A Solution Manual For

DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012

Nasser M. Abbasi

 $May\ 16,\ 2024$

Contents

1	Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33	3
2	Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47	40
3	Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61	71
4	Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71	85
5	Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89	95
6	Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121	136
7	Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133	153
8	Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136	177
9	Chapter 3. Linear Systems. Exercises section 3.1. page 258	210
10	Chapter 3. Linear Systems. Exercises section 3.2. page 277	228
11	Chapter 3. Linear Systems. Exercises section 3.4 page 310	25 1
12	Chapter 3. Linear Systems. Exercises section 3.5 page 327	266
13	Chapter 3. Linear Systems. Exercises section 3.6 page 342	282
14	Chapter 3. Linear Systems. Exercises section 3.8 page 371	285
15	Chapter 3. Linear Systems. Review Exercises for chapter 3. page 37	6305
16	Chapter 4. Forcing and Resonance. Section 4.1 page 399	32 1
17	Chapter 4. Forcing and Resonance. Section 4.2 page 412	363

18	Chapter 4. Forcing and Resonance. Section 4.3 page 424	381
19	Chapter 6. Laplace transform. Section 6.3 page 600	387
20	Chapter 6. Laplace transform. Section 6.4. page 608	397
21	Chapter 6. Laplace transform. Section 6.6. page 624	402

1 Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

1.1	problem 1.		•		•	•		•		•		•	•	•			•	•	•	•	4
1.2	problem 5 .			 •																	5
1.3	problem 6 .											•									6
1.4	problem 7.																				7
1.5	problem 8 .																				8
1.6	problem 9 .																				9
1.7	problem 10																				10
1.8	problem 11																				11
1.9	problem 12																				12
1.10	problem 13																				13
1.11	problem 14																				14
1.12	problem 15																				15
1.13	problem 16																				16
1.14	problem 17																				17
1.15	problem 18																				18
1.16	problem 19																				20
1.17	problem 20																				21
1.18	problem 21			 •																	22
1.19	problem 22			 •																	23
1.20	problem 23											•									24
1.21	problem 24			 •																	25
1.22	problem 25											•									26
1.23	problem 26											•									27
1.24	problem 27			 •																	28
1.25	problem 28			 •																	29
1.26	problem 29			 •																	30
1.27	problem 30			 •																	31
1.28	problem 31											•									32
1.29	problem 32			 •																	33
1.30	problem 33											•									34
1.31	problem 34											•									35
1.32	problem 35			 •																	36
1.33	problem 36											•									37
1.34	$problem\ 37$																		•		38
1.35	problem 38										 										39

1.1 problem 1

Internal problem ID [12865]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{y+1}{1+t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(t),t)=(y(t)+1)/(t+1),y(t), singsol=all)

$$y(t) = c_1 t + c_1 - 1$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: $18\,$

DSolve[y'[t]==(y[t]+1)/(t+1),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -1 + c_1(t+1)$$

$$y(t) \to -1$$

1.2 problem 5

Internal problem ID [12866]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - t^2 y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(t),t)=(t*y(t))^2,y(t), singsol=all)$

$$y(t) = -\frac{3}{t^3 - 3c_1}$$

✓ Solution by Mathematica

Time used: 0.214 (sec). Leaf size: $22\,$

DSolve[y'[t]==(t*y[t])^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{3}{t^3 + 3c_1}$$
$$y(t) \to 0$$

1.3 problem 6

Internal problem ID [12867]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - t^4 y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(t),t)=t^4*y(t),y(t), singsol=all)$

$$y(t) = c_1 \mathrm{e}^{\frac{t^5}{5}}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 22

DSolve[y'[t]==t^4*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 e^{\frac{t^5}{5}}$$
$$y(t) \to 0$$

problem 7 1.4

Internal problem ID [12868]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y = 1$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)=2*y(t)+1,y(t), singsol=all)

$$y(t) = -\frac{1}{2} + c_1 e^{2t}$$

Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 24

DSolve[y'[t]==2*y[t]+1,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{1}{2} + c_1 e^{2t}$$
$$y(t) \to -\frac{1}{2}$$

7

$$y(t) o -rac{1}{2}$$

1.5 problem 8

Internal problem ID [12869]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y = 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)=2-y(t),y(t), singsol=all)

$$y(t) = 2 + e^{-t}c_1$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 20

DSolve[y'[t]==2-y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 2 + c_1 e^{-t}$$
$$y(t) \to 2$$

1.6 problem 9

Internal problem ID [12870]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - e^{-y} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

dsolve(diff(y(t),t)=exp(-y(t)),y(t), singsol=all)

$$y(t) = \ln\left(t + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.369 (sec). Leaf size: 10

DSolve[y'[t]==Exp[-y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \log(t + c_1)$$

problem 10 1.7

Internal problem ID [12871]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - x^2 = 1$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

 $dsolve(diff(x(t),t)=1+x(t)^2,x(t), singsol=all)$

$$x(t) = \tan\left(t + c_1\right)$$

Solution by Mathematica

Time used: 0.222 (sec). Leaf size: 24

DSolve[x'[t]==1+x[t]^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \tan(t + c_1)$$

 $x(t) \to -i$

$$x(t) \rightarrow -i$$

$$x(t) \rightarrow i$$

1.8 problem 11

Internal problem ID [12872]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2ty^2 - 3y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=2*t*y(t)^2+3*y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{-t^2 + c_1 - 3t}$$

✓ Solution by Mathematica

Time used: 0.218 (sec). Leaf size: 23

DSolve[y'[t]==2*t*y[t]^2+3*y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{1}{t^2 + 3t + c_1}$$
$$y(t) \to 0$$

1.9 problem 12

Internal problem ID [12873]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{t}{y} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(t),t)=t/y(t),y(t), singsol=all)

$$y(t) = \sqrt{t^2 + c_1}$$
$$y(t) = -\sqrt{t^2 + c_1}$$

✓ Solution by Mathematica

Time used: 0.14 (sec). Leaf size: 35

DSolve[y'[t]==t/y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\sqrt{t^2 + 2c_1}$$

 $y(t) \rightarrow \sqrt{t^2 + 2c_1}$

1.10 problem 13

Internal problem ID [12874]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{t}{t^2y + y} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 29

 $\label{eq:diff} dsolve(diff(y(t),t)=t/(t^2*y(t)+y(t)),y(t), singsol=all)$

$$y(t) = \sqrt{\ln(t^2 + 1) + c_1}$$

 $y(t) = -\sqrt{\ln(t^2 + 1) + c_1}$

✓ Solution by Mathematica

Time used: 0.162 (sec). Leaf size: 41 $\,$

 $DSolve[y'[t] == t/(t^2*y[t]+y[t]), y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\sqrt{\log(t^2+1) + 2c_1}$$

 $y(t) \to \sqrt{\log(t^2+1) + 2c_1}$

1.11 problem 14

Internal problem ID [12875]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - ty^{\frac{1}{3}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=t*y(t)^(1/3),y(t), singsol=all)$

$$y(t)^{\frac{2}{3}} - \frac{t^2}{3} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.346 (sec). Leaf size: 31

DSolve[y'[t]==t*y[t]^(1/3),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{(t^2 + 2c_1)^{3/2}}{3\sqrt{3}}$$

 $y(t) \to 0$

1.12 problem 15

Internal problem ID [12876]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{1}{2y+1} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

 $\label{eq:decomposition} dsolve(\texttt{diff}(\texttt{y}(\texttt{t}),\texttt{t}) = 1/(2*\texttt{y}(\texttt{t})+1),\texttt{y}(\texttt{t}), \; \texttt{singsol=all})$

$$y(t) = -\frac{1}{2} - \frac{\sqrt{1 + 4c_1 + 4t}}{2}$$
$$y(t) = -\frac{1}{2} + \frac{\sqrt{1 + 4c_1 + 4t}}{2}$$

✓ Solution by Mathematica

Time used: 0.14 (sec). Leaf size: 49

DSolve[y'[t]==1/(2*y[t]+1),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{2} \left(-1 - \sqrt{4t + 1 + 4c_1} \right)$$

$$y(t) o \frac{1}{2} \left(-1 + \sqrt{4t + 1 + 4c_1} \right)$$

problem 16 1.13

Internal problem ID [12877]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2y+1}{t} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(t),t)=(2*y(t)+1)/t,y(t), singsol=all)

$$y(t) = -\frac{1}{2} + t^2 c_1$$

Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 22

DSolve[y'[t]==(2*y[t]+1)/t,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{1}{2} + c_1 t^2$$
$$y(t) \to -\frac{1}{2}$$

$$y(t) \to -\frac{1}{2}$$

1.14 problem 17

Internal problem ID [12878]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y(-y+1) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(t),t)=y(t)*(1-y(t)),y(t), singsol=all)

$$y(t) = \frac{1}{1 + e^{-t}c_1}$$

✓ Solution by Mathematica

Time used: 0.394 (sec). Leaf size: $29\,$

DSolve[y'[t]==y[t]*(1-y[t]),y[t],t,IncludeSingularSolutions -> True]

$$y(t) o rac{e^t}{e^t + e^{c_1}}$$

$$y(t) \to 0$$

$$y(t) \rightarrow 1$$

1.15 problem 18

Internal problem ID [12879]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{4t}{1 + 3y^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 282

 $dsolve(diff(y(t),t)=4*t/(1+3*y(t)^2),y(t), singsol=all)$

$$y(t) = \frac{\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324t^2c_1 + 324c_1^2 + 3}\right)^{\frac{2}{3}} - 3}{3\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324t^2c_1 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}$$

$$y(t) = -\frac{\left(1 + i\sqrt{3}\right)\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324t^2c_1 + 324c_1^2 + 3}\right)^{\frac{2}{3}} + 3i\sqrt{3} - 3}{6\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324t^2c_1 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}$$

$$y(t)$$

$$= \frac{i\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324t^2c_1 + 324c_1^2 + 3}\right)^{\frac{2}{3}}\sqrt{3} - \left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324t^2c_1 + 324c_1^2 + 3}\right)}{6\left(27t^2 + 54c_1 + 3\sqrt{81t^4 + 324t^2c_1 + 324c_1^2 + 3}\right)^{\frac{1}{3}}}$$

✓ Solution by Mathematica

Time used: 3.132 (sec). Leaf size: 298

DSolve[y'[t]==4*t/(1+3*y[t]^2),y[t],t,IncludeSingularSolutions -> True]

$$\begin{split} y(t) & \to \frac{\sqrt[3]{54t^2 + \sqrt{108 + 729 \left(2t^2 + c_1\right)^2} + 27c_1}}{3\sqrt[3]{2}} - \frac{\sqrt[3]{2}}{\sqrt[3]{54t^2 + \sqrt{108 + 729 \left(2t^2 + c_1\right)^2} + 27c_1}} \\ y(t) & \to \frac{\left(-1 + i\sqrt{3}\right)\sqrt[3]{54t^2 + \sqrt{108 + 729 \left(2t^2 + c_1\right)^2} + 27c_1}}{6\sqrt[3]{2}} \\ & \quad + \frac{1 + i\sqrt{3}}{2^{2/3}\sqrt[3]{54t^2 + \sqrt{108 + 729 \left(2t^2 + c_1\right)^2} + 27c_1}} \\ y(t) & \to \frac{1 - i\sqrt{3}}{2^{2/3}\sqrt[3]{54t^2 + \sqrt{108 + 729 \left(2t^2 + c_1\right)^2} + 27c_1}} \\ & \quad - \frac{\left(1 + i\sqrt{3}\right)\sqrt[3]{54t^2 + \sqrt{108 + 729 \left(2t^2 + c_1\right)^2} + 27c_1}}{6\sqrt[3]{2}} \end{split}$$

1.16 problem 19

Internal problem ID [12880]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$v' - t^2v + 2v = t^2 - 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(\textbf{v}(\textbf{t}),\textbf{t}) = \textbf{t}^2 * \textbf{v}(\textbf{t}) - 2 - 2 * \textbf{v}(\textbf{t}) + \textbf{t}^2, \textbf{v}(\textbf{t}), \text{ singsol=all}) \\$

$$v(t) = -1 + e^{\frac{t(t^2 - 6)}{3}} c_1$$

✓ Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 27

DSolve[v'[t]==t^2*v[t]-2-2*v[t]+t^2,v[t],t,IncludeSingularSolutions -> True]

$$v(t) \to -1 + c_1 e^{\frac{1}{3}t(t^2-6)}$$

 $v(t) \to -1$

1.17 problem 20

Internal problem ID [12881]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{1}{1+ty+y+t} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

 $\label{eq:def:def:def:def:def:def:def} $$\operatorname{dsolve}(\operatorname{diff}(y(t),t)=1/(t*y(t)+t+y(t)+1),y(t), \text{ singsol=all})$$

$$y(t) = -1 - \sqrt{1 + 2\ln(t+1) + 2c_1}$$

$$y(t) = -1 + \sqrt{1 + 2\ln(t+1) + 2c_1}$$

✓ Solution by Mathematica

Time used: 0.217 (sec). Leaf size: 47

DSolve[y'[t]==1/(t*y[t]+t+y[t]+1),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -1 - \sqrt{2\log(t+1) + 1 + 2c_1}$$

 $y(t) \to -1 + \sqrt{2\log(t+1) + 1 + 2c_1}$

1.18 problem 21

Internal problem ID [12882]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{\mathrm{e}^t y}{1 + y^2} = 0$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 34

 $dsolve(diff(y(t),t)=exp(t)*y(t)/(1+y(t)^2),y(t), singsol=all)$

$$y(t) = rac{\mathrm{e}^{\mathrm{e}^t + c_1}}{\sqrt{rac{\mathrm{e}^{2c_1 + 2\,\mathrm{e}^t}}{\mathrm{LambertW}\left(\mathrm{e}^{2c_1 + 2\,\mathrm{e}^t}
ight)}}}$$

✓ Solution by Mathematica

Time used: 33.022 (sec). Leaf size: 46

 $\label{eq:DSolve} DSolve[y'[t]==Exp[t]*y[t]/(1+y[t]^2),y[t],t,IncludeSingularSolutions \ \ -> \ \ True]$

$$y(t)
ightarrow -\sqrt{W\left(e^{2(e^t+c_1)}
ight)}$$
 $y(t)
ightarrow \sqrt{W\left(e^{2(e^t+c_1)}
ight)}$ $y(t)
ightarrow 0$

problem 22 1.19

Internal problem ID [12883]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 = -4$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 24

 $dsolve(diff(y(t),t)=y(t)^2-4,y(t), singsol=all)$

$$y(t) = \frac{-2c_1e^{4t} - 2}{-1 + c_1e^{4t}}$$

Solution by Mathematica

Time used: 1.053 (sec). Leaf size: 40

DSolve[y'[t]==y[t]^2-4,y[t],t,IncludeSingularSolutions -> True]

$$y(t)
ightarrow rac{2 - 2e^{4(t+c_1)}}{1 + e^{4(t+c_1)}} \ y(t)
ightarrow -2 \ y(t)
ightarrow 2$$

$$y(t) \rightarrow -2$$

$$y(t) \to 2$$

problem 23 1.20

Internal problem ID [12884]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$w' - \frac{w}{t} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 7

dsolve(diff(w(t),t)=w(t)/t,w(t), singsol=all)

$$w(t) = c_1 t$$

Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 14

DSolve[w'[t]==w[t]/t,w[t],t,IncludeSingularSolutions -> True]

$$w(t) \to c_1 t$$

 $w(t) \to 0$

$$w(t) \to 0$$

1.21 problem 24

Internal problem ID [12885]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \sec(y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

dsolve(diff(y(x),x)=sec(y(x)),y(x), singsol=all)

$$y(x) = \arcsin\left(c_1 + x\right)$$

✓ Solution by Mathematica

Time used: 0.35 (sec). Leaf size: 10

DSolve[y'[x] == Sec[y[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \arcsin(x + c_1)$$

1.22 problem 25

Internal problem ID [12886]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' + xt = 0$$

With initial conditions

$$\left[x(0) = \frac{1}{\sqrt{\pi}}\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve([diff(x(t),t)=-x(t)*t,x(0) = 1/Pi^(1/2)],x(t), singsol=all)$

$$x(t) = \frac{\mathrm{e}^{-\frac{t^2}{2}}}{\sqrt{\pi}}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 20

DSolve[{x'[t]==-x[t]*t,{x[0]==1/Sqrt[Pi]}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{e^{-\frac{t^2}{2}}}{\sqrt{\pi}}$$

1.23 problem 26

Internal problem ID [12887]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - ty = 0$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: $12\,$

 $\label{eq:decomposition} dsolve([diff(y(t),t)=t*y(t),y(0) = 3],y(t), \ singsol=all)$

$$y(t) = 3 e^{\frac{t^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 16

 $DSolve[\{y'[t]==t*y[t],\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 3e^{\frac{t^2}{2}}$$

1.24 problem 27

Internal problem ID [12888]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 0$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 9

 $dsolve([diff(y(t),t)=-y(t)^2,y(0)=1/2],y(t), singsol=all)$

$$y(t) = \frac{1}{t+2}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 10

 $\label{eq:DSolve} DSolve[\{y'[t]==-y[t]^2,\{y[0]==1/2\}\},y[t],t,IncludeSingularSolutions \ -> \ True]$

$$y(t) \to \frac{1}{t+2}$$

1.25 problem 28

Internal problem ID [12889]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - t^2 y^3 = 0$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 15

 $dsolve([diff(y(t),t)=t^2*y(t)^3,y(0) = -1],y(t), singsol=all)$

$$y(t) = -\frac{3}{\sqrt{-6t^3 + 9}}$$

✓ Solution by Mathematica

Time used: 0.285 (sec). Leaf size: $20\,$

 $DSolve[\{y'[t]==t^2*y[t]^3,\{y[0]==-1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\frac{1}{\sqrt{1 - \frac{2t^3}{3}}}$$

1.26 problem 29

Internal problem ID [12890]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(t),t)=-y(t)^2,y(0)=0],y(t), singsol=all)$

$$y(t) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $DSolve[\{y'[t]==-y[t]^2,\{y[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 0$$

1.27 problem 30

Internal problem ID [12891]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{t}{y - t^2 y} = 0$$

With initial conditions

$$[y(0) = 4]$$

✓ Solution by Maple

Time used: 0.328 (sec). Leaf size: 24

 $dsolve([diff(y(t),t)=t/(y(t)-t^2*y(t)),y(0) = 4],y(t), singsol=all)$

$$y(t) = \sqrt{i\pi - \ln(t-1) - \ln(t+1) + 16}$$

✓ Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 24

 $DSolve[\{y'[t]==t/(y[t]-t^2*y[t]),\{y[0]==4\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \sqrt{-\log(t^2 - 1) + i\pi + 16}$$

1.28 problem 31

Internal problem ID [12892]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y = 1$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $\label{eq:decomposition} dsolve([diff(y(t),t)=2*y(t)+1,y(0) = 3],y(t), singsol=all)$

$$y(t) = -\frac{1}{2} + \frac{7e^{2t}}{2}$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 18

 $\label{eq:DSolve} DSolve[\{y'[t]==2*y[t]+1,\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{2} \left(7e^{2t} - 1 \right)$$

1.29 problem 32

Internal problem ID [12893]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 32.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - ty^2 - 2y^2 = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 16

 $dsolve([diff(y(t),t)=t*y(t)^2+2*y(t)^2,y(0) = 1],y(t), singsol=all)$

$$y(t) = -\frac{2}{t^2 + 4t - 2}$$

✓ Solution by Mathematica

Time used: 0.219 (sec). Leaf size: 17

 $DSolve[\{y'[t]==t*y[t]^2+2*y[t]^2,\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\frac{2}{t^2 + 4t - 2}$$

1.30 problem 33

Internal problem ID [12894]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 33.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - \frac{t^2}{x + t^3 x} = 0$$

With initial conditions

$$[x(0) = -2]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 18

 $dsolve([diff(x(t),t)=t^2/(x(t)+t^3*x(t)),x(0) = -2],x(t), singsol=all)$

$$x(t) = -\frac{\sqrt{36 + 6\ln(t^3 + 1)}}{3}$$

✓ Solution by Mathematica

Time used: 0.202 (sec). Leaf size: $26\,$

 $DSolve[\{x'[t]==t^2/(x[t]+t^3*x[t]),\{x[0]==-2\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to -\sqrt{\frac{2}{3}}\sqrt{\log\left(t^3 + 1\right) + 6}$$

1.31 problem 34

Internal problem ID [12895]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 34.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{1 - y^2}{y} = 0$$

With initial conditions

$$[y(0) = -2]$$

Solution by Maple

Time used: 0.094 (sec). Leaf size: 16

 $dsolve([diff(y(t),t)=(1-y(t)^2)/y(t),y(0) = -2],y(t), singsol=all)$

$$y(t) = -\sqrt{3e^{-2t} + 1}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 20

 $DSolve[\{y'[t]==(1-y[t]^2)/y[t],\{y[0]==-2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\sqrt{3e^{-2t} + 1}$$

1.32 problem 35

Internal problem ID [12896]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 35.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \left(1 + y^2\right)t = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 14

 $dsolve([diff(y(t),t)=(y(t)^2+1)*t,y(0) = 1],y(t), singsol=all)$

$$y(t) = \tan\left(\frac{t^2}{2} + \frac{\pi}{4}\right)$$

✓ Solution by Mathematica

Time used: 0.29 (sec). Leaf size: 17

 $DSolve[\{y'[t]==(y[t]^2+1)*t,\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \tan\left(\frac{1}{4}(2t^2 + \pi)\right)$$

1.33 problem 36

Internal problem ID [12897]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 36.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{1}{2y+3} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve([diff(y(t),t)=1/(2*y(t)+3),y(0) = 1],y(t), singsol=all)

$$y(t) = -\frac{3}{2} + \frac{\sqrt{25 + 4t}}{2}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 20

 $DSolve[\{y'[t]==1/(2*y[t]+3),\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{2} \left(\sqrt{4t + 25} - 3 \right)$$

1.34 problem 37

Internal problem ID [12898]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 37.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2ty^2 - 3t^2y^2 = 0$$

With initial conditions

$$[y(1) = -1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 16

 $\label{eq:decomposition} $$ dsolve([diff(y(t),t)=2*t*y(t)^2+3*t^2*y(t)^2,y(1) = -1],y(t), $$ singsol=all)$$

$$y(t) = -\frac{1}{t^3 + t^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.222 (sec). Leaf size: 17

DSolve[{y'[t]==2*t*y[t]^2+3*t^2*y[t]^2,{y[1]==-1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\frac{1}{t^3+t^2-1}$$

1.35 problem 38

Internal problem ID [12899]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

Problem number: 38.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{y^2 + 5}{y} = 0$$

With initial conditions

$$[y(0) = -2]$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 16

 $dsolve([diff(y(t),t)=(y(t)^2+5)/y(t),y(0) = -2],y(t), singsol=all)$

$$y(t) = -\sqrt{9e^{2t} - 5}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 20

 $DSolve[\{y'[t]==(y[t]^2+5)/y[t],\{y[0]==-2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow -\sqrt{9e^{2t}-5}$$

Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47 2.1 2.22.3 2.4 2.5 2.6 2.7 2.8 2.92.27 problem 20

2.28 problem 21

2.29 problem 22

2.1 problem 1

Internal problem ID [12900]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'=t^2+t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=t^2+t,y(t), singsol=all)$

$$y(t) = \frac{1}{3}t^3 + \frac{1}{2}t^2 + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

DSolve[y'[t]==t^2+t,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{t^3}{3} + \frac{t^2}{2} + c_1$$

2.2 problem 2

Internal problem ID [12901]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = t^2 + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(t),t)=t^2+1,y(t), singsol=all)$

$$y(t) = \frac{1}{3}t^3 + t + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 16

DSolve[y'[t]==t^2+1,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{t^3}{3} + t + c_1$$

2.3 problem 3

Internal problem ID [12902]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 2y = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)=1-2*y(t),y(t), singsol=all)

$$y(t) = e^{-2t}c_1 + \frac{1}{2}$$

Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 24

DSolve[y'[t]==1-2*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{2} + c_1 e^{-2t}$$
$$y(t) \to \frac{1}{2}$$

2.4 problem 4

Internal problem ID [12903]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 4y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

 $dsolve(diff(y(t),t)=4*y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{-4t + c_1}$$

✓ Solution by Mathematica

Time used: 0.157 (sec). Leaf size: 20

DSolve[y'[t]==4*y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{1}{4t + c_1}$$
$$y(t) \to 0$$

2.5 problem 5

Internal problem ID [12904]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y(-y+1) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(t),t)=2*y(t)*(1-y(t)),y(t), singsol=all)

$$y(t) = \frac{1}{e^{-2t}c_1 + 1}$$

✓ Solution by Mathematica

Time used: 0.404 (sec). Leaf size: $33\,$

DSolve[y'[t]==2*y[t]*(1-y[t]),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \frac{e^{2t}}{e^{2t} + e^{c_1}}$$

$$y(t) \rightarrow 0$$

$$y(t) \rightarrow 1$$

2.6 problem 6

Internal problem ID [12905]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = 1 + t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(t),t)=y(t)+t+1,y(t), singsol=all)

$$y(t) = -t - 2 + c_1 e^t$$

✓ Solution by Mathematica

Time used: 0.1 (sec). Leaf size: 16

DSolve[y'[t]==y[t]+t+1,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -t + c_1 e^t - 2$$

2.7 problem 7

Internal problem ID [12906]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y(-y + 1) = 0$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve([diff(y(t),t)=3*y(t)*(1-y(t)),y(0) = 1/2],y(t), singsol=all)

$$y(t) = \frac{1}{1 + \mathrm{e}^{-3t}}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 20

 $DSolve[\{y'[t]==3*y[t]*(1-y[t]),\{y[0]==1/2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{e^{3t}}{e^{3t} + 1}$$

2.8 problem 8

Internal problem ID [12907]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = -t$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve([diff(y(t),t)=2*y(t)-t,y(0) = 1/2],y(t), singsol=all)

$$y(t) = \frac{t}{2} + \frac{1}{4} + \frac{e^{2t}}{4}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 19

 $\label{eq:DSolve} DSolve[\{y'[t]==2*y[t]-t,\{y[0]==1/2\}\},y[t],t,IncludeSingularSolutions \ -> \ True]$

$$y(t) \to \frac{1}{4} (2t + e^{2t} + 1)$$

2.9 problem 9

Internal problem ID [12908]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Riccati]

$$y' - \left(y + \frac{1}{2}\right)(y+t) = 0$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.188 (sec). Leaf size: 65

dsolve([diff(y(t),t)=(y(t)+1/2)*(y(t)+t),y(0) = 1/2],y(t), singsol=all)

$$y(t) = \frac{\sqrt{\pi} e^{-\frac{1}{8}} \sqrt{2} \operatorname{erf}\left(\frac{i\sqrt{2}}{4}\right) + \sqrt{\pi} e^{-\frac{1}{8}} \sqrt{2} \operatorname{erf}\left(\frac{i\sqrt{2}(2t-1)}{4}\right) + 4i e^{\frac{t(t-1)}{2}} - 2i}{-2\sqrt{\pi} e^{-\frac{1}{8}} \sqrt{2} \operatorname{erf}\left(\frac{i\sqrt{2}}{4}\right) - 2\sqrt{\pi} e^{-\frac{1}{8}} \sqrt{2} \operatorname{erf}\left(\frac{i\sqrt{2}(2t-1)}{4}\right) + 4i}$$

✓ Solution by Mathematica

Time used: 0.332 (sec). Leaf size: 124

 $DSolve[\{y'[t]==(y[t]+1/2)*(y[t]+t),\{y[0]==1/2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow \frac{-\sqrt{2\pi} \mathrm{erfi}\left(\frac{1-2t}{2\sqrt{2}}\right) + \sqrt{2\pi} \mathrm{erfi}\left(\frac{1}{2\sqrt{2}}\right) + 4e^{\frac{1}{8}(1-2t)^2} - 2\sqrt[8]{e}}{2\sqrt{2\pi} \mathrm{erfi}\left(\frac{1-2t}{2\sqrt{2}}\right) - 2\sqrt{2\pi} \mathrm{erfi}\left(\frac{1}{2\sqrt{2}}\right) + 4\sqrt[8]{e}}$$

2.10 problem 10

Internal problem ID [12909]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - (1+t)y = 0$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve([diff(y(t),t)=(t+1)*y(t),y(0) = 1/2],y(t), singsol=all)

$$y(t) = \frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 19

 $DSolve[\{y'[t]==(t+1)*y[t],\{y[0]==1/2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{2} e^{\frac{1}{2}t(t+2)}$$

2.11 problem 15 b(1)

Internal problem ID [12910]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 15 b(1).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$S' - S^3 + 2S^2 - S = 0$$

With initial conditions

$$\left[S(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 1.39 (sec). Leaf size: 37

 $dsolve([diff(S(t),t)=S(t)^3-2*S(t)^2+S(t),S(0) = 1/2],S(t), singsol=all)$

$$S(t) = \mathrm{e}^{\mathrm{RootOf}\left(-i\pi\,\mathrm{e}^{-Z} - \ln\left(\mathrm{e}^{-Z} + 1\right)\mathrm{e}^{-Z} + _Z\mathrm{e}^{-Z} + t\,\mathrm{e}^{-Z} + 2\,\mathrm{e}^{-Z} + 1\right)} + 1$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

{}

2.12 problem 15 b(2)

Internal problem ID [12911]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 15 b(2).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$S' - S^3 + 2S^2 - S = 0$$

With initial conditions

$$\left[S(1) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.735 (sec). Leaf size: 35

 $dsolve([diff(S(t),t)=S(t)^3-2*S(t)^2+S(t),S(1) = 1/2],S(t), singsol=all)$

$$S(t) = \mathrm{e}^{\mathrm{RootOf}(-i\pi\,\mathrm{e}^{-Z} - \ln(\mathrm{e}^{-Z} + 1)\mathrm{e}^{-Z}} + -Z\mathrm{e}^{-Z} + t\,\mathrm{e}^{-Z} + \mathrm{e}^{-Z} + 1)} + 1$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

{}

2.13 problem 15 b(3)

Internal problem ID [12912]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 15 b(3).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$S' - S^3 + 2S^2 - S = 0$$

With initial conditions

$$[S(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(S(t),t)=S(t)^3-2*S(t)^2+S(t),S(0) = 1],S(t), singsol=all)$

$$S(t) = 1$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

DSolve[{S'[t]==S[t]^3-2*S[t]^2+S[t],{S[0]==1}},S[t],t,IncludeSingularSolutions -> True]

$$S(t) \to 1$$

2.14 problem 15 b(4)

Internal problem ID [12913]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 15 b(4).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$S' - S^3 + 2S^2 - S = 0$$

With initial conditions

$$\left[S(0) = \frac{3}{2}\right]$$

✓ Solution by Maple

Time used: 11.64 (sec). Leaf size: 41

 $dsolve([diff(S(t),t)=S(t)^3-2*S(t)^2+S(t),S(0) = 3/2],S(t), singsol=all)$

$$S(t) = \mathrm{e}^{\mathrm{RootOf}(-\ln(\mathrm{e}^{-Z}+1)\mathrm{e}^{-Z}+\mathrm{e}^{-Z}\ln(3) + _Z\mathrm{e}^{-Z} + t\,\mathrm{e}^{-Z} - 2\,\mathrm{e}^{-Z} + 1)} + 1$$

✓ Solution by Mathematica

Time used: $0.\overline{885}$ (sec). Leaf size: 31

$$S(t) \rightarrow \text{InverseFunction} \left[-\frac{1}{\#1-1} - \log(\#1-1) + \log(\#1) \& \right] \left[t - 2 + \log(3) \right]$$

2.15 problem 15 b(5)

Internal problem ID [12914]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 15 b(5).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$S' - S^3 + 2S^2 - S = 0$$

With initial conditions

$$\left[S(0) = -\frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.61 (sec). Leaf size: 45

 $dsolve([diff(S(t),t)=S(t)^3-2*S(t)^2+S(t),S(0) = -1/2],S(t), singsol=all)$

$$S(t) = \mathrm{e}^{\mathrm{RootOf}\left(-3\ln\left(\mathrm{e}^{-Z}+1\right)\mathrm{e}^{-Z}-3\,\mathrm{e}^{-Z}\ln(3)+3} - Z\mathrm{e}^{-Z}+3t\,\mathrm{e}^{-Z}+2\,\mathrm{e}^{-Z}+3\right)} + 1$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{S'[t]==S[t]^3-2*S[t]^2+S[t],{S[0]==-1/2}},S[t],t,IncludeSingularSolutions -> True]

{}

2.16 problem 16 (i)

Internal problem ID [12915]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 - y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve(diff(y(t),t)=y(t)^2+y(t),y(t), singsol=all)$

$$y(t) = \frac{1}{-1 + e^{-t}c_1}$$

✓ Solution by Mathematica

Time used: 0.384 (sec). Leaf size: 33

DSolve[y'[t]==y[t]^2+y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{e^{t+c_1}}{-1 + e^{t+c_1}}$$

$$y(t) \rightarrow -1$$

$$y(t) \rightarrow 0$$

2.17 problem 16 (ii)

Internal problem ID [12916]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(t),t)=y(t)^2-y(t),y(t), singsol=all)$

$$y(t) = \frac{1}{1 + c_1 e^t}$$

✓ Solution by Mathematica

Time used: 0.294 (sec). Leaf size: $25\,$

DSolve[y'[t]==y[t]^2-y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{1 + e^{t + c_1}}$$

$$y(t) \to 0$$

$$y(t) \rightarrow 1$$

2.18 problem 16 (iii)

Internal problem ID [12917]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^3 - y^2 = 0$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 18

 $dsolve(diff(y(t),t)=y(t)^3+y(t)^2,y(t), singsol=all)$

$$y(t) = -\frac{1}{\text{LambertW}(-c_1 e^{t-1}) + 1}$$

✓ Solution by Mathematica

Time used: 0.318 (sec). Leaf size: 38

DSolve[y'[t]==y[t]^3+y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \text{InverseFunction}\left[-\frac{1}{\#1} - \log(\#1) + \log(\#1 + 1)\&\right][t + c_1]$$

$$y(t) \rightarrow -1$$

$$y(t) \to 0$$

2.19 problem 16 (iv)

Internal problem ID [12918]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = -t^2 + 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(t),t)=2-t^2,y(t), singsol=all)$

$$y(t) = -\frac{1}{3}t^3 + 2t + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 18

DSolve[y'[t]==2-t^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{t^3}{3} + 2t + c_1$$

problem 16 (v) 2.20

Internal problem ID [12919]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (v).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - ty - ty^2 = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=t*y(t)+t*y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{-1 + e^{-\frac{t^2}{2}}c_1}$$

Solution by Mathematica

Time used: 0.396 (sec). Leaf size: 45

DSolve[y'[t]==t*y[t]+t*y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t)
ightarrow -rac{e^{rac{t^2}{2}+c_1}}{-1+e^{rac{t^2}{2}+c_1}} \ y(t)
ightarrow -1 \ y(t)
ightarrow 0$$

$$y(t) \to -1$$

$$y(t) \to 0$$

2.21 problem 16 (vi)

Internal problem ID [12920]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (vi).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - t^2 y = t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(t),t)=t^2+t^2*y(t),y(t), singsol=all)$

$$y(t) = -1 + c_1 e^{\frac{t^3}{3}}$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 24

DSolve[y'[t]==t^2+t^2*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -1 + c_1 e^{\frac{t^3}{3}}$$
$$y(t) \rightarrow -1$$

2.22 problem 16 (vii)

Internal problem ID [12921]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (vii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - ty = t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(t),t)=t+t*y(t),y(t), singsol=all)

$$y(t) = -1 + e^{\frac{t^2}{2}}c_1$$

✓ Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 24

DSolve[y'[t]==t+t*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -1 + c_1 e^{\frac{t^2}{2}}$$

 $y(t) \rightarrow -1$

2.23 problem 16 (viii)

Internal problem ID [12922]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 16 (viii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'=t^2-2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(t),t)=t^2-2,y(t), singsol=all)$

$$y(t) = \frac{1}{3}t^3 - 2t + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 18

DSolve[y'[t]==t^2-2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{t^3}{3} - 2t + c_1$$

2.24 problem 19 a(i)

Internal problem ID [12923]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 19 a(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\theta' + \frac{11\cos(\theta)}{10} = \frac{9}{10}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(theta(t),t)=1-cos(theta(t))+(1+cos(theta(t)))*(-1/10),theta(t),singsol=all)

$$heta(t) = -2 \arctan \left(rac{ anh\left(rac{(t+c_1)\sqrt{10}}{10}
ight)\sqrt{10}}{10}
ight)$$

✓ Solution by Mathematica

Time used: 1.026 (sec). Leaf size: 69

DSolve[theta'[t]==1-Cos[theta[t]]+(1+Cos[theta[t]])*(-1/10),theta[t],t,IncludeSingularSoluti

$$\begin{aligned} \theta(t) &\to -2 \arctan \left(\frac{\tanh \left(\frac{t - 10c_1}{\sqrt{10}} \right)}{\sqrt{10}} \right) \\ \theta(t) &\to -\arccos \left(\frac{9}{11} \right) \\ \theta(t) &\to \arccos \left(\frac{9}{11} \right) \\ \theta(t) &\to -2 \arctan \left(\frac{1}{\sqrt{10}} \right) \\ \theta(t) &\to 2 \arctan \left(\frac{1}{\sqrt{10}} \right) \end{aligned}$$

2.25 problem 19 a(ii)

Internal problem ID [12924]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 19 a(ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\theta'=2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(diff(theta(t),t)=1-cos(theta(t))+(1+cos(theta(t))),theta(t), singsol=all)

$$\theta(t) = 2t + c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 11

DSolve[theta'[t] == 1-Cos[theta[t]] + (1+Cos[theta[t]]), theta[t], t, IncludeSingular Solutions -> T

$$\theta(t) \to 2t + c_1$$

2.26 problem 19 a(iii)

Internal problem ID [12925]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 19 a(iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\theta' + \frac{9\cos(\theta)}{10} = \frac{11}{10}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(theta(t),t)=1-cos(theta(t))+(1+cos(theta(t)))*(1/10),theta(t), singsol=all)

$$\theta(t) = 2 \arctan \left(\frac{\tan \left(\frac{(t+c_1)\sqrt{10}}{10} \right) \sqrt{10}}{10} \right)$$

✓ Solution by Mathematica

Time used: 10.277 (sec). Leaf size: 55

DSolve[theta'[t]==1-Cos[theta[t]]+(1+Cos[theta[t]])*(1/10),theta[t],t,IncludeSingularSolution

$$\theta(t) \to 2 \arctan\left(\frac{\tan\left(\frac{t-10c_1}{\sqrt{10}}\right)}{\sqrt{10}}\right)$$

$$\theta(t) \to -\arccos\left(\frac{11}{9}\right)$$

$$\theta(t) \to \arccos\left(\frac{11}{9}\right)$$

$$\theta(t) \to \arctan\left[\left\{-\pi, \pi\right\}\right]$$

problem 20 2.27

Internal problem ID [12926]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$v' + \frac{v}{RC} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(v(t),t)=-v(t)/(R*C),v(t), singsol=all)

$$v(t) = c_1 \mathrm{e}^{-\frac{t}{RC}}$$

Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 24

DSolve[v'[t]==-v[t]/(r*c),v[t],t,IncludeSingularSolutions -> True]

$$v(t) \to c_1 e^{-\frac{t}{cr}}$$
$$v(t) \to 0$$

$$v(t) \to 0$$

2.28 problem 21

Internal problem ID [12927]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$v' - \frac{K - v}{RC} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(v(t),t)=(K-v(t))/(R*C),v(t), singsol=all)

$$v(t) = K + c_1 e^{-\frac{t}{RC}}$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 26

DSolve[v'[t]==(k-v[t])/(r*c),v[t],t,IncludeSingularSolutions -> True]

$$v(t) \to k + c_1 e^{-\frac{t}{cr}}$$

 $v(t) \to k$

2.29 problem 22

Internal problem ID [12928]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$v' + 2v = 2V(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(v(t),t)=(V(t)-v(t))/(1/2*1),v(t), singsol=all)

$$v(t) = \left(2\left(\int V(t) e^{2t}dt\right) + c_1\right) e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 32

DSolve[v'[t]==(V[t]-v[t])/(1/2*1),v[t],t,IncludeSingularSolutions -> True]

$$v(t) \to e^{-2t} \left(\int_1^t 2e^{2K[1]} V(K[1]) dK[1] + c_1 \right)$$

3 Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

3.1	problem	Τ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	72
3.2	problem	2																																					73
3.3	problem	3																																					74
3.4	problem	4																																					75
3.5	problem	5																																					76
3.6	problem	6																																					77
3.7	problem	7																																					78
3.8	problem	8																																					79
3.9	problem	9																																					80
3.10	problem	10																																					81
3.11	problem	15	1																																				82
3.12	problem	16																																					83
3 13	problem	17	,																																				8/1

3.1 problem 1

Internal problem ID [12929]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y = 1$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

 $\label{eq:decomposition} dsolve([diff(y(t),t)=2*y(t)+1,y(0) = 3],y(t), singsol=all)$

$$y(t) = -\frac{1}{2} + \frac{7e^{2t}}{2}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 18

 $\label{eq:DSolve} DSolve[\{y'[t]==2*y[t]+1,\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{2} \left(7e^{2t} - 1 \right)$$

3.2 problem 2

Internal problem ID [12930]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_Riccati, _special]]

$$y' + y^2 = t$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 89

$$dsolve([diff(y(t),t)=t-y(t)^2,y(0) = 1],y(t), singsol=all)$$

 $y(t) = \frac{2\,\mathrm{AiryAi}\,(1,t)\,\pi 3^{\frac{5}{6}} - 3\,\mathrm{AiryAi}\,(1,t)\,\Gamma \left(\frac{2}{3}\right)^2 3^{\frac{2}{3}} - 3\,\mathrm{AiryBi}\,(1,t)\,3^{\frac{1}{6}}\Gamma \left(\frac{2}{3}\right)^2 - 2\,\mathrm{AiryBi}\,(1,t)\,\pi 3^{\frac{1}{3}}}{2\,\mathrm{AiryAi}\,(t)\,\pi 3^{\frac{5}{6}} - 3\,\mathrm{AiryAi}\,(t)\,\Gamma \left(\frac{2}{3}\right)^2 3^{\frac{2}{3}} - 3\,\mathrm{AiryBi}\,(t)\,3^{\frac{1}{6}}\Gamma \left(\frac{2}{3}\right)^2 - 2\,\mathrm{AiryBi}\,(t)\,\pi 3^{\frac{1}{3}}}$

✓ Solution by Mathematica

Time used: 11.27 (sec). Leaf size: 163

 $\label{eq:DSolve} DSolve[\{y'[t]==t-y[t]^2,\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

 $y(t) \rightarrow \frac{2it^{3/2}\operatorname{Gamma}\left(\frac{1}{3}\right)\operatorname{BesselJ}\left(-\frac{2}{3},\frac{2}{3}it^{3/2}\right) + \sqrt[3]{-3}\operatorname{Gamma}\left(\frac{2}{3}\right)\left(it^{3/2}\operatorname{BesselJ}\left(-\frac{4}{3},\frac{2}{3}it^{3/2}\right) - it^{3/2}\operatorname{BesselJ}\left(\frac{2}{3}\right)}{2t\left(\sqrt[3]{-3}\operatorname{Gamma}\left(\frac{2}{3}\right)\operatorname{BesselJ}\left(-\frac{1}{3},\frac{2}{3}it^{3/2}\right) + \operatorname{Gamma}\left(\frac{1}{3}\right)\operatorname{BesselJ}\left(\frac{1}{3},\frac{2}{3}it^{3/2}\right)} \right)$

3.3 problem 3

Internal problem ID [12931]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_Riccati, _special]]

$$y' - y^2 = -4t$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 115

$$\label{eq:decomposition} dsolve([diff(y(t),t)=y(t)^2-4*t,y(0) = 1/2],y(t), singsol=all)$$

$$= \frac{2^{\frac{2}{3}} \left(\left(3\,2^{\frac{2}{3}}3^{\frac{1}{6}}\Gamma\left(\frac{2}{3}\right)^2 - \pi 3^{\frac{1}{3}}\right) \operatorname{AiryBi}\left(1,2^{\frac{2}{3}}t\right) + \operatorname{AiryAi}\left(1,2^{\frac{2}{3}}t\right) \left(3\Gamma\left(\frac{2}{3}\right)^2 6^{\frac{2}{3}} + 3^{\frac{5}{6}}\pi\right)\right)}{\left(-3\Gamma\left(\frac{2}{3}\right)^2 6^{\frac{2}{3}} - 3^{\frac{5}{6}}\pi\right) \operatorname{AiryAi}\left(2^{\frac{2}{3}}t\right) + \operatorname{AiryBi}\left(2^{\frac{2}{3}}t\right) \left(-3\,2^{\frac{2}{3}}3^{\frac{1}{6}}\Gamma\left(\frac{2}{3}\right)^2 + \pi 3^{\frac{1}{3}}\right)}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: } 10.151 \text{ (sec). Leaf size: } 193}$

 $DSolve[\{y'[t]==y[t]^2-4*t,\{y[0]==1/2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$\begin{array}{c} y(t) \to \\ -\frac{4it^{3/2} \operatorname{Gamma}\left(\frac{1}{3}\right) \operatorname{BesselJ}\left(-\frac{2}{3}, \frac{4}{3}it^{3/2}\right) + 2^{2/3}\sqrt[3]{3}\left(\sqrt{3} - i\right) \operatorname{Gamma}\left(\frac{2}{3}\right) \left(2t^{3/2} \operatorname{BesselJ}\left(-\frac{4}{3}, \frac{4}{3}it^{3/2}\right) - 2t^{2/3}\sqrt[3]{3}\left(-1 - i\sqrt{3}\right) \operatorname{Gamma}\left(\frac{2}{3}\right) \operatorname{BesselJ}\left(-\frac{1}{3}, \frac{4}{3}it^{3/2}\right) + \operatorname{Gamma}\left(\frac{1}{3}\right) \operatorname{Impart}\left(\frac{1}{3}\right) \operatorname{Gamma}\left(\frac{1}{3}\right) \operatorname{BesselJ}\left(-\frac{1}{3}, \frac{4}{3}it^{3/2}\right) + \operatorname{Gamma}\left(\frac{1}{3}\right) \operatorname{Impart}\left(\frac{1}{3}\right) \operatorname{Gamma}\left(\frac{1}{3}\right) \operatorname{Gamma}\left(\frac{1}{3}\right$$

3.4 problem 4

Internal problem ID [12932]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \sin(y) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 1.594 (sec). Leaf size: 63

 $\label{eq:decomposition} dsolve([diff(y(t),t)=\sin(y(t)),y(0) = 1],y(t), \ singsol=all)$

$$y(t) = \arctan\left(-\frac{2e^{t}\sin(1)}{(-1+\cos(1))e^{2t}-\cos(1)-1}, \frac{(1-\cos(1))e^{2t}-\cos(1)-1}{(-1+\cos(1))e^{2t}-\cos(1)-1}\right)$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 16

DSolve[{y'[t]==Sin[y[t]],{y[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \arccos(-\tanh(t - \arctanh(\cos(1))))$$

3.5 problem 5

Internal problem ID [12933]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - (3 - w)(w + 1) = 0$$

With initial conditions

$$[w(0) = 4]$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 23

dsolve([diff(w(t),t)=(3-w(t))*(w(t)+1),w(0) = 4],w(t), singsol=all)

$$w(t) = \frac{15 e^{4t} + 1}{-1 + 5 e^{4t}}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 26

 $DSolve[\{w'[t]==(3-w[t])*(w[t]+1),\{w[0]==4\}\},w[t],t,IncludeSingularSolutions \rightarrow True]$

$$w(t) o rac{15e^{4t} + 1}{5e^{4t} - 1}$$

3.6 problem 6

Internal problem ID [12934]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - (3 - w)(w + 1) = 0$$

With initial conditions

$$[w(0) = 0]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 21

 $\label{eq:decomposition} dsolve([diff(w(t),t)=(3-w(t))*(w(t)+1),w(0) = 0],w(t), \ singsol=all)$

$$w(t) = \frac{3e^{4t} - 3}{3 + e^{4t}}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 23

 $DSolve[\{w'[t]==(3-w[t])*(w[t]+1),\{w[0]==0\}\},w[t],t,IncludeSingularSolutions \rightarrow True]$

$$w(t) \to \frac{3(e^{4t} - 1)}{e^{4t} + 3}$$

problem 7 3.7

Internal problem ID [12935]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - e^{\frac{2}{y}} = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.281 (sec). Leaf size: 37

$$\label{eq:decomposition} dsolve([diff(y(t),t)=exp(2/y(t)),y(0) = 2],y(t), \ singsol=all)$$

y(t) =

 $\frac{z}{\operatorname{RootOf}\left(2_Z\operatorname{expIntegral}_{1}\left(1\right)-2_Z\operatorname{expIntegral}_{1}\left(-_Z\right)-2_Z\operatorname{e}^{-1}-t_Z-2\operatorname{e}^{-Z}\right)}$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

{}

3.8 problem 8

Internal problem ID [12936]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - e^{\frac{2}{y}} = 0$$

With initial conditions

$$[y(1) = 2]$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 38

$$dsolve([diff(y(t),t)=exp(2/y(t)),y(1) = 2],y(t), singsol=all)$$

y(t) =

 $-\frac{2}{\operatorname{RootOf}\left(2_Z\operatorname{expIntegral}_{1}\left(1\right)-2_Z\operatorname{expIntegral}_{1}\left(-_Z\right)-2_Z\operatorname{e}^{-1}-t_Z-2\operatorname{e}^{-Z}+_Z\right)}$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

{}

3.9 problem 9

Internal problem ID [12937]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + y^3 = 0$$

With initial conditions

$$\left[y(0) = \frac{1}{5}\right]$$

✓ Solution by Maple

Time used: 1.594 (sec). Leaf size: 21

 $dsolve([diff(y(t),t)=y(t)^2-y(t)^3,y(0) = 1/5],y(t), singsol=all)$

$$y(t) = \frac{1}{\text{LambertW} (4 e^{4-t}) + 1}$$

✓ Solution by Mathematica

Time used: 0.495 (sec). Leaf size: $31\,$

 $DSolve[\{y'[t]==y[t]^2-y[t]^3,\{y[0]==2/10\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow \text{InverseFunction} \left[\frac{1}{\#1} + \log(1 - \#1) - \log(\#1) \& \right] \left[-t + 5 + \log(4) \right]$$

3.10 problem 10

Internal problem ID [12938]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Abel]

$$y' - 2y^3 = t^2$$

With initial conditions

$$\left[y(0) = -\frac{1}{2}\right]$$

X Solution by Maple

 $dsolve([diff(y(t),t)=2*y(t)^3+t^2,y(0) = -1/2],y(t), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[\{y'[t]==2*y[t]^3+t^2,\{y[0]==-1/2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

Not solved

3.11 problem 15

Internal problem ID [12939]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \sqrt{y} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 11

dsolve([diff(y(t),t)=sqrt(y(t)),y(0)=1],y(t), singsol=all)

$$y(t) = \frac{\left(t+2\right)^2}{4}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 14

DSolve[{y'[t]==Sqrt[y[t]],{y[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{4}(t+2)^2$$

3.12 problem 16

Internal problem ID [12940]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y = 2$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $\label{eq:decomposition} dsolve([diff(y(t),t)=2-y(t),y(0) = 1],y(t), \ singsol=all)$

$$y(t) = 2 - e^{-t}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 14

 $DSolve[\{y'[t]==2-y[t],\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow 2 - e^{-t}$$

3.13 problem 17

Internal problem ID [12941]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\theta' + \frac{11\cos(\theta)}{10} = \frac{9}{10}$$

With initial conditions

$$[\theta(0) = 1]$$

✓ Solution by Maple

Time used: 0.344 (sec). Leaf size: 29

dsolve([diff(theta(t),t)=1-cos(theta(t)) + (1+cos(theta(t)))*(-1/10),theta(0) = 1],theta(t)

$$\theta(t) = -2 \arctan \left(\frac{\tanh \left(-\arctan \left(\tan \left(\frac{1}{2} \right) \sqrt{10} \right) + \frac{\sqrt{10}t}{10} \right) \sqrt{10}}{10} \right)$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 36

DSolve[{theta'[t]==1-Cos[theta[t]] + (1+Cos[theta[t]])*(-1/10),{theta[0]==1}},theta[t],t,In

$$\theta(t) \to -2 \arctan \left(\frac{\tanh \left(\frac{t}{\sqrt{10}} - \operatorname{arctanh}\left(\sqrt{10} \tan \left(\frac{1}{2} \right) \right) \right)}{\sqrt{10}} \right)$$

4 Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

4.1	problem 5.																				86
4.2	problem 6 .																		,		87
4.3	problem 7 .																				88
4.4	problem 8 .																				89
4.5	problem 12																	•			90
4.6	problem 13																				91
4.7	problem 14																				92
4.8	problem 15																			•	93
4.9	problem 16			 																	94

4.1 problem 5

Internal problem ID [12942]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y(y - 1)(y - 3) = 0$$

With initial conditions

$$[y(0) = 4]$$

✓ Solution by Maple

Time used: 1.828 (sec). Leaf size: 133

$$\label{eq:decomposition} dsolve([diff(y(t),t)=y(t)*(y(t)-1)*(y(t)-3),y(0) = 4],y(t), singsol=all)$$

$$= \frac{48\left(\frac{e^{6t}}{3} - \frac{9}{16}\right)\left(27 - 32e^{6t} + 8\sqrt{16e^{12t} - 27e^{6t}}\right)^{\frac{2}{3}} + 48\left(\left(27 - 32e^{6t} + 8\sqrt{16e^{12t} - 27e^{6t}}\right)^{\frac{1}{3}} + 3\right)\left(e^{6t} - 27e^{6t}\right)^{\frac{1}{3}}}{\left(27 - 32e^{6t} + 8\sqrt{16e^{12t} - 27e^{6t}}\right)^{\frac{2}{3}}\left(16e^{6t} - 27e^{6t}\right)^{\frac{1}{3}}}$$

Solution by Mathematica

Time used: 0.172 (sec). Leaf size: 132

$$y(t) \rightarrow \frac{3i(\sqrt{3}+i)\sqrt[3]{4\sqrt{e^{6t}(16e^{6t}-27)^3}+864e^{6t}-256e^{12t}-729}}{32e^{6t}-54} + \frac{9(1+i\sqrt{3})}{2\sqrt[3]{4\sqrt{e^{6t}(16e^{6t}-27)^3}+864e^{6t}-256e^{12t}-729}} + 1$$

4.2 problem 6

Internal problem ID [12943]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y(y - 1)(y - 3) = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(y(t),t)=y(t)*(y(t)-1)*(y(t)-3),y(0) = 0],y(t), singsol=all)

$$y(t) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

$$y(t) \to 0$$

4.3 problem 7

Internal problem ID [12944]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y(y - 1)(y - 3) = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 4.344 (sec). Leaf size: 147

$$\label{eq:decomposition} $$ dsolve([diff(y(t),t)=y(t)*(y(t)-1)*(y(t)-3),y(0) = 2],y(t), $$ singsol=all) $$$$

y(t)

$$=\frac{\left(16\,\mathrm{e}^{6t}+9\right)\left(1+8\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{2}{3}}+\left(24\,\mathrm{e}^{6t}+12\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}+9\right)\left(1+8\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+3\right)\left(1+8\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{2}{3}}+\left(8\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}+3\right)\left(1+8\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e}^{6t}+4\,\mathrm{e}^{12t}}\right)^{\frac{1}{3}}+\left(16\,\mathrm{e}^{6t}+4\sqrt{\mathrm{e$$

✓ Solution by Mathematica

Time used: 0.091 (sec). Leaf size: 105

$$y(t) \rightarrow \frac{\sqrt[3]{2\sqrt{e^{6t}(4e^{6t}+1)^3} + 8e^{6t} + 16e^{12t} + 1}}{4e^{6t}+1} + \frac{1}{\sqrt[3]{2\sqrt{e^{6t}(4e^{6t}+1)^3} + 8e^{6t} + 16e^{12t} + 1}} + 1$$

4.4 problem 8

Internal problem ID [12945]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y(y - 1)(y - 3) = 0$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 1.703 (sec). Leaf size: 133

$$dsolve([diff(y(t),t)=y(t)*(y(t)-1)*(y(t)-3),y(0) = -1],y(t), singsol=all)$$

$$= \frac{\left(2 e^{6 t}-4\right) \left(1-e^{6 t}+\sqrt{e^{6 t} \left(e^{6 t}-2\right)}\right)^{\frac{2}{3}}+\left(\left(i \sqrt{3}-1\right) \left(1-e^{6 t}+\sqrt{e^{6 t} \left(e^{6 t}-2\right)}\right)^{\frac{1}{3}}-i \sqrt{3}-1\right) \left(e^{6 t}-\sqrt{e^{6 t} \left(e^{6 t}-2\right)}\right)^{\frac{2}{3}} \left(2 e^{6 t}-4\right)}{\left(1-e^{6 t}+\sqrt{e^{6 t} \left(e^{6 t}-2\right)}\right)^{\frac{2}{3}} \left(2 e^{6 t}-4\right)}$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 104

$$y(t) \to \frac{\sqrt[3]{2\sqrt{e^{6t}\left(e^{6t}-2\right)^3}+8e^{6t}-2e^{12t}-8}}{e^{6t}-2} - \frac{2^{2/3}}{\sqrt[3]{\sqrt{e^{6t}\left(e^{6t}-2\right)^3}+4e^{6t}-e^{12t}-4}} + 1$$

problem 12 4.5

Internal problem ID [12946]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 9

 $dsolve(diff(y(t),t)=-y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{t + c_1}$$

Solution by Mathematica

Time used: 0.156 (sec). Leaf size: 18

DSolve[y'[t]==-y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{t - c_1}$$
$$y(t) \to 0$$

$$y(t) \to 0$$

4.6 problem 13

Internal problem ID [12947]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^3 = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

 $dsolve([diff(y(t),t)=y(t)^3,y(0) = 1],y(t), singsol=all)$

$$y(t) = \frac{1}{\sqrt{-2t+1}}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 14

 $DSolve[\{y'[t]==y[t]^3,\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) o rac{1}{\sqrt{1-2t}}$$

4.7 problem 14

Internal problem ID [12948]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{1}{(y+1)(-2+t)} = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 24

 $\label{eq:decomposition} $$ $ dsolve([diff(y(t),t)=1/(\ (y(t)+1)*(t-2)),y(0) = 0],y(t), $$ singsol=all) $$ $ $ $ (y(t),t)=1/(\ (y(t)+1)*(t-2)),y(0) = 0],y(t), $$ $ $ (y(t),t)=1/(\ (y(t)+1)*(t-2)),y(0) = 0],y(t), $$ (y(t),t)=1/(\ (y(t)+1)*(t-2)),y(0) = 0],y(t),y(t),y(t)=1/(\ (y(t)+1)*(t-2)),y(t)=1/(\ (y(t)+1)*(t-2)),y(t)=1/(\ (y(t)+1)*(t-2)),y(t)=1/(\ (y(t)+1)*(t-2)),y(t)=1/(\ (y(t)+1)*(t-2)),y(t)=1/(\ (y(t)+1)*(t-2)),y(t)=1/(\ (y(t)+1)*(t-2)),y(t)=$

$$y(t) = -1 + \sqrt{1 - 2i\pi + 2\ln(t - 2) - 2\ln(2)}$$

Solution by Mathematica

Time used: 0.188 (sec). Leaf size: 28

 $DSolve[\{y'[t]==1/((y[t]+1)*(t-2)),\{y[0]==0\}\},y[t],t,IncludeSingularSolutions] \rightarrow True]$

$$y(t) \to -1 + \sqrt{2\log(t-2) - 2i\pi + 1 - \log(4)}$$

4.8 problem 15

Internal problem ID [12949]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{1}{(y+2)^2} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 13

 $dsolve([diff(y(t),t)=1/(y(t)+2)^2,y(0) = 1],y(t), singsol=all)$

$$y(t) = (3t + 27)^{\frac{1}{3}} - 2$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 20

 $DSolve[\{y'[t]==1/(y[t]+2)^2,\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \sqrt[3]{3}\sqrt[3]{t+9} - 2$$

4.9 problem 16

Internal problem ID [12950]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{t}{y-2} = 0$$

With initial conditions

$$[y(-1) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 15

dsolve([diff(y(t),t)=t/(y(t)-2),y(-1)=0],y(t), singsol=all)

$$y(t) = 2 - \sqrt{t^2 + 3}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 21

 $DSolve[\{y'[t]==1/(y[t]-2),\{y[-1]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 2 - \sqrt{2}\sqrt{t+3}$$

5 Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

5.1	problem 1 and 13 (i)	97
5.2	problem 1 and 13 (ii)	98
5.3	problem 1 and 13 (iii)	99
5.4	problem 1 and 13 (iv)	100
5.5	1 ()	101
5.6	problem 2 and 14(ii)	102
5.7	problem 2 and 14(iii)	103
5.8	1 ()	104
5.9	problem 3 and 15(i)	105
		106
5.11	problem 3 and 15(iii)	107
5.12	problem 3 and 15(iv)	108
5.13	problem 4	109
5.14	problem 4 and 16(i)	110
5.15	problem 4 and 16(ii)	111
5.16	problem 4 and 16(iii)	112
5.17	problem 4 and 16(iv)	113
5.18	problem 5	114
5.19	problem 6	115
5.20	problem 7	116
5.21	problem 8	117
5.22	problem 9	118
5.23	problem 10	119
5.24	problem 11	120
5.25	problem 12	121
5.26	problem 22	122
5.27	problem 23	123
5.28	problem 24	124
5.29	problem 25	125
5.30	problem 26	126
5.31	problem 27	127
5.32	problem 37 (i)	128
5.33	problem 37 (ii)	129
5.34	problem 37 (iii)	130
5.35	problem 37 (iv)	131
5.36	problem 37 (v)	132

5.37	$\operatorname{problem}$	37	(vi)																133
5.38	$\operatorname{problem}$	37	(vii)																134
5.39	problem	37	(viii))							 								135

5.1 problem 1 and 13 (i)

Internal problem ID [12951]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 1 and 13 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y(y - 2) = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(t),t)=3*y(t)*(y(t)-2),y(0) = 1],y(t), singsol=all)

$$y(t) = \frac{2}{1 + \mathrm{e}^{6t}}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 16

 $DSolve[\{y'[t]==3*y[t]*(y[t]-2),\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{2}{e^{6t}+1}$$

5.2 problem 1 and 13 (ii)

Internal problem ID [12952]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 1 and 13 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y(y - 2) = 0$$

With initial conditions

$$[y(-2) = -1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 18

 $\label{eq:decomposition} $$ dsolve([diff(y(t),t)=3*y(t)*(y(t)-2),y(-2) = -1],y(t), $$ singsol=all)$$

$$y(t) = -\frac{2}{3e^{6t+12} - 1}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 20

 $DSolve[\{y'[t]==3*y[t]*(y[t]-2),\{y[-2]==-1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{2}{1 - 3e^{6(t+2)}}$$

5.3 problem 1 and 13 (iii)

Internal problem ID [12953]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 1 and 13 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y(y - 2) = 0$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([diff(y(t),t)=3*y(t)*(y(t)-2),y(0) = 3],y(t), singsol=all)

$$y(t) = -\frac{6}{e^{6t} - 3}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 16

 $DSolve[\{y'[t]==3*y[t]*(y[t]-2),\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\frac{6}{e^{6t} - 3}$$

5.4 problem 1 and 13 (iv)

Internal problem ID [12954]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 1 and 13 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y(y - 2) = 0$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(y(t),t)=3*y(t)*(y(t)-2),y(0) = 2],y(t), singsol=all)

$$y(t) = 2$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $DSolve[\{y'[t]==3*y[t]*(y[t]-2),\{y[0]==2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow 2$$

5.5 problem 2 and 14(i)

Internal problem ID [12955]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 2 and 14(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = -12$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 23

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)-12,y(0) = 1],y(t), singsol=all)$

$$y(t) = \frac{18 - 10e^{8t}}{5e^{8t} + 3}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: $26\,$

 $DSolve[\{y'[t]==y[t]^2-4*y[t]-12,\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow \frac{18 - 10e^{8t}}{5e^{8t} + 3}$$

5.6 problem 2 and 14(ii)

Internal problem ID [12956]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 2 and 14(ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = -12$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 26

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)-12,y(1) = 0],y(t), singsol=all)$

$$y(t) = \frac{6 - 6e^{-8+8t}}{3e^{-8+8t} + 1}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 32

 $DSolve[\{y'[t]==y[t]^2-4*y[t]-12,\{y[1]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{6e^8 - 6e^{8t}}{3e^{8t} + e^8}$$

5.7 problem 2 and 14(iii)

Internal problem ID [12957]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 2 and 14(iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = -12$$

With initial conditions

$$[y(0) = 6]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)-12,y(0) = 6],y(t), singsol=all)$

$$y(t) = 6$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

DSolve[{y'[t]==y[t]^2-4*y[t]-12,{y[0]==6}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 6$$

5.8 problem 2 and 14(iv)

Internal problem ID [12958]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 2 and 14(iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = -12$$

With initial conditions

$$[y(0) = 5]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 20

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)-12,y(0) = 5],y(t), singsol=all)$

$$y(t) = \frac{42 - 2e^{8t}}{e^{8t} + 7}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 24

 $DSolve[\{y'[t]==y[t]^2-4*y[t]-12,\{y[0]==5\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) o rac{42 - 2e^{8t}}{e^{8t} + 7}$$

5.9 problem 3 and 15(i)

Internal problem ID [12959]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 3 and 15(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \cos(y) = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.093 (sec). Leaf size: 32

dsolve([diff(y(t),t)=cos(y(t)),y(0)=0],y(t), singsol=all)

$$y(t) = \arctan\left(\frac{e^{2t} - 1}{e^{2t} + 1}, \frac{2e^t}{e^{2t} + 1}\right)$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 8

DSolve[{y'[t]==Cos[y[t]],{y[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \arcsin(\tanh(t))$$

5.10 problem 3 and 15(ii)

Internal problem ID [12960]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 3 and 15(ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \cos(y) = 0$$

With initial conditions

$$[y(-1) = 1]$$

✓ Solution by Maple

Time used: 1.672 (sec). Leaf size: 79

 $\label{eq:decomposition} dsolve([diff(y(t),t)=cos(y(t)),y(-1)=1],y(t), singsol=all)$

$$y(t) = \arctan\left(\frac{\sin{(1)} e^{2+2t} + e^{2+2t} + \sin{(1)} - 1}{\sin{(1)} e^{2+2t} + e^{2+2t} - \sin{(1)} + 1}, \frac{2 e^{t+1} \cos{(1)}}{\sin{(1)} e^{2+2t} + e^{2+2t} - \sin{(1)} + 1}\right)$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 13

DSolve[{y'[t]==Cos[y[t]],{y[-1]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \arcsin\left(\coth\left(t + 1 + \coth^{-1}(\sin(1))\right)\right)$$

5.11 problem 3 and 15(iii)

Internal problem ID [12961]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 3 and 15(iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \cos(y) = 0$$

With initial conditions

$$\left[y(0) = -\frac{\pi}{2}\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 7

dsolve([diff(y(t),t)=cos(y(t)),y(0) = -1/2*Pi],y(t), singsol=all)

$$y(t) = -\frac{\pi}{2}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.002 (sec). Leaf size: 10}}$

DSolve[{y'[t]==Cos[y[t]],{y[0]==-Pi/2}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{\pi}{2}$$

5.12 problem 3 and 15(iv)

Internal problem ID [12962]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 3 and 15(iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \cos(y) = 0$$

With initial conditions

$$[y(0) = \pi]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 32

dsolve([diff(y(t),t)=cos(y(t)),y(0)=Pi],y(t), singsol=all)

$$y(t) = \arctan\left(\frac{e^{2t} - 1}{e^{2t} + 1}, -\frac{2e^t}{e^{2t} + 1}\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y'[t]==Cos[y[t]],{y[0]==Pi}},y[t],t,IncludeSingularSolutions -> True]

5.13problem 4

Internal problem ID [12963]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - w\cos\left(w\right) = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

dsolve(diff(w(t),t)=w(t)*cos(w(t)),w(t), singsol=all)

$$t - \left(\int_{-a}^{w(t)} \frac{\sec(\underline{a})}{\underline{a}} d\underline{a} \right) + c_1 = 0$$

Solution by Mathematica

Time used: 7.857 (sec). Leaf size: 50

DSolve[w'[t]==w[t]*Cos[w[t]],w[t],t,IncludeSingularSolutions -> True]

$$w(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{\sec(K[1])}{K[1]} dK[1] \& \right] [t + c_1]$$

$$w(t) \to 0$$

$$w(t) \to -\frac{\pi}{2}$$
 $w(t) \to \frac{\pi}{2}$

$$w(t) \to \frac{\pi}{2}$$

5.14 problem 4 and 16(i)

Internal problem ID [12964]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 4 and 16(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - w\cos(w) = 0$$

With initial conditions

$$[w(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(w(t),t)=w(t)*cos(w(t)),w(0)=0],w(t), singsol=all)

$$w(t) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

DSolve[{w'[t]==w[t]*Cos[w[t]],{w[0]==0}},w[t],t,IncludeSingularSolutions -> True]

$$w(t) \to 0$$

5.15 problem 4 and 16(ii)

Internal problem ID [12965]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 4 and 16(ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - w\cos(w) = 0$$

With initial conditions

$$[w(3) = 1]$$

✓ Solution by Maple

Time used: 0.407 (sec). Leaf size: 20

dsolve([diff(w(t),t)=w(t)*cos(w(t)),w(3)=1],w(t), singsol=all)

$$w(t) = \text{RootOf}\left(\int_{-Z}^{1} \frac{\sec(\underline{a})}{\underline{a}} d\underline{a} + t - 3\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{w'[t]==w[t]*Cos[w[t]],{w[3]==1}},w[t],t,IncludeSingularSolutions -> True]

5.16 problem 4 and 16(iii)

Internal problem ID [12966]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 4 and 16(iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - w\cos(w) = 0$$

With initial conditions

$$[w(0) = 2]$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 19

 $\label{eq:decomposition} dsolve([diff(w(t),t)=w(t)*cos(w(t)),w(0)=2],w(t), \ singsol=all)$

$$w(t) = \text{RootOf}\left(\int_{-Z}^{2} \frac{\sec\left(\underline{a}\right)}{\underline{a}} d\underline{a} + t\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{w'[t]==w[t]*Cos[w[t]],{w[0]==2}},w[t],t,IncludeSingularSolutions -> True]

5.17 problem 4 and 16(iv)

Internal problem ID [12967]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 4 and 16(iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - w\cos\left(w\right) = 0$$

With initial conditions

$$[w(0) = -1]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 19

 $\label{eq:decomposition} dsolve([diff(w(t),t)=w(t)*cos(~w(t)),w(0) = -1],w(t),~singsol=all)$

$$w(t) = \text{RootOf}\left(\int_{-Z}^{-1} \frac{\sec(\underline{a})}{\underline{a}} d\underline{a} + t\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{w'[t]==w[t]*Cos[w[t]],{w[0]==-1}},w[t],t,IncludeSingularSolutions -> True]

5.18 problem **5**

Internal problem ID [12968]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - (1 - w)\sin(w) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(w(t),t)=(1-w(t))*sin(w(t)),w(t), singsol=all)

$$t + \int^{w(t)} \frac{\csc(\underline{a})}{\underline{a} - 1} d\underline{a} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 12.825 (sec). Leaf size: 41

DSolve[w'[t]==(1-w[t])*Sin[w[t]],w[t],t,IncludeSingularSolutions -> True]

$$w(t) \rightarrow \text{InverseFunction} \left[\int_{1}^{\#1} \frac{\csc(K[1])}{K[1] - 1} dK[1] \& \right] [-t + c_1]$$

$$w(t) \to 0$$

$$w(t) \rightarrow 1$$

5.19 problem 6

Internal problem ID [12969]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{1}{y-2} = 0$$

✓ Solution by Maple

 $\overline{\text{Time used: 0.016 (sec)}}. \text{ Leaf size: 33}$

 $\label{eq:diff} $$ dsolve(diff(y(t),t)=1/(y(t)-2),y(t), singsol=all)$$

$$y(t) = 2 - \sqrt{4 + 2t + 2c_1}$$

$$y(t) = 2 + \sqrt{4 + 2t + 2c_1}$$

✓ Solution by Mathematica

Time used: 0.145 (sec). Leaf size: 44

DSolve[y'[t]==1/(y[t]-2),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 2 - \sqrt{2}\sqrt{t + 2 + c_1}$$

 $y(t) \to 2 + \sqrt{2}\sqrt{t + 2 + c_1}$

problem 7 5.20

Internal problem ID [12970]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$v' + v^2 + 2v = -2$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(v(t),t)=-v(t)^2-2*v(t)-2,v(t), singsol=all)$

$$v(t) = -1 - \tan\left(t + c_1\right)$$

Solution by Mathematica

Time used: 0.699 (sec). Leaf size: 30

DSolve[v'[t]==-v[t]^2-2*v[t]-2,v[t],t,IncludeSingularSolutions -> True]

$$v(t) \to -1 - \tan(t - c_1)$$

$$v(t) \to -1 - i$$

$$v(t) \rightarrow -1 - i$$

$$v(t) \rightarrow -1 + i$$

5.21 problem 8

Internal problem ID [12971]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - 3w^3 + 12w^2 = 0$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 49

 $dsolve(diff(w(t),t)=3*w(t)^3-12*w(t)^2,w(t), singsol=all)$

$$w(t) = \mathrm{e}^{\mathrm{RootOf}\left(\ln\left(\mathrm{e}^{-Z}+4\right)\mathrm{e}^{-Z}+48c_{1}\mathrm{e}^{-Z}-2\mathrm{e}^{-Z}+48t\,\mathrm{e}^{-Z}+4\ln\left(\mathrm{e}^{-Z}+4\right)+192c_{1}-4-2Z+192t-4\right)} + 4$$

✓ Solution by Mathematica

Time used: 0.392 (sec). Leaf size: $50\,$

 $DSolve[w'[t] == 3*w[t]^3 - 12*w[t]^2, w[t], t, Include Singular Solutions \rightarrow True]$

$$w(t) \to \text{InverseFunction} \left[\frac{1}{4\#1} + \frac{1}{16} \log(4 - \#1) - \frac{\log(\#1)}{16} \& \right] [3t + c_1]$$

$$w(t) \to 0$$

$$w(t) \rightarrow 4$$

5.22 problem 9

Internal problem ID [12972]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \cos(y) = 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

dsolve(diff(y(t),t)=1+cos(y(t)),y(t), singsol=all)

$$y(t) = 2\arctan(t + c_1)$$

✓ Solution by Mathematica

Time used: 0.462 (sec). Leaf size: 35

DSolve[y'[t]==1+cos[y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{1}{\cos(K[1]) + 1} dK[1] \& \right] [t + c_1]$$

 $y(t) \to \cos^{(-1)}(-1)$

problem 10 5.23

Internal problem ID [12973]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \tan(y) = 0$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 9

dsolve(diff(y(t),t)=tan(y(t)),y(t), singsol=all)

$$y(t) = \arcsin\left(c_1 e^t\right)$$

Solution by Mathematica

Time used: 50.012 (sec). Leaf size: 17

DSolve[y'[t]==Tan[y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \arcsin\left(e^{t+c_1}\right)$$

 $y(t) \to 0$

$$y(t) \to 0$$

5.24 problem 11

Internal problem ID [12974]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y \ln\left(|y|\right) = 0$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 21

dsolve(diff(y(t),t)=y(t)*ln(abs(y(t))),y(t), singsol=all)

$$y(t) = e^{-c_1 e^t}$$
$$y(t) = -e^{-c_1 e^t}$$

✓ Solution by Mathematica

Time used: 0.321 (sec). Leaf size: 35

DSolve[y'[t]==y[t]*Log[Abs[y[t]]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{1}{K[1] \log(|K[1]|)} dK[1] \& \right] [t + c_1]$$

 $y(t) \to 1$

5.25 problem 12

Internal problem ID [12975]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$w' - (w^2 - 2) \arctan(w) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(diff(w(t),t)=(w(t)^2-2)*arctan(w(t)),w(t), singsol=all)$

$$t - \left(\int^{w(t)} \frac{1}{(\underline{a^2 - 2)\arctan(\underline{a})}} d\underline{a}\right) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.909 (sec). Leaf size: $62\,$

DSolve[w'[t]==(w[t]^2-2)*Arctan[w[t]],w[t],t,IncludeSingularSolutions -> True]

$$w(t) \rightarrow \text{InverseFunction} \left[\int_{1}^{\#1} \frac{1}{\operatorname{Arctan}(K[1])(K[1]^{2}-2)} dK[1] \& \right] [t+c_{1}]$$

$$w(t) \to -\sqrt{2}$$

$$w(t) \rightarrow \sqrt{2}$$

$$w(t) \to \operatorname{Arctan}^{(-1)}(0)$$

5.26 problem 22

Internal problem ID [12976]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = 2$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 24

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)+2,y(0) = -1],y(t), singsol=all)$

$$y(t) = -\sqrt{2} \tanh \left(\operatorname{arctanh} \left(\frac{3\sqrt{2}}{2} \right) + \sqrt{2} t \right) + 2$$

✓ Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 59

 $DSolve[\{y'[t]==y[t]^2-4*y[t]+2,\{y[0]==-1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow -\frac{(\sqrt{2}-4) e^{2\sqrt{2}t} + 4 + \sqrt{2}}{(3+\sqrt{2}) e^{2\sqrt{2}t} - 3 + \sqrt{2}}$$

5.27 problem 23

Internal problem ID [12977]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = 2$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 17

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)+2,y(0) = 2],y(t), singsol=all)$

$$y(t) = -\sqrt{2} \tanh\left(\sqrt{2}t\right) + 2$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 46

 $DSolve[\{y'[t]==y[t]^2-4*y[t]+2,\{y[0]==2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{-(\sqrt{2}-2)e^{2\sqrt{2}t} + 2 + \sqrt{2}}{e^{2\sqrt{2}t} + 1}$$

5.28 problem 24

Internal problem ID [12978]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = 2$$

With initial conditions

$$[y(0) = -2]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 24

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)+2,y(0) = -2],y(t), singsol=all)$

$$y(t) = -\sqrt{2} \tanh \left(\operatorname{arctanh}\left(2\sqrt{2}\right) + \sqrt{2}t\right) + 2$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 59

 $DSolve[\{y'[t]==y[t]^2-4*y[t]+2,\{y[0]==-2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\frac{2\left(\left(\sqrt{2}-3\right)e^{2\sqrt{2}t}+3+\sqrt{2}\right)}{\left(4+\sqrt{2}\right)e^{2\sqrt{2}t}-4+\sqrt{2}}$$

5.29 problem 25

Internal problem ID [12979]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = 2$$

With initial conditions

$$[y(0) = -4]$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 24

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)+2,y(0) = -4],y(t), singsol=all)$

$$y(t) = -\sqrt{2} \tanh \left(\operatorname{arctanh}\left(3\sqrt{2}\right) + \sqrt{2}t\right) + 2$$

✓ Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 63

DSolve[{y'[t]==y[t]^2-4*y[t]+2,{y[0]==-4}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) o -rac{2\Big(\left(2\sqrt{2}-5\right) e^{2\sqrt{2}t} + 5 + 2\sqrt{2}\Big)}{\left(6+\sqrt{2}\right) e^{2\sqrt{2}t} - 6 + \sqrt{2}}$$

5.30 problem 26

Internal problem ID [12980]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = 2$$

With initial conditions

$$[y(0) = 4]$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 24

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)+2,y(0) = 4],y(t), singsol=all)$

$$y(t) = -\sqrt{2} \tanh\left(-\operatorname{arctanh}\left(\sqrt{2}\right) + \sqrt{2}t\right) + 2$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 62

 $DSolve[\{y'[t]==y[t]^2-4*y[t]+2,\{y[0]==4\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) o rac{\left(4\sqrt{2} - 6\right)e^{2\sqrt{2}t} + 6 + 4\sqrt{2}}{\left(\sqrt{2} - 2\right)e^{2\sqrt{2}t} + 2 + \sqrt{2}}$$

5.31 problem 27

Internal problem ID [12981]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 4y = 2$$

With initial conditions

$$[y(3) = 1]$$

Solution by Maple

Time used: 0.094 (sec). Leaf size: 32

 $dsolve([diff(y(t),t)=y(t)^2-4*y(t)+2,y(3) = 1],y(t), singsol=all)$

$$y(t) = -\sqrt{2} \tanh \left(\frac{\left(\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{2}}{2}\right) + 2t - 6\right)\sqrt{2}}{2} \right) + 2$$

✓ Solution by Mathematica

Time used: 0.098 (sec). Leaf size: $69\,$

 $DSolve[\{y'[t]==y[t]^2-4*y[t]+2,\{y[3]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) o rac{\sqrt{2} \left(e^{2\sqrt{2}t} + e^{6\sqrt{2}} \right)}{\left(1 + \sqrt{2} \right) e^{2\sqrt{2}t} + \left(\sqrt{2} - 1 \right) e^{6\sqrt{2}}}$$

5.32 problem 37 (i)

Internal problem ID [12982]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y \cos\left(\frac{\pi y}{2}\right) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve(diff(y(t),t)=y(t)*cos(Pi/2*y(t)),y(t), singsol=all)

$$t - \left(\int^{y(t)} \frac{\sec\left(\frac{\pi - a}{2}\right)}{-a} d_a \right) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 4.801 (sec). Leaf size: 47

DSolve[y'[t]==y[t]*Cos[Pi/2*y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{\sec\left(\frac{1}{2}\pi K[1]\right)}{K[1]} dK[1] \& \right] [t + c_1]$$

$$y(t) \rightarrow -1$$

$$y(t) \to 0$$

$$y(t) \rightarrow 1$$

5.33 problem 37 (ii)

Internal problem ID [12983]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y + y^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve(diff(y(t),t)=y(t)-y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{1 + \mathrm{e}^{-t}c_1}$$

✓ Solution by Mathematica

Time used: 0.42 (sec). Leaf size: 29

DSolve[y'[t]==y[t]-y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{e^t}{e^t + e^{c_1}}$$

$$y(t) \rightarrow 0$$

$$y(t) \rightarrow 1$$

5.34 problem 37 (iii)

Internal problem ID [12984]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y\sin\left(\frac{\pi y}{2}\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(t),t)=y(t)*sin(Pi/2*y(t)),y(t), singsol=all)

$$t - \left(\int^{y(t)} \frac{\csc\left(\frac{\pi - a}{2}\right)}{-a} d_a \right) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 7.222 (sec). Leaf size: 37

DSolve[y'[t]==y[t]*Sin[Pi/2*y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{\csc\left(\frac{1}{2}\pi K[1]\right)}{K[1]} dK[1] \& \right] [t+c_1]$$

 $y(t) \to 0$

5.35 problem 37 (iv)

Internal problem ID [12985]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^3 + y^2 = 0$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=y(t)^3-y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{1}{\text{LambertW}(-c_1 e^{t-1}) + 1}$$

✓ Solution by Mathematica

Time used: 0.374 (sec). Leaf size: 38

DSolve[y'[t]==y[t]^3-y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \text{InverseFunction} \left[\frac{1}{\#1} + \log(1 - \#1) - \log(\#1) \& \right] [t + c_1]$$

$$y(t) \to 0$$

$$y(t) \rightarrow 1$$

problem 37 (v) 5.36

Internal problem ID [12986]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (v).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \cos\left(\frac{\pi y}{2}\right) = 0$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 48

dsolve(diff(y(t),t)=cos(Pi/2*y(t)),y(t), singsol=all)

$$y(t) = \frac{2\arctan\left(\frac{e^{\pi(t+c_1)}-1}{e^{\pi(t+c_1)}+1}, \frac{2e^{\frac{\pi(t+c_1)}{2}}}{e^{\pi(t+c_1)}+1}\right)}{\pi}$$

Solution by Mathematica

Time used: 0.846 (sec). Leaf size: 31

DSolve[y'[t]==Cos[Pi/2*y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{2\arcsin\left(\coth\left(\frac{1}{2}\pi(t+c_1)\right)\right)}{\pi}$$
$$y(t) \to -1$$
$$y(t) \to 1$$

$$y(t) \rightarrow 1$$

5.37 problem 37 (vi)

Internal problem ID [12987]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (vi).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve(diff(y(t),t)=y(t)^2-y(t),y(t), singsol=all)$

$$y(t) = \frac{1}{1 + c_1 e^t}$$

Solution by Mathematica

Time used: 0.336 (sec). Leaf size: 25

DSolve[y'[t]==y[t]^2-y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{1 + e^{t + c_1}}$$

$$y(t) \to 0$$

$$y(t) \rightarrow 1$$

5.38 problem 37 (vii)

Internal problem ID [12988]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (vii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y\sin\left(\frac{\pi y}{2}\right) = 0$$

/ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(t),t)=y(t)*sin(Pi/2*y(t)),y(t), singsol=all)

$$t - \left(\int^{y(t)} \frac{\csc\left(\frac{\pi - a}{2}\right)}{-a} d_a \right) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.786 (sec). Leaf size: 37

DSolve[y'[t]==y[t]*Sin[Pi/2*y[t]],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{\csc\left(\frac{1}{2}\pi K[1]\right)}{K[1]} dK[1] \& \right] [t+c_1]$$

 $y(t) \to 0$

5.39 problem 37 (viii)

Internal problem ID [12989]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

Problem number: 37 (viii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + y^3 = 0$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 20

 $dsolve(diff(y(t),t)=y(t)^2-y(t)^3,y(t), singsol=all)$

$$y(t) = \frac{1}{\text{LambertW}\left(-\frac{e^{-t-1}}{c_1}\right) + 1}$$

✓ Solution by Mathematica

Time used: 0.408 (sec). Leaf size: 40

DSolve[y'[t]==y[t]^2-y[t]^3,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \text{InverseFunction}\left[\frac{1}{\#1} + \log(1 - \#1) - \log(\#1)\&\right][-t + c_1]$$

$$y(t) \to 0$$

$$y(t) \to 1$$

6 Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

6.1	$\operatorname{problem}$	1.																			137
6.2	problem	2 .																			138
6.3	problem	3.																			139
6.4	problem -	4.																			140
6.5	problem	5.																			141
6.6	problem	6.																			142
6.7	problem	7.																			143
6.8	problem	8.																			144
6.9	problem	9.																			145
6.10	problem	10																			146
6.11	problem	11																			147
6.12	problem	20																			148
6.13	problem	21		 •																	149
6.14	problem	22																			150
6.15	problem	23																			151
6.16	problem	24																			152

6.1 problem 1

Internal problem ID [12990]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 4y = 9 e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(t),t)=-4*y(t)+9*exp(-t),y(t), singsol=all)

$$y(t) = (3e^{3t} + c_1)e^{-4t}$$

✓ Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 21

DSolve[y'[t]==-4*y[t]+9*Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-4t} (3e^{3t} + c_1)$$

6.2 problem 2

Internal problem ID [12991]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 4y = 3 e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(t),t)=-4*y(t)+3*exp(-t),y(t), singsol=all)

$$y(t) = \left(e^{3t} + c_1\right)e^{-4t}$$

✓ Solution by Mathematica

Time used: 0.087 (sec). Leaf size: 19

DSolve[y'[t]==-4*y[t]+3*Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-4t} (e^{3t} + c_1)$$

6.3 problem 3

Internal problem ID [12992]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 3y = 4\cos(2t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(t),t)=-3*y(t)+4*cos(2*t),y(t), singsol=all)

$$y(t) = \frac{12\cos(2t)}{13} + \frac{8\sin(2t)}{13} + c_1 e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.155 (sec). Leaf size: $31\,$

DSolve[y'[t]==-3*y[t]+4*Cos[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{4}{13}(2\sin(2t) + 3\cos(2t)) + c_1e^{-3t}$$

6.4 problem 4

Internal problem ID [12993]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = \sin\left(2t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(t),t)=2*y(t)+sin(2*t),y(t), singsol=all)

$$y(t) = -\frac{\cos(2t)}{4} - \frac{\sin(2t)}{4} + c_1 e^{2t}$$

✓ Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 30

DSolve[y'[t]==2*y[t]+Sin[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{1}{4}\sin(2t) - \frac{1}{4}\cos(2t) + c_1e^{2t}$$

6.5 problem 5

Internal problem ID [12994]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 3y = -4 e^{3t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(t),t)=3*y(t)-4*exp(3*t),y(t), singsol=all)

$$y(t) = (-4t + c_1) e^{3t}$$

✓ Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 17

DSolve[y'[t]==3*y[t]-4*Exp[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{3t}(-4t + c_1)$$

6.6 problem 6

Internal problem ID [12995]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - \frac{y}{2} = 4\operatorname{e}^{\frac{t}{2}}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(t),t)=y(t)/2+4*exp(t/2),y(t), singsol=all)

$$y(t) = (4t + c_1) e^{\frac{t}{2}}$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 19

DSolve[y'[t]==y[t]/2+4*Exp[t/2],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{t/2} (4t + c_1)$$

6.7 problem 7

Internal problem ID [12996]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = e^{\frac{t}{3}}$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve([diff(y(t),t)+2*y(t)=exp(t/3),y(0) = 1],y(t), singsol=all)

$$y(t) = rac{\left(3 \, \mathrm{e}^{rac{7t}{3}} + 4
ight) \mathrm{e}^{-2t}}{7}$$

✓ Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 25

 $DSolve[\{y'[t]+2*y[t]==Exp[t/3],\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{7}e^{-2t} (3e^{7t/3} + 4)$$

6.8 problem 8

Internal problem ID [12997]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = 3 e^{-2t}$$

With initial conditions

$$[y(0) = 10]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $\label{eq:decomposition} $$ $ dsolve([diff(y(t),t)-2*y(t)=3*exp(-2*t),y(0) = 10],y(t), $$ singsol=all) $$$

$$y(t) = \frac{43 e^{2t}}{4} - \frac{3 e^{-2t}}{4}$$

✓ Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 23

 $DSolve[\{y'[t]-2*y[t]==3*Exp[-2*t],\{y[0]==10\}\},y[t],t,IncludeSingularSolutions] -> True]$

$$y(t) \to \frac{1}{4}e^{-2t} (43e^{4t} - 3)$$

6.9 problem 9

Internal problem ID [12998]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = \cos(2t)$$

With initial conditions

$$[y(0) = 5]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $\label{eq:decomposition} dsolve([diff(y(t),t)+y(t)=\cos(2*t),y(0) = 5],y(t), \ singsol=all)$

$$y(t) = \frac{\cos(2t)}{5} + \frac{2\sin(2t)}{5} + \frac{24e^{-t}}{5}$$

✓ Solution by Mathematica

Time used: 0.144 (sec). Leaf size: 27

 $DSolve[\{y'[t]+y[t]==Cos[2*t],\{y[0]==5\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{5} (24e^{-t} + 2\sin(2t) + \cos(2t))$$

6.10 problem 10

Internal problem ID [12999]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 3y = \cos(2t)$$

With initial conditions

$$[y(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $\label{eq:decomposition} dsolve([diff(y(t),t)+3*y(t)=cos(2*t),y(0) = -1],y(t), singsol=all)$

$$y(t) = \frac{3\cos(2t)}{13} + \frac{2\sin(2t)}{13} - \frac{16e^{-3t}}{13}$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 30

 $DSolve[\{y'[t]+3*y[t]==Cos[2*t],\{y[0]==-1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{13} (2(\sin(2t) - 8e^{-3t}) + 3\cos(2t))$$

6.11 problem 11

Internal problem ID [13000]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = 7e^{2t}$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(t),t)-2*y(t)=7*exp(2*t),y(0) = 3],y(t), singsol=all)

$$y(t) = (7t+3)e^{2t}$$

✓ Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 16

 $DSolve[\{y'[t]-2*y[t]==7*Exp[2*t],\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to e^{2t}(7t+3)$$

6.12 problem 20

Internal problem ID [13001]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = 3t^2 + 2t - 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve(diff(y(t),t)+2*y(t)=3*t^2+2*t-1,y(t), singsol=all)$

$$y(t) = \frac{3t^2}{2} - \frac{t}{2} - \frac{1}{4} + e^{-2t}c_1$$

✓ Solution by Mathematica

Time used: 0.193 (sec). Leaf size: 28

DSolve[y'[t]+2*y[t]==3*t^2+2*t-1,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{4} (6t^2 - 2t - 1) + c_1 e^{-2t}$$

6.13 problem 21

Internal problem ID [13002]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = t^2 + 2t + 1 + e^{4t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(t),t)+2*y(t)=t^2+2*t+1+exp(4*t),y(t), singsol=all)$

$$y(t) = \frac{t^2}{2} + \frac{t}{2} + \frac{1}{4} + \frac{e^{4t}}{6} + e^{-2t}c_1$$

✓ Solution by Mathematica

Time used: 0.557 (sec). Leaf size: 35

DSolve[y'[t]+2*y[t]==t^2+2*t+1+Exp[4*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{12} (6t^2 + 6t + 2e^{4t} + 3) + c_1 e^{-2t}$$

6.14 problem 22

Internal problem ID [13003]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = t^3 + \sin(3t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $dsolve(diff(y(t),t)+y(t)=t^3+sin(3*t),y(t), singsol=all)$

$$y(t) = t^3 - 3t^2 + 6t - 6 - \frac{3\cos(3t)}{10} + \frac{\sin(3t)}{10} + e^{-t}c_1$$

✓ Solution by Mathematica

Time used: 0.19 (sec). Leaf size: 42

DSolve[y'[t]+y[t]==t^3+Sin[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to t^3 - 3t^2 + 6t + \frac{1}{10}\sin(3t) - \frac{3}{10}\cos(3t) + c_1e^{-t} - 6$$

6.15 problem 23

Internal problem ID [13004]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 3y = 2t - e^{4t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(t),t)-3*y(t)=2*t-exp(4*t),y(t), singsol=all)

$$y(t) = -\frac{2t}{3} - \frac{2}{9} - e^{4t} + c_1 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.146 (sec). Leaf size: 30

DSolve[y'[t]-3*y[t]==2*t-Exp[4*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\frac{2}{9}(3t+1) - e^{4t} + c_1 e^{3t}$$

6.16 problem 24

Internal problem ID [13005]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = \cos(2t) + 3\sin(2t) + e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(t),t)+y(t)=cos(2*t)+3*sin(2*t)+exp(-t),y(t), singsol=all)

$$y(t) = (t + c_1) e^{-t} - \cos(2t) + \sin(2t)$$

✓ Solution by Mathematica

Time used: 0.239 (sec). Leaf size: 32

DSolve[y'[t]+y[t]==Cos[2*t]+3*Sin[2*t]+Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t} (t + e^t \sin(2t) - e^t \cos(2t) + c_1)$$

7 Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

7.1	problem	1.				 													154
7.2	problem	2 .				 													 155
7.3	problem	3.				 				 									156
7.4	problem	4 .				 				 									157
7.5	$\operatorname{problem}$	5.				 													158
7.6	problem	6.				 													159
7.7	$\operatorname{problem}$	7.				 													160
7.8	${\bf problem}$	8.				 													161
7.9	${\bf problem}$	9.				 													162
7.10	${\bf problem}$	10				 													163
7.11	${\rm problem}$	11				 													164
7.12	${\rm problem}$	12				 													165
7.13	${\rm problem}$	13				 													166
7.14	${\bf problem}$	14				 													167
7.15	$\operatorname{problem}$	15				 													168
7.16	${\rm problem}$	16				 													169
7.17	${\rm problem}$	17				 													170
7.18	${\rm problem}$	18																	171
7.19	$\operatorname{problem}$	19				 													 172
7.20	$\operatorname{problem}$	20				 													173
7.21	$\operatorname{problem}$	21				 													 174
7.22	${\bf problem}$	22	(f))		 													175
7.23	problem	23				 				 								 	 176

7.1 problem 1

Internal problem ID [13006]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{t} = 2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(t),t)=-y(t)/t+2,y(t), singsol=all)

$$y(t) = t + \frac{c_1}{t}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 13

DSolve[y'[t]==-y[t]/t+2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to t + \frac{c_1}{t}$$

7.2 problem 2

Internal problem ID [13007]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{3y}{t} = t^5$$

/ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=3/t*y(t)+t^5,y(t), singsol=all)$

$$y(t) = \frac{(t^3 + 3c_1)t^3}{3}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 19

DSolve[y'[t]==3/t*y[t]+t^5,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{t^6}{3} + c_1 t^3$$

7.3 problem 3

Internal problem ID [13008]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{1+t} = t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(t),t)=-y(t)/(1+t)+t^2,y(t), singsol=all)$

$$y(t) = \frac{3t^4 + 4t^3 + 12c_1}{12t + 12}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 28

 $DSolve[y'[t] == -y[t]/(1+t) + t^2, y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow \frac{3t^4 + 4t^3 + 12c_1}{12t + 12}$$

7.4 problem 4

Internal problem ID [13009]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2ty = 4 e^{-t^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=-2*t*y(t)+4*exp(-t^2),y(t), singsol=all)$

$$y(t) = (4t + c_1) e^{-t^2}$$

✓ Solution by Mathematica

Time used: 0.098 (sec). Leaf size: 19

DSolve[y'[t]==-2*t*y[t]+4*Exp[-t^2],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t^2} (4t + c_1)$$

7.5 problem 5

Internal problem ID [13010]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{2ty}{t^2 + 1} = 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)-2*t/(1+t^2)*y(t)=3,y(t), singsol=all)$

$$y(t) = (3\arctan(t) + c_1)(t^2 + 1)$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 18

DSolve[y'[t]-2*t/(1+t^2)*y[t]==3,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to (t^2 + 1) (3 \arctan(t) + c_1)$$

7.6 problem 6

Internal problem ID [13011]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{2y}{t} = e^t t^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)-2/t*y(t)=t^3*exp(t),y(t), singsol=all)$

$$y(t) = \left(e^t(t-1) + c_1\right)t^2$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 19

DSolve[y'[t]-2/t*y[t]==t^3*Exp[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to t^2 (e^t(t-1) + c_1)$$

7.7 problem 7

Internal problem ID [13012]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{1+t} = 2$$

With initial conditions

$$[y(0) = 3]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve([diff(y(t),t)=-y(t)/(1+t)+2,y(0) = 3],y(t), singsol=all)

$$y(t) = \frac{t^2 + 2t + 3}{t + 1}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 19

 $DSolve[\{y'[t]==-y[t]/(1+t)+2,\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{t^2 + 2t + 3}{t + 1}$$

7.8 problem 8

Internal problem ID [13013]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{1+t} = 4t^2 + 4t$$

With initial conditions

$$[y(1) = 10]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve([diff(y(t),t)=y(t)/(1+t)+4*t^2+4*t,y(1) = 10],y(t), singsol=all)$

$$y(t) = 2t^3 + 2t^2 + 3t + 3$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 20

 $DSolve[\{y'[t]==y[t]/(1+t)+4*t^2+4*t,\{y[1]==10\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 2t^3 + 2t^2 + 3t + 3$$

7.9 problem 9

Internal problem ID [13014]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + \frac{y}{t} = 2$$

With initial conditions

$$[y(1) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 11

dsolve([diff(y(t),t)=-y(t)/t+2,y(1)=3],y(t), singsol=all)

$$y(t) = t + \frac{2}{t}$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 12

 $\label{eq:DSolve} DSolve[\{y'[t]==-y[t]/t+2,\{y[1]==3\}\},y[t],t,IncludeSingularSolutions \ \ -> \ \ True]$

$$y(t) \to t + \frac{2}{t}$$

7.10 problem 10

Internal problem ID [13015]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2ty = 4e^{-t^2}$$

With initial conditions

$$[y(0) = 3]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve([diff(y(t),t)=-2*t*y(t)+4*exp(-t^2),y(0) = 3],y(t), singsol=all)$

$$y(t) = (4t+3)e^{-t^2}$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 18

 $DSolve[\{y'[t]==-2*t*y[t]+4*Exp[-t^2],\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to e^{-t^2} (4t+3)$$

7.11 problem 11

Internal problem ID [13016]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{2y}{t} = 2t^2$$

With initial conditions

$$[y(-2) = 4]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{y(t),t})-2*\mbox{y(t)/t}=2*\mbox{t^2,y(-2)} = 4],\mbox{y(t), singsol=all)} \\$

$$y(t) = 2t^3 + 5t^2$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 14

 $DSolve[\{y'[t]-2*y[t]/t==2*t^2,\{y[-2]==4\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to t^2(2t+5)$$

7.12 problem 12

Internal problem ID [13017]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{3y}{t} = 2e^{2t}t^3$$

With initial conditions

$$[y(1) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: $17\,$

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{y}(\mbox{t}) - 3/\mbox{t*y}(\mbox{t}) = 2*\mbox{t}^3 * \exp(2*\mbox{t}) \,, \mbox{y}(\mbox{1}) = 0] \,, \mbox{y}(\mbox{t}) \,, \mbox{singsol=all}) \\$

$$y(t) = -(-e^{2t} + e^2) t^3$$

✓ Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 20

 $DSolve[\{y'[t]-3/t*y[t]==2*t^3*Exp[2*t],\{y[1]==0\}\},y[t],t,IncludeSingularSolutions -> True]$

$$y(t) \rightarrow \left(e^{2t} - e^2\right)t^3$$

7.13 problem 13

Internal problem ID [13018]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \sin(t) y = 4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(t),t)=sin(t)*y(t)+4,y(t), singsol=all)

$$y(t) = \left(4\left(\int e^{\cos(t)}dt\right) + c_1\right)e^{-\cos(t)}$$

✓ Solution by Mathematica

Time used: 0.486 (sec). Leaf size: 29

DSolve[y'[t]==Sin[t]*y[t]+4,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-\cos(t)} \left(\int_1^t 4e^{\cos(K[1])} dK[1] + c_1 \right)$$

7.14 problem 14

Internal problem ID [13019]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - t^2 y = 4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

 $dsolve(diff(y(t),t)=t^2*y(t)+4,y(t), singsol=all)$

$$y(t) = \frac{33^{\frac{1}{6}}t\,\text{WhittakerM}\left(\frac{1}{6},\frac{2}{3},\frac{t^3}{3}\right)\mathrm{e}^{\frac{t^3}{6}}}{\left(t^3\right)^{\frac{1}{6}}} + c_1\mathrm{e}^{\frac{t^3}{3}} + 4t$$

✓ Solution by Mathematica

Time used: 0.102 (sec). Leaf size: 49

DSolve[y'[t]==t^2*y[t]+4,y[t],t,IncludeSingularSolutions -> True]

$$y(t)
ightarrow rac{1}{3} e^{rac{t^3}{3}} \Biggl(-rac{4\sqrt[3]{3}t\Gamma\Bigl(rac{1}{3},rac{t^3}{3}\Bigr)}{\sqrt[3]{t^3}} + 3c_1 \Biggr)$$

7.15 problem 15

Internal problem ID [13020]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{t^2} = 4\cos\left(t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(t),t)=y(t)/t^2+4*cos(t),y(t), singsol=all)$

$$y(t) = \left(4\left(\int\cos\left(t\right)\mathrm{e}^{rac{1}{t}}dt
ight) + c_1
ight)\mathrm{e}^{-rac{1}{t}}$$

✓ Solution by Mathematica

Time used: 3.836 (sec). Leaf size: 34

DSolve[y'[t]==y[t]/t^2+4*Cos[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-1/t} \left(\int_1^t 4e^{\frac{1}{K[1]}} \cos(K[1]) dK[1] + c_1 \right)$$

7.16 problem 16

Internal problem ID [13021]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = 4\cos\left(t^2\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 68

 $dsolve(diff(y(t),t)=y(t)+4*cos(t^2),y(t), singsol=all)$

$$y(t) = \left(\frac{1}{4} - \frac{i}{4}\right) \sqrt{2} e^{t} \left(2 e^{-\frac{i}{4}} \operatorname{erf}\left(\frac{(1 - i + (2 + 2i)t)\sqrt{2}}{4}\right) \sqrt{\pi} + 2i\sqrt{\pi} e^{\frac{i}{4}} \operatorname{erf}\left(\left(\frac{1}{4} - \frac{i}{4}\right)\sqrt{2}(2t + i)\right) + (1 + i)\sqrt{2}c_{1}\right)$$

✓ Solution by Mathematica

Time used: 0.137 (sec). Leaf size: 77

DSolve[y'[t]==y[t]+4*Cos[t^2],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^t \left(c_1 - \sqrt[4]{-1} e^{-\frac{i}{4}} \sqrt{\pi} \left(\text{erfi}\left(\frac{1}{2} (-1)^{3/4} (2t - i)\right) + i e^{\frac{i}{2}} \text{erfi}\left(\frac{1}{2} \sqrt[4]{-1} (2t + i)\right) \right) \right)$$

7.17 problem 17

Internal problem ID [13022]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' + e^{-t^2}y = \cos(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve(diff(y(t),t)=-y(t)/exp(t^2)+cos(t),y(t), singsol=all)$

$$y(t) = \left(\int \cos(t) e^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} dt + c_1\right) e^{-\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}$$

✓ Solution by Mathematica

Time used: 1.093 (sec). Leaf size: 47

DSolve[y'[t]==-y[t]/Exp[t^2]+Cos[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-\frac{1}{2}\sqrt{\pi}\mathrm{erf}(t)} \Biggl(\int_{1}^{t} e^{\frac{1}{2}\sqrt{\pi}\mathrm{erf}(K[1])} \cos(K[1]) dK[1] + c_{1} \Biggr)$$

7.18 problem 18

Internal problem ID [13023]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{\sqrt{t^3 - 3}} = t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $dsolve(diff(y(t),t)=y(t)/sqrt(t^3-3)+t,y(t), singsol=all)$

$$y(t) = \left(\int t\,\mathrm{e}^{-\left(\int rac{1}{\sqrt{t^3-3}}dt
ight)}dt + c_1
ight)\mathrm{e}^{\int rac{1}{\sqrt{t^3-3}}dt}$$

✓ Solution by Mathematica

Time used: 20.591 (sec). Leaf size: 110

DSolve[y'[t]==y[t]/Sqrt[t^3-3]+t,y[t],t,IncludeSingularSolutions -> True]

$$y(t)$$

$$\rightarrow e^{\frac{t\sqrt{1-\frac{t^3}{3}} \text{ Hypergeometric 2F1}\left(\frac{1}{3},\frac{1}{2},\frac{4}{3},\frac{t^3}{3}\right)}{\sqrt{t^3-3}}} \left(\int_1^t \exp\left(-\frac{\text{Hypergeometric 2F1}\left(\frac{1}{3},\frac{1}{2},\frac{4}{3},\frac{K[1]^3}{3}\right) K[1] \sqrt{1-\frac{K[1]^3}{3}}}{\sqrt{K[1]^3-3}}\right) K[1] \right) + c_1$$

7.19 problem 19

Internal problem ID [13024]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 19.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - aty = 4 e^{-t^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

 $dsolve(diff(y(t),t)=a*t*y(t)+4*exp(-t^2),y(t), singsol=all)$

$$y(t) = \frac{\left(c_1\sqrt{2a+4} + 4\sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2a+4}t}{2}\right)\right) e^{\frac{at^2}{2}}}{\sqrt{2a+4}}$$

✓ Solution by Mathematica

Time used: 0.213 (sec). Leaf size: 58

 $DSolve[y'[t] == a*t*y[t] + 4*Exp[-t^2], y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t)
ightarrow rac{e^{rac{at^2}{2}} \left(2\sqrt{2\pi} \mathrm{erf}\left(rac{\sqrt{a+2}t}{\sqrt{2}}
ight) + \sqrt{a+2}c_1
ight)}{\sqrt{a+2}}$$

7.20 problem 20

Internal problem ID [13025]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - t^r y = 4$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 202

 $dsolve(diff(y(t),t)=t^r*y(t)+4,y(t), singsol=all)$

 $y(t) = \frac{4 e^{\frac{t^r t}{2r+2} \left(t^{-r} \left(\frac{t \, t^r}{r+1}\right)^{\frac{-r-2}{2r+2}} \left(r+1\right) \left(r+2\right)^2 \text{WhittakerM} \left(\frac{r+2}{2r+2}, \frac{2r+3}{2r+2}, \frac{t \, t^r}{r+1}\right) + \left(r+1\right)^2 \left(\left(r+2\right) t^{-r} + t\right) \left(\frac{t \, t^r}{r+1}\right)^{\frac{-r-2}{2r+2}}}{2r^2 + 7r + 6}$

✓ Solution by Mathematica

Time used: 0.12 (sec). Leaf size: 66

DSolve[y'[t]==t^r*y[t]+4,y[t],t,IncludeSingularSolutions -> True]

$$y(t) o e^{rac{t^{r+1}}{r+1}} \Biggl(-rac{4t \Bigl(rac{t^{r+1}}{r+1}\Bigr)^{-rac{1}{r+1}} \Gamma\Bigl(rac{1}{r+1},rac{t^{r+1}}{r+1}\Bigr)}{r+1} + c_1 \Biggr)$$

7.21 problem 21

Internal problem ID [13026]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$v' + \frac{2v}{5} = 3\cos(2t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(v(t),t)+4/10*v(t)=3*cos(2*t),v(t), singsol=all)

$$v(t) = \frac{15\cos(2t)}{52} + \frac{75\sin(2t)}{52} + e^{-\frac{2t}{5}}c_1$$

✓ Solution by Mathematica

Time used: 0.152 (sec). Leaf size: 31

DSolve[v'[t]+4/10*v[t]==3*Cos[2*t],v[t],t,IncludeSingularSolutions -> True]

$$v(t) \to \frac{15}{52} (5\sin(2t) + \cos(2t)) + c_1 e^{-2t/5}$$

7.22 problem 22 (f)

Internal problem ID [13027]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 22 (f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' + 2ty = 4 e^{-t^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=-2*t*y(t)+4*exp(-t^2),y(t), singsol=all)$

$$y(t) = (4t + c_1) e^{-t^2}$$

✓ Solution by Mathematica

Time used: 0.095 (sec). Leaf size: 19

 $\label{eq:DSolve} DSolve[y'[t] == -2*t*y[t] + 4*Exp[-t^2], y[t], t, IncludeSingularSolutions \ -> \ True]$

$$y(t) \to e^{-t^2} (4t + c_1)$$

7.23 problem 23

Internal problem ID [13028]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 2y = 3e^{-2t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(y(t),t)+2*y(t)=3*exp(-2*t),y(t), singsol=all)

$$y(t) = (c_1 + 3t) e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.084 (sec). Leaf size: 17

DSolve[y'[t]+2*y[t]==3*Exp[-2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-2t}(3t + c_1)$$

8 Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136

8.1	problem 2.	 •	•	•	 •	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	178
8.2	problem 3 .												 																		179
8.3	problem 4 .												 																		180
8.4	problem 5 .																														181
8.5	problem 6 .												 																		182
8.6	problem 17																														183
8.7	problem 20																														184
8.8	problem 21																														185
8.9	problem 22												 																		186
8.10	problem 23												 																		187
8.11	problem 24																														188
8.12	problem 25																														189
8.13	problem 26																														190
8.14	problem 27												 																		191
8.15	problem 28												 																		192
8.16	problem 29																														193
8.17	problem 30												 																		194
8.18	problem 31																														195
8.19	problem 32												 																		196
8.20	problem 33												 																		197
8.21	problem 34												 																		198
8.22	problem 35												 																		199
8.23	problem 36												 																		200
8.24	problem 37												 																		201
8.25	problem 38												 																		202
8.26	problem 39												 																		203
8.27	problem 40												 																		204
8.28	problem 43												 																		205
8.29	problem 44												 																		206
8.30	problem 45												 																		207
	problem 46												 																		208
8.32	problem 47												 																		209

8.1 problem 2

Internal problem ID [13029]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 3y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(t),t)=3*y(t),y(t), singsol=all)

$$y(t) = c_1 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 18

DSolve[y'[t]==3*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 e^{3t}$$
$$y(t) \to 0$$

8.2 problem 3

Internal problem ID [13030]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' = t^2 (t^2 + 1)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)=t^2*(t^2+1),y(t), singsol=all)$

$$y(t) = \frac{1}{5}t^5 + \frac{1}{3}t^3 + c_1$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

DSolve[y'[t]==t^2*(t^2+1),y[t],t,IncludeSingularSolutions -> True]

$$y(t) o rac{t^5}{5} + rac{t^3}{3} + c_1$$

8.3 problem 4

Internal problem ID [13031]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + \sin(y)^5 = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 190

 $dsolve(diff(y(t),t)=-sin(y(t))^5,y(t), singsol=all)$

$$y(t) \\ = \arctan\left(\frac{2\,\mathrm{e}^{\mathrm{RootOf}(\mathrm{e}^{8}-Z}+8\,\mathrm{e}^{6}-Z}+64c_{1}\mathrm{e}^{4}-Z}{\mathrm{e}^{2}\mathrm{RootOf}(\mathrm{e}^{8}-Z}+8\,\mathrm{e}^{6}-Z}+64c_{1}\mathrm{e}^{4}-Z}+24_Z\,\mathrm{e}^{4}-Z}+64t\,\mathrm{e}^{4}-Z}-8\,\mathrm{e}^{2}-Z}-1)}{\mathrm{e}^{2}\mathrm{RootOf}(\mathrm{e}^{8}-Z}+8\,\mathrm{e}^{6}-Z}+64c_{1}\mathrm{e}^{4}-Z}+24_Z\,\mathrm{e}^{4}-Z}+24_Z\,\mathrm{e}^{4}-Z}+64t\,\mathrm{e}^{4}-Z}-8\,\mathrm{e}^{2}-Z}-1)}{\mathrm{e}^{2}\mathrm{RootOf}(\mathrm{e}^{8}-Z}+8\,\mathrm{e}^{6}-Z}+64c_{1}\mathrm{e}^{4}-Z}+24_Z\,\mathrm{e}^$$

✓ Solution by Mathematica

Time used: 1.165 (sec). Leaf size: 101

DSolve[y'[t]==-Sin[y[t]]^5,y[t],t,IncludeSingularSolutions -> True]

$$\begin{split} y(t) &\rightarrow \text{InverseFunction} \left[\frac{1}{16} \left(-\frac{1}{64} \csc^4 \left(\frac{\#1}{2} \right) - \frac{3}{32} \csc^2 \left(\frac{\#1}{2} \right) + \frac{1}{64} \sec^4 \left(\frac{\#1}{2} \right) \right. \\ &\left. + \frac{3}{32} \sec^2 \left(\frac{\#1}{2} \right) + \frac{3}{8} \log \left(\sin \left(\frac{\#1}{2} \right) \right) - \frac{3}{8} \log \left(\cos \left(\frac{\#1}{2} \right) \right) \right) \& \right] \left[-\frac{t}{16} + c_1 \right] \\ y(t) &\rightarrow 0 \end{split}$$

8.4 problem 5

Internal problem ID [13032]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 5.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{(t^2 - 4)(y + 1)e^y}{(t - 1)(3 - y)} = 0$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 38

$$dsolve(diff(y(t),t)=((t^2-4)*(1+y(t))*exp(y(t)))/((t-1)*(3-y(t))),y(t), singsol=all)$$

$$y(t) = -\text{RootOf}\left(8 \text{ e expIntegral}_{1}\left(1 - \underline{Z}\right) + t^{2} - 2 \text{ e}^{-Z} - 6 \ln(t - 1) + 2c_{1} + 2t\right)$$

✓ Solution by Mathematica

Time used: 1.486 (sec). Leaf size: 53

$$y(t) \rightarrow \text{InverseFunction} \left[-4e \text{ExpIntegralEi}(-\#1-1) - e^{-\#1} \& \right] \left[-\frac{t^2}{2} - t + 3\log(t-1) + \frac{3}{2} + c_1 \right]$$

$$y(t) \rightarrow -1$$

8.5 problem 6

Internal problem ID [13033]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 6.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \sin\left(y\right)^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

 $dsolve(diff(y(t),t)=sin(y(t))^2,y(t), singsol=all)$

$$y(t) = \frac{\pi}{2} + \arctan\left(t + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.319 (sec). Leaf size: 19

DSolve[y'[t]==Sin[y[t]]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\cot^{-1}(t - 2c_1)$$

$$y(t) \to 0$$

8.6 problem 17

Internal problem ID [13034]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $x=_G(y,y')$ ']

$$y' - (y - 3)(\sin(y)\sin(t) + \cos(t) + 1) = 0$$

With initial conditions

$$[y(0) = 4]$$

X Solution by Maple

$$dsolve([diff(y(t),t)=(y(t)-3)*(sin(y(t))*sin(t)+cos(t)+1),y(0)=4],y(t), singsol=all)$$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

$$DSolve[\{y'[t]==(y[t]-3)*(Sin[y[t]]*Sin[t]+Cos[t]+1),\{y[0]==4\}\},y[t],t,IncludeSingularSoluti]$$

Not solved

8.7 problem 20

Internal problem ID [13035]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - y = e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(t),t)=y(t)+exp(-t),y(t), singsol=all)

$$y(t) = -\frac{e^{-t}}{2} + c_1 e^t$$

Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 21

DSolve[y'[t]==y[t]+Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\frac{e^{-t}}{2} + c_1 e^t$$

8.8 problem 21

Internal problem ID [13036]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + 2y = 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)= 3-2*y(t),y(t), singsol=all)

$$y(t) = \frac{3}{2} + e^{-2t}c_1$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 24

DSolve[y'[t]==3-2*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{3}{2} + c_1 e^{-2t}$$
$$y(t) \to \frac{3}{2}$$

8.9 problem 22

Internal problem ID [13037]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 22.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - ty = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(diff(y(t),t)=t*y(t),y(t), singsol=all)

$$y(t) = \mathrm{e}^{\frac{t^2}{2}} c_1$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 22

DSolve[y'[t]==t*y[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 e^{\frac{t^2}{2}}$$
$$y(t) \to 0$$

8.10 problem 23

Internal problem ID [13038]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 3y = e^{7t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve(diff(y(t),t)= 3*y(t)+exp(7*t),y(t), singsol=all)

$$y(t) = \frac{(e^{4t} + 4c_1)e^{3t}}{4}$$

Solution by Mathematica

Time used: 0.068 (sec). Leaf size: $23\,$

DSolve[y'[t]==3*y[t]+Exp[7*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{e^{7t}}{4} + c_1 e^{3t}$$

8.11 problem 24

Internal problem ID [13039]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{ty}{t^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(diff(y(t),t)=t*y(t)/(1+t^2),y(t), singsol=all)$

$$y(t) = c_1 \sqrt{t^2 + 1}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 22

DSolve[y'[t]==t*y[t]/(1+t^2),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 \sqrt{t^2 + 1}$$
$$y(t) \to 0$$

8.12 problem 25

Internal problem ID [13040]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 5y = \sin(3t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(t),t) = -5*y(t)+sin(3*t),y(t), singsol=all)

$$y(t) = -\frac{3\cos(3t)}{34} + \frac{5\sin(3t)}{34} + e^{-5t}c_1$$

✓ Solution by Mathematica

Time used: 0.165 (sec). Leaf size: 30

DSolve[y'[t]==-5*y[t]+Sin[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{5}{34}\sin(3t) - \frac{3}{34}\cos(3t) + c_1e^{-5t}$$

8.13 problem 26

Internal problem ID [13041]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{2y}{1+t} = t$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve(diff(y(t),t)= t+2*y(t)/(1+t),y(t), singsol=all)

$$y(t) = (t+1)((t+1)\ln(t+1) + c_1t + c_1 + 1)$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 23

DSolve[y'[t]==t+2*y[t]/(1+t),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to (t+1)^2 \left(\frac{1}{t+1} + \log(t+1) + c_1\right)$$

8.14 problem 27

Internal problem ID [13042]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 = 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(y(t),t)= 3+y(t)^2,y(t), singsol=all)$

$$y(t) = \sqrt{3} \tan \left((t + c_1) \sqrt{3} \right)$$

✓ Solution by Mathematica

Time used: 0.256 (sec). Leaf size: 48

DSolve[y'[t]==3+y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \sqrt{3} \tan \left(\sqrt{3}(t+c_1)\right)$$

$$y(t) \rightarrow -i\sqrt{3}$$

$$y(t) \to i\sqrt{3}$$

8.15 problem 28

Internal problem ID [13043]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 2y + y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(t),t)= 2*y(t)-y(t)^2,y(t), singsol=all)$

$$y(t) = \frac{2}{1 + 2e^{-2t}c_1}$$

Solution by Mathematica

Time used: 0.447 (sec). Leaf size: 36

DSolve[y'[t]==2*y[t]-y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) o rac{2e^{2t}}{e^{2t} + e^{2c_1}}$$

$$y(t) \to 0$$

$$y(t) \rightarrow 2$$

8.16 problem 29

Internal problem ID [13044]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

 ${\bf Section:}\ {\bf Chapter}\ 1.\ {\bf First-Order}\ {\bf Differential}\ {\bf Equations.}\ {\bf Review}\ {\bf Exercises}\ {\bf for}\ {\bf chapter}\ 1.\ {\bf page}$

136

Problem number: 29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 3y = e^{-2t} + t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(t),t) = -3*y(t)+exp(-2*t)+t^2,y(t), singsol=all)$

$$y(t) = \frac{t^2}{3} - \frac{2t}{9} + \frac{2}{27} + e^{-2t} + c_1 e^{-3t}$$

Solution by Mathematica

 $\overline{\text{Time used: 0.147 (sec). Leaf size: 33}}$

DSolve[y'[t]==-3*y[t]+Exp[-2*t]+t^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{27} (9t^2 - 6t + 2) + e^{-2t} + c_1 e^{-3t}$$

8.17 problem 30

Internal problem ID [13045]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 30.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' + xt = 0$$

With initial conditions

$$[x(0) = e]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve([diff(x(t),t)= -t*x(t),x(0) = exp(1)],x(t), singsol=all)

$$x(t) = e^{1 - \frac{t^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 16

 $DSolve[\{x'[t]==-t*x[t],\{x[0]==Exp[1]\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to e^{1 - \frac{t^2}{2}}$$

8.18 problem 31

Internal problem ID [13046]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 2y = \cos\left(4t\right)$$

With initial conditions

$$[y(0) = 1]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve([diff(y(t),t)=\ 2*y(t)+\cos(4*t),y(0)=\ 1],y(t),\ singsol=all)$

$$y(t) = -\frac{\cos(4t)}{10} + \frac{\sin(4t)}{5} + \frac{11e^{2t}}{10}$$

✓ Solution by Mathematica

Time used: 0.159 (sec). Leaf size: $29\,$

 $DSolve[\{y'[t]==2*y[t]+Cos[4*t],\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{10} (11e^{2t} + 2\sin(4t) - \cos(4t))$$

8.19 problem 32

Internal problem ID [13047]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 32.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' - 3y = 2e^{3t}$$

With initial conditions

$$[y(0) = -1]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(t),t)= 3*y(t)+2*exp(3*t),y(0) = -1],y(t), singsol=all)

$$y(t) = (2t - 1) e^{3t}$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 16

DSolve[{y'[t]==3*y[t]+2*Exp[3*t],{y[0]==-1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{3t}(2t-1)$$

8.20 problem 33

Internal problem ID [13048]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 33.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - t^2 y^3 - y^3 = 0$$

With initial conditions

$$\left[y(0) = -\frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.14 (sec). Leaf size: 18

 $dsolve([diff(y(t),t)= t^2*y(t)^3+y(t)^3,y(0) = -1/2],y(t), singsol=all)$

$$y(t) = -\frac{3}{\sqrt{-6t^3 - 18t + 36}}$$

✓ Solution by Mathematica

Time used: 0.319 (sec). Leaf size: 28

 $DSolve[\{y'[t]==t^2*y[t]^3+y[t]^3,\{y[0]==-1/2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t)
ightarrow -rac{\sqrt{rac{3}{2}}}{\sqrt{-t^3-3t+6}}$$

8.21 problem 34

Internal problem ID [13049]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 34.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + 5y = 3e^{-5t}$$

With initial conditions

$$[y(0) = -2]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([diff(y(t),t)+5*y(t)= 3*exp(-5*t),y(0) = -2],y(t), singsol=all)

$$y(t) = (-2+3t) e^{-5t}$$

✓ Solution by Mathematica

Time used: 0.085 (sec). Leaf size: 16

 $DSolve[\{y'[t]+5*y[t]==\ 3*Exp[-5*t],\{y[0]==-2\}\},y[t],t,IncludeSingularSolutions \ ->\ True]$

$$y(t) \to e^{-5t}(3t - 2)$$

8.22 problem 35

Internal problem ID [13050]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 35.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - 2ty = 3t e^{t^2}$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: $16\,$

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{y}(\mbox{t}),\mbox{t}) = 2*\mbox{t}*\mbox{y}(\mbox{t}) + 3*\mbox{t}*\mbox{exp}(\mbox{t}^2),\mbox{y}(\mbox{0}) = 1],\mbox{y}(\mbox{t}), \\ \mbox{singsol=all})$

$$y(t) = \frac{(3t^2 + 2)e^{t^2}}{2}$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 21

 $DSolve[\{y'[t]== 2*t*y[t]+3*t*Exp[t^2], \{y[0]==1\}\}, y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{1}{2}e^{t^2} \left(3t^2 + 2\right)$$

8.23 problem 36

Internal problem ID [13051]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 36.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{(1+t)^2}{(y+1)^2} = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 5

 $dsolve([diff(y(t),t)=(t+1)^2/(y(t)+1)^2,y(0)=0],y(t), singsol=all)$

$$y(t) = t$$

✓ Solution by Mathematica

Time used: 0.805 (sec). Leaf size: 16

 $DSolve[\{y'[t]==(t+1)^2/(y[t]+1)^2,\{y[0]==0\}\},y[t],t,IncludeSingularSolutions] \rightarrow True]$

$$y(t) \to \sqrt[3]{(t+1)^3} - 1$$

8.24 problem 37

Internal problem ID [13052]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 37.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - 2ty^2 - 3t^2y^2 = 0$$

With initial conditions

$$[y(1) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

 $dsolve([diff(y(t),t)=\ 2*t*y(t)^2+3*t^2*y(t)^2,y(1)=-1],y(t),\ singsol=all)$

$$y(t) = -\frac{1}{t^3 + t^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.222 (sec). Leaf size: 17

DSolve[{y'[t]== 2*t*y[t]^2+3*t^2*y[t]^2,{y[1]==-1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\frac{1}{t^3+t^2-1}$$

8.25 problem 38

Internal problem ID [13053]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 38.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 1$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

 $dsolve([diff(y(t),t)= 1-y(t)^2,y(0) = 1],y(t), singsol=all)$

$$y(t) = 1$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $DSolve[\{y'[t] == 1-y[t]^2, \{y[0] == 1\}\}, y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow 1$$

8.26 problem 39

Internal problem ID [13054]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 39.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{t^2}{y + yt^3} = 0$$

With initial conditions

$$[y(0) = -2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $dsolve([diff(y(t),t)= t^2/(y(t)+t^3*y(t)),y(0) = -2],y(t), singsol=all)$

$$y(t) = -\frac{\sqrt{36 + 6\ln(t^3 + 1)}}{3}$$

✓ Solution by Mathematica

Time used: 0.195 (sec). Leaf size: 26

 $DSolve[\{y'[t]== t^2/(y[t]+t^3*y[t]), \{y[0]==-2\}\}, y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \to -\sqrt{\frac{2}{3}}\sqrt{\log(t^3+1)+6}$$

8.27 problem 40

Internal problem ID [13055]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 40.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 + 2y = 1$$

With initial conditions

$$[y(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

 $dsolve([diff(y(t),t)=y(t)^2-2*y(t)+1,y(0)=2],y(t), singsol=all)$

$$y(t) = \frac{t-2}{t-1}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 14

 $DSolve[\{y'[t]==y[t]^2-2*y[t]+1,\{y[0]==2\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow \frac{t-2}{t-1}$$

8.28 problem 43

Internal problem ID [13056]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012

 ${\bf Section} \colon$ Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136

Problem number: 43.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Riccati]

$$y' - (y - 2)(y + 1 - \cos(t)) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 81

dsolve(diff(y(t),t)=(y(t)-2)*(y(t)+1-cos(t)),y(t), singsol=all)

$$y(t) = \frac{-2c_1 e^{-2t} \left(\int e^{-\frac{3\pi}{2} + 3t - \sin(t)} dt \right) + c_1 e^{t - \frac{3\pi}{2} - \sin(t)} + 2i e^{-2t + \pi}}{-c_1 e^{-2t} \left(\int e^{-\frac{3\pi}{2} + 3t - \sin(t)} dt \right) + i e^{-2t + \pi}}$$

✓ Solution by Mathematica

Time used: 3.379 (sec). Leaf size: 224

 $DSolve[y'[t] == (y[t]-2)*(y[t]+1-Cos[t]), y[t], t, IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(t) \rightarrow & -\frac{-2\int_{1}^{e^{it}} e^{\frac{i\left(K[1]^{2}-1\right)}{2K[1]}} K[1]^{-1-3i} dK[1] + ie^{\frac{1}{2}ie^{-it}\left(-1+e^{2it}\right)} (e^{it})^{-3i} - 2c_{1}}{\int_{1}^{e^{it}} e^{\frac{i\left(K[1]^{2}-1\right)}{2K[1]}} K[1]^{-1-3i} dK[1] + c_{1}} \\ y(t) \rightarrow & 2 \\ y(t) \rightarrow & 2 - \frac{ie^{\frac{1}{2}ie^{-it}\left(-1+e^{2it}\right)} (e^{it})^{-3i}}{\int_{1}^{e^{it}} e^{\frac{i\left(K[1]^{2}-1\right)}{2K[1]}} K[1]^{-1-3i} dK[1]} \end{split}$$

8.29 problem 44

Internal problem ID [13057]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 44.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Abel]

$$y' - (y - 1)(y - 2)(y - e^{\frac{t}{2}}) = 0$$

X Solution by Maple

dsolve(diff(y(t),t)=(y(t)-1)*(y(t)-2)*(y(t)-exp(t/2)),y(t), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y'[t] == (y[t]-1)*(y[t]-2)*(y[t]-Exp[t/2]), y[t], t, IncludeSingularSolutions \rightarrow True]$

Timed out

8.30 problem 45

Internal problem ID [13058]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 45.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - t^2 y - y = t^2 + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(y(t),t)=t^2*y(t)+1+y(t)+t^2,y(t), singsol=all)$

$$y(t) = -1 + \mathrm{e}^{\frac{t(t^2+3)}{3}} c_1$$

✓ Solution by Mathematica

Time used: 0.188 (sec). Leaf size: 26

DSolve[y'[t]==t^2*y[t]+1+y[t]+t^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -1 + c_1 e^{\frac{t^3}{3} + t}$$
$$y(t) \rightarrow -1$$

8.31 problem 46

Internal problem ID [13059]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 46.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2y+1}{t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(t),t)=(2*y(t)+1)/t,y(t), singsol=all)

$$y(t) = -\frac{1}{2} + c_1 t^2$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 22

 $DSolve[y'[t] == (2*y[t]+1)/t, y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \rightarrow -\frac{1}{2} + c_1 t^2$$

 $y(t) \rightarrow -\frac{1}{2}$

8.32 problem 47

Internal problem ID [13060]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page

136

Problem number: 47.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y^2 = 3$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 14

 $dsolve([diff(y(t),t)=3-y(t)^2,y(0)=0],y(t), singsol=all)$

$$y(t) = \sqrt{3} \tanh\left(\sqrt{3}t\right)$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 37

 $DSolve[\{y'[t]==3-y[t]^2,\{y[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True] \\$

$$y(t)
ightarrow rac{\sqrt{3} \left(e^{2\sqrt{3}t} - 1
ight)}{e^{2\sqrt{3}t} + 1}$$

9	Chapte	r		3.	L	ir	16	98	ar	•	S	y	S	\mathbf{t}	e:	n	18	3.]	E	X	e	r	C.	is	e	S	5	S €	90	ct	i	o	n	3.1
	page 25	8	3																																
9.1	problem 1 .																																		211
9.2	problem 2 .																																		212
9.3	problem 3 .																																		213
9.4	problem 4 .																																		214
9.5	problem 5 .																																		215
9.6	problem 6 .																																		216
9.7	problem 7.																																		217
9.8	problem 8 .																																		
9.9	problem 9 .																																		
9.10	problem 24																																		
	problem 25																																		
	problem 26																																		
	problem 28																																		
	problem 29																																		
	problem 34																																		

9.1 problem 1

Internal problem ID [13061]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) - y$$
$$y' = x(t) - y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve([diff(x(t),t)=x(t)-y(t),diff(y(t),t)=x(t)-y(t)],singsol=all)

$$x(t) = c_1 t + c_2$$

 $y(t) = c_1 t - c_1 + c_2$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 32

DSolve[{x'[t]==x[t]-y[t],y'[t]==x[t]-y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1(t+1) - c_2t$$

 $y(t) \to (c_1 - c_2)t + c_2$

9.2 problem 2

Internal problem ID [13062]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 2.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) - y$$
$$y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

dsolve([diff(x(t),t)=2*x(t)-y(t),diff(y(t),t)=0],singsol=all)

$$x(t) = \frac{c_2}{2} + c_1 e^{2t}$$
$$y(t) = c_2$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 32

DSolve[{x'[t]==2*x[t]-y[t],y'[t]==0},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \left(c_1 - \frac{c_2}{2}\right)e^{2t} + \frac{c_2}{2}$$
$$y(t) \to c_2$$

9.3 problem 3

Internal problem ID [13063]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t)$$
$$y' = 2x(t) + y$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 21

dsolve([diff(x(t),t)=x(t),diff(y(t),t)=2*x(t)+y(t)],singsol=all)

$$x(t) = c_2 e^t$$

 $y(t) = (2c_2 t + c_1) e^t$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

DSolve[{x'[t]==x[t],y'[t]==2*x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^t$$

$$y(t) \to e^t (2c_1 t + c_2)$$

9.4 problem 4

Internal problem ID [13064]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + 2y$$
$$y' = 2x(t) - y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve([diff(x(t),t)=-x(t)+2*y(t),diff(y(t),t)=2*x(t)-y(t)],singsol=all)

$$x(t) = c_1 e^t + c_2 e^{-3t}$$

 $y(t) = c_1 e^t - c_2 e^{-3t}$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 68

$$x(t) \to \frac{1}{2}e^{-3t} (c_1(e^{4t}+1) + c_2(e^{4t}-1))$$

$$y(t) \to \frac{1}{2}e^{-3t} (c_1(e^{4t} - 1) + c_2(e^{4t} + 1))$$

9.5 problem 5

Internal problem ID [13065]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y$$
$$y' = x(t) + y$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 86

dsolve([diff(x(t),t)=2*x(t)+y(t),diff(y(t),t)=x(t)+y(t)],singsol=all)

$$x(t) = c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}} + c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}$$

$$y(t) = \frac{c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}}\sqrt{5}}{2} - \frac{c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}\sqrt{5}}{2} - \frac{c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}}}{2} - \frac{c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}}{2}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 145

$$x(t) \to \frac{1}{10} e^{-\frac{1}{2} \left(\sqrt{5} - 3\right)t} \left(c_1 \left(\left(5 + \sqrt{5} \right) e^{\sqrt{5}t} + 5 - \sqrt{5} \right) + 2\sqrt{5}c_2 \left(e^{\sqrt{5}t} - 1 \right) \right)$$
$$y(t) \to \frac{1}{10} e^{-\frac{1}{2} \left(\sqrt{5} - 3\right)t} \left(2\sqrt{5}c_1 \left(e^{\sqrt{5}t} - 1 \right) - c_2 \left(\left(\sqrt{5} - 5 \right) e^{\sqrt{5}t} - 5 - \sqrt{5} \right) \right)$$

9.6 problem 6

Internal problem ID [13066]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 6.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3y$$
$$y' = 3\pi y - \frac{x(t)}{3}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 120

dsolve([diff(x(t),t)=3*y(t),diff(y(t),t)=3*Pi*y(t)-1/3*x(t)],singsol=all)

$$x(t) = c_1 e^{\frac{\left(3\pi - \sqrt{9\pi^2 - 4}\right)t}{2}} + c_2 e^{\frac{\left(3\pi + \sqrt{9\pi^2 - 4}\right)t}{2}}$$
$$y(t) = \left(\frac{\pi}{2} + \frac{\sqrt{9\pi^2 - 4}}{6}\right) c_2 e^{\frac{\left(3\pi + \sqrt{9\pi^2 - 4}\right)t}{2}} + \left(\frac{\pi}{2} - \frac{\sqrt{9\pi^2 - 4}}{6}\right) c_1 e^{\frac{\left(3\pi - \sqrt{9\pi^2 - 4}\right)t}{2}}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 233

$$\begin{array}{l} x(t) \\ \to \frac{e^{-\frac{1}{2}\left(\sqrt{9\pi^2-4}-3\pi\right)t}\left(\sqrt{9\pi^2-4}c_1\left(e^{\sqrt{9\pi^2-4}t}+1\right)-3\pi c_1\left(e^{\sqrt{9\pi^2-4}t}-1\right)+6c_2\left(e^{\sqrt{9\pi^2-4}t}-1\right)\right)}{2\sqrt{9\pi^2-4}} \\ y(t) \\ \to \frac{e^{-\frac{1}{2}\left(\sqrt{9\pi^2-4}-3\pi\right)t}\left(3c_2\left(3\pi\left(e^{\sqrt{9\pi^2-4}t}-1\right)+\sqrt{9\pi^2-4}\left(e^{\sqrt{9\pi^2-4}t}+1\right)\right)-2c_1\left(e^{\sqrt{9\pi^2-4}t}-1\right)\right)}{6\sqrt{9\pi^2-4}} \end{array}$$

9.7 problem 7

Internal problem ID [13067]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$p'(t) = 3p(t) - 2q(t) - 7r(t)$$

$$q'(t) = -2p(t) + 6r(t)$$

$$r'(t) = \frac{73q(t)}{100} + 2r(t)$$

Solution by Maple

Time used: 0.157 (sec). Leaf size: 1006

In the used: 0.157 (sec). Leaf size: 1000
$$\frac{\text{dsolve}([\text{diff}(\mathbf{p(t)},\mathbf{t})=3*\mathbf{p(t)}-2*\mathbf{q(t)}-7*\mathbf{r(t)}, \text{diff}(\mathbf{q(t)},\mathbf{t})=-2*\mathbf{p(t)}+6*\mathbf{r(t)}, \text{diff}(\mathbf{r(t)}),\mathbf{t})=73/100*\mathbf{q(t)})}{2}$$

$$= \frac{-(-i\sqrt{3}\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}+\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}+96420i\sqrt{3}\left(31130+6i\sqrt{89530242}\right)^{\frac{1}{3}}}{2} + 96420i\sqrt{3}\left(31130+6i\sqrt{89530242}\right)^{\frac{1}{3}}+96420i\sqrt{3}\left(31130+6i\sqrt{89530242}\right)^{\frac{1}{3}}}{2} + \frac{\left((31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}-5114\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}+96420i\sqrt{3}\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}}{2} + 96420i\sqrt{3}\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}-96420i\sqrt{3}\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}}{2} + 96420i\sqrt{3}\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}-96420i\sqrt{3}\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}}} + 96420i\sqrt{3}\left(31130+6i\sqrt{895302429}\right)^{\frac{1}{3}} + 96420i\sqrt{3}\left(31130+6i\sqrt{895302429$$

$$+\frac{\left(\left(31130+6 i \sqrt{895302429}\right)^{\frac{4}{3}}-3114 \left(31130+6 i \sqrt{895302429}\right)^{\frac{2}{3}}+60 i \sqrt{895302429}+32140 \left(31130+6 i \sqrt{895302429}\right)^{\frac{2}{3}}}{7200 \left(31130+6 i \sqrt{895302429}\right)^{\frac{2}{3}}}$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 602

DSolve[{p'[t]==3*p[t]-2*q[t]-7*r[t],q'[t]==-2*p[t]+6*r[t],r'[t]==73/100*q[t]+2*r[t]},{p[t],q'

$$\begin{split} p(t) &\to -100c_2 \text{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 \right. \\ &\quad + 10920000 \&, \frac{2 \# 1e^{\frac{\# 1t}{100}} + 111e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] - 100c_3 \text{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{7 \# 1e^{\frac{\# 1t}{100}} + 1200e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] + c_1 \text{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{\# 1^2 e^{\frac{\# 1t}{100}} - 200 \# 1e^{\frac{\# 1t}{100}} - 43800e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] \\ q(t) &\to -200c_1 \text{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 \right. \\ &\quad + 10920000 \&, \frac{\# 1e^{\frac{\# 1t}{100}} - 200e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] + 200c_3 \text{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{3 \# 1e^{\frac{\# 1t}{100}} - 200e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] + c_2 \text{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{\# 1^2 e^{\frac{\# 1t}{100}} - 500 \# 1e^{\frac{\# 1t}{100}} + 60000e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] \\ r(t) &\to -14600c_1 \text{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] + 73c_2 \text{RootSum} \left[\# 1^3 - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{\# 1e^{\frac{\# 1t}{100}} - 300e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] \\ - 23800 \# 1 + 10920000 \&, \frac{\# 1e^{\frac{\# 1t}{100}} - 300e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] \\ - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{\# 1e^{\frac{\# 1t}{100}} - 300e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right] \\ - 500 \# 1^2 - 23800 \# 1 + 10920000 \&, \frac{\# 1e^{\frac{\# 1t}{100}} - 300e^{\frac{\# 1t}{100}} - 40000e^{\frac{\# 1t}{100}}}{3 \# 1^2 - 1000 \# 1 - 23800} \& \right]$$

9.8 problem 8

Internal problem ID [13068]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 8.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) + 2\pi y$$
$$y' = 4x(t) - y$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 119

 $\label{eq:diff} \\ \text{dsolve}([\text{diff}(\textbf{x}(\textbf{t}),\textbf{t}) = -3*\textbf{x}(\textbf{t}) + 2*\text{Pi}*\textbf{y}(\textbf{t}), \\ \text{diff}(\textbf{y}(\textbf{t}),\textbf{t}) = 4*\textbf{x}(\textbf{t}) - \textbf{y}(\textbf{t})], \\ \text{singsol=all})$

$$\begin{split} x(t) &= c_1 \mathrm{e}^{-(2+\sqrt{1+8\pi})t} + c_2 \mathrm{e}^{(-2+\sqrt{1+8\pi})t} \\ y(t) &= -\frac{c_1 \mathrm{e}^{-(2+\sqrt{1+8\pi})t} \sqrt{1+8\pi} - c_2 \mathrm{e}^{(-2+\sqrt{1+8\pi})t} \sqrt{1+8\pi} - c_1 \mathrm{e}^{-(2+\sqrt{1+8\pi})t} - c_2 \mathrm{e}^{(-2+\sqrt{1+8\pi})t}}{2\pi} \end{split}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 189

$$\frac{x(t)}{\Rightarrow} \frac{e^{-((2+\sqrt{1+8\pi})t)} \left(c_1 \left((\sqrt{1+8\pi}-1) e^{2\sqrt{1+8\pi}t} + 1 + \sqrt{1+8\pi}\right) + 2\pi c_2 \left(e^{2\sqrt{1+8\pi}t} - 1\right)\right)}{2\sqrt{1+8\pi}}$$

$$\rightarrow \frac{e^{-((2+\sqrt{1+8\pi})t)} \left(4c_1 \left(e^{2\sqrt{1+8\pi}t}-1\right)+c_2 \left(\left(1+\sqrt{1+8\pi}\right)e^{2\sqrt{1+8\pi}t}-1+\sqrt{1+8\pi}\right)\right)}{2\sqrt{1+8\pi}}$$

9.9 problem 9

Internal problem ID [13069]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 9.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \beta y$$
$$y' = \gamma x(t) - y$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 119

dsolve([diff(x(t),t)=beta*y(t),diff(y(t),t)=gamma*x(t)-y(t)],singsol=all)

$$x(t) = c_1 e^{\frac{(-1+\sqrt{4\beta\gamma+1})t}{2}} + c_2 e^{-\frac{(1+\sqrt{4\beta\gamma+1})t}{2}}$$

$$y(t) = \frac{\left(-\frac{1}{2} + \frac{\sqrt{4\beta\gamma+1}}{2}\right)c_1 e^{\frac{(-1+\sqrt{4\beta\gamma+1})t}{2}}}{\beta} + \frac{\left(-\frac{e^{-\frac{(1+\sqrt{4\beta\gamma+1})t}{2}}\sqrt{4\beta\gamma+1}}{2} - \frac{e^{-\frac{(1+\sqrt{4\beta\gamma+1})t}{2}}}{2}\right)c_2}{\beta}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 202

$$\begin{split} & x(t) \\ & \to \frac{e^{-\frac{1}{2}t(\sqrt{4\beta\gamma+1}+1)} \left(c_1\left(\sqrt{4\beta\gamma+1}+\left(\sqrt{4\beta\gamma+1}+1\right)e^{t\sqrt{4\beta\gamma+1}}-1\right)+2\beta c_2\left(e^{t\sqrt{4\beta\gamma+1}}-1\right)\right)}{2\sqrt{4\beta\gamma+1}} \\ & y(t) \\ & \to \frac{e^{-\frac{1}{2}t(\sqrt{4\beta\gamma+1}+1)} \left(2\gamma c_1\left(e^{t\sqrt{4\beta\gamma+1}}-1\right)+c_2\left(\sqrt{4\beta\gamma+1}+\left(\sqrt{4\beta\gamma+1}-1\right)e^{t\sqrt{4\beta\gamma+1}}+1\right)\right)}{2\sqrt{4\beta\gamma+1}} \end{split}$$

9.10 problem 24

Internal problem ID [13070]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 24.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = x(t) + y$$

With initial conditions

$$[x(0) = -2, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

$$x(t) = -\frac{2e^{-t}}{3} - \frac{4e^{2t}}{3}$$
$$y(t) = \frac{e^{-t}}{3} - \frac{4e^{2t}}{3}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 44

$$x(t) \rightarrow -\frac{2}{3}e^{-t} \big(2e^{3t}+1\big)$$

$$y(t) \to \frac{1}{3}e^{-t}(1 - 4e^{3t})$$

9.11 problem 25

Internal problem ID [13071]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 25.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) - y$$
$$y' = x(t) + 3y$$

With initial conditions

$$[x(0) = 0, y(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

dsolve([diff(x(t),t) = x(t)-y(t), diff(y(t),t) = x(t)+3*y(t), x(0) = 0, y(0) = 2], singsol=a

$$x(t) = -2e^{2t}t$$

 $y(t) = -e^{2t}(-2t - 2)$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 26

$$x(t) \to -2e^{2t}t$$

$$y(t) \to 2e^{2t}(t+1)$$

9.12 problem 26

Internal problem ID [13072]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 26.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) - y$$
$$y' = 2x(t) - 5y$$

With initial conditions

$$[x(0) = 2, y(0) = 3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 28

$$x(t) = e^{-4t} + e^{-3t}$$

 $y(t) = 2e^{-4t} + e^{-3t}$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 30

$$x(t) \rightarrow e^{-4t} \left(e^t + 1 \right)$$

$$y(t) \rightarrow e^{-4t} \left(e^t + 2 \right)$$

9.13 problem 28

Internal problem ID [13073]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 28.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) - 3y$$
$$y' = 3x(t) - 2y$$

With initial conditions

$$[x(0) = 2, y(0) = 3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 45

$$x(t) = e^{-2t}(-3\sin(3t) + 2\cos(3t))$$

$$y(t) = -e^{-2t}(-3\cos(3t) - 2\sin(3t))$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 46

DSolve[{x'[t]==-2*x[t]-3*y[t],y'[t]==3*x[t]-2*y[t]},{x[0]==2,y[0]==3},{x[t],y[t]},t,IncludeS

$$x(t) \to e^{-2t} (2\cos(3t) - 3\sin(3t))$$

 $y(t) \to e^{-2t} (2\sin(3t) + 3\cos(3t))$

9.14 problem 29

Internal problem ID [13074]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 29.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 3y$$
$$y' = x(t)$$

With initial conditions

$$[x(0) = 2, y(0) = 3]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 34

dsolve([diff(x(t),t) = 2*x(t)+3*y(t), diff(y(t),t) = x(t), x(0) = 2, y(0) = 3], singsol=all)

$$x(t) = \frac{15 e^{3t}}{4} - \frac{7 e^{-t}}{4}$$
$$y(t) = \frac{5 e^{3t}}{4} + \frac{7 e^{-t}}{4}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 44

$$x(t) \to \frac{1}{4}e^{-t}(15e^{4t} - 7)$$

$$y(t) \to \frac{1}{4}e^{-t}(5e^{4t} + 7)$$

9.15 problem 34

Internal problem ID [13075]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258

Problem number: 34.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 1$$
$$y' = x(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve([diff(x(t),t)=1,diff(y(t),t)=x(t)],singsol=all)

$$x(t) = c_2 + t$$

 $y(t) = c_2 t + \frac{1}{2}t^2 + c_1$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 26

 $DSolve[\{x'[t]==1,y'[t]==x[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to t + c_1$$

 $y(t) \to \frac{t^2}{2} + c_1 t + c_2$

10 Chapter 3. Linear Systems. Exercises section 3.2. page 277

0.1 problem 1	229
0.2 problem 2	230
0.3 problem 3	231
0.4 problem 4	232
0.5 problem 5	233
0.6 problem 6	234
0.7 problem 7	235
0.8 problem 8	236
0.9 problem 9	237
0.10 problem 10	238
0.11 problem 11 (a)	239
0.12problem 11 (b)	240
0.13problem 11 (c)	241
0.14problem 12 (a)	242
0.15 problem 12 (b)	243
0.16 problem 12 (c)	244
0.17problem 13 (a)	245
0.18 problem 13 (b)	246
0.19problem 13 (c)	247
0.20 problem 14 (a)	248
0.21 problem 14 (b)	249
0.22 problem 14 (c)	250

10.1 problem 1

Internal problem ID [13076]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t)$$
$$y' = -2y$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

dsolve([diff(x(t),t)=3*x(t),diff(y(t),t)=-2*y(t)],singsol=all)

$$x(t) = c_2 e^{3t}$$
$$y(t) = c_1 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 32

 $DSolve[\{x'[t]==3*x[t],y'[t]==-2*x[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to c_1 e^{3t}$$

 $y(t) \to c_2 - \frac{2}{3}c_1(e^{3t} - 1)$

10.2 problem 2

Internal problem ID [13077]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 2.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -4x(t) - 2y$$
$$y' = -x(t) - 3y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

dsolve([diff(x(t),t)=-4*x(t)-2*y(t),diff(y(t),t)=-x(t)-3*y(t)],singsol=all)

$$x(t) = c_1 e^{-5t} + c_2 e^{-2t}$$
$$y(t) = \frac{c_1 e^{-5t}}{2} - c_2 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 71

$$x(t) \to \frac{1}{3}e^{-5t} \left(c_1 \left(e^{3t} + 2 \right) - 2c_2 \left(e^{3t} - 1 \right) \right)$$
$$y(t) \to \frac{1}{3}e^{-5t} \left(c_1 \left(-e^{3t} \right) + 2c_2 e^{3t} + c_1 + c_2 \right)$$

10.3 problem 3

Internal problem ID [13078]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -5x(t) - 2y$$
$$y' = -x(t) - 4y$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 36

dsolve([diff(x(t),t)=-5*x(t)-2*y(t),diff(y(t),t)=-x(t)-4*y(t)],singsol=all)

$$x(t) = e^{-6t}c_1 + c_2e^{-3t}$$
$$y(t) = \frac{e^{-6t}c_1}{2} - c_2e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 71

$$x(t) \to \frac{1}{3}e^{-6t} \left(c_1 \left(e^{3t} + 2 \right) - 2c_2 \left(e^{3t} - 1 \right) \right)$$
$$y(t) \to \frac{1}{3}e^{-6t} \left(c_1 \left(-e^{3t} \right) + 2c_2 e^{3t} + c_1 + c_2 \right)$$

10.4 problem 4

Internal problem ID [13079]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y$$
$$y' = -x(t) + 4y$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

dsolve([diff(x(t),t)=2*x(t)+1*y(t),diff(y(t),t)=-x(t)+4*y(t)],singsol=all)

$$x(t) = e^{3t}(c_2t + c_1)$$

$$y(t) = e^{3t}(c_2t + c_1 + c_2)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 44

$$x(t) \to e^{3t}(c_1(-t) + c_2t + c_1)$$

 $y(t) \to e^{3t}((c_2 - c_1)t + c_2)$

10.5 problem 5

Internal problem ID [13080]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -\frac{x(t)}{2}$$
$$y' = x(t) - \frac{y}{2}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 24

dsolve([diff(x(t),t)=-1/2*x(t),diff(y(t),t)=x(t)-1/2*y(t)],singsol=all)

$$x(t) = c_2 e^{-\frac{t}{2}}$$

 $y(t) = (c_2 t + c_1) e^{-\frac{t}{2}}$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 33

$$x(t) \to c_1 e^{-t/2}$$

 $y(t) \to e^{-t/2} (c_1 t + c_2)$

10.6 problem 6

Internal problem ID [13081]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 6.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 5x(t) + 4y$$
$$y' = 9x(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve([diff(x(t),t)=5*x(t)+4*y(t),diff(y(t),t)=9*x(t)],singsol=all)

$$x(t) = -\frac{4 e^{-4t} c_1}{9} + c_2 e^{9t}$$
$$y(t) = e^{-4t} c_1 + c_2 e^{9t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 74

DSolve[{x'[t]==5*x[t]+4*y[t],y'[t]==9*x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{13}e^{-4t} \left(c_1 \left(9e^{13t} + 4 \right) + 4c_2 \left(e^{13t} - 1 \right) \right)$$
$$y(t) \to \frac{1}{13}e^{-4t} \left(9c_1 \left(e^{13t} - 1 \right) + c_2 \left(4e^{13t} + 9 \right) \right)$$

10.7 problem 7

Internal problem ID [13082]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) + 4y$$
$$y' = x(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

dsolve([diff(x(t),t)=3*x(t)+4*y(t),diff(y(t),t)=1*x(t)],singsol=all)

$$x(t) = 4c_1 e^{4t} - c_2 e^{-t}$$

$$y(t) = c_1 e^{4t} + c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 71

DSolve[{x'[t]==3*x[t]+4*y[t],y'[t]==1*x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{5}e^{-t} \left(c_1 \left(4e^{5t} + 1 \right) + 4c_2 \left(e^{5t} - 1 \right) \right)$$
$$y(t) \to \frac{1}{5}e^{-t} \left(c_1 \left(e^{5t} - 1 \right) + c_2 \left(e^{5t} + 4 \right) \right)$$

10.8 problem 8

Internal problem ID [13083]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 8.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) - y$$
$$y' = -x(t) + y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 86

dsolve([diff(x(t),t)=2*x(t)-y(t),diff(y(t),t)=-1*x(t)+y(t)],singsol=all)

$$x(t) = c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}} + c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}$$
$$y(t) = -\frac{c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}}\sqrt{5}}{2} + \frac{c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}\sqrt{5}}{2} + \frac{c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}}}{2} + \frac{c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}}{2}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 144

$$x(t) \to \frac{1}{10} e^{-\frac{1}{2}\left(\sqrt{5}-3\right)t} \left(c_1 \left(\left(5+\sqrt{5}\right) e^{\sqrt{5}t} + 5 - \sqrt{5}\right) - 2\sqrt{5}c_2 \left(e^{\sqrt{5}t} - 1 \right) \right)$$

$$y(t) \to -\frac{1}{10} e^{-\frac{1}{2}\left(\sqrt{5}-3\right)t} \left(2\sqrt{5}c_1 \left(e^{\sqrt{5}t} - 1 \right) + c_2 \left(\left(\sqrt{5}-5\right) e^{\sqrt{5}t} - 5 - \sqrt{5}\right) \right)$$

10.9 problem 9

Internal problem ID [13084]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 9.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y$$
$$y' = x(t) + y$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 86

dsolve([diff(x(t),t)=2*x(t)+y(t),diff(y(t),t)=x(t)+y(t)],singsol=all)

$$x(t) = c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}} + c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}$$

$$y(t) = \frac{c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}}\sqrt{5}}{2} - \frac{c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}\sqrt{5}}{2} - \frac{c_1 e^{\frac{\left(3+\sqrt{5}\right)t}{2}}}{2} - \frac{c_2 e^{-\frac{\left(\sqrt{5}-3\right)t}{2}}}{2}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 145

 $DSolve[\{x'[t]==2*x[t]+y[t],y'[t]==x[t]+y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{1}{10} e^{-\frac{1}{2}\left(\sqrt{5}-3\right)t} \left(c_1 \left(\left(5+\sqrt{5}\right) e^{\sqrt{5}t} + 5 - \sqrt{5} \right) + 2\sqrt{5}c_2 \left(e^{\sqrt{5}t} - 1 \right) \right)$$
$$y(t) \to \frac{1}{10} e^{-\frac{1}{2}\left(\sqrt{5}-3\right)t} \left(2\sqrt{5}c_1 \left(e^{\sqrt{5}t} - 1 \right) - c_2 \left(\left(\sqrt{5}-5\right) e^{\sqrt{5}t} - 5 - \sqrt{5} \right) \right)$$

10.10 problem 10

Internal problem ID [13085]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 10.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) - 2y$$
$$y' = x(t) - 4y$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

dsolve([diff(x(t),t)=-x(t)-2*y(t),diff(y(t),t)=x(t)-4*y(t)],singsol=all)

$$x(t) = c_1 e^{-2t} + c_2 e^{-3t}$$
$$y(t) = \frac{c_1 e^{-2t}}{2} + c_2 e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 58

$$x(t) \to e^{-3t} (c_1(2e^t - 1) - 2c_2(e^t - 1))$$

 $y(t) \to e^{-3t} (c_1(e^t - 1) - c_2(e^t - 2))$

10.11 problem 11 (a)

Internal problem ID [13086]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 11 (a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) - 2y$$
$$y' = -2x(t) + y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

$$x(t) = \frac{e^{2t}}{5} + \frac{4e^{-3t}}{5}$$
$$y(t) = -\frac{2e^{2t}}{5} + \frac{2e^{-3t}}{5}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 40

 $DSolve[\{x'[t]==-2*x[t]-2*y[t],y'[t]==-2*x[t]+y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeSites[x'[t]==-2*x[t]-2*y[t],y'[t]==-2*x[t]+y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeSites[x'[t]==-2*x[t]-2*y[t],y'[t]==-2*x[t]+y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeSites[x'[t]==-2*x[t]-$

$$x(t) \to \frac{1}{5}e^{-3t}(e^{5t} + 4)$$

10.12 problem 11 (b)

Internal problem ID [13087]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 11 (b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) - 2y$$
$$y' = -2x(t) + y$$

With initial conditions

$$[x(0) = 0, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

$$x(t) = -\frac{2e^{2t}}{5} + \frac{2e^{-3t}}{5}$$
$$y(t) = \frac{4e^{2t}}{5} + \frac{e^{-3t}}{5}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 42

$$x(t) \rightarrow -\frac{2}{5}e^{-3t} \left(e^{5t}-1\right)$$

$$y(t) \to \frac{1}{5}e^{-3t} (4e^{5t} + 1)$$

10.13 problem 11 (c)

Internal problem ID [13088]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 11 (c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) - 2y$$
$$y' = -2x(t) + y$$

With initial conditions

$$[x(0) = 1, y(0) = -2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

$$x(t) = e^{2t}$$
$$y(t) = -2e^{2t}$$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 20

DSolve[{x'[t]==-2*x[t]-2*y[t],y'[t]==-2*x[t]+y[t]},{x[0]==1,y[0]==-2},{x[t],y[t]},t,IncludeS

$$x(t) \to e^{2t}$$
$$y(t) \to -2e^{2t}$$

10.14 problem 12 (a)

Internal problem ID [13089]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 12 (a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t)$$
$$y' = x(t) - 2y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

dsolve([diff(x(t),t) = 3*x(t), diff(y(t),t) = x(t)-2*y(t), x(0) = 1, y(0) = 0], singsol=all)

$$x(t) = e^{3t}$$

 $y(t) = \frac{e^{3t}}{5} - \frac{e^{-2t}}{5}$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 29

$$x(t) \to e^{3t}$$

$$y(t) \to \frac{1}{5}e^{-2t} \left(e^{5t} - 1\right)$$

10.15 problem 12 (b)

Internal problem ID [13090]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 12 (b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t)$$
$$y' = x(t) - 2y$$

With initial conditions

$$[x(0) = 0, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

$$x(t) = 0$$
$$y(t) = e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 14

 $DSolve[\{x'[t] == 3*x[t], y'[t] == x[t] - 2*y[t]\}, \{x[0] == 0, y[0] == 1\}, \{x[t], y[t]\}, t, Include Singular Solve [\{x'[t] == 3*x[t], y'[t] == x[t] - 2*y[t]\}, \{x[0] == 0, y[0] == 1\}, \{x[t], y[t]\}, t, Include Singular Solve [\{x'[t] == 3*x[t], y'[t] == x[t] - 2*y[t]\}, \{x[0] == 0, y[0] == 1\}, \{x[t], y[t] \}, \{x[t], y[t] == x[t] - 2*y[t]\}, \{x[t], y[t] == x[t], \{x[t], y[t] == x[t], \{x[t], y[t] == x[t], \{$

$$x(t) \to 0$$
$$y(t) \to e^{-2t}$$

10.16 problem 12 (c)

Internal problem ID [13091]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 12 (c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t)$$
$$y' = x(t) - 2y$$

With initial conditions

$$[x(0) = 2, y(0) = 2]$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve([diff(x(t),t) = 3*x(t), diff(y(t),t) = x(t)-2*y(t), x(0) = 2, y(0) = 2], singsol=all)

$$x(t) = 2e^{3t}$$
$$y(t) = \frac{2e^{3t}}{5} + \frac{8e^{-2t}}{5}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 31

$$x(t) \to 2e^{3t}$$
$$y(t) \to \frac{2}{5}e^{-2t}(e^{5t} + 4)$$

10.17problem 13 (a)

Internal problem ID [13092]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 13 (a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -4x(t) + y$$
$$y' = 2x(t) - 3y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

 $\frac{1}{dsolve([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = 2*x(t)-3*y(t), x(0) = 1, y(0) = 0], sing(x(t),t)}{dsolve([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = 2*x(t)-3*y(t), x(0) = 1, y(0) = 0], sing(x(t),t)$

$$x(t) = \frac{2e^{-5t}}{3} + \frac{e^{-2t}}{3}$$
$$y(t) = -\frac{2e^{-5t}}{3} + \frac{2e^{-2t}}{3}$$

Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 40

 $DSolve[\{x'[t]==-4*x[t]+y[t],y'[t]==2*x[t]-3*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeSing(x)=0$

$$x(t) \to \frac{1}{3}e^{-5t}(e^{3t} + 2)$$

 $y(t) \to \frac{2}{3}e^{-5t}(e^{3t} - 1)$

$$y(t) \rightarrow \frac{2}{3}e^{-5t} \left(e^{3t} - 1\right)$$

10.18 problem 13 (b)

Internal problem ID [13093]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 13 (b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -4x(t) + y$$
$$y' = 2x(t) - 3y$$

With initial conditions

$$[x(0) = 2, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

$$x(t) = e^{-5t} + e^{-2t}$$

 $y(t) = -e^{-5t} + 2e^{-2t}$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 34

$$x(t) \to e^{-5t} + e^{-2t}$$

 $y(t) \to e^{-5t} (2e^{3t} - 1)$

10.19 problem 13 (c)

Internal problem ID [13094]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 13 (c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -4x(t) + y$$
$$y' = 2x(t) - 3y$$

With initial conditions

$$[x(0) = -1, y(0) = -2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = 2*x(t)-3*y(t), x(0) = -1, y(0) = -2], since ([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = 2*x(t)-3*y(t), x(0) = -1, y(0) = -2], since ([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = 2*x(t)-3*y(t), x(0) = -1, y(0) = -2], since ([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = 2*x(t)-3*y(t), x(0) = -1, y(0) = -2], since ([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = 2*x(t)-3*y(t), x(0) = -1, y(0) = -2], since ([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = 2*x(t)-3*y(t), x(0) = -1, y(0) = -2], since ([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = -2*x(t)-3*y(t), x(0) = -1, y(0) = -2], since ([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = -2*x(t)-3*y(t), x(0) = -1, y(0) = -2], since ([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = -2*x(t)-3*y(t), x(0) = -1, y(0) = -2], since ([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = -2*x(t)-3*y(t), x(0) = -1, y(0) = -2*x(t)-3*y(t), x(0) = -1, y(0) = -2*x(t)-3*y(t), x(0) = -2*x(t)-3*y(t)-3*y(t), x(0) = -2*x(t)-3*y(t)

$$x(t) = -e^{-2t}$$

 $y(t) = -2e^{-2t}$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 22

DSolve[$\{x'[t]=-4*x[t]+y[t],y'[t]=-2*x[t]-3*y[t]\},\{x[0]=-1,y[0]=-2\},\{x[t],y[t]\},t,IncludeStands$

$$x(t) \to -e^{-2t}$$
$$y(t) \to -2e^{-2t}$$

10.20 problem 14 (a)

Internal problem ID [13095]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 14 (a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 4x(t) - 2y$$
$$y' = x(t) + y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 32

$$x(t) = 2e^{3t} - e^{2t}$$

 $y(t) = e^{3t} - e^{2t}$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 32

 $DSolve[\{x'[t]==4*x[t]-2*y[t],y'[t]==x[t]+y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeSingularing and the standard property of the standard prop$

$$x(t) \to e^{2t} (2e^t - 1)$$
$$y(t) \to e^{2t} (e^t - 1)$$

10.21 problem 14 (b)

Internal problem ID [13096]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 14 (b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 4x(t) - 2y$$
$$y' = x(t) + y$$

With initial conditions

$$[x(0) = 2, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve([diff(x(t),t) = 4*x(t)-2*y(t), diff(y(t),t) = x(t)+y(t), x(0) = 2, y(0) = 1], singsolve([diff(x(t),t) = 4*x(t)-2*y(t), diff(y(t),t) = x(t)+y(t), x(0) = 2, y(0) = 1],

$$x(t) = 2 e^{3t}$$
$$y(t) = e^{3t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 20

DSolve[{x'[t]==4*x[t]-2*y[t],y'[t]==x[t]+y[t]},{x[0]==2,y[0]==1},{x[t],y[t]},t,IncludeSingul

$$x(t) \to 2e^{3t}$$
$$y(t) \to e^{3t}$$

10.22 problem 14 (c)

Internal problem ID [13097]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277

Problem number: 14 (c).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 4x(t) - 2y$$
$$y' = x(t) + y$$

With initial conditions

$$[x(0) = -1, y(0) = -2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

dsolve([diff(x(t),t) = 4*x(t)-2*y(t), diff(y(t),t) = x(t)+y(t), x(0) = -1, y(0) = -2], sings

$$x(t) = 2e^{3t} - 3e^{2t}$$
$$y(t) = e^{3t} - 3e^{2t}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 32

$$x(t) \to e^{2t} (2e^t - 3)$$

$$y(t) \rightarrow e^{2t} (e^t - 3)$$

11 Chapter 3. Linear Systems. Exercises section 3.4 page 310

11.1	problem	3	•	•	•	•	•	•	•	•		•	•	•	•			•	•		•		•	•	•	•	252
11.2	$\operatorname{problem}$	4																									253
11.3	$\operatorname{problem}$	5																									254
11.4	$\operatorname{problem}$	6																									255
11.5	${\bf problem}$	7																									256
11.6	${\bf problem}$	8																									257
11.7	${\bf problem}$	9																									258
11.8	${\bf problem}$	10																									259
11.9	${\bf problem}$	11																									260
11.10	problem	12																									261
11.11	problem	13																									262
11.12	problem	14																					•				263
11.13	$\mathbf{problem}$	24																					•				264
11.14	problem	26																									265

11.1 problem 3

Internal problem ID [13098]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = -2x(t)$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve([diff(x(t),t) = 2*y(t), diff(y(t),t) = -2*x(t), x(0) = 1, y(0) = 0], singsol=all)

$$x(t) = \cos(2t)$$
$$y(t) = -\sin(2t)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: $18\,$

$$x(t) \to \cos(2t)$$

 $y(t) \to -\sin(2t)$

11.2 problem 4

Internal problem ID [13099]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 2y$$
$$y' = -4x(t) + 6y$$

With initial conditions

$$[x(0) = 1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 33

dsolve([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], y(0) = 1], single ([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], single ([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], y(0) = 1], single ([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], y(0) = 1], single ([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], y(0) = 1], single ([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], y(0) = 1

$$x(t) = e^{4t} \cos(2t)$$

 $y(t) = e^{4t} (\cos(2t) - \sin(2t))$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 35

DSolve[{x'[t]==2*x[t]+2*y[t],y'[t]==-4*x[t]+6*y[t]},{x[0]==1,y[0]==1},{x[t],y[t]},t,IncludeS

$$x(t) \to e^{4t} \cos(2t)$$

$$y(t) \to e^{4t} (\cos(2t) - \sin(2t))$$

11.3 problem 5

Internal problem ID [13100]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - 5y$$
$$y' = 3x(t) + y$$

With initial conditions

$$[x(0) = 4, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 48

 $\frac{1}{dsolve([diff(x(t),t) = -3*x(t)-5*y(t), diff(y(t),t) = 3*x(t)+y(t), x(0) = 4, y(0) = 0], sing(x(t),t)}{dsolve([diff(x(t),t) = -3*x(t)-5*y(t), diff(y(t),t) = 3*x(t)+y(t), x(0) = 4, y(0) = 0], sing(x(t),t)$

$$x(t) = e^{-t} \left(-\frac{8\sqrt{11} \sin\left(\sqrt{11} t\right)}{11} + 4\cos\left(\sqrt{11} t\right) \right)$$
$$y(t) = \frac{12 e^{-t} \sqrt{11} \sin\left(\sqrt{11} t\right)}{11}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 63

$$\begin{split} x(t) &\to \frac{4}{11} e^{-t} \Big(11 \cos \left(\sqrt{11} t \right) - 2 \sqrt{11} \sin \left(\sqrt{11} t \right) \Big) \\ y(t) &\to \frac{12 e^{-t} \sin \left(\sqrt{11} t \right)}{\sqrt{11}} \end{split}$$

11.4 problem 6

Internal problem ID [13101]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 6.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = -2x(t) - y$$

With initial conditions

$$[x(0) = -1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 63

$$x(t) = e^{-\frac{t}{2}} \left(\frac{\sqrt{15} \sin\left(\frac{t\sqrt{15}}{2}\right)}{5} - \cos\left(\frac{t\sqrt{15}}{2}\right) \right)$$
$$y(t) = -\frac{e^{-\frac{t}{2}} \left(-\frac{4\sqrt{15} \sin\left(\frac{t\sqrt{15}}{2}\right)}{5} - 4\cos\left(\frac{t\sqrt{15}}{2}\right)\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 92

$$x(t) \to \frac{1}{5}e^{-t/2} \left(\sqrt{15} \sin \left(\frac{\sqrt{15}t}{2} \right) - 5 \cos \left(\frac{\sqrt{15}t}{2} \right) \right)$$
$$y(t) \to \frac{1}{5}e^{-t/2} \left(\sqrt{15} \sin \left(\frac{\sqrt{15}t}{2} \right) + 5 \cos \left(\frac{\sqrt{15}t}{2} \right) \right)$$

11.5 problem 7

Internal problem ID [13102]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) - 6y$$
$$y' = 2x(t) + y$$

With initial conditions

$$[x(0) = 2, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 63

dsolve([diff(x(t),t) = 2*x(t)-6*y(t), diff(y(t),t) = 2*x(t)+y(t), x(0) = 2, y(0) = 1], sings

$$x(t) = e^{\frac{3t}{2}} \left(-\frac{10\sqrt{47} \sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + 2\cos\left(\frac{\sqrt{47}t}{2}\right) \right)$$
$$y(t) = \frac{e^{\frac{3t}{2}} \left(\frac{84\sqrt{47} \sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + 12\cos\left(\frac{\sqrt{47}t}{2}\right)\right)}{12}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 94

$$x(t) \to \frac{2}{47} e^{3t/2} \left(47 \cos \left(\frac{\sqrt{47}t}{2} \right) - 5\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) \right)$$
$$y(t) \to \frac{1}{47} e^{3t/2} \left(7\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) + 47 \cos \left(\frac{\sqrt{47}t}{2} \right) \right)$$

11.6 problem 8

Internal problem ID [13103]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 8.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + 4y$$
$$y' = -3x(t) + 2y$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 61

 $\frac{dsolve([diff(x(t),t) = x(t)+4*y(t), diff(y(t),t) = -3*x(t)+2*y(t), x(0) = 1, y(0) = -1], sin}{dsolve([diff(x(t),t) = x(t)+4*y(t), diff(y(t),t) = -3*x(t)+2*y(t), x(0) = 1, y(0) = -1], sin}$

$$x(t) = e^{\frac{3t}{2}} \left(-\frac{9\sqrt{47} \sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + \cos\left(\frac{\sqrt{47}t}{2}\right) \right)$$
$$y(t) = -\frac{e^{\frac{3t}{2}} \left(\frac{56\sqrt{47} \sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + 8\cos\left(\frac{\sqrt{47}t}{2}\right)\right)}{8}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 94

 $DSolve[\{x'[t]==1*x[t]+4*y[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y[t]\},t,Include[\{x'[t]==1*x[t]+4*y[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y[t]\},t,Include[\{x'[t]==1*x[t]+4*y[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y[t]\},t,Include[\{x'[t]==1*x[t]+4*y[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]],\{x[0]==1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]],\{x[0]==1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]],\{x[0]==-1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]],\{x[0]==-1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]],\{x[t],y'[t]==-3*x[t]+2*y[t]+2*y[t]],\{x[t],y'[t]==-3*x[t]+2*y$

$$x(t) \to \frac{1}{47} e^{3t/2} \left(47 \cos \left(\frac{\sqrt{47}t}{2} \right) - 9\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) \right)$$
$$y(t) \to -\frac{1}{47} e^{3t/2} \left(7\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) + 47 \cos \left(\frac{\sqrt{47}t}{2} \right) \right)$$

11.7 problem 9

Internal problem ID [13104]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 9.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = -2x(t)$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

dsolve([diff(x(t),t) = 2*y(t), diff(y(t),t) = -2*x(t), x(0) = 1, y(0) = 0], singsol=all)

$$x(t) = \cos(2t)$$
$$y(t) = -\sin(2t)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 18

 $DSolve[\{x'[t]==0*x[t]+2*y[t],y'[t]==-2*x[t]+0*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeStands{$(x'[t]==0*x[t]+2*y[t],y'[t]=-2*x[t]+0*y[t]\},t,IncludeStands{$(x'[t]==0*x[t]+2*y[t],y'[t]=-2*x[t]+0*y[t]\},t,IncludeStands{$(x'[t]==0*x[t]+2*y[t],y'[t]=-2*x[t]+0*y[t]),t,IncludeStands{$(x'[t]==0*x[t]+2*y[t],y'[t]=-2*x[t]+0*y[t]),t,IncludeStands{$(x'[t]==0*x[t]+0*y[t]),t,IncludeStands{$(x'[t]==0*x[t]+0*x[t]),t,IncludeStands{$(x'[t]==0*x[t]+0*y[t]),t,IncludeStands{$(x'[t]==0*x[t]+0*x[t]),t,IncludeStands{$(x'[t]==0*x[t]),t,IncludeStands{$(x'[t]==0*x[t]),t,IncludeStands{$(x'[t]==0*x[t]),t,IncludeStands{$(x'[t]==0*x[t]),t,IncludeStands{$(x'[t]==0*x[t]),t,IncludeStands{$(x'[t]==0*x[t]),t,IncludeStands{$(x'[t]==0*x[t]),t,IncludeStands{$(x'[t]==0*x[t]),t,IncludeStand$

$$x(t) \to \cos(2t)$$

 $y(t) \to -\sin(2t)$

11.8 problem 10

Internal problem ID [13105]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 10.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 2y$$
$$y' = -4x(t) + 6y$$

With initial conditions

$$[x(0) = 1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

$$dsolve([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], y(0) = 1], single ([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], single ([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], y(0) = 1], single ([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], y(0) = 1], single ([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], y(0) = 1], single ([diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t), x(0) = 1], y(0) = 1$$

$$x(t) = e^{4t} \cos(2t)$$

 $y(t) = e^{4t} (\cos(2t) - \sin(2t))$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 35

$$x(t) \to e^{4t} \cos(2t)$$

$$y(t) \to e^{4t} (\cos(2t) - \sin(2t))$$

11.9 problem 11

Internal problem ID [13106]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 11.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - 5y$$
$$y' = 3x(t) + y$$

With initial conditions

$$[x(0) = 4, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 48

dsolve([diff(x(t),t) = -3*x(t)-5*y(t), diff(y(t),t) = 3*x(t)+y(t), x(0) = 4, y(0) = 0], sing(x(t),t) = -3*x(t)-5*y(t), diff(y(t),t) = 3*x(t)+y(t), x(0) = 4, y(0) = 0]

$$x(t) = e^{-t} \left(-\frac{8\sqrt{11} \sin\left(\sqrt{11} t\right)}{11} + 4\cos\left(\sqrt{11} t\right) \right)$$
$$y(t) = \frac{12 e^{-t} \sqrt{11} \sin\left(\sqrt{11} t\right)}{11}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 63

DSolve[{x'[t]==-3*x[t]-5*y[t],y'[t]==3*x[t]+1*y[t]},{x[0]==4,y[0]==0},{x[t],y[t]},t,IncludeS

$$\begin{split} x(t) &\to \frac{4}{11} e^{-t} \Big(11 \cos \left(\sqrt{11} t \right) - 2 \sqrt{11} \sin \left(\sqrt{11} t \right) \Big) \\ y(t) &\to \frac{12 e^{-t} \sin \left(\sqrt{11} t \right)}{\sqrt{11}} \end{split}$$

11.10 problem 12

Internal problem ID [13107]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 12.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = -2x(t) - y$$

With initial conditions

$$[x(0) = -1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 63

$$x(t) = e^{-\frac{t}{2}} \left(\frac{\sqrt{15} \sin\left(\frac{t\sqrt{15}}{2}\right)}{5} - \cos\left(\frac{t\sqrt{15}}{2}\right) \right)$$
$$y(t) = -\frac{e^{-\frac{t}{2}} \left(-\frac{4\sqrt{15} \sin\left(\frac{t\sqrt{15}}{2}\right)}{5} - 4\cos\left(\frac{t\sqrt{15}}{2}\right)\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 92

DSolve[{x'[t]==2*y[t],y'[t]==-2*x[t]-1*y[t]},{x[0]==-1,y[0]==1},{x[t],y[t]},t,IncludeSingula

$$x(t) \to \frac{1}{5}e^{-t/2} \left(\sqrt{15} \sin \left(\frac{\sqrt{15}t}{2} \right) - 5 \cos \left(\frac{\sqrt{15}t}{2} \right) \right)$$
$$y(t) \to \frac{1}{5}e^{-t/2} \left(\sqrt{15} \sin \left(\frac{\sqrt{15}t}{2} \right) + 5 \cos \left(\frac{\sqrt{15}t}{2} \right) \right)$$

11.11 problem 13

Internal problem ID [13108]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 13.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) - 6y$$
$$y' = 2x(t) + y$$

With initial conditions

$$[x(0) = 2, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 63

dsolve([diff(x(t),t) = 2*x(t)-6*y(t), diff(y(t),t) = 2*x(t)+y(t), x(0) = 2, y(0) = 1], sings

$$x(t) = e^{\frac{3t}{2}} \left(-\frac{10\sqrt{47} \sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + 2\cos\left(\frac{\sqrt{47}t}{2}\right) \right)$$
$$y(t) = \frac{e^{\frac{3t}{2}} \left(\frac{84\sqrt{47} \sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + 12\cos\left(\frac{\sqrt{47}t}{2}\right)\right)}{12}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 94

$$x(t) \to \frac{2}{47} e^{3t/2} \left(47 \cos \left(\frac{\sqrt{47}t}{2} \right) - 5\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) \right)$$
$$y(t) \to \frac{1}{47} e^{3t/2} \left(7\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) + 47 \cos \left(\frac{\sqrt{47}t}{2} \right) \right)$$

11.12 problem 14

Internal problem ID [13109]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 14.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + 4y$$
$$y' = -3x(t) + 2y$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 61

 $\frac{dsolve([diff(x(t),t) = x(t)+4*y(t), diff(y(t),t) = -3*x(t)+2*y(t), x(0) = 1, y(0) = -1], sin}{dsolve([diff(x(t),t) = x(t)+4*y(t), diff(y(t),t) = -3*x(t)+2*y(t), x(0) = 1, y(0) = -1], sin}$

$$x(t) = e^{\frac{3t}{2}} \left(-\frac{9\sqrt{47} \sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + \cos\left(\frac{\sqrt{47}t}{2}\right) \right)$$
$$y(t) = -\frac{e^{\frac{3t}{2}} \left(\frac{56\sqrt{47} \sin\left(\frac{\sqrt{47}t}{2}\right)}{47} + 8\cos\left(\frac{\sqrt{47}t}{2}\right)\right)}{8}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 94

 $DSolve[\{x'[t]==1*x[t]+4*y[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y[t]\},t,Include[\{x'[t]==1*x[t]+4*y[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y[t]\},t,Include[\{x'[t]==1*x[t]+4*y[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y[t]\},t,Include[\{x'[t]==1*x[t]+4*y[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]\},\{x[0]==1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]],\{x[0]==1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]],\{x[0]==1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]],\{x[0]==-1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]],\{x[0]==-1,y[0]==-1\},\{x[t],y'[t]==-3*x[t]+2*y[t]],\{x[t],y'[t]==-3*x[t]+2*y[t]+2*y[t]],\{x[t],y'[t]==-3*x[t]+2*y$

$$x(t) \to \frac{1}{47} e^{3t/2} \left(47 \cos \left(\frac{\sqrt{47}t}{2} \right) - 9\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) \right)$$
$$y(t) \to -\frac{1}{47} e^{3t/2} \left(7\sqrt{47} \sin \left(\frac{\sqrt{47}t}{2} \right) + 47 \cos \left(\frac{\sqrt{47}t}{2} \right) \right)$$

11.13 problem 24

Internal problem ID [13110]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 24.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -\frac{9x(t)}{10} - 2y$$
$$y' = x(t) + \frac{11y}{10}$$

With initial conditions

$$[x(0) = 1, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

dsolve([diff(x(t),t) = -9/10*x(t)-2*y(t), diff(y(t),t) = x(t)+11/10*y(t), x(0) = 1, y(0) = 1)

$$x(t) = e^{\frac{t}{10}} (-3\sin(t) + \cos(t))$$
$$y(t) = -\frac{e^{\frac{t}{10}} (-4\sin(t) - 2\cos(t))}{2}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 38

$$x(t) \to e^{t/10}(\cos(t) - 3\sin(t))$$

 $y(t) \to e^{t/10}(2\sin(t) + \cos(t))$

11.14 problem 26

Internal problem ID [13111]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310

Problem number: 26.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) + 10y$$
$$y' = -x(t) + 3y$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 38

 $\label{eq:diff} \\ \texttt{dsolve}([\texttt{diff}(\texttt{x}(\texttt{t}),\texttt{t}) = -3*\texttt{x}(\texttt{t}) + 10*\texttt{y}(\texttt{t}), \\ \texttt{diff}(\texttt{y}(\texttt{t}),\texttt{t}) = -\texttt{x}(\texttt{t}) + 3*\texttt{y}(\texttt{t})], \\ \texttt{singsol=all})$

$$x(t) = c_1 \sin(t) + c_2 \cos(t)$$

$$y(t) = \frac{c_1 \cos(t)}{10} - \frac{c_2 \sin(t)}{10} + \frac{3c_1 \sin(t)}{10} + \frac{3c_2 \cos(t)}{10}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 42

DSolve[{x'[t]==-3*x[t]+10*y[t],y'[t]==-x[t]+3*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -

$$x(t) \to 10c_2 \sin(t) + c_1(\cos(t) - 3\sin(t))$$

 $y(t) \to c_2(3\sin(t) + \cos(t)) - c_1\sin(t)$

12 Chapter 3. Linear Systems. Exercises section 3.5 page 327

12.1	problem	1			•								•				•	•				267
12.2	problem	2																				268
12.3	$\operatorname{problem}$	3																				270
12.4	$\operatorname{problem}$	4																				271
12.5	${\bf problem}$	5																				272
12.6	$\operatorname{problem}$	6																				273
12.7	${\bf problem}$	7																				274
12.8	${\bf problem}$	8											•									275
12.9	${\bf problem}$	17																				276
12.10	problem	18																				277
12.11	problem	19																				278
12.12	2problem	21	(a	,)																		279
12.13	$\mathbf{problem}$	21	(b)																		280
12.14	problem	24									_											281

12.1 problem 1

Internal problem ID [13112]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t)$$
$$y' = x(t) - 3y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 18

dsolve([diff(x(t),t) = -3*x(t), diff(y(t),t) = x(t)-3*y(t), x(0) = 1, y(0) = 0], singsol=all = x(t) = x(t

$$x(t) = e^{-3t}$$
$$y(t) = t e^{-3t}$$

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 20

DSolve[{x'[t]==-3*x[t],y'[t]==x[t]-3*y[t]},{x[0]==1,y[0]==0},{x[t],y[t]},t,IncludeSingularSo

$$x(t) \to e^{-3t}$$
$$y(t) \to e^{-3t}t$$

12.2 problem 2

Internal problem ID [13113]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 2.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y$$
$$y' = -x(t) - 2y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 106

dsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), x(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t)+y(t), x(t)+y(t), x(t)+y(t), x(t)+y(t), x(t)+y(t), x(t)+y(t), x(t)+y(t)+y(t), x(t)+y(t)+y(t)

$$x(t) = \left(\frac{1}{2} + \frac{\sqrt{3}}{3}\right) e^{\sqrt{3}t} + \left(\frac{1}{2} - \frac{\sqrt{3}}{3}\right) e^{-\sqrt{3}t}$$

$$y(t) = \left(\frac{1}{2} + \frac{\sqrt{3}}{3}\right) \sqrt{3} e^{\sqrt{3}t} - \left(\frac{1}{2} - \frac{\sqrt{3}}{3}\right) \sqrt{3} e^{-\sqrt{3}t}$$

$$-2\left(\frac{1}{2} + \frac{\sqrt{3}}{3}\right) e^{\sqrt{3}t} - 2\left(\frac{1}{2} - \frac{\sqrt{3}}{3}\right) e^{-\sqrt{3}t}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 82

 $DSolve[\{x'[t]==2*x[t]+1*y[t],y'[t]==-1*x[t]-2*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeStands{$\frac{1}{2}$},t,IncludeStands{\frac

$$x(t) \to \frac{1}{6}e^{-\sqrt{3}t} \left(\left(3 + 2\sqrt{3} \right) e^{2\sqrt{3}t} + 3 - 2\sqrt{3} \right)$$
$$y(t) \to -\frac{e^{-\sqrt{3}t} \left(e^{2\sqrt{3}t} - 1 \right)}{2\sqrt{3}}$$

12.3 problem 3

Internal problem ID [13114]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) - y$$
$$y' = x(t) - 4y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 22

dsolve([diff(x(t),t) = -2*x(t)-y(t), diff(y(t),t) = x(t)-4*y(t), x(0) = 1, y(0) = 0], singsolve([diff(x(t),t) = -2*x(t)-y(t), diff(y(t),t) = x(t)-4*y(t), x(0) = 1, y(0) = 0],

$$x(t) = (t+1) e^{-3t}$$

 $y(t) = t e^{-3t}$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 24

DSolve[{x'[t]==-2*x[t]-1*y[t],y'[t]==1*x[t]-4*y[t]},{x[0]==1,y[0]==0},{x[t],y[t]},t,IncludeS

$$x(t) \to e^{-3t}(t+1)$$
$$y(t) \to e^{-3t}t$$

12.4 problem 4

Internal problem ID [13115]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = y$$
$$y' = -x(t) - 2y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

$$x(t) = e^{-t}(t+1)$$

 $y(t) = -t e^{-t}$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: $25\,$

DSolve[{x'[t]==1*y[t],y'[t]==-1*x[t]-2*y[t]},{x[0]==1,y[0]==0},{x[t],y[t]},t,IncludeSingular

$$x(t) \to e^{-t}(t+1)$$
$$y(t) \to -e^{-t}t$$

problem 5 12.5

Internal problem ID [13116]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t)$$
$$y' = x(t) - 3y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve([diff(x(t),t) = -3*x(t), diff(y(t),t) = x(t)-3*y(t), x(0) = 1, y(0) = 0], singsol=all = 0

$$x(t) = e^{-3t}$$
$$y(t) = t e^{-3t}$$

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 20

 $DSolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]\},t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]],t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]],t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]],t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]],t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]],t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]],t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]],t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]],t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]],t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]],t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t],y'[t]==1*x[t]-3*y[t]],t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t]-3*y[t]],t,IncludeStandsolve[\{x'[t]==-3*x[t]+0*y[t]-3*y[$

$$x(t) \to e^{-3t}$$

$$x(t) \to e^{-3t}$$
$$y(t) \to e^{-3t}t$$

12.6 problem 6

Internal problem ID [13117]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 6.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + y$$
$$y' = -x(t) + 4y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)+4*y(t), x(0) = 1, y(0) = 0], singsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)+4*y(t), x(0) = 1, y(0) = 0],

$$x(t) = e^{3t}(-t+1)$$
$$y(t) = -e^{3t}t$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 26

DSolve[{x'[t]==2*x[t]+1*y[t],y'[t]==-1*x[t]+4*y[t]},{x[0]==1,y[0]==0},{x[t],y[t]},t,IncludeS

$$x(t) \to -e^{3t}(t-1)$$
$$y(t) \to -e^{3t}t$$

12.7 problem 7

Internal problem ID [13118]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) - y$$
$$y' = x(t) - 4y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve([diff(x(t),t) = -2*x(t)-y(t), diff(y(t),t) = x(t)-4*y(t), x(0) = 1, y(0) = 0], singsolve([diff(x(t),t) = -2*x(t)-y(t), diff(y(t),t) = x(t)-4*y(t), x(0) = 1, y(0) = 0],

$$x(t) = (t+1) e^{-3t}$$

 $y(t) = t e^{-3t}$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 24

DSolve[{x'[t]==-2*x[t]-1*y[t],y'[t]==1*x[t]-4*y[t]},{x[0]==1,y[0]==0},{x[t],y[t]},t,IncludeS

$$x(t) \to e^{-3t}(t+1)$$
$$y(t) \to e^{-3t}t$$

12.8 problem 8

Internal problem ID [13119]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 8.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = y$$
$$y' = -x(t) - 2y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

dsolve([diff(x(t),t) = y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], singsol=all)

$$x(t) = e^{-t}(t+1)$$

 $y(t) = -t e^{-t}$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 25

DSolve[{x'[t]==1*y[t],y'[t]==-1*x[t]-2*y[t]},{x[0]==1,y[0]==0},{x[t],y[t]},t,IncludeSingular

$$x(t) \to e^{-t}(t+1)$$
$$y(t) \to -e^{-t}t$$

12.9 problem 17

Internal problem ID [13120]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 17.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = -y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve([diff(x(t),t) = 2*y(t), diff(y(t),t) = -y(t), x(0) = 1, y(0) = 0], singsol=all)

$$x(t) = 1$$
$$y(t) = 0$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: $10\,$

 $DSolve[\{x'[t] == 2*y[t], y'[t] == 0*x[t] - 1*y[t]\}, \{x[0] == 1, y[0] == 0\}, \{x[t], y[t]\}, t, Include Singular States and the states are also as a substitution of the states are also as a substitutio$

$$x(t) \to 1$$

$$y(t) \to 0$$

12.10 problem 18

Internal problem ID [13121]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 18.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) + 4y$$
$$y' = 3x(t) + 6y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

 $\frac{1}{dsolve([diff(x(t),t) = 2*x(t)+4*y(t), diff(y(t),t) = 3*x(t)+6*y(t), x(0) = 1,})y(0) = 0], sin(x(t),t) = 2*x(t)+4*y(t), diff(y(t),t) = 3*x(t)+6*y(t), x(0) = 1,$

$$x(t) = \frac{3}{4} + \frac{e^{8t}}{4}$$
$$y(t) = \frac{3e^{8t}}{8} - \frac{3}{8}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 30

 $DSolve[\{x'[t]==2*x[t]+4*y[t],y'[t]==3*x[t]+6*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeSites[x'[t]==2*x[t]+4*y[t],y'[t]=3*x[t]+6*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeSites[x'[t]==2*x[t]+4*y[t],y'[t]=3*x[t]+6*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]+6*y[t]],f,IncludeSites[x'[t]==3*x[t]+6*y[t]+6$

$$x(t) \to \frac{1}{4} (e^{8t} + 3)$$

$$y(t) \to \frac{\tilde{3}}{8} \left(e^{8t} - 1 \right)$$

12.11problem 19

Internal problem ID [13122]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 19.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 4x(t) + 2y$$
$$y' = 2x(t) + y$$

With initial conditions

$$[x(0) = 1, y(0) = 0]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $\frac{1}{dsolve([diff(x(t),t) = 4*x(t)+2*y(t), diff(y(t),t) = 2*x(t)+y(t), x(0) = 1, y(0) = 0], sings(x(t),t)}{dsolve([diff(x(t),t) = 4*x(t)+2*y(t), diff(y(t),t) = 2*x(t)+y(t), x(0) = 1, y(0) = 0], sings(x(t),t) = (x(t),t) = (x(t),t)$

$$x(t) = \frac{1}{5} + \frac{4e^{5t}}{5}$$
$$y(t) = \frac{2e^{5t}}{5} - \frac{2}{5}$$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 32

 $DSolve[\{x'[t]==4*x[t]+2*y[t],y'[t]==2*x[t]+1*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeSi=2*x[t]+1*y[t]\},\{x[0]==1,y[0]==0\},\{x[t],y[t]\},t,IncludeSi=2*x[t]+1*y[t]\},t,IncludeSi=2*x[t]+1*y[t]\},t,IncludeSi=2*x[t]+1*y[t]$

$$x(t) \to \frac{1}{5} \left(4e^{5t} + 1 \right)$$
$$y(t) \to \frac{2}{5} \left(e^{5t} - 1 \right)$$

$$y(t) \to \frac{2}{5} \left(e^{5t} - 1 \right)$$

12.12 problem 21(a)

Internal problem ID [13123]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 21(a).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2y$$
$$y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(x(t),t)=2*y(t),diff(y(t),t)=0],singsol=all)

$$x(t) = 2c_2t + c_1$$
$$y(t) = c_2$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: $18\,$

$$x(t) \to 2c_2t + c_1$$
$$y(t) \to c_2$$

12.13 problem 21(b)

Internal problem ID [13124]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 21(b).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2y$$
$$y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(x(t),t)=-2*y(t),diff(y(t),t)=0],singsol=all)

$$x(t) = -2c_2t + c_1$$
$$y(t) = c_2$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: $18\,$

 $DSolve[\{x'[t]==-2*y[t],y'[t]==0*x[t]+0*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to c_1 - 2c_2t$$
$$y(t) \to c_2$$

12.14 problem 24

Internal problem ID [13125]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327

Problem number: 24.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - y$$
$$y' = 4x(t) + y$$

With initial conditions

$$[x(0) = -1, y(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

$$x(t) = -e^{-t}$$
$$y(t) = 2e^{-t}$$

✓ Solution by Mathematica

Time used: $0.005~(\mathrm{sec}).$ Leaf size: 22

DSolve[$\{x'[t]=-3*x[t]-y[t],y'[t]==4*x[t]+y[t]\},\{x[0]==-1,y[0]==2\},\{x[t],y[t]\},t,IncludeSing[0]==0$

$$x(t) \to -e^{-t}$$
$$y(t) \to 2e^{-t}$$

13	Chapter 3. Linear Systems. Exercises section	
	3.6 page 342	
13.1	roblem 1	283
13.2	roblem 2	284

13.1 problem 1

Internal problem ID [13126]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.6 page 342

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 6y' - 7y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $\label{eq:diff} dsolve(diff(y(t),t\$2)-6*diff(y(t),t)-7*y(t)=0,y(t), singsol=all)$

$$y(t) = c_1 \mathrm{e}^{7t} + c_2 \mathrm{e}^{-t}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 22

DSolve[y''[t]-6*y'[t]-7*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t} \left(c_2 e^{8t} + c_1 \right)$$

13.2 problem 2

Internal problem ID [13127]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.6 page 342

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y' - 12y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(diff(y(t),t\$2)-diff(y(t),t)-12*y(t)=0,y(t), singsol=all)

$$y(t) = (e^{7t}c_2 + c_1)e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 22

DSolve[y''[t]-y'[t]-12*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-3t} \left(c_2 e^{7t} + c_1 \right)$$

14 Chapter 3. Linear Systems. Exercises section 3.8 page 371

14.1 problem 1		•								•	•			 				286
14.2 problem 4														 				288
14.3 problem 5														 				289
14.4 problem 6														 				290
14.5 problem 7			•											 				291
14.6 problem 10)													 				292
14.7 problem 11	l		•											 				293
14.8 problem 12	2													 				294
14.9 problem 13	3													 				296
14.10problem 14	1													 				297
14.11 problem 15	5													 				298
14.12 problem 16	ĵ													 				299
14.13problem 17	7		•											 				301
14.14problem 18	3													 				302
14.15 problem 20)													 				304

14.1 problem 1

Internal problem ID [13128]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 1.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \frac{y}{10}$$
$$y' = \frac{z(t)}{5}$$
$$z'(t) = \frac{2x(t)}{5}$$

/

Solution by Maple

Time used: 0.047 (sec). Leaf size: 183

dsolve([diff(x(t),t)=0*x(t)+1/10*y(t)+0*z(t),diff(y(t),t)=0*x(t)+0*y(t)+2/10*z(t),diff(z(t),t)=0*x(t)+0*y(t)+2/10*z(t),diff(z(t),t)=0*x(t)+0*y(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*z(t)+0*z(t)+0*z(t),diff(z(t),t)=0*z(t)+0*z(t)+0*z(t),diff(z(t),t)=0*z(t)+0*z(t)

$$x(t) = \frac{e^{\frac{t}{5}}c_{1}}{2} - \frac{c_{2}e^{-\frac{t}{10}}\sin\left(\frac{\sqrt{3}t}{10}\right)}{4} + \frac{c_{2}e^{-\frac{t}{10}}\sqrt{3}\cos\left(\frac{\sqrt{3}t}{10}\right)}{4} - \frac{c_{3}e^{-\frac{t}{10}}\cos\left(\frac{\sqrt{3}t}{10}\right)}{4} - \frac{c_{3}e^{-\frac{t}{10}}\sqrt{3}\sin\left(\frac{\sqrt{3}t}{10}\right)}{4} - \frac{c_{2}e^{-\frac{t}{10}}\sqrt{3}\cos\left(\frac{\sqrt{3}t}{10}\right)}{2} - \frac{c_{2}e^{-\frac{t}{10}}\sqrt{3}\cos\left(\frac{\sqrt{3}t}{10}\right)}{2} - \frac{c_{3}e^{-\frac{t}{10}}\sqrt{3}\sin\left(\frac{\sqrt{3}t}{10}\right)}{2} - \frac{c_{3}e^{-\frac{t}{10}}\sqrt{3}\sin\left(\frac{\sqrt{3}t}{10}\right)}{2} - \frac{c_{3}e^{-\frac{t}{10}}\cos\left(\frac{\sqrt{3}t}{10}\right)}{2} + \frac{c_{3}e^{-\frac{t}{10}}\sqrt{3}\sin\left(\frac{\sqrt{3}t}{10}\right)}{2} - \frac{c_{4}e^{-\frac{t}{10}}\cos\left(\frac{\sqrt{3}t}{10}\right)}{2} - \frac{c_$$

✓ Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 269

 $DSolve[\{x'[t]==0*x[t]+1/10*y[t]+0*z[t],y'[t]==0*x[t]+0*y[t]+2/10*z[t],z'[t]==4/10*x[t]+0*y[t]+0*y[t]+1/10*z[t]+0*y[t]+0*y[t]+1/10*z[t]+0*y[t]+1/10*z[t]+0*y[t]+1/10*z[t]+0*y[t]+1/10*z[t]+0*y[t]+1/10*z[t]+0*z[t]+0*y[t]+1/10*z[t]+0*z[t]+0*z[t]+1/10*z[t]+0*z[t]+0*z[t]+1/10*z[t]+0*z[t$

$$x(t) \to \frac{1}{6}e^{-t/10} \left((2c_1 + c_2 + c_3)e^{t/10} \sqrt[5]{e^t} + (4c_1 - c_2 - c_3) \cos\left(\frac{\sqrt{3}t}{10}\right) + \sqrt{3}(c_2 - c_3) \sin\left(\frac{\sqrt{3}t}{10}\right) \right)$$

$$y(t) \to \frac{1}{3}e^{-t/10} \left((2c_1 + c_2 + c_3)e^{t/10} \sqrt[5]{e^t} - (2c_1 - 2c_2 + c_3) \cos\left(\frac{\sqrt{3}t}{10}\right) - \sqrt{3}(2c_1 - c_3) \sin\left(\frac{\sqrt{3}t}{10}\right) \right)$$

$$z(t) \to \frac{1}{3}e^{-t/10} \left((2c_1 + c_2 + c_3)e^{t/10} \sqrt[5]{e^t} - (2c_1 + c_2 + c_3)e^{t/10} \sqrt[5]{e^t} - (2c_1 + c_2 - 2c_3) \cos\left(\frac{\sqrt{3}t}{10}\right) + \sqrt{3}(2c_1 - c_2) \sin\left(\frac{\sqrt{3}t}{10}\right) \right)$$

14.2 problem 4

Internal problem ID [13129]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = y$$
$$y' = -x(t)$$
$$z'(t) = 2z(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

dsolve([diff(x(t),t)=0*x(t)+1*y(t)+0*z(t),diff(y(t),t)=-1*x(t)+0*y(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(

$$x(t) = c_1 \sin(t) + c_2 \cos(t)$$

$$y(t) = c_1 \cos(t) - c_2 \sin(t)$$

$$z(t) = c_3 e^{2t}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: $76\,$

DSolve [x'[t]==0*x[t]+1*y[t]+0*z[t],y'[t]==-1*x[t]+0*y[t]+0*z[t],z'[t]==0*x[t]+0*y[t]+2*z[t]

$$x(t) \rightarrow c_1 \cos(t) + c_2 \sin(t)$$

$$y(t) \rightarrow c_2 \cos(t) - c_1 \sin(t)$$

$$z(t) \to c_3 e^{2t}$$

$$x(t) \rightarrow c_1 \cos(t) + c_2 \sin(t)$$

$$y(t) \rightarrow c_2 \cos(t) - c_1 \sin(t)$$

$$z(t) \to 0$$

14.3 problem 5

Internal problem ID [13130]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + 3y$$
$$y' = 3x(t) - 2y$$
$$z'(t) = -z(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 40

dsolve([diff(x(t),t)=-2*x(t)+3*y(t)+0*z(t),diff(y(t),t)=3*x(t)-2*y(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t),diff(z(t),t)=0*x(t)+0*z(t)+0*

$$x(t) = c_1 e^{-5t} + c_2 e^t$$

 $y(t) = -c_1 e^{-5t} + c_2 e^t$
 $z(t) = c_3 e^{-t}$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 150

 $DSolve[\{x'[t]==-2*x[t]+3*y[t]+0*z[t],y'[t]==3*x[t]-2*y[t]+0*z[t],z'[t]==0*x[t]+0*y[t]-1*z[t]+0*y[t]+0*y[t]-1*z[t]+0*y[t$

$$\begin{split} x(t) &\to \frac{1}{2} e^{-5t} \big(c_1 \big(e^{6t} + 1 \big) + c_2 \big(e^{6t} - 1 \big) \big) \\ y(t) &\to \frac{1}{2} e^{-5t} \big(c_1 \big(e^{6t} - 1 \big) + c_2 \big(e^{6t} + 1 \big) \big) \\ z(t) &\to c_3 e^{-t} \\ x(t) &\to \frac{1}{2} e^{-5t} \big(c_1 \big(e^{6t} + 1 \big) + c_2 \big(e^{6t} - 1 \big) \big) \\ y(t) &\to \frac{1}{2} e^{-5t} \big(c_1 \big(e^{6t} - 1 \big) + c_2 \big(e^{6t} + 1 \big) \big) \\ z(t) &\to 0 \end{split}$$

14.4 problem 6

Internal problem ID [13131]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 6.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + 3z(t)$$
$$y' = -y$$
$$z'(t) = -3x(t) + z(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 50

dsolve([diff(x(t),t)=1*x(t)+0*y(t)+3*z(t),diff(y(t),t)=0*x(t)-1*y(t)+0*z(t),diff(z(t),t)=-3*x(t)+0*z(t),diff(z(t),t)=-3*x(t)+0*z(t)+0

$$x(t) = e^{t}(c_1 \sin(3t) + c_2 \cos(3t))$$

$$y(t) = c_3 e^{-t}$$

$$z(t) = e^{t}(c_1 \cos(3t) - c_2 \sin(3t))$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 108

 $DSolve[\{x'[t] == 1*x[t] + 0*y[t] + 3*z[t], y'[t] == 0*x[t] - 1*y[t] + 0*z[t], z'[t] == -3*x[t] + 0*y[t] + 1*z[t]$

$$x(t) \to e^t(c_1 \cos(3t) + c_2 \sin(3t))$$

$$z(t) \to e^t(c_2\cos(3t) - c_1\sin(3t))$$

$$y(t) \to c_3 e^{-t}$$

$$x(t) \to e^t(c_1 \cos(3t) + c_2 \sin(3t))$$

$$z(t) \to e^t(c_2\cos(3t) - c_1\sin(3t))$$

$$y(t) \to 0$$

14.5 problem 7

Internal problem ID [13132]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t)$$

$$y' = 2y - z(t)$$

$$z'(t) = -y + 2z(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 38

dsolve([diff(x(t),t)=1*x(t)+0*y(t)+0*z(t),diff(y(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t),diff(z(t),t)=0*x(t)+2*y(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t)-1*z(t

$$x(t) = c_3 e^t$$

$$y(t) = c_1 e^t + c_2 e^{3t}$$

$$z(t) = c_1 e^t - c_2 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 144

DSolve[{x'[t]==1*x[t]+0*y[t]+0*z[t],y'[t]==0*x[t]+2*y[t]-1*z[t],z'[t]==0*x[t]-1*y[t]+2*z[t]}

$$\begin{split} x(t) &\to c_1 e^t \\ y(t) &\to \frac{1}{2} e^t \big(c_2 e^{2t} - c_3 e^{2t} + c_2 + c_3 \big) \\ z(t) &\to \frac{1}{2} e^t \big(c_2 \big(-e^{2t} \big) + c_3 e^{2t} + c_2 + c_3 \big) \\ x(t) &\to 0 \\ y(t) &\to \frac{1}{2} e^t \big(c_2 e^{2t} - c_3 e^{2t} + c_2 + c_3 \big) \\ z(t) &\to \frac{1}{2} e^t \big(c_2 \big(-e^{2t} \big) + c_3 e^{2t} + c_2 + c_3 \big) \end{split}$$

14.6 problem 10

Internal problem ID [13133]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 10.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + y$$
$$y' = -2y$$
$$z'(t) = -z(t)$$

Solution by Maple

Time used: 0.032 (sec). Leaf size: 33

dsolve([diff(x(t),t)=-2*x(t)+1*y(t)+0*z(t),diff(y(t),t)=0*x(t)-2*y(t)+0*z(t),diff(z(t),t)=0*x(t)-2*y(t)+0*z(t)-2*y(t)+0*z(t)-2*y(t)-2*y(t)+0*z(t)-2*y(t)

$$x(t) = (c_2t + c_1) e^{-2t}$$

 $y(t) = c_2 e^{-2t}$

 $z(t) = c_3 e^{-t}$

Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 72

 $DSolve[\{x'[t] == -2*x[t] + 1*y[t] + 0*z[t], y'[t] == 0*x[t] - 2*y[t] + 0*z[t], z'[t] == 0*x[t] + 0*y[t] - 1*z[t]$

$$x(t) \rightarrow e^{-2t}(c_2t + c_1)$$

$$y(t) \rightarrow c_2e^{-2t}$$

$$z(t) \rightarrow c_3e^{-t}$$

$$x(t) \rightarrow e^{-2t}(c_2t + c_1)$$

$$y(t) \rightarrow c_2e^{-2t}$$

$$z(t) \rightarrow 0$$

14.7 problem 11

Internal problem ID [13134]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 11.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + y$$
$$y' = -2y$$
$$z'(t) = z(t)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve([diff(x(t),t)=-2*x(t)+1*y(t)+0*z(t),diff(y(t),t)=0*x(t)-2*y(t)+0*z(t),diff(z(t),t)=0*x(t)-2*y(t)+0*z(t)-2*y(t)+0*z(t)-2*y(t)-2*y(t)+0*z(t)-2*y(t)

$$x(t) = (c_2t + c_1) e^{-2t}$$

 $y(t) = c_2 e^{-2t}$

$$z(t) = c_3 e^t$$

Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 70

 $DSolve[\{x'[t] == -2*x[t] + 1*y[t] + 0*z[t], y'[t] == 0*x[t] - 2*y[t] + 0*z[t], z'[t] == 0*x[t] + 0*y[t] + 1*z[t]$

$$x(t) \to e^{-2t}(c_2t + c_1)$$

$$y(t) \rightarrow c_2 e^{-2t}$$

$$z(t) \to c_3 e^t$$

$$x(t) \to e^{-2t}(c_2t + c_1)$$
$$y(t) \to c_2e^{-2t}$$

$$y(t) \rightarrow c_2 e^{-2t}$$

$$z(t) \to 0$$

14.8 problem 12

Internal problem ID [13135]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 12.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + 2y$$
$$y' = 2x(t) - 4y$$
$$z'(t) = -z(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

dsolve([diff(x(t),t)=-1*x(t)+2*y(t)+0*z(t),diff(y(t),t)=2*x(t)-4*y(t)+0*z(t),diff(z(t),t)=0*

$$x(t) = c_1 + c_2 e^{-5t}$$

$$y(t) = -2c_2 e^{-5t} + \frac{c_1}{2}$$

$$z(t) = c_3 e^{-t}$$

Solution by Mathematica

 $\overline{\text{Time used: 0.037 (sec). Leaf size: 158}}$

 $DSolve[\{x'[t] == -1*x[t] + 2*y[t] + 0*z[t], y'[t] == 2*x[t] - 4*y[t] + 0*z[t], z'[t] == 0*x[t] + 0*y[t] - 1*z[t]$

$$\begin{split} x(t) &\to \frac{1}{5}e^{-5t} \big(c_1 \big(4e^{5t} + 1 \big) + 2c_2 \big(e^{5t} - 1 \big) \big) \\ y(t) &\to \frac{1}{5}e^{-5t} \big(2c_1 \big(e^{5t} - 1 \big) + c_2 \big(e^{5t} + 4 \big) \big) \\ z(t) &\to c_3 e^{-t} \\ x(t) &\to \frac{1}{5}e^{-5t} \big(c_1 \big(4e^{5t} + 1 \big) + 2c_2 \big(e^{5t} - 1 \big) \big) \\ y(t) &\to \frac{1}{5}e^{-5t} \big(2c_1 \big(e^{5t} - 1 \big) + c_2 \big(e^{5t} + 4 \big) \big) \\ z(t) &\to 0 \end{split}$$

14.9 problem 13

Internal problem ID [13136]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 13.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + 2y$$
$$y' = 2x(t) - 4y$$
$$z'(t) = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 31

$$x(t) = c_1 + c_2 e^{-5t}$$

$$y(t) = -2c_2 e^{-5t} + \frac{c_1}{2}$$

$$z(t) = c_3$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 77

 $DSolve[{x'[t] == -1*x[t] + 2*y[t] + 0*z[t], y'[t] == 2*x[t] - 4*y[t] + 0*z[t], z'[t] == 0*x[t] + 0*y[t] + 0*z[t]}$

$$x(t) \to \frac{1}{5}e^{-5t} \left(c_1 \left(4e^{5t} + 1 \right) + 2c_2 \left(e^{5t} - 1 \right) \right)$$

$$y(t) \to \frac{1}{5}e^{-5t} \left(2c_1 \left(e^{5t} - 1 \right) + c_2 \left(e^{5t} + 4 \right) \right)$$

$$z(t) \to c_3$$

14.10 problem 14

Internal problem ID [13137]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 14.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -2x(t) + y$$
$$y' = -2y + z(t)$$
$$z'(t) = -2z(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 46

dsolve([diff(x(t),t)=-2*x(t)+1*y(t)+0*z(t),diff(y(t),t)=0*x(t)-2*y(t)+1*z(t),diff(z(t),t)=0*x(t)-2*y(t)+1*z(t)-2*y(t)+1*z(t)-2*y(t)

$$x(t) = \frac{(c_3t^2 + 2c_2t + 2c_1)e^{-2t}}{2}$$
$$y(t) = (c_3t + c_2)e^{-2t}$$
$$z(t) = c_3e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 57

 $DSolve[\{x'[t]==-2*x[t]+1*y[t]+0*z[t],y'[t]==0*x[t]-2*y[t]+1*z[t],z'[t]==0*x[t]+0*y[t]-2*z[t]$

$$x(t) \to \frac{1}{2}e^{-2t}(t(c_3t + 2c_2) + 2c_1)$$

$$y(t) \to e^{-2t}(c_3t + c_2)$$

$$z(t) \to c_3e^{-2t}$$

14.11 problem 15

Internal problem ID [13138]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 15.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = y$$
$$y' = z(t)$$
$$z'(t) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve([diff(x(t),t)=0*x(t)+1*y(t)+0*z(t),diff(y(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*y(t)+1*z(t),diff(z(t),t)=0*x(t)+0*z(t

$$x(t) = \frac{1}{2}c_3t^2 + c_2t + c_1$$

$$y(t) = c_3t + c_2$$

$$z(t) = c_3$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 36

 $DSolve[\{x'[t]==0*x[t]+1*y[t]+0*z[t],y'[t]==0*x[t]+0*y[t]+1*z[t],z'[t]==0*x[t]+0*y[t]+0*z[t]\}$

$$x(t) \rightarrow \frac{c_3 t^2}{2} + c_2 t + c_1$$
$$y(t) \rightarrow c_3 t + c_2$$
$$z(t) \rightarrow c_3$$

14.12 problem 16

Internal problem ID [13139]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 16.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t) - y$$
$$y' = -2y + 3z(t)$$
$$z'(t) = -x(t) + 3y - z(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 171

$$dsolve([diff(x(t),t)=2*x(t)-1*y(t)+0*z(t),diff(y(t),t)=0*x(t)-2*y(t)+3*z(t),diff(z(t),t)=-1*z(t)+3*z(t),diff(z(t),t)=-1*z(t)+3$$

$$x(t) = -c_2 e^{\left(-1 + 2\sqrt{3}\right)t} - c_3 e^{-\left(1 + 2\sqrt{3}\right)t} - \frac{2c_2 e^{\left(-1 + 2\sqrt{3}\right)t}\sqrt{3}}{3} + \frac{2c_3 e^{-\left(1 + 2\sqrt{3}\right)t}\sqrt{3}}{3} + c_1 e^t$$

$$y(t) = c_1 e^t + c_2 e^{\left(-1 + 2\sqrt{3}\right)t} + c_3 e^{-\left(1 + 2\sqrt{3}\right)t}$$

$$z(t) = \frac{2c_2 e^{\left(-1 + 2\sqrt{3}\right)t}\sqrt{3}}{3} - \frac{2c_3 e^{-\left(1 + 2\sqrt{3}\right)t}\sqrt{3}}{3} + \frac{c_2 e^{\left(-1 + 2\sqrt{3}\right)t}}{3} + \frac{c_3 e^{-\left(1 + 2\sqrt{3}\right)t}}{3} + c_1 e^t$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 474

DSolve[{x'[t]==2*x[t]-1*y[t]+0*z[t],y'[t]==0*x[t]-2*y[t]+3*z[t],z'[t]==-1*x[t]+3*y[t]-1*z[t]

$$x(t) \to \frac{1}{16} e^{-\left(\left(1+2\sqrt{3}\right)t\right)} \left(c_1\left(\left(5+3\sqrt{3}\right)e^{4\sqrt{3}t}+6e^{2\left(1+\sqrt{3}\right)t}+5-3\sqrt{3}\right)\right)$$

$$-2c_2\left(\left(1+\sqrt{3}\right)e^{4\sqrt{3}t}-2e^{2\left(1+\sqrt{3}\right)t}+1-\sqrt{3}\right)$$

$$-c_3\left(\left(3+\sqrt{3}\right)e^{4\sqrt{3}t}-6e^{2\left(1+\sqrt{3}\right)t}+3-\sqrt{3}\right)\right)$$

$$y(t) \to \frac{1}{16} e^{-\left(\left(1+2\sqrt{3}\right)t\right)} \left(c_1\left(-\left(3+\sqrt{3}\right)e^{4\sqrt{3}t}+6e^{2\left(1+\sqrt{3}\right)t}-3+\sqrt{3}\right)\right)$$

$$+2c_2\left(-\left(\sqrt{3}-3\right)e^{4\sqrt{3}t}+2e^{2\left(1+\sqrt{3}\right)t}+3+\sqrt{3}\right)$$

$$+3c_3\left(\left(\sqrt{3}-1\right)e^{4\sqrt{3}t}+2e^{2\left(1+\sqrt{3}\right)t}-1-\sqrt{3}\right)\right)$$

$$z(t) \to -\frac{1}{48} e^{-\left(\left(1+2\sqrt{3}\right)t\right)} \left(c_1\left(\left(9+7\sqrt{3}\right)e^{4\sqrt{3}t}-18e^{2\left(1+\sqrt{3}\right)t}+9-7\sqrt{3}\right)$$

$$-2c_2\left(\left(5\sqrt{3}-3\right)e^{4\sqrt{3}t}+6e^{2\left(1+\sqrt{3}\right)t}-3-5\sqrt{3}\right)$$

$$+3c_3\left(\left(\sqrt{3}-5\right)e^{4\sqrt{3}t}-6e^{2\left(1+\sqrt{3}\right)t}-5-\sqrt{3}\right)\right)$$

14.13 problem 17

Internal problem ID [13140]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 17.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -4x(t) + 3y$$
$$y' = -y + z(t)$$
$$z'(t) = 5x(t) - 5y$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 101

dsolve([diff(x(t),t)=-4*x(t)+3*y(t)+0*z(t),diff(y(t),t)=0*x(t)-1*y(t)+1*z(t),diff(z(t),t)=5*x(t)+1*z(t),diff(z(t),t)=5*x(t)+1*z(t),diff(z(t),t)=5*x(t)+1*z(t)+1*z(t),diff(z(t),t)=5*x(t)+1*z(

$$x(t) = e^{-t}c_1 + \frac{6c_2e^{-2t}\sin(t)}{5} - \frac{3c_2e^{-2t}\cos(t)}{5} + \frac{6e^{-2t}\cos(t)c_3}{5} + \frac{3e^{-2t}\sin(t)c_3}{5}$$

$$y(t) = e^{-t}c_1 + c_2e^{-2t}\sin(t) + e^{-2t}\cos(t)c_3$$

$$z(t) = -e^{-2t}(c_2\sin(t) + c_3\sin(t) - c_2\cos(t) + c_3\cos(t))$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 152

DSolve[$\{x'[t]==-4*x[t]+3*y[t]+0*z[t],y'[t]==0*x[t]-1*y[t]+1*z[t],z'[t]==5*x[t]-5*y[t]+0*z[t]$

$$x(t) \to \frac{1}{2}e^{-2t} \left((5c_1 - 3c_2 + 3c_3)e^t - 3(c_1 - c_2 + c_3)\cos(t) - 3(3c_1 - 3c_2 + c_3)\sin(t) \right)$$

$$y(t) \to \frac{1}{2}e^{-2t} \left((5c_1 - 3c_2 + 3c_3)e^t + (-5c_1 + 5c_2 - 3c_3)\cos(t) - (5c_1 - 5c_2 + c_3)\sin(t) \right)$$

$$z(t) \to e^{-2t} (c_3\cos(t) + (5c_1 - 5c_2 + 2c_3)\sin(t))$$

14.14 problem 18

Internal problem ID [13141]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 18.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -10x(t) + 10y$$
$$y' = 28x(t) - y$$
$$z'(t) = -\frac{8z(t)}{3}$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 95

$$\frac{dsolve([diff(x(t),t)=-10*x(t)+10*y(t)+0*z(t),diff(y(t),t)=28*x(t)-1*y(t)+0*z(t),diff(z(t),t))}{dsolve([diff(x(t),t)=-10*x(t)+10*y(t)+0*z(t),diff(y(t),t)=28*x(t)-1*y(t)+0*z(t),diff(z(t),t))}$$

$$x(t) = c_1 e^{\frac{\left(-11 + \sqrt{1201}\right)t}{2}} + c_2 e^{-\frac{\left(11 + \sqrt{1201}\right)t}{2}}$$

$$y(t) = \frac{c_1 e^{\frac{\left(-11 + \sqrt{1201}\right)t}{2}} \sqrt{1201}}{20} - \frac{c_2 e^{-\frac{\left(11 + \sqrt{1201}\right)t}{2}} \sqrt{1201}}{20} + \frac{9c_1 e^{\frac{\left(-11 + \sqrt{1201}\right)t}{2}}}{20} + \frac{9c_2 e^{-\frac{\left(11 + \sqrt{1201}\right)t}{2}}}{20}$$

$$z(t) = c_3 e^{-\frac{8t}{3}}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 312

 $DSolve[\{x'[t] = -10*x[t] + 10*y[t] + 0*z[t], y'[t] = -28*x[t] - 1*y[t] + 0*z[t], z'[t] = -0*x[t] + 0*y[t] - 8/3[t] + 0*y[t] + 0*z[t] + 0$

$$\begin{array}{l} x(t) \\ \to \frac{e^{-\frac{1}{2}\left(11+\sqrt{1201}\right)t}\left(c_1\left(\left(1201-9\sqrt{1201}\right)e^{\sqrt{1201}t}+1201+9\sqrt{1201}\right)+20\sqrt{1201}c_2\left(e^{\sqrt{1201}t}-1\right)\right)}{2402} \\ y(t) \\ \to \frac{e^{-\frac{1}{2}\left(11+\sqrt{1201}\right)t}\left(56\sqrt{1201}c_1\left(e^{\sqrt{1201}t}-1\right)+c_2\left(\left(1201+9\sqrt{1201}\right)e^{\sqrt{1201}t}+1201-9\sqrt{1201}\right)\right)}{2402} \\ z(t) \to c_3e^{-8t/3} \\ x(t) \\ \to \frac{e^{-\frac{1}{2}\left(11+\sqrt{1201}\right)t}\left(c_1\left(\left(1201-9\sqrt{1201}\right)e^{\sqrt{1201}t}+1201+9\sqrt{1201}\right)+20\sqrt{1201}c_2\left(e^{\sqrt{1201}t}-1\right)\right)}{2402} \\ y(t) \\ \to \frac{e^{-\frac{1}{2}\left(11+\sqrt{1201}\right)t}\left(56\sqrt{1201}c_1\left(e^{\sqrt{1201}t}-1\right)+c_2\left(\left(1201+9\sqrt{1201}\right)e^{\sqrt{1201}t}+1201-9\sqrt{1201}\right)\right)}{2402} \\ z(t) \to 0 \end{array}$$

14.15 problem 20

Internal problem ID [13142]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371

Problem number: 20.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -y + z(t)$$
$$y' = -x(t) + z(t)$$
$$z'(t) = z(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 42

dsolve([diff(x(t),t)=-y(t)+z(t),diff(y(t),t)=-x(t)+z(t),diff(z(t),t)=z(t)],singsol=all)

$$x(t) = c_1 e^t + c_2 e^{-t}$$

$$y(t) = -c_1 e^t + c_2 e^{-t} + c_3 e^t$$

$$z(t) = c_3 e^t$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 94

DSolve[{x'[t]==-y[t]+z[t],y'[t]==-x[t]+z[t],z'[t]==z[t]},{x[t],y[t],z[t]},t,IncludeSingularS

$$x(t) \to \frac{1}{2}e^{-t}(c_1(e^{2t}+1)-(c_2-c_3)(e^{2t}-1))$$

$$y(t) \to \frac{1}{2}e^{-t}(-(c_1(e^{2t}-1))+c_2(e^{2t}+1)+c_3(e^{2t}-1))$$

$$z(t) \to c_3e^t$$

15 Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

15.1]	problem	3											•				•		•				306
15.2]	problem	6																					307
15.3]	problem	7.																					308
15.4]	problem	19((i)																				309
15.5]	problem	19	(ii))																			310
15.6]	problem	19	(iii	i)																			311
15.7]	problem	19	(iv)																			312
15.8 j	problem	19	(v))																			313
15.9]	problem	19	(vi	i)																			314
15.10	problem	19	(vi	\mathbf{i}																			315
15.11_{1}	problem	19	(vi	iii)																			316
15.12	problem	23																					317
15.13	problem	24																					318
15.14	problem	25																					319
15.151	problem	26																					320

15.1 problem 3

Internal problem ID [13145]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t)$$
$$y' = -2y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve([diff(x(t),t)=3*x(t)+0*y(t),diff(y(t),t)=0*x(t)-2*y(t)],singsol=all)

$$x(t) = c_2 e^{3t}$$
$$y(t) = c_1 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 65

$$x(t) \to c_1 e^{3t}$$

$$y(t) \rightarrow c_2 e^{-2t}$$

$$x(t) \rightarrow c_1 e^{3t}$$

$$y(t) \rightarrow 0$$

$$x(t) \to 0$$

$$y(t) \to c_2 e^{-2t}$$

$$x(t) \to 0$$

$$y(t) \to 0$$

15.2 problem 6

Internal problem ID [13147]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 6.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 0$$
$$y' = x(t) - y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(x(t),t)=0*x(t)+0*y(t),diff(y(t),t)=1*x(t)-1*y(t)],singsol=all)

$$x(t) = c_2$$

$$y(t) = c_2 + e^{-t}c_1$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 27

DSolve[{x'[t]==0*x[t]+0*y[t],y'[t]==1*x[t]-1*y[t]},{x[t],y[t]},t,IncludeSingularSolutions ->

$$x(t) \rightarrow c_1$$

 $y(t) \rightarrow e^{-t} (c_1(e^t - 1) + c_2)$

15.3 problem 7

Internal problem ID [13148]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = \pi^2 x(t) + \frac{187y}{5}$$
$$y' = \sqrt{555} x(t) + \frac{400617y}{5000}$$

With initial conditions

$$[x(0) = 0, y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $dsolve([diff(x(t),t) = Pi^2*x(t)+187/5*y(t), diff(y(t),t) = 555^(1/2)*x(t)+400617/5000*y(t),$

$$x(t) = 0$$
$$y(t) = 0$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 10

DSolve[{x'[t]==Pi^2*x[t]+374/10*y[t],y'[t]==Sqrt[555]*x[t]+801234/10000*y[t]}, {x[0]==0,y[0]=

$$x(t) \to 0$$

$$y(t) \to 0$$

15.4 problem 19(i)

Internal problem ID [13149]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19(i).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = x(t) + y$$
$$y' = -2x(t) - y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 37

 $\label{eq:diff} \\ \text{dsolve}([\text{diff}(\texttt{x}(\texttt{t}),\texttt{t}) = 1 * \texttt{x}(\texttt{t}) + 1 * \texttt{y}(\texttt{t}), \\ \text{diff}(\texttt{y}(\texttt{t}),\texttt{t}) = -2 * \texttt{x}(\texttt{t}) - \texttt{y}(\texttt{t})], \\ \text{singsol=all})$

$$x(t) = c_1 \sin(t) + c_2 \cos(t)$$

$$y(t) = c_1 \cos(t) - c_2 \sin(t) - c_1 \sin(t) - c_2 \cos(t)$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 39

 $DSolve[\{x'[t]==1*x[t]+1*y[t],y'[t]==-2*x[t]-y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==1*x[t]+1*y[t],y''[t]==-2*x[t]-y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==1*x[t]+1*y[t],y''[t]==-2*x[t]-y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==1*x[t]+1*y[t],y''[t]==-2*x[t]-y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==1*x[t]+1*y[t],y''[t]==-2*x[t]-y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==1*x[t]+1*y[t],y''[t]==-2*x[t]-y[t]+1*y[t],f,IncludeSingularSolutions \rightarrow \\ (x''[t]==1*x[t]+1*y[t],f,IncludeSingularSolutions \rightarrow \\ (x''[t]=1*x[t]+1*y[t],f,IncludeSingularSolutions \rightarrow \\ (x''[t]=1*x[t]+1*y[t]$

$$x(t) \to c_1 \cos(t) + (c_1 + c_2) \sin(t)$$

 $y(t) \to c_2 \cos(t) - (2c_1 + c_2) \sin(t)$

15.5 problem 19 (ii)

Internal problem ID [13150]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (ii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) + y$$
$$y' = -x(t) + y$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 82

 $\label{eq:diff} \\ \text{dsolve}([\text{diff}(\texttt{x}(\texttt{t}),\texttt{t}) = -3*\texttt{x}(\texttt{t}) + 1*\texttt{y}(\texttt{t}), \\ \text{diff}(\texttt{y}(\texttt{t}),\texttt{t}) = -1*\texttt{x}(\texttt{t}) + 1*\texttt{y}(\texttt{t})], \\ \text{singsol=all})$

$$x(t) = c_1 e^{\left(\sqrt{3}-1\right)t} + c_2 e^{-\left(1+\sqrt{3}\right)t}$$

$$y(t) = c_1 e^{\left(\sqrt{3}-1\right)t} \sqrt{3} - c_2 e^{-\left(1+\sqrt{3}\right)t} \sqrt{3} + 2c_1 e^{\left(\sqrt{3}-1\right)t} + 2c_2 e^{-\left(1+\sqrt{3}\right)t}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.014 (sec). Leaf size: 147}}$

DSolve[{x'[t]==-3*x[t]+1*y[t],y'[t]==-1*x[t]+1*y[t]},{x[t],y[t]},t,IncludeSingularSolutions

$$x(t) \to \frac{1}{6} e^{-\left(\left(1+\sqrt{3}\right)t\right)} \left(c_1\left(\left(3-2\sqrt{3}\right)e^{2\sqrt{3}t}+3+2\sqrt{3}\right)+\sqrt{3}c_2\left(e^{2\sqrt{3}t}-1\right)\right)$$
$$y(t) \to \frac{1}{6} e^{-\left(\left(1+\sqrt{3}\right)t\right)} \left(c_2\left(\left(3+2\sqrt{3}\right)e^{2\sqrt{3}t}+3-2\sqrt{3}\right)-\sqrt{3}c_1\left(e^{2\sqrt{3}t}-1\right)\right)$$

15.6 problem 19 (iii)

Internal problem ID [13151]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (iii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) + y$$
$$y' = -x(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 68

 $\label{eq:diff} \\ \text{dsolve}([\text{diff}(\texttt{x}(\texttt{t}),\texttt{t}) = -3*\texttt{x}(\texttt{t}) + 1*\texttt{y}(\texttt{t}), \\ \text{diff}(\texttt{y}(\texttt{t}),\texttt{t}) = -1*\texttt{x}(\texttt{t}) + 0*\texttt{y}(\texttt{t})], \\ \text{singsol=all})$

$$x(t) = \left(-\frac{\sqrt{5}}{2} + \frac{3}{2}\right) c_1 e^{\frac{\left(\sqrt{5} - 3\right)t}{2}} + \left(\frac{3}{2} + \frac{\sqrt{5}}{2}\right) c_2 e^{-\frac{\left(3 + \sqrt{5}\right)t}{2}}$$
$$y(t) = c_1 e^{\frac{\left(\sqrt{5} - 3\right)t}{2}} + c_2 e^{-\frac{\left(3 + \sqrt{5}\right)t}{2}}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 148

$$x(t) \to \frac{1}{10} e^{-\frac{1}{2}(3+\sqrt{5})t} \left(c_1 \left(\left(5 - 3\sqrt{5} \right) e^{\sqrt{5}t} + 5 + 3\sqrt{5} \right) + 2\sqrt{5}c_2 \left(e^{\sqrt{5}t} - 1 \right) \right)$$

$$y(t) \to \frac{1}{10} e^{-\frac{1}{2}(3+\sqrt{5})t} \left(c_2 \left(\left(5 + 3\sqrt{5} \right) e^{\sqrt{5}t} + 5 - 3\sqrt{5} \right) - 2\sqrt{5}c_1 \left(e^{\sqrt{5}t} - 1 \right) \right)$$

15.7 problem 19 (iv)

Internal problem ID [13152]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (iv).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -x(t) + y$$
$$y' = -2x(t) + y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

 $\label{eq:diff} \\ \texttt{dsolve}([\texttt{diff}(\texttt{x(t)},\texttt{t}) = -1 * \texttt{x(t)} + 1 * \texttt{y(t)}, \texttt{diff}(\texttt{y(t)},\texttt{t}) = -2 * \texttt{x(t)} + 1 * \texttt{y(t)}], \\ \texttt{singsol=all})$

$$x(t) = c_1 \sin(t) + c_2 \cos(t)$$

$$y(t) = c_1 \sin(t) - c_2 \sin(t) + c_1 \cos(t) + c_2 \cos(t)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 39

DSolve[{x'[t]==-1*x[t]+1*y[t],y'[t]==-2*x[t]+1*y[t]},{x[t],y[t]},t,IncludeSingularSolutions

$$x(t) \to c_1 \cos(t) + (c_2 - c_1) \sin(t)$$

 $y(t) \to c_2(\sin(t) + \cos(t)) - 2c_1 \sin(t)$

15.8 problem 19 (v)

Internal problem ID [13153]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (v).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 2x(t)$$
$$y' = x(t) - y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

dsolve([diff(x(t),t)=2*x(t)+0*y(t),diff(y(t),t)=1*x(t)-1*y(t)],singsol=all)

$$x(t) = c_2 e^{2t}$$

 $y(t) = \frac{c_2 e^{2t}}{3} + e^{-t} c_1$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 40

$$x(t) \to c_1 e^{2t}$$

 $y(t) \to \frac{1}{3} e^{-t} (c_1 (e^{3t} - 1) + 3c_2)$

15.9 problem 19 (vi)

Internal problem ID [13154]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (vi).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = 3x(t) + y$$
$$y' = -x(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 68

 $\label{eq:diff} $$\operatorname{dsolve}([\operatorname{diff}(x(t),t)=3*x(t)+1*y(t),\operatorname{diff}(y(t),t)=-1*x(t)+0*y(t)],$$ singsol=all)$

$$x(t) = \left(\frac{\sqrt{5}}{2} - \frac{3}{2}\right) c_2 e^{-\frac{\left(\sqrt{5} - 3\right)t}{2}} + \left(-\frac{3}{2} - \frac{\sqrt{5}}{2}\right) c_1 e^{\frac{\left(3 + \sqrt{5}\right)t}{2}}$$
$$y(t) = c_1 e^{\frac{\left(3 + \sqrt{5}\right)t}{2}} + c_2 e^{-\frac{\left(\sqrt{5} - 3\right)t}{2}}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 148

$$x(t) \to \frac{1}{10} e^{-\frac{1}{2} \left(\sqrt{5} - 3\right)t} \left(c_1 \left(\left(5 + 3\sqrt{5}\right) e^{\sqrt{5}t} + 5 - 3\sqrt{5} \right) + 2\sqrt{5}c_2 \left(e^{\sqrt{5}t} - 1 \right) \right)$$
$$y(t) \to -\frac{1}{10} e^{-\frac{1}{2} \left(\sqrt{5} - 3\right)t} \left(2\sqrt{5}c_1 \left(e^{\sqrt{5}t} - 1 \right) + c_2 \left(\left(3\sqrt{5} - 5\right) e^{\sqrt{5}t} - 5 - 3\sqrt{5} \right) \right)$$

15.10 problem 19 (vii)

Internal problem ID [13155]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (vii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = y$$
$$y' = -4x(t) - 4y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

 $\label{eq:diff} $$\operatorname{dsolve}([\operatorname{diff}(x(t),t)=0*x(t)+1*y(t),\operatorname{diff}(y(t),t)=-4*x(t)-4*y(t)],$$ singsol=all)$$

$$x(t) = (c_2t + c_1) e^{-2t}$$

$$y(t) = -e^{-2t}(2c_2t + 2c_1 - c_2)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 45

$$x(t) \to e^{-2t}(2c_1t + c_2t + c_1)$$

 $y(t) \to e^{-2t}(c_2 - 2(2c_1 + c_2)t)$

15.11 problem 19 (viii)

Internal problem ID [13156]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 19 (viii).

ODE order: 1. ODE degree: 1.

Solve

$$x'(t) = -3x(t) - 3y$$
$$y' = 2x(t) + y$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 78

 $\label{eq:diff} $$ $\operatorname{diff}(x(t),t)=-3*x(t)-3*y(t),$ $\operatorname{diff}(y(t),t)=2*x(t)+1*y(t)]$, singsol=all) $$$

$$x(t) = e^{-t} \left(c_1 \sin \left(\sqrt{2} t \right) + c_2 \cos \left(\sqrt{2} t \right) \right)$$
$$y(t) = \frac{e^{-t} \left(\sin \left(\sqrt{2} t \right) \sqrt{2} c_2 - \cos \left(\sqrt{2} t \right) \sqrt{2} c_1 - 2c_1 \sin \left(\sqrt{2} t \right) - 2c_2 \cos \left(\sqrt{2} t \right) \right)}{3}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 91

DSolve[{x'[t]==-3*x[t]-3*y[t],y'[t]==2*x[t]+1*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -

$$x(t) \to \frac{1}{2}e^{-t} \Big(2c_1 \cos\left(\sqrt{2}t\right) - \sqrt{2}(2c_1 + 3c_2)\sin\left(\sqrt{2}t\right) \Big)$$
$$y(t) \to e^{-t} \Big(c_2 \cos\left(\sqrt{2}t\right) + \sqrt{2}(c_1 + c_2)\sin\left(\sqrt{2}t\right) \Big)$$

15.12 problem 23

Internal problem ID [13157]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 5y' + 6y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve([diff(y(t),t\$2)+5*diff(y(t),t)+6*y(t)=0,y(0) = 0, D(y)(0) = 2],y(t), singsol=all)

$$y(t) = -2e^{-3t} + 2e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 17

DSolve[{y''[t]+5*y'[t]+6*y[t]==0,{y[0]==0,y'[0]==2}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to 2e^{-3t} \left(e^t - 1 \right)$$

15.13 problem 24

Internal problem ID [13158]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + 5y = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = -1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: $20\,$

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+5*y(t)=0,y(0) = 3, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = e^{-t}(\sin(2t) + 3\cos(2t))$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 22

DSolve[{y''[t]+2*y'[t]+5*y[t]==0,{y[0]==3,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \to e^{-t}(\sin(2t) + 3\cos(2t))$$

15.14 problem 25

Internal problem ID [13159]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = e^{-t}(2t+1)$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 16

DSolve[{y''[t]+2*y'[t]+y[t]==0,{y[0]==1,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t}(2t+1)$$

15.15 problem 26

Internal problem ID [13160]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y = 0$$

With initial conditions

$$y(0) = 3, y'(0) = -\sqrt{2}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

 $dsolve([diff(y(t),t$2)+2*y(t)=0,y(0) = 3, D(y)(0) = -2^{(1/2)}],y(t), singsol=all)$

$$y(t) = -\sin\left(\sqrt{2}\,t\right) + 3\cos\left(\sqrt{2}\,t\right)$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 26

DSolve[{y''[t]+2*y[t]==0,{y[0]==3,y'[0]==-Sqrt[2]}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to 3\cos\left(\sqrt{2}t\right) - \sin\left(\sqrt{2}t\right)$$

16 Chapter 4. Forcing and Resonance. Section 4.1 page 399

16.1 problem 1				•			 								 •	 	323
16.2 problem 2							 	•								 	324
16.3 problem 3							 	•								 	325
16.4 problem 4		•					 									 . .	326
16.5 problem 5		•					 									 . .	327
16.6 problem 6							 									 	328
16.7 problem 7							 									 	329
16.8 problem 8							 									 	330
16.9 problem 9							 								 	 . .	331
16.10problem 10) .						 								 	 . .	332
16.11 problem 11							 								 	 . .	333
16.12problem 12	2 .						 									 , .	334
16.13problem 13	.						 								 	 . .	335
16.14problem 14							 									 , .	336
16.15 problem 15	· .						 								 	 . .	337
16.16problem 16	.						 								 	 . .	338
16.17 problem 17							 								 	 . .	339
16.18problem 18							 									 	340
16.19problem 19) .						 									 	341
16.20problem 21							 								 	 . .	342
16.21 problem 22	2 .						 								 	 . .	343
16.22 problem 23	.						 								 	 . .	344
16.23problem 24							 									 	345
16.24 problem 25							 									 	346
16.25 problem 26	.						 									 	347
16.26problem 27							 									 	348
16.27problem 28							 									 	349
16.28problem 29) .						 									 , .	350
16.29problem 30) .						 									 	351
16.30problem 31							 								 	 . .	352
16.31 problem 32	2 .						 								 	 . .	353
16.32 problem 33	.						 								 	 . .	354
16.33 problem 34							 									 , .	355
16.34problem 35	·						 									 	356
16.35 problem 37							 									 	357
16.36 problem 38	· .						 									 	358

16.37 problem 39							•	•	•		•	•			•	•	•	•		359
16.38problem 40																				360
16.39problem 41																				36
16.40problem 42																				362

16.1 problem 1

Internal problem ID [13161]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 6y = e^{4t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(t),t\$2)-diff(y(t),t)-6*y(t)=exp(4*t),y(t), singsol=all)

$$y(t) = \frac{(e^{6t} + 6c_2e^{5t} + 6c_1)e^{-2t}}{6}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 31

 $\label{eq:DSolve} DSolve[y''[t]-y'[t]-6*y[t] == Exp[4*t], y[t], t, IncludeSingularSolutions -> True]$

$$y(t) \rightarrow \frac{e^{4t}}{6} + c_1 e^{-2t} + c_2 e^{3t}$$

16.2 problem 2

Internal problem ID [13162]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 8y = 2e^{-3t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(t),t\$2)+6*diff(y(t),t)+8*y(t)=2*exp(-3*t),y(t), singsol=all)

$$y(t) = -\frac{(e^{-2t}c_1 + 4e^{-t} - 2c_2)e^{-2t}}{2}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 27

DSolve[y''[t]+6*y'[t]+8*y[t]==2*Exp[-3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow e^{-4t} \left(-2e^t + c_2 e^{2t} + c_1 \right)$$

16.3 problem 3

Internal problem ID [13163]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y' - 2y = 5 e^{3t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(t),t)^2)-diff(y(t),t)^2*y(t)=5*exp(3*t),y(t), singsol=all)$

$$y(t) = c_2 e^{-t} + c_1 e^{2t} + \frac{5 e^{3t}}{4}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 31

DSolve[y''[t]-y'[t]-2*y[t]==5*Exp[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{5e^{3t}}{4} + c_1 e^{-t} + c_2 e^{2t}$$

16.4 problem 4

Internal problem ID [13164]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 13y = e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+13*y(t)=exp(-t),y(t), singsol=all)

$$y(t) = c_2 e^{-2t} \sin(3t) + c_1 e^{-2t} \cos(3t) + \frac{e^{-t}}{10}$$

✓ Solution by Mathematica

Time used: 0.115 (sec). Leaf size: $34\,$

DSolve[y''[t]+4*y'[t]+13*y[t]==Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{10}e^{-2t} (e^t + 10c_2\cos(3t) + 10c_1\sin(3t))$$

16.5 problem 5

Internal problem ID [13165]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 13y = -3e^{-2t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(y(t),t)^2)+4*diff(y(t),t)+13*y(t)=-3*exp(-2*t),y(t), singsol=all)$

$$y(t) = \frac{e^{-2t}(3c_1\cos(3t) + 3c_2\sin(3t) - 1)}{3}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 32

DSolve[y''[t]+4*y'[t]+13*y[t]==-3*Exp[-2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{3}e^{-2t}(3c_2\cos(3t) + 3c_1\sin(3t) - 1)$$

16.6 problem 6

Internal problem ID [13166]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 7y' + 10y = e^{-2t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(t),t\$2)+7*diff(y(t),t)+10*y(t)=exp(-2*t),y(t), singsol=all)

$$y(t) = \frac{(t+3c_1)e^{-2t}}{3} + c_2e^{-5t}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 31

DSolve[y''[t]+7*y'[t]+10*y[t]==Exp[-2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-5t} \left(e^{3t} \left(\frac{t}{3} - \frac{1}{9} + c_2 \right) + c_1 \right)$$

16.7 problem 7

Internal problem ID [13167]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 5y' + 4y = e^{4t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(diff(y(t),t)^2)-5*diff(y(t),t)+4*y(t)=exp(4*t),y(t), singsol=all)$

$$y(t) = \frac{(t+3c_2)e^{4t}}{3} + c_1e^t$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 29

DSolve[y''[t]-5*y'[t]+4*y[t]==Exp[4*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to c_1 e^t + e^{4t} \left(\frac{t}{3} - \frac{1}{9} + c_2 \right)$$

16.8 problem 8

Internal problem ID [13168]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y' - 6y = 4 e^{-3t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(diff(y(t),t)^2)+diff(y(t),t)^{-6*}y(t)^{-4*}exp(-3*t),y(t), singsol=all)$

$$y(t) = \frac{(5c_1e^{5t} + 5c_2 - 4t)e^{-3t}}{5}$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 32

$$y(t) \to \frac{1}{25}e^{-3t} \left(-20t + 25c_2e^{5t} - 4 + 25c_1\right)$$

16.9 problem 9

Internal problem ID [13169]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 8y = e^{-t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $\frac{dsolve([diff(y(t),t$2)+6*diff(y(t),t)+8*y(t)=exp(-t),y(0)=0,D(y)(0)=0],y(t),singsol=allog(-t),y(t)=0}{dsolve([diff(y(t),t$2)+6*diff(y(t),t)+8*y(t)=exp(-t),y(0)=0,D(y)(0)=0],y(t),singsol=allog(-t),y(t)=0}$

$$y(t) = \frac{(2e^{3t} - 3e^{2t} + 1)e^{-4t}}{6}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 28

DSolve[{y''[t]+6*y'[t]+8*y[t]==Exp[-t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -

$$y(t) \to \frac{1}{6}e^{-4t}(e^t - 1)^2(2e^t + 1)$$

16.10 problem 10

Internal problem ID [13170]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 7y' + 12y = 3e^{-t}$$

With initial conditions

$$[y(0) = 2, y'(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)+7*diff(y(t),t)+12*y(t)=3*exp(-t),y(0) = 2, D(y)(0) = 1],y(t), singsolve([diff(y(t),t\$2)+7*diff(y(t),t)+12*y(t)=3*exp(-t),y(0) = 2, D(y)(0) = 1],y(t), singsolve([diff(y(t),t)+12*y(t)

$$y(t) = \frac{15 e^{-3t}}{2} - 6 e^{-4t} + \frac{e^{-t}}{2}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 26

DSolve[{y''[t]+7*y'[t]+12*y[t]==3*Exp[-t],{y[0]==2,y'[0]==1}},y[t],t,IncludeSingularSolution

$$y(t) \to \frac{1}{2}e^{-4t}(15e^t + e^{3t} - 12)$$

16.11 problem 11

Internal problem ID [13171]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 13y = -3e^{-2t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

$$y(t) = \frac{e^{-2t}(\cos{(3t)} - 1)}{3}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 20

DSolve[{y''[t]+4*y'[t]+13*y[t]==-3*Exp[-2*t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolut

$$y(t) \to \frac{1}{3}e^{-2t}(\cos(3t) - 1)$$

16.12 problem 12

Internal problem ID [13172]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 7y' + 10y = e^{-2t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

$$y(t) = \frac{(3t-1)e^{-2t}}{9} + \frac{e^{-5t}}{9}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 27

 $DSolve[\{y''[t]+7*y'[t]+10*y[t]==Exp[-2*t], \{y[0]==0,y'[0]==0\}\}, y[t], t, IncludeSingular Solution for the property of the p$

$$y(t) \to \frac{1}{9}e^{-5t} (e^{3t}(3t-1)+1)$$

16.13 problem 13

Internal problem ID [13173]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 3y = e^{-\frac{t}{2}}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

 $\frac{\text{dsolve}([\text{diff}(y(t),t\$2)+4*\text{diff}(y(t),t)+3*y(t)=\exp(-t/2),y(0)=0,\ D(y)(0)=0]}{\text{,y(t), singsole}}, y(t), \text{ singsole}$

$$y(t) = \frac{e^{-3t}}{5} - e^{-t} + \frac{4e^{-\frac{t}{2}}}{5}$$

✓ Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 32

$$y(t) \to \frac{1}{5}e^{-3t} \left(-5e^{2t} + 4e^{5t/2} + 1\right)$$

16.14 problem 14

Internal problem ID [13174]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 3y = e^{-2t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

$$y(t) = \frac{e^{-3t}}{2} + \frac{e^{-t}}{2} - e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 21

 $DSolve[\{y''[t]+4*y'[t]+3*y[t]==Exp[-2*t],\{y[0]==0,y'[0]==0\}\},y[t],t,IncludeSingularSolutions]$

$$y(t) \to \frac{1}{2}e^{-3t}(e^t - 1)^2$$

16.15 problem 15

Internal problem ID [13175]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 3y = e^{-4t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+3*y(t)=exp(-4*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=0

$$y(t) = -\frac{e^{-3t}}{2} + \frac{e^{-t}}{6} + \frac{e^{-4t}}{3}$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 26

 $DSolve[\{y''[t]+4*y'[t]+3*y[t]==Exp[-4*t], \{y[0]==0,y'[0]==0\}\}, y[t], t, IncludeSingularSolutions]$

$$y(t) \to \frac{1}{6}e^{-4t}(e^t - 1)^2(e^t + 2)$$

16.16 problem 16

Internal problem ID [13176]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 20y = e^{-\frac{t}{2}}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 31

 $\boxed{ dsolve([diff(y(t),t$2)+4*diff(y(t),t)+20*y(t)=exp(-t/2),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t$2)+4*diff(y(t),t)+20*y(t)=exp(-t/2),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t$2]+4*diff(y(t),t)+20*y(t)=exp(-t/2),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)+20*y(t)=exp(-t/2),y(0) = 0, D(y)(0) = 0,$

$$y(t) = \frac{4e^{-\frac{t}{2}}}{73} + \frac{(-3\sin(4t) - 8\cos(4t))e^{-2t}}{146}$$

Solution by Mathematica

Time used: 0.259 (sec). Leaf size: 36

DSolve[{y''[t]+4*y'[t]+20*y[t]==Exp[-t/2],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolution

$$y(t) \to \frac{1}{146} e^{-2t} \left(8e^{3t/2} - 3\sin(4t) - 8\cos(4t) \right)$$

16.17 problem 17

Internal problem ID [13177]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 20y = e^{-2t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=exp(-2*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=exp(-2*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)+20*y(t)=exp(-2*t),y(0) = 0, D(y)(0) = 0, D

$$y(t) = -\frac{e^{-2t}(-1 + \cos(4t))}{16}$$

✓ Solution by Mathematica

Time used: 0.086 (sec). Leaf size: 20

$$y(t) \to \frac{1}{8}e^{-2t}\sin^2(2t)$$

16.18 problem 18

Internal problem ID [13178]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y' + 20y = e^{-4t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

$$y(t) = \frac{(\sin(4t) - 2\cos(4t))e^{-2t}}{40} + \frac{e^{-4t}}{20}$$

✓ Solution by Mathematica

Time used: 0.18 (sec). Leaf size: 37

 $DSolve[\{y''[t]+4*y'[t]+20*y[t]==Exp[-4*t], \{y[0]==0,y'[0]==0\}\}, y[t], t, IncludeSingular Solution for the property of the p$

$$y(t) \to \frac{1}{40} e^{-4t} \left(e^{2t} \sin(4t) - 2e^{2t} \cos(4t) + 2 \right)$$

16.19 problem 19

Internal problem ID [13179]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y' + y = e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=exp(-t),y(t), singsol=all)

$$y(t) = \mathrm{e}^{-t} igg(rac{1}{2} t^2 + c_1 t + c_2 igg)$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 27

 $DSolve[y''[t]+2*y'[t]+y[t] == Exp[-t], y[t], t, Include Singular Solutions \ -> \ True]$

$$y(t) \to \frac{1}{2}e^{-t}(t^2 + 2c_2t + 2c_1)$$

16.20 problem 21

Internal problem ID [13180]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 5y' + 4y = 5$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([diff(y(t),t\$2)-5*diff(y(t),t)+4*y(t)=5,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{5e^{4t}}{12} - \frac{5e^t}{3} + \frac{5}{4}$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 21

DSolve[{y''[t]-5*y'[t]+4*y[t]==5,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to \frac{5}{12} \left(-4e^t + e^{4t} + 3 \right)$$

16.21 problem 22

Internal problem ID [13181]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 5y' + 6y = 2$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve([diff(y(t),t\$2)+5*diff(y(t),t)+6*y(t)=2,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{2e^{-3t}}{3} - e^{-2t} + \frac{1}{3}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 26

DSolve[{y''[t]+5*y'[t]+6*y[t]==2,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to \frac{1}{3}e^{-3t}(e^t - 1)^2(e^t + 2)$$

16.22 problem 23

Internal problem ID [13182]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + 10y = 10$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+10*y(t)=10,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = 1 + \frac{(-3\cos(3t) - \sin(3t))e^{-t}}{3}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 32

DSolve[{y''[t]+2*y'[t]+10*y[t]==10,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> Tr

$$y(t) \to \frac{1}{3}e^{-t}(3e^t - \sin(3t) - 3\cos(3t))$$

16.23 problem 24

Internal problem ID [13183]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y' + 6y = -8$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+6*y(t)=-8,y(0)=0,\ D(y)(0)=0],y(t),\ singsol=all)$

$$y(t) = \frac{4e^{-2t}\sin(\sqrt{2}t)\sqrt{2}}{3} + \frac{4e^{-2t}\cos(\sqrt{2}t)}{3} - \frac{4}{3}$$

✓ Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 44

DSolve[{y''[t]+4*y'[t]+6*y[t]==-8,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> Tru

$$y(t) \rightarrow \frac{4}{3}e^{-2t} \left(-e^{2t} + \sqrt{2}\sin\left(\sqrt{2}t\right) + \cos\left(\sqrt{2}t\right) \right)$$

16.24 problem 25

Internal problem ID [13184]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 9y = e^{-t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)+9*y(t)=exp(-t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{\sin{(3t)}}{30} - \frac{\cos{(3t)}}{10} + \frac{e^{-t}}{10}$$

✓ Solution by Mathematica

Time used: 0.121 (sec). Leaf size: 33

$$y(t) \to \frac{1}{30}e^{-t}(e^t\sin(3t) - 3e^t\cos(3t) + 3)$$

16.25 problem 26

Internal problem ID [13185]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y = 2 e^{-2t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve([diff(y(t),t\$2)+4*y(t)=2*exp(-2*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{\sin(2t)}{4} - \frac{\cos(2t)}{4} + \frac{e^{-2t}}{4}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 25

 $DSolve[\{y''[t]+4*y[t]==2*Exp[-2*t],\{y[0]==0,y'[0]==0\}\},y[t],t,IncludeSingularSolutions -> Tropic for the property of the pro$

$$y(t) \to \frac{1}{4} (e^{-2t} + \sin(2t) - \cos(2t))$$

16.26 problem 27

Internal problem ID [13186]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y = -3$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $\label{eq:decomposition} $$ dsolve([diff(y(t),t\$2)+2*y(t)=-3,y(0) = 0, D(y)(0) = 0],y(t), singsol=all) $$$

$$y(t) = -\frac{3}{2} + \frac{3\cos\left(\sqrt{2}\,t\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 17

$$y(t) \to -3\sin^2\left(\frac{t}{\sqrt{2}}\right)$$

16.27 problem 28

Internal problem ID [13187]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y = e^t$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21 $\,$

dsolve([diff(y(t),t\$2)+4*y(t)=exp(t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = -\frac{\sin(2t)}{10} - \frac{\cos(2t)}{5} + \frac{e^t}{5}$$

✓ Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 27

$$y(t) \rightarrow \frac{1}{10} \left(2e^t - \sin(2t) - 2\cos(2t) \right)$$

16.28 problem 29

Internal problem ID [13188]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 9y = 6$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $\label{eq:decomposition} $$ dsolve([diff(y(t),t\$2)+9*y(t)=6,y(0) = 0, D(y)(0) = 0],y(t), singsol=all) $$$

$$y(t) = \frac{2}{3} - \frac{2\cos(3t)}{3}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 17

$$y(t) o rac{4}{3}\sin^2\left(rac{3t}{2}
ight)$$

16.29 problem 30

Internal problem ID [13189]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 2y = -e^t$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 28

dsolve([diff(y(t),t\$2)+2*y(t)=-exp(t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{\sqrt{2} \sin \left(\sqrt{2} t\right)}{6} + \frac{\cos \left(\sqrt{2} t\right)}{3} - \frac{e^t}{3}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 39

$$y(t) \rightarrow \frac{1}{6} \left(-2e^t + \sqrt{2}\sin\left(\sqrt{2}t\right) + 2\cos\left(\sqrt{2}t\right) \right)$$

16.30 problem 31

Internal problem ID [13190]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y = -3t^2 + 2t + 3$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

 $dsolve([diff(y(t),t$2)+4*y(t)=-3*t^2+2*t+3,y(0) = 2, D(y)(0) = 0],y(t), singsol=all)$

$$y(t) = -\frac{\sin(2t)}{4} + \frac{7\cos(2t)}{8} - \frac{3t^2}{4} + \frac{t}{2} + \frac{9}{8}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 31

DSolve[{y''[t]+4*y[t]==-3*t^2+2*t+3,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> T

$$y(t) \to \frac{1}{8} \left(-6t^2 + 4t - 2\sin(2t) - 9\cos(2t) + 9 \right)$$

16.31 problem 32

Internal problem ID [13191]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + 2y' = 3t + 2$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)=3*t+2,y(0)=0,D(y)(0)=0],y(t),singsol=all)

$$y(t) = \frac{3t^2}{4} + \frac{e^{-2t}}{8} + \frac{t}{4} - \frac{1}{8}$$

✓ Solution by Mathematica

Time used: 0.131 (sec). Leaf size: 24

DSolve[{y''[t]+2*y'[t]==3*t+2,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{8} (6t^2 + 2t + e^{-2t} - 1)$$

16.32 problem 33

Internal problem ID [13192]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$y'' + 4y' = 3t + 2$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)=3*t+2,y(0)=0,D(y)(0)=0],y(t),singsol=all)

$$y(t) = \frac{3t^2}{8} + \frac{5e^{-4t}}{64} + \frac{5t}{16} - \frac{5}{64}$$

✓ Solution by Mathematica

Time used: 0.136 (sec). Leaf size: 26

DSolve[{y''[t]+4*y'[t]==3*t+2,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{64} (24t^2 + 20t + 5e^{-4t} - 5)$$

16.33 problem 34

Internal problem ID [13193]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 3y' + 2y = t^2$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve([diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=t^2,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)$

$$y(t) = \frac{7}{4} - \frac{3t}{2} + \frac{t^2}{2} + \frac{e^{-2t}}{4} - 2e^{-t}$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 37

$$y(t) \to \frac{1}{4}e^{-2t} \left(e^{2t} \left(2t^2 - 6t + 7 \right) - 8e^t + 1 \right)$$

16.34 problem 35

Internal problem ID [13194]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y = t - \frac{1}{20}t^2$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

 $dsolve([diff(y(t),t$2)+4*y(t)=t-t^2/20,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)$

$$y(t) = -\frac{\sin(2t)}{8} - \frac{\cos(2t)}{160} - \frac{t^2}{80} + \frac{t}{4} + \frac{1}{160}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 31

DSolve[{y''[t]+4*y[t]==t-t^2/20,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{160} (-2t^2 + 40t - 20\sin(2t) - \cos(2t) + 1)$$

16.35 problem 37

Internal problem ID [13195]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 37.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 5y' + 6y = 4 + e^{-t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

$$y(t) = \frac{11e^{-3t}}{6} - 3e^{-2t} + \frac{e^{-t}}{2} + \frac{2}{3}$$

✓ Solution by Mathematica

Time used: 0.106 (sec). Leaf size: 28

DSolve[{y''[t]+5*y'[t]+6*y[t]==4+Exp[-t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions

$$y(t) \to \frac{1}{6}e^{-3t}(e^t - 1)^2(4e^t + 11)$$

16.36 problem 38

Internal problem ID [13196]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 3y' + 2y = e^{-t} - 4$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 30

$$y(t) = -(2e^{2t} + \ln(e^{-t})e^{t} - 3e^{t} + 1)e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.077 (sec). Leaf size: 23

$$y(t) \to e^{-t}(t+3) - e^{-2t} - 2$$

16.37 problem 39

Internal problem ID [13197]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 39.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 8y = 2t + e^{-t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve([diff(y(t),t\$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(-t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t\$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(-t),y(0) = 0, D(y)(0) = 0]

$$y(t) = \frac{5e^{-4t}}{48} - \frac{3}{16} + \frac{t}{4} + \frac{e^{-t}}{3} - \frac{e^{-2t}}{4}$$

✓ Solution by Mathematica

Time used: 0.223 (sec). Leaf size: 42

DSolve[{y''[t]+6*y'[t]+8*y[t]==2*t+Exp[-t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolution

$$y(t) \to \frac{1}{48}e^{-4t} (3e^{4t}(4t-3) - 12e^{2t} + 16e^{3t} + 5)$$

16.38 problem 40

Internal problem ID [13198]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 40.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 6y' + 8y = 2t + e^t$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: $25\,$

dsolve([diff(y(t),t\$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t\$2)+6*diff(y(t),t)+8*y(t)=2*t+exp(t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)+8*y(t)+6*diff(y(t),t)+8*y(t)=2*t+exp(t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)+8*y(t)+

$$y(t) = \frac{(16 e^{5t} + 60t e^{4t} - 45 e^{4t} + 20 e^{2t} + 9) e^{-4t}}{240}$$

✓ Solution by Mathematica

Time used: 0.2 (sec). Leaf size: $33\,$

DSolve[{y''[t]+6*y'[t]+8*y[t]==2*t+Exp[t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolution

$$y(t) \to \frac{1}{240} (60t + 9e^{-4t} + 20e^{-2t} + 16e^t - 45)$$

16.39 problem 41

Internal problem ID [13199]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 41.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 4y = t + e^{-t}$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: $26\,$

dsolve([diff(y(t),t\$2)+4*y(t)=t+exp(-t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = -\frac{\sin(2t)}{40} - \frac{\cos(2t)}{5} + \frac{t}{4} + \frac{e^{-t}}{5}$$

✓ Solution by Mathematica

Time used: 0.794 (sec). Leaf size: 32

DSolve[{y''[t]+4*y[t]==t+Exp[-t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to \frac{1}{40} (10t + 8e^{-t} - \sin(2t) - 8\cos(2t))$$

16.40 problem 42

Internal problem ID [13200]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399

Problem number: 42.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = 6 + t^2 + e^t$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

 $dsolve([diff(y(t),t$2)+4*y(t)=6+t^2+exp(t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)$

$$y(t) = -\frac{\sin(2t)}{10} - \frac{63\cos(2t)}{40} + \frac{11}{8} + \frac{t^2}{4} + \frac{e^t}{5}$$

✓ Solution by Mathematica

Time used: 0.352 (sec). Leaf size: $33\,$

DSolve[{y''[t]+4*y[t]==6+t^2+Exp[t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> T

$$y(t) \to \frac{1}{40} (10t^2 + 8e^t - 4\sin(2t) - 63\cos(2t) + 55)$$

17 Chapter 4. Forcing and Resonance. Section 4.2 page 412

17.1 problem	1 .									•									364
17.2 problem	2 .																		365
17.3 problem	3.																		366
17.4 problem	4 .																		367
17.5 problem	5.																		368
17.6 problem	6.																		369
17.7 problem	7.																		370
17.8 problem	8.																		371
17.9 problem	9.																		372
$17.10 \\ problem$	10																		373
$17.11 \mathrm{problem}$	11																		374
$17.12 \\ problem$	12																		375
$17.13 \mathrm{problem}$	13																		376
$17.14 \mathrm{problem}$	14																		377
$17.15 \mathrm{problem}$	15																		378
$17.16 \mathrm{problem}$	18																		379
17.17problem	19																		380

17.1 problem 1

Internal problem ID [13201]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = \cos(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=cos(t),y(t), singsol=all)

$$y(t) = -e^{-2t}c_1 + \frac{\cos(t)}{10} + \frac{3\sin(t)}{10} + c_2e^{-t}$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: $32\,$

 $DSolve[y''[t]+3*y'[t]+2*y[t] == Cos[t], y[t], t, Include Singular Solutions \ -> \ True]$

$$y(t) \to \frac{1}{10} (3\sin(t) + \cos(t) + 10e^{-2t} (c_2 e^t + c_1))$$

17.2 problem 2

Internal problem ID [13202]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = 5\cos(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=5*cos(t),y(t), singsol=all)

$$y(t) = -e^{-2t}c_1 + \frac{\cos(t)}{2} + \frac{3\sin(t)}{2} + c_2e^{-t}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 32

DSolve[y''[t]+3*y'[t]+2*y[t]==5*Cos[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{2} (3\sin(t) + \cos(t) + 2e^{-2t} (c_2 e^t + c_1))$$

17.3 problem 3

Internal problem ID [13203]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = \sin(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=sin(t),y(t), singsol=all)

$$y(t) = -e^{-2t}c_1 - \frac{3\cos(t)}{10} + \frac{\sin(t)}{10} + c_2e^{-t}$$

✓ Solution by Mathematica

Time used: 0.098 (sec). Leaf size: 32

DSolve[y''[t]+3*y'[t]+2*y[t]==Sin[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{10} (\sin(t) - 3\cos(t) + 10e^{-2t} (c_2 e^t + c_1))$$

17.4 problem 4

Internal problem ID [13204]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + 2y = 2\sin(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(t),t\$2)+3*diff(y(t),t)+2*y(t)=2*sin(t),y(t), singsol=all)

$$y(t) = -e^{-2t}c_1 - \frac{3\cos(t)}{5} + \frac{\sin(t)}{5} + c_2e^{-t}$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 32

DSolve[y''[t]+3*y'[t]+2*y[t]==2*Sin[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{5} (\sin(t) - 3\cos(t) + 5e^{-2t} (c_2 e^t + c_1))$$

17.5 problem 5

Internal problem ID [13205]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 8y = \cos(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(t),t\$2)+6*diff(y(t),t)+8*y(t)=cos(t),y(t), singsol=all)

$$y(t) = -\frac{e^{-4t}c_1}{2} + \frac{7\cos(t)}{85} + \frac{6\sin(t)}{85} + c_2e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 35

 $DSolve[y''[t]+6*y'[t]+8*y[t] == Cos[t], y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{6\sin(t)}{85} + \frac{7\cos(t)}{85} + e^{-4t}(c_2e^{2t} + c_1)$$

17.6 problem 6

Internal problem ID [13206]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 8y = -4\cos(3t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(diff(y(t),t)^2)+6*diff(y(t),t)+8*y(t)=-4*cos(3*t),y(t), singsol=all)$

$$y(t) = -\frac{e^{-4t}c_1}{2} + c_2e^{-2t} + \frac{4\cos(3t)}{325} - \frac{72\sin(3t)}{325}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 37

 $DSolve[y''[t]+6*y'[t]+8*y[t]==-4*Cos[3*t],y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to c_1 e^{-4t} + c_2 e^{-2t} + \frac{4}{325} (\cos(3t) - 18\sin(3t))$$

17.7 problem 7

Internal problem ID [13207]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 13y = 3\cos(2t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+13*y(t)=3*cos(2*t),y(t), singsol=all)

$$y(t) = c_2 e^{-2t} \sin(3t) + c_1 e^{-2t} \cos(3t) + \frac{24 \sin(2t)}{145} + \frac{27 \cos(2t)}{145}$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 47

DSolve[y''[t]+4*y'[t]+13*y[t]==3*Cos[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{3}{145} (8\sin(2t) + 9\cos(2t)) + c_2 e^{-2t} \cos(3t) + c_1 e^{-2t} \sin(3t)$$

17.8 problem 8

Internal problem ID [13208]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 20y = -\cos(5t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=-cos(5*t),y(t), singsol=all)

$$y(t) = \sin(4t) e^{-2t} c_2 + \cos(4t) e^{-2t} c_1 + \frac{\cos(5t)}{85} - \frac{4\sin(5t)}{85}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 45

DSolve[y''[t]+4*y'[t]+20*y[t]==-Cos[5*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{85}(\cos(5t) - 4\sin(5t)) + c_2 e^{-2t}\cos(4t) + c_1 e^{-2t}\sin(4t)$$

17.9 problem 9

Internal problem ID [13209]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 20y = -3\sin(2t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 37

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=-3*sin(2*t),y(t), singsol=all)

$$y(t) = \sin(4t) e^{-2t} c_2 + \cos(4t) e^{-2t} c_1 - \frac{3\sin(2t)}{20} + \frac{3\cos(2t)}{40}$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 45

DSolve[y''[t]+4*y'[t]+20*y[t]==-3*Sin[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{3}{40}(\cos(2t) - 2\sin(2t)) + c_2 e^{-2t}\cos(4t) + c_1 e^{-2t}\sin(4t)$$

17.10 problem 10

Internal problem ID [13210]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = \cos\left(3t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=cos(3*t),y(t), singsol=all)

$$y(t) = (c_1 t + c_2) e^{-t} - \frac{2\cos(3t)}{25} + \frac{3\sin(3t)}{50}$$

✓ Solution by Mathematica

Time used: 0.22 (sec). Leaf size: 35

DSolve[y''[t]+2*y'[t]+y[t]==Cos[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{3}{50}\sin(3t) - \frac{2}{25}\cos(3t) + e^{-t}(c_2t + c_1)$$

17.11 problem 11

Internal problem ID [13211]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 8y = \cos(t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $dsolve([diff(y(t),t\$2)+6*diff(y(t),t)+8*y(t)=cos(t),y(0)=0,\ D(y)(0)=0],y(t),\ singsol=all(t)=0$

$$y(t) = \frac{2e^{-4t}}{17} + \frac{7\cos(t)}{85} + \frac{6\sin(t)}{85} - \frac{e^{-2t}}{5}$$

✓ Solution by Mathematica

Time used: 2.147 (sec). Leaf size: 63

DSolve[{y''[t]+5*y'[t]+8*y[t]==Cos[t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions ->

$$y(t) \to \frac{1}{518} \left(35\sin(t) - 45\sqrt{7}e^{-5t/2}\sin\left(\frac{\sqrt{7}t}{2}\right) + 49\cos(t) - 49e^{-5t/2}\cos\left(\frac{\sqrt{7}t}{2}\right) \right)$$

17.12 problem 12

Internal problem ID [13212]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 8y = 2\cos(3t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve([diff(y(t),t\$2)+6*diff(y(t),t)+8*y(t)=2*cos(3*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t\$2)+6*diff(y(t),t)+8*y(t)=2*cos(3*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)\$2)+6*diff(y(t),t)+8*y(t)=2*cos(3*t),y(0) = 0, D(y)(0) = 0],y(t), singsolve([diff(y(t),t)])

$$y(t) = \frac{4e^{-4t}}{25} - \frac{2e^{-2t}}{13} - \frac{2\cos(3t)}{325} + \frac{36\sin(3t)}{325}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 74

DSolve[{y''[t]+5*y'[t]+8*y[t]==2*Cos[3*t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolution

$$y(t) \to \frac{1}{791} e^{-5t/2} \left(105 e^{5t/2} \sin(3t) - 85\sqrt{7} \sin\left(\frac{\sqrt{7}t}{2}\right) - 7e^{5t/2} \cos(3t) + 7\cos\left(\frac{\sqrt{7}t}{2}\right) \right)$$

17.13 problem 13

Internal problem ID [13213]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 20y = -3\sin(2t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 44

$$y(t) = -\frac{3e^{-3t}\sqrt{11}\sin\left(\sqrt{11}t\right)}{1100} - \frac{9e^{-3t}\cos\left(\sqrt{11}t\right)}{100} + \frac{9\cos\left(2t\right)}{100} - \frac{3\sin\left(2t\right)}{25}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 61

DSolve[{y''[t]+6*y'[t]+20*y[t]==-3*Sin[2*t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSoluti

$$y(t) \to -\frac{3e^{-3t} \left(44e^{3t} \sin(2t) + \sqrt{11} \sin\left(\sqrt{11}t\right) - 33e^{3t} \cos(2t) + 33\cos\left(\sqrt{11}t\right)\right)}{1100}$$

17.14 problem 14

Internal problem ID [13214]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + y = 2\cos\left(2t\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=2*cos(2*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=2*tos(2*t),y(0) = 0, D(y)(0) = 0,y(t), singsol=2*tos(2*t),y(0) = 0, D(y)(0) = 0,y(t),y(t), singsol=2*tos(2*t),y(0) = 0, D(y)(0) = 0,y(t),y(t),y(t),y(t)=2*tos(2*t),y(0) = 0,y(t),y(t),y(t)=2*tos(2*t),y(0) = 0,y(t),y(t),y(t)=2*tos(2*t),y(0) = 0,y(t),y(t),y(t)=2*tos(2*t),y(0) = 0,y(t),y(t)=2*tos(2*t),y(0) = 0,y(t),y(t)=2*tos(2*t),y(t)=2*tos(2*t),y(t)=2*tos(2*t),y(t)=0,y(t)

$$y(t) = \frac{2(3-5t)e^{-t}}{25} - \frac{6\cos(2t)}{25} + \frac{8\sin(2t)}{25}$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 37

$$y(t) \to -\frac{2}{25}e^{-t}(5t - 4e^t\sin(2t) + 3e^t\cos(2t) - 3)$$

17.15 problem 15

Internal problem ID [13215]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y' + y = \cos\left(3t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

dsolve(diff(y(t),t\$2)+3*diff(y(t),t)+y(t)=cos(3*t),y(t), singsol=all)

$$y(t) = e^{\frac{\left(\sqrt{5}-3\right)t}{2}}c_2 + e^{-\frac{\left(3+\sqrt{5}\right)t}{2}}c_1 - \frac{8\cos\left(3t\right)}{145} + \frac{9\sin\left(3t\right)}{145}$$

✓ Solution by Mathematica

Time used: 0.674 (sec). Leaf size: 52

 $DSolve[y''[t]+3*y'[t]+y[t] == Cos[3*t], y[t], t, IncludeSingularSolutions \rightarrow True]$

$$y(t) \to \frac{9}{145}\sin(3t) - \frac{8}{145}\cos(3t) + e^{-\frac{1}{2}(3+\sqrt{5})t} \left(c_2 e^{\sqrt{5}t} + c_1\right)$$

17.16 problem 18

Internal problem ID [13216]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 20y = 3 + 2\cos(2t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=3+2*cos(2*t),y(t), singsol=all)

$$y(t) = \sin(4t) e^{-2t} c_2 + \cos(4t) e^{-2t} c_1 + \frac{3}{20} + \frac{\sin(2t)}{20} + \frac{\cos(2t)}{10}$$

✓ Solution by Mathematica

Time used: 1.265 (sec). Leaf size: 47

DSolve[y''[t]+4*y'[t]+20*y[t]==3+2*Cos[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{20} (\sin(2t) + 2\cos(2t) + 20c_2e^{-2t}\cos(4t) + 20c_1e^{-2t}\sin(4t) + 3)$$

17.17 problem 19

Internal problem ID [13217]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412

Problem number: 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 20y = e^{-t}\cos(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve(diff(y(t),t\$2)+4*diff(y(t),t)+20*y(t)=exp(-t)*cos(t),y(t), singsol=all)

$$y(t) = (c_1 \cos(4t) + c_2 \sin(4t)) e^{-2t} + \frac{4(\cos(t) + \frac{\sin(t)}{8}) e^{-t}}{65}$$

✓ Solution by Mathematica

Time used: 0.457 (sec). Leaf size: 44

DSolve[y''[t]+4*y'[t]+20*y[t]==Exp[-t]*Cos[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{130}e^{-2t} \left(e^t \sin(t) + 8e^t \cos(t) + 130c_2 \cos(4t) + 130c_1 \sin(4t) \right)$$

10.1	problem	_	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	002
18.2	$\operatorname{problem}$	2																																					383
18.3	${\bf problem}$	3																																					384
18.4	$\operatorname{problem}$	4																																					385
18.5	problem	5																																					386

18.1 problem 1

Internal problem ID [13218]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = \cos(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(y(t),t\$2)+9*y(t)=cos(t),y(t), singsol=all)

$$y(t) = c_2 \sin(3t) + c_1 \cos(3t) + \frac{\cos(t)}{8}$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 30

DSolve[y''[t]+9*y[t]==Cos[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{\cos(t)}{8} + \left(\frac{1}{12} + c_1\right)\cos(3t) + c_2\sin(3t)$$

18.2 problem 2

Internal problem ID [13219]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = 5\sin\left(2t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(t),t\$2)+9*y(t)=5*sin(2*t),y(t), singsol=all)

$$y(t) = c_2 \sin(3t) + c_1 \cos(3t) + \sin(2t)$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 24

DSolve[y''[t]+9*y[t]==5*Sin[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \sin(2t) + c_1 \cos(3t) + c_2 \sin(3t)$$

18.3 problem 3

Internal problem ID [13220]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = -\cos\left(\frac{t}{2}\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(t),t\$2)+4*y(t)=-cos(t/2),y(t), singsol=all)

$$y(t) = \sin(2t) c_2 + \cos(2t) c_1 - \frac{4\cos(\frac{t}{2})}{15}$$

Solution by Mathematica

Time used: 0.031 (sec). Leaf size: $30\,$

DSolve[y''[t]+4*y[t]==-Cos[t/2],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow -\frac{4}{15}\cos\left(\frac{t}{2}\right) + c_1\cos(2t) + c_2\sin(2t)$$

18.4 problem 4

Internal problem ID [13221]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = 3\cos(2t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve(diff(y(t),t\$2)+4*y(t)=3*cos(2*t),y(t), singsol=all)

$$y(t) = \frac{(6t + 8c_2)\sin(2t)}{8} + \frac{(8c_1 + 3)\cos(2t)}{8}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 33

DSolve[y''[t]+4*y[t]==3*Cos[2*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \left(\frac{3}{16} + c_1\right)\cos(2t) + \frac{1}{4}(3t + 4c_2)\sin(2t)$$

18.5 problem 5

Internal problem ID [13222]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 9y = 2\cos(3t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(t),t\$2)+9*y(t)=2*cos(3*t),y(t), singsol=all)

$$y(t) = \frac{(9c_1 + 1)\cos(3t)}{9} + \frac{(t + 3c_2)\sin(3t)}{3}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 31

DSolve[y''[t]+9*y[t]==2*Cos[3*t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \left(\frac{1}{18} + c_1\right)\cos(3t) + \frac{1}{3}(t + 3c_2)\sin(3t)$$

19 Chapter 6. Laplace transform. Section 6.3 page 600

19.1	problem 27												•						388
19.2	problem 28																		389
19.3	problem 29																		390
19.4	problem 30																		391
19.5	problem 31																		392
19.6	problem 32																		393
19.7	problem 33																		394
19.8	problem 34																		395

19.1 problem 27

Internal problem ID [13223]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y = 8$$

With initial conditions

$$[y(0) = 11, y'(0) = 5]$$

✓ Solution by Maple

Time used: 4.797 (sec). Leaf size: 18

dsolve([diff(y(t),t\$2)+4*y(t)=8,y(0) = 11, D(y)(0) = 5],y(t), singsol=all)

$$y(t) = 9\cos(2t) + \frac{5\sin(2t)}{2} + 2$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 19

DSolve[{y''[t]+4*y[t]==8,{y[0]==11,y'[0]==5}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow 9\cos(2t) + 5\sin(t)\cos(t) + 2$$

19.2 problem 28

Internal problem ID [13224]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y = e^{2t}$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

Solution by Maple

Time used: 5.0 (sec). Leaf size: 22

dsolve([diff(y(t),t\$2)-4*y(t)=exp(2*t),y(0) = 1, D(y)(0) = -1],y(t), singsol=all)

$$y(t) = \frac{13e^{-2t}}{16} + \frac{e^{2t}(4t+3)}{16}$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 27

DSolve[{y''[t]-4*y[t]==Exp[2*t],{y[0]==1,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to \frac{1}{16}e^{-2t} (e^{4t}(4t+3)+13)$$

19.3 problem 29

Internal problem ID [13225]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 4y' + 5y = 2e^t$$

With initial conditions

$$[y(0) = 3, y'(0) = 1]$$

✓ Solution by Maple

Time used: 5.5 (sec). Leaf size: 20

dsolve([diff(y(t),t\$2)-4*diff(y(t),t)+5*y(t)=2*exp(t),y(0) = 3, D(y)(0) = 1],y(t), singsol=2

$$y(t) = e^{t} + (2\cos(t) - 4\sin(t))e^{2t}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 25

 $DSolve[\{y''[t]-4*y'[t]+5*y[t]==2*Exp[t],\{y[0]==3,y'[0]==1\}\},y[t],t,IncludeSingularSolutions]$

$$y(t) \rightarrow e^t \left(-4e^t \sin(t) + 2e^t \cos(t) + 1 \right)$$

19.4 problem 30

Internal problem ID [13226]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 13y = 13$$
 Heaviside $(t - 4)$

With initial conditions

$$[y(0) = 3, y'(0) = 1]$$

✓ Solution by Maple

Time used: 7.156 (sec). Leaf size: 57

dsolve([diff(y(t),t\$2)+6*diff(y(t),t)+13*y(t)=13*Heaviside(t-4),y(0) = 3, D(y)(0) = 1],y(t),

$$\begin{split} y(t) &= \left(-\frac{1}{2} - \frac{3i}{4}\right) \text{Heaviside} \left(t - 4\right) \mathrm{e}^{(-3 - 2i)(t - 4)} \\ &+ \left(-\frac{1}{2} + \frac{3i}{4}\right) \text{Heaviside} \left(t - 4\right) \mathrm{e}^{(-3 + 2i)(t - 4)} \\ &+ \text{Heaviside} \left(t - 4\right) + \mathrm{e}^{-3t} (3\cos{(2t)} + 5\sin{(2t)}) \end{split}$$

Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 82

y(t)

$$\hspace{0.5cm} \rightarrow \hspace{0.2cm} \left\{ \begin{array}{c} e^{2t}(3\cos(t)-5\sin(t)) & t \leq 4 \\ -\frac{1}{5}e^{2t-8}\cos(4-t)+3e^{2t}\cos(t)-\frac{2}{5}e^{2t-8}\sin(4-t)-5e^{2t}\sin(t)+\frac{1}{5} \end{array} \right. \text{True}$$

19.5 problem 31

Internal problem ID [13227]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \cos(2t)$$

With initial conditions

$$[y(0) = -2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 4.438 (sec). Leaf size: 18

dsolve([diff(y(t),t\$2)+4*y(t)=cos(2*t),y(0) = -2, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = -2\cos(2t) + \frac{t\sin(2t)}{4}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 21

DSolve[{y''[t]+4*y[t]==Cos[2*t],{y[0]==-2,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True

$$y(t) \to \frac{1}{4}t\sin(2t) - 2\cos(2t)$$

19.6 problem 32

Internal problem ID [13228]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 32.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y = \text{Heaviside}(t - 4)\cos(5t - 20)$$

With initial conditions

$$[y(0) = 0, y'(0) = -2]$$

✓ Solution by Maple

Time used: 6.578 (sec). Leaf size: 39

 $\frac{dsolve([diff(y(t),t$2)+3*y(t)=Heaviside(t-4)*cos(5*(t-4)),y(0)=0,D(y)(0)=-2],y(t),sing(t)}{dsolve([diff(y(t),t$2)+3*y(t)=Heaviside(t-4)*cos(5*(t-4)),y(0)=0,D(y)(0)=-2],y(t),sing(t)=-2}$

$$y(t) = -\frac{2\sqrt{3}\sin\left(\sqrt{3}t\right)}{3} - \frac{\text{Heaviside}\left(t-4\right)\cos\left(5t-20\right)}{22} + \frac{\text{Heaviside}\left(t-4\right)\cos\left(\sqrt{3}\left(t-4\right)\right)}{22}$$

✓ Solution by Mathematica

Time used: 0.797 (sec). Leaf size: 66

 $DSolve[\{y''[t]+3*y[t]==UnitStep[t-4]*Cos[5*(t-4)],\{y[0]==0,y'[0]==-2\}\},y[t],t,IncludeSingularity[t]=UnitStep[t-4]*Cos[5*(t-4)],[y[0]==0,y'[0]==-2\}\},y[t],t,IncludeSingularity[t]=UnitStep[t-4]*Cos[5*(t-4)],[y[0]==0,y'[0]==-2\}\},y[t],t,IncludeSingularity[t]=UnitStep[t-4]*Cos[5*(t-4)],[y[0]==0,y'[0]==-2]\},y[t],t,IncludeSingularity[t]=UnitStep[t-4]*Cos[5*(t-4)],[y[0]==0,y'[0]==-2]\},y[t],t,IncludeSingularity[t]=UnitStep[t-4]*Cos[5*(t-4)],[y[0]==0,y'[0]==-2]\},y[t],t,IncludeSingularity[t]=UnitStep[t-4]*Cos[5*(t-4)],[y[0]==0,y'[0]==-2]\},y[t],t,IncludeSingularity[t]=UnitStep[t-4]*Cos[5*(t-4)],[y[0]==0,y'[0]==-2]\},y[t],t,IncludeSingularity[t]=UnitStep[t-4]*Cos[5*(t-4)],[y[0]==0,y'[0]==-2]\},y[t],t,IncludeSingularity[t]=UnitStep[t-4]*Cos[5*(t-4)],[y[0]==0,y'[0]==-2]\},y[t],t,IncludeSingularity[t]=UnitStep[t-4]*Cos[5*(t-4)],[y[0]==0,y'[0]==-2]\},y[t]=UnitStep[t-4]*Cos[5*(t-4)],[y[0]==0,y'[0]==-2]\}$

$$y(t) \to \{ \frac{-\frac{2\sin\left(\sqrt{3}t\right)}{\sqrt{3}}}{\frac{1}{66}\left(-3\cos(5(t-4)) + 3\cos\left(\sqrt{3}(t-4)\right) - 44\sqrt{3}\sin\left(\sqrt{3}t\right)\right)}$$
 True

19.7 problem 33

Internal problem ID [13229]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y' + 9y = 20$$
 Heaviside $(-2 + t) \sin (-2 + t)$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 6.953 (sec). Leaf size: 64

dsolve([diff(y(t),t\$2)+4*diff(y(t),t)+9*y(t)=20*Heaviside(t-2)*sin(t-2),y(0) = 1, D(y)(0) = 1

$$\begin{split} y(t) &= \cos\left(\sqrt{5}\left(t-2\right)\right) \text{Heaviside}\left(t-2\right) \text{e}^{-2t+4} + \text{e}^{-2t}\cos\left(t\sqrt{5}\right) \\ &+ \frac{4 \, \text{e}^{-2t}\sqrt{5}\, \sin\left(t\sqrt{5}\right)}{5} - \text{Heaviside}\left(t-2\right) \left(\cos\left(t-2\right) - 2\sin\left(t-2\right)\right) \end{split}$$

✓ Solution by Mathematica

Time used: 2.391 (sec). Leaf size: 115

DSolve[{y''[t]+4*y'[t]+9*y[t]==20*UnitStep[t-2]*Sin[t-2],{y[0]==1,y'[0]==2}},y[t],t,IncludeS

y(t)

$$\rightarrow \left\{ -\cos(2-t) + e^{4-2t}\cos\left(\sqrt{5}(t-2)\right) + e^{-2t}\cos\left(\sqrt{5}t\right) - 2\sin(2-t) + \frac{4e^{-2t}\sin\left(\sqrt{5}t\right)}{\sqrt{5}} \quad t > 2 \right.$$

$$\left. \frac{1}{5}e^{-2t}\left(5\cos\left(\sqrt{5}t\right) + 4\sqrt{5}\sin\left(\sqrt{5}t\right)\right) \right.$$
 True

19.8 problem 34

Internal problem ID [13230]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.3 page 600

Problem number: 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y = \begin{cases} t & 0 \le t < 1\\ 1 & 1 \le t \end{cases}$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 7.829 (sec). Leaf size: 83

dsolve([diff(y(t),t\$2)+3*y(t)=piecewise(0<=t and t<1,t,t>=1,1),y(0) = 2, D(y)(0) = 0],y(t),

$$y(t) = 2\cos\left(\sqrt{3}\,t\right) - \frac{\sqrt{3}\,\sin\left(\sqrt{3}\,t\right)}{9} + \frac{\left\{\left\{\begin{array}{cc} t & t < 1\\ 1 + \frac{\sqrt{3}\,\sin\left(\sqrt{3}\,(t-1)\right)}{3} & 1 \le t\end{array}\right\}}{3}\right\}$$

Time used: 0.079 (sec). Leaf size: 108

 $DSolve[\{y''[t]+3*y[t]==Piecewise[\{\{t,0<=t<1\},\{1,t>=1\}\}],\{y[0]==2,y'[0]==0\}\},y[t],t,IncludeSince[\{t,0<=t<1\},\{1,t>=1\}\}],\{y[0]==2,y'[0]==0\}\},y[t],t,IncludeSince[\{t,0<=t<1\},\{1,t>=1\}\}],\{y[0]==2,y'[0]==0\}\},y[t],t,IncludeSince[\{t,0<=t<1\},\{1,t>=1\}\}],\{y[0]==2,y'[0]==0\}\},y[t],t,IncludeSince[\{t,0<=t<1\},\{1,t>=1\}\}],\{y[0]==2,y'[0]==0\}\},y[t],t,IncludeSince[\{t,0<=t<1\},\{1,t>=1\}\}],\{y[0]==0\},y[t],t,IncludeSince[\{t,0<=t<1\},\{1,t>=1\}\}],\{y[0]==0\},y[t],t,IncludeSince[\{t,0<=t<1\},\{1,t>=1\}\}],\{y[0]==0\},y[t],t,IncludeSince[\{t,0<=t<1\},\{1,t>=1\}\}],\{y[0]==0\},y[t],t,IncludeSince[\{t,0<=t<1\},\{1,t>=1\}\}],\{y[0]==0\},y[t],t,IncludeSince[\{t,0<=t<1\},\{1,t>=1\}\}],\{y[0]==0\},y[t],t,IncludeSince[\{t,0<=t<1\},\{1,t>=1\}\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],IncludeSince[\{t,0<=t<1\},\{1,t>=1\}],Includ$

$$y(t) \rightarrow \begin{cases} 2\cos\left(\sqrt{3}t\right) & t \leq 0 \\ y(t) \rightarrow \end{cases} \begin{cases} \frac{1}{9}\left(3t + 18\cos\left(\sqrt{3}t\right) - \sqrt{3}\sin\left(\sqrt{3}t\right)\right) & 0 < t \leq 1 \\ \frac{1}{9}\left(18\cos\left(\sqrt{3}t\right) + \sqrt{3}\sin\left(\sqrt{3}(t-1)\right) - \sqrt{3}\sin\left(\sqrt{3}t\right) + 3\right) & \text{True} \end{cases}$$

20 Chapter 6. Laplace transform. Section 6.4. page 608

20.1	problem	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	398
20.2	$\operatorname{problem}$	3																																					399
20.3	${\rm problem}$	4																						•															400
20.4	problem	5								_			_																										401

20.1 problem 2

Internal problem ID [13231]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.4. page 608

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 3y = 5\delta(-2+t)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 15.422 (sec). Leaf size: 21

dsolve([diff(y(t),t\$2)+3*y(t)=5*Dirac(t-2),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{5\sqrt{3} \operatorname{Heaviside}(t-2)\sin\left(\sqrt{3}(t-2)\right)}{3}$$

✓ Solution by Mathematica

Time used: 0.288 (sec). Leaf size: 36

 $DSolve[\{y''[t]+3*y[t]==DiracDelta[t-2],\{y[0]==2,y'[0]==0\}\},y[t],t,IncludeSingularSolutions = 0. \\ DSolve[\{y''[t]+3*y[t]==DiracDelta[t-2],\{y[0]==2,y'[0]==0\}\},y[t],t,IncludeSingularSolutions = 0. \\ DSolve[\{y''[t]+3*y[t]==DiracDelta[t-2],\{y[0]==2,y'[t]=0\}\},y[t],t,IncludeSingularSolutions = 0. \\ DSolve[\{y''[t]+3*y[t]==DiracDelta[t-2],\{y[0]==2,y'[t]=0\}\},y[t],t,IncludeSingularSolutions = 0. \\ DSolve[\{y''[t]+3*y[t]==DiracDelta[t-2],\{y[0]==2,y'[t]=0\}\},y[t],t,IncludeSingularSolutions = 0. \\ DSolve[\{y''[t]+3*y[t]==DiracDelta[t-2],\{y[0]==2,y'[t]=0\}\},y[t],t,IncludeSingularSolutions = 0. \\ DSolve[\{y''[t]==0\},\{y[t]=0\},\{y[t]=0\}\},y[t]=0. \\ DSolve[\{y''[t]=0\},\{y[t]=0\},\{y[t]=0\},\{y[t]=0\}\},y[t]=0. \\ DSolve[\{y''[t]=0\},\{y[t]=0\},\{y[t]=0\},\{y[t]=0\}\},y[t]=0. \\ DSolve[\{y''[t]=0\},\{y[t]=0\},\{y[t]=0\},\{y[t]=0\},\{y[t]=0\},\{y[t]=0\}\},y[t]=0. \\ DSolve[\{y''[t]=0\},\{y[t]=0\},$

$$y(t) \to \frac{\theta(t-2)\sin\left(\sqrt{3}(t-2)\right)}{\sqrt{3}} + 2\cos\left(\sqrt{3}t\right)$$

20.2 problem 3

Internal problem ID [13232]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.4. page 608

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 5y = \delta(-3 + t)$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 5.718 (sec). Leaf size: 37

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+5*y(t)=Dirac(t-3),y(0) = 1, D(y)(0) = 1],y(t), singsolve([diff(y(t),t\$2)+2*diff(y(t),t)+5*y(t)=Dirac(t-3),y(0) = 1, D(y)(0) = 1],y(t), singsolve([diff(y(t),t)\$2)+2*diff(y(t),t)+5*y(t)=Dirac(t-3),y(0) = 1, D(y)(0) = 1],y(t), singsolve([diff(y(t),t)])

$$y(t) = e^{-t}(\cos(2t) + \sin(2t)) + \frac{e^{-t+3} \operatorname{Heaviside}(t-3)\sin(2t-6)}{2}$$

✓ Solution by Mathematica

Time used: 0.179 (sec). Leaf size: 41

DSolve[{y''[t]+2*y'[t]+5*y[t]==DiracDelta[t-3],{y[0]==1,y'[0]==1}},y[t],t,IncludeSingularSol

$$y(t) \to \frac{1}{2}e^{-t}(2(\sin(2t) + \cos(2t)) - e^{3}\theta(t-3)\sin(6-2t))$$

20.3 problem 4

Internal problem ID [13233]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.4. page 608

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = -2\delta(-2+t)$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 5.25 (sec). Leaf size: 32

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+2*y(t)=-2*Dirac(t-2),y(0) = 2, D(y)(0) = 0],y(t), sing(x,y) = 0

$$y(t) = -2 \text{ Heaviside } (t-2) e^{2-t} \sin(t-2) + 2 e^{-t} (\sin(t) + \cos(t))$$

✓ Solution by Mathematica

Time used: 0.3 (sec). Leaf size: 31

DSolve[{y''[t]+2*y'[t]+2*y[t]==-2*DiracDelta[t-2],{y[0]==2,y'[0]==0}},y[t],t,IncludeSingular

$$y(t) \to 2e^{-t}(e^2\theta(t-2)\sin(2-t) + \sin(t) + \cos(t))$$

20.4 problem 5

Internal problem ID [13234]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.4. page 608

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 3y = \delta(t - 1) - 3\delta(t - 4)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ <u>Solution</u> by Maple

Time used: 6.562 (sec). Leaf size: 51

 $\frac{dsolve([diff(y(t),t$2)+2*diff(y(t),t)+3*y(t)=Dirac(t-1)-3*Dirac(t-4),y(0)=0)}{dsolve([diff(y(t),t$2)+2*diff(y(t),t)+3*y(t)=Dirac(t-1)-3*Dirac(t-4),y(0)=0)}$

$$y(t) = -\frac{3\sqrt{2}\left(\operatorname{Heaviside}\left(t-4\right) \operatorname{e}^{4-t} \sin\left(\sqrt{2}\left(t-4\right)\right) - \frac{\operatorname{Heaviside}\left(t-1\right) \operatorname{e}^{-t+1} \sin\left(\sqrt{2}\left(t-1\right)\right)}{3}\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.371 (sec). Leaf size: 53

 $DSolve[\{y''[t]+2*y'[t]+3*y[t]==DiracDelta[t-1]-3*DiracDelta[t-4],\{y[0]==0,y'[0]==0\}\},y[t],t]$

$$y(t) \to \frac{e^{1-t} \left(\theta(t-1) \sin \left(\sqrt{2}(t-1)\right) - 3e^3 \theta(t-4) \sin \left(\sqrt{2}(t-4)\right)\right)}{\sqrt{2}}$$

21.1 problem 1

Internal problem ID [13235]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = \sin(4t) e^{-2t}$$

With initial conditions

$$[y(0) = 2, y'(0) = -2]$$

✓ Solution by Maple

Time used: 5.156 (sec). Leaf size: 37

$$y(t) = \frac{e^{-2t}(-7\sin(4t) + 4\cos(4t))}{130} + \frac{128(\cos(t) + \frac{\sin(t)}{8})e^{-t}}{65}$$

✓ Solution by Mathematica

Time used: 0.379 (sec). Leaf size: 41

DSolve[{y''[t]+2*y'[t]+2*y[t]==Exp[-2*t]*Sin[4*t],{y[0]==2,y'[0]==-2}},y[t],t,IncludeSingula

$$y(t) \to \frac{1}{130} e^{-2t} (32e^t \sin(t) - 7\sin(4t) + 256e^t \cos(t) + 4\cos(4t))$$

21.2 problem 2

Internal problem ID [13236]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' + 5y = \text{Heaviside}(-2 + t)\sin(-8 + 4t)$$

With initial conditions

$$[y(0) = -2, y'(0) = 0]$$

✓ Solution by Maple

Time used: 6.703 (sec). Leaf size: 89

$$dsolve([diff(y(t),t\$2)+diff(y(t),t)+5*y(t)=Heaviside(t-2)*sin(4*(t-2)),y(0)=-2, D(y)(0)=-2)$$

$$y(t) = \frac{4\cos\left(\frac{\sqrt{19}(t-2)}{2}\right) \text{Heaviside}(t-2) e^{1-\frac{t}{2}}}{137} \\ + \frac{92\sin\left(\frac{\sqrt{19}(t-2)}{2}\right) \text{Heaviside}(t-2)\sqrt{19} e^{1-\frac{t}{2}}}{2603} - 2e^{-\frac{t}{2}}\cos\left(\frac{\sqrt{19}t}{2}\right) \\ - \frac{2e^{-\frac{t}{2}}\sqrt{19}\sin\left(\frac{\sqrt{19}t}{2}\right)}{19} - \frac{4\left(\cos\left(4t-8\right) + \frac{11\sin(4t-8)}{4}\right) \text{Heaviside}(t-2)}{137}$$

Time used: 6.103 (sec). Leaf size: 163

$$y(t) \\ -\frac{2}{19}e^{-t/2}\left(19\cos\left(\frac{\sqrt{19}t}{2}\right) + \sqrt{19}\sin\left(\frac{\sqrt{19}t}{2}\right)\right) \\ + \begin{cases} e^{-t/2}\left(-76e^{t/2}\cos(8-4t) + 76e\cos\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 5206\cos\left(\frac{\sqrt{19}t}{2}\right) + 209e^{t/2}\sin(8-4t) + 92\sqrt{19}e\sin\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt{19}\sin\left(\frac{\sqrt{19}t}{2}\right) + 209e^{t/2}\sin(8-4t) + 92\sqrt{19}e\sin\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt{19}\sin\left(\frac{\sqrt{19}t}{2}\right) + 209e^{t/2}\sin\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt{19}\sin\left(\frac{\sqrt{19}t}{2}\right) + 209e^{t/2}\cos\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt{19}\sin\left(\frac{1}{2}\sqrt{19}(t-2)\right) + 296e^{t/2}\sin\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt{19}\sin\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt{19}\cos\left(\frac{1}{2}\sqrt{19}(t-2)\right) - 274\sqrt$$

21.3 problem 3

Internal problem ID [13237]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' + 8y = (1 - \text{Heaviside}(t - 4))\cos(t - 4)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 6.797 (sec). Leaf size: 128

$$dsolve([diff(y(t),t$2)+diff(y(t),t)+8*y(t)=(1-Heaviside(t-4))*cos(t-4),y(0)=0,\ D(y)(0)=0$$

$$y(t) = \frac{9 \operatorname{Heaviside}\left(t - 4\right) \left(\left(\sin\left(2\sqrt{31}\right)\sqrt{31} - \frac{217\cos\left(2\sqrt{31}\right)}{9}\right)\cos\left(\frac{\sqrt{31}\,t}{2}\right) - \frac{217\sin\left(\frac{\sqrt{31}\,t}{2}\right)\left(\frac{9\sqrt{31}\cos\left(2\sqrt{31}\right)}{217} + \sin\left(2\sqrt{31}\right)\right)}{9}\right)}{1550}$$

$$-\frac{7 e^{-\frac{t}{2}} \left(\cos\left(4\right) - \frac{\sin(4)}{7}\right) \cos\left(\frac{\sqrt{31}t}{2}\right)}{50} - \frac{9 \left(\cos\left(4\right) + \frac{13\sin(4)}{9}\right) \sqrt{31} e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{31}t}{2}\right)}{1550} - \frac{7 \left(\left(\cos\left(t\right) + \frac{\sin(t)}{7}\right) \cos\left(4\right) - \frac{\sin(4)(-7\sin(t) + \cos(t))}{7}\right) \left(-1 + \text{Heaviside}\left(t - 4\right)\right)}{50}$$

Time used: 4.688 (sec). Leaf size: 207

DSolve[{y''[t]+y'[t]+8*y[t]==(1-UnitStep[t-4])*Cos[t-4],{y[0]==0,y'[0]==0}},y[t],t,IncludeSi

$$y(t) \to \frac{e^{-t/2} \Big(\theta(4-t) \left(-31 e^{t/2} \sin(4-t) - 9 \sqrt{31} e^2 \sin\left(\frac{1}{2} \sqrt{31} (t-4) \right) + 217 e^{t/2} \cos(4-t) - 217 e^2 \cos\left(\frac{1}{2} \sqrt{31} (t-4) \right) + 217 e^{t/2} \cos(4-t) - 217 e^2 \cos\left(\frac{1}{2} \sqrt{31} (t-4) \right) \Big) + 217 e^{t/2} \cos(4-t) - 217 e^2 \cos\left(\frac{1}{2} \sqrt{31} (t-4) \right) \Big) \Big) + 217 e^{t/2} \cos(4-t) - 217 e^2 \cos\left(\frac{1}{2} \sqrt{31} (t-4) \right) \Big) \Big) \Big) \Big) \Big) \Big) \Big| e^{-t/2} \Big(\frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) + \frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) + \frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) \Big) \Big) \Big) \Big) \Big| e^{-t/2} \Big(\frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) + \frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) \Big) \Big) \Big) \Big| e^{-t/2} \Big(\frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) + \frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) \Big) \Big) \Big| e^{-t/2} \Big(\frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) + \frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) \Big) \Big) \Big| e^{-t/2} \Big(\frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) + \frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) \Big) \Big) \Big| e^{-t/2} \Big(\frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) + \frac{1}{2} \left(\frac{1}{2} \sqrt{31} (t-4) \right) \Big) \Big| e^{-t/2} \Big(\frac{1}{2} \sqrt{31} (t-4) \right) \Big| e^{-t/2} \Big(\frac{1}{2} \sqrt{31} (t-4) \right) \Big| e^{-t/2} \Big(\frac{1}{2} \sqrt{31} (t-4) \Big) \Big| e$$

21.4 problem 4

Internal problem ID [13238]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' + 3y = (1 - \text{Heaviside}(-2 + t)) e^{\frac{1}{5} - \frac{t}{10}} \sin(-2 + t)$$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 6.812 (sec). Leaf size: 178

$$dsolve([diff(y(t),t$2)+diff(y(t),t)+3*y(t)=(1-Heaviside(t-2))*exp(-(t-2)/10)*sin(t-2),y(0)=(1-Heaviside(t-2))*sin(t-2),y(0)=(1-Heaviside(t-2))*si$$

$$\begin{split} &y(t) \\ &= \frac{8000 \bigg(\bigg(\cos{(t)} - \frac{191 \sin{(t)}}{80} \bigg) \cos{(2)} + \frac{191 \sin{(2)} \bigg(\cos{(t)} + \frac{80 \sin{(t)}}{191} \bigg)}{80} \bigg) \operatorname{Heaviside}{(t-2)} \, e^{-\frac{t}{10} + \frac{1}{5}} \\ &+ \frac{100 \bigg(11 (80 \cos{(2)} + 191 \sin{(2)}) \cos{\left(\frac{\sqrt{11}\,t}{2}\right)} - 318 \bigg(\cos{(2)} - \frac{782 \sin{(2)}}{795} \bigg) \sin{\left(\frac{\sqrt{11}\,t}{2}\right)} \sqrt{11} \bigg) \, e^{\frac{1}{5} - \frac{t}{2}}} \\ &+ \bigg(-\frac{4000}{42881} + \frac{9550i}{42881} \bigg) \, e^{\left(-\frac{1}{10} - i\right)(t-2\right)} + \bigg(-\frac{4000}{42881} - \frac{9550i}{42881} \bigg) \, e^{\left(-\frac{1}{10} + i\right)(t-2\right)} \\ &+ \frac{200 \operatorname{Heaviside}{(t-2)} \left(\left(-159\sqrt{11} \sin{\left(\sqrt{11}\right)} - 440 \cos{\left(\sqrt{11}\right)} \right) \cos{\left(\frac{\sqrt{11}\,t}{2}\right)} + \left(159 \cos{\left(\sqrt{11}\right)} \sqrt{11} - 440 \cos{\left(\sqrt{11}\right)} \right) \cos{\left(\frac{\sqrt{11}\,t}{2}\right)} \\ &+ \frac{5 \, e^{-\frac{t}{2}} \sqrt{11} \sin{\left(\frac{\sqrt{11}\,t}{2}\right)}}{11} + e^{-\frac{t}{2}} \cos{\left(\frac{\sqrt{11}\,t}{2}\right)} \end{split}$$

Time used: 6.103 (sec). Leaf size: 243

$$y(t) = \frac{e^{-t/2} \left(-248000 e^{\frac{2t}{5} + \frac{1}{5}} \cos(2 - t) + 5 \left(\sqrt{31} \left(483881 - 8 \sqrt[5]{e} (3295 \cos(2) - 1782 \sin(2))\right) \sin\left(\frac{\sqrt{31}t}{2}\right) - 428420 e^{\frac{2t}{5} + \frac{1}{5}} \sin(2 - t)\right) + 31 \cos\left(\frac{\sqrt{31}t}{2}\right) + 31 \cos\left(\frac{\sqrt{31}t}{2}\right) - 428000 e^{\frac{2t}{5} + \frac{1}{5}} \sin(2 - t)\right) + 31 \cos\left(\frac{\sqrt{31}t}{2}\right) + 31$$

21.5 problem 5

Internal problem ID [13239]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 16y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 4.594 (sec). Leaf size: 15

 $\label{eq:decomposition} $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ $ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all) $$ $ dsolve([diff(y(t),t\$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1, D(y)(0)$

$$y(t) = \cos(4t) + \frac{\sin(4t)}{4}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 18

DSolve[{y''[t]+16*y[t]==0,{y[0]==1,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \rightarrow \frac{1}{4}\sin(4t) + \cos(4t)$$

21.6 problem 6

Internal problem ID [13240]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \sin\left(2t\right)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 4.359 (sec). Leaf size: 18

dsolve([diff(y(t),t\$2)+4*y(t)=sin(2*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

$$y(t) = \frac{\sin(2t)}{8} - \frac{t\cos(2t)}{4}$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 21 $\,$

DSolve[{y''[t]+4*y[t]==Sin[2*t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{8}(\sin(2t) - 2t\cos(2t))$$

21.7 problem 7

Internal problem ID [13241]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 2y' + y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 2]$$

✓ Solution by Maple

Time used: 4.343 (sec). Leaf size: 14

dsolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t)=0,y(0) = 1, D(y)(0) = 2],y(t), singsol=all)

$$y(t) = (3t+1)e^{-t}$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 16

DSolve[{y''[t]+2*y'[t]+y[t]==0,{y[0]==1,y'[0]==2}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-t}(3t+1)$$

21.8 problem 8

Internal problem ID [13242]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.

4th edition. Brooks/Cole. Boston, USA. 2012

Section: Chapter 6. Laplace transform. Section 6.6. page 624

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + 16y = t$$

With initial conditions

$$[y(0) = 1, y'(0) = 1]$$

✓ Solution by Maple

Time used: 4.344 (sec). Leaf size: 18

dsolve([diff(y(t),t\$2)+16*y(t)=t,y(0) = 1, D(y)(0) = 1],y(t), singsol=all)

$$y(t) = \cos(4t) + \frac{15\sin(4t)}{64} + \frac{t}{16}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 24

DSolve[{y''[t]+16*y[t]==t,{y[0]==1,y'[0]==1}},y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{1}{64}(4t + 15\sin(4t)) + \cos(4t)$$