 0$$
$$y = e^{c_1 x} c_2$$

✓ Solution by Mathematica

Time used: 0.101 (sec). Leaf size: $14\,$

DSolve[y[x]*y''[x]==y'[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 e^{c_1 x}$$

14.26 problem 352

Internal problem ID [15210]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 352.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _

$$y'' - 2yy' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 11

dsolve([diff(y(x),x\$2)=2*y(x)*diff(y(x),x),y(0) = 1, D(y)(0) = 1],y(x), singsol=all)

$$y = -\frac{1}{x - 1}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0 $\,$

DSolve[{y''[x]==2*y[x]*y'[x],{y[0]==1,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]

{}

14.27 problem 353

Internal problem ID [15211]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 353.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$3y'y'' - 2y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

dsolve([3*diff(y(x),x)*diff(y(x),x\$2)=2*y(x),y(0) = 1, D(y)(0) = 1],y(x), singsol=all)

$$y = \frac{(x+3)^3}{27}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{3*y'[x]*y''[x]==2*y[x],{y[0]==1,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]

{}

14.28 problem 354

Internal problem ID [15212]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 354.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$2y'' - 3y^2 = 0$$

With initial conditions

$$[y(-2) = 1, y'(-2) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 11

 $dsolve([2*diff(y(x),x$2)=3*y(x)^2,y(-2) = 1, D(y)(-2) = -1],y(x), singsol=all)$

$$y = \frac{4}{\left(x+4\right)^2}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 12

DSolve[{2*y''[x]==3*y[x]^2,{y[-2]==1,y'[-2]==-1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{4}{(x+4)^2}$$

14.29 problem 355

Internal problem ID [15213]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 355.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _

$$yy'' + y'^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $\label{local_decomposition} \\ \mbox{dsolve}(\mbox{$y(x)$*diff}(\mbox{$y(x)$,x}) + \mbox{diff}(\mbox{$y(x)$,x})^2 = 0, \\ \mbox{$y(x)$, singsol=all)$} \\$

$$y = 0$$

$$y = \sqrt{2c_1x + 2c_2}$$

$$y = -\sqrt{2c_1x + 2c_2}$$

✓ Solution by Mathematica

Time used: 0.154 (sec). Leaf size: 20

DSolve[y[x]*y''[x]+y'[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 \sqrt{2x - c_1}$$

14.30 problem 356

Internal problem ID [15214]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 356.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],

$$yy'' - y' - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

 $\label{local_decomposition} \\ \mbox{dsolve}(\mbox{$y(x)$*diff}(\mbox{$y(x)$,x}) = \\ \mbox{diff}(\mbox{$y(x)$,x}) + \\ \mbox{diff}(\mbox{$y(x)$,x})^2, \\ \mbox{$y(x)$, singsol=all)$} \\$

$$y = 0$$
$$y = \frac{e^{c_1(x+c_2)} + 1}{c_1}$$

✓ Solution by Mathematica

Time used: 1.452 (sec). Leaf size: 26

DSolve[y[x]*y''[x]==y'[x]+y'[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{1 + e^{c_1(x+c_2)}}{c_1}$$

 $y(x) o ext{Indeterminate}$

14.31 problem 357

Internal problem ID [15215]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 357.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$yy'' - y'^2 = 1$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 55

 $\label{eq:decomposition} dsolve(y(x)*diff(y(x),x$2)=1+diff(y(x),x)^2,y(x), singsol=all)$

$$y = rac{c_1 \left(\mathrm{e}^{rac{x + c_2}{c_1}} + \mathrm{e}^{rac{-x - c_2}{c_1}}
ight)}{2} \ y = rac{c_1 \left(\mathrm{e}^{rac{x + c_2}{c_1}} + \mathrm{e}^{rac{-x - c_2}{c_1}}
ight)}{2}$$

✓ Solution by Mathematica

Time used: 60.132 (sec). Leaf size: 80

DSolve[y[x]*y''[x]==1+y'[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{e^{-c_1} \tanh (e^{c_1}(x+c_2))}{\sqrt{-\mathrm{sech}^2 (e^{c_1}(x+c_2))}}$$
$$y(x) \to \frac{e^{-c_1} \tanh (e^{c_1}(x+c_2))}{\sqrt{-\mathrm{sech}^2 (e^{c_1}(x+c_2))}}$$

14.32 problem 358

Internal problem ID [15216]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 358.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$2yy'' - y'^2 = 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

 $dsolve(2*y(x)*diff(y(x),x$2)=1+diff(y(x),x)^2,y(x), singsol=all)$

$$y = \frac{(c_1^2 + 1) x^2}{4c_2} + c_1 x + c_2$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 34

DSolve[2*y[x]*y''[x]==1+y'[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{(1+c_1^2) x^2}{4c_2} + c_1 x + c_2$$

 $y(x) \to \text{Indeterminate}$

14.33 problem 359

Internal problem ID [15217]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 359.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$y^3y''=-1$$

With initial conditions

$$[y(1) = 1, y'(1) = 0]$$

X Solution by Maple

 $dsolve([y(x)^3*diff(y(x),x$2)=-1,y(1) = 1, D(y)(1) = 0],y(x), singsol=all)$

No solution found

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 15

 $DSolve[\{y[x]^3*y''[x]==-1,\{y[1]==1,y'[1]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \sqrt{-((x-2)x)}$$

14.34 problem 360

Internal problem ID [15218]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 360.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmet

$$yy'' - y'^2 - y'y^2 = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 27

 $dsolve(y(x)*diff(y(x),x$2)-diff(y(x),x)^2=y(x)^2*diff(y(x),x),y(x), singsol=all)$

$$y = 0$$

$$y = -\frac{c_1 e^{c_1(x+c_2)}}{-1 + e^{c_1(x+c_2)}}$$

✓ Solution by Mathematica

Time used: 1.39 (sec). Leaf size: 43

DSolve[y[x]*y''[x]-y'[x]^2==y[x]^2*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o -rac{c_1 e^{c_1(x+c_2)}}{-1 + e^{c_1(x+c_2)}}$$

 $y(x) o -rac{1}{x+c_2}$

14.35 problem 361

Internal problem ID [15219]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 361.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$y'' - e^{2y} = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 12

dsolve([diff(y(x),x\$2)=exp(2*y(x)),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

$$y = -\frac{\ln\left(\left(x-1\right)^2\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.148 (sec). Leaf size: 13

 $DSolve[\{y''[x] == Exp[2*y[x]], \{y[0] == 0, y'[0] == 1\}\}, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\log(1-x)$$

14.36 problem 362

Internal problem ID [15220]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 362.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

$$2yy'' - 3y'^2 - 4y^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $\label{localization} $$ dsolve(2*y(x)*diff(y(x),x$2)-3*diff(y(x),x)^2=4*y(x)^2,y(x), singsol=all) $$ $$ dsolve(2*y(x)*diff(y(x),x$2)-3*diff(y(x),x)^2=4*y(x)^2,y(x), singsol=all) $$ $$ dsolve(2*y(x)*diff(y(x),x$2)-3*diff(y(x),x)^2=4*y(x)^2,y(x), singsol=all) $$ dsolve(2*y(x)*diff(y(x),x$2)-3*diff(y(x),x)^2=4*y(x)^2,y(x), singsol=all) $$ dsolve(2*y(x)*diff(y(x),x)^2=4*y(x)^2,y(x), singsol=all) $$ dsolve(2*y(x)*diff(x)*diff(x), singsol=all) $$ dsolve(2*y(x)*diff($

$$y = 0$$

 $y = \frac{4}{(c_2 \cos(x) - c_1 \sin(x))^2}$

✓ Solution by Mathematica

Time used: 0.637 (sec). Leaf size: 17

DSolve[2*y[x]*y''[x]-3*y'[x]^2==4*y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 \sec^2(x + 2c_1)$$

14.37 problem 363

Internal problem ID [15221]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 14. Differential equations admitting of

depression of their order. Exercises page 107

Problem number: 363.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 11

dsolve([diff(y(x),x\$3)=3*y(x)*diff(y(x),x),y(0) = 1, D(y)(0) = 1, (D@@2)(y)(0) = 3/2],y(x),

$$y = \frac{4}{\left(x - 2\right)^2}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y'''[x]==3*y[x]*y'[x],{y[0]==1,y'[0]==1,y''[0]==3/2}},y[x],x,IncludeSingularSolution

{}

15 Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

5.1 problem 432	35
5.2 problem 433	36
5.3 problem 434	337
5.4 problem 435	38
5.5 problem 436	39
5.6 problem 437	34 0
5.7 problem 438	341
5.8 problem 439	342
5.9 problem 440	343
5.10problem 441	344
5.11 problem 442	345
5.12problem 443	346
5.13problem 444	347
5.14problem 445	3 48
5.15problem 446	349
5.16problem 447	350
5.17problem 448	351
5.18problem 449	352
5.19 problem 450	353
5.20problem 451	354
5.21 problem 452	355
5.22 problem 453	356

15.1 problem 432

Internal problem ID [15222]

 $\mathbf{Book} :$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.2\ {\bf Homogeneous}\ {\bf differential}\ {\bf equations}$

with constant coefficients. Exercises page 121

Problem number: 432.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)-y(x)=0,y(x), singsol=all)

$$y = c_1 e^{-x} + c_2 e^x$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 20

DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x}$$

15.2 problem 433

Internal problem ID [15223]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

Problem number: 433.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$\boxed{3y'' - 2y' - 8y = 0}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(3*diff(y(x),x\$2)-2*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)

$$y(x) = \left(c_2 e^{\frac{10x}{3}} + c_1\right) e^{-\frac{4x}{3}}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 24

DSolve [3*y''[x]-2*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-4x/3} + c_2 e^{2x}$$

15.3 problem 434

Internal problem ID [15224]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations

with constant coefficients. Exercises page 121

Problem number: 434.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3y'' + 3y' - y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 2, y''(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

dsolve([diff(y(x),x\$3)-3*diff(y(x),x\$2)+3*diff(y(x),x)-y(x)=0,y(0) = 1, D(y)(0) = 2, (D@@2)(0) = 2, (D@2)(0) = 2, (D@2)(0)

$$y(x) = e^x(1+x)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 12

$$y(x) \rightarrow e^x(x+1)$$

15.4 problem 435

Internal problem ID [15225]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

Problem number: 435.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=0,y(x), singsol=all)

$$y(x) = e^{-x}(c_2x + c_1)$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 18

 $\label{eq:DSolve} DSolve[y''[x]+2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x}(c_2x + c_1)$$

15.5 problem 436

Internal problem ID [15226]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations

with constant coefficients. Exercises page 121

Problem number: 436.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y' + 3y = 0$$

With initial conditions

$$[y(0) = 6, y'(0) = 10]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(y(x),x\$2)-4*diff(y(x),x)+3*y(x)=0,y(0) = 6, D(y)(0) = 10],y(x), singsol=all)

$$y(x) = 2e^{3x} + 4e^x$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 17

DSolve[{y''[x]-4*y'[x]+3*y[x]==0,{y[0]==6,y'[0]==10}},y[x],x,IncludeSingularSolutions -> Tru

$$y(x) \to 2e^x \left(e^{2x} + 2\right)$$

15.6 problem 437

Internal problem ID [15227]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations

with constant coefficients. Exercises page 121

Problem number: 437.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 6y'' + 11y' + 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)+6*diff(y(x),x\$2)+11*diff(y(x),x)+6*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-3x} + c_2 e^{-x} + c_3 e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 27

DSolve[y'''[x]+6*y''[x]+11*y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x}(e^x(c_3e^x + c_2) + c_1)$$

15.7 problem 438

Internal problem ID [15228]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

Problem number: 438.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{(1+\sqrt{3})x} + c_2 e^{-(\sqrt{3}-1)x}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 34

DSolve[y''[x]-2*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{x-\sqrt{3}x} \left(c_2 e^{2\sqrt{3}x} + c_1\right)$$

15.8 problem 439

Internal problem ID [15229]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

Problem number: 439.

ODE order: 6. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(6)} + 2y^{(5)} + y'''' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$6)+2*diff(y(x),x\$5)+diff(y(x),x\$4)=0,y(x), singsol=all)

$$y(x) = (c_6x + c_5)e^{-x} + c_4x^3 + c_3x^2 + c_2x + c_1$$

✓ Solution by Mathematica

Time used: 0.135 (sec). Leaf size: 37

DSolve[y''''[x]+2*y''''[x]+y''''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow e^{-x}(c_2(x+4)+c_1) + x(x(c_6x+c_5)+c_4) + c_3$$

15.9 problem 440

Internal problem ID [15230]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

Problem number: 440.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' - 8y' + 5y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(4*diff(y(x),x\$2)-8*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)

$$y(x) = e^x \left(c_1 \sin\left(\frac{x}{2}\right) + c_2 \cos\left(\frac{x}{2}\right) \right)$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 28

DSolve [4*y''[x]-8*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x \left(c_2 \cos \left(\frac{x}{2} \right) + c_1 \sin \left(\frac{x}{2} \right) \right)$$

15.10 problem 441

Internal problem ID [15231]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

Problem number: 441.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$3)-8*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-x} \sin(x\sqrt{3}) + c_3 e^{-x} \cos(x\sqrt{3})$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: $42\,$

DSolve[y'''[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} \left(c_1 e^{3x} + c_2 \cos \left(\sqrt{3}x \right) + c_3 \sin \left(\sqrt{3}x \right) \right)$$

15.11 problem 442

Internal problem ID [15232]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations

with constant coefficients. Exercises page 121

Problem number: 442.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 4y''' + 10y'' + 12y' + 5y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$4)+4*diff(y(x),x\$3)+10*diff(y(x),x\$2)+12*diff(y(x),x)+5*y(x)=0,y(x), sing(x,y)+10*diff(y(x,y),x\$4)+10*diff(x,y),x\$4)+10*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y),x*diff(x,y)

$$y(x) = e^{-x}(c_1 + c_2x + c_3\sin(2x) + c_4\cos(2x))$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 32

$$y(x) \to e^{-x}(c_4x + c_2\cos(2x) + c_1\sin(2x) + c_3)$$

15.12 problem 443

Internal problem ID [15233]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations

with constant coefficients. Exercises page 121

Problem number: 443.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+2*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = e^x \sin(x)$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 11

DSolve[{y''[x]-2*y'[x]+2*y[x]==0,{y[0]==0,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True

$$y(x) \to e^x \sin(x)$$

15.13 problem 444

Internal problem ID [15234]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations

with constant coefficients. Exercises page 121

Problem number: 444.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 3y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 24

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+3*y(x)=0,y(0) = 1, D(y)(0) = 3],y(x), singsol=all)

$$y(x) = e^x \left(\sqrt{2} \sin\left(\sqrt{2}x\right) + \cos\left(\sqrt{2}x\right)\right)$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 32

DSolve[{y''[x]-2*y'[x]+3*y[x]==0,{y[0]==1,y'[0]==3}},y[x],x,IncludeSingularSolutions -> True

$$y(x) \to e^x \left(\sqrt{2}\sin\left(\sqrt{2}x\right) + \cos\left(\sqrt{2}x\right)\right)$$

15.14 problem 445

Internal problem ID [15235]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations

with constant coefficients. Exercises page 121

Problem number: 445.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 2y''' + 4y'' - 2y' - 5y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$3)+4*diff(y(x),x\$2)-2*diff(y(x),x)-5*y(x)=0,y(x), singsolve(x)=0,y(x), singsolve(x)=0,y(x)=0,y(x), singsolve(x)=0,y(x)

$$y(x) = (c_3 \sin(2x) + c_4 \cos(2x) + c_1) e^{-x} + c_2 e^x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 36

DSolve[y'''[x]+2*y'''[x]+4*y''[x]-2*y'[x]-5*y[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \to e^{-x} (c_4 e^{2x} + c_2 \cos(2x) + c_1 \sin(2x) + c_3)$$

15.15 problem 446

Internal problem ID [15236]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations

with constant coefficients. Exercises page 121

Problem number: 446.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(5)} + 4y'''' + 5y''' - 6y' - 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(x),x\$5)+4*diff(y(x),x\$4)+5*diff(y(x),x\$3)-6*diff(y(x),x)-4*y(x)=0,y(x), singso

$$y(x) = e^{-2x} (c_2 e^{3x} + (\sin(x) c_4 + \cos(x) c_5 + c_1) e^x + c_3)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 44

DSolve[y''''[x]+4*y''''[x]+5*y'''[x]-6*y'[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> T

$$y(x) \to e^{-2x} (c_4 e^x + c_5 e^{3x} + c_2 e^x \cos(x) + c_1 e^x \sin(x) + c_3)$$

15.16 problem 447

Internal problem ID [15237]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

Problem number: 447.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 2y'' - y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$3)+2*diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = (c_2 e^{3x} + c_1 e^x + c_3) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 28

 $DSolve[y'''[x]+2*y''[x]-y'[x]-2*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^{-2x} (c_2 e^x + c_3 e^{3x} + c_1)$$

15.17 problem 448

Internal problem ID [15238]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

Problem number: 448.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 2y'' + 2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$3)-2*diff(y(x),x\$2)+2*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^x \sin(x) + c_3 e^x \cos(x)$$

✓ Solution by Mathematica

Time used: 0.126 (sec). Leaf size: 34

DSolve[y'''[x]-2*y''[x]+2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}e^x((c_2 - c_1)\cos(x) + (c_1 + c_2)\sin(x)) + c_3$$

15.18 problem 449

Internal problem ID [15239]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

Problem number: 449.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$4)-y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-x} + c_2 e^{x} + c_3 \sin(x) + c_4 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: $30\,$

 $DSolve[y''''[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^x + c_3 e^{-x} + c_2 \cos(x) + c_4 \sin(x)$$

15.19 problem 450

Internal problem ID [15240]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

Problem number: 450.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _quadrature]]

$$y^{(5)} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$5)=0,y(x), singsol=all)

$$y(x) = \frac{1}{24}c_1x^4 + \frac{1}{6}c_2x^3 + \frac{1}{2}c_3x^2 + c_4x + c_5$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.002 (sec). Leaf size: 27}}$

DSolve[y''''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x(x(x(c_5x + c_4) + c_3) + c_2) + c_1$$

15.20 problem 451

Internal problem ID [15241]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

Problem number: 451.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 3y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$3)-3*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = (c_3x + c_2)e^{-x} + c_1e^{2x}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 26

 $DSolve[y'''[x]-3*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x} (c_2 x + c_3 e^{3x} + c_1)$$

15.21 problem 452

Internal problem ID [15242]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121

Problem number: 452.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$2y''' - 3y'' + y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(2*diff(y(x),x\$3)-3*diff(y(x),x\$2)+diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 e^{\frac{x}{2}} + c_3 e^x$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 25

$$y(x) \rightarrow 2c_1e^{x/2} + c_2e^x + c_3$$

15.22 problem 453

Internal problem ID [15243]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.2 Homogeneous differential equations

with constant coefficients. Exercises page 121

Problem number: 453.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0, y''(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

dsolve([diff(y(x),x\$3)+diff(y(x),x\$2)=0,y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 1],y(x), sings(x)

$$y = e^{-x} + x$$

✓ Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 12

DSolve[{y'''[x]+y''[x]==0,{y[0]==1,y'[0]==0,y''[0]==1}},y[x],x,IncludeSingularSolutions -> T

$$y(x) \to x + e^{-x}$$

16 Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

16.1 problem 474	360
16.2 problem 475	361
16.3 problem 476	362
16.4 problem 477	363
1	364
16.6 problem 479	365
16.7 problem 480	366
16.8 problem 481	367
16.9 problem 482	868
16.10problem 483	369
16.11 problem 484	370
16.12problem 485	371
16.13problem 486	372
-	373
16.15problem 488	374
16.16problem 489	375
16.17problem 490	376
16.18problem 491	377
16.19problem 492	378
16.20problem 493	379
16.21 problem 494	80
16.22problem 495	381
16.23problem 496	882
1	883
16.25problem 498	884
1	885
16.27problem 500	886
16.28problem 501	887
16.29problem 502	888
16.30problem 503	889
•	3 90
16.32problem 505	391
16.33problem 506	392

16.34 problem 507	⁷ .								 						393
16.35 problem 508	3.								 						394
16.36 problem 509) .								 						395
16.37 problem 510) .								 						396
16.38problem 511	L.								 						397
16.39 problem 512	?.								 						398
16.40 problem 513	3.								 						399
16.41 problem 514	Ł.								 						400
16.42 problem 515	.								 						401
16.43 problem 516	; .								 						402
16.44 problem 517	⁷ .				•	•			 						403
16.45 problem 518	3.								 						404
16.46 problem 519).				•				 						405
16.47 problem 520) .				•	•			 						406
16.48problem 521	L.								 						407
16.49 problem 522	?.								 						408
16.50 problem 523	3.								 						409
16.51 problem 524	Į.				•				 						410
16.52 problem 525	í.				•	•			 						411
16.53 problem 526	; .								 						412
16.54 problem 527	⁷ .								 						413
16.55 problem 528	3.				•				 						414
16.56 problem 529) .								 						415
16.57 problem 530) .								 						416
16.58 problem 531	L.								 						417
16.59 problem 532	2.				•				 						418
16.60 problem 533	}.				•				 						419
16.61 problem 534															420
16.62 problem 535	í.				•	•			 						421
16.63 problem 536	; .				•				 						422
16.64 problem 537	⁷ .								 						423
16.65 problem 538	3.				•	•			 						424
16.66 problem 539) .								 						425
16.67 problem 540) .				•				 						426
16.68 problem 541	L.				•				 						427
16.69 problem 542	? .								 						428
16.70 problem 543	}.								 						429
16.71 problem 544	١.								 						430
16.72 problem 545	`														431

16.73 problem	546						•	•							•		•	•			432
16.74 problem	547																				433
$16.75 \mathrm{problem}$	548																				434
16.76 problem	549																				435

16.1 problem 474

Internal problem ID [15244]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 474.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 3y' = 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)=3,y(x), singsol=all)

$$y(x) = -\frac{c_1 e^{-3x}}{3} + x + c_2$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 20

DSolve[y''[x]+3*y'[x]==3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x - \frac{1}{3}c_1e^{-3x} + c_2$$

16.2 problem 475

Internal problem ID [15245]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 475.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 7y' = (x - 1)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(x),x\$2)-7*diff(y(x),x)=(x-1)^2,y(x), singsol=all)$

$$y(x) = \frac{6x^2}{49} - \frac{x^3}{21} + \frac{e^{7x}c_1}{7} - \frac{37x}{343} + c_2$$

✓ Solution by Mathematica

Time used: 0.159 (sec). Leaf size: 38

DSolve[$y''[x]-7*y'[x]==(x-1)^2,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \rightarrow -\frac{x^3}{21} + \frac{6x^2}{49} - \frac{37x}{343} + \frac{1}{7}c_1e^{7x} + c_2$$

16.3 problem 476

Internal problem ID [15246]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 476.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + 3y' = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)=exp(x),y(x), singsol=all)

$$y(x) = -\frac{e^{-3x} \left(-3c_2 e^{3x} + c_1 - \frac{3e^{4x}}{4}\right)}{3}$$

✓ Solution by Mathematica

Time used: 0.062 (sec). Leaf size: 26

DSolve[y''[x]+3*y'[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^x}{4} - \frac{1}{3}c_1e^{-3x} + c_2$$

16.4 problem 477

Internal problem ID [15247]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 477.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + 7y' = e^{-7x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)+7*diff(y(x),x)=exp(-7*x),y(x), singsol=all)

$$y(x) = \frac{(-7x - 7c_1 - 1)e^{-7x}}{49} + c_2$$

Solution by Mathematica

Time used: 0.077 (sec). Leaf size: 26

 $DSolve[y''[x]+7*y'[x]==Exp[-7*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_2 - \frac{1}{49}e^{-7x}(7x + 1 + 7c_1)$$

16.5 problem 478

Internal problem ID [15248]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 478.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 8y' + 16y = (1 - x)e^{4x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)-8*diff(y(x),x)+16*y(x)=(1-x)*exp(4*x),y(x), singsol=all)

$$y(x) = -\frac{(x^3 - 3x^2 + (-6c_1 + 2)x - 6c_2)e^{4x}}{6}$$

Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 34

 $DSolve[y''[x]-8*y'[x]+16*y[x]==(1-x)*Exp[4*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{6}e^{4x}(-x^3 + 3x^2 + 6c_2x + 6c_1)$$

16.6 problem 479

Internal problem ID [15249]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 479.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 10y' + 25y = e^{5x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$2)-10*diff(y(x),x)+25*y(x)=exp(5*x),y(x), singsol=all)

$$y(x) = e^{5x} \left(c_2 + c_1 x + \frac{1}{2} x^2 \right)$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 27

DSolve[y''[x]-10*y'[x]+25*y[x]==Exp[5*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}e^{5x}(x^2 + 2c_2x + 2c_1)$$

16.7 problem 480

Internal problem ID [15250]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 480.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$4y'' - 3y' = x e^{\frac{3x}{4}}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(4*diff(y(x),x\$2)-3*diff(y(x),x)=x*exp(3/4*x),y(x), singsol=all)

$$y(x) = \frac{(9x^2 + 72c_1 - 24x + 32)e^{\frac{3x}{4}}}{54} + c_2$$

✓ Solution by Mathematica

Time used: 0.155 (sec). Leaf size: 35

DSolve[y''[x]-3*y'[x]==x*Exp[3/4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{16}{243}e^{3x/4}(9x-8) + \frac{1}{3}c_1e^{3x} + c_2$$

16.8 problem 481

Internal problem ID [15251]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 481.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 4y' = e^{4x}x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)=x*exp(4*x),y(x), singsol=all)

$$y(x) = \frac{(8x^2 + 16c_1 - 4x + 1)e^{4x}}{64} + c_2$$

Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 31

DSolve[y''[x]-4*y'[x]==x*Exp[4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{64}e^{4x}(8x^2 - 4x + 1 + 16c_1) + c_2$$

16.9 problem 482

Internal problem ID [15252]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 482.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 25y = \cos(5x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)+25*y(x)=cos(5*x),y(x), singsol=all)

$$y(x) = \frac{(50c_1 + 1)\cos(5x)}{50} + \frac{\sin(5x)(x + 10c_2)}{10}$$

Solution by Mathematica

Time used: 0.097 (sec). Leaf size: 31

 $DSolve[y''[x]+25*y[x] == Cos[5*x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \left(\frac{1}{100} + c_1\right) \cos(5x) + \frac{1}{10}(x + 10c_2)\sin(5x)$$

16.10 problem 483

Internal problem ID [15253]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 483.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = -\cos(x) + \sin(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)+y(x)=sin(x)-cos(x),y(x), singsol=all)

$$y(x) = \frac{(2c_1 - x - 1)\cos(x)}{2} - \frac{\sin(x)(x - 2c_2)}{2}$$

Solution by Mathematica

Time used: 0.093 (sec). Leaf size: 31

 $DSolve[y''[x]+y[x] == Sin[x]-Cos[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}(-((x+1-2c_1)\cos(x)) - (x-2c_2)\sin(x))$$

16.11 problem 484

Internal problem ID [15254]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 484.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 16y = \sin(4x + \alpha)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

dsolve(diff(y(x),x\$2)+16*y(x)=sin(4*x+alpha),y(x), singsol=all)

$$y(x) = \sin(4x) c_2 + \cos(4x) c_1 - \frac{x \cos(4x + \alpha)}{8} + \frac{\sin(4x + \alpha)}{64}$$

/ Solution by Mathematica

Time used: 0.099 (sec). Leaf size: 41

DSolve[y''[x]+16*y[x]==Sin[4*x+\[Alpha]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{64}\sin(\alpha + 4x) - \frac{1}{8}x\cos(\alpha + 4x) + c_1\cos(4x) + c_2\sin(4x)$$

16.12 problem 485

Internal problem ID [15255]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 485.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 8y = e^{2x}(\sin(2x) + \cos(2x))$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+8*y(x)=exp(2*x)*(sin(2*x)+cos(2*x)),y(x), singsol=all)

$$y(x) = \frac{(16c_2e^{-2x} + e^{2x})\sin(2x)}{16} + e^{-2x}\cos(2x)c_1$$

Solution by Mathematica

Time used: 0.287 (sec). Leaf size: 38

$$y(x) \to \frac{1}{16}e^{-2x} (16c_2\cos(2x) + (e^{4x} + 16c_1)\sin(2x))$$

16.13 problem 486

Internal problem ID [15256]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 486.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 8y = e^{2x}(-\cos(2x) + \sin(2x))$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+8*y(x)=exp(2*x)*(sin(2*x)-cos(2*x)),y(x), singsol=all)

$$y(x) = -\frac{e^{2x} \left(\left(x - 4c_1 + \frac{1}{2} \right) \cos \left(2x \right) + \sin \left(2x \right) \left(x - 4c_2 \right) \right)}{4}$$

✓ Solution by Mathematica

Time used: 0.187 (sec). Leaf size: 41 $\,$

DSolve[y''[x]-4*y'[x]+8*y[x]==Exp[2*x]*(Sin[2*x]-Cos[2*x]),y[x],x,IncludeSingularSolutions -

$$y(x) \to -\frac{1}{8}e^{2x}((2x+1-8c_2)\cos(2x)+2(x-4c_1)\sin(2x))$$

16.14 problem 487

Internal problem ID [15257]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 487.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 13y = e^{-3x}\cos(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$2)+6*\text{diff}(y(x),x)+13*y(x)=\exp(-3*x)*\cos(2*x),y(x), \text{ singsol=all}) \\$

$$y(x) = \frac{e^{-3x} \left(\sin(2x) (x + 4c_2) + 4\cos(2x) (c_1 + \frac{1}{8})\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.094 (sec). Leaf size: 38

DSolve[y''[x]+6*y'[x]+13*y[x]==Exp[-3*x]*Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{16}e^{-3x}((1+16c_2)\cos(2x)+4(x+4c_1)\sin(2x))$$

16.15 problem 488

Internal problem ID [15258]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 488.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + k^2 y = k \sin(kx + \alpha)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

 $dsolve(diff(y(x),x$2)+k^2*y(x)=k*sin(k*x+alpha),y(x), singsol=all)$

$$y(x) = \frac{-2kx\cos(kx+\alpha) + 4\sin(kx)c_2k + 4\cos(kx)c_1k + \sin(kx+\alpha)}{4k}$$

Solution by Mathematica

Time used: 0.109 (sec). Leaf size: 44

DSolve[y''[x]+k^2*y[x]==k*Sin[k*x+\[Alpha]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{\sin(\alpha + kx)}{4k} - rac{1}{2}x\cos(\alpha + kx) + c_1\cos(kx) + c_2\sin(kx)$$

16.16 problem 489

Internal problem ID [15259]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 489.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + k^2 y = k$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

 $dsolve(diff(y(x),x$2)+k^2*y(x)=k,y(x), singsol=all)$

$$y(x) = \sin(kx) c_2 + \cos(kx) c_1 + \frac{1}{k}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 23

DSolve[y''[x]+k^2*y[x]==k,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 \cos(kx) + c_2 \sin(kx) + \frac{1}{k}$$

16.17 problem 490

Internal problem ID [15260]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 490.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' + y = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

dsolve(diff(y(x),x\$3)+y(x)=x,y(x), singsol=all)

$$y(x) = \left(c_2 e^{\frac{3x}{2}} \cos\left(\frac{x\sqrt{3}}{2}\right) + c_3 e^{\frac{3x}{2}} \sin\left(\frac{x\sqrt{3}}{2}\right) + e^x x + c_1\right) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 57

DSolve[y'''[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + c_1 e^{-x} + c_3 e^{x/2} \cos\left(\frac{\sqrt{3}x}{2}\right) + c_2 e^{x/2} \sin\left(\frac{\sqrt{3}x}{2}\right)$$

16.18 problem 491

Internal problem ID [15261]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 491.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 6y'' + 11y' + 6y = 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

dsolve(diff(y(x),x\$3)+6*diff(y(x),x\$2)+11*diff(y(x),x)+6*y(x)=1,y(x), singsol=all)

$$y(x) = \frac{1}{6} + c_1 e^{-3x} + c_2 e^{-2x} + c_3 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 33

DSolve[y'''[x]+6*y''[x]+11*y'[x]+6*y[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-3x} + c_2 e^{-2x} + c_3 e^{-x} + \frac{1}{6}$$

16.19 problem 492

Internal problem ID [15262]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 492.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y' = 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$3)+diff(y(x),x)=2,y(x), singsol=all)

$$y(x) = \sin(x) c_1 - \cos(x) c_2 + 2x + c_3$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 22

DSolve[y'''[x]+y'[x]==2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2x - c_2 \cos(x) + c_1 \sin(x) + c_3$$

16.20 problem 493

Internal problem ID [15263]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 493.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' = 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)=3,y(x), singsol=all)

$$y(x) = \frac{3x^2}{2} + c_1 e^{-x} + c_2 x + c_3$$

Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 27

DSolve[y'''[x]+y''[x]==3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{3x^2}{2} + c_3x + c_1e^{-x} + c_2$$

16.21 problem 494

Internal problem ID [15264]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 494.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$4)-y(x)=1,y(x), singsol=all)

$$y(x) = -1 + \cos(x) c_1 + c_2 e^x + c_3 \sin(x) + c_4 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 31

DSolve[y'''[x]-y[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_3 e^{-x} + c_2 \cos(x) + c_4 \sin(x) - 1$$

16.22 problem 495

Internal problem ID [15265]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 495.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y' = 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 55

dsolve(diff(y(x),x\$4)-diff(y(x),x)=2,y(x), singsol=all)

$$y(x) = -\frac{e^{-\frac{x}{2}}\left(\sqrt{3}\,c_3 + c_2\right)\cos\left(\frac{x\sqrt{3}}{2}\right)}{2} + \frac{e^{-\frac{x}{2}}\left(\sqrt{3}\,c_2 - c_3\right)\sin\left(\frac{x\sqrt{3}}{2}\right)}{2} + c_1e^x - 2x + c_4$$

✓ Solution by Mathematica

Time used: 0.219 (sec). Leaf size: 85

DSolve[y'''[x]-y'[x]==2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -2x + c_1 e^x - \frac{1}{2} \left(c_2 + \sqrt{3}c_3 \right) e^{-x/2} \cos \left(\frac{\sqrt{3}x}{2} \right) + \frac{1}{2} \left(\sqrt{3}c_2 - c_3 \right) e^{-x/2} \sin \left(\frac{\sqrt{3}x}{2} \right) + c_4$$

16.23 problem 496

Internal problem ID [15266]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 496.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y'' = 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(y(x),x\$4)-diff(y(x),x\$2)=3,y(x), singsol=all)

$$y(x) = c_2 e^x - \frac{3x^2}{2} + c_1 e^{-x} + c_3 x + c_4$$

Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 33

DSolve[y'''[x]-y''[x]==3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{3x^2}{2} + c_4x + c_1e^x + c_2e^{-x} + c_3$$

16.24 problem 497

Internal problem ID [15267]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 497.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y''' = 4$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve(diff(y(x),x\$4)-diff(y(x),x\$3)=4,y(x), singsol=all)

$$y(x) = c_1 e^x + \frac{c_2 x^2}{2} - \frac{2x^3}{3} + c_3 x + c_4$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 31

DSolve[y'''[x]-y'''[x]==4,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{2x^3}{3} + c_4x^2 + c_3x + c_1e^x + c_2$$

16.25 problem 498

Internal problem ID [15268]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 498.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 4y''' + 4y'' = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$4)+4*diff(y(x),x\$3)+4*diff(y(x),x\$2)=1,y(x), singsol=all)

$$y(x) = \frac{(2c_1x + 2c_1 + 2c_2)e^{-2x}}{8} + \frac{x^2}{8} + c_3x + c_4$$

✓ Solution by Mathematica

Time used: 0.166 (sec). Leaf size: 37

DSolve[y''''[x]+4*y'''[x]+4*y''[x]==1,y[x],x,IncludeSingularSolutions -> True

$$y(x) \to \frac{x^2}{8} + c_4 x + \frac{1}{4} e^{-2x} (c_2(x+1) + c_1) + c_3$$

16.26 problem 499

Internal problem ID [15269]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 499.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' + 2y''' + y'' = e^{4x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$3)+diff(y(x),x\$2)=exp(4*x),y(x), singsol=all)

$$y(x) = (c_1(x+2) + c_2) e^{-x} + c_3 x + c_4 + \frac{e^{4x}}{400}$$

Solution by Mathematica

Time used: 0.166 (sec). Leaf size: 36

DSolve[y''''[x]+2*y'''[x]+y''[x]==Exp[4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^{4x}}{400} + e^{-x}(c_2(x+2) + c_1) + c_4x + c_3$$

16.27 problem 500

Internal problem ID [15270]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 500.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' + 2y''' + y'' = e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$3)+diff(y(x),x\$2)=exp(-x),y(x), singsol=all)

$$y(x) = \frac{(x^2 + (2c_1 + 4)x + 4c_1 + 2c_2 + 6)e^{-x}}{2} + c_3x + c_4$$

Solution by Mathematica

 $\overline{\text{Time used: 0.111 (sec). Leaf size: 47}}$

DSolve[y'''[x]+2*y'''[x]+y''[x]==Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}e^{-x}(x^2 + 2x(c_4e^x + 2 + c_2) + 2(c_3e^x + 3 + c_1 + 2c_2))$$

16.28 problem 501

Internal problem ID [15271]

 $\mathbf{Book}:$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 501.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' + 2y''' + y'' = x e^{-x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 37

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$3)+diff(y(x),x\$2)=x*exp(-x),y(x), singsol=all)

$$y(x) = \frac{(24 + x^3 + 6x^2 + 6(3 + c_1)x + 12c_1 + 6c_2)e^{-x}}{6} + c_3x + c_4$$

✓ Solution by Mathematica

Time used: 0.127 (sec). Leaf size: 52

DSolve[y''''[x]+2*y'''[x]+y''[x]==x*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{6}e^{-x}(x^3 + 6x^2 + 6x(c_4e^x + 3 + c_2) + 6(c_3e^x + 4 + c_1 + 2c_2))$$

16.29 problem 502

Internal problem ID [15272]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 502.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 4y'' + 4y = \sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$4)+4*diff(y(x),x\$2)+4*y(x)=sin(2*x),y(x), singsol=all)

$$y(x) = (c_3x + c_1)\cos(\sqrt{2}x) + (c_4x + c_2)\sin(\sqrt{2}x) + \frac{\sin(2x)}{4}$$

Solution by Mathematica

 $\overline{\text{Time used: 0.521 (sec). Leaf size: 46}}$

DSolve[y'''[x]+4*y''[x]+4*y[x]==Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}\sin(2x) + (c_2x + c_1)\cos(\sqrt{2}x) + (c_4x + c_3)\sin(\sqrt{2}x)$$

16.30 problem 503

Internal problem ID [15273]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 503.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 4y'' + 4y = \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$4)+4*diff(y(x),x\$2)+4*y(x)=cos(x),y(x), singsol=all)

$$y(x) = (c_3x + c_1)\cos(\sqrt{2}x) + (c_4x + c_2)\sin(\sqrt{2}x) + \cos(x)$$

✓ Solution by Mathematica

Time used: 0.288 (sec). Leaf size: 40

DSolve[y'''[x]+4*y''[x]+4*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \cos(x) + (c_2x + c_1)\cos\left(\sqrt{2}x\right) + (c_4x + c_3)\sin\left(\sqrt{2}x\right)$$

16.31 problem 504

Internal problem ID [15274]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 504.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 4y'' + 4y = x\sin(2x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 40

dsolve(diff(y(x),x\$4)+4*diff(y(x),x\$2)+4*y(x)=x*sin(2*x),y(x), singsol=all)

$$y(x) = (c_3x + c_1)\cos\left(\sqrt{2}x\right) + (c_4x + c_2)\sin\left(\sqrt{2}x\right) + \frac{x\sin(2x)}{4} + \cos(2x)$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.007 (sec). Leaf size: 58}}$

DSolve[y'''[x]+4*y''[x]+4*y[x]==x*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}x\sin(2x) + \cos(2x) + (c_2x + c_1)\cos\left(\sqrt{2}x\right) + c_3\sin\left(\sqrt{2}x\right) + c_4x\sin\left(\sqrt{2}x\right)$$

16.32 problem 505

Internal problem ID [15275]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 505.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 2n^2y'' + n^4y = a\sin(nx + \alpha)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 67

 $\label{eq:diff} dsolve(diff(y(x),x\$4)+2*n^2*diff(y(x),x\$2)+n^4*y(x)=a*sin(n*x+alpha),y(x), singsol=all)$

$$y(x) = \frac{a(-n^2x^2 + 2)\sin(nx + \alpha) - 2(ax\cos(nx + \alpha) - 4((c_3x + c_1)\cos(nx) + \sin(nx)(c_4x + c_2))n^3)n}{8n^4}$$

✓ Solution by Mathematica

Time used: 0.193 (sec). Leaf size: 79

$$y(x) \to \frac{3a\sin(\alpha + nx)}{16n^4} - \frac{ax\cos(\alpha + nx)}{4n^3} - \frac{ax^2\sin(\alpha + nx)}{8n^2} + (c_2x + c_1)\cos(nx) + c_4x\sin(nx) + c_3\sin(nx)$$

16.33 problem 506

Internal problem ID [15276]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 506.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - 2n^2y'' + n^4y = \cos(nx + \alpha)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 49

 $dsolve(diff(y(x),x\$4)-2*n^2*diff(y(x),x\$2)+n^4*y(x)=cos(n*x+alpha),y(x), singsol=all)$

$$y(x) = \frac{\cos(nx + \alpha) + (4c_4x + 4c_2)n^4e^{-nx} + (4c_3x + 4c_1)n^4e^{nx}}{4n^4}$$

✓ Solution by Mathematica

Time used: 0.234 (sec). Leaf size: 52

$$y(x) \to \frac{\cos(\alpha + nx)}{4n^4} + e^{-nx} (c_3 e^{2nx} + c_4 x e^{2nx} + c_2 x + c_1)$$

16.34 problem 507

Internal problem ID [15277]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 507.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 4y''' + 6y'' + 4y' + y = \sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$4)+4*diff(y(x),x\$3)+6*diff(y(x),x\$2)+4*diff(y(x),x)+y(x)=sin(x),y(x), sin(x)

$$y(x) = (c_3x^3 + c_2x^2 + c_4x + c_1)e^{-x} - \frac{\sin(x)}{4}$$

✓ Solution by Mathematica

Time used: 0.102 (sec). Leaf size: 35

$$y(x) \to -\frac{\sin(x)}{4} + e^{-x}(x(x(c_4x + c_3) + c_2) + c_1)$$

16.35 problem 508

Internal problem ID [15278]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 508.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$y'''' - 4y''' + 6y'' - 4y' + y = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

$$y(x) = e^x \left(\frac{1}{24} x^4 + c_1 + c_2 x + c_3 x^2 + c_4 x^3 \right)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 39

$$y(x) \to \frac{1}{24}e^x(x^4 + 24c_4x^3 + 24c_3x^2 + 24c_2x + 24c_1)$$

16.36 problem 509

Internal problem ID [15279]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 509.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - 4y''' + 6y'' - 4y' + y = x e^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$4)-4*diff(y(x),x\$3)+6*diff(y(x),x\$2)-4*diff(y(x),x)+y(x)=x*exp(x),y(x),s

$$y(x) = e^x \left(\frac{1}{120} x^5 + c_1 + c_2 x + c_3 x^2 + c_4 x^3 \right)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 39

DSolve[y'''[x]-4*y''[x]+6*y''[x]-4*y'[x]+y[x]==x*Exp[x],y[x],x,IncludeSingularSolutions ->

$$y(x) \to \frac{1}{120}e^x(x^5 + 120c_4x^3 + 120c_3x^2 + 120c_2x + 120c_1)$$

16.37 problem 510

Internal problem ID [15280]

 $\mathbf{Book}:$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 510.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + y = -2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=-2,y(x), singsol=all)

$$y(x) = -2 + (c_1 x + c_2) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 23

 $\label{eq:DSolve} DSolve[y''[x]+2*y'[x]+y[x]==-2,y[x],x,IncludeSingularSolutions \ \ -> \ True]$

$$y(x) \to e^{-x}(-2e^x + c_2x + c_1)$$

16.38 problem 511

Internal problem ID [15281]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 511.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' = -2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)=-2,y(x), singsol=all)

$$y(x) = -\frac{e^{-2x}c_1}{2} - x + c_2$$

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 22

DSolve[y''[x]+2*y'[x]==-2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x - \frac{1}{2}c_1e^{-2x} + c_2$$

16.39 problem 512

Internal problem ID [15282]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 512.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 9y = 9$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)+9*y(x)=9,y(x), singsol=all)

$$y(x) = \sin(3x) c_2 + \cos(3x) c_1 + 1$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 21

DSolve[y''[x]+9*y[x]==9,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cos(3x) + c_2 \sin(3x) + 1$$

16.40 problem 513

Internal problem ID [15283]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 513.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)=1,y(x), singsol=all)

$$y(x) = \frac{x^2}{2} + c_1 e^{-x} + c_2 x + c_3$$

/ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 27

DSolve[y'''[x]+y''[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^2}{2} + c_3 x + c_1 e^{-x} + c_2$$

16.41 problem 514

Internal problem ID [15284]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 514.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$5y''' - 7y'' = 3$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve(5*diff(y(x),x\$3)-7*diff(y(x),x\$2)=3,y(x), singsol=all)

$$y(x) = -\frac{3x^2}{14} + \frac{25e^{\frac{7x}{5}}c_1}{49} + c_2x + c_3$$

Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 30

DSolve[y'''[x]-7*y''[x]==3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{3x^2}{14} + c_3x + \frac{1}{49}c_1e^{7x} + c_2$$

16.42 problem 515

Internal problem ID [15285]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 515.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 6y''' = -6$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$4)-6*diff(y(x),x\$3)=-6,y(x), singsol=all)

$$y(x) = \frac{e^{6x}c_1}{216} + \frac{x^3}{6} + \frac{c_2x^2}{2} + c_3x + c_4$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 36

DSolve[y'''[x]-6*y'''[x]==-6,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x^3}{6} + c_4 x^2 + c_3 x + \frac{1}{216} c_1 e^{6x} + c_2$$

16.43 problem 516

Internal problem ID [15286]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 516.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$3y'''' + y''' = 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(3*diff(y(x),x\$4)+diff(y(x),x\$3)=2,y(x), singsol=all)

$$y(x) = \frac{x^3}{3} + \frac{c_2 x^2}{2} - 27 e^{-\frac{x}{3}} c_1 + c_3 x + c_4$$

Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 36

DSolve[3*y'''[x]+y'''[x]==2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x^3}{3} + c_4 x^2 + c_3 x - 27c_1 e^{-x/3} + c_2$$

16.44 problem 517

Internal problem ID [15287]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 517.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 2y''' + 2y'' - 2y' + y = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

$$y(x) = (c_4x + c_2) e^x + \cos(x) c_1 + c_3 \sin(x) + 1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

DSolve[y''''[x]-2*y'''[x]+2*y''[x]-2*y'[x]+y[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_3 e^x + c_4 e^x x + c_1 \cos(x) + c_2 \sin(x) + 1$$

16.45 problem 518

Internal problem ID [15288]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 518.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y' + 4y = x^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve(diff(y(x),x$2)-4*diff(y(x),x)+4*y(x)=x^2,y(x), singsol=all)$

$$y(x) = \frac{3}{8} + (c_1x + c_2)e^{2x} + \frac{x^2}{4} + \frac{x}{2}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 37

DSolve[$y''[x]-4*y'[x]+4*y[x]==x^2,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to \frac{1}{8}(2x^2 + 4x + 3) + c_1e^{2x} + c_2e^{2x}x$$

16.46 problem 519

Internal problem ID [15289]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 519.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + 8y' = 8x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)+8*diff(y(x),x)=8*x,y(x), singsol=all)

$$y(x) = \frac{x^2}{2} - \frac{e^{-8x}c_1}{8} - \frac{x}{8} + c_2$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 31

DSolve[y''[x]+8*y'[x]==8*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x^2}{2} - \frac{x}{8} - \frac{1}{8}c_1e^{-8x} + c_2$$

16.47 problem 520

Internal problem ID [15290]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 520.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y'k + k^2y = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x$2)-2*k*diff(y(x),x)+k^2*y(x)=exp(x),y(x), singsol=all)$

$$y(x) = \frac{(k-1)^2 (c_1 x + c_2) e^{kx} + e^x}{(k-1)^2}$$

✓ Solution by Mathematica

Time used: 0.14 (sec). Leaf size: 28

DSolve[y''[x]-2*k*y'[x]+k^2*y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{e^x}{(k-1)^2} + (c_2x + c_1)e^{kx}$$

16.48 problem 521

Internal problem ID [15291]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 521.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 4y = 8e^{-2x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $\label{eq:diff} $$dsolve(diff(y(x),x$2)+4*diff(y(x),x)+4*y(x)=8*exp(-2*x),y(x), singsol=all)$$

$$y(x) = e^{-2x}(c_1x + 4x^2 + c_2)$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 23

DSolve[y''[x]+4*y'[x]+4*y[x]==8*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (4x^2 + c_2 x + c_1)$$

16.49 problem 522

Internal problem ID [15292]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 522.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 3y = 9e^{-3x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+3*y(x)=9*exp(-3*x),y(x), singsol=all)

$$y(x) = \frac{(-9x + 2c_2)e^{-3x}}{2} + c_1e^{-x}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 32

DSolve[y''[x]+4*y'[x]+3*y[x]==9*Exp[-3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}e^{-3x} \left(-18x + 4c_2e^{2x} - 9 + 4c_1\right)$$

16.50 problem 523

Internal problem ID [15293]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 523.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$7y'' - y' = 14x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(7*diff(y(x),x\$2)-diff(y(x),x)=14*x,y(x), singsol=all)

$$y(x) = 7e^{\frac{x}{7}}c_1 - 7x^2 - 98x + c_2$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 27

 $DSolve [7*y''[x]-y'[x]==14*x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -7x^2 - 98x + 7c_1e^{x/7} + c_2$$

16.51 problem 524

Internal problem ID [15294]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 524.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + 3y' = 3x e^{-3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)=3*x*exp(-3*x),y(x), singsol=all)

$$y(x) = \frac{(-9x^2 - 6c_1 - 6x - 2)e^{-3x}}{18} + c_2$$

Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 31

DSolve[y''[x]+3*y'[x]==3*x*Exp[-3*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 - \frac{1}{18}e^{-3x}(9x^2 + 6x + 2 + 6c_1)$$

16.52 problem 525

Internal problem ID [15295]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 525.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 5y' + 6y = 10(1-x)e^{-2x}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)+5*diff(y(x),x)+6*y(x)=10*(1-x)*exp(-2*x),y(x), singsol=all)

$$y(x) = (-5x^2 + c_1 + 20x) e^{-2x} + e^{-3x}c_2$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 30

$$y(x) \rightarrow e^{-3x} (e^x (-5x^2 + 20x - 20 + c_2) + c_1)$$

16.53 problem 526

Internal problem ID [15296]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 526.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + 2y = x + 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+2*y(x)=1+x,y(x), singsol=all)

$$y(x) = e^{-x} \sin(x) c_2 + e^{-x} \cos(x) c_1 + \frac{x}{2}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 32

DSolve[y''[x]+2*y'[x]+2*y[x]==1+x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}e^{-x}(e^xx + 2c_2\cos(x) + 2c_1\sin(x))$$

16.54 problem 527

Internal problem ID [15297]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 527.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' + y = (x^2 + x) e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

 $dsolve(diff(y(x),x\$2)+diff(y(x),x)+y(x)=(x+x^2)*exp(x),y(x), singsol=all)$

$$y(x) = e^{-\frac{x}{2}} \cos\left(\frac{x\sqrt{3}}{2}\right) c_1 + e^{-\frac{x}{2}} \sin\left(\frac{x\sqrt{3}}{2}\right) c_2 + \frac{e^x(x^2 - x + \frac{1}{3})}{3}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 65

 $DSolve[y''[x]+y'[x]+y[x] == (x+x^2)*Exp[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{9}e^{-x/2} \left(e^{3x/2} \left(3x^2 - 3x + 1 \right) + 9c_2 \cos \left(\frac{\sqrt{3}x}{2} \right) + 9c_1 \sin \left(\frac{\sqrt{3}x}{2} \right) \right)$$

16.55 problem 528

Internal problem ID [15298]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 528.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' - 2y = 8\sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)-2*y(x)=8*sin(2*x),y(x), singsol=all)

$$y(x) = e^{\left(-2+\sqrt{6}\right)x}c_2 + e^{-\left(2+\sqrt{6}\right)x}c_1 - \frac{16\cos(2x)}{25} - \frac{12\sin(2x)}{25}$$

Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 52

 $DSolve[y''[x]+4*y'[x]-2*y[x]==8*Sin[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-\left(\left(2+\sqrt{6}\right)x\right)} + c_2 e^{\left(\sqrt{6}-2\right)x} - \frac{4}{25} (3\sin(2x) + 4\cos(2x))$$

16.56 problem 529

Internal problem ID [15299]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 529.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 4\cos(x)x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$2)+y(x)=4*x*cos(x),y(x), singsol=all)

$$y(x) = (x^2 + c_2 - 1)\sin(x) + \cos(x)(x + c_1)$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 30

DSolve[y''[x]+y[x]==4*x*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}(2x^2 - 1 + 2c_2)\sin(x) + (x + c_1)\cos(x)$$

16.57 problem 530

Internal problem ID [15300]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 530.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2my' + m^2y = \sin(nx)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 56

 $\label{eq:diff} $$ dsolve(diff(y(x),x$2)-2*m*diff(y(x),x)+m^2*y(x)=sin(n*x),y(x), singsol=all)$ $$$

$$y(x) = \frac{(m^2 + n^2)^2 (c_1 x + c_2) e^{mx} + (m^2 - n^2) \sin(nx) + 2 \cos(nx) mn}{(m^2 + n^2)^2}$$

✓ Solution by Mathematica

Time used: 0.182 (sec). Leaf size: 56

DSolve[y''[x]-2*m*y'[x]+m^2*y[x]==Sin[n*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{(m^2 - n^2)\sin(nx) + 2mn\cos(nx)}{(m^2 + n^2)^2} + c_1e^{mx} + c_2xe^{mx}$$

16.58 problem 531

Internal problem ID [15301]

 $\mathbf{Book}:$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 531.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y = e^{-x} \sin(2x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=exp(-x)*sin(2*x),y(x), singsol=all)

$$y(x) = -\frac{e^{-x}((x - 4c_1)\cos(2x) - 4\sin(2x)c_2)}{4}$$

Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 38

DSolve[y''[x]+2*y'[x]+5*y[x]==Exp[-x]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{16}e^{-x}((1+16c_1)\sin(2x) - 4(x-4c_2)\cos(2x))$$

16.59 problem 532

Internal problem ID [15302]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 532.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + a^2y = 2\cos(mx) + 3\sin(mx)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$2) + \text{a^2*y}(x) = 2*\cos(m*x) + 3*\sin(m*x),y(x), \text{ singsol=all}) \\$

$$y(x) = \sin(ax) c_2 + \cos(ax) c_1 + \frac{2\cos(mx) + 3\sin(mx)}{a^2 - m^2}$$

Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 45

DSolve[y''[x]+a^2*y[x]==2*Cos[m*x]+3*Sin[m*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{3\sin(mx) + 2\cos(mx)}{a^2 - m^2} + c_1\cos(ax) + c_2\sin(ax)$$

16.60 problem 533

Internal problem ID [15303]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 533.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - y' = e^x \sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)-diff(y(x),x)=exp(x)*sin(x),y(x), singsol=all)

$$y(x) = \frac{(2c_1 - \cos(x) - \sin(x))e^x}{2} + c_2$$

Solution by Mathematica

Time used: 0.106 (sec). Leaf size: 24

DSolve[y''[x]-y'[x] == Exp[x]*Sin[x], y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to c_2 - \frac{1}{2}e^x(\sin(x) + \cos(x) - 2c_1)$$

16.61 problem 534

Internal problem ID [15304]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 534.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + 2y' = 4 e^{x} (\sin(x) + \cos(x))$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)=4*exp(x)*(sin(x)+cos(x)),y(x), singsol=all)

$$y(x) = -\frac{\left(\frac{4(\cos(x) - 3\sin(x))e^{3x}}{5} - 2c_2e^{2x} + c_1\right)e^{-2x}}{2}$$

✓ Solution by Mathematica

Time used: 0.229 (sec). Leaf size: 37

DSolve[y''[x]+2*y'[x]==4*Exp[x]*(Sin[x]+Cos[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{6}{5}e^x \sin(x) - \frac{2}{5}e^x \cos(x) - \frac{1}{2}c_1e^{-2x} + c_2$$

16.62 problem 535

Internal problem ID [15305]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 535.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 5y = 10e^{-2x}\cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)+5*y(x)=10*exp(-2*x)*cos(x),y(x), singsol=all)

$$y(x) = ((c_2 + 5x)\sin(x) + \cos(x)c_1)e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 34

$$y(x) \to \frac{1}{2}e^{-2x}((5+2c_2)\cos(x) + 2(5x+c_1)\sin(x))$$

16.63 problem 536

Internal problem ID [15306]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 536.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$4y'' + 8y' = \sin(x) x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(4*diff(y(x),x\$2)+8*diff(y(x),x)=x*sin(x),y(x), singsol=all)

$$y(x) = -\frac{e^{-2x}c_1}{2} + \frac{(-1-5x)\cos(x)}{50} + \frac{(-5x+14)\sin(x)}{100} + c_2$$

✓ Solution by Mathematica

Time used: 0.266 (sec). Leaf size: 42

DSolve [4*y''[x]+8*y'[x]==x*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \left(\frac{7}{50} - \frac{x}{20}\right)\sin(x) - \frac{1}{50}(5x+1)\cos(x) - \frac{1}{2}c_1e^{-2x} + c_2$$

16.64 problem 537

Internal problem ID [15307]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 537.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3y' + 2y = x e^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=x*exp(x),y(x), singsol=all)

$$y(x) = -\frac{(-2c_1e^x + x^2 - 2c_2 + 2x)e^x}{2}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 33

DSolve[y''[x]-3*y'[x]+2*y[x] == x*Exp[x], y[x], x, IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}e^x(-x^2 - 2x + 2(c_2e^x - 1 + c_1))$$

16.65 problem 538

Internal problem ID [15308]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 538.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' - 2y = x^2 e^{4x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve(diff(y(x),x$2)+diff(y(x),x)-2*y(x)=x^2*exp(4*x),y(x), singsol=all)$

$$y(x) = \frac{\left(\left(\frac{7}{18} + x^2 - x\right)e^{6x} + 18c_1e^{3x} + 18c_2\right)e^{-2x}}{18}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 39

DSolve[y''[x]+y'[x]-2*y[x]==x^2*Exp[4*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{324}e^{4x}(18x^2 - 18x + 7) + c_1e^{-2x} + c_2e^x$$

16.66 problem 539

Internal problem ID [15309]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 539.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 3y' + 2y = (x^2 + x) e^{3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=(x+x^2)*exp(3*x),y(x), singsol=all)$

$$y(x) = \frac{e^x((x^2 - 2x + 2)e^{2x} + 2c_1e^x + 2c_2)}{2}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: $37\,$

 $DSolve[y''[x]-3*y'[x]+2*y[x]==(x+x^2)*Exp[3*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}e^{3x}(x^2 - 2x + 2) + c_1e^x + c_2e^{2x}$$

16.67 problem 540

Internal problem ID [15310]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 540.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - y'' + y' - y = x^2 + x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)+diff(y(x),x)-y(x)=x+x^2,y(x), singsol=all)$

$$y(x) = -x^2 - 3x - 1 + \cos(x) c_1 + c_2 e^x + c_3 \sin(x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 31

 $DSolve[y'''[x]-y''[x]+y'[x]-y[x] == x+x^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x^2 - 3x + c_3 e^x + c_1 \cos(x) + c_2 \sin(x) - 1$$

16.68 problem 541

Internal problem ID [15311]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 541.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$y'''' - 2y''' + 2y'' - 2y' + y = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

$$y(x) = \frac{(4c_4x + x^2 + 4c_2)e^x}{4} + \cos(x)c_1 + c_3\sin(x)$$

Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 40

$$y(x) \to \frac{1}{4}e^x(x^2 - 2x + 4c_4x + 1 + 4c_3) + c_1\cos(x) + c_2\sin(x)$$

16.69 problem 542

Internal problem ID [15312]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 542.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = x^3$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=x^3,y(x), singsol=all)$

$$y(x) = (c_1x + c_2) e^x + x^3 + 6x^2 + 18x + 24$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 31

 $DSolve[y''[x]-2*y'[x]+y[x]==x^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow x^3 + 6x^2 + x(18 + c_2e^x) + c_1e^x + 24$$

16.70 problem 543

Internal problem ID [15313]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 543.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' + y'' = x^2 + x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve(diff(y(x),x$4)+diff(y(x),x$2)=x^2+x,y(x), singsol=all)$

$$y(x) = \frac{x^3}{6} - x^2 + \frac{x^4}{12} - \cos(x) c_1 - \sin(x) c_2 + c_3 x + c_4$$

✓ Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 43

DSolve[y'''[x]+y''[x]==x^2+x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x^4}{12} + \frac{x^3}{6} - x^2 + c_4 x - c_1 \cos(x) - c_2 \sin(x) + c_3$$

16.71 problem 544

Internal problem ID [15314]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 544.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = x^2 \sin(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve(diff(y(x),x\$2)+y(x)=x^2*sin(x),y(x), singsol=all)$

$$y(x) = \frac{(-2x^3 + 12c_1 + 3x)\cos(x)}{12} + \frac{\sin(x)(x^2 + 4c_2 - 1)}{4}$$

Solution by Mathematica

Time used: 0.102 (sec). Leaf size: 41

DSolve[y''[x]+y[x]==x^2*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \left(-\frac{x^3}{6} + \frac{x}{4} + c_1\right)\cos(x) + \frac{1}{8}(2x^2 - 1 + 8c_2)\sin(x)$$

16.72 problem 545

Internal problem ID [15315]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 545.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = x^2 e^{-x} \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=x^2*exp(-x)*cos(x),y(x), singsol=all)$

$$y(x) = -((x^2 - 6)\cos(x) - c_1x - 4\sin(x)x - c_2)e^{-x}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 32

DSolve[y''[x]+2*y'[x]+y[x]==x^2*Exp[-x]*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} (-(x^2 - 6)\cos(x) + 4x\sin(x) + c_2x + c_1)$$

16.73 problem 546

Internal problem ID [15316]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 546.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - y = \sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

dsolve(diff(y(x),x\$3)-y(x)=sin(x),y(x), singsol=all)

$$y(x) = c_2 e^{-\frac{x}{2}} \cos\left(\frac{x\sqrt{3}}{2}\right) + c_3 e^{-\frac{x}{2}} \sin\left(\frac{x\sqrt{3}}{2}\right) + c_1 e^x - \frac{\sin(x)}{2} + \frac{\cos(x)}{2}$$

✓ Solution by Mathematica

Time used: 0.419 (sec). Leaf size: 66

DSolve[y'''[x]-y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sin(x)}{2} + \frac{\cos(x)}{2} + c_1 e^x + c_2 e^{-x/2} \cos\left(\frac{\sqrt{3}x}{2}\right) + c_3 e^{-x/2} \sin\left(\frac{\sqrt{3}x}{2}\right)$$

16.74 problem 547

Internal problem ID [15317]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132

Problem number: 547.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' - 2y'' + y = \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$4)-2*diff(y(x),x\$2)+y(x)=cos(x),y(x), singsol=all)

$$y(x) = (c_4x + c_2) e^{-x} + (c_3x + c_1) e^x + \frac{\cos(x)}{4}$$

Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 42

 $\textbf{DSolve}[y''''[x]-2*y''[x]+y[x]==Cos[x],y[x],x,IncludeSingularSolutions} \rightarrow \textbf{True}]$

$$y(x) \to \frac{\cos(x)}{4} + e^{-x} (c_2 x + c_3 e^{2x} + c_4 e^{2x} x + c_1)$$

16.75 problem 548

Internal problem ID [15318]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 548.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _linear, _nonhomogeneous]]

$$y''' - 3y'' + 3y' - y = e^x \cos(2x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

$$y(x) = -\frac{e^x(-8c_3x^2 - 8c_2x + \sin(2x) - 8c_1 - 2x)}{8}$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 33

$$y(x) \to \frac{1}{8}e^x(-\sin(2x) + 8(x(c_3x + c_2) + c_1))$$

16.76 problem 549

Internal problem ID [15319]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Trial and error method. Exercises page 132

Problem number: 549.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 5y = e^{2x}(\sin(x) + 2\cos(x))$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+5*y(x)=exp(2*x)*(sin(x)+2*cos(x)),y(x), singsol=all)

$$y(x) = -\frac{((x - 2c_1 - 2)\cos(x) - 2\sin(x)(c_2 + x))e^{2x}}{2}$$

Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 36

$$y(x) \to \frac{1}{2}e^{2x}((-x+1+2c_2)\cos(x)+(x+2c_1)\sin(x))$$

17 Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

17.1 problem 551	 438
17.2 problem 552	 439
17.3 problem 553	 440
17.4 problem 554	 441
17.5 problem 555	 442
17.6 problem 556	 443
17.7 problem 557	
17.8 problem 558	 445
17.9 problem 559	 446
17.10problem 560	 447
17.11 problem 561	 448
17.12problem 562	 449
17.13problem 563	 450
17.14problem 564	 451
17.15 problem 565	 452
17.16problem 566	 453
17.17problem 567	 454
17.18problem 568	 455
17.19problem 569	 456
17.20problem 570	 457
17.21 problem 571	 458
17.22 problem 572	 459
17.23problem 573	 460
17.24problem 574	 461
17.25 problem 575	 462
17.26 problem 576	 463
17.27 problem 577	 464
17.28problem 578	 465
17.29 problem 579	 466
17.30 problem 580	 467
17.31 problem 581	 468
17.32 problem 582	 469
17.33 problem 583	 470

17.34 problem	584																		471
$17.35 \mathrm{problem}$	585																		472
$17.36 \\ problem$	586																		473
$17.37 \\ problem$	587																		474
17.38 problem	588																		475
17.39 problem	589																		476

17.1 problem 551

Internal problem ID [15320]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 551.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y' - 2y = e^x + e^{-2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=exp(x)+exp(-2*x),y(x), singsol=all)

$$y(x) = \frac{(4c_1e^{4x} - 2e^{3x} + 4c_2e^x + 1)e^{-2x}}{4}$$

Solution by Mathematica

Time used: 0.114 (sec). Leaf size: 39

DSolve[y''[x]-y'[x]-2*y[x]==Exp[x]+Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}e^{-2x}(-2e^{3x} + 4c_1e^x + 4c_2e^{4x} + 1)$$

17.2 problem 552

Internal problem ID [15321]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 552.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + 4y' = x + e^{-4x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)+4*diff(y(x),x)=x+exp(-4*x),y(x), singsol=all)

$$y(x) = \frac{(-4x - 4c_1 - 1)e^{-4x}}{16} + \frac{x^2}{8} - \frac{x}{16} + c_2$$

Solution by Mathematica

Time used: 0.35 (sec). Leaf size: 38

 $DSolve[y''[x]+4*y'[x]==x+Exp[-4*x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^2}{8} - \frac{x}{16} - \frac{1}{16}e^{-4x}(4x + 1 + 4c_1) + c_2$$

17.3 problem 553

Internal problem ID [15322]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 553.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = x + \sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$2)-y(x)=x+sin(x),y(x), singsol=all)

$$y(x) = c_2 e^{-x} + c_1 e^x - \frac{\sin(x)}{2} - x$$

Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 29

DSolve[y''[x]-y[x]==x+Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x - \frac{\sin(x)}{2} + c_1 e^x + c_2 e^{-x}$$

17.4 problem 554

Internal problem ID [15323]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 554.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 2y = (1 + \sin(x))e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+2*y(x)=(1+sin(x))*exp(x),y(x), singsol=all)

$$y(x) = -\frac{e^x((x - 2c_1)\cos(x) - 2 + (-2c_2 - 1)\sin(x))}{2}$$

Solution by Mathematica

Time used: $0.\overline{194}$ (sec). Leaf size: 32

DSolve[y''[x]-2*y'[x]+2*y[x]==(1+Sin[x])*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}e^x(-((x-2c_2)\cos(x)) + 2(1+c_1)\sin(x) + 2)$$

17.5 problem 555

Internal problem ID [15324]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 555.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - y'' = 1 + e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)=1+exp(x),y(x), singsol=all)

$$y(x) = (c_1 + x - 2) e^x - \frac{x^2}{2} + c_2 x + c_3$$

✓ Solution by Mathematica

Time used: 0.115 (sec). Leaf size: 28

DSolve[y'''[x]-y''[x]==1+Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{x^2}{2} + c_3 x + e^x (x - 2 + c_1) + c_2$$

17.6 problem 556

Internal problem ID [15325]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 556.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' + 4y' = e^{2x} + \sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$3)+4*\text{diff}(y(x),x)=\exp(2*x)+\sin(2*x),y(x), \text{ singsol=all}) \\$

$$y(x) = \frac{(-8c_2 - 1)\cos(2x)}{16} + \frac{(-x + 4c_1)\sin(2x)}{8} + c_3 + \frac{e^{2x}}{16}$$

✓ Solution by Mathematica

Time used: 0.836 (sec). Leaf size: 44

DSolve[y'''[x]+4*y'[x]==Exp[2*x]+Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{32} (2e^{2x} - ((3+16c_2)\cos(2x)) - 4(x-4c_1)\sin(2x)) + c_3$$

17.7 problem 557

Internal problem ID [15326]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 557.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \sin(x)\sin(2x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)+4*y(x)=sin(x)*sin(2*x),y(x), singsol=all)

$$y(x) = \sin(2x) c_2 + \cos(2x) c_1 - \frac{2\cos(x)}{15} + \frac{2\cos(x)^3}{5}$$

✓ Solution by Mathematica

Time used: 0.178 (sec). Leaf size: 34

DSolve[y''[x]+4*y[x]==Sin[x]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\cos(x)}{6} + \frac{1}{10}\cos(3x) + c_1\cos(2x) + c_2\sin(2x)$$

17.8 problem 558

Internal problem ID [15327]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 558.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 4y' = 2\cos\left(4x\right)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x$2)-4*diff(y(x),x)=2*cos(4*x)^2,y(x), singsol=all)$

$$y(x) = \frac{c_1 e^{4x}}{4} - \frac{\sin(8x)}{160} - \frac{\cos(8x)}{80} - \frac{x}{4} + c_2$$

Solution by Mathematica

Time used: 0.243 (sec). Leaf size: 40

DSolve[$y''[x]-4*y'[x]==2*Cos[4*x]^2,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \rightarrow -\frac{x}{4} - \frac{1}{160}\sin(8x) - \frac{1}{80}\cos(8x) + \frac{1}{4}c_1e^{4x} + c_2$$

17.9 problem 559

Internal problem ID [15328]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 559.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = 4x - 2e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=4*x-2*exp(x),y(x), singsol=all)

$$y(x) = c_2 e^{-x} + c_1 e^{2x} + e^x - 2x + 1$$

✓ Solution by Mathematica

Time used: 0.111 (sec). Leaf size: 29

DSolve[y''[x]-y'[x]-2*y[x]==4*x-2*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -2x + e^x + c_1 e^{-x} + c_2 e^{2x} + 1$$

17.10 problem 560

Internal problem ID [15329]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 560.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 3y' = 18x - 10\cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)=18*x-10*cos(x),y(x), singsol=all)

$$y(x) = \frac{c_1 e^{3x}}{3} - 3x^2 + 3\sin(x) + \cos(x) - 2x + c_2$$

Solution by Mathematica

Time used: 0.162 (sec). Leaf size: 33

$$y(x) \rightarrow -3x^2 - 2x + 3\sin(x) + \cos(x) + \frac{1}{3}c_1e^{3x} + c_2$$

17.11 problem 561

Internal problem ID [15330]

 $\mathbf{Book}:$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Superposition principle. Exercises page 137

Problem number: 561.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = 2 + e^x \sin(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=2+exp(x)*sin(x),y(x), singsol=all)

$$y(x) = 2 + (c_1x + c_2 - \sin(x))e^x$$

✓ Solution by Mathematica

Time used: 0.145 (sec). Leaf size: $25\,$

 $DSolve[y''[x]-2*y'[x]+y[x]==2+Exp[x]*Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -e^x \sin(x) + e^x (c_2 x + c_1) + 2$$

17.12 problem 562

Internal problem ID [15331]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Superposition principle. Exercises page 137

Problem number: 562.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = (5x + 4) e^x + e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+2*y(x)=(5*x+4)*exp(x)+exp(-x),y(x), singsol=all)

$$y(x) = e^{-x} \sin(x) c_2 + e^{-x} \cos(x) c_1 + e^{x} x + e^{-x}$$

✓ Solution by Mathematica

Time used: 0.193 (sec). Leaf size: 30

$$y(x) \to e^{-x} (e^{2x}x + c_2 \cos(x) + c_1 \sin(x) + 1)$$

17.13 problem 563

Internal problem ID [15332]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Superposition principle. Exercises page 137

Problem number: 563.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y = 4e^{-x} + 17\sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=4*exp(-x)+17*sin(2*x),y(x), singsol=all)

$$y(x) = ((c_1 + 1)\cos(2x) + \sin(2x)c_2 + 1)e^{-x} - 4\cos(2x) + \sin(2x)$$

✓ Solution by Mathematica

Time used: 0.335 (sec). Leaf size: 37

$$y(x) \to e^{-x}((-4e^x + c_2)\cos(2x) + (e^x + c_1)\sin(2x) + 1)$$

17.14 problem 564

Internal problem ID [15333]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Superposition principle. Exercises page 137

Problem number: 564.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$2y'' - 3y' - 2y = 5e^x \cosh(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(2*diff(y(x),x\$2)-3*diff(y(x),x)-2*y(x)=5*exp(x)*cosh(x),y(x), singsol=all)

$$y(x) = -\frac{5}{4} + e^{-\frac{x}{2}}c_2 + \frac{(-2 + 5x + 10c_1)e^{2x}}{10}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 36

DSolve[2*y''[x]-3*y'[x]-2*y[x]==5*Exp[x]*Cosh[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{-x/2} + e^{2x} \left(\frac{x}{2} - \frac{1}{5} + c_2\right) - \frac{5}{4}$$

17.15 problem 565

Internal problem ID [15334]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 565.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = x\sin\left(x\right)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

 $dsolve(diff(y(x),x$2)+4*y(x)=x*sin(x)^2,y(x), singsol=all)$

$$y(x) = \frac{(-8x^2 + 128c_2 + 1)\sin(2x)}{128} + \frac{(-x + 32c_1)\cos(2x)}{32} + \frac{x}{8}$$

✓ Solution by Mathematica

Time used: 0.245 (sec). Leaf size: 41

DSolve[y''[x]+4*y[x]==x*Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{128} ((-8x^2 + 1 + 128c_2)\sin(2x) + 16x - 4(x - 32c_1)\cos(2x))$$

17.16 problem 566

Internal problem ID [15335]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 566.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 2y''' + 2y'' + 2y' + y = x e^{x} + \frac{\cos(x)}{2}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 43

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$3)+2*diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=x*exp(x)+1/2*cosx

$$y(x) = (c_4x + c_3)e^{-x} + \frac{(-x + 8c_1 + 1)\cos(x)}{8} + \frac{(x - 2)e^x}{8} + \frac{\sin(x)(4c_2 + 1)}{4}$$

✓ Solution by Mathematica

Time used: 0.234 (sec). Leaf size: 52

DSolve[y'''[x]+2*y'''[x]+2*y''[x]+2*y'[x]+y[x]==x*Exp[x]+1/2*Cos[x],y[x],x,IncludeSingularS

$$y(x) \to \frac{1}{16} \left(2e^x(x-2) + 16e^{-x}(c_4x + c_3) - 2(x-1-8c_1)\cos(x) + (3+16c_2)\sin(x) \right)$$

17.17 problem 567

Internal problem ID [15336]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 567.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + y' = \cos(x)^2 + e^x + x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$2) + \text{diff}(y(x),x) = \cos(x)^2 + \exp(x) + x^2, \\ y(x), \text{ singsol=all}) \\$

$$y(x) = -x^{2} + \frac{x^{3}}{3} - c_{1}e^{-x} + \frac{e^{x}}{2} - \frac{\cos(2x)}{10} + \frac{\sin(2x)}{20} + \frac{5x}{2} + c_{2}$$

✓ Solution by Mathematica

Time used: 0.529 (sec). Leaf size: 55

DSolve[y''[x]+y'[x]==Cos[x]^2+Exp[x]+x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{6} \left(x(2x^2 - 6x + 15) + 3e^x \right) + \frac{1}{20} \sin(2x) - \frac{1}{10} \cos(2x) - c_1 e^{-x} + c_2$$

17.18 problem 568

Internal problem ID [15337]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 568.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' + 4y''' = e^x + 3\sin(2x) + 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 60

dsolve(diff(y(x),x\$4)+4*diff(y(x),x\$3)=exp(x)+3*sin(2*x)+1,y(x), singsol=all)

$$y(x) = \frac{\left(\left(-\frac{18\sin(x)^2}{5} + \frac{9\sin(x)\cos(x)}{5} + x^3 + \left(12c_2 - \frac{18}{5}\right)x^2 + \left(24c_3 - \frac{9}{5}\right)x + 24c_4\right)e^{4x} + \frac{24e^{5x}}{5} - \frac{3c_1}{8}e^{-4x}}{24}$$

✓ Solution by Mathematica

Time used: 0.877 (sec). Leaf size: 59

DSolve[y'''[x]+4*y'''[x]==Exp[x]+3*Sin[2*x]+1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^3}{24} + c_4 x^2 + \frac{e^x}{5} + \frac{3}{80}\sin(2x) + \frac{3}{40}\cos(2x) + c_3 x - \frac{1}{64}c_1 e^{-4x} + c_2$$

17.19 problem 569

Internal problem ID [15338]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Superposition principle. Exercises page 137

Problem number: 569.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 5y = 10\sin(x) + 17\sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+5*y(x)=10*sin(x)+17*sin(2*x),y(x), singsol=all)

$$y(x) = (c_1 e^x + 4)\cos(2x) + e^x\sin(2x)c_2 + \cos(x) + 2\sin(x) + \sin(2x)$$

✓ Solution by Mathematica

Time used: 0.538 (sec). Leaf size: $37\,$

$$y(x) \to \cos(x) + (4 + c_2 e^x) \cos(2x) + 2\sin(x) (\cos(x) + c_1 e^x \cos(x) + 1)$$

17.20 problem 570

Internal problem ID [15339]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 570.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + y' = x^2 - e^{-x} + e^x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

 $dsolve(diff(y(x),x$2)+diff(y(x),x)=x^2-exp(-x)+exp(x),y(x), singsol=all)$

$$y(x) = (1 + x - c_1)e^{-x} + \frac{x^3}{3} - x^2 + 2x + c_2 + \frac{e^x}{2}$$

✓ Solution by Mathematica

Time used: 0.159 (sec). Leaf size: 43

 $DSolve[y''[x]+y'[x] == x^2-Exp[-x]+Exp[x], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x^3}{3} - x^2 + 2x + \frac{e^x}{2} + e^{-x}(x+1-c_1) + c_2$$

17.21 problem 571

Internal problem ID [15340]

 $\mathbf{Book}:$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 571.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' - 3y = 2x + e^{-x} - 2e^{3x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-3*y(x)=2*x+exp(-x)-2*exp(3*x),y(x), singsol=all)

$$y(x) = \frac{4}{9} + \frac{(-1 - 4x + 16c_1)e^{-x}}{16} + \frac{(1 - 4x + 8c_2)e^{3x}}{8} - \frac{2x}{3}$$

Solution by Mathematica

Time used: 0.501 (sec). Leaf size: 51

$$y(x) \to \frac{1}{144}e^{-x}(e^x(64-96x)-9(4x+1-16c_1)-18e^{4x}(4x-1-8c_2))$$

17.22 problem 572

Internal problem ID [15341]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 572.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = e^x + 4\sin(2x) + 2\cos(x)^2 - 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(diff(y(x),x$2)+4*y(x)=exp(x)+4*sin(2*x)+2*cos(x)^2-1,y(x), singsol=all)$

$$y(x) = \frac{(2+x+4c_2)\sin(2x)}{4} + (c_1 - x)\cos(2x) + \frac{e^x}{5}$$

Solution by Mathematica

Time used: 0.435 (sec). Leaf size: 42 $\,$

$$y(x) o rac{e^x}{5} + \left(-x + rac{1}{16} + c_1
ight)\cos(2x) + rac{1}{4}(x + 1 + 4c_2)\sin(2x)$$

17.23 problem 573

Internal problem ID [15342]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Superposition principle. Exercises page 137

Problem number: 573.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = 6x e^{-x} (1 - e^{-x})$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x)=6*x*exp(-x)*(1-exp(-x)),y(x), singsol=all)

$$y(x) = 3\left(\left(x^2 + 2x - \frac{1}{3}c_1 + 2\right)e^{-x} + x^2 - 2x + \frac{c_2}{3}\right)e^{-x}$$

✓ Solution by Mathematica

Time used: 0.186 (sec). Leaf size: $39\,$

DSolve[y''[x]+3*y'[x]+2*y[x]==6*x*Exp[-x]*(1-Exp[-x]),y[x],x,IncludeSingularSolutions -> True (-x) + (x) +

$$y(x) \to e^{-2x} (3x^2 + e^x (3x^2 - 6x + 6 + c_2) + 6x + 6 + c_1)$$

17.24 problem 574

Internal problem ID [15343]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 574.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \cos(2x)^2 + \sin\left(\frac{x}{2}\right)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

 $dsolve(diff(y(x),x\$2)+y(x)=cos(2*x)^2+sin(x/2)^2,y(x), singsol=all)$

$$y(x) = 1 - \frac{\cos(4x)}{30} + \frac{(-1 + 8c_1)\cos(x)}{8} + \frac{(-x + 4c_2)\sin(x)}{4}$$

✓ Solution by Mathematica

Time used: 0.103 (sec). Leaf size: 36

 $DSolve[y''[x]+y[x]==Cos[2*x]^2+Sin[x/2]^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{1}{4}x\sin(x) - \frac{1}{30}\cos(4x) + \left(-\frac{1}{4} + c_1\right)\cos(x) + c_2\sin(x) + 1$$

17.25 problem 575

Internal problem ID [15344]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 575.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 5y = 1 + 8\cos(x) + e^{2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$2)-4*\text{diff}(y(x),x)+5*y(x)=1+8*\cos(x)+\exp(2*x),y(x), \text{ singsol=all}) \\$

$$y(x) = e^{2x} \sin(x) c_2 + e^{2x} \cos(x) c_1 - \sin(x) + \cos(x) + \frac{1}{5} + e^{2x}$$

✓ Solution by Mathematica

Time used: 0.341 (sec). Leaf size: 40

DSolve[y''[x]-4*y'[x]+5*y[x]==1+8*Cos[x]+Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{2x} + (1 + c_2 e^{2x}) \cos(x) + (-1 + c_1 e^{2x}) \sin(x) + \frac{1}{5}$$

17.26 problem 576

Internal problem ID [15345]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Superposition principle. Exercises page 137

Problem number: 576.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 2y = e^x \sin\left(\frac{x}{2}\right)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+2*y(x)=exp(x)*sin(x/2)^2,y(x), singsol=all)$

$$y(x) = -\frac{\left(\left(-4c_1 + \frac{1}{2}\right)\cos(x) - 2 + (x - 4c_2)\sin(x)\right)e^x}{4}$$

✓ Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 33

DSolve[y''[x]-2*y'[x]+2*y[x]==Exp[x]*Sin[x/2]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{8}e^x((1-8c_2)\cos(x) + 2(x-4c_1)\sin(x) - 4)$$

17.27 problem 577

Internal problem ID [15346]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 577.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 3y' = 1 + e^x + \cos(x) + \sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)=1+exp(x)+cos(x)+sin(x),y(x), singsol=all)

$$y(x) = \frac{c_1 e^{3x}}{3} - \frac{2\sin(x)}{5} - \frac{e^x}{2} + \frac{\cos(x)}{5} - \frac{x}{3} + c_2$$

✓ Solution by Mathematica

Time used: 0.261 (sec). Leaf size: 43

DSolve[y''[x]-3*y'[x]==1+Exp[x]+Cos[x]+Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{x}{3} - \frac{e^x}{2} - \frac{2\sin(x)}{5} + \frac{\cos(x)}{5} + \frac{1}{3}c_1e^{3x} + c_2$$

17.28 problem 578

Internal problem ID [15347]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Superposition principle. Exercises page 137

Problem number: 578.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 5y = e^x (1 - 2\sin(x)^2) + 10x + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+5*y(x)=exp(x)*(1-2*sin(x)^2)+10*x+1,y(x), singsol=all)

$$y(x) = \frac{e^{x}(x + 4c_{2})\sin(2x)}{4} + e^{x}\cos(2x)c_{1} + 2x + 1$$

✓ Solution by Mathematica

Time used: 1.163 (sec). Leaf size: 44

 $DSolve[y''[x]-2*y'[x]+5*y[x]==Exp[x]*(1-2*Sin[x]^2)+10*x+1,y[x],x,IncludeSingularSolutions -1.5*[x]^2+1.$

$$y(x) \to 2x + \frac{1}{16}(1 + 16c_2)e^x \cos(2x) + \frac{1}{4}e^x(x + 4c_1)\sin(2x) + 1$$

17.29 problem 579

Internal problem ID [15348]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 579.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 4y = 4x + \sin(x) + \sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=4*x+sin(x)+sin(2*x),y(x), singsol=all)

$$y(x) = 1 + (c_1x + c_2)e^{2x} + x + \frac{4\cos(x)}{25} + \frac{3\sin(x)}{25} + \frac{\cos(2x)}{8}$$

Solution by Mathematica

 $\overline{\text{Time used: 0.324 (sec). Leaf size: 45}}$

DSolve[y''[x]-4*y'[x]+4*y[x]==4*x+Sin[x]+Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + \frac{3\sin(x)}{25} + \frac{4\cos(x)}{25} + \frac{1}{8}\cos(2x) + c_2e^{2x}x + c_1e^{2x} + 1$$

17.30 problem 580

Internal problem ID [15349]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Superposition principle. Exercises page 137

Problem number: 580.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = 1 + 2\cos(x) + \cos(2x) - \sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=1+2*cos(x)+cos(2*x)-sin(2*x),y(x), singsol=all)

$$y(x) = 1 + (c_1x + c_2)e^{-x} + \sin(x) + \frac{\cos(2x)}{25} + \frac{7\sin(2x)}{25}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 1.184 (sec). Leaf size: 42}}$

$$y(x) \to \sin(x) + \frac{7}{25}\sin(2x) + \frac{1}{25}\cos(2x) + c_1e^{-x} + c_2e^{-x}x + 1$$

17.31 problem 581

Internal problem ID [15350]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 581.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' + y = -1 + \sin(x) + x + x^2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 42

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$2) + \text{diff}(y(x),x) + y(x) + 1 \\ = \sin(x) + x + x^2, \\ y(x), \text{ singsol=all}) \\$

$$y(x) = e^{-\frac{x}{2}} \sin\left(\frac{x\sqrt{3}}{2}\right) c_2 + e^{-\frac{x}{2}} \cos\left(\frac{x\sqrt{3}}{2}\right) c_1 - 2 + x^2 - \cos(x) - x$$

✓ Solution by Mathematica

Time used: 2.943 (sec). Leaf size: 59

DSolve[y''[x]+y'[x]+y[x]+1==Sin[x]+x+x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 - x - \cos(x) + c_2 e^{-x/2} \cos\left(\frac{\sqrt{3}x}{2}\right) + c_1 e^{-x/2} \sin\left(\frac{\sqrt{3}x}{2}\right) - 2$$

17.32 problem 582

Internal problem ID [15351]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Superposition principle. Exercises page 137

Problem number: 582.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 9y = 18e^{-3x} + 8\sin(x) + 6\cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

$$y(x) = (c_1x + 9x^2 + c_2) e^{-3x} + \sin(x)$$

✓ Solution by Mathematica

Time used: 0.257 (sec). Leaf size: 31

$$y(x) \to e^{-3x} (9x^2 + e^{3x} \sin(x) + c_2 x + c_1)$$

17.33 problem 583

Internal problem ID [15352]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 583.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + 2y' = -1 + 3\sin(2x) + \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+1=3*sin(2*x)+cos(x),y(x), singsol=all)

$$y(x) = -\frac{e^{-2x}c_1}{2} + \frac{2\sin(x)}{5} - \frac{3\sin(2x)}{8} - \frac{\cos(x)}{5} - \frac{3\cos(2x)}{8} - \frac{x}{2} + c_2$$

✓ Solution by Mathematica

Time used: 0.316 (sec). Leaf size: 52

DSolve[y''[x]+2*y'[x]+1==3*Sin[2*x]+Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{x}{2} + \frac{2\sin(x)}{5} - \frac{3}{8}\sin(2x) - \frac{\cos(x)}{5} - \frac{3}{8}\cos(2x) - \frac{1}{2}c_1e^{-2x} + c_2$$

17.34 problem 584

Internal problem ID [15353]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 584.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 2y'' + y' = 2x + e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

dsolve(diff(y(x),x\$3)-2*diff(y(x),x\$2)+diff(y(x),x)=2*x+exp(x),y(x), singsol=all)

$$y(x) = \frac{(x^2 + (2c_1 - 2)x - 2c_1 + 2c_2 + 2)e^x}{2} + x^2 + 4x + c_3$$

✓ Solution by Mathematica

Time used: $0.\overline{268}$ (sec). Leaf size: 39

DSolve[y'''[x]-2*y''[x]+y'[x]==2*x+Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x^2 + e^x \left(\frac{x^2}{2} + (-1 + c_2)x + 1 + c_1 - c_2\right) + 4x + c_3$$

17.35 problem 585

Internal problem ID [15354]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 585.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 2\sin(x)\sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$2)+y(x)=2*sin(x)*sin(2*x),y(x), singsol=all)

$$y(x) = -\frac{\cos(x)\sin(x)^2}{2} + \frac{(2c_2 + x)\sin(x)}{2} + \cos(x)c_1$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 33

DSolve[y''[x]+y[x]==2*Sin[x]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{8}(\cos(3x) + (-1 + 8c_1)\cos(x) + 4(x + 2c_2)\sin(x))$$

17.36 problem 586

Internal problem ID [15355]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Superposition principle. Exercises page 137

Problem number: 586.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - y'' - 2y' = 4x + 3\sin(x) + \cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$3)-diff(y(x),x\$2)-2*diff(y(x),x)=4*x+3*sin(x)+cos(x),y(x), singsol=all)

$$y(x) = \frac{c_1 e^{2x}}{2} - c_2 e^{-x} - x^2 + \cos(x) + x + c_3$$

Solution by Mathematica

Time used: 0.338 (sec). Leaf size: 46

DSolve[y'''[x]-y''[x]-2*y'[x]==4*x+2*Sin[x]+Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x^2 + x - \frac{\sin(x)}{10} + \frac{7\cos(x)}{10} - c_1 e^{-x} + \frac{1}{2}c_2 e^{2x} + c_3$$

17.37 problem 587

Internal problem ID [15356]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 587.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 4y' = x e^{2x} + \sin(x) + x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

 $\label{lem:dsolve} \\ \text{dsolve}(\text{diff}(y(x),x\$3)-4*\text{diff}(y(x),x)=x*\exp(2*x)+\sin(x)+x^2,y(x), \text{ singsol=all}) \\$

$$y(x) = \frac{(8x^2 + 64c_1 - 12x + 7)e^{2x}}{128} - \frac{x^3}{12} - \frac{c_2e^{-2x}}{2} - \frac{x}{8} + c_3 + \frac{\cos(x)}{5}$$

✓ Solution by Mathematica

Time used: 0.617 (sec). Leaf size: 60

DSolve[y'''[x]-4*y'[x]==x*Exp[2*x]+Sin[x]+x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{x^3}{12} + \frac{1}{128}e^{2x}(8x^2 - 12x + 7 + 64c_1) - \frac{x}{8} + \frac{\cos(x)}{5} - \frac{1}{2}c_2e^{-2x} + c_3$$

17.38 problem 588

Internal problem ID [15357]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 588.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y^{(5)} - y'''' = x e^x - 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

dsolve(diff(y(x),x\$5)-diff(y(x),x\$4)=x*exp(x)-1,y(x), singsol=all)

$$y(x) = \frac{(x^2 + 2c_1 - 8x + 20)e^x}{2} + \frac{x^4}{24} + \frac{c_2x^3}{6} + \frac{c_3x^2}{2} + c_4x + c_5$$

Solution by Mathematica

Time used: 0.337 (sec). Leaf size: 49

DSolve[y''''[x]-y''''[x]==x*Exp[x]-1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o \frac{x^4}{24} + c_5 x^3 + c_4 x^2 + e^x \left(\frac{x^2}{2} - 4x + 10 + c_1\right) + c_3 x + c_2$$

17.39 problem 589

Internal problem ID [15358]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137

Problem number: 589.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y^{(5)} - y''' = x + 2e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve(diff(y(x),x\$5)-diff(y(x),x\$3)=x+2*exp(-x),y(x), singsol=all)

$$y(x) = \frac{(7+2x-2c_1)e^{-x}}{2} - \frac{x^4}{24} + \frac{c_3x^2}{2} + c_4x + c_2e^x + c_5$$

Solution by Mathematica

Time used: 0.394 (sec). Leaf size: 46

DSolve[y''''[x]-y'''[x]==x+2*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{x^4}{24} + c_5 x^2 + c_4 x + c_1 e^x + e^{-x} \left(x + \frac{7}{2} - c_2 \right) + c_3$$

18 Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Initial value problem.

Exercises page 140

18.1 problem 590	478
18.2 problem 591	479
18.3 problem 592	480
18.4 problem 593	481
18.5 problem 594	482
18.6 problem 595	483
18.7 problem 596	484
18.8 problem 597	485
18.9 problem 598	486
18.10 problem 599	487
18.11 problem 600	488
18.12 problem 601	489
18.13 problem 602	490
18.14problem 603	491
18.15problem 604	492
18.16 problem 605	493
18.17problem 606	494
18.18problem 607	495
18.19 problem 608	496
18.20 problem 609	497
18.21 problem 610	498
18.22 problem 611	499
18.23problem 612	500
18.24problem 613	501
18.25problem 614	502
18.26problem 615	503
18.27 problem 616	504
18.28problem 617	505

18.1 problem 590

Internal problem ID [15359]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 590.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y = 2 - 2x$$

With initial conditions

$$[y(0) = 2, y'(0) = -2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 9

dsolve([diff(y(x),x\$2)+y(x)=2*(1-x),y(0) = 2, D(y)(0) = -2],y(x), singsol=all)

$$y(x) = 2 - 2x$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 10

 $\overline{DSolve[\{y''[x]+y[x]==2*(1-x),\{y[0]==2,y'[0]==-2\}\},y[x],x,IncludeSingularSolutions} \rightarrow True]$

$$y(x) \rightarrow 2 - 2x$$

18.2 problem 591

Internal problem ID [15360]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 591.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 6y' + 9y = 9x^2 - 12x + 2$$

With initial conditions

$$[y(0) = 1, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([diff(y(x),x\$2)-6*diff(y(x),x)+9*y(x)=9*x^2-12*x+2,y(0) = 1, D(y)(0) = 3],y(x), sings

$$y(x) = e^{3x} + x^2$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 14

 $DSolve[\{y''[x]-6*y'[x]+9*y[x]==9*x^2-12*x+2,\{y[0]==1,y'[0]==3\}\},y[x],x,Include Singular Solution for the property of the pr$

$$y(x) \to x^2 + e^{3x}$$

18.3 problem 592

Internal problem ID [15361]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 592.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 9y = 36 e^{3x}$$

With initial conditions

$$[y(0) = 2, y'(0) = 6]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

dsolve([diff(y(x),x\$2)+9*y(x)=36*exp(3*x),y(0) = 2, D(y)(0) = 6],y(x), singsol=all)

$$y(x) = 2e^{3x}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 12

$$y(x) \to 2e^{3x}$$

18.4 problem 593

Internal problem ID [15362]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 593.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y' + 4y = 2e^{2x}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve([diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=2*exp(2*x),y(0) = 0, D(y)(0) = 0],y(x), singsolve([diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=2*exp(2*x),y(0) = 0, D(y)(0) = 0],y(x), singsolve([diff(y(x),x\$2)-4*diff(y(x),x])+4*y(x)=2*exp(2*x),y(0) = 0, D(y)(0) = 0],y(x), singsolve([diff(y(x),x)+4*y(x)=2*exp(x)+2*

$$y(x) = e^{2x}x^2$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 14

$$y(x) \to e^{2x}x^2$$

18.5 problem 594

Internal problem ID [15363]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 594.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 5y' + 6y = (12x - 7)e^{-x}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve([diff(y(x),x\$2)-5*diff(y(x),x)+6*y(x)=(12*x-7)*exp(-x),y(0) = 0, D(y)(0) = 0],y(x), s(x) = 0

$$y(x) = e^{2x} - e^{3x} + e^{-x}x$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: $25\,$

DSolve[$\{y''[x]-5*y'[x]+6*y[x]==(12*x-7)*Exp[-x],\{y[0]==0,y'[0]==0\}\},y[x],x,IncludeSingularSolve[,y''[x]-5*y'[x]+6*y[x]==(12*x-7)*Exp[-x],\{y[0]==0,y'[0]==0\}\},y[x],x,IncludeSingularSolve[,y''[x]-5*y'[x]+6*y[x]==(12*x-7)*Exp[-x],\{y[0]==0,y'[0]==0\}\},y[x],x,IncludeSingularSolve[,y''[x]-5*y'[x]+6*y[x]==(12*x-7)*Exp[-x],\{y[0]==0,y'[0]==0\}\},y[x],x,IncludeSingularSolve[,y''[x]-5*y'[x]+6*y[x]==(12*x-7)*Exp[-x],\{y[0]==0,y'[0]==0\}\},y[x],x,IncludeSingularSolve[,y''[x]-5*y'[x]+6*y[x]==(12*x-7)*Exp[-x],\{y[0]==0,y''[0]==0\}\},y[x],x,IncludeSingularSolve[,y''[x]-5*y'[x]+6*y[x]==(12*x-7)*Exp[-x],\{y[0]==0,y''[0]==0\}\},y[x],x,IncludeSingularSolve[,y''[x]-5*y[x]+6*y[x]==(12*x-7)*Exp[-x],[x]+6*y[x]==(12*x-7)*Exp[-x]+6*y[x]==(12*x-7)*E$

$$y(x) \to e^{-x} (x + e^{3x} - e^{4x})$$

18.6 problem 595

Internal problem ID [15364]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 595.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + y' = e^{-x}$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

dsolve([diff(y(x),x\$2)+diff(y(x),x)=exp(-x),y(0) = 1, D(y)(0) = -1],y(x), singsol=all)

$$y(x) = -\mathrm{e}^{-x}x + 1$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: $15\,$

DSolve[{y''[x]+y'[x]==Exp[-x],{y[0]==1,y'[0]==-1}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 1 - e^{-x}x$$

18.7 problem 596

Internal problem ID [15365]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 596.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 9y = 10\sin(x)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

$$y(x) = \frac{3e^{-3x}}{5} + xe^{-3x} - \frac{3\cos(x)}{5} + \frac{4\sin(x)}{5}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 33

$$y(x) \to \frac{1}{5} (5e^{-3x}x + 3e^{-3x} + 4\sin(x) - 3\cos(x))$$

18.8 problem 597

Internal problem ID [15366]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 597.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 2\cos(x)$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve([diff(y(x),x\$2)+y(x)=2*cos(x),y(0) = 1, D(y)(0) = 0],y(x), singsol=all)

$$y(x) = \cos(x) + \sin(x) x$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 12

 $DSolve[\{y''[x]+y[x]==2*Cos[x],\{y[0]==1,y'[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x\sin(x) + \cos(x)$$

18.9 problem 598

Internal problem ID [15367]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Initial value problem. Exercises page 140

Problem number: 598.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \sin(x)$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve([diff(y(x),x\$2)+4*y(x)=sin(x),y(0) = 1, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = \frac{\sin(2x)}{3} + \cos(2x) + \frac{\sin(x)}{3}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 22

 $DSolve[\{y''[x]+4*y[x]==Sin[x],\{y[0]==1,y'[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{3}(\sin(x) + \sin(2x) + 3\cos(2x))$$

18.10 problem 599

Internal problem ID [15368]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 599.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = 4\cos(x) x$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve([diff(y(x),x\$2)+y(x)=4*x*cos(x),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)

$$y(x) = x(\cos(x) + \sin(x) x)$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 14

$$y(x) \to x(x\sin(x) + \cos(x))$$

18.11 problem 600

Internal problem ID [15369]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 600.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 5y = 2e^x x^2$$

With initial conditions

$$[y(0) = 2, y'(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $dsolve([diff(y(x),x$2)-4*diff(y(x),x)+5*y(x)=2*x^2*exp(x),y(0) = 2, D(y)(0) = 3],y(x), sings(x),y(x)=2*x^2*exp(x),x(x)=2*x^2*exp(x),x(x)=2*x^2*exp(x),x(x)=2*x^2*exp(x),x(x)=2*x^2*exp(x),x(x)=2*x^2*exp(x),x(x)=2*x^2*exp(x),x(x)=2*x^2*exp(x),x(x)=2*x^2*exp(x),x(x)=2*x^2*exp(x)=2*x^2*$

$$y(x) = (\cos(x) - 2\sin(x))e^{2x} + (1+x)^{2}e^{x}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 28

$$y(x) \to e^x((x+1)^2 - 2e^x \sin(x) + e^x \cos(x))$$

18.12 problem 601

Internal problem ID [15370]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 601.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 6y' + 9y = 16e^{-x} + 9x - 6$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve([diff(y(x),x\$2)-6*diff(y(x),x)+9*y(x)=16*exp(-x)+9*x-6,y(0) = 1, D(y)(0) = 1],y(x), s(x)=0

$$y(x) = e^{3x}x + x + e^{-x}$$

✓ Solution by Mathematica

Time used: 0.28 (sec). Leaf size: $19\,$

$$y(x) \to e^{3x}x + x + e^{-x}$$

18.13 problem 602

Internal problem ID [15371]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 602.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - y' = -5e^{-x}(\sin(x) + \cos(x))$$

With initial conditions

$$[y(0) = -4, y'(0) = 5]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

$$dsolve([diff(y(x),x$2)-diff(y(x),x)=-5*exp(-x)*(sin(x)+cos(x)),y(0) = -4, D(y)(0) = 5],y(x),$$

$$y(x) = 2e^{x} - 4 + e^{-x}(-2\cos(x) + \sin(x))$$

Solution by Mathematica

Time used: 0.173 (sec). Leaf size: 28

$$DSolve[\{y''[x]-y'[x]=-5*Exp[-x]*(Sin[x]+Cos[x]),\{y[0]=-4,y'[0]=-5\}\},y[x],x,IncludeSingular]$$

$$y(x) \to e^{-x}(2e^x(e^x - 2) + \sin(x) - 2\cos(x))$$

18.14 problem 603

Internal problem ID [15372]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 603.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 2y = 4e^x \cos(x)$$

With initial conditions

$$[y(\pi) = \pi e^{\pi}, y'(\pi) = e^{\pi}]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+2*y(x)=4*exp(x)*cos(x),y(Pi) = Pi*exp(Pi), D(y)(Pi) = Pi*exp(Pi), D(y)(Pi), D(y), D(y)(Pi), D(y), D(

$$y(x) = e^{x}(2x - \pi - 1)\sin(x) - e^{x}\cos(x)\pi$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 24

DSolve[{y''[x]-2*y'[x]+2*y[x]==4*Exp[x]*Cos[x],{y[Pi]==Pi*Exp[Pi],y'[Pi]==Exp[Pi]}},y[x],x,I

$$y(x) \to -e^x((-2x + \pi + 1)\sin(x) + \pi\cos(x))$$

18.15 problem 604

Internal problem ID [15373]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 604.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - y' = -2x$$

With initial conditions

$$[y(0) = 0, y'(0) = 1, y''(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $dsolve([diff(y(x),x\$3)-diff(y(x),x)=-2*x,y(0)=0,\ D(y)(0)=1,\ (D@@2)(y)(0)=2],y(x),\ sing(x,y)=-2*x,y(0)=0,\ D(y)(0)=0,\ D(y$

$$y(x) = -\frac{e^{-x}}{2} + \frac{e^x}{2} + x^2$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 25

DSolve[{y'''[x]-y'[x]==-2*x,{y[0]==0,y'[0]==1,y''[0]==2}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to x^2 - \frac{e^{-x}}{2} + \frac{e^x}{2}$$

18.16 problem 605

Internal problem ID [15374]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Initial value problem. Exercises page 140

Problem number: 605.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$y'''' - y = 8 e^x$$

With initial conditions

$$[y(0) = -1, y'(0) = 0, y''(0) = 1, y'''(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 24

dsolve([diff(y(x),x\$4)-y(x)=8*exp(x),y(0) = -1, D(y)(0) = 0, (D@@2)(y)(0) = 1, (D@@3)(y)(0)

$$y(x) = e^{-x} + (2x - 3) e^{x} + \cos(x) + 2\sin(x)$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 28

DSolve $[\{y''''[x]-y[x]==8*Exp[x],\{y[0]==-1,y'[0]==0,y''[0]==1,y'''[0]==0\}\},y[x],x,IncludeSing[0]==0,y'''[0]==0,y''''[0]==0,y''''[0]==0,y''[0]==0,y'''[0]==0,y'''[0]==0,y'''[0]==0,y'''[0]==0,y'''[0]==0,y'''[0]==0,y''$

$$y(x) \to 2e^x x + e^{-x} - 3e^x + 2\sin(x) + \cos(x)$$

18.17 problem 606

Internal problem ID [15375]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 606.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _with_linear_symmetries]]

$$y''' - y = 2x$$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 2]$$

Solution by Maple

Time used: 0.032 (sec). Leaf size: 25

dsolve([diff(y(x),x\$3)-y(x)=2*x,y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 2],y(x), singsol=all)

$$y(x) = -2x + \frac{4e^x}{3} - \frac{4e^{-\frac{x}{2}}\cos\left(\frac{x\sqrt{3}}{2}\right)}{3}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 38

$$y(x) o rac{1}{3} \Biggl(-6x + 4e^x - 4e^{-x/2} \cos \left(rac{\sqrt{3}x}{2}
ight) \Biggr)$$

18.18 problem 607

Internal problem ID [15376]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 607.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _with_linear_symmetries]]

$$y'''' - y = 8 e^x$$

With initial conditions

$$[y(0) = 0, y'(0) = 2, y''(0) = 4, y'''(0) = 6]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

$$dsolve([diff(y(x),x$4)-y(x)=8*exp(x),y(0) = 0, D(y)(0) = 2, (D@@2)(y)(0) = 4, (D@@3)(y)(0) = 4,$$

$$y(x) = 2e^x x$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 11

$$y(x) \to 2e^x x$$

18.19 problem 608

Internal problem ID [15377]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Initial value problem. Exercises page 140

Problem number: 608.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 5y = \sin\left(x\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+5*y(x)=sin(x),y(x), singsol=all)

$$y(x) = e^{2x} \sin(x) c_2 + e^{2x} \cos(x) c_1 + \frac{\cos(x)}{8} + \frac{\sin(x)}{8}$$

Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 36

 $DSolve[y''[x]-4*y'[x]+5*y[x] == Sin[x], y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to \frac{1}{8} (\sin(x) + \cos(x) + 8c_2 e^{2x} \cos(x) + 8c_1 e^{2x} \sin(x))$$

18.20 problem 609

Internal problem ID [15378]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 609.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y = 4\cos(2x) + \sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=4*cos(2*x)+sin(2*x),y(x), singsol=all)

$$y(x) = e^{-x} \sin(2x) c_2 + e^{-x} \cos(2x) c_1 + \sin(2x)$$

✓ Solution by Mathematica

Time used: 0.338 (sec). Leaf size: 30

DSolve[y''[x]+2*y'[x]+5*y[x]==4*Cos[2*x]+Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x}(c_2\cos(2x) + (e^x + c_1)\sin(2x))$$

18.21 problem 610

Internal problem ID [15379]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 610.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x\$2)-y(x)=1,y(x), singsol=all)

$$y(x) = c_2 e^{-x} + c_1 e^x - 1$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 21

DSolve[y''[x]-y[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^x + c_2 e^{-x} - 1$$

18.22 problem 611

Internal problem ID [15380]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Initial value problem. Exercises page 140

Problem number: 611.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - y = -2\cos(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x\$2)-y(x)=-2*cos(x),y(x), singsol=all)

$$y(x) = c_2 e^{-x} + c_1 e^x + \cos(x)$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 22

DSolve[y''[x]-y[x]==-2*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \cos(x) + c_1 e^x + c_2 e^{-x}$$

18.23 problem 612

Internal problem ID [15381]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 612.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y' + y = 4e^{-x}$$

With initial conditions

$$[y(\infty) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 12

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=4*exp(-x),y(infinity)=0],y(x), singsol=all)

$$y(x) = -\operatorname{signum}(c_1 e^x) \infty$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 10

DSolve[{y''[x]-2*y'[x]+y[x]==4*Exp[-x],{y[Infinity]==0}},y[x],x,IncludeSingularSolutions ->

$$y(x) \to e^{-x}$$

18.24 problem 613

Internal problem ID [15382]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 613.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 3y = 8e^x + 9$$

With initial conditions

$$[y(-\infty) = 3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 14

dsolve([diff(y(x),x\$2)+4*diff(y(x),x)+3*y(x)=8*exp(x)+9,y(-infinity)=3],y(x), singsol=all)

$$y(x) = -\operatorname{signum}\left(c_1 e^{-x}\right) \infty$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

{}

18.25 problem 614

Internal problem ID [15383]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${f Section}$: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 614.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 5y = 1$$

With initial conditions

$$\left[y(\infty) = -\frac{1}{5}\right]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 19

dsolve([diff(y(x),x\$2)-diff(y(x),x)-5*y(x)=1,y(infinity) = -1/5],y(x), singsol=all)

$$y(x) = -\operatorname{signum}\left(c_2\mathrm{e}^{-rac{\left(-1+\sqrt{21}
ight)x}{2}}
ight)\infty$$

✓ Solution by Mathematica

Time used: 0.559 (sec). Leaf size: 26

DSolve[{y''[x]-y'[x]-5*y[x]==1,{y[Infinity]==-1/5}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{5} + c_1 e^{-\frac{1}{2}(\sqrt{21}-1)x}$$

18.26 problem 615

Internal problem ID [15384]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 615.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 4y = 2e^{x}(\sin(x) + 7\cos(x))$$

With initial conditions

$$[y(-\infty) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 13

dsolve([diff(y(x),x\$2)+4*diff(y(x),x)+4*y(x)=2*exp(x)*(sin(x)+7*cos(x)),y(-infinity) = 0],y(-infinity) = 0]

$$y(x) = \text{signum} \left(e^{-2x} c_1 \right) \infty$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

Not solved

18.27 problem 616

Internal problem ID [15385]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.3 Nonhomogeneous linear equations

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 616.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 5y' + 6y = 2e^{-2x}(9\sin(2x) + 4\cos(2x))$$

With initial conditions

$$[y(\infty) = 0]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 31

dsolve([diff(y(x),x\$2)-5*diff(y(x),x)+6*y(x)=2*exp(-2*x)*(9*sin(2*x)+4*cos(2*x)),y(infinity))

$$y(x) = c_2 e^{2x} + \frac{(113\cos(2x) + 36\sin(2x))e^{-2x}}{145}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

$$DSolve[\{y''[x]-5*y'[x]+6*y[x]==2*Exp[-2*x]*(9*Sin[2*x]+4*Cos[2*x]),\{y[Infinity]==0\}\},y[x],x,y[x]=0,$$

Not solved

18.28 problem 617

Internal problem ID [15386]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.3\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. Initial value problem. Exercises page 140

Problem number: 617.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 4y = e^{-x}(9x^2 + 5x - 12)$$

With initial conditions

$$[y(\infty) = 0]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 14

dsolve([diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=exp(-x)*(9*x^2+5*x-12),y(infinity) = 0],y(x), s

$$y(x) = -\operatorname{signum}(c_1 e^{2x}) \infty$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y''[x]-4*y'[x]+4*y[x]==Exp[-x]*(9*x^2+5*x-12),\{y[Infinity]==0\}\},y[x],x,IncludeSingularity]$

{}

19 Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations.

Exercises page 143

19.1 problem	618																	507
19.2 problem	619								 									508
19.3 problem	620								 									509
19.4 problem	621								 									510
19.5 problem	622								 									511
19.6 problem	623								 									512
19.7 problem	624								 									513
19.8 problem	625								 									514
19.9 problem	626								 									515
19.10 problem	627							•	 									516
19.11 problem	628							•	 									517
19.12 problem	629								 									518
19.13 problem	630								 									519
19.14 problem	631								 									520
19.15 problem	632								 									521
19.16 problem	633								 									522
19.17 problem	634								 									523
10 18 problem	625																	524

19.1 problem 618

Internal problem ID [15387]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 618.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' + xy' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_2 x^2 + c_1}{x}$$

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 16

 $DSolve[x^2*y''[x]+x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1}{x} + c_2 x$$

19.2 problem 619

Internal problem ID [15388]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 619.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x^2y'' + 3xy' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_2 \ln(x) + c_1}{x}$$

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 17

 $DSolve[x^2*y''[x]+3*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_2 \log(x) + c_1}{x}$$

19.3 problem 620

Internal problem ID [15389]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 620.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x^2y'' + 2xy' + 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(x^2*diff(y(x),x$2)+2*x*diff(y(x),x)+6*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1 \sin\left(\frac{\sqrt{23} \ln(x)}{2}\right) + c_2 \cos\left(\frac{\sqrt{23} \ln(x)}{2}\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 42

DSolve $[x^2*y''[x]+2*x*y'[x]+6*y[x]==0,y[x],x$, IncludeSingularSolutions -> True

$$y(x) o rac{c_2 \cos\left(\frac{1}{2}\sqrt{23}\log(x)\right) + c_1 \sin\left(\frac{1}{2}\sqrt{23}\log(x)\right)}{\sqrt{x}}$$

19.4 problem 621

Internal problem ID [15390]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 621.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' + y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(x*diff(y(x),x\$2)+diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_2 \ln(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 13

DSolve[x*y''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \log(x) + c_2$$

19.5 problem 622

Internal problem ID [15391]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.4\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. The Euler equations. Exercises page 143

Problem number: 622.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(2+x)^2y'' + 3(2+x)y' - 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve((x+2)^2*diff(y(x),x$2)+3*(x+2)*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1 + c_2(x+2)^4}{(x+2)^3}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 20

 $DSolve[(x+2)^2*y''[x]+3*(x+2)*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1(x+2) + \frac{c_2}{(x+2)^3}$$

19.6 problem 623

Internal problem ID [15392]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.4\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. The Euler equations. Exercises page 143

Problem number: 623.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(1+2x)^2y'' - 2(1+2x)y' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve((2*x+1)^2*diff(y(x),x$2)-2*(2*x+1)*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{(2x+1)(-c_2 \ln(2) + c_2 \ln(2x+1) + c_1)}{2}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 23

DSolve[(2*x+1)^2*y''[x]-2*(2*x+1)*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (2x+1)(c_2 \log(2x+1) + c_1)$$

19.7 problem 624

Internal problem ID [15393]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 624.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^2y''' - 3xy'' + 3y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve(x^2*diff(y(x),x$3)-3*x*diff(y(x),x$2)+3*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_3 x^4 + c_2 x^2 + c_1$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 26

 $DSolve[x^2*y'''[x]-3*x*y''[x]+3*y'[x]==0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \rightarrow \frac{c_2 x^4}{4} + \frac{c_1 x^2}{2} + c_3$$

19.8 problem 625

Internal problem ID [15394]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 625.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^2y''' - 2y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^2*diff(y(x),x$3)=2*diff(y(x),x),y(x), singsol=all)$

$$y(x) = c_1 + c_2 \ln(x) + c_3 x^3$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 22

DSolve[x^2*y'''[x]==2*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_2 x^3}{3} + c_1 \log(x) + c_3$$

19.9 problem 626

Internal problem ID [15395]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 626.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$(x+1)^2 y''' - 12y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve((x+1)^2*diff(y(x),x$3)-12*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_1 + \frac{c_2}{(1+x)^2} + c_3(1+x)^5$$

Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 30

DSolve $[(x+1)^2*y'''[x]-12*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{1}{5}c_1(x+1)^5 - \frac{c_2}{2(x+1)^2} + c_3$$

19.10 problem 627

Internal problem ID [15396]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.4\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. The Euler equations. Exercises page 143

Problem number: 627.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$(1+2x)^2y''' + 2(1+2x)y'' + y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 50

 $dsolve((2*x+1)^2*diff(y(x),x$3)+2*(2*x+1)*diff(y(x),x$2)+diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_1 + \frac{c_2(2x+1)\sin\left(-\frac{\ln(2)}{2} + \frac{\ln(2x+1)}{2}\right)}{2} + \frac{c_3(2x+1)\cos\left(-\frac{\ln(2)}{2} + \frac{\ln(2x+1)}{2}\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.153 (sec). Leaf size: 58

$$y(x) \to \frac{1}{5}(2x+1)\left((2c_1-c_2)\cos\left(\frac{1}{2}\log(2x+1)\right) + (c_1+2c_2)\sin\left(\frac{1}{2}\log(2x+1)\right)\right) + c_3$$

19.11 problem 628

Internal problem ID [15397]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 628.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + xy' + y = x(6 - \ln(x))$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $\label{localization} \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x$\$2$}) + \mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{y}(\mbox{x}) + \mbox{y}(\mbox{x}) = \mbox{x}*(6-\mbox{ln}(\mbox{x})),\mbox{y}(\mbox{x}),\mbox{singsol=all}) \\ \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x$\$2$}) + \mbox{x*diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{y}(\mbox{x}) + \mb$

$$y(x) = \sin(\ln(x)) c_2 + \cos(\ln(x)) c_1 - \frac{x(\ln(x) - 7)}{2}$$

Solution by Mathematica

Time used: 0.138 (sec). Leaf size: 27

DSolve[x^2*y''[x]+x*y'[x]+y[x]==x*(6-Log[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{2}x(\log(x) - 7) + c_1\cos(\log(x)) + c_2\sin(\log(x))$$

19.12 problem 629

Internal problem ID [15398]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 629.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^2y'' - 2y = \sin\left(\ln\left(x\right)\right)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

 $\label{local_decomposition} \\ \mbox{dsolve}(\mbox{x^2*diff}(\mbox{y}(\mbox{x}),\mbox{x$\$2$})-2*\mbox{y}(\mbox{x})=\\ \mbox{sin}(\mbox{ln}(\mbox{x})),\mbox{y}(\mbox{x}),\mbox{singsol=all}) \\$

$$y(x) = \frac{c_1}{x} + c_2 x^2 + \frac{\cos(\ln(x))}{10} - \frac{3\sin(\ln(x))}{10}$$

Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 31

$$y(x) \to c_2 x^2 + \frac{c_1}{x} + \frac{1}{10}(\cos(\log(x)) - 3\sin(\log(x)))$$

19.13 problem 630

Internal problem ID [15399]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 630.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^{2}y'' - xy' - 3y = -\frac{16\ln(x)}{x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)-3*y(x)=-16*ln(x)/x,y(x), singsol=all)$

$$y(x) = \frac{4c_2x^4 + 8\ln(x)^2 + 4\ln(x) + 4c_1 + 1}{4x}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 35

$$y(x) \to \frac{4c_2x^4 + 8\log^2(x) + 4\log(x) + 1 + 4c_1}{4x}$$

19.14 problem 631

Internal problem ID [15400]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 631.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' - 2xy' - 2y = x^2 - 2x + 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

 $dsolve(x^2*diff(y(x),x$2)-2*x*diff(y(x),x)-2*y(x)=x^2-2*x+2,y(x), singsol=all)$

$$y(x) = x^{\frac{3}{2} + \frac{\sqrt{17}}{2}} c_2 + x^{\frac{3}{2} - \frac{\sqrt{17}}{2}} c_1 - \frac{x^2}{4} + \frac{x}{2} - 1$$

✓ Solution by Mathematica

Time used: 0.398 (sec). Leaf size: 53

 $DSolve[x^2*y''[x]-2*x*y'[x]-2*y[x]==x^2-2*x+2,y[x],x,IncludeSingularSolutions \ \ -> True]$

$$y(x) \to c_2 x^{\frac{1}{2}(3+\sqrt{17})} + c_1 x^{\frac{3}{2} - \frac{\sqrt{17}}{2}} - \frac{x^2}{4} + \frac{x}{2} - 1$$

19.15 problem 632

Internal problem ID [15401]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 632.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^2y'' + xy' - y = x^m$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=x^m,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x} + c_2 x + \frac{x^m}{(m-1)(m+1)}$$

Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 27

DSolve[x^2*y''[x]+x*y'[x]-y[x]==x^m,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{x^m}{m^2 - 1} + c_2 x + \frac{c_1}{x}$$

19.16 problem 633

Internal problem ID [15402]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 633.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^{2}y'' + 4xy' + 2y = 2\ln(x)^{2} + 12x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(x^2*diff(y(x),x\$2)+4*x*diff(y(x),x)+2*y(x)=2*(ln(x))^2+12*x,y(x), singsol=all)$

$$y(x) = \frac{c_2}{x^2} + 2x + \frac{7}{2} + \frac{c_1}{x} - 3\ln(x) + \ln(x)^2$$

Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 32

$$y(x) \to \frac{c_1}{x^2} + 2x + \log^2(x) - 3\log(x) + \frac{c_2}{x} + \frac{7}{2}$$

19.17 problem 634

Internal problem ID [15403]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 15.4\ {\bf Nonhomogeneous}\ {\bf linear}\ {\bf equations}$

with constant coefficients. The Euler equations. Exercises page 143

Problem number: 634.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$(x+1)^3 y'' + 3(x+1)^2 y' + (x+1) y = 6 \ln(x+1)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve((x+1)^3*diff(y(x),x$2)+3*(x+1)^2*diff(y(x),x)+(x+1)*y(x)=6*ln(x+1),y(x), singsol=all)$

$$y(x) = \frac{c_1 \ln(1+x) + \ln(1+x)^3 + c_2}{1+x}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 27

$$y(x) \to \frac{\log^3(x+1) + c_2 \log(x+1) + c_1}{x+1}$$

19.18 problem 635

Internal problem ID [15404]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143

Problem number: 635.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x-2)^2y'' - 3(x-2)y' + 4y = x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

 $dsolve((x-2)^2*diff(y(x),x$2)-3*(x-2)*diff(y(x),x)+4*y(x)=x,y(x), singsol=all)$

$$y(x) = (x-2)^2 c_2 + (x-2)^2 \ln(x-2) c_1 + x - \frac{3}{2}$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 31

 $DSolve[(x-2)^2*y''[x]-3*(x-2)*y'[x]+4*y[x]==x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x + c_1(x-2)^2 + 2c_2(x-2)^2 \log(x-2) - \frac{3}{2}$$

20 Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coefficients. The Lagrange method. Exercises page 148

20.1 problem	636								 		 •						527
20.2 problem	637								 								528
20.3 problem	638								 								529
20.4 problem	639								 								530
20.5 problem	640								 								531
20.6 problem	641								 								532
20.7 problem	642								 								533
20.8 problem	643								 		 •						534
20.9 problem	644								 		 •				•		535
$20.10 {\rm problem}$	645								 								536
$20.11 \mathrm{problem}$	646								 		 •				•		537
$20.12 \mathrm{problem}$	647								 								538
$20.13 \\ problem$	648								 								539
$20.14 \mathrm{problem}$	653								 								540
$20.15 \mathrm{problem}$	654								 		 •				•		541
$20.16 {\rm problem}$	655								 								542
$20.17 \mathrm{problem}$	656								 		 •				•		543
$20.18 \\ problem$	657								 								544
$20.19 \\ problem$	658								 								545
$20.20 \\ problem$	659								 								546
$20.21 \mathrm{problem}$	660								 								547
$20.22 \\ problem$	661								 								548
$20.23 \\ problem$	662								 								549
$20.24 \\ problem$	663								 								550
$20.25 {\rm problem}$	664								 								551
$20.26 {\rm problem}$	665								 		 •				•		552
$20.27 \mathrm{problem}$	666								 								553
$20.28 \\ problem$	667								 								554
20.29 problem	668								 								555
$20.30 \\ problem$	669																556
$20.31 \mathrm{problem}$	670								 								557
20.32 problem	671								 								558
20.33 problem	672								 								559
20.34problem	673																560

20.1 problem 636

Internal problem ID [15405]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 636.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(1+2x)y'' + (4x-2)y' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve((2*x+1)*diff(y(x),x\$2)+(4*x-2)*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)

$$y(x) = 4c_1x^2 + c_2e^{-2x} + c_1$$

✓ Solution by Mathematica

Time used: 0.192 (sec). Leaf size: 27

 $DSolve[(2*x+1)*y''[x]+(4*x-2)*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions \ \ -> True]$

$$y(x) \to \frac{1}{2}c_2(4x^2+1) + c_1e^{-2x}$$

20.2 problem 637

Internal problem ID [15406]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 637.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Jacobi]

$$(x^{2} - x)y'' + (2x - 3)y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((x^2-x)*diff(y(x),x$2)+(2*x-3)*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_1}{x^2} + c_2 \left(x - \frac{3}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 23

 $DSolve[(x^2-x)*y''[x]+(2*x-3)*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to \frac{c_1}{x^2} + \frac{1}{6}c_2(3 - 2x)$$

20.3 problem 638

Internal problem ID [15407]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 638.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(2x^2 + 3x)y'' - 6y'(x+1) + 6y = 6$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((3*x+2*x^2)*diff(y(x),x$2)-6*(1+x)*diff(y(x),x)+6*y(x)=6,y(x), singsol=all)$

$$y(x) = c_2 x^3 + c_1 x + c_1 + 1$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 20

$$y(x) \to c_1 x^3 - c_2(x+1) + 1$$

20.4 problem 639

Internal problem ID [15408]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 639.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\int x^{2}(\ln(x) - 1)y'' - xy' + y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 12

 $dsolve([x^2*(ln(x)-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,x],singsol=all)$

$$y(x) = c_1 x + c_2 \ln (x)$$

Solution by Mathematica

Time used: 0.104 (sec). Leaf size: 16

DSolve[x^2*(Log[x]-1)*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x - c_2 \log(x)$$

20.5 problem 640

Internal problem ID [15409]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 640.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + (\tan(x) - 2\cot(x))y' + 2\cot(x)^2y = 0$$

Given that one solution of the ode is

$$y_1 = \sin(x)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 13

 $dsolve([diff(y(x),x$2)+(tan(x)-2*cot(x))*diff(y(x),x)+2*cot(x)^2*y(x)=0,sin(x)],singsol=all)$

$$y(x) = \sin(x) \left(\sin(x) c_2 + c_1\right)$$

✓ Solution by Mathematica

Time used: 2.22 (sec). Leaf size: 27

$$y(x) \to c_1 \sqrt{-\sin^2(x)} - c_2 \sin^2(x)$$

20.6 problem 641

Internal problem ID [15410]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 641.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' \tan(x) + \cos(x)^2 y = 0$$

Given that one solution of the ode is

$$y_1 = \cos\left(\sin\left(x\right)\right)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 15

 $dsolve([diff(y(x),x\$2)+tan(x)*diff(y(x),x)+cos(x)^2*y(x)=0,cos(sin(x))],singsol=all)$

$$y(x) = c_1 \sin(\sin(x)) + c_2 \cos(\sin(x))$$

Solution by Mathematica

Time used: 0.066 (sec). Leaf size: 18

DSolve[y''[x]+Tan[x]*y'[x]+Cos[x]^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_2 \sin(\sin(x)) + c_1 \cos(\sin(x))$$

20.7 problem 642

Internal problem ID [15411]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coefficients. The Lagrange method. Exercises page 148

Problem number: 642.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$(x^2+1)y'' + xy' - y = 1$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $\label{eq:decomposition} \\ \mbox{dsolve}([(1+x^2)*\mbox{diff}(y(x),x\$2)+x*\mbox{diff}(y(x),x)-y(x)=1,x],\\ \\ \mbox{singsol=all})$

$$y(x) = \sqrt{x^2 + 1} c_2 + c_1 x - 1$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 80

DSolve $[(1+x^2)*y''[x]+x*y'[x]-y[x]==1,y[x],x$, Include Singular Solutions -> True

$$y(x) \to \frac{-\sqrt{x^2+1} + (c_1 - ic_2)x^2 + x(c_1(-\sqrt{x^2+1}) + ic_2\sqrt{x^2+1} + 1) + c_1}{\sqrt{x^2+1} - x}$$

20.8 problem 643

Internal problem ID [15412]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 643.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$x^2y'' - xy' - 3y = 5x^4$$

Given that one solution of the ode is

$$y_1=rac{1}{x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve([x^2*diff(y(x),x$2)-x*diff(y(x),x)-3*y(x)=5*x^4,1/x],singsol=all)$

$$y(x) = \frac{c_2 x^4 + x^5 + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 21

 $\textbf{DSolve}[x^2*y''[x]-x*y'[x]-3*y[x] == 5*x^4, y[x], x, Include Singular Solutions -> True]$

$$y(x) \to \frac{x^5 + c_2 x^4 + c_1}{x}$$

20.9 problem 644

Internal problem ID [15413]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 644.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x-1)y'' - xy' + y = (x-1)^{2} e^{x}$$

Given that one solution of the ode is

$$y_1 = e^x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

 $dsolve([(x-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=(x-1)^2*exp(x),exp(x)],singsol=all)$

$$y(x) = \frac{(x^2 + 2c_1 - 2x)e^x}{2} + c_2 x$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 28

 $DSolve[(x-1)*y''[x]-x*y'[x]+y[x]==(x-1)^2*Exp[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x)
ightarrow e^x igg(rac{x^2}{2} - x + c_1igg) - c_2 x$$

20.10 problem 645

Internal problem ID [15414]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 645.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' + e^{-2x}y = e^{-3x}$$

Given that one solution of the ode is

$$y_1 = \cos\left(\mathrm{e}^{-x}\right)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve([diff(y(x),x\$2)+diff(y(x),x)+exp(-2*x)*y(x)=exp(-3*x),cos(exp(-x))],singsol=all)

$$y(x) = \sin(e^{-x}) c_2 + \cos(e^{-x}) c_1 + \sin(e^{-x}) + e^{-x}$$

✓ Solution by Mathematica

Time used: 0.131 (sec). Leaf size: 30

$$y(x) \rightarrow e^{-x} + c_1 \cos\left(e^{-x}\right) - c_2 \sin\left(e^{-x}\right)$$

20.11 problem 646

Internal problem ID [15415]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 646.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$(x^{4} - x^{3}) y'' + (2x^{3} - 2x^{2} - x) y' - y = \frac{(x-1)^{2}}{x}$$

Given that one solution of the ode is

$$y_1 = \frac{1}{x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve([(x^4-x^3)*diff(y(x),x$2)+(2*x^3-2*x^2-x)*diff(y(x),x)-y(x)=(x-1)^2/x,1/x],singsol=al(x,x)+al(x,y)+al$

$$y(x) = \frac{e^{\frac{1}{x}}c_1x - \ln(x) + c_2 + x}{x}$$

Solution by Mathematica

Time used: 0.102 (sec). Leaf size: 27

DSolve $[(x^4-x^3)*y''[x]+(2*x^3-2*x^2-x)*y'[x]-y[x]==(x-1)^2/x,y[x],x,IncludeSingularSolution]$

$$y(x) o rac{x - \log(x) + c_2\left(-e^{\frac{1}{x}}\right)x + c_1}{x}$$

20.12 problem 647

Internal problem ID [15416]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 647.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' + e^{2x}y = x e^{2x} - 1$$

Given that one solution of the ode is

$$y_1 = \sin\left(e^x\right)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve([diff(y(x),x\$2)-diff(y(x),x)+exp(2*x)*y(x)=x*exp(2*x)-1,sin(exp(x))],singsol=all)

$$y(x) = \sin(e^x) c_2 + \cos(e^x) c_1 + x$$

✓ Solution by Mathematica

Time used: 0.341 (sec). Leaf size: 21

DSolve[y''[x]-y'[x]+Exp[2*x]*y[x]==x*Exp[2*x]-1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + c_1 \cos(e^x) + c_2 \sin(e^x)$$

20.13 problem 648

Internal problem ID [15417]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 648.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x(x-1)y'' - (2x-1)y' + 2y = (2x-3)x^{2}$$

Given that one solution of the ode is

$$y_1 = x^2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

 $dsolve([x*(x-1)*diff(y(x),x$2)-(2*x-1)*diff(y(x),x)+2*y(x)=x^2*(2*x-3),x^2],singsol=all)$

$$y(x) = c_2 x^2 + x^3 - 2c_1 x + c_1$$

Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 40

$$y(x) \to x^3 + \left(-\frac{1}{2} + c_1\right)x^2 + \left(1 - 2c_1 + c_2\right)x - \frac{1}{2} + c_1 - \frac{c_2}{2}$$

20.14 problem 653

Internal problem ID [15418]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 653.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \frac{1}{\sin(x)}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+y(x)=1/sin(x),y(x), singsol=all)

$$y(x) = \ln(\sin(x))\sin(x) + (c_1 - x)\cos(x) + \sin(x)c_2$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 24

DSolve[y''[x]+y[x]==1/Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (-x + c_1)\cos(x) + \sin(x)(\log(\sin(x)) + c_2)$$

20.15 problem 654

Internal problem ID [15419]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 654.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + y' = \frac{1}{1 + e^x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

dsolve(diff(y(x),x\$2)+diff(y(x),x)=1/(1+exp(x)),y(x), singsol=all)

$$y(x) = (-e^{-x} - 1) \ln (1 + e^x) - c_1 e^{-x} + c_2 + \ln (e^x)$$

Solution by Mathematica

Time used: 0.098 (sec). Leaf size: 33

DSolve[y''[x]+y'[x]==1/(1+Exp[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x - \log(e^x + 1) - e^{-x}(\log(e^x + 1) + c_1) + c_2$$

20.16 problem 655

Internal problem ID [15420]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 655.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \frac{1}{\cos(x)^3}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x$2)+y(x)=1/cos(x)^3,y(x), singsol=all)$

$$y(x) = (-1 + c_1)\cos(x) + \sin(x)c_2 + \frac{\sec(x)}{2}$$

✓ Solution by Mathematica

Time used: 0.066 (sec). Leaf size: 25

 $DSolve[y''[x]+y[x]==1/Cos[x]^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sec(x)}{2} + c_1 \cos(x) + \sin(x)(\tan(x) + c_2)$$

20.17 problem 656

Internal problem ID [15421]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 656.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \frac{1}{\sqrt{\sin(x)^5 \cos(x)}}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 48

 $dsolve(diff(y(x),x\$2)+y(x)=1/sqrt(sin(x)^5*cos(x)),y(x), singsol=all)$

$$y(x) = \sin(x) c_2 + \cos(x) c_1 + \left(\int \frac{\cos(x)}{\sqrt{\sin(x)^5 \cos(x)}} dx \right) \sin(x)$$
$$- \left(\int \frac{\sin(x)}{\sqrt{\sin(x)^5 \cos(x)}} dx \right) \cos(x)$$

✓ Solution by Mathematica

Time used: 0.162 (sec). Leaf size: 35

DSolve[y''[x]+y[x]==1/Sqrt[Sin[x]^5*Cos[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cos(x) + c_2 \sin(x) + \frac{4}{3} \csc^8(x) \left(\sin^5(x)\cos(x)\right)^{3/2}$$

20.18 problem 657

Internal problem ID [15422]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 657.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + y = \frac{e^x}{x^2 + 1}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

 $dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=exp(x)/(x^2+1),y(x), singsol=all)$

$$y(x) = e^{x} \left(c_{2} + c_{1}x - \frac{\ln(x^{2} + 1)}{2} + x \arctan(x) \right)$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 35

 $DSolve[y''[x]-2*y'[x]+y[x]==Exp[x]/(1+x^2),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}e^x (2x \arctan(x) - \log(x^2 + 1) + 2(c_2x + c_1))$$

20.19 problem 658

Internal problem ID [15423]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 658.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = \frac{e^{-x}}{\sin(x)}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+2*y(x)=1/(exp(x)*sin(x)),y(x), singsol=all)

$$y(x) = -(-\ln(\sin(x))\sin(x) + (x - c_1)\cos(x) - \sin(x)c_2)e^{-x}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 30

DSolve[y''[x]+2*y'[x]+2*y[x]==1/(Exp[x]*Sin[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x}((-x+c_2)\cos(x)+\sin(x)(\log(\sin(x))+c_1))$$

20.20 problem 659

Internal problem ID [15424]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 659.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y = \frac{2}{\sin\left(x\right)^3}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(diff(y(x),x$2)+y(x)=2/sin(x)^3,y(x), singsol=all)$

$$y(x) = (c_1 + 2 \cot(x)) \cos(x) + \sin(x) c_2 - \csc(x)$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 25

DSolve[y''[x]+y[x]==2/Sin[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\csc(x) + c_2\sin(x) + \cos(x)(2\cot(x) + c_1)$$

20.21 problem 660

Internal problem ID [15425]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 660.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + y' = e^{2x} \cos(e^x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $\label{eq:decomposition} \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) + \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x}) = \\ \mbox{exp}(2*\mbox{x})*\cos(\mbox{exp}(\mbox{x})),\mbox{y}(\mbox{x}),\mbox{singsol=all}) \\$

$$y(x) = (-c_1 + 2\sin(e^x))e^{-x} + c_2 - \cos(e^x) - 1$$

✓ Solution by Mathematica

Time used: 0.258 (sec). Leaf size: 32

DSolve[y''[x]+y'[x]==Exp[2*x]*Cos[Exp[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_2 - e^{-x}(-2\sin(e^x) + e^x\cos(e^x) + c_1)$$

20.22 problem 661

Internal problem ID [15426]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 661.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' + y'' = \frac{x-1}{x^3}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

 $dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)=(x-1)/x^3,y(x), singsol=all)$

$$y(x) = -\frac{\left(\int \int \frac{e^{-x} \exp \operatorname{Integral}_{1}(-x)x^{2} - 2e^{-x}c_{1}x^{2} + x - 1}{x^{2}} dx dx\right)}{2} + c_{2}x + c_{3}$$

✓ Solution by Mathematica

Time used: 0.238 (sec). Leaf size: $35\,$

DSolve[$y'''[x]+y''[x]==(x-1)/x^3,y[x],x$,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{e^{-x} \operatorname{ExpIntegralEi}(x)}{2} - \log(x) + c_1 e^{-x} + c_3 x + c_2$$

20.23 problem 662

Internal problem ID [15427]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 662.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' - (2x^2 + 1)y' = 4x^3e^{x^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(x*diff(y(x),x$2)-(1+2*x^2)*diff(y(x),x)=4*x^3*exp(x^2),y(x), singsol=all)$

$$y(x) = \frac{(2x^2 + c_1 - 2)e^{x^2}}{2} + c_2$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 25

DSolve[x*y''[x]-(1+2*x^2)*y'[x]==4*x^3*Exp[x^2],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{x^2} \left(x^2 - 1 + \frac{c_1}{2} \right) + c_2$$

20.24 problem 663

Internal problem ID [15428]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 663.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - 2y' \tan(x) = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$2)-2*tan(x)*diff(y(x),x)=1,y(x), singsol=all)

$$y(x) = -\frac{\ln(1 + \cos(2x))}{4} + \frac{\ln(\cos(x))}{2} + \frac{(4c_1 + 2x)\tan(x)}{4} + c_2$$

Solution by Mathematica

 $\overline{\text{Time used: 0.047 (sec). Leaf size: 19}}$

DSolve[y''[x]-2*Tan[x]*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \left(\frac{x}{2} + c_1\right) \tan(x) + c_2$$

20.25 problem 664

Internal problem ID [15429]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 664.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x \ln(x) y'' - y' = \ln(x)^2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

 $\label{local_decomposition} \\ \mbox{dsolve}(x*ln(x)*diff(y(x),x$2)-diff(y(x),x)=ln(x)^2,y(x), \ \mbox{singsol=all}) \\$

$$y(x) = \ln(x)^{2} x + x(c_{1} - 2) \ln(x) + (-c_{1} + 2) x + c_{2}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 29

DSolve[x*Log[x]*y''[x]-y'[x]==Log[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x \log^2(x) - (-2 + c_1)x + (-2 + c_1)x \log(x) + c_2$$

20.26 problem 665

Internal problem ID [15430]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 665.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' + (2x - 1)y' = -4x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $\label{eq:dsolve} \\ \text{dsolve}(x*\text{diff}(y(x),x$2)+(2*x-1)*\text{diff}(y(x),x)=-4*x^2,y(x), \text{ singsol=all}) \\$

$$y(x) = \frac{(-2x-1)c_1e^{-2x}}{4} - x^2 + c_2$$

Solution by Mathematica

Time used: 0.126 (sec). Leaf size: 35

 $DSolve[x*y''[x]+(2*x-1)*y'[x]==-4*x^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_2 - \frac{1}{4}e^{-2x} (4e^{2x}x^2 + 2c_1x + c_1)$$

20.27 problem 666

Internal problem ID [15431]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 666.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + y' \tan(x) = \cot(x) \cos(x)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve(diff(y(x),x\$2)+tan(x)*diff(y(x),x)=cos(x)*cot(x),y(x), singsol=all)

$$y(x) = c_2 + \sin(x)(-1 + \ln(\sin(x)) + c_1)$$

✓ Solution by Mathematica

Time used: 0.14 (sec). Leaf size: 39

DSolve[y''[x]+Tan[x]*y'[x]==Cos[x]*Cot[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2} \sqrt{\sin^2(x)} \log (\sin^2(x)) - (1 + c_2) \sqrt{\sin^2(x)} + c_1$$

20.28 problem 667

Internal problem ID [15432]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 667.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$4xy'' + 2y' + y = 1$$

With initial conditions

$$[y(\infty) = 1]$$

X Solution by Maple

dsolve([4*x*diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=1,y(infinity) = 1],y(x), singsol=all)

No solution found

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 25

DSolve[{4*x*y''[x]+2*y'[x]+y[x]==1,{y[Infinity]==1}},y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow c_1 \cos\left(\sqrt{x}\right) + c_2 \sin\left(\sqrt{x}\right) + 1$$

20.29 problem 668

Internal problem ID [15433]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 668.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$4xy'' + 2y' + y = \frac{6+x}{x^2}$$

With initial conditions

$$[y(\infty) = 0]$$

✓ Solution by Maple

Time used: 0.75 (sec). Leaf size: 41

 $dsolve([4*x*diff(y(x),x$2)+2*diff(y(x),x)+y(x)=(6+x)/x^2,y(infinity)=0],y(x), singsol=all)$

$$y(x) = undefined$$

✓ Solution by Mathematica

Time used: 0.192 (sec). Leaf size: 27

$$y(x) \to \frac{1}{x} + c_1 \cos\left(\sqrt{x}\right) + c_2 \sin\left(\sqrt{x}\right)$$

20.30 problem 669

Internal problem ID [15434]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 669.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$(x^{2}+1)y'' + 2xy' = \frac{1}{x^{2}+1}$$

With initial conditions

$$\left[y(\infty) = \frac{\pi^2}{8}, y'(0) = 0\right]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 10

$$y(x) = \frac{\arctan(x)^2}{2}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 13

 $DSolve[{(1+x^2)*y''[x]+2*x*y'[x]==1/(1+x^2), {y[Infinity]==Pi^2/8, y'[0]==0}}, y[x], x, IncludeSi(x) = 0$

$$y(x) \to \frac{\arctan(x)^2}{2}$$

20.31 problem 670

Internal problem ID [15435]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 670.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(1-x)y'' + xy' - y = (x-1)^2 e^x$$

With initial conditions

$$[y(-\infty) = 0, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 16

 $dsolve([(1-x)*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=(x-1)^2*exp(x),y(-infinity) = 0, D(y)(0) = 0$

$$y(x) = -\frac{x(x-2)e^x}{2}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.083 (sec). Leaf size: 16}}$

DSolve[{(1-x)*y''[x]+x*y'[x]-y[x]==(x-1)^2*Exp[x],{y[-Infinity]==0,y'[0]==1}},y[x],x,Include

$$y(x) \rightarrow -\frac{1}{2}e^x(x-2)x$$

20.32 problem 671

Internal problem ID [15436]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 671.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$2x^{2}(2 - \ln(x))y'' + x(4 - \ln(x))y' - y = \frac{(2 - \ln(x))^{2}}{\sqrt{x}}$$

With initial conditions

$$[y(\infty) = 0]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 21

 $dsolve([2*x^2*(2-ln(x))*diff(y(x),x$2)+x*(4-ln(x))*diff(y(x),x)-y(x)=(2-ln(x))^2/sqrt(x),y(ix)+2(ix)$

$$y(x) = \frac{\sqrt{x} \ln(x) c_2 - \ln(x) + 1}{\sqrt{x}}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

Not solved

20.33 problem 672

Internal problem ID [15437]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 672.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + \frac{2y'}{x} - y = 4 e^x$$

With initial conditions

$$[y(-\infty) = 0, y'(-1) = -e^{-1}]$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 13

dsolve([diff(y(x),x\$2)+2/x*diff(y(x),x)-y(x)=4*exp(x),y(-infinity) = 0, D(y)(-1) = -1/exp(1)

$$y(x) = (x-1)e^x$$

✓ Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 12

DSolve[{y''[x]+2/x*y'[x]-y[x]==4*Exp[x],{y[-Infinity]==0,y'[-1]==-1/Exp[1]}},y[x],x,IncludeS

$$y(x) \to e^x(x-1)$$

20.34 problem 673

Internal problem ID [15438]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 673.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\int x^{3}(\ln(x) - 1) y'' - x^{2}y' + yx = 2\ln(x)$$

With initial conditions

$$[y(\infty) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 16

 $dsolve([x^3*(ln(x)-1)*diff(y(x),x$2)-x^2*diff(y(x),x)+x*y(x)=2*ln(x),y(infinity) = 0],y(x),$

$$y(x) = \frac{-c_1 \ln(x) x + 1}{x}$$

✓ Solution by Mathematica

Time used: 0.116 (sec). Leaf size: $8\,$

 $DSolve[\{x^3*(Log[x]-1)*y''[x]-x^2*y'[x]+x*y[x]==2*Log[x],\{y[Infinity]==0\}\},y[x],x,IncludeSing(x)=0$

$$y(x) \to \frac{1}{x}$$

20.35 problem 674

Internal problem ID [15439]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 15.5 Linear equations with variable coef-

ficients. The Lagrange method. Exercises page 148

Problem number: 674.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2}-2x) y'' + (-x^{2}+2) y' - 2(1-x) y = 2x-2$$

With initial conditions

$$[y(\infty)=1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 13

$$y(x) = -\operatorname{signum}\left(c_1 x^2\right) \infty$$

✓ Solution by Mathematica

Time used: 0.314 (sec). Leaf size: 6

$$y(x) \to 1$$

21 Chapter 2 (Higher order ODE's). Section 16. The method of isoclines for differential equations of the second order. Exercises page 158

21.1	problem	696	•		•		•	•		•										•	•	•		563
21.2	$\operatorname{problem}$	697																						564
21.3	$\operatorname{problem}$	698																						565
21.4	${\bf problem}$	699													•									566
21.5	${\bf problem}$	700																						568
21.6	${\bf problem}$	701													•									569
21.7	${\bf problem}$	702													•									570
21.8	$\operatorname{problem}$	703																						571
21.9	$\operatorname{problem}$	704																						572
21.10)problem	705																						573

21.1 problem 696

Internal problem ID [15440]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 16. The method of isoclines for differential equations of the second order. Exercises page 158

Problem number: 696.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + x' + x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

dsolve(diff(x(t),t\$2)+diff(x(t),t)+x(t)=0,x(t), singsol=all)

$$x(t) = \mathrm{e}^{-rac{t}{2}} \Biggl(c_1 \sin \left(rac{\sqrt{3}\,t}{2}
ight) + c_2 \cos \left(rac{\sqrt{3}\,t}{2}
ight) \Biggr)$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 42

DSolve[x''[t]+x'[t]+x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-t/2} \left(c_2 \cos \left(\frac{\sqrt{3}t}{2} \right) + c_1 \sin \left(\frac{\sqrt{3}t}{2} \right) \right)$$

21.2 problem 697

Internal problem ID [15441]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 16. The method of isoclines for differential equations of the second order. Exercises page 158

Problem number: 697.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + 2x' + 6x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(x(t),t\$2)+2*diff(x(t),t)+6*x(t)=0,x(t), singsol=all)

$$x(t) = e^{-t} \left(c_1 \sin\left(\sqrt{5}t\right) + c_2 \cos\left(\sqrt{5}t\right) \right)$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 34

DSolve[x''[t]+2*x'[t]+6*x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-t} \Big(c_2 \cos \Big(\sqrt{5}t \Big) + c_1 \sin \Big(\sqrt{5}t \Big) \Big)$$

21.3 problem 698

Internal problem ID [15442]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 16. The method of isoclines for differential equations of the second order. Exercises page 158

Problem number: 698.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + 2x' + x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

 $\label{eq:diff} $$ $$ dsolve(diff(x(t),t)^2)+2*diff(x(t),t)+x(t)=0,x(t), $$ singsol=all)$$

$$x(t) = e^{-t}(c_2t + c_1)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 18

DSolve[x''[t]+2*x'[t]+x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-t}(c_2t + c_1)$$

21.4 problem 699

Internal problem ID [15443]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 16. The method of isoclines for differential

equations of the second order. Exercises page 158

Problem number: 699.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + x'^2 + x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 61

 $dsolve(diff(x(t),t$2)+diff(x(t),t)^2+x(t)=0,x(t), singsol=all)$

$$-2\left(\int^{x(t)} \frac{1}{\sqrt{2+4e^{-2}-a}c_1-4_a}d_a\right) - t - c_2 = 0$$

$$2\left(\int^{x(t)} \frac{1}{\sqrt{2+4e^{-2}-a}c_1-4_a}d_a\right) - t - c_2 = 0$$

✓ Solution by Mathematica

Time used: 0.81 (sec). Leaf size: 272

DSolve[x''[t]+x'[t]^2+x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \text{InverseFunction} \left[\int_{1}^{\#1} - \frac{\sqrt{2}}{\sqrt{2e^{-2K[1]}c_{1} - 2K[1] + 1}} dK[1] \& \right] [t + c_{2}]$$

$$x(t) \to \text{InverseFunction} \left[\int_{1}^{\#1} \frac{\sqrt{2}}{\sqrt{2e^{-2K[2]}c_{1} - 2K[2] + 1}} dK[2] \& \right] [t + c_{2}]$$

$$x(t) \to \text{InverseFunction} \left[\int_{1}^{\#1} - \frac{\sqrt{2}}{\sqrt{2e^{-2K[1]}(-c_{1}) - 2K[1] + 1}} dK[1] \& \right] [t + c_{2}]$$

$$x(t) \to \text{InverseFunction} \left[\int_{1}^{\#1} - \frac{\sqrt{2}}{\sqrt{2e^{-2K[2]}(-c_{1}) - 2K[2] + 1}} dK[2] \& \right] [t + c_{2}]$$

$$x(t) \to \text{InverseFunction} \left[\int_{1}^{\#1} \frac{\sqrt{2}}{\sqrt{2e^{-2K[2]}(-c_{1}) - 2K[2] + 1}} dK[2] \& \right] [t + c_{2}]$$

$$x(t) \to \text{InverseFunction} \left[\int_{1}^{\#1} \frac{\sqrt{2}}{\sqrt{2e^{-2K[2]}(-c_{1}) - 2K[2] + 1}} dK[2] \& \right] [t + c_{2}]$$

21.5 problem 700

Internal problem ID [15444]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 16.\ {\bf The}\ {\bf method}\ {\bf of}\ {\bf isoclines}\ {\bf for}\ {\bf differential}$

equations of the second order. Exercises page 158

Problem number: 700.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 2x'^2 + x' - 2x = 0$$

X Solution by Maple

 $dsolve(diff(x(t),t\$2)-2*diff(x(t),t)^2+diff(x(t),t)-2*x(t)=0,x(t), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[x''[t]-2*x'[t]^2+x'[t]-2*x[t]==0,x[t],t,IncludeSingularSolutions \rightarrow True]$

Not solved

21.6 problem 701

Internal problem ID [15445]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ 2\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ 16.\ {\bf The}\ {\bf method}\ {\bf of}\ {\bf isoclines}\ {\bf for}\ {\bf differential}$

equations of the second order. Exercises page 158

Problem number: 701.

ODE order: 2. ODE degree: 0.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$x'' - x e^{x'} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve(diff(x(t),t)^2-x(t)*exp(diff(x(t),t))=0,x(t), singsol=all)$

$$-\left(\int^{x(t)} \frac{1}{\operatorname{LambertW}\left(\frac{(\underline{-a^2+2c_1})\mathrm{e}^{-1}}{2}\right)+1} d\underline{-a}\right) - t - c_2 = 0$$

✓ Solution by Mathematica

Time used: 0.389 (sec). Leaf size: 126

 $DSolve[x''[t]-x[t]*Exp[x'[t]] == 0, x[t], t, Include Singular Solutions \rightarrow True]$

$$x(t) \rightarrow \text{InverseFunction} \left[\int_{1}^{\#1} \frac{1}{-W\left(\frac{K[1]^2 + 2c_1}{2e}\right) - 1} dK[1] \& \right] [t + c_2]$$

$$x(t) \rightarrow \text{InverseFunction} \left[\int_{1}^{\#1} \frac{1}{-W\left(\frac{K[1]^2 + 2(-1)c_1}{2e}\right) - 1} dK[1] \& \right] [t + c_2]$$

$$x(t) \rightarrow \text{InverseFunction} \left[\int_{1}^{\#1} \frac{1}{-W\left(\frac{K[1]^2 + 2c_1}{2e}\right) - 1} dK[1] \& \right] [t + c_2]$$

21.7 problem 702

Internal problem ID [15446]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 16. The method of isoclines for differential

equations of the second order. Exercises page 158

Problem number: 702.

ODE order: 2. ODE degree: 0.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + e^{-x'} - x = 0$$

X Solution by Maple

dsolve(diff(x(t),t))+exp(-diff(x(t),t))-x(t)=0,x(t), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[x''[t]+Exp[-x'[t]]-x[t]==0,x[t],t,IncludeSingularSolutions -> True]

Not solved

21.8 problem 703

Internal problem ID [15447]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 16. The method of isoclines for differential equations of the second order. Exercises page 158

Problem number: 703.

ODE order: 2. ODE degree: 1.

 ${\rm CAS\;Maple\;gives\;this\;as\;type\;[[_2nd_order,\;_missing_x]\,,\;_Liouville,\;[_2nd_order,\;_reducible]}$

$$x'' + xx'^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

 $dsolve(diff(x(t),t$2)+x(t)*diff(x(t),t)^2=0,x(t), singsol=all)$

$$x(t) = -i \operatorname{RootOf}\left(i\sqrt{2}c_1t + i\sqrt{2}c_2 - \operatorname{erf}\left(\underline{Z}\right)\sqrt{\pi}\right)\sqrt{2}$$

✓ Solution by Mathematica

Time used: 1.757 (sec). Leaf size: $34\,$

DSolve[x''[t]+x[t]*x'[t]^2==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow -i\sqrt{2}\text{erf}^{-1}\left(i\sqrt{\frac{2}{\pi}}c_1(t+c_2)\right)$$

21.9 problem 704

Internal problem ID [15448]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 16. The method of isoclines for differential

equations of the second order. Exercises page 158

Problem number: 704.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [

$$x'' + (x+2)x' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 32

dsolve(diff(x(t),t\$2)+(x(t)+2)*diff(x(t),t)=0,x(t), singsol=all)

$$x(t) = -\frac{\left(\sqrt{2}c_1 - \tanh\left(\frac{(t+c_2)\sqrt{2}}{2c_1}\right)\right)\sqrt{2}}{c_1}$$

✓ Solution by Mathematica

Time used: 60.064 (sec). Leaf size: 40

DSolve[x''[t]+(x[t]+2)*x'[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow -2 + \sqrt{2}\sqrt{2+c_1} \tanh\left(\frac{\sqrt{2+c_1}(t+c_2)}{\sqrt{2}}\right)$$

21.10 problem 705

Internal problem ID [15449]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 16. The method of isoclines for differential

equations of the second order. Exercises page 158

Problem number: 705.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - x' + x - x^2 = 0$$

X Solution by Maple

 $dsolve(diff(x(t),t)^2)-diff(x(t),t)+x(t)-x(t)^2=0,x(t), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[x''[t]-x'[t]+x[t]-x[t]^2==0,x[t],t,IncludeSingularSolutions -> True]

Not solved

22 Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises page 163

22.1 problem	706	(\mathbf{a})) .				•	•		•	•	•	•		•	•		•	•	•	•	•	575
22.2 problem	707																						576
22.3 problem	708	(a) .																				577
22.4 problem	708	(b) .													•							578
22.5 problem	710															•							579
22.6 problem	711															•							580
22.7 problem	712																						581
22.8 problem	713																						582
22.9 problem	714																						583
$22.10 \\ {\rm problem}$	715																						584
$22.11 \mathrm{problem}$	716																						585
$22.12 \\ problem$	717																						586
$22.13 \\ problem$	718																						587
$22.14 \mathrm{problem}$	719																						588
$22.15 {\rm problem}$	720																						589
22.16 problem	721																						590
$22.17 \mathrm{problem}$	722																						591
22.18problem	723								 														592

22.1 problem 706 (a)

Internal problem ID [15450]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 706 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + \lambda y = 0$$

With initial conditions

$$[y'(0) = 0, y'(\pi) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 5

dsolve([diff(y(x),x\$2)+lambda*y(x)=0,D(y)(0)=0,D(y)(Pi)=0],y(x),singsol=all)

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 32

$$y(x) \rightarrow \{ c_1 \cos\left(x\sqrt{\lambda}\right) & n \in \mathbb{Z} \land n \geq 0 \land \lambda = n^2 \\ 0 & \text{True}$$

22.2 problem 707

Internal problem ID [15451]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 707.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + \lambda y = 0$$

With initial conditions

$$[y(0) = 0, y(1) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(y(x),x\$2) + \mbox{lambda}*y(x) = 0,y(0) = 0,\ y(1) = 0], \\ y(x), \ \mbox{singsol=all}) \\$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 36

$$y(x)
ightarrow \begin{cases} c_1 \sin\left(x\sqrt{\lambda}\right) & n \in \mathbb{Z} \land n \geq 1 \land \lambda = n^2 \pi^2 \\ 0 & \text{True} \end{cases}$$

22.3 problem 708 (a)

Internal problem ID [15452]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 708 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

With initial conditions

$$[y(0) = 0, y(2\pi) = 1]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 27

dsolve([diff(y(x),x\$2)-y(x)=0,y(0) = 0, y(2*Pi) = 1],y(x), singsol=all)

$$y(x) = \frac{e^{-x+2\pi}(e^{2x} - 1)}{e^{4\pi} - 1}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: $31\,$

 $DSolve[\{y''[x]-y[x]==0,\{y[0]==0,y[2*Pi]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{e^{2\pi - x}(e^{2x} - 1)}{e^{4\pi} - 1}$$

22.4 problem 708 (b)

Internal problem ID [15453]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 708 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With initial conditions

$$[y(0) = 0, y(2\pi) = 1]$$

X Solution by Maple

dsolve([diff(y(x),x\$2)+y(x)=0,y(0) = 0, y(2*Pi) = 1],y(x), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y''[x]+y[x]==0,\{y[0]==0,y[2*Pi]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

{}

22.5 problem 710

Internal problem ID [15454]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 710.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [

$$yy'' + y'^2 = -1$$

With initial conditions

$$[y(0) = 1, y(1) = 2]$$

✓ Solution by Maple

Time used: 0.781 (sec). Leaf size: 16

 $dsolve([y(x)*diff(y(x),x$2)+diff(y(x),x)^2+1=0,y(0) = 1, y(1) = 2],y(x), singsol=all)$

$$y(x) = \sqrt{-x^2 + 4x + 1}$$

✓ Solution by Mathematica

Time used: 12.271 (sec). Leaf size: 19

DSolve[{y[x]*y''[x]+y'[x]^2+1==0,{y[0]==1,y[1]==2}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \sqrt{-x^2 + 4x + 1}$$

22.6 problem 711

Internal problem ID [15455]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 711.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 0$$

With initial conditions

$$\left[y(0) = 0, y\left(\frac{\pi}{2}\right) = \alpha\right]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

 $\label{eq:decomposition} $$ dsolve([diff(y(x),x$2)+y(x)=0,y(0) = 0, y(1/2*Pi) = alpha],y(x), singsol=all) $$$

$$y(x) = \sin(x) \alpha$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 9

$$y(x) \to \alpha \sin(x)$$

22.7 problem 712

Internal problem ID [15456]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 712.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

With initial conditions

$$[y(0) = 0, y'(1) = 1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 23

dsolve([diff(y(x),x\$2)-y(x)=0,y(0) = 0, D(y)(1) = 1],y(x), singsol=all)

$$y(x) = \frac{e^{1-x}(e^{2x} - 1)}{e^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: $27\,$

 $DSolve[\{y''[x]-y[x]==0,\{y[0]==0,y'[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{e^{1-x}(e^{2x}-1)}{1+e^2}$$

22.8 problem 713

Internal problem ID [15457]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 713.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(\pi) = e^{\pi}]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+2*y(x)=0,y(0) = 0, D(y)(Pi) = exp(Pi)],y(x), singsol=axion(x)

$$y(x) = -e^x \sin(x)$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 12

$$y(x) \to -e^x \sin(x)$$

22.9 problem 714

Internal problem ID [15458]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 714.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + \alpha y' = 0$$

With initial conditions

$$[y(0) = e^{\alpha}, y'(1) = 0]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 6

dsolve([diff(y(x),x\$2)+alpha*diff(y(x),x)=0,y(0) = exp(alpha), D(y)(1) = 0],y(x), singsol=alpha*diff(y(x),x)=0,y(0) = exp(alpha), D(y)(1) = 0],y(x), singsol=alpha*diff(y(x),x)=0,y(x), singsol=alpha*diff(y(x),x)

$$y(x) = e^{\alpha}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 8

$$y(x) \to e^{\alpha}$$

22.10 problem 715

Internal problem ID [15459]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 715.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + \alpha^2 y = 1$$

With initial conditions

$$[y'(0) = \alpha, y'(\pi) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

 $dsolve([diff(y(x),x$2)+alpha^2*y(x)=1,D(y)(0) = alpha, D(y)(Pi) = 0],y(x), singsol=all)$

$$y(x) = \sin(\alpha x) + \cos(\alpha x)\cot(\alpha \pi) + \frac{1}{\alpha^2}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y''[x]+\[Alpha]^2*y'[x]==1,{y'[0]==\[Alpha],y'[Pi]==0}},y[x],x,IncludeSingularSoluti

{}

22.11 problem 716

Internal problem ID [15460]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 716.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y = 1$$

With initial conditions

$$[y(0) = 0, y'(\pi) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 10

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(y(x),x\$2)+y(x)=1,y(0) = 0,\ D(y)(\mbox{Pi}) = 0],y(x),\ \mbox{singsol=all}) \\$

$$y(x) = 1 - \cos(x)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 11

 $DSolve[\{y''[x]+y[x]==1,\{y[0]==0,y'[Pi]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 1 - \cos(x)$$

22.12 problem 717

Internal problem ID [15461]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 717.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + \lambda^2 y = 0$$

With initial conditions

$$[y'(0) = 0, y'(\pi) = 0]$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.0 (sec). Leaf size: 5}}$

 $dsolve([diff(y(x),x$2)+lambda^2*y(x)=0,D(y)(0) = 0,D(y)(Pi) = 0],y(x), singsol=all)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 36

DSolve[{y''[x]+\[Lambda]^2*y[x]==0,{y'[0]==0,y'[Pi]==0}},y[x],x,IncludeSingularSolutions ->

$$y(x) \rightarrow \{ c_1 \cos\left(x\sqrt{\lambda^2}\right) & n \in \mathbb{Z} \land n \geq 0 \land \lambda^2 = n^2 \\ 0 & \text{True}$$

22.13 problem 718

Internal problem ID [15462]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 718.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + \lambda^2 y = 0$$

With initial conditions

$$[y(0) = 0, y'(\pi) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(x),x$2)+lambda^2*y(x)=0,y(0) = 0, D(y)(Pi) = 0],y(x), singsol=all)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 40

$$y(x) \rightarrow \{ c_1 \sin\left(x\sqrt{\lambda^2}\right) & n \in \mathbb{Z} \land n \ge 1 \land \lambda^2 = \left(n - \frac{1}{2}\right)^2 \\ 0 & \text{True}$$

22.14 problem 719

Internal problem ID [15463]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 719.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve([diff(y(x),x\$3)+diff(y(x),x\$2)-diff(y(x),x)-y(x)=0,y(0) = -1, y(1) = 0, D(y)(0) = 2],

$$y(x) = e^{-x}(x-1)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: $14\,$

 $DSolve[\{y'''[x]+y''[x]-y'[x]-y[x]==0,\{y[0]==-1,y[1]==0,y'[0]==2\}\},y[x],x,IncludeSingularSoludeSing$

$$y(x) \to e^{-x}(x-1)$$

22.15 problem 720

Internal problem ID [15464]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 720.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

 $dsolve([diff(y(x),x$4)-lambda^4*y(x)=0,y(0) = 0, (D@02)(y)(0) = 0, y(Pi) = 0, (D@02)(y)(Pi)$

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 6

DSolve[{y'''[x]-\[Lambda]^4*y[x]==0,{y[0]==0,y''[0]==0,y[Pi]==0,y''[Pi]==0}},y[x],x,Include

$$y(x) \to 0$$

22.16 problem 721

Internal problem ID [15465]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 721.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$xy'' + y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(x*diff(y(x),x\$2)+diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = c_2 \ln(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 13

DSolve[x*y''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \log(x) + c_2$$

22.17 problem 722

Internal problem ID [15466]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 722.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$x^2y'''' + 4xy''' + 2y'' = 0$$

With initial conditions

$$[y(1) = 0, y'(1) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

 $dsolve([x^2*diff(y(x),x$4)+4*x*diff(y(x),x$3)+2*diff(y(x),x$2)=0,y(1) = 0, D(y)(1) = 0],y(x)$

$$y(x) = (-c_3 + (x - 1) c_4) \ln(x) + c_3(x - 1)$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 29

DSolve[{x^2*y''''[x]+4*x*y'''[x]+2*y''[x]==0,{y[1]==0,y'[1]==0}},y[x],x,IncludeSingularSolut

$$y(x) \to (c_1 - c_2)(x - 1) + (c_2 x - c_1)\log(x)$$

22.18 problem 723

Internal problem ID [15467]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 17. Boundary value problems. Exercises

page 163

Problem number: 723.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$x^3y'''' + 6x^2y''' + 6xy'' = 0$$

With initial conditions

$$[y(1) = 0, y'(1) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

 $\frac{dsolve([x^3*diff(y(x),x$4)+6*x^2*diff(y(x),x$3)+6*x*diff(y(x),x$2)=0,y(1) = 0)}{dsolve([x^3*diff(y(x),x$4)+6*x^2*diff(y(x),x$3)+6*x*diff(y(x),x$2)=0,y(1) = 0]}$

$$y(x) = -c_3 - c_4 + (c_3 - c_4) \ln(x) + \frac{c_3}{x} + c_4 x$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 34

DSolve[{x^3*y'''[x]+6*x^2*y'''[x]+6*x*y''[x]==0,{y[1]==0,y'[1]==0}},y[x],x,IncludeSingularS

$$y(x) \to \frac{(x-1)(c_1(x-1)+2c_2x)}{2x} - c_2 \log(x)$$

23 Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation in series. Power series. Exercises page 171

23.1 problem 724	1
23.2 problem 725	5
23.3 problem 726	3
23.4 problem 727	7
23.5 problem 728	3
23.6 problem 729)
23.7 problem 730)
23.8 problem 731	2
23.9 problem 732	3
23.10 problem 733	1
23.11problem 734	5
23.12problem 735	3
23.13problem 736	7
23.14problem 737	3
23.15problem 738)

23.1 problem 724

Internal problem ID [15468]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 724.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + yx = 1$$

With initial conditions

$$[y(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6;

dsolve([diff(y(x),x)=1-x*y(x),y(0) = 0],y(x),type='series',x=0);

$$y(x) = x - \frac{1}{3}x^3 + \frac{1}{15}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 19

 $AsymptoticDSolveValue[\{y'[x]==1-x*y[x],\{y[0]==0\}\},y[x],\{x,0,5\}]$

$$y(x) \to \frac{x^5}{15} - \frac{x^3}{3} + x$$

23.2 problem 725

Internal problem ID [15469]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 725.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$y' - \frac{y - x}{y + x} = 0$$

With initial conditions

$$[y(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

Order:=6;

 $\label{eq:decomposition} \\ \text{dsolve}([\text{diff}(y(x),x)=(y(x)-x)/(y(x)+x),y(0) = 1],y(x),\\ \text{type='series',x=0)};$

$$y(x) = 1 + x - x^2 + \frac{4}{3}x^3 - \frac{5}{2}x^4 + \frac{16}{3}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 32

AsymptoticDSolveValue[$\{y'[x]==(y[x]-x)/(y[x]+x),\{y[0]==1\}\},y[x],\{x,0,5\}$]

$$y(x) \to \frac{16x^5}{3} - \frac{5x^4}{2} + \frac{4x^3}{3} - x^2 + x + 1$$

23.3 problem 726

Internal problem ID [15470]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 726.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \sin(x) y = 0$$

With initial conditions

$$[y(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6;

dsolve([diff(y(x),x)=sin(x)*y(x),y(0) = 1],y(x),type='series',x=0);

$$y(x) = 1 + \frac{1}{2}x^2 + \frac{1}{12}x^4 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

 $AsymptoticDSolveValue[\{y'[x]==Sin[x]*y[x],\{y[0]==1\}\},y[x],\{x,0,5\}]$

$$y(x) \to \frac{x^4}{12} + \frac{x^2}{2} + 1$$

23.4 problem 727

Internal problem ID [15471]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 727.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + yx = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

Order:=6;

dsolve([diff(y(x),x\$2)+x*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);

$$y(x) = x - \frac{1}{12}x^4 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 12

$$y(x) \rightarrow x - \frac{x^4}{12}$$

23.5 problem 728

Internal problem ID [15472]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 728.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' - y'\sin(x) = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6;

dsolve([diff(y(x),x\$2)-diff(y(x),x)*sin(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);

$$y(x) = x + \frac{1}{6}x^3 + \frac{1}{60}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 19

$$y(x) \to \frac{x^5}{30} - \frac{x^3}{6} + x$$

23.6 problem 729

Internal problem ID [15473]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 729.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$xy'' + \sin(x) y = x$$

With initial conditions

$$[y(\pi) = 1, y'(\pi) = 0]$$

With the expansion point for the power series method at $x = \pi$.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

Order:=6;

dsolve([x*diff(y(x),x\$2)+y(x)*sin(x)=x,y(Pi) = 1, D(y)(Pi) = 0],y(x),type='series',x=Pi);

$$y(x) = 1 + \frac{1}{2}(-\pi + x)^{2} + \frac{1}{6\pi}(-\pi + x)^{3} - \frac{1}{12\pi^{2}}(-\pi + x)^{4} + \frac{1}{60}\frac{\pi^{2} + 3}{\pi^{3}}(-\pi + x)^{5} + O\left((-\pi + x)^{6}\right)$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 75

AsymptoticDSolveValue[$\{x*y''[x]+Sin[x]*y[x]==x,\{y[Pi]==1,y'[Pi]==0\}\},y[x],\{x,Pi,5\}$]

$$y(x) \to \frac{1}{60} \left(\frac{3}{2\pi} - \frac{\pi^2 - 6}{2\pi^3} \right) (x - \pi)^5 - \frac{(x - \pi)^4}{12\pi^2} + \frac{(x - \pi)^3}{6\pi} + \frac{1}{2} (x - \pi)^2 + 1$$

23.7 problem 730

Internal problem ID [15474]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 730.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\ln(x)y'' - y\sin(x) = 0$$

With initial conditions

$$[y(e) = e^{-1}, y'(e) = 0]$$

With the expansion point for the power series method at x = e.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 142

Order:=6;

$$dsolve([ln(x)*diff(y(x),x$2)-y(x)*sin(x)=0,y(exp(1)) = 1/exp(1), D(y)(exp(1)) = 0],y(x),type(x)$$

$$y(x) = e^{-1} + \frac{1}{2}\sin(e) e^{-1}(x - e)^{2} + \frac{1}{6}(\cos(e) e - \sin(e)) e^{-2}(x - e)^{3}$$

$$+ \left(\frac{e^{-3}e^{2}\sin(e)^{2}}{24} - \frac{(e^{2} - 3)e^{-3}\sin(e)}{24} - \frac{e^{-3}\cos(e) e}{12}\right)(x - e)^{4}$$

$$+ \left(-\frac{e^{-4}e^{2}\sin(e)^{2}}{30} + \frac{(4\cos(e) e^{3} + 3e^{2} - 14)e^{-4}\sin(e)}{120} + \frac{3\cos(e) e^{-4}\left(e - \frac{e^{3}}{9}\right)}{40}\right)(x - e)^{5} + O\left((x - e)^{6}\right)$$

X Solution by Mathematica Time used: 0.0 (sec). Leaf size: 0

Not solved

problem 731 **23.8**

Internal problem ID [15475]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 731.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [NONE]

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

Order:=6;

dsolve([diff(y(x),x\$3)+x*sin(y(x))=0,y(0) = 1/2*Pi, D(y)(0) = 0, (D@@2)(y)(0) = 0],y(x),type(0)

 $y = \frac{\pi}{2} - \frac{1}{24}x^4 + O(x^6)$

Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 16

AsymptoticDSolveValue[$\{y'''[x]+x*Sin[y[x]]==0,\{y[0]==Pi/2,y'[0]==0,y''[0]==0\}\},y[x],\{x,0,5\}$]

$$y(x) \to \frac{\pi}{2} - \frac{x^4}{24}$$

23.9 problem 732

Internal problem ID [15476]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 732.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2yx = 0$$

With initial conditions

$$[y(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6;

dsolve([diff(y(x),x)-2*x*y(x)=0,y(0) = 1],y(x),type='series',x=0);

$$y = 1 + x^2 + \frac{1}{2}x^4 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 15

AsymptoticDSolveValue[$\{y'[x]-2*x*y[x]==0,\{y[0]==1\}\},y[x],\{x,0,5\}$]

$$y(x) \to \frac{x^4}{2} + x^2 + 1$$

23.10 problem 733

Internal problem ID [15477]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation in series. Power series. Exercises page 171

Problem number: 733.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + y'x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x\$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y = \left(1 - \frac{1}{2}x^2 + \frac{1}{8}x^4\right)y(0) + \left(x - \frac{1}{3}x^3 + \frac{1}{15}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[$y''[x]+x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{15} - \frac{x^3}{3} + x\right) + c_1 \left(\frac{x^4}{8} - \frac{x^2}{2} + 1\right)$$

23.11 problem 734

Internal problem ID [15478]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 734.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y'x + y = 1$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

Order:=6;

dsolve([diff(y(x),x\$2)-x*diff(y(x),x)+y(x)=1,y(0) = 0, D(y)(0) = 0],y(x),type='series',x=0);

$$y = \frac{1}{2}x^2 + \frac{1}{24}x^4 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 18

$$y(x) \to \frac{x^4}{24} + \frac{x^2}{2}$$

23.12 problem 735

Internal problem ID [15479]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 735.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - \left(x^2 + 1\right)y = 0$$

With initial conditions

$$[y(0) = -2, y'(0) = 2]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

Order:=6;

 $dsolve([diff(y(x),x$2)-(1+x^2)*y(x)=0,y(0) = -2, D(y)(0) = 2],y(x),type='series',x=0);$

$$y = -2 + 2x - x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{7}{60}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 34

$$y(x) \to \frac{7x^5}{60} - \frac{x^4}{4} + \frac{x^3}{3} - x^2 + 2x - 2$$

23.13 problem 736

Internal problem ID [15480]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 736.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - yx^2 + y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6;

 $dsolve([diff(y(x),x$2)=x^2*y(x)-diff(y(x),x),y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);$

$$y = 1 + \frac{1}{12}x^4 - \frac{1}{60}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

AsymptoticDSolveValue[$\{y''[x]==x^2*y[x]-y'[x],\{y[0]==1,y'[0]==0\}\},y[x],\{x,0,5\}$]

$$y(x) \rightarrow -\frac{x^5}{60} + \frac{x^4}{12} + 1$$

23.14 problem 737

Internal problem ID [15481]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 737.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y e^x = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6;

dsolve(diff(y(x),x\$2)-y(x)*exp(x)=0,y(x),type='series',x=0);

$$y = \left(1 + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{1}{24}x^5\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{1}{30}x^5\right)D(y)\left(0\right) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63

AsymptoticDSolveValue[$y''[x]-y[x]*Exp[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{30} + \frac{x^4}{12} + \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^5}{24} + \frac{x^4}{12} + \frac{x^3}{6} + \frac{x^2}{2} + 1\right)$$

23.15 problem 738

Internal problem ID [15482]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.1 Integration of differential equation

in series. Power series. Exercises page 171

Problem number: 738.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$y' - e^y - yx = 0$$

With initial conditions

$$[y(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

Order:=6;

dsolve([diff(y(x),x)=exp(y(x))+x*y(x),y(0) = 0],y(x),type='series',x=0);

$$y = x + \frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{11}{24}x^4 + \frac{53}{120}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 33

AsymptoticDSolveValue[$\{y'[x] == Exp[y[x]] + x*y[x], \{y[0] == 0\}\}, y[x], \{x,0,5\}$]

$$y(x) \rightarrow \frac{53x^5}{120} + \frac{11x^4}{24} + \frac{2x^3}{3} + \frac{x^2}{2} + x$$

24 Chapter 2 (Higher order ODE's). Section 18.2. Expanding a solution in generalized power series. Bessels equation. Exercises page 177

24.1	problem	139	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	011
24.2	${\bf problem}$	740																																				612
24.3	$\operatorname{problem}$	741																																				613
24.4	${\bf problem}$	744																																				614
24.5	$\operatorname{problem}$	745																																				615
24.6	${\bf problem}$	746																																				616
24.7	${\bf problem}$	747																																				617
24.8	${\bf problem}$	748																																				618
24.9	${\bf problem}$	749																																				619
24.10)problem	750																																				620
24.11	problem	751					_																															621

24.1 problem 739

Internal problem ID [15483]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.2. Expanding a solution in generalized

power series. Bessels equation. Exercises page 177

Problem number: 739.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$4xy'' + 2y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

Order:=6;

dsolve(4*x*diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y = c_1 \sqrt{x} \left(1 - \frac{1}{6}x + \frac{1}{120}x^2 - \frac{1}{5040}x^3 + \frac{1}{362880}x^4 - \frac{1}{39916800}x^5 + O(x^6) \right)$$
$$+ c_2 \left(1 - \frac{1}{2}x + \frac{1}{24}x^2 - \frac{1}{720}x^3 + \frac{1}{40320}x^4 - \frac{1}{3628800}x^5 + O(x^6) \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 85

AsymptoticDSolveValue $[4*x*y''[x]+2*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \sqrt{x} \left(-\frac{x^5}{39916800} + \frac{x^4}{362880} - \frac{x^3}{5040} + \frac{x^2}{120} - \frac{x}{6} + 1 \right)$$
$$+ c_2 \left(-\frac{x^5}{3628800} + \frac{x^4}{40320} - \frac{x^3}{720} + \frac{x^2}{24} - \frac{x}{2} + 1 \right)$$

24.2 problem 740

Internal problem ID [15484]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.2. Expanding a solution in generalized power series. Bessels equation. Exercises page 177

Problem number: 740.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x+1)y'-ny=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 114

Order:=6;
dsolve((1+x)*diff(y(x),x)-n*y(x)=0,y(x),type='series',x=0);

$$y = \left(1 + nx + \frac{n(-1+n)x^2}{2} + \frac{n(n^2 - 3n + 2)x^3}{6} + \frac{n(n^3 - 6n^2 + 11n - 6)x^4}{24} + \frac{n(n^4 - 10n^3 + 35n^2 - 50n + 24)x^5}{120}\right)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 143

AsymptoticDSolveValue[$(1+x)*y'[x]-n*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{n^5 x^5}{120} - \frac{n^4 x^5}{12} + \frac{n^4 x^4}{24} + \frac{7n^3 x^5}{24} - \frac{n^3 x^4}{4} + \frac{n^3 x^3}{6} - \frac{5n^2 x^5}{12} + \frac{11n^2 x^4}{24} - \frac{n^2 x^3}{2} + \frac{n^2 x^2}{2} + \frac{n x^5}{5} - \frac{n x^4}{4} + \frac{n x^3}{3} - \frac{n x^2}{2} + n x + 1 \right)$$

24.3 problem 741

Internal problem ID [15485]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.2. Expanding a solution in generalized power series. Bessels equation. Exercises page 177

Problem number: 741.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Jacobi]

$$9x(1-x)y'' - 12y' + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

Order:=6; dsolve(9*x*(1-x)*diff(y(x),x\$2)-12*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);

$$y = c_1 x^{\frac{7}{3}} \left(1 + \frac{4}{5}x + \frac{44}{65}x^2 + \frac{77}{130}x^3 + \frac{1309}{2470}x^4 + \frac{119}{247}x^5 + \mathcal{O}\left(x^6\right) \right)$$
$$+ c_2 \left(1 + \frac{1}{3}x + \frac{2}{9}x^2 + \frac{14}{81}x^3 + \frac{35}{243}x^4 + \frac{91}{729}x^5 + \mathcal{O}\left(x^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 85

AsymptoticDSolveValue $[9*x*(1-x)*y''[x]-12*y'[x]+4*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\frac{91x^5}{729} + \frac{35x^4}{243} + \frac{14x^3}{81} + \frac{2x^2}{9} + \frac{x}{3} + 1 \right)$$
$$+ c_1 \left(\frac{119x^5}{247} + \frac{1309x^4}{2470} + \frac{77x^3}{130} + \frac{44x^2}{65} + \frac{4x}{5} + 1 \right) x^{7/3}$$

24.4 problem 744

Internal problem ID [15486]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.2. Expanding a solution in generalized power series. Bessels equation. Exercises page 177

Problem number: 744.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(4x^{2} - \frac{1}{9}\right)y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

 $dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(4*x^2-1/9)*y(x)=0,y(x), singsol=all)$

$$y = c_1 \operatorname{BesselJ}\left(\frac{1}{3}, 2x\right) + c_2 \operatorname{BesselY}\left(\frac{1}{3}, 2x\right)$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 26

 $DSolve[x^2*y''[x]+x*y'[x]+(4*x^2-1/9)*y[x] ==0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \operatorname{BesselJ}\left(\frac{1}{3}, 2x\right) + c_2 \operatorname{BesselY}\left(\frac{1}{3}, 2x\right)$$

24.5 problem 745

Internal problem ID [15487]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.2. Expanding a solution in generalized power series. Bessels equation. Exercises page 177

Problem number: 745.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(x^{2} - \frac{1}{4}\right)y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

 $\label{eq:dsolve} dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,y(x), singsol=all)$

$$y = \frac{c_1 \sin(x) + c_2 \cos(x)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 39

 $DSolve[x^2*y''[x]+x*y'[x]+(x^2-1/4)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{e^{-ix}(2c_1 - ic_2e^{2ix})}{2\sqrt{x}}$$

24.6 problem 746

Internal problem ID [15488]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.2. Expanding a solution in generalized power series. Bessels equation. Exercises page 177

Problem number: 746.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{y'}{x} + \frac{y}{9} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$2)+1/x*diff(y(x),x)+1/9*y(x)=0,y(x), singsol=all)

$$y = c_1 \operatorname{BesselJ}\left(0, \frac{x}{3}\right) + c_2 \operatorname{BesselY}\left(0, \frac{x}{3}\right)$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 26

 $DSolve[y''[x]+1/x*y'[x]+1/9*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \operatorname{BesselJ}\left(0, \frac{x}{3}\right) + c_2 \operatorname{BesselY}\left(0, \frac{x}{3}\right)$$

24.7 problem 747

Internal problem ID [15489]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

 ${\bf Section:}\ {\bf Chapter}\ {\bf 2}\ ({\bf Higher}\ {\bf order}\ {\bf ODE's}).\ {\bf Section}\ {\bf 18.2.}\ {\bf Expanding}\ {\bf a}\ {\bf solution}\ {\bf in}\ {\bf generalized}$

power series. Bessels equation. Exercises page 177

Problem number: 747.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{y'}{x} + 4y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $\label{eq:diff} dsolve(diff(y(x),x\$2)+1/x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)$

 $y = c_1 \operatorname{BesselJ}(0, 2x) + c_2 \operatorname{BesselY}(0, 2x)$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: $22\,$

 $DSolve[y''[x]+1/x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

 $y(x) \rightarrow c_1 \text{ BesselJ}(0, 2x) + c_2 \text{ BesselY}(0, 2x)$

24.8 problem 748

Internal problem ID [15490]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.2. Expanding a solution in generalized power series. Bessels equation. Exercises page 177

Problem number: 748.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - 2y'x + 4(x^{4} - 1)y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

 $dsolve(x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+4*(x^4-1)*y(x)=0,y(x), singsol=all)$

$$y = -\frac{-\frac{\operatorname{BesselY}\left(\frac{1}{4}, x^2\right)c_2}{2} - \frac{\operatorname{BesselJ}\left(\frac{1}{4}, x^2\right)c_1}{2} + x^2\left(c_1\operatorname{BesselJ}\left(-\frac{3}{4}, x^2\right) + \operatorname{BesselY}\left(-\frac{3}{4}, x^2\right)c_2\right)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.158 (sec). Leaf size: 46

DSolve $[x^2*y''[x]-2*x*y'[x]+4*(x^4-1)*y[x]==0,y[x],x,IncludeSingularSolutions] -> True$

$$y(x) \rightarrow \frac{x^{3/2} \left(c_2 \operatorname{Gamma}\left(\frac{9}{4}\right) \operatorname{BesselJ}\left(\frac{5}{4}, x^2\right) - 4c_1 \operatorname{Gamma}\left(\frac{3}{4}\right) \operatorname{BesselJ}\left(-\frac{5}{4}, x^2\right)\right)}{2^{3/4}}$$

24.9 problem 749

Internal problem ID [15491]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.2. Expanding a solution in generalized

power series. Bessels equation. Exercises page 177

Problem number: 749.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$y''x + \frac{y'}{2} + \frac{y}{4} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(x*diff(y(x),x\$2)+1/2*diff(y(x),x)+1/4*y(x)=0,y(x), singsol=all)

$$y = c_1 \sin\left(\sqrt{x}\right) + c_2 \cos\left(\sqrt{x}\right)$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 24

DSolve[x*y''[x]+1/2*y'[x]+1/4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 \cos\left(\sqrt{x}\right) + c_2 \sin\left(\sqrt{x}\right)$$

24.10 problem 750

Internal problem ID [15492]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.2. Expanding a solution in generalized power series. Bessels equation. Exercises page 177

Problem number: 750.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$y'' + \frac{5y'}{x} + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$2)+5/x*diff(y(x),x)+y(x)=0,y(x), singsol=all)

 $y = \frac{-\operatorname{BesselY}\left(0,x\right)c_{2}x - \operatorname{BesselJ}\left(0,x\right)c_{1}x + 2\operatorname{BesselY}\left(1,x\right)c_{2} + 2\operatorname{BesselJ}\left(1,x\right)c_{1}}{x^{3}}$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 22

 $DSolve[y''[x]+5/x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1 \operatorname{BesselJ}(2, x) + c_2 \operatorname{BesselY}(2, x)}{x^2}$$

24.11 problem 751

Internal problem ID [15493]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.2. Expanding a solution in generalized power series. Bessels equation. Exercises page 177

Problem number: 751.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + \frac{3y'}{x} + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$2)+3/x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)

$$y = \frac{c_1 \operatorname{BesselJ}(1, 2x) + c_2 \operatorname{BesselY}(1, 2x)}{x}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 26

 $DSolve[y''[x]+3/x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1 \operatorname{BesselJ}(1, 2x) + c_2 \operatorname{BesselY}(1, 2x)}{x}$$

25 Chapter 2 (Higher order ODE's). Section 18.3. Finding periodic solutions of linear differential equations. Exercises page 187

25.1	problem	757	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	623
25.2	${\bf problem}$	758																											624
25.3	$\operatorname{problem}$	759																											625
25.4	${\bf problem}$	760																		•									626
25.5	problem	761																											627

25.1 problem 757

Internal problem ID [15494]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.3. Finding periodic solutions of linear differential equations. Exercises page 187

Problem number: 757.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \cos(x)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(x),x$2)+4*y(x)=cos(x)^2,y(x), singsol=all)$

$$y = \frac{(8c_1 + 1)\cos(2x)}{8} + \frac{1}{8} + \frac{(x + 8c_2)\sin(2x)}{8}$$

Solution by Mathematica

Time used: 0.097 (sec). Leaf size: 33

DSolve[$y''[x]+4*y[x]==Cos[x]^2,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to \frac{1}{8}((1+8c_1)\cos(2x) + (x+8c_2)\sin(2x) + 1)$$

25.2 problem 758

Internal problem ID [15495]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.3. Finding periodic solutions of linear differential equations. Exercises page 187

Problem number: 758.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y' + 4y = \pi^2 - x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $dsolve(diff(y(x),x$2)-4*diff(y(x),x)+4*y(x)=Pi^2-x^2,y(x), singsol=all)$

$$y = -\frac{3}{8} + (c_1x + c_2)e^{2x} - \frac{x^2}{4} + \frac{\pi^2}{4} - \frac{x}{2}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 42

 $DSolve[y''[x]-4*y'[x]+4*y[x] == Pi^2-x^2, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{8}(-2x^2 - 4x + 2\pi^2 - 3) + c_1e^{2x} + c_2e^{2x}x$$

25.3 problem 759

Internal problem ID [15496]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.3. Finding periodic solutions of linear differential equations. Exercises page 187

Problem number: 759.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y = \cos(\pi x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

dsolve(diff(y(x),x\$2)-4*y(x)=cos(Pi*x),y(x), singsol=all)

$$y = \frac{c_1(\pi^2 + 4) e^{-2x} + c_2(\pi^2 + 4) e^{2x} - \cos(\pi x)}{\pi^2 + 4}$$

Solution by Mathematica

Time used: 0.097 (sec). Leaf size: 35

DSolve[y''[x]-4*y[x]==Cos[Pi*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\cos(\pi x)}{4 + \pi^2} + c_1 e^{2x} + c_2 e^{-2x}$$

25.4 problem 760

Internal problem ID [15497]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.3. Finding periodic solutions of linear

differential equations. Exercises page 187

Problem number: 760.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 4y' + 4y = \arcsin(\sin(x))$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

dsolve(diff(y(x),x\$2)-4*diff(y(x),x)+4*y(x)=arcsin(sin(x)),y(x), singsol=all)

$$y = e^{2x} \left(c_2 + c_1 x - \left(\int \arcsin\left(\sin\left(x\right)\right) x e^{-2x} dx \right) + x \left(\int \arcsin\left(\sin\left(x\right)\right) e^{-2x} dx \right) \right)$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 1.363 (sec)}}$. Leaf size: 38

DSolve[y''[x]-4*y'[x]+4*y[x]==ArcSin[Sin[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4} \left(\arcsin(\sin(x)) + 4e^{2x} (c_2 x + c_1) + \sqrt{\cos^2(x)} \sec(x) \right)$$

25.5 problem 761

Internal problem ID [15498]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 2 (Higher order ODE's). Section 18.3. Finding periodic solutions of linear differential equations. Exercises page 187

Problem number: 761.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = \sin\left(x\right)^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(diff(y(x),x$2)+9*y(x)=sin(x)^3,y(x), singsol=all)$

$$y = \frac{(x+24c_1)\cos(3x)}{24} + \frac{(144c_2-1)\sin(3x)}{144} + \frac{3\sin(x)}{32}$$

✓ Solution by Mathematica

Time used: 0.205 (sec). Leaf size: 40

DSolve[$y''[x]+9*y[x]==Sin[x]^3,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) o \frac{3\sin(x)}{32} - \frac{1}{144}\sin(3x) + \left(\frac{x}{24} + c_1\right)\cos(3x) + c_2\sin(3x)$$

26 Chapter 3 (Systems of differential equations). Section 19. Basic concepts and definitions. Exercises page 199

26.1	problem	767	٠.											•	•						629
26.2	$\operatorname{problem}$	768																			630
26.3	$\operatorname{problem}$	769	١.																		631
26.4	${\bf problem}$	771																			632
26.5	$\operatorname{problem}$	772																			633
26.6	${\bf problem}$	773																			634
26.7	${\bf problem}$	774												•						•	635
26.8	problem	775																			637

26.1 problem 767

Internal problem ID [15499]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 19. Basic concepts and defi-

nitions. Exercises page 199 **Problem number:** 767.

ODE order: 1. ODE degree: 1.

Solve

$$x'_{1}(t) = -2tx_{1}(t)^{2}$$
$$x'_{2}(t) = \frac{x_{2}(t)}{t} + 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

 $dsolve([diff(x_{-1}(t),t)=-2*t*x_{-1}(t)^2,diff(x_{-2}(t),t)=(x_{-2}(t)+t)/t],singsol=all)$

$$\left\{ x_1(t) = \frac{1}{t^2 + c_2} \right\}$$
$$\left\{ x_2(t) = (\ln(t) + c_1) t \right\}$$

✓ Solution by Mathematica

Time used: 0.143 (sec). Leaf size: 40

DSolve[{x1'[t]==-2*t*x1[t]^2,x2'[t]==(x2[t]+t)/t},{x1[t],x2[t]},t,IncludeSingularSolutions -

$$x1(t) \rightarrow \frac{1}{t^2 - c_1}$$

$$x2(t) \rightarrow t(\log(t) + c_2)$$

$$x1(t) \rightarrow 0$$

$$x2(t) \rightarrow t(\log(t) + c_2)$$

26.2 problem 768

Internal problem ID [15500]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 19. Basic concepts and defi-

nitions. Exercises page 199 **Problem number**: 768.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = e^t e^{-x_1(t)}$$

 $x'_2(t) = 2 e^{x_1(t)}$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

 $dsolve([diff(x_1(t),t)=exp(t-x_1(t)),diff(x_2(t),t)=2*exp(x_1(t))],singsol=all)$

$$\{x_1(t) = \ln \left(e^t + c_2 \right) \} \ \{x_2(t) = \int 2 e^{x_1(t)} dt + c_1 \}$$

✓ Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 28

$$x1(t) \to \log (e^t + c_1)$$

$$x2(t) \to 2e^t + 2c_1t + c_2$$

problem 769 26.3

Internal problem ID [15501]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 19. Basic concepts and defi-

nitions. Exercises page 199 Problem number: 769.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = y(t)$$

$$y'(t) = \frac{y(t)^2}{x(t)}$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve([diff(x(t),t)=y(t),diff(y(t),t)=y(t)^2/x(t)],singsol=all)$

$$\{x(t) = e^{c_1 t} c_2\}$$

$$\{y(t) = \frac{d}{dt}x(t)\}$$

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 28

DSolve[{x'[t]==y[t],y'[t]==y[t]^2/x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 c_2 e^{c_1 t}$$
$$x(t) \to c_2 e^{c_1 t}$$

$$x(t) \rightarrow c_2 e^{c_1 t}$$

26.4 problem 771

Internal problem ID [15502]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 19. Basic concepts and defi-

nitions. Exercises page 199 **Problem number**: 771.

ODE order: 1. ODE degree: 1.

Solve

$$x'_{1}(t) = \frac{x_{1}(t)^{2}}{x_{2}(t)}$$
$$x'_{2}(t) = x_{2}(t) - x_{1}(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 66

 $dsolve([diff(x_1(t),t)=x_1(t)^2/x_2(t),diff(x_2(t),t)=x_2(t)-x_1(t)],singsol=all)$

$$\left[\left\{ x_1(t) = 0 \right\}, \left\{ x_2(t) = c_1 e^t \right\} \right]$$

$$\left[\left\{ x_1(t) = \frac{1}{\sqrt{2 e^{-t} c_1 - 2c_2}}, x_1(t) = -\frac{1}{\sqrt{2 e^{-t} c_1 - 2c_2}} \right\}, \left\{ x_2(t) = \frac{x_1(t)^2}{\frac{d}{dt} x_1(t)} \right\} \right]$$

✓ Solution by Mathematica

Time used: 0.102 (sec). Leaf size: 143

DSolve[{x1'[t]==x1[t]^2/x2[t],x2'[t]==x2[t]-x1[t]},{x1[t],x2[t]},t,IncludeSingularSolutions

$$x2(t) \to 2ie^{\frac{t}{2} + c_2} \sqrt{-1 + 2c_1e^{t + 2c_2}}$$

$$x1(t) \to -\frac{ie^{\frac{t}{2} + c_2}}{\sqrt{-1 + 2c_1e^{t + 2c_2}}}$$

$$x2(t) \to -2ie^{\frac{t}{2} + c_2} \sqrt{-1 + 2c_1e^{t + 2c_2}}$$

$$x1(t) \to \frac{ie^{\frac{t}{2} + c_2}}{\sqrt{-1 + 2c_1e^{t + 2c_2}}}$$

26.5 problem 772

Internal problem ID [15503]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 19. Basic concepts and defi-

nitions. Exercises page 199 **Problem number**: 772.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = \frac{e^{-x(t)}}{t}$$
$$y'(t) = \frac{x(t) e^{-y(t)}}{t}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

dsolve([diff(x(t),t)=exp(-x(t))/t,diff(y(t),t)=x(t)/t*exp(-y(t))],singsol=all)

$$\left\{ x(t) = \ln \left(\ln (t) + c_2 \right) \right\}$$

$$\left\{ y(t) = \ln \left(\int \frac{x(t)}{t} dt + c_1 \right) \right\}$$

✓ Solution by Mathematica

Time used: 0.107 (sec). Leaf size: 41

$$x(t) \to \log(t + c_1)$$

 $y(t) \to \log\left(\text{PolyLog}\left(2, \frac{t}{c_1} + 1\right) + \log\left(-\frac{t}{c_1}\right)\log(t + c_1) + c_2\right)$

26.6 problem 773

Internal problem ID [15504]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 19. Basic concepts and defi-

nitions. Exercises page 199 **Problem number**: 773.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{y(t)}{x(t) + y(t)} + \frac{t}{x(t) + y(t)}$$
$$y'(t) = \frac{x(t)}{x(t) + y(t)} - \frac{t}{x(t) + y(t)}$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 61

dsolve([diff(x(t),t)=(y(t)+t)/(x(t)+y(t)),diff(y(t),t)=(x(t)-t)/(x(t)+y(t))],singsol=all)

$$\left[\{ x(t) = t \}, \{ y(t) = c_1 \} \right]$$

$$\left[\left\{ x(t) = \frac{c_1 t^2 - c_2 t + 1}{c_1 t - c_2} \right\}, \left\{ y(t) = \frac{-x(t) \left(\frac{d}{dt} x(t) \right) + t}{\frac{d}{dt} x(t) - 1} \right\} \right]$$

✓ Solution by Mathematica

Time used: 67.434 (sec). Leaf size: 45

 $DSolve[\{x'[t]==(y[t]+t)/(x[t]+y[t]),y'[t]==(x[t]-t)/(x[t]+y[t])\},\{x[t],y[t]\},t,IncludeSingularing the context of the context$

$$x(t) \rightarrow \frac{t^2 + c_1 t + c_2}{t + c_1}$$

 $y(t) \rightarrow \frac{c_1 t + c_1^2 - c_2}{t + c_1}$

26.7 problem 774

Internal problem ID [15505]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 19. Basic concepts and defi-

nitions. Exercises page 199 **Problem number**: 774.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{t}{y(t) - x(t)} - \frac{y(t)}{y(t) - x(t)}$$
$$y'(t) = \frac{x(t)}{y(t) - x(t)} - \frac{t}{y(t) - x(t)}$$

✓ Solution by Maple

Time used: 0.422 (sec). Leaf size: 132

$$dsolve([diff(x(t),t)=(t-y(t))/(y(t)-x(t)),diff(y(t),t)=(x(t)-t)/(y(t)-x(t))],singsol=all)$$

$$\begin{cases} x(t) = t \\ + \operatorname{RootOf}\left(-t + \int^{-Z} - \frac{2(e^{c_1} f^2 - 1)}{-4 + 3e^{c_1} f^2 - \sqrt{-3e^{c_1} f^2 + 4}e^{\frac{c_1}{2}} f} d_{-}f + c_2\right), x(t) = t \\ + \operatorname{RootOf}\left(-t + \int^{-Z} - \frac{2(e^{c_1} f^2 - 1)}{3e^{c_1} f^2 + \sqrt{-3e^{c_1} f^2 + 4}e^{\frac{c_1}{2}} f - 4} d_{-}f + c_2\right) \end{cases}$$

$$\begin{cases} y(t) = \frac{x(t) \left(\frac{d}{dt}x(t)\right) + t}{\frac{d}{dt}x(t) + 1} \end{cases}$$

Solution by Mathematica

Time used: 14.351 (sec). Leaf size: 151

 $DSolve[\{x'[t] == (t-y[t])/(y[t]-x[t]), y'[t] == (x[t]-t)/(y[t]-x[t])\}, \{x[t], y[t]\}, t, IncludeSingularing the content of th$

$$x(t) \to \frac{1}{2} \left(-\sqrt{-3t^2 + 2c_1t + c_1^2 + 4c_2} - t + c_1 \right)$$

$$y(t) \to \frac{1}{2} \left(\sqrt{-3t^2 + 2c_1t + c_1^2 + 4c_2} - t + c_1 \right)$$

$$x(t) \to \frac{1}{2} \left(\sqrt{-3t^2 + 2c_1t + c_1^2 + 4c_2} - t + c_1 \right)$$

$$y(t) \to \frac{1}{2} \left(-\sqrt{-3t^2 + 2c_1t + c_1^2 + 4c_2} - t + c_1 \right)$$

26.8 problem 775

Internal problem ID [15506]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 19. Basic concepts and defi-

nitions. Exercises page 199 **Problem number**: 775.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{y(t)}{x(t) + y(t)} + \frac{t}{x(t) + y(t)}$$
$$y'(t) = \frac{t}{x(t) + y(t)} + \frac{x(t)}{x(t) + y(t)}$$

✓ Solution by Maple

Time used: 1.656 (sec). Leaf size: 3853

dsolve([diff(x(t),t)=(t+y(t))/(y(t)+x(t)),diff(y(t),t)=(t+x(t))/(y(t)+x(t))],singsol=all)

Expression too large to display Expression too large to display

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{x'[t]==(t+y[t])/(y[t]+x[t]),y'[t]==(x[t]+t)/(y[t]+x[t])\},\{x[t],y[t]\},t,IncludeSingularing and the property of the pr$

Not solved

27 Chapter 3 (Systems of differential equations). Section 20. The method of elimination.

Exercises page 212

27.1	problem	776	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	639
27.2	problem	777																																				640
27.3	problem	778																																				641
27.4	problem	779																																		•		642
27.5	problem	780																																				643
27.6	problem	781																																		•		644
27.7	problem	782																																				645
27.8	problem	783																																		•		646
27.9	problem	784																																				647
27.10)problem	785																																				648
27.11	lproblem	786																																				649

27.1 problem 776

Internal problem ID [15507]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 20. The method of elimina-

tion. Exercises page 212

Problem number: 776.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -9y(t)$$
$$y'(t) = x(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

dsolve([diff(x(t),t)=-9*y(t),diff(y(t),t)=x(t)],singsol=all)

$$x(t) = c_1 \sin(3t) + c_2 \cos(3t)$$
$$y(t) = -\frac{c_1 \cos(3t)}{3} + \frac{c_2 \sin(3t)}{3}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 42

DSolve[{x'[t]==-9*y[t],y'[t]==x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 \cos(3t) - 3c_2 \sin(3t)$$

$$y(t) \rightarrow c_2 \cos(3t) + \frac{1}{3}c_1 \sin(3t)$$

27.2 problem 777

Internal problem ID [15508]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 20. The method of elimina-

tion. Exercises page 212

Problem number: 777.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = y(t) + t$$

$$y'(t) = x(t) - t$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 37

dsolve([diff(x(t),t)=y(t)+t,diff(y(t),t)=x(t)-t],singsol=all)

$$x(t) = c_2 e^t + e^{-t} c_1 + t - 1$$

 $y(t) = c_2 e^t - e^{-t} c_1 + 1 - t$

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 78

DSolve[{x'[t]==y[t]+t,y'[t]==x[t]-t},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{2}e^{-t} \left(2e^{t}(t-1) + (c_1 + c_2)e^{2t} + c_1 - c_2 \right)$$
$$y(t) \to \frac{1}{2}e^{-t} \left(-2e^{t}(t-1) + (c_1 + c_2)e^{2t} - c_1 + c_2 \right)$$

27.3 problem 778

Internal problem ID [15509]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 20. The method of elimina-

tion. Exercises page 212 Problem number: 778.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - 4y(t)$$

$$y'(t) = -2x(t) - 5y(t)$$

With initial conditions

$$[x(0) = 1, y(0) = 4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 32

dsolve([diff(x(t),t)+3*x(t)+4*y(t) = 0, diff(y(t),t)+2*x(t)+5*y(t) = 0, x(0) = 1, y(0) = 4],

$$x(t) = 3e^{-7t} - 2e^{-t}$$

 $y(t) = 3e^{-7t} + e^{-t}$

$$y(t) = 3e^{-7t} + e^{-t}$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 36

 $DSolve[\{x'[t]+3*x[t]+4*y[t]==0,y'[t]+2*x[t]+5*y[t]==0\}, \{x[0]==1,y[0]==4\}, \{x[t],y[t]\},t,Inclusting the context of the conte$

$$x(t) \to e^{-7t} (3 - 2e^{6t})$$

$$y(t) \to e^{-7t} \left(e^{6t} + 3 \right)$$

27.4 problem 779

Internal problem ID [15510]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 20. The method of elimina-

tion. Exercises page 212 Problem number: 779.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + 5y(t)$$

$$y'(t) = -x(t) - 3y(t)$$

With initial conditions

$$[x(0) = -2, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 27

dsolve([diff(x(t),t) = x(t)+5*y(t), diff(y(t),t) = -x(t)-3*y(t), x(0) = -2, y(0) = 1], sings(x(t),t) = x(t)+5*y(t), x(t) = x(t)+5*y(t), x(t)+

$$x(t) = e^{-t}(\sin(t) - 2\cos(t))$$

 $y(t) = e^{-t}\cos(t)$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 20

 $DSolve[\{x'[t]+3*x[t]+4*y[t]==0,y'[t]+2*x[t]+5*y[t]==0\}, \{x[0]==-2,y[0]==1\}, \{x[t],y[t]\},t,Inc]$

$$x(t) \to -2e^{-t}$$
$$y(t) \to e^{-t}$$

$$y(t) \rightarrow e^{-t}$$

27.5 problem 780

Internal problem ID [15511]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 20. The method of elimina-

tion. Exercises page 212

Problem number: 780.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -y(t) + \cos(t)$$

$$y'(t) = -4y(t) + 4\cos(t) + 3x(t) - \sin(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 37

dsolve([4*diff(x(t),t)-diff(y(t),t)+3*x(t)=sin(t),diff(x(t),t)+y(t)=cos(t)],singsol=all)

$$x(t) = \frac{c_2 e^{-3t}}{3} + e^{-t} c_1$$
$$y(t) = c_2 e^{-3t} + e^{-t} c_1 + \cos(t)$$

✓ Solution by Mathematica

Time used: 0.218 (sec). Leaf size: 76

$$x(t) \to \frac{1}{2}e^{-3t} \left(c_1 \left(3e^{2t} - 1 \right) - c_2 \left(e^{2t} - 1 \right) \right)$$

$$y(t) \to \cos(t) + \frac{1}{2}e^{-3t} \left(3c_1 \left(e^{2t} - 1 \right) - c_2 \left(e^{2t} - 3 \right) \right)$$

27.6 problem 781

Internal problem ID [15512]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 20. The method of elimina-

tion. Exercises page 212

Problem number: 781.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -y(t) + z(t)$$

$$y'(t) = z(t)$$

$$z'(t) = -x(t) + z(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 56

dsolve([diff(x(t),t)=-y(t)+z(t),diff(y(t),t)=z(t),diff(z(t),t)=-x(t)+z(t)],singsol=all)

$$x(t) = c_2 \sin(t) + c_3 \sin(t) - c_2 \cos(t) + c_3 \cos(t)$$

$$y(t) = c_1 e^t - c_2 \cos(t) + c_3 \sin(t)$$

$$z(t) = c_1 e^t + c_2 \sin(t) + c_3 \cos(t)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 112

DSolve[{x'[t]==-y[t]+z[t],y'[t]==z[t],z'[t]==-x[t]+z[t]},{x[t],y[t],z[t]},t,IncludeSingularS

$$x(t) \to c_1 \cos(t) + (c_3 - c_2) \sin(t)$$

$$y(t) o rac{1}{2} ig((-c_1 + c_2 + c_3)e^t + (c_1 + c_2 - c_3)\cos(t) + (c_1 - c_2 + c_3)\sin(t) ig)$$

$$z(t) o \frac{1}{2} \left((-c_1 + c_2 + c_3)e^t + (c_1 - c_2 + c_3)\cos(t) - (c_1 + c_2 - c_3)\sin(t) \right)$$

27.7 problem 782

Internal problem ID [15513]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 20. The method of elimina-

tion. Exercises page 212

Problem number: 782.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = y(t) + z(t)$$

$$y'(t) = x(t) + z(t)$$

$$z'(t) = x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 64

 $\boxed{ \text{dsolve}([\text{diff}(x(t),t)=y(t)+z(t),\text{diff}(y(t),t)=x(t)+z(t),\text{diff}(z(t),t)=x(t)+y(t)], \text{singsol=all}) }$

$$x(t) = c_2 e^{2t} + c_3 e^{-t}$$

$$y(t) = c_2 e^{2t} + c_3 e^{-t} + e^{-t} c_1$$

$$z(t) = c_2 e^{2t} - 2c_3 e^{-t} - e^{-t} c_1$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 124

DSolve[{x'[t]==y[t]+z[t],y'[t]==x[t]+z[t],z'[t]==x[t]+y[t]},{x[t],y[t],z[t]},t,IncludeSingul

$$x(t) \to \frac{1}{3}e^{-t}(c_1(e^{3t}+2)+(c_2+c_3)(e^{3t}-1))$$

$$y(t) \to \frac{1}{3}e^{-t}(c_1(e^{3t}-1)+c_2(e^{3t}+2)+c_3(e^{3t}-1))$$

$$z(t) \rightarrow \frac{1}{3}e^{-t}(c_1(e^{3t}-1)+c_2(e^{3t}-1)+c_3(e^{3t}+2))$$

27.8 problem 783

Internal problem ID [15514]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 20. The method of elimination. Exercises page 212

Problem number: 783.

ODE order: 2. ODE degree: 1.

Solution by Maple

Time used: 0.016 (sec). Leaf size: 48

dsolve([diff(x(t),t\$2)=y(t),diff(y(t),t\$2)=x(t)],singsol=all)

$$x(t) = c_1 e^t + c_2 e^{-t} - c_3 \sin(t) - c_4 \cos(t)$$

$$y(t) = c_1 e^t + c_2 e^{-t} + c_3 \sin(t) + c_4 \cos(t)$$

✓ So

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 172

DSolve[{x''[t]==y[t],y''[t]==x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{4}e^{-t}(c_1e^{2t} + c_2e^{2t} + c_3e^{2t} + c_4e^{2t} + 2(c_1 - c_3)e^t\cos(t) + 2(c_2 - c_4)e^t\sin(t) + c_1 - c_2 + c_3 - c_4)$$

$$y(t) \to \frac{1}{4}e^{-t}(c_1e^{2t} + c_2e^{2t} + c_3e^{2t} + c_4e^{2t} - 2(c_1 - c_3)e^t\cos(t) - 2(c_2 - c_4)e^t\sin(t) + c_1 - c_2 + c_3 - c_4)$$

27.9 problem 784

Internal problem ID [15515]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 20. The method of elimina-

tion. Exercises page 212

Problem number: 784. ODE order: 2. ODE degree: 1.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 40

dsolve([diff(x(t),t\$2)+diff(y(t),t)+x(t)=0,diff(x(t),t)+diff(y(t),t\$2)=0],singsol=all)

$$x(t) = c_1 - \frac{1}{2}t^2c_1 - c_2t - c_3$$
$$y(t) = \frac{1}{6}t^3c_1 + \frac{1}{2}c_2t^2 + c_3t + c_4$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 61

DSolve[{x''[t]+y'[t]+x[t]==0,x'[t]+y''[t]==0},{x[t],y[t]},t,IncludeSingularSolutions -> True

$$x(t) \to -\frac{c_1 t^2}{2} - \frac{c_4 t^2}{2} + c_2 t + c_1$$

 $y(t) \to \frac{1}{6} (c_1 + c_4) t^3 - \frac{c_2 t^2}{2} + c_4 t + c_3$

27.10 problem 785

Internal problem ID [15516]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 20. The method of elimina-

tion. Exercises page 212

Problem number: 785.

ODE order: 2. ODE degree: 1.

/

Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

dsolve([diff(x(t),t\$2)=3*x(t)+y(t),diff(y(t),t)=-2*x(t)],singsol=all)

$$x(t) = c_1 e^{-2t} - \frac{c_2 e^t}{2} - \frac{c_3 e^t t}{2} - \frac{c_3 e^t}{2}$$
$$y(t) = c_1 e^{-2t} + c_2 e^t + c_3 e^t t$$

/

Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 125

DSolve[{x''[t]==3*x[t]+y[t],y'[t]==-2*x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{9}e^{-2t} \left(c_1 \left(e^{3t} (3t+5) + 4 \right) + c_2 \left(e^{3t} (3t+2) - 2 \right) + c_3 \left(e^{3t} (3t-1) + 1 \right) \right)$$

$$y(t) \to \frac{1}{9}e^{-2t} \left(c_1 \left(4 - 2e^{3t} (3t+2) \right) + c_2 \left(e^{3t} (2-6t) - 2 \right) + c_3 \left(e^{3t} (8-6t) + 1 \right) \right)$$

27.11 problem 786

Internal problem ID [15517]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 20. The method of elimina-

tion. Exercises page 212 **Problem number**: 786.

ODE order: 2. ODE degree: 1.

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 19

$$x(t) = e^t$$
$$y(t) = -e^{2t} + e^t$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[
$$\{x''[t] == x[t]^2 + y[t], y'[t] == -2 * x[t] * x'[t] + x[t] \}, \{x[0] == 1, x'[0] == 1, y[0] == 0 \}, \{x[t], y[t] == 0 \}$$

Not solved

28 Chapter 3 (Systems of differential equations). Section 21. Finding integrable combinations. Exercises page 219

28.1	problem	787										•		•						651
28.2	$\operatorname{problem}$	788																		652
28.3	$\operatorname{problem}$	789																		653
28.4	$\operatorname{problem}$	790																		654
28.5	$\operatorname{problem}$	791																		656
28.6	${\bf problem}$	792																		657
28.7	problem	793																		658

28.1 problem 787

Internal problem ID [15518]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 21. Finding integrable com-

binations. Exercises page 219 **Problem number**: 787.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t)^{2} + y(t)^{2}$$
$$y'(t) = 2x(t) y(t)$$

✓ Solution by Maple

Time used: 0.36 (sec). Leaf size: 65

 $dsolve([diff(x(t),t)=x(t)^2+y(t)^2,diff(y(t),t)=2*x(t)*y(t)],singsol=all)$

$$\label{eq:second-equation} \begin{split} \left[\{y(t) = 0\}, \left\{ x(t) = \frac{1}{-t + c_1} \right\} \right] \\ \left[\left\{ y(t) = \frac{4c_1}{c_1^2 c_2^2 + 2c_1^2 c_2 t + c_1^2 t^2 - 16} \right\}, \left\{ x(t) = \frac{\frac{d}{dt} y(t)}{2y\left(t\right)} \right\} \right] \end{split}$$

✓ Solution by Mathematica

Time used: 41.052 (sec). Leaf size: 3516

Too large to display

28.2 problem 788

Internal problem ID [15519]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 21. Finding integrable com-

binations. Exercises page 219 **Problem number**: 788.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -\frac{1}{y(t)}$$
$$y'(t) = \frac{1}{x(t)}$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 24

dsolve([diff(x(t),t)=-1/y(t),diff(y(t),t)=1/x(t)],singsol=all)

$$\left\{ x(t) = e^{c_1 t} c_2 \right\}$$

$$\left\{ y(t) = -\frac{1}{\frac{d}{dt} x(t)} \right\}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 35

DSolve[{x'[t]==-1/y[t],y'[t]==1/x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$y(t)
ightarrow rac{c_1 e^{rac{t}{c_1}}}{c_2} \ x(t)
ightarrow c_2 e^{-rac{t}{c_1}}$$

28.3 problem 789

Internal problem ID [15520]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 21. Finding integrable com-

binations. Exercises page 219 Problem number: 789.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{x(t)}{y(t)}$$

$$y'(t) = \frac{y(t)}{x(t)}$$

Solution by Maple

Time used: 0.125 (sec). Leaf size: 34

dsolve([diff(x(t),t)=x(t)/y(t),diff(y(t),t)=y(t)/x(t)],singsol=all)

$$\left\{ x(t) = rac{-1 + \mathrm{e}^{c_2 c_1} \mathrm{e}^{c_1 t}}{c_1}
ight\}$$
 $\left\{ y(t) = rac{x(t)}{rac{d}{dt} x(t)}
ight\}$

Solution by Mathematica

Time used: 0.076 (sec). Leaf size: 45

$$y(t) \rightarrow -\frac{e^{c_1 t} + c_1 c_2}{c_1^2 c_2}$$

$$y(t) o -rac{e^{c_1t}+c_1c_2}{{c_1}^2c_2} \ x(t) o c_2e^{c_1(-t)}+rac{1}{c_1}$$

28.4 problem 790

Internal problem ID [15521]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 21. Finding integrable com-

binations. Exercises page 219 **Problem number**: 790.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -\frac{y(t)}{y(t) - x(t)}$$
$$y'(t) = -\frac{x(t)}{y(t) - x(t)}$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 48

dsolve([diff(x(t),t)=y(t)/(x(t)-y(t)),diff(y(t),t)=x(t)/(x(t)-y(t))],singsol=all)

$$\left\{ x(t) = \frac{-c_1 t^2 - 2c_2 t - 2}{2c_1 t + 2c_2} \right\}$$

$$\left\{ y(t) = \frac{x(t) \left(\frac{d}{dt} x(t)\right)}{\frac{d}{dt} x(t) + 1} \right\}$$

✓ Solution by Mathematica

Time used: 0.106 (sec). Leaf size: 145

 $DSolve[\{x'[t]==y[t]/(x[t]-y[t]),y'[t]==x[t]/(x[t]-y[t])\},\{x[t],y[t]\},t,Include Singular Solution for the property of the pr$

$$y(t) \to -\frac{1}{2} \sqrt{\frac{(t^2 - 2c_2t + c_2^2 + 2c_1)^2}{(t - c_2)^2}}$$

$$x(t) \to -\frac{t^2 - 2c_2t + c_2^2 - 2c_1}{2t - 2c_2}$$

$$y(t) \to \frac{1}{2} \sqrt{\frac{(t^2 - 2c_2t + c_2^2 + 2c_1)^2}{(t - c_2)^2}}$$

$$x(t) \to -\frac{t^2 - 2c_2t + c_2^2 - 2c_1}{2t - 2c_2}$$

28.5 problem 791

Internal problem ID [15522]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 21. Finding integrable com-

binations. Exercises page 219 **Problem number**: 791.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \sin(x(t))\cos(y(t))$$

$$y'(t) = \cos(x(t))\sin(y(t))$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 38

dsolve([diff(x(t),t)=sin(x(t))*cos(y(t)),diff(y(t),t)=cos(x(t))*sin(y(t))],singsol=all)

$$\left\{ y(t) = \operatorname{arccot}\left(\frac{\left(c_1 e^{2t} - c_2\right) e^{-t}}{2}\right) \right\}$$

$$\left\{ x(t) = \operatorname{arccos}\left(\frac{\frac{d}{dt}y(t)}{\sin\left(y\left(t\right)\right)}\right) \right\}$$

✓ Solution by Mathematica

Time used: 0.492 (sec). Leaf size: 121

 $DSolve[\{x'[t] == Sin[x[t]] * Cos[y[t]], y'[t] == Cos[x[t]] * Sin[y[t]]\}, \{x[t], y[t]\}, t, Include Singular + Sin[x[t]] * Sin[x[t]], t, Include Singular + Sin[x[t]], t, Include Sin[x[t]], t, Includ$

$$y(t) \rightarrow \arcsin\left(e^{c_1}\sin\left(\operatorname{InverseFunction}\left[-\arctan\left(\frac{\sqrt{2}\cos(\#1)}{\sqrt{-e^{2c_1}\cos\left(2\left(\frac{\pi}{2}-\#1\right)\right)+2-e^{2c_1}}}\right)\&\right][t+c_2]\right)\right)$$

$$x(t) \rightarrow \operatorname{InverseFunction}\left[-\arctan\left(\frac{\sqrt{2}\cos(\#1)}{\sqrt{-e^{2c_1}\cos\left(2\left(\frac{\pi}{2}-\#1\right)\right)+2-e^{2c_1}}}\right)\&\right][t+c_2]$$

28.6 problem 792

Internal problem ID [15523]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 21. Finding integrable com-

binations. Exercises page 219 **Problem number**: 792.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{e^{-t}}{y(t)}$$
$$y'(t) = \frac{e^{-t}}{x(t)}$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 52

 $\label{eq:decomposition} \\ \mbox{dsolve}([\exp(t)*\mbox{diff}(x(t),t)=1/y(t),\exp(t)*\mbox{diff}(y(t),t)=1/x(t)],\\ \\ \mbox{singsol=all})$

$$\left\{ x(t) = \sqrt{-2 e^{-t} c_1 + 2c_2}, x(t) = -\sqrt{-2 e^{-t} c_1 + 2c_2} \right\}$$

$$\left\{ y(t) = \frac{e^{-t}}{\frac{d}{dt} x(t)} \right\}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 125

DSolve[{Exp[t]*x'[t]==1/y[t],Exp[t]*y'[t]==1/x[t]},{x[t],y[t]},t,IncludeSingularSolutions ->

$$y(t) \to -\sqrt{2}\sqrt{c_1}\sqrt{-e^{-t} + c_1c_2}$$

$$x(t) \to -\frac{\sqrt{-2e^{-t} + 2c_1c_2}}{\sqrt{c_1}}$$

$$y(t) \to \sqrt{2}\sqrt{c_1}\sqrt{-e^{-t} + c_1c_2}$$

$$x(t) \to \frac{\sqrt{-2e^{-t} + 2c_1c_2}}{\sqrt{c_1}}$$

28.7 problem 793

Internal problem ID [15524]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 21. Finding integrable com-

binations. Exercises page 219 **Problem number**: 793.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \cos(x(t))^{2} \cos(y(t))^{2} + \sin(x(t))^{2} \cos(y(t))^{2}$$

$$y'(t) = -2\sin(x(t))\cos(x(t))\sin(y(t))\cos(y(t))$$

With initial conditions

$$[x(0) = 0, y(0) = 0]$$

X Solution by Maple

 $dsolve([diff(x(t),t) = cos(x(t))^2 * cos(y(t))^2 + sin(x(t))^2 * cos(y(t))^2, diff(y(t),t) = -1/2 * cos(x(t))^2 * cos(x(t))^2 * cos(y(t))^2 * cos(y(t))^2$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{x'[t] == Cos[x[t]]^2 * Cos[y[t]]^2 + Sin[x[t]]^2 * Cos[y[t]]^2, y'[t] == -1/2 * Sin[2 * x[t]] * Sin[$

{}

29 Chapter 3 (Systems of differential equations). Section 22. Integration of homogeneous linear systems with constant coefficients. Eulers method. Exercises page 230

29.1	problem	802																		660
29.2	problem	803																		661
29.3	problem	804																		662
29.4	problem	805																		663
29.5	problem	806																		664
29.6	problem	807																		665
29.7	problem	808																		666
29.8	problem	809																		667

29.1 problem 802

Internal problem ID [15525]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 22. Integration of homogeneous linear systems with constant coefficients. Eulers method. Exercises page 230

Problem number: 802.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 8y(t) - x(t)$$
$$y'(t) = x(t) + y(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 36

dsolve([diff(x(t),t)=8*y(t)-x(t),diff(y(t),t)=x(t)+y(t)],singsol=all)

$$x(t) = c_1 e^{3t} + c_2 e^{-3t}$$
$$y(t) = \frac{c_1 e^{3t}}{2} - \frac{c_2 e^{-3t}}{4}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 72

DSolve[{x'[t]==8*y[t]-x[t],y'[t]==x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{3}e^{-3t} \left(c_1 \left(e^{6t} + 2 \right) + 4c_2 \left(e^{6t} - 1 \right) \right)$$
$$y(t) \to \frac{1}{6}e^{-3t} \left(c_1 \left(e^{6t} - 1 \right) + 2c_2 \left(2e^{6t} + 1 \right) \right)$$

29.2 problem 803

Internal problem ID [15526]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 22. Integration of homogeneous linear systems with constant coefficients. Eulers method. Exercises page 230

Problem number: 803.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = x(t) - y(t)$$

$$y'(t) = y(t) - x(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

$$\label{eq:def:def:def:def:def:def:def:def} \begin{split} \operatorname{dsolve}([\operatorname{diff}(\mathbf{x}(\mathsf{t})\,,\mathsf{t}) = & \mathbf{x}(\mathsf{t}) - \mathbf{y}(\mathsf{t})\,, \operatorname{diff}(\mathbf{y}(\mathsf{t})\,,\mathsf{t}) = & \mathbf{y}(\mathsf{t}) - \mathbf{x}(\mathsf{t})]\,, \operatorname{singsol=all}) \end{split}$$

$$x(t) = c_1 + c_2 e^{2t}$$

 $y(t) = -c_2 e^{2t} + c_1$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 60

DSolve[{x'[t]==x[t]-y[t],y'[t]==y[t]-x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{2} (c_1 e^{2t} - c_2 e^{2t} + c_1 + c_2)$$
$$y(t) \to \frac{1}{2} (c_1 (-e^{2t}) + c_2 e^{2t} + c_1 + c_2)$$

problem 804 29.3

Internal problem ID [15527]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 22. Integration of homogeneous linear systems with constant coefficients. Eulers method. Exercises page 230

Problem number: 804.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y(t)$$

$$y'(t) = x(t) - 3y(t)$$

With initial conditions

$$[x(0) = 0, y(0) = 0]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = x(t)-3*y(t), x(0) = 0, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = x(t)-3*y(t), x(0) = 0, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = x(t)-3*y(t), x(0) = 0, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = x(t)-3*y(t), x(0) = 0, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = x(t)-3*y(t), x(0) = 0, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = x(t)-3*y(t), x(0) = 0, y(0) = 0], singsolve([diff(x(t),t) = x(t)-3*y(t), x(0) = 0], singsolve([diff(x(t),t) = x(t)-3*y(t), x(0) = 0], singsolve([diff(x(t),t) = x(t)-3*y(t), x(0) = 0], singsolve([diff(x(t),t) = x(t)-3*y(t), x(t)-3*y(t), x(t)-3*y(t), x(t)-3*y(t), x(t)-3*y(t), x(t)-3*y(t), x(t)-

$$x(t) = 0$$

$$y(t) = 0$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 10

 $DSolve[\{x'[t]==2*x[t]+y[t],y'[t]==x[t]-3*y[t]\},\{x[0]==0,y[0]==0\},\{x[t],y[t]\},t,IncludeSingularity[t]=x[t]-3*y[t]\},\{x[0]==0,y[0]==0\},\{x[t],y[t]\},t,IncludeSingularity[t]=x[t]-3*y[t]\},\{x[0]==0,y[0]==0\},\{x[t],y[t]\},t,IncludeSingularity[t]=x[t]-3*y[t]\},t,IncludeSingularity[t]=x[t]-3*y[t]]$

$$x(t) \rightarrow 0$$

$$x(t) \to 0$$

$$y(t) \to 0$$

29.4 problem 805

Internal problem ID [15528]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 22. Integration of homogeneous linear systems with constant coefficients. Eulers method. Exercises page 230

Problem number: 805.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = x(t) + y(t)$$
$$y'(t) = 4y(t) - 2x(t)$$

With initial conditions

$$[x(0) = 0, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

dsolve([diff(x(t),t) = x(t)+y(t), diff(y(t),t) = 4*y(t)-2*x(t), x(0) = 0, y(0) = -1], sings(x(t),t) = x(t)+y(t), diff(y(t),t) = 4*y(t)-2*x(t), x(0) = 0, y(0) = -1],

$$x(t) = -e^{3t} + e^{2t}$$

 $y(t) = -2e^{3t} + e^{2t}$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 33

DSolve[{x'[t]==x[t]+y[t],y'[t]==4*y[t]-2*x[t]},{x[0]==0,y[0]==-1},{x[t],y[t]},t,IncludeSingu

$$x(t) \to -e^{2t} (e^t - 1)$$
$$y(t) \to e^{2t} - 2e^{3t}$$

29.5 problem 806

Internal problem ID [15529]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 22. Integration of homogeneous linear systems with constant coefficients. Eulers method. Exercises page 230

Problem number: 806.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 4x(t) - 5y(t)$$
$$y'(t) = x(t)$$

With initial conditions

$$[x(0) = 0, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 28

$$x(t) = -5e^{2t}\sin(t)$$

$$y(t) = e^{2t}(-2\sin(t) + \cos(t))$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 27

DSolve[{x'[t]==4*x[t]-4*y[t],y'[t]==x[t]},{x[0]==0,y[0]==1},{x[t],y[t]},t,IncludeSingularSol

$$x(t) \to -4e^{2t}t$$

$$y(t) \to e^{2t}(1-2t)$$

29.6 problem 807

Internal problem ID [15530]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 22. Integration of homogeneous linear systems with constant coefficients. Eulers method. Exercises page 230

Problem number: 807.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -x(t) + y(t) + z(t)$$

$$y'(t) = x(t) - y(t) + z(t)$$

$$z'(t) = x(t) + y(t) - z(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 58

dsolve([diff(x(t),t)=-x(t)+y(t)+z(t),diff(y(t),t)=x(t)-y(t)+z(t),diff(z(t),t)=x(t)+y(t)-z(t)

$$x(t) = c_2 e^t + c_3 e^{-2t}$$

$$y(t) = c_2 e^t + c_3 e^{-2t} + c_1 e^{-2t}$$

$$z(t) = c_2 e^t - 2c_3 e^{-2t} - c_1 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 124

DSolve[{x'[t]==-x[t]+y[t]+z[t],y'[t]==x[t]-y[t]+z[t],z'[t]==x[t]+y[t]-z[t]},{x[t],y[t],z[t]}

$$x(t) \to \frac{1}{3}e^{-2t} \left(c_1(e^{3t} + 2) + (c_2 + c_3) \left(e^{3t} - 1 \right) \right)$$

$$y(t) \to \frac{1}{3}e^{-2t} \left(c_1(e^{3t} - 1) + c_2(e^{3t} + 2) + c_3(e^{3t} - 1) \right)$$

$$z(t) \to \frac{1}{3}e^{-2t} \left(c_1(e^{3t} - 1) + c_2(e^{3t} - 1) + c_3(e^{3t} + 2) \right)$$

29.7 problem 808

Internal problem ID [15531]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 22. Integration of homoge-

neous linear systems with constant coefficients. Eulers method. Exercises page 230

Problem number: 808.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 2x(t) - y(t) + z(t)$$

$$y'(t) = x(t) + 2y(t) - z(t)$$

$$z'(t) = x(t) - y(t) + 2z(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 52

$$x(t) = c_2 e^{3t} + c_3 e^{2t}$$

$$y(t) = c_3 e^{2t} + c_1 e^t$$

$$z(t) = c_3 e^{2t} + c_2 e^{3t} + c_1 e^t$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 99

 $DSolve[\{x'[t]==2*x[t]-y[t]+z[t],y'[t]==x[t]+2*y[t]-z[t],z'[t]==x[t]-y[t]+2*z[t]\},\{x[t],y[t],z'[t]==x[t]-y[t]+2*z[t]\},\{x[t],y[t],z'[t]==x[t]-y[t]+2*z[t]\},\{x[t],y[t],z'[t]==x[t]-y[t]+2*z[t]\},\{x[t],y[t],z'[t]==x[t]-y[t]+2*z[t]\},\{x[t],y[t],z'[t]==x[t]-y[t]+2*z[t]$

$$x(t) \to e^{2t} (c_1 - (c_2 - c_3) (e^t - 1))$$

$$y(t) \to e^t (c_1(e^t - 1) + (c_2 - c_3)e^t + c_3)$$

$$z(t) \rightarrow e^t(c_1(e^t - 1) + (c_2 - c_3)e^t + (c_3 - c_2)e^{2t} + c_3)$$

29.8 problem 809

Internal problem ID [15532]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 22. Integration of homogeneous linear systems with constant coefficients. Eulers method. Exercises page 230

Problem number: 809.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) - y(t) + z(t)$$

$$y'(t) = x(t) + z(t)$$

$$z'(t) = y(t) - 2z(t) - 3x(t)$$

With initial conditions

$$[x(0) = 0, y(0) = 0, z(0) = 1]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

dsolve([diff(x(t),t) = 2*x(t)-y(t)+z(t), diff(y(t),t) = x(t)+z(t), diff(z(t),t) = y(t)-2*z(t)

$$x(t) = 1 - e^{-t}$$

 $y(t) = 1 - e^{-t}$
 $z(t) = 2e^{-t} - 1$

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 38

DSolve[{x'[t]==2*x[t]-y[t]+z[t],y'[t]==x[t]+z[t],z'[t]==y[t]-2*z[t]-3*x[t]},{x[0]==0,y[0]==0

$$x(t) \to 1 - e^{-t}$$

$$y(t) \rightarrow 1 - e^{-t}$$

 $z(t) \rightarrow 2e^{-t} - 1$

$$z(t) \to 2e^{-t} - 1$$

30 Chapter 3 (Systems of differential equations). Section 23. Methods of integrating nonhomogeneous linear systems with constant coefficients. Exercises page 234

30.1 problem	n 810	 	 	 	 	 						669
30.2 problem	n 811	 	 	 	 	 						670
30.3 problem	n 812	 	 	 	 	 						671
30.4 problem	n 813	 	 	 	 	 						672
30.5 problem	n 814	 	 	 	 	 						673

30.1 problem 810

Internal problem ID [15533]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23. Methods of integrating nonhomogeneous linear systems with constant coefficients. Exercises page 234

Problem number: 810.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + y(t) - e^{2t}$$

$$y'(t) = -3x(t) + 2y(t) + 6e^{2t}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 43

dsolve([diff(x(t),t)+2*x(t)-y(t)=-exp(2*t),diff(y(t),t)+3*x(t)-2*y(t)=6*exp(2*t)],singsol=al(t)=al(t

$$x(t) = c_2 e^t + e^{-t} c_1 + 2 e^{2t}$$

$$y(t) = 3c_2 e^t + e^{-t} c_1 + 9 e^{2t}$$

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 85

 $DSolve[\{x'[t]+2*x[t]-y[t]==-Exp[2*t],y'[t]+3*x[t]-2*y[t]==6*Exp[2*t]\},\{x[t],y[t]\},t,IncludeStandsolve[\{x'[t]+2*x[t]-y[t]==-Exp[2*t],y'[t]+3*x[t]-2*y[t]==6*Exp[2*t]\},\{x[t],y[t]\},t,IncludeStandsolve[\{x'[t]+2*x[t]-y[t]==-Exp[2*t],y'[t]+3*x[t]-2*y[t]==6*Exp[2*t]\},\{x[t],y[t]==6*Exp[2*t],y'[t]=6*Exp[2*t],y'$

$$x(t) \to \frac{1}{2}e^{-t} \left(4e^{3t} + (c_2 - c_1)e^{2t} + 3c_1 - c_2 \right)$$
$$y(t) \to \frac{1}{2}e^{-t} \left(18e^{3t} - 3(c_1 - c_2)e^{2t} + 3c_1 - c_2 \right)$$

30.2 problem 811

Internal problem ID [15534]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23. Methods of integrating nonhomogeneous linear systems with constant coefficients. Exercises page 234

Problem number: 811.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = x(t) + y(t) - \cos(t)$$

$$y'(t) = -y(t) - 2x(t) + \cos(t) + \sin(t)$$

With initial conditions

$$[x(0) = 1, y(0) = -2]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: $33\,$

dsolve([diff(x(t),t) = x(t)+y(t)-cos(t), diff(y(t),t) = -y(t)-2*x(t)+cos(t)+sin(t), x(0) = 1

$$x(t) = -\sin(t) + \cos(t) - \cos(t) t$$

$$y(t) = -2\cos(t) + \sin(t) t + \cos(t) t$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 31

$$x(t) \to -\sin(t) - t\cos(t) + \cos(t)$$

$$y(t) \to t\sin(t) + (t-2)\cos(t)$$

30.3 problem 812

Internal problem ID [15535]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23. Methods of integrating nonhomogeneous linear systems with constant coefficients. Exercises page 234

Problem number: 812.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = y(t) + \tan(t)^{2} - 1$$

 $y'(t) = \tan(t) - x(t)$

✓ Solution by Maple

Time used: 0.14 (sec). Leaf size: 30

 $dsolve([diff(x(t),t)=y(t)+tan(t)^2-1,diff(y(t),t)=tan(t)-x(t)],singsol=all)$

$$x(t) = c_2 \sin(t) + c_1 \cos(t) + \tan(t)$$

$$y(t) = c_2 \cos(t) - c_1 \sin(t) + 2$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 34

DSolve[{x'[t]==y[t]+Tan[t]^2-1,y'[t]==Tan[t]-x[t]},{x[t],y[t]},t,IncludeSingularSolutions ->

$$x(t) \to \tan(t) + c_1 \cos(t) + c_2 \sin(t)$$

 $y(t) \to c_2 \cos(t) - c_1 \sin(t) + 2$

30.4 problem 813

Internal problem ID [15536]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23. Methods of integrating nonhomogeneous linear systems with constant coefficients. Exercises page 234

Problem number: 813.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -\frac{4x(t) e^{t}}{e^{t} - 1} - \frac{2y(t) e^{t}}{e^{t} - 1} + \frac{4x(t)}{e^{t} - 1} + \frac{2y(t)}{e^{t} - 1} + \frac{2}{e^{t} - 1}$$
$$y'(t) = \frac{6x(t) e^{t}}{e^{t} - 1} + \frac{3y(t) e^{t}}{e^{t} - 1} - \frac{6x(t)}{e^{t} - 1} - \frac{3y(t)}{e^{t} - 1} - \frac{3}{e^{t} - 1}$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 86

 $\frac{\text{dsolve}([\text{diff}(x(t),t)=-4*x(t)-2*y(t)+2/(\text{exp}(t)-1),\text{diff}(y(t),t)=6*x(t)+3*y(t)-3/(\text{exp}(t)-1)],\text{simple for the property of the$

$$x(t) = 2e^{-t}\ln(e^{t} - 1) - e^{-t}c_{1} + 2e^{-t} + c_{2}$$

$$y(t) = \frac{6e^{-t}\ln(e^{t} - 1) - 4c_{2}e^{t} - 3e^{-t}c_{1} - 6\ln(e^{t} - 1) + 6e^{-t} + 3c_{1} + 4c_{2} - 6e^{-t}}{2e^{t} - 2e^{t} - 2e^{-t}}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 76

$$x(t) \to e^{-t} (2\log(e^t - 1) + c_1(4 - 3e^t) - 2c_2(e^t - 1))$$

$$y(t) \to e^{-t} (-3\log(e^t - 1) + 6c_1(e^t - 1) + c_2(4e^t - 3))$$

30.5 problem 814

Internal problem ID [15537]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23. Methods of integrating nonhomogeneous linear systems with constant coefficients. Exercises page 234

Problem number: 814.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = y(t)$$
$$y'(t) = -x(t) + \frac{1}{\cos(t)}$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 48

dsolve([diff(x(t),t)=y(t),diff(y(t),t)=-x(t)+1/cos(t)],singsol=all)

$$x(t) = c_2 \sin(t) + c_1 \cos(t) + \sin(t) t + \cos(t) \ln(\cos(t))$$

$$y(t) = c_2 \cos(t) - c_1 \sin(t) + \cos(t) t - \sin(t) \ln(\cos(t))$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 43

DSolve[{x'[t]==y[t],y'[t]==-x[t]+1/Cos[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to (t + c_2)\sin(t) + \cos(t)(\log(\cos(t)) + c_1)$$

 $y(t) \to (t + c_2)\cos(t) - \sin(t)(\log(\cos(t)) + c_1)$

31 Chapter 3 (Systems of differential equations). Section 23.2 The method of undetermined coefficients. Exercises page 239

31.1	problem	815		•		•	•			•			•	 				•	•	•		•	675
31.2	$\operatorname{problem}$	816																					676
31.3	$\operatorname{problem}$	817																					677
31.4	${\bf problem}$	818																					678
31.5	${\bf problem}$	819																					679
31.6	${\bf problem}$	820																					680
31.7	$\operatorname{problem}$	821																					681
31.8	$\operatorname{problem}$	822											•										682
31.9	$\operatorname{problem}$	823											•										683
31.10)problem	824												 									684

31.1 problem 815

Internal problem ID [15538]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.2 The method of undetermined coefficients. Exercises page 239

Problem number: 815.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = y(t)$$
$$y'(t) = 1 - x(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $\label{eq:diff} dsolve([diff(x(t),t)=y(t),diff(y(t),t)=1-x(t)],singsol=all)$

$$x(t) = c_2 \sin(t) + c_1 \cos(t) + 1$$

 $y(t) = c_2 \cos(t) - c_1 \sin(t)$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 32

DSolve[{x'[t]==y[t],y'[t]==1-x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 \cos(t) + c_2 \sin(t) + 1$$

$$y(t) \to c_2 \cos(t) - c_1 \sin(t)$$

31.2 problem 816

Internal problem ID [15539]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.2 The method of undeter-

mined coefficients. Exercises page 239

Problem number: 816.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 3 - 2y(t)$$
$$y'(t) = 2x(t) - 2t$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 37

dsolve([diff(x(t),t)=3-2*y(t),diff(y(t),t)=2*x(t)-2*t],singsol=all)

$$x(t) = c_2 \sin(2t) + c_1 \cos(2t) + t$$

$$y(t) = -c_2 \cos(2t) + c_1 \sin(2t) + 1$$

✓ Solution by Mathematica

Time used: 0.126 (sec). Leaf size: 41

DSolve[{x'[t]==3-2*y[t],y'[t]==2*x[t]-2*t},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to t + c_1 \cos(2t) - c_2 \sin(2t)$$

 $y(t) \to c_2 \cos(2t) + c_1 \sin(2t) + 1$

31.3 problem 817

Internal problem ID [15540]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.2 The method of undetermined coefficients. Exercises page 239

Problem number: 817.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = -y(t) + \sin(t)$$

$$y'(t) = x(t) + \cos(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

dsolve([diff(x(t),t)=-y(t)+sin(t),diff(y(t),t)=x(t)+cos(t)],singsol=all)

$$x(t) = c_1 \sin(t) + c_2 \cos(t) y(t) = -c_1 \cos(t) + c_2 \sin(t) + \sin(t)$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 41

DSolve[{x'[t]==-y[t]+Sin[t],y'[t]==x[t]+Cos[t]},{x[t],y[t]},t,IncludeSingularSolutions -> Tr

$$x(t) \rightarrow \left(-\frac{1}{2} + c_1\right)\cos(t) - c_2\sin(t)$$

$$y(t) \to \frac{\sin(t)}{2} + c_2 \cos(t) + c_1 \sin(t)$$

31.4 problem 818

Internal problem ID [15541]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.2 The method of undeter-

mined coefficients. Exercises page 239

Problem number: 818.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = x(t) + y(t) + e^{t}$$

 $y'(t) = x(t) + y(t) - e^{t}$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 34

dsolve([diff(x(t),t)=x(t)+y(t)+exp(t),diff(y(t),t)=x(t)+y(t)-exp(t)],singsol=all)

$$x(t) = \frac{c_1 e^{2t}}{2} + e^t + c_2$$
$$y(t) = \frac{c_1 e^{2t}}{2} - e^t - c_2$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 62

$$x(t) \to \frac{1}{2} \left(2e^t + (c_1 + c_2)e^{2t} + c_1 - c_2 \right)$$
$$y(t) \to \frac{1}{2} \left(-2e^t + (c_1 + c_2)e^{2t} - c_1 + c_2 \right)$$

problem 819 31.5

Internal problem ID [15542]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.2 The method of undeter-

mined coefficients. Exercises page 239

Problem number: 819.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 4x(t) - 5y(t) + 4t - 1$$

$$y'(t) = x(t) - 2y(t) + t$$

With initial conditions

$$[x(0) = 0, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 12

dsolve([diff(x(t),t) = 4*x(t)-5*y(t)+4*t-1, diff(y(t),t) = x(t)-2*y(t)+t, x(0) = 0, y(0) = 0)

$$x(t) = -t$$
$$y(t) = 0$$

$$y(t) = 0$$

✓ Solution by Mathematica

Time used: 0.148 (sec). Leaf size: 12

DSolve $[\{x'[t]==4*x[t]-5*y[t]+4*t-1,y'[t]==x[t]-2*y[t]+t\}, \{x[0]==0,y[0]==0\}, \{x[t],y[t]\},t$, Inc.

$$x(t) \to -t$$
$$y(t) \to 0$$

$$y(t) \to 0$$

31.6 problem 820

Internal problem ID [15543]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.2 The method of undeter-

mined coefficients. Exercises page 239

Problem number: 820.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = y(t) - x(t) + e^t$$

$$y'(t) = x(t) - y(t) + e^t$$

With initial conditions

$$[x(0) = 0, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 28

 $\frac{\text{dsolve}([\text{diff}(x(t),t) = y(t)-x(t)+\exp(t), \text{diff}(y(t),t) = x(t)-y(t)+\exp(t), x(0)}{\text{diff}(x(t),t) = x(t)-y(t)+\exp(t), x(0)} = 0, y(0) = 1$

$$x(t) = -\frac{e^{-2t}}{2} + e^t - \frac{1}{2}$$

$$y(t) = \frac{e^{-2t}}{2} + e^t - \frac{1}{2}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 40

 $DSolve[\{x'[t]==y[t]-x[t]+Exp[t],y'[t]==x[t]-y[t]+Exp[t]\},\{x[0]==0,y[0]==1\},\{x[t],y[t]\},t,Incompared to the context of the co$

$$x(t) o -rac{e^{-2t}}{2} + e^t - rac{1}{2}$$

$$y(t) \to \frac{e^{-2\overline{t}}}{2} + e^t - \frac{1}{2}$$

31.7 problem 821

Internal problem ID [15544]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.2 The method of undetermined coefficients. Exercises page 239

Problem number: 821.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = t^2 - y(t)$$
$$y'(t) = x(t) + t$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

 $\label{eq:diff} dsolve([diff(x(t),t)+y(t)=t^2,diff(y(t),t)-x(t)=t],singsol=all)$

$$x(t) = c_2 \sin(t) + c_1 \cos(t) + t$$

$$y(t) = t^2 - c_2 \cos(t) + c_1 \sin(t) - 1$$

Solution by Mathematica

Time used: 0.061 (sec). Leaf size: $36\,$

DSolve[{x'[t]+y[t]==t^2,y'[t]-x[t]==t},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to t + c_1 \cos(t) - c_2 \sin(t)$$

 $y(t) \to t^2 + c_2 \cos(t) + c_1 \sin(t) - 1$

31.8 problem 822

Internal problem ID [15545]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.2 The method of undeter-

mined coefficients. Exercises page 239

Problem number: 822.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \sin(t) - e^{-t} - y(t)$$

$$y'(t) = -\sin(t) + 2e^{-t}$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 39

dsolve([diff(x(t),t)+diff(y(t),t)+y(t)=exp(-t),2*diff(x(t),t)+diff(y(t),t)+2*y(t)=sin(t)],sin(t)=f(x(t),t)+f(x(t),

$$x(t) = -\sin(t) - e^{-t} - \cos(t) + c_1 t + c_2$$

$$y(t) = \cos(t) - 2e^{-t} - c_1$$

✓ Solution by Mathematica

Time used: 0.244 (sec). Leaf size: 43

DSolve[{x'[t]+y'[t]+y[t]==Exp[-t],2*x'[t]+y'[t]+2*y[t]==Sin[t]},{x[t],y[t]},t,IncludeSingula

$$x(t) \to -e^{-t} - \sin(t) - \cos(t) - c_2 t + c_1$$

 $y(t) \to -2e^{-t} + \cos(t) + c_2$

31.9 problem 823

Internal problem ID [15546]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.2 The method of undeter-

mined coefficients. Exercises page 239

Problem number: 823.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y(t) - 2z(t) + 2 - t$$

$$y'(t) = 1 - x(t)$$

$$z'(t) = x(t) + y(t) - z(t) + 1 - t$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 51

$$x(t) = c_1 \sin(t) - c_2 e^t - c_3 \cos(t)$$

$$y(t) = t + c_1 \cos(t) + c_2 e^t + c_3 \sin(t)$$

$$z(t) = 1 + c_1 \sin(t) - c_3 \cos(t)$$

✓ Solution by Mathematica

Time used: 0.129 (sec). Leaf size: 92

 $DSolve[\{x'[t]==2*x[t]+y[t]-2*z[t]+2-t,y'[t]==1-x[t],z'[t]==x[t]+y[t]-z[t]+1-t\},\{x[t],y[t],z[t]==x[t]+y[t]-z[t]+1-t\},\{x[t],y[t],z[t]==x[t]+y[t]-z[t]+1-t\}$

$$x(t) \to (c_1 - c_3)e^t + c_3\cos(t) + (c_1 + c_2 - c_3)\sin(t)$$

$$y(t) \to t - c_1e^t + c_3e^t + (c_1 + c_2 - c_3)\cos(t) - c_3\sin(t)$$

$$z(t) \to c_3\cos(t) + (c_1 + c_2 - c_3)\sin(t) + 1$$

31.10problem 824

Internal problem ID [15547]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.2 The method of undeter-

mined coefficients. Exercises page 239

Problem number: 824.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) - 2y(t) + 2e^{-t}$$

$$y'(t) = -y(t) - z(t) + 1$$

$$z'(t) = -z(t) + 1$$

With initial conditions

$$[x(0) = 1, y(0) = 1, z(0) = 1]$$

Solution by Maple

Time used: 0.063 (sec). Leaf size: 20

dsolve([diff(x(t),t)+x(t)+2*y(t) = 2*exp(-t), diff(y(t),t)+y(t)+z(t) = 1, diff(z(t),t)+z(t)

$$x(t) = e^{-t}$$
$$y(t) = e^{-t}$$

$$y(t) = e^{-t}$$

$$z(t) = 1$$

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 22

 $DSolve[\{x'[t]+x[t]+2*y[t]==2*Exp[-t],y'[t]+y[t]+z[t]==1,z'[t]+z[t]==1\},\{x[0]==1,y[0]==1,z[0]=1,z$

$$x(t) \to e^{-t}$$

$$y(t) \to e^{-t}$$
$$z(t) \to 1$$

$$z(t) \rightarrow 1$$

32 Chapter 3 (Systems of differential equations). Section 23.3 dAlemberts method. Exercises page 243

32.1	problem	825				•						•	•								686
32.2	${\bf problem}$	826																			687
32.3	$\operatorname{problem}$	827																			688
32.4	${\bf problem}$	828																			689
32.5	problem	829																			690

32.1 problem 825

Internal problem ID [15548]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.3 dAlemberts method.

Exercises page 243

Problem number: 825.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 5x(t) + 4y(t)$$

$$y'(t) = x(t) + 2y(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

 $\label{eq:diff} \\ \texttt{dsolve}([\texttt{diff}(\texttt{x}(\texttt{t}),\texttt{t}) = 5*\texttt{x}(\texttt{t}) + 4*\texttt{y}(\texttt{t}), \texttt{diff}(\texttt{y}(\texttt{t}),\texttt{t}) = \texttt{x}(\texttt{t}) + 2*\texttt{y}(\texttt{t})], \\ \texttt{singsol=all})$

$$x(t) = c_1 e^t + c_2 e^{6t}$$
$$y(t) = -c_1 e^t + \frac{c_2 e^{6t}}{4}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 67

$$x(t) \to \frac{1}{5}e^t(c_1(4e^{5t}+1)+4c_2(e^{5t}-1))$$

$$y(t) \to \frac{1}{5}e^t(c_1(e^{5t}-1)+c_2(e^{5t}+4))$$

32.2 problem 826

Internal problem ID [15549]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.3 dAlemberts method.

Exercises page 243

Problem number: 826.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 6x(t) + y(t)$$

$$y'(t) = 4x(t) + 3y(t)$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

dsolve([diff(x(t),t)=6*x(t)+y(t),diff(y(t),t)=4*x(t)+3*y(t)],singsol=all)

$$x(t) = c_1 e^{7t} + c_2 e^{2t}$$

$$y(t) = c_1 e^{7t} - 4c_2 e^{2t}$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 71

$$x(t) \to \frac{1}{5}e^{2t} \left(c_1 \left(4e^{5t} + 1 \right) + c_2 \left(e^{5t} - 1 \right) \right)$$
$$y(t) \to \frac{1}{5}e^{2t} \left(4c_1 \left(e^{5t} - 1 \right) + c_2 \left(e^{5t} + 4 \right) \right)$$

$$y(t) \to \frac{1}{5}e^{2t} (4c_1(e^{5t} - 1) + c_2(e^{5t} + 4))$$

32.3 problem 827

Internal problem ID [15550]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.3 dAlemberts method.

Exercises page 243

Problem number: 827.

ODE order: 1.
ODE degree: 1.

Solve

$$x'(t) = 2x(t) - 4y(t) + 1$$

$$y'(t) = -x(t) + 5y(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 34

dsolve([diff(x(t),t)=2*x(t)-4*y(t)+1,diff(y(t),t)=-x(t)+5*y(t)],singsol=all)

$$x(t) = c_2 e^t + e^{6t} c_1 - \frac{5}{6}$$
$$y(t) = \frac{c_2 e^t}{4} - e^{6t} c_1 - \frac{1}{6}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 67

$$x(t) \to \frac{1}{5}e^{t} \left(c_{1} \left(e^{5t} + 4 \right) - 4c_{2} \left(e^{5t} - 1 \right) \right)$$
$$y(t) \to \frac{1}{5}e^{t} \left(c_{1} \left(-e^{5t} \right) + 4c_{2}e^{5t} + c_{1} + c_{2} \right)$$

32.4 problem 828

Internal problem ID [15551]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.3 dAlemberts method.

Exercises page 243

Problem number: 828.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) + y(t) + e^{t}$$

 $y'(t) = x(t) + 3y(t) - e^{t}$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 43

dsolve([diff(x(t),t)=3*x(t)+y(t)+exp(t),diff(y(t),t)=x(t)+3*y(t)-exp(t)],singsol=all)

$$x(t) = \frac{c_1 e^{4t}}{2} - e^t + c_2 e^{2t}$$
$$y(t) = \frac{c_1 e^{4t}}{2} + e^t - c_2 e^{2t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 70

DSolve[{x'[t]==3*x[t]+y[t]+Exp[t],y'[t]==x[t]+3*y[t]-Exp[t]},{x[t],y[t]},t,IncludeSingularSo

$$x(t) \to \frac{1}{2}e^{t}((c_{1} - c_{2})e^{t} + (c_{1} + c_{2})e^{3t} - 2)$$
$$y(t) \to \frac{1}{2}e^{t}((c_{2} - c_{1})e^{t} + (c_{1} + c_{2})e^{3t} + 2)$$

32.5 problem 829

Internal problem ID [15552]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3 (Systems of differential equations). Section 23.3 dAlemberts method.

Exercises page 243

Problem number: 829.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 4y(t) + \cos(t)$$

$$y'(t) = -x(t) - 2y(t) + \sin(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 36

dsolve([diff(x(t),t)=2*x(t)+4*y(t)+cos(t),diff(y(t),t)=-x(t)-2*y(t)+sin(t)],singsol=all)

$$x(t) = -2\cos(t) - 3\sin(t) + c_1t + c_2$$

$$y(t) = 2\sin(t) + \frac{c_1}{4} - \frac{c_1t}{2} - \frac{c_2}{2}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 46

 $DSolve[\{x'[t] == 2*x[t] + 4*y[t] + Cos[t], y'[t] == -x[t] - 2*y[t] + Sin[t]\}, \{x[t], y[t]\}, t, IncludeSingularity and the sum of the content of the conten$

$$x(t) \rightarrow -3\sin(t) - 2\cos(t) + 2c_1t + 4c_2t + c_1$$

 $y(t) \rightarrow 2\sin(t) - (c_1 + 2c_2)t + c_2$

33 Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation with constant coefficients. Exercises page 249

33.1	problem	830															•		•	692
33.2	problem	831																		693
33.3	problem	832																		694
33.4	problem	833																		695
33.5	problem	834																		696
33.6	problem	835																		697
33.7	problem	836																	•	698
33.8	problem	837																		699
33.9	problem	838																	•	700
33.10)problem	839																	•	701
33.11	l problem	840																		702
33.12	2problem	841																		703
33.13	Bproblem	842																		704
33.14	4problem	843																		705
33.15	5problem	844																		706
33.16	6problem	845																		707
33.17	7 problem	846																		708

33.1 problem 830

Internal problem ID [15553]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 830.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x' + 3x = e^{-2t}$$

With initial conditions

$$[x(0) = 0]$$

Solution by Maple

Time used: 0.454 (sec). Leaf size: 15

dsolve([diff(x(t),t)+3*x(t)=exp(-2*t),x(0) = 0],x(t), singsol=all)

$$x(t) = e^{-2t} - e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 16

 $DSolve[\{x'[t]+3*x[t]==Exp[-2*t],\{x[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \rightarrow e^{-3t} \left(e^t - 1 \right)$$

33.2 problem 831

Internal problem ID [15554]

 $\mathbf{Book}:$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 831.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x' - 3x = 3t^3 + 3t^2 + 2t + 1$$

With initial conditions

$$[x(0) = -1]$$

✓ Solution by Maple

Time used: 0.359 (sec). Leaf size: 15

 $dsolve([diff(x(t),t)-3*x(t)=3*t^3+3*t^2+2*t+1,x(0) = -1],x(t), singsol=all)$

$$x(t) = -(t+1)(t^2 + t + 1)$$

✓ Solution by Mathematica

Time used: 0.136 (sec). Leaf size: 20

$$x(t) \rightarrow -t^3 - 2t^2 - 2t - 1$$

33.3 problem 832

Internal problem ID [15555]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 832.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x' - x = \cos(t) - \sin(t)$$

With initial conditions

$$[x(0) = 0]$$

Solution by Maple

Time used: 0.375 (sec). Leaf size: 6

dsolve([diff(x(t),t)-x(t)=cos(t)-sin(t),x(0) = 0],x(t), singsol=all)

$$x(t) = \sin\left(t\right)$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 7

DSolve[{x'[t]-x[t]==Cos[t]-Sin[t],{x[0]==0}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \sin(t)$$

33.4 problem 833

Internal problem ID [15556]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 833.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$2x' + 6x = t e^{-3t}$$

With initial conditions

$$\left[x(0) = -\frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.391 (sec). Leaf size: 15

dsolve([2*diff(x(t),t)+6*x(t)=t*exp(-3*t),x(0) = -1/2],x(t), singsol=all)

$$x(t) = \frac{e^{-3t}(t^2 - 2)}{4}$$

✓ Solution by Mathematica

Time used: 0.063 (sec). Leaf size: 19

$$x(t) \to \frac{1}{4}e^{-3t}(t^2 - 2)$$

33.5 problem 834

Internal problem ID [15557]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 834.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x' + x = 2\sin(t)$$

With initial conditions

$$[x(0) = 0]$$

✓ Solution by Maple

Time used: 0.406 (sec). Leaf size: 15

dsolve([diff(x(t),t)+x(t)=2*sin(t),x(0) = 0],x(t), singsol=all)

$$x(t) = -\cos(t) + \sin(t) + e^{-t}$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 17

 $DSolve[\{x'[t]+x[t]==2*Sin[t],\{x[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to e^{-t} + \sin(t) - \cos(t)$$

33.6 problem 835

Internal problem ID [15558]

 $\mathbf{Book}:$ A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 835.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$x''=0$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.266 (sec). Leaf size: 5

dsolve([diff(x(t),t\$2)=0,x(0) = 0, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = 0$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 6

 $DSolve[\{x''[t]==0,\{x[0]==0,x'[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to 0$$

33.7 problem 836

Internal problem ID [15559]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation with constant coefficients. Exercises page 249

Problem number: 836.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$x''=1$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.343 (sec). Leaf size: 9

dsolve([diff(x(t),t\$2)=1,x(0) = 0, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = \frac{t^2}{2}$$

✓ Solution by Mathematica

Time used: $0.052~(\mathrm{sec}).$ Leaf size: 12

 $DSolve[\{x''[t]==1,\{x[0]==0,x'[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) o rac{t^2}{2}$$

33.8 problem 837

Internal problem ID [15560]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 837.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$x'' = \cos\left(t\right)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.344 (sec). Leaf size: 10

dsolve([diff(x(t),t\$2)=cos(t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = 1 - \cos\left(t\right)$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 11

 $DSolve[\{x''[t] == Cos[t], \{x[0] == 0, x'[0] == 0\}\}, x[t], t, IncludeSingularSolutions \rightarrow True]$

$$x(t) \to 1 - \cos(t)$$

33.9 problem 838

Internal problem ID [15561]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 838.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + x' = 0$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.375 (sec). Leaf size: 5

dsolve([diff(x(t),t\$2)+diff(x(t),t)=0,x(0) = 0, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = 0$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 6

 $DSolve[\{x''[t]+x'[t]==0,\{x[0]==0,x'[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to 0$$

33.10 problem 839

Internal problem ID [15562]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 839.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + x' = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = -1]$$

✓ Solution by Maple

Time used: 0.282 (sec). Leaf size: 8

dsolve([diff(x(t),t\$2)+diff(x(t),t)=0,x(0) = 1, D(x)(0) = -1],x(t), singsol=all)

$$x(t) = e^{-t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 10

 $DSolve[\{x''[t]+x'[t]==0,\{x[0]==1,x'[0]==-1\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to e^{-t}$$

33.11 problem 840

Internal problem ID [15563]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 840.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - x' = 1$$

With initial conditions

$$[x(0) = -1, x'(0) = -1]$$

✓ Solution by Maple

Time used: 0.36 (sec). Leaf size: 9

$$dsolve([diff(x(t),t$2)-diff(x(t),t)=1,x(0) = -1, D(x)(0) = -1],x(t), singsol=all)$$

$$x(t) = -t - 1$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 10

$$DSolve[\{x''[t]-x'[t]==1,\{x[0]==-1,x'[0]==-1\}\},x[t],t,IncludeSingularSolutions] \rightarrow True]$$

$$x(t) \rightarrow -t-1$$

33.12 problem 841

Internal problem ID [15564]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 841.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + x = t$$

With initial conditions

$$[x(0) = 0, x'(0) = 1]$$

✓ Solution by Maple

Time used: 0.329 (sec). Leaf size: 5

dsolve([diff(x(t),t\$2)+x(t)=t,x(0) = 0, D(x)(0) = 1],x(t), singsol=all)

$$x(t) = t$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 6

 $DSolve[\{x''[t]+x[t]==t,\{x[0]==0,x'[0]==1\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to t$$

33.13 problem 842

Internal problem ID [15565]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 842.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x'' + 6x' = 12t + 2$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 7

dsolve([diff(x(t),t\$2)+6*diff(x(t),t)=12*t+2,x(0) = 0, D(x)(0) = 0],x(t), singsol=all)

$$x = t^2$$

✓ Solution by Mathematica

Time used: 0.126 (sec). Leaf size: $8\,$

DSolve[{x''[t]+6*x'[t]==12*t+2,{x[0]==0,x'[0]==0}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to t^2$$

33.14 problem 843

Internal problem ID [15566]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 843.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 2x' + 2x = 2$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

$$dsolve([diff(x(t),t\$2)-2*diff(x(t),t)+2*x(t)=2,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)$$

$$x = 1$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 6

$$x(t) \to 1$$

33.15 problem 844

Internal problem ID [15567]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 844.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + 4x' + 4x = 4$$

With initial conditions

$$[x(0) = 1, x'(0) = -4]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 13

$$x = 1 - 4t e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 15

$$x(t) \to 1 - 4e^{-2t}t$$

33.16 problem 845

Internal problem ID [15568]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 845.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$2x'' - 2x' = (1+t)e^t$$

With initial conditions

$$x(0) = \frac{1}{2}, x'(0) = \frac{1}{2}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 13

dsolve([2*diff(x(t),t\$2)-2*diff(x(t),t)=(1+t)*exp(t),x(0) = 1/2, D(x)(0) = 1/2],x(t), sings(x,t) = 1/2, D(x)(x,t) = 1/2, D(

$$x = \frac{e^t(t^2 + 2)}{4}$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 17

$$x(t) \to \frac{1}{4}e^t \left(t^2 + 2\right)$$

33.17 problem 846

Internal problem ID [15569]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISE-

LYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983

Section: Chapter 3. Section 24.2. Solving the Cauchy problem for linear differential equation

with constant coefficients. Exercises page 249

Problem number: 846.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x = 2\cos(t)$$

With initial conditions

$$[x(0) = -1, x'(0) = 1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 15

dsolve([diff(x(t),t\$2)+x(t)=2*cos(t),x(0) = -1, D(x)(0) = 1],x(t), singsol=all)

$$x = -\cos(t) + \sin(t)(1+t)$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 16

$$x(t) \rightarrow (t+1)\sin(t) - \cos(t)$$