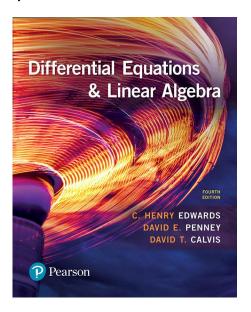
A Solution Manual For

Differential equations and linear algebra, 4th ed., Edwards and Penney



Nasser M. Abbasi

May 16, 2024

Contents

1	Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear Equations. Page 288	2
2	Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300	10
3	Section 7.2, Matrices and Linear systems. Page 384	39
4	Section 7.3, The eigenvalue method for linear systems. Page 395	42
5	Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437	88
6	Section 7.6, Multiple Eigenvalue Solutions. Page 451	93
7	Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615	132
8	Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624	158

1 Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear Equations. Page 288

1.1	problem problem 38	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
1.2	problem problem 39																								4
1.3	problem problem 40																								5
1.4	problem problem 41																								6
1.5	problem problem 42																								7
1.6	problem problem 43																								8
1.7	problem problem 44																								9

1.1 problem problem 38

Internal problem ID [278]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 38.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$x^2y'' + y'x - 9y = 0$$

Given that one solution of the ode is

$$y_1 = x^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $\label{local_decomposition} \\ \mbox{dsolve([x^2*diff(y(x),x$)+x*diff(y(x),x)-9*y(x)=0,x^3],singsol=all)} \\$

$$y(x) = \frac{c_2 x^6 + c_1}{x^3}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 18

DSolve $[x^2*y''[x]+x*y'[x]-9*y[x]==0,y[x],x$, IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_2 x^6 + c_1}{x^3}$$

1.2 problem problem 39

Internal problem ID [279]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 39.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$4y'' - 4y' + y = 0$$

Given that one solution of the ode is

$$y_1 = e^{\frac{x}{2}}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $\label{eq:decomposition} \\ \mbox{dsolve}([4*\mbox{diff}(y(x),x\$2)-4*\mbox{diff}(y(x),x)+y(x)=0, \exp(x/2)], \\ \mbox{singsol=all})$

$$y(x) = e^{\frac{x}{2}}(c_2x + c_1)$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 20

DSolve [4*y''[x]-4*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{x/2}(c_2x + c_1)$$

1.3 problem problem 40

Internal problem ID [280]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 40.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' - x(2+x)y' + (2+x)y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $\label{local-control} \\ \mbox{dsolve}([x^2*\mbox{diff}(y(x),x\$2)-x*(x+2)*\mbox{diff}(y(x),x)+(x+2)*y(x)=0,x],\\ \\ \mbox{singsol=all})$

$$y(x) = x(c_1 + e^x c_2)$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 16

 $DSolve[x^2*y''[x]-x*(x+2)*y'[x]+(x+2)*y[x]==0,y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \rightarrow x(c_2e^x + c_1)$$

1.4 problem problem 41

Internal problem ID [281]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 41.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x+1)y'' - (2+x)y' + y = 0$$

Given that one solution of the ode is

$$y_1 = e^x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $\label{eq:decomposition} \\ \mbox{dsolve}([(x+1)*\mbox{diff}(y(x),x\$2)-(x+2)*\mbox{diff}(y(x),x)+y(x)=0, \exp(x)], \\ \mbox{singsol=all}) \\$

$$y(x) = c_1(2+x) + e^x c_2$$

✓ Solution by Mathematica

Time used: 0.143 (sec). Leaf size: 29

 $DSolve[(x+1)*y''[x]-(x+2)*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{c_1 e^{x+1} - 2c_2(x+2)}{\sqrt{2e}}$$

1.5 problem problem 42

Internal problem ID [282]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 42.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(-x^2 + 1) y'' + 2y'x - 2y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve([(1-x^2)*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,x],singsol=all)$

$$y(x) = c_2 x^2 + c_1 x + c_2$$

✓ Solution by Mathematica

Time used: 0.08 (sec). Leaf size: 39

 $DSolve[(1-x^2)*y''[x]+2*x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{\sqrt{x^2 - 1}(c_1(x - 1)^2 + c_2x)}{\sqrt{1 - x^2}}$$

1.6 problem problem 43

Internal problem ID [283]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 43.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(-x^2+1)y'' - 2y'x + 2y = 0$$

Given that one solution of the ode is

$$y_1 = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $\label{local-control} $$ dsolve([(1-x^2)*diff(y(x),x$)-2*x*diff(y(x),x)+2*y(x)=0,x], singsol=all)$ $$$

$$y(x) = \frac{c_2 \ln(x-1) x}{2} - \frac{c_2 \ln(x+1) x}{2} + c_1 x + c_2$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 33

 $DSolve[(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x - \frac{1}{2}c_2(x\log(1-x) - x\log(x+1) + 2)$$

1.7 problem problem 44

Internal problem ID [284]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear

Equations. Page 288

Problem number: problem 44.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^{2}y'' + y'x + \left(x^{2} - \frac{1}{4}\right)y = 0$$

Given that one solution of the ode is

$$y_1 = \frac{\cos\left(x\right)}{\sqrt{x}}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

 $dsolve([x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,x^{(-1/2)}*cos(x)],singsol=all)$

$$y(x) = \frac{c_1 \sin(x) + c_2 \cos(x)}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 33

 $DSolve[(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 x - \frac{1}{2}c_2(x\log(1-x) - x\log(x+1) + 2)$$

2 Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300

2.1	problem problem 10	•															11
2.2	problem problem 11																12
2.3	problem problem 12																13
2.4	problem problem 13																14
2.5	problem problem 14																15
2.6	problem problem 15																16
2.7	problem problem 16																17
2.8	problem problem 17																18
2.9	problem problem 18																19
2.10	problem problem 19																20
2.11	problem problem 20																21
2.12	problem problem 24																22
2.13	problem problem 25																23
2.14	problem problem 26																24
2.15	problem problem 27																25
2.16	problem problem 28																26
2.17	problem problem 29																27
2.18	problem problem 30																28
2.19	problem problem 31																29
2.20	problem problem 32																30
2.21	problem problem 38																31
2.22	problem problem 48																32
2.23	problem problem 49																33
2.24	problem problem 54																34
2.25	problem problem 55																35
2.26	problem problem 56				•							•					36
2.27	problem problem 57														•		37
2.28	problem problem 58																38

2.1 problem problem 10

Internal problem ID [285]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 10.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$5y'''' + 3y''' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(5*diff(y(x),x\$4)+3*diff(y(x),x\$3)=0,y(x), singsol=all)

$$y(x) = c_1 + c_2 x + c_3 x^2 + c_4 e^{-\frac{3x}{5}}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 30

 $DSolve[5*y'''[x]+3*y'''[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{125}{27}c_1e^{-3x/5} + x(c_4x + c_3) + c_2$$

2.2 problem problem 11

Internal problem ID [286]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 11.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 8y''' + 16y'' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $\label{eq:diff} $$ $$ dsolve(diff(y(x),x$4)-8*diff(y(x),x$3)+16*diff(y(x),x$2)=0,y(x), singsol=all)$$

$$y(x) = (c_4x + c_3) e^{4x} + c_2x + c_1$$

✓ Solution by Mathematica

Time used: 0.081 (sec). Leaf size: 34

DSolve[y'''[x]-8*y'''[x]+16*y''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{32}e^{4x}(c_2(2x-1)+2c_1)+c_4x+c_3$$

2.3 problem problem 12

Internal problem ID [287]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 12.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 3y''' + 3y'' - y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$4)-3*diff(y(x),x\$3)+3*diff(y(x),x\$2)-diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (c_4x^2 + c_3x + c_2)e^x + c_1$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: $32\,$

 $DSolve[y''''[x]-3*y'''[x]+3*y''[x]-y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow e^{x}(c_3(x^2 - 2x + 2) + c_2(x - 1) + c_1) + c_4$$

2.4 problem problem 13

Internal problem ID [288]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 13.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$9y''' + 12y'' + 4y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve(9*diff(y(x),x\$3)+12*diff(y(x),x\$2)+4*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (c_3x + c_2)e^{-\frac{2x}{3}} + c_1$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 32

DSolve[9*y'''[x]+12*y''[x]+4*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_3 - \frac{3}{4}e^{-2x/3}(c_2(2x+3) + 2c_1)$$

2.5 problem problem 14

Internal problem ID [289]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 14.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 3y'' - 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$4)+3*diff(y(x),x\$2)-4*y(x)=0,y(x), singsol=all)

$$y(x) = e^x c_1 + c_2 e^{-x} + c_3 \sin(2x) + c_4 \cos(2x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 34

DSolve[y'''[x]+3*y''[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_3 e^{-x} + c_4 e^x + c_1 \cos(2x) + c_2 \sin(2x)$$

2.6 problem problem 15

Internal problem ID [290]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 15.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 16y'' + 16y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 59

dsolve(diff(y(x),x\$4)-16*diff(y(x),x\$2)+16*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-\sqrt{2}(1+\sqrt{3})x} + c_2 e^{\sqrt{2}(1+\sqrt{3})x} + c_3 e^{-\sqrt{2}(\sqrt{3}-1)x} + c_4 e^{\sqrt{2}(\sqrt{3}-1)x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 86

 $DSolve[y'''[x]-16*y''[x]+16*y[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{2\sqrt{2-\sqrt{3}}x} + c_2 e^{-2\sqrt{2-\sqrt{3}}x} + c_3 e^{2\sqrt{2+\sqrt{3}}x} + c_4 e^{-2\sqrt{2+\sqrt{3}}x}$$

2.7 problem problem 16

Internal problem ID [291]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 16.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 18y'' + 81y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

dsolve(diff(y(x),x\$4)+18*diff(y(x),x\$2)+81*y(x)=0,y(x), singsol=all)

$$y(x) = (c_4x + c_2)\cos(3x) + \sin(3x)(c_3x + c_1)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

 $DSolve[y''''[x]+18*y''[x]+81*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to (c_2x + c_1)\cos(3x) + (c_4x + c_3)\sin(3x)$$

2.8 problem problem 17

Internal problem ID [292]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 17.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$6y'''' + 11y'' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

dsolve(6*diff(y(x),x\$4)+11*diff(y(x),x\$2)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin\left(\frac{2\sqrt{3}x}{3}\right) + c_2 \cos\left(\frac{2\sqrt{3}x}{3}\right) + c_3 \sin\left(\frac{\sqrt{2}x}{2}\right) + c_4 \cos\left(\frac{\sqrt{2}x}{2}\right)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 94

 $DSolve[y''''[x]+11*y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_3 \cos\left(\sqrt{\frac{1}{2}\left(11 - \sqrt{105}\right)}x\right) + c_1 \cos\left(\sqrt{\frac{1}{2}\left(11 + \sqrt{105}\right)}x\right) + c_4 \sin\left(\sqrt{\frac{1}{2}\left(11 - \sqrt{105}\right)}x\right) + c_2 \sin\left(\sqrt{\frac{1}{2}\left(11 + \sqrt{105}\right)}x\right)$$

2.9 problem problem 18

Internal problem ID [293]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 18.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 16y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

dsolve(diff(y(x),x\$4)=16*y(x),y(x), singsol=all)

$$y(x) = e^{2x}c_1 + c_2e^{-2x} + c_3\sin(2x) + c_4\cos(2x)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 36

DSolve[y''''[x]==16*y[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 e^{2x} + c_3 e^{-2x} + c_2 \cos(2x) + c_4 \sin(2x)$$

2.10 problem problem 19

Internal problem ID [294]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 19.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' - y' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$3) + \text{diff}(y(x),x\$2) - \text{diff}(y(x),x) - y(x) = 0, \\ y(x), \text{ singsol=all}) \\$

$$y(x) = (c_3x + c_2)e^{-x} + e^x c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

 $DSolve[y'''[x]+y''[x]-y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-x} (c_2 x + c_3 e^{2x} + c_1)$$

2.11 problem problem 20

Internal problem ID [295]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 20.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 2y''' + 3y'' + 2y' + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

 $dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$3)+3*diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=0,\\ y(x), singsol=0,\\ y(x), y(x), singsol=0,\\ y(x), y(x), y(x), y(x),\\ y(x), y(x), y(x), y(x),\\ y(x), y(x), y(x), y(x),\\ y(x),\\$

$$y(x) = e^{-\frac{x}{2}} \left((c_4 x + c_2) \cos \left(\frac{\sqrt{3} x}{2} \right) + \sin \left(\frac{\sqrt{3} x}{2} \right) (c_3 x + c_1) \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 52

$$y(x) o e^{-x/2} \Biggl((c_4 x + c_3) \cos \left(\frac{\sqrt{3}x}{2} \right) + (c_2 x + c_1) \sin \left(\frac{\sqrt{3}x}{2} \right) \Biggr)$$

2.12 problem problem 24

Internal problem ID [296]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 24.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$2y''' - 3y'' - 2y' = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1, y''(0) = 3]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve([2*diff(y(x),x\$3)-3*diff(y(x),x\$2)-2*diff(y(x),x)=0,y(0) = 1, D(y)(0) = -1, (D@@2)(y)

$$y(x) = -\frac{7}{2} + 4e^{-\frac{x}{2}} + \frac{e^{2x}}{2}$$

✓ Solution by Mathematica

Time used: 0.351 (sec). Leaf size: 70

DSolve[{2*y'''[x]-3*y''[x]=-0,{y[0]==1,y'[0]==-1,y''[0]==-3}},y[x],x,IncludeSingularS

$$y(x) \to \frac{1}{66} e^{-\frac{1}{4} \left(\sqrt{33} - 3\right)x} \left(\left(99 - 13\sqrt{33}\right) e^{\frac{\sqrt{33}x}{2}} - 132 e^{\frac{1}{4} \left(\sqrt{33} - 3\right)x} + 99 + 13\sqrt{33} \right)$$

2.13 problem problem 25

Internal problem ID [297]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 25.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$3y''' + 2y'' = 0$$

With initial conditions

$$[y(0) = -1, y'(0) = 0, y''(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([3*diff(y(x),x\$3)+2*diff(y(x),x\$2)=0,y(0) = -1, D(y)(0) = 0, (D@@2)(y)(0) = 1],y(x),

$$y(x) = -\frac{13}{4} + \frac{3x}{2} + \frac{9e^{-\frac{2x}{3}}}{4}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 23

DSolve[{3*y'''[x]+2*y''[x]==0,{y[0]==1,y'[0]==-1,y''[0]==3}},y[x],x,IncludeSingularSolutions

$$y(x) \to \frac{1}{4} (14x + 27e^{-2x/3} - 23)$$

2.14 problem problem 26

Internal problem ID [298]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 26.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 10y'' + 25y' = 0$$

With initial conditions

$$[y(0) = 3, y'(0) = 4, y''(0) = 5]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

$$y(x) = \frac{24}{5} - \frac{9e^{-5x}}{5} - 5e^{-5x}x$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 26

DSolve[{y'''[x]+10*y''[x]+25*y'[x]==0,{y[0]==3,y'[0]==4,y''[0]==5}},y[x],x,IncludeSingularSo

$$y(x) \to \frac{1}{5}e^{-5x}(-25x + 24e^{5x} - 9)$$

2.15 problem problem 27

Internal problem ID [299]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 27.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 3y'' - 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)-4*y(x)=0,y(x), singsol=all)

$$y(x) = (c_1 e^{3x} + c_3 x + c_2) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: $26\,$

DSolve[y'''[x]+3*y''[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (c_2 x + c_3 e^{3x} + c_1)$$

2.16 problem problem 28

Internal problem ID [300]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 28.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$2y''' - y'' - 5y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 23

dsolve(2*diff(y(x),x\$3)-diff(y(x),x\$2)-5*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = (c_2 e^{3x} + c_1 e^{\frac{x}{2}} + c_3) e^{-x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 32

DSolve[2*y'''[x]-y''[x]-5*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} (c_1 e^{x/2} + c_3 e^{3x} + c_2)$$

2.17 problem problem 29

Internal problem ID [301]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 29.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 27y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve(diff(y(x),x\$3)+27*y(x)=0,y(x), singsol=all)

$$y(x) = \left(c_2 e^{\frac{9x}{2}} \sin\left(\frac{3\sqrt{3}x}{2}\right) + c_3 e^{\frac{9x}{2}} \cos\left(\frac{3\sqrt{3}x}{2}\right) + c_1\right) e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 56

DSolve[y'''[x]+27*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-3x} \left(c_3 e^{9x/2} \cos \left(\frac{3\sqrt{3}x}{2} \right) + c_2 e^{9x/2} \sin \left(\frac{3\sqrt{3}x}{2} \right) + c_1 \right)$$

2.18 problem problem 30

Internal problem ID [302]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 30.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y''' + y'' - 3y' - 6y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $\frac{dsolve(diff(y(x),x$4)-diff(y(x),x$3)+diff(y(x),x$2)-3*diff(y(x),x)-6*y(x)=0,y}{(x), singsol=al}$

$$y(x) = e^{2x}c_1 + c_2e^{-x} + c_3\sin(\sqrt{3}x) + c_4\cos(\sqrt{3}x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 44

 $DSolve[y''''[x]-y'''[x]+y''[x]-3*y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_3 e^{-x} + c_4 e^{2x} + c_1 \cos\left(\sqrt{3}x\right) + c_2 \sin\left(\sqrt{3}x\right)$$

2.19 problem problem 31

Internal problem ID [303]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 31.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 3y'' + 4y' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$3)+3*diff(y(x),x\$2)+4*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)

$$y(x) = (c_1 e^{3x} + \sin(2x) c_2 + \cos(2x) c_3) e^{-2x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 34

DSolve[y'''[x]+3*y''[x]+4*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} (c_3 e^{3x} + c_2 \cos(2x) + c_1 \sin(2x))$$

2.20 problem problem 32

Internal problem ID [304]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 32.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + y''' - 3y'' - 5y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x\$4)+diff(y(x),x\$3)-3*diff(y(x),x\$2)-5*diff(y(x),x)-2*y(x)=0, y(x), singsol=0.

$$y(x) = (c_4x^2 + c_3x + c_2)e^{-x} + e^{2x}c_1$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 32

$$y(x) \rightarrow e^{-x} (c_3 x^2 + c_2 x + c_4 e^{3x} + c_1)$$

2.21 problem problem 38

Internal problem ID [305]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 38.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 5y'' + 100y' - 500y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 10, y''(0) = 250]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

$$y(x) = 2e^{5x} - 2\cos(10x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 19

 $DSolve[\{y'''[x]-5*y''[x]+100*y'[x]-500*y[x]==0,\{y[0]==0,y'[0]==10,y''[0]==250\}\},y[x],x,Inclusting the context of the context$

$$y(x) \rightarrow 2(e^{5x} - \cos(10x))$$

2.22 problem problem 48

Internal problem ID [306]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 48.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0, y''(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

dsolve([diff(y(x),x\$3)=y(x),y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 0],y(x), singsol=all)

$$y(x) = \frac{e^x}{3} + \frac{2e^{-\frac{x}{2}}\cos\left(\frac{\sqrt{3}x}{2}\right)}{3}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 33

DSolve[{y'''[x]==y[x],{y[0]==1,y'[0]==0,y''[0]==0}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{1}{3} \left(e^x + 2e^{-x/2} \cos \left(rac{\sqrt{3}x}{2}
ight)
ight)$$

2.23 problem problem 49

Internal problem ID [307]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 49.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - y''' - y'' - y' - 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 0, y''(0) = 0, y'''(0) = 15]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

dsolve([diff(y(x),x\$4)=diff(y(x),x\$3)+diff(y(x),x\$2)+diff(y(x),x)+2*y(x),y(0)] = 0, D(y)(0) = 0

$$y(x) = e^{2x} - \frac{5e^{-x}}{2} - \frac{9\sin(x)}{2} + \frac{3\cos(x)}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 33

DSolve[{y'''[x]==y[x],{y[0]==1,y'[0]==0,y''[0]==0}},y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{1}{3} \left(e^x + 2e^{-x/2} \cos \left(rac{\sqrt{3}x}{2} \right) \right)$$

2.24 problem problem 54

Internal problem ID [308]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 54.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^3y''' + 6x^2y'' + 4y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(x^3*diff(y(x),x^3)+6*x^2*diff(y(x),x^2)+4*x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_1 + c_2 \ln(x) + \frac{c_3}{x^3}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 22

DSolve[x^3*y'''[x]+6*x^2*y''[x]+4*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{c_1}{3x^3} + c_2 \log(x) + c_3$$

2.25 problem problem 55

Internal problem ID [309]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 55.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^3y''' - x^2y'' + y'x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(x^3*diff(y(x),x$3)-x^2*diff(y(x),x$2)+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_1 + c_2 x^2 + c_3 x^2 \ln(x)$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 35

DSolve[x^3*y'''[x]-x^2*y''[x]+x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{4}(2c_1 - c_2)x^2 + \frac{1}{2}c_2x^2\log(x) + c_3$$

2.26 problem problem 56

Internal problem ID [310]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 56.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^3y''' + 3x^2y'' + y'x = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $dsolve(x^3*diff(y(x),x$3)+3*x^2*diff(y(x),x$2)+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_3 \ln(x)^2 + c_2 \ln(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 23

DSolve[x^3*y'''[x]+3*x^2*y''[x]+x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}c_2\log^2(x) + c_1\log(x) + c_3$$

2.27 problem problem 57

Internal problem ID [311]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 57.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x^3y''' - 3x^2y'' + y'x = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

 $dsolve(x^3*diff(y(x),x$3)-3*x^2*diff(y(x),x$2)+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = c_1 + c_2 x^{3+\sqrt{3}} + c_3 x^{3-\sqrt{3}}$$

✓ Solution by Mathematica

Time used: 0.136 (sec). Leaf size: 54

DSolve[x^3*y'''[x]-3*x^2*y''[x]+x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{c_2 x^{3+\sqrt{3}}}{3+\sqrt{3}} + \frac{c_1 x^{3-\sqrt{3}}}{3-\sqrt{3}} + c_3$$

2.28 problem problem 58

Internal problem ID [312]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations

with Constant Coefficients. Page 300 **Problem number**: problem 58.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _linear, _homogeneous]]

$$x^3y''' + 6x^2y'' + 7y'x + y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(x^3*diff(y(x),x$3)+6*x^2*diff(y(x),x$2)+7*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{c_3 \ln(x)^2 + c_2 \ln(x) + c_1}{x}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 24

$$y(x) \to \frac{c_3 \log^2(x) + c_2 \log(x) + c_1}{x}$$

3	Section 7.2, Matrices and Linear systems. Page	
	384	
3.1	problem problem 13)
3.2	problem problem 14	1

3.1 problem problem 13

Internal problem ID [313]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.2, Matrices and Linear systems. Page 384

Problem number: problem 13.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 6x_1(t)$$

$$x'_2(t) = -3x_1(t) - x_2(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 28

$$x_1(t) = c_2 e^{6t}$$

 $x_2(t) = -\frac{3c_2 e^{6t}}{7} + e^{-t}c_1$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 56

DSolve[{x1'[t]==4*x1[t]+2*x2[t],x2'[t]==-3*x1[t]-x2[t]},{x1[t],x2[t]},t,IncludeSingularSolut

$$x1(t) \to e^t (c_1(3e^t - 2) + 2c_2(e^t - 1))$$

 $x2(t) \to e^t (c_2(3 - 2e^t) - 3c_1(e^t - 1))$

3.2 problem problem 14

Internal problem ID [314]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.2, Matrices and Linear systems. Page 384

Problem number: problem 14.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = -3x_1(t) + 2x_2(t)$$

$$x_2'(t) = -3x_1(t) + 4x_2(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

dsolve([diff(x__1(t),t)=-3*x__1(t)+2*x__2(t),diff(x__2(t),t)=-3*x__1(t)+4*x__2(t)],singsol=a

$$x_1(t) = c_1 e^{3t} + c_2 e^{-2t}$$

 $x_2(t) = 3c_1 e^{3t} + \frac{c_2 e^{-2t}}{2}$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 73

DSolve[{x1'[t]==-3*x1[t]+2*x2[t],x2'[t]==-3*x1[t]+4*x2[t]},{x1[t],x2[t]},t,IncludeSingularSo

$$x1(t) \to \frac{1}{5}e^{-2t} \left(2c_2 \left(e^{5t} - 1 \right) - c_1 \left(e^{5t} - 6 \right) \right)$$

$$x2(t) \to \frac{1}{5}e^{-2t} \left(c_2 \left(6e^{5t} - 1 \right) - 3c_1 \left(e^{5t} - 1 \right) \right)$$

4 Section 7.3, The eigenvalue method for linear systems. Page 395

4.1	problem problem 1			 •	 •	•	 •	 •	 •		•	•	•	•	•	 	. 4	14
4.2	problem problem 2														•	 	. 4	1 5
4.3	$problem\ problem\ 3$														•	 	. 4	16
4.4	problem problem 4		 •		 			 •							•	 	. 4	47
4.5	$problem\ problem\ 5$														•	 	. 4	1 8
4.6	$problem\ problem\ 6$		 •		 			 •							•	 	. 4	1 9
4.7	problem problem 7														•	 	. 5	50
4.8	$problem\ problem\ 8$								 •			•	•		•	 	. !	51
4.9	$problem\ problem\ 9$								 •			•	•		•	 		52
4.10	problem problem 10) .													•	 		53
4.11	problem problem 11	1.					 •					•	•		•	 	. :	54
4.12	problem problem 12	2 .										•	•		•	 		55
4.13	problem problem 13	3 .										•	•		•	 		56
4.14	problem problem 14	1 .					 •								•	 		57
4.15	problem problem 15	5.										•	•		•	 		58
4.16	problem problem 16	3.										•	•		•	 		59
4.17	problem problem 17	7.										•	•		•	 	. 6	30
4.18	problem problem 18	3.					 •					•	•		•	 	. (61
4.19	problem problem 19) .	 •				 •	 •							•	 	. 6	32
	problem problem 20		 •				 •	 •							•	 	. 6	33
	problem problem 21						 •					•	•		•	 	. 6	64
4.22	problem problem 22	2 .										•	•		•	 	. 6	35
4.23	problem problem 23	3 .	 •				 •	 •							•	 	. 6	66
	problem problem 24		 •				 •	 •	 •			•	•		•	 		67
4.25	problem problem 25	5.					 •					•	•		•	 	. 6	38
	problem problem 26		 •				 •	 •	 •			•	•		•	 	. 6	39
4.27	problem problem 38	3.	 •			•	 •	 •				•			•	 	. 7	70
	problem problem 39		 •				 •	 •							•	 		71
4.29	problem problem 40) .	 •				 •	 •	 •			•	•		•	 	. 7	72
4.30	problem problem 41	1.	 •				 •	 •							•	 	. 7	73
4.31	problem problem 42	2 .	 •			•	 •	 •				•			•	 	. 7	74
	problem problem 43		 •				 •	 •	 •			•	•		•	 	. 7	75
	problem problem 44		 •				 •	 •				•			•	 	. 7	77
	problem problem 45		 •				 •		 •			•			•	 	. 7	78
	problem problem 46					•	 •		 •			•			•	 		30
4.36	problem problem 47	7															8	32

4.37	problem problem 48					•								•	•			84
4.38	problem problem 49																	86
4.39	problem problem 50																	87

problem problem 1 4.1

Internal problem ID [315]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 1.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = x_1(t) + 2x_2(t)$$

$$x_2'(t) = 2x_1(t) + x_2(t)$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $dsolve([diff(x_1(t),t)=x_1(t)+2*x_2(t),diff(x_2(t),t)=2*x_1(t)+x_2(t)],singsol=all)$

$$x_1(t) = c_1 e^{3t} + c_2 e^{-t}$$

$$x_2(t) = c_1 e^{3t} - c_2 e^{-t}$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 68

 $DSolve[{x1'[t]==x1[t]+2*x2[t],x2'[t]==2*x1[t]+x2[t]},{x1[t],x2[t]},t,IncludeSingularSolution}$

$$x1(t) \to \frac{1}{2}e^{-t}(c_1(e^{4t}+1) + c_2(e^{4t}-1))$$

$$x2(t) \to \frac{1}{2}e^{-t}(c_1(e^{4t}-1) + c_2(e^{4t}+1))$$

$$x2(t) \rightarrow \frac{1}{2}e^{-t}(c_1(e^{4t}-1)+c_2(e^{4t}+1))$$

4.2 problem problem 2

Internal problem ID [316]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 2.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 2x_1(t) + 3x_2(t)$$

$$x_2'(t) = 2x_1(t) + x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

$$x_1(t) = c_1 e^{4t} + c_2 e^{-t}$$

$$x_2(t) = \frac{2c_1 e^{4t}}{3} - c_2 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: $74\,$

DSolve[{x1'[t]==2*x1[t]+3*x2[t],x2'[t]==2*x1[t]+x2[t]},{x1[t],x2[t]},t,IncludeSingularSoluti

$$x1(t) \rightarrow \frac{1}{5}e^{-t}(c_1(3e^{5t}+2)+3c_2(e^{5t}-1))$$

$$x2(t) \rightarrow \frac{1}{5}e^{-t}(2c_1(e^{5t}-1)+c_2(2e^{5t}+3))$$

4.3 problem problem 3

Internal problem ID [317]

 $\bf Book:$ Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 3.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 3x_1(t) + 4x_2(t)$$

$$x_2'(t) = 3x_1(t) + 2x_2(t)$$

With initial conditions

$$[x_1(0) = 1, x_2(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

$$x_1(t) = -\frac{e^{-t}}{7} + \frac{8e^{6t}}{7}$$

$$x_2(t) = \frac{e^{-t}}{7} + \frac{6e^{6t}}{7}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 44

DSolve[{x1'[t]==3*x1[t]+4*x2[t],x2'[t]==3*x1[t]+2*x2[t]},{x1[0]==1,x2[0]==1},{x1[t],x2[t]},t

$$x1(t) \to \frac{1}{7}e^{-t}(8e^{7t} - 1)$$

$$x2(t) \to \frac{1}{7}e^{-t}(6e^{7t}+1)$$

problem problem 4 4.4

Internal problem ID [318]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 4.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = 4x_1(t) + x_2(t)$$

$$x_2'(t) = 6x_1(t) - x_2(t)$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

 $dsolve([diff(x_1(t),t)=4*x_1(t)+x_2(t),diff(x_2(t),t)=6*x_1(t)-x_2(t)],singsol=all)$

$$x_1(t) = c_1 e^{-2t} + c_2 e^{5t}$$

 $x_2(t) = -6c_1 e^{-2t} + c_2 e^{5t}$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 71

 $DSolve[{x1'[t]==4*x1[t]+x2[t],x2'[t]==6*x1[t]-x2[t]},{x1[t],x2[t]},t,IncludeSingularSolution}$

$$x1(t) \to \frac{1}{7}e^{-2t} \left(c_1 \left(6e^{7t} + 1 \right) + c_2 \left(e^{7t} - 1 \right) \right)$$
$$x2(t) \to \frac{1}{7}e^{-2t} \left(6c_1 \left(e^{7t} - 1 \right) + c_2 \left(e^{7t} + 6 \right) \right)$$

$$x2(t) \rightarrow \frac{1}{7}e^{-2t}(6c_1(e^{7t}-1)+c_2(e^{7t}+6))$$

4.5 problem problem 5

Internal problem ID [319]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 5.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 6x_1(t) - 7x_2(t)$$

$$x_2'(t) = x_1(t) - 2x_2(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $dsolve([diff(x_1(t),t)=6*x_1(t)-7*x_2(t),diff(x_2(t),t)=x_1(t)-2*x_2(t)],singsol=all)$

$$x_1(t) = e^{-t}c_1 + c_2 e^{5t}$$

$$x_2(t) = e^{-t}c_1 + \frac{c_2e^{5t}}{7}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 72

DSolve[{x1'[t]==6*x1[t]-7*x2[t],x2'[t]==x1[t]-2*x2[t]},{x1[t],x2[t]},t,IncludeSingularSoluti

$$x1(t) \to \frac{1}{6}e^{-t}(c_1(7e^{6t}-1)-7c_2(e^{6t}-1))$$

$$x2(t) \to \frac{1}{6}e^{-t}(c_1(e^{6t}-1)-c_2(e^{6t}-7))$$

4.6 problem problem 6

Internal problem ID [320]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 6.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 9x_1(t) + 5x_2(t)$$

$$x_2'(t) = -6x_1(t) - 2x_2(t)$$

With initial conditions

$$[x_1(0) = 1, x_2(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

 $dsolve([diff(x_1(t),t) = 9*x_1(t)+5*x_2(t), diff(x_2(t),t) = -6*x_1(t)-2*x_2(t), x_1(t)+5*x_2(t), diff(x_2(t),t) = -6*x_1(t)-2*x_2(t), diff(x_2(t),t) = -6*x_1(t)-2*x_2($

$$x_1(t) = 6 e^{4t} - 5 e^{3t}$$

 $x_2(t) = -6 e^{4t} + 6 e^{3t}$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 33

DSolve[{x1'[t]==9*x1[t]+5*x2[t],x2'[t]==-6*x1[t]-2*x2[t]},{x1[0]==1,x2[0]==0},{x1[t],x2[t]},

$$x1(t) \to e^{3t} (6e^t - 5)$$

$$x2(t) \to -6e^{3t} (e^t - 1)$$

4.7 problem problem 7

Internal problem ID [321]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 7.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -3x_1(t) + 4x_2(t)$$

$$x'_2(t) = 6x_1(t) - 5x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

 $dsolve([diff(x_1(t),t)=-3*x_1(t)+4*x_2(t),diff(x_2(t),t)=6*x_1(t)-5*x_2(t)],singsol=al(t)=0$

$$x_1(t) = c_1 e^{-9t} + c_2 e^t$$

 $x_2(t) = -\frac{3c_1 e^{-9t}}{2} + c_2 e^t$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 74

$$x1(t) \rightarrow \frac{1}{5}e^{-9t} (c_1(3e^{10t} + 2) + 2c_2(e^{10t} - 1))$$

$$x2(t) \rightarrow \frac{1}{5}e^{-9t} (3c_1(e^{10t} - 1) + c_2(2e^{10t} + 3))$$

4.8 problem problem 8

Internal problem ID [322]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 8.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = x_1(t) - 5x_2(t)$$

$$x_2'(t) = x_1(t) - x_2(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 50

 $dsolve([diff(x_1(t),t)=x_1(t)-5*x_2(t),diff(x_2(t),t)=x_1(t)-x_2(t)],singsol=all)$

$$x_1(t) = c_1 \sin(2t) + c_2 \cos(2t)$$

$$x_2(t) = -\frac{2c_1 \cos(2t)}{5} + \frac{2c_2 \sin(2t)}{5} + \frac{c_1 \sin(2t)}{5} + \frac{c_2 \cos(2t)}{5}$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.004 (sec). Leaf size: 48}}$

DSolve[{x1'[t]==x1[t]-5*x2[t],x2'[t]==x1[t]-x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions

$$x1(t) \rightarrow c_1 \cos(2t) + (c_1 - 5c_2) \sin(t) \cos(t)$$

 $x2(t) \rightarrow c_2 \cos(2t) + (c_1 - c_2) \sin(t) \cos(t)$

4.9 problem problem 9

Internal problem ID [323]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 9.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 2x_1(t) - 5x_2(t)$$

$$x_2'(t) = 4x_1(t) - 2x_2(t)$$

With initial conditions

$$[x_1(0) = 2, x_2(0) = 3]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 34

 $dsolve([diff(x_1(t),t) = 2*x_1(t)-5*x_2(t), diff(x_2(t),t) = 4*x_1(t)-2*x_2(t), x_1(t)$

$$x_1(t) = -\frac{11\sin\left(4t\right)}{4} + 2\cos\left(4t\right)$$

$$x_2(t) = 3\cos(4t) + \frac{\sin(4t)}{2}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 34

DSolve[{x1'[t]==x1[t]-5*x2[t],x2'[t]==x1[t]-x2[t]},{x1[0]==2,x2[0]==3},{x1[t],x2[t]},t,Inclu

$$x1(t) \rightarrow 2\cos(2t) - 13\sin(t)\cos(t)$$

$$x2(t) \rightarrow 3\cos(2t) - \sin(t)\cos(t)$$

4.10 problem problem 10

Internal problem ID [324]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 10.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -3x_1(t) - 2x_2(t)$$

$$x'_2(t) = 9x_1(t) + 3x_2(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 50

 $dsolve([diff(x_{1}(t),t)=-3*x_{1}(t)-2*x_{2}(t),diff(x_{2}(t),t)=9*x_{1}(t)+3*x_{2}(t)],singsol=al(t)+3*x_{2}(t)=0$

$$x_1(t) = c_1 \sin(3t) + c_2 \cos(3t)$$

$$x_2(t) = -\frac{3c_1 \cos(3t)}{2} + \frac{3c_2 \sin(3t)}{2} - \frac{3c_1 \sin(3t)}{2} - \frac{3c_2 \cos(3t)}{2}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 53

DSolve[{x1'[t]==-3*x1[t]-2*x2[t],x2'[t]==9*x1[t]+3*x2[t]},{x1[t],x2[t]},t,IncludeSingularSol

$$x1(t) \rightarrow c_1 \cos(3t) - \frac{1}{3}(3c_1 + 2c_2)\sin(3t)$$

 $x2(t) \rightarrow c_2 \cos(3t) + (3c_1 + c_2)\sin(3t)$

4.11 problem problem 11

Internal problem ID [325]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 11.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = x_1(t) - 2x_2(t)$$

$$x_2'(t) = 2x_1(t) + x_2(t)$$

With initial conditions

$$[x_1(0) = 0, x_2(0) = 4]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

$$x_1(t) = -4 e^t \sin{(2t)}$$

$$x_2(t) = 4 e^t \cos(2t)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 26

 $DSolve[{x1'[t] == x1[t] - 2*x2[t], x2'[t] == 2*x1[t] + x2[t]}, {x1[0] == 0, x2[0] == 4}, {x1[t], x2[t]}, t, Income for the content of the c$

$$x1(t) \to -4e^t \sin(2t)$$

$$x2(t) \to 4e^t \cos(2t)$$

4.12 problem problem 12

Internal problem ID [326]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 12.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = x_1(t) - 5x_2(t)$$

$$x_2'(t) = x_1(t) + 3x_2(t)$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 59

$$x_1(t) = e^{2t} (c_1 \sin(2t) + c_2 \cos(2t))$$

$$x_2(t) = -\frac{e^{2t} (2c_1 \cos(2t) + c_2 \cos(2t) + c_1 \sin(2t) - 2c_2 \sin(2t))}{5}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 67

DSolve[{x1'[t]==x1[t]-5*x2[t],x2'[t]==x1[t]+3*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolution

$$x1(t) \rightarrow \frac{1}{2}e^{2t}(2c_1\cos(2t) - (c_1 + 5c_2)\sin(2t))$$

$$x2(t) \rightarrow \frac{1}{2}e^{2t}(2c_2\cos(2t) + (c_1 + c_2)\sin(2t))$$

4.13 problem problem 13

Internal problem ID [327]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 13.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 5x_1(t) - 9x_2(t)$$

 $x_2'(t) = 2x_1(t) - x_2(t)$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 58

$$x_1(t) = e^{2t}(c_1 \sin(3t) + c_2 \cos(3t))$$

$$x_2(t) = \frac{e^{2t}(c_1 \sin(3t) + c_2 \sin(3t) - c_1 \cos(3t) + c_2 \cos(3t))}{3}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: $66\,$

DSolve[{x1'[t]==5*x1[t]-9*x2[t],x2'[t]==2*x1[t]-x2[t]},{x1[t],x2[t]},t,IncludeSingularSoluti

$$x1(t) \to e^{2t}(c_1 \cos(3t) + (c_1 - 3c_2)\sin(3t))$$

$$x2(t) \to \frac{1}{3}e^{2t}(3c_2 \cos(3t) + (2c_1 - 3c_2)\sin(3t))$$

4.14 problem problem 14

Internal problem ID [328]

 $\bf Book:$ Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 14.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 3x_1(t) - 4x_2(t)$$

$$x_2'(t) = 4x_1(t) + 3x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 46

$$x_1(t) = e^{3t}(c_1 \sin(4t) + c_2 \cos(4t))$$

$$x_2(t) = -e^{3t}(c_1 \cos(4t) - c_2 \sin(4t))$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 51

$$x1(t) \to e^{3t}(c_1 \cos(4t) - c_2 \sin(4t))$$

$$x2(t) \to e^{3t}(c_2\cos(4t) + c_1\sin(4t))$$

4.15 problem problem 15

Internal problem ID [329]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 15.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 7x_1(t) - 5x_2(t)$$

$$x_2'(t) = 4x_1(t) + 3x_2(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 61

 $dsolve([diff(x_1(t),t)=7*x_1(t)-5*x_2(t),diff(x_2(t),t)=4*x_1(t)+3*x_2(t)],singsol=all(t)=2*x_1(t)+3*x_2(t)=2*x_1(t)+3*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)+3*x_1(t)=2*x_1(t)=2*x_1(t)+3*x_1(t)=2$

$$x_1(t) = e^{5t} (c_1 \sin(4t) + c_2 \cos(4t))$$

$$x_2(t) = -\frac{2 e^{5t} (2c_1 \cos(4t) - c_2 \cos(4t) - c_1 \sin(4t) - 2c_2 \sin(4t))}{5}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 72

DSolve[{x1'[t]==7*x1[t]-5*x2[t],x2'[t]==4*x1[t]+3*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolu

$$x1(t) \rightarrow \frac{1}{4}e^{5t}(4c_1\cos(4t) + (2c_1 - 5c_2)\sin(4t))$$

$$x2(t) \rightarrow \frac{1}{2}e^{5t}(2c_2\cos(4t) + (2c_1 - c_2)\sin(4t))$$

4.16 problem problem 16

Internal problem ID [330]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 16.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = -50x_1(t) + 20x_2(t)$$

$$x_2'(t) = 100x_1(t) - 60x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

 $dsolve([diff(x_1(t),t)=-50*x_1(t)+20*x_2(t),diff(x_2(t),t)=100*x_1(t)-60*x_2(t)],sings(t)=0$

$$x_1(t) = c_1 e^{-100t} + c_2 e^{-10t}$$

 $x_2(t) = -\frac{5c_1 e^{-100t}}{2} + 2c_2 e^{-10t}$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 74

DSolve[{x1'[t]==-50*x1[t]+20*x2[t],x2'[t]==100*x1[t]-60*x2[t]},{x1[t],x2[t]},t,IncludeSingul

$$x1(t) \to \frac{1}{9}e^{-100t} \left(c_1 \left(5e^{90t} + 4 \right) + 2c_2 \left(e^{90t} - 1 \right) \right)$$

$$x2(t) \to \frac{1}{9}e^{-100t} \left(10c_1 \left(e^{90t} - 1 \right) + c_2 \left(4e^{90t} + 5 \right) \right)$$

4.17 problem problem 17

Internal problem ID [331]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 17.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 4x_1(t) + x_2(t) + 4x_3(t)$$

$$x_2'(t) = x_1(t) + 7x_2(t) + x_3(t)$$

$$x_3'(t) = 4x_1(t) + x_2(t) + 4x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 55

$$x_1(t) = c_1 + c_2 e^{6t} + c_3 e^{9t}$$

$$x_2(t) = -2c_2 e^{6t} + c_3 e^{9t}$$

$$x_3(t) = c_2 e^{6t} + c_3 e^{9t} - c_1$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 158

 $DSolve[{x1'[t] == 4*x1[t] + x2[t] + 4*x3[t], x2'[t] == x1[t] + 7*x2[t] + x3[t], x3'[t] == 4*x1[t] + x2[t] + 4*x3[t], x2'[t] == 4*x1[t] + 2*x1[t] + 2*x1[t]$

$$x1(t) \rightarrow \frac{1}{6} \left(c_1 \left(e^{6t} + 2e^{9t} + 3 \right) + \left(e^{3t} - 1 \right) \left(3c_3 e^{3t} + 2(c_2 + c_3)e^{6t} + 3c_3 \right) \right)$$

$$x2(t) \rightarrow \frac{1}{3}e^{6t}(c_1(e^{3t}-1)+c_2(e^{3t}+2)+c_3(e^{3t}-1))$$

$$x3(t) \rightarrow \frac{1}{6} (c_1(e^{6t} + 2e^{9t} - 3) + (c_3 - 2c_2)e^{6t} + 2(c_2 + c_3)e^{9t} + 3c_3)$$

4.18 problem problem 18

Internal problem ID [332]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 18.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = x_1(t) + 2x_2(t) + 2x_3(t)$$

$$x_2'(t) = 2x_1(t) + 7x_2(t) + x_3(t)$$

$$x_3'(t) = 2x_1(t) + x_2(t) + 7x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 54

$$x_1(t) = c_2 + c_3 e^{9t}$$

$$x_2(t) = 2c_3e^{9t} + e^{6t}c_1 - \frac{c_2}{4}$$

$$x_3(t) = 2c_3e^{9t} - e^{6t}c_1 - \frac{c_2}{4}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 148

DSolve[{x1'[t]==x1[t]+2*x2[t]+2*x3[t],x2'[t]==2*x1[t]+7*x2[t]+x3[t],x3'[t]==2*x1[t]+x2[t]+7*

$$x1(t) \to \frac{1}{9} (c_1(e^{9t} + 8) + 2(c_2 + c_3)(e^{9t} - 1))$$

$$x2(t) \to \frac{1}{18} \left(4c_1 \left(e^{9t} - 1 \right) + c_2 \left(9e^{6t} + 8e^{9t} + 1 \right) + c_3 \left(-9e^{6t} + 8e^{9t} + 1 \right) \right)$$

$$x3(t) \rightarrow \frac{1}{18} (4c_1(e^{9t} - 1) + c_2(-9e^{6t} + 8e^{9t} + 1) + c_3(9e^{6t} + 8e^{9t} + 1))$$

4.19 problem problem 19

Internal problem ID [333]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 19.

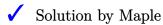
ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 4x_1(t) + x_2(t) + x_3(t)$$

$$x_2'(t) = x_1(t) + 4x_2(t) + x_3(t)$$

$$x_3'(t) = x_1(t) + x_2(t) + 4x_3(t)$$



Time used: 0.031 (sec). Leaf size: 64

$$x_1(t) = c_2 e^{3t} + c_3 e^{6t}$$

$$x_2(t) = c_2 e^{3t} + c_3 e^{6t} + c_1 e^{3t}$$

$$x_3(t) = -2c_2e^{3t} + c_3e^{6t} - c_1e^{3t}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 124

DSolve[{x1'[t]==4*x1[t]+1*x2[t]+1*x3[t],x2'[t]==1*x1[t]+4*x2[t]+1*x3[t],x3'[t]==1*x1[t]+1*x2

$$x1(t) \rightarrow \frac{1}{3}e^{3t}(c_1(e^{3t}+2)+(c_2+c_3)(e^{3t}-1))$$

$$x2(t) \rightarrow \frac{1}{3}e^{3t}(c_1(e^{3t}-1)+c_2(e^{3t}+2)+c_3(e^{3t}-1))$$

$$x3(t) \rightarrow \frac{1}{3}e^{3t}(c_1(e^{3t}-1)+c_2(e^{3t}-1)+c_3(e^{3t}+2))$$

4.20 problem problem 20

Internal problem ID [334]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 20.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 5x_1(t) + x_2(t) + 3x_3(t)$$

$$x_2'(t) = x_1(t) + 7x_2(t) + x_3(t)$$

$$x_3'(t) = 3x_1(t) + x_2(t) + 5x_3(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 64

$$x_1(t) = e^{6t}c_1 + c_2e^{9t} + c_3e^{2t}$$

$$x_2(t) = -2e^{6t}c_1 + c_2e^{9t}$$

$$x_3(t) = e^{6t}c_1 + c_2e^{9t} - c_3e^{2t}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 163

 $DSolve[{x1'[t] == 5*x1[t] + 1*x2[t] + 3*x3[t], x2'[t] == 1*x1[t] + 7*x2[t] + 1*x3[t], x3'[t] == 3*x1[t] + 1*x2[t] + 1*x2[t]$

$$x1(t) \rightarrow \frac{1}{6}e^{2t}(c_1(e^{4t} + 2e^{7t} + 3) + (c_3 - 2c_2)e^{4t} + 2(c_2 + c_3)e^{7t} - 3c_3)$$

$$x2(t) \rightarrow \frac{1}{3}e^{6t}(c_1(e^{3t}-1)+c_2(e^{3t}+2)+c_3(e^{3t}-1))$$

$$x3(t) \rightarrow \frac{1}{6}e^{2t}(c_1(e^{4t} + 2e^{7t} - 3) + (c_3 - 2c_2)e^{4t} + 2(c_2 + c_3)e^{7t} + 3c_3)$$

4.21 problem problem 21

Internal problem ID [335]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 21.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 5x_1(t) - 6x_3(t)$$

$$x'_2(t) = 2x_1(t) - x_2(t) - 2x_3(t)$$

$$x'_3(t) = 4x_1(t) - 2x_2(t) - 4x_3(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 54

$$x_1(t) = c_1 + c_2 e^{-t} + c_3 e^{t}$$

$$x_2(t) = \frac{c_2 e^{-t}}{2} + \frac{c_3 e^{t}}{3} + \frac{c_1}{3}$$

$$x_3(t) = c_2 e^{-t} + \frac{2c_3 e^{t}}{3} + \frac{5c_1}{6}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 139

 $DSolve[{x1'[t] == 5*x1[t] + 0*x2[t] - 6*x3[t], x2'[t] == 2*x1[t] - 1*x2[t] - 2*x3[t], x3'[t] == 4*x1[t] - 2*x2[t] - 2*x3[t] -$

$$x1(t) \to e^{-t} \left(c_1 \left(3e^{2t} - 2 \right) + 6\left(e^t - 1 \right) \left(c_2 \left(e^t - 1 \right) - c_3 e^t \right) \right) x2(t) \to e^{-t} \left(c_1 \left(e^{2t} - 1 \right) + c_2 \left(-4e^t + 2e^{2t} + 3 \right) - 2c_3 e^t \left(e^t - 1 \right) \right) x3(t) \to -2\left(c_1 - 3c_2 \right) e^{-t} + 2\left(c_1 + 2c_2 - 2c_3 \right) e^t + 5\left(c_3 - 2c_2 \right)$$

4.22 problem problem 22

Internal problem ID [336]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 22.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 3x_1(t) + 2x_2(t) + 2x_3(t)$$

$$x'_2(t) = -5x_1(t) - 4x_2(t) - 2x_3(t)$$

$$x'_3(t) = 5x_1(t) + 5x_2(t) + 3x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 55

dsolve([diff(x_1(t),t)=3*x_1(t)+2*x_2(t)+2*x_3(t),diff(x_2(t),t)=-5*x_1(t)-4*x_2(t)-2

$$x_1(t) = c_2 e^{3t} + c_3 e^t$$

$$x_2(t) = -c_2 e^{3t} - c_3 e^t + c_1 e^{-2t}$$

$$x_3(t) = c_2 e^{3t} - c_1 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 123

DSolve[{x1'[t]==3*x1[t]+2*x2[t]+2*x3[t],x2'[t]==-5*x1[t]-4*x2[t]-2*x3[t],x3'[t]==5*x1[t]+5*x

$$\begin{aligned} & \text{x1}(t) \to e^t \big((c_1 + c_2 + c_3) e^{2t} - c_2 - c_3 \big) \\ & \text{x2}(t) \to e^{-2t} \big(- \big(c_1 \big(e^{5t} - 1 \big) \big) + c_2 \big(e^{3t} - e^{5t} + 1 \big) - c_3 e^{3t} \big(e^{2t} - 1 \big) \big) \\ & \text{x3}(t) \to e^{-2t} \big(c_1 \big(e^{5t} - 1 \big) + c_2 \big(e^{5t} - 1 \big) + c_3 e^{5t} \big) \end{aligned}$$

4.23 problem problem 23

Internal problem ID [337]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 23.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 3x_1(t) + x_2(t) + x_3(t)$$

$$x'_2(t) = -5x_1(t) - 3x_2(t) - x_3(t)$$

$$x'_3(t) = 5x_1(t) + 5x_2(t) + 3x_3(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 59

$$x_1(t) = c_2 e^{3t} + c_3 e^{2t}$$

$$x_2(t) = -c_2 e^{3t} - c_3 e^{2t} + c_1 e^{-2t}$$

$$x_3(t) = c_2 e^{3t} - c_1 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 121

DSolve[{x1'[t]==3*x1[t]+1*x2[t]+1*x3[t],x2'[t]==-5*x1[t]-3*x2[t]-1*x3[t],x3'[t]==5*x1[t]+5*x

$$\begin{aligned} & \text{x1}(t) \to e^{2t} \big((c_1 + c_2 + c_3) e^t - c_2 - c_3 \big) \\ & \text{x2}(t) \to e^{-2t} \big(- \big(c_1 \big(e^{5t} - 1 \big) \big) + c_2 \big(e^{4t} - e^{5t} + 1 \big) - c_3 e^{4t} \big(e^t - 1 \big) \big) \\ & \text{x3}(t) \to e^{-2t} \big(c_1 \big(e^{5t} - 1 \big) + c_2 \big(e^{5t} - 1 \big) + c_3 e^{5t} \big) \end{aligned}$$

4.24 problem problem 24

Internal problem ID [338]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 24.

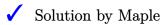
ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 2x_1(t) + x_2(t) - x_3(t)$$

$$x_2'(t) = -4x_1(t) - 3x_2(t) - x_3(t)$$

 $x_3'(t) = 4x_1(t) + 4x_2(t) + 2x_3(t)$



Time used: 0.11 (sec). Leaf size: 87

dsolve([diff(x_1(t),t)=2*x_1(t)+1*x_2(t)-1*x_3(t),diff(x_2(t),t)=-4*x_1(t)-3*x_2(t)-1

$$x_1(t) = c_1 e^t + c_2 \sin(2t) + c_3 \cos(2t)$$

$$x_2(t) = -c_1 e^t - c_2 \sin(2t) - c_3 \cos(2t) + c_2 \cos(2t) - c_3 \sin(2t)$$

$$x_3(t) = -c_2 \cos(2t) + c_3 \sin(2t) + c_2 \sin(2t) + c_3 \cos(2t)$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 103

DSolve[{x1'[t]==2*x1[t]+1*x2[t]-1*x3[t],x2'[t]==-4*x1[t]-3*x2[t]-1*x3[t],x3'[t]==4*x1[t]+4*x

$$x1(t) \rightarrow (c_2 + c_3) (-e^t) + (c_1 + c_2 + c_3) \cos(2t) + (c_1 + c_2) \sin(2t)$$

$$x2(t) \rightarrow (c_2 + c_3)e^t - c_3\cos(2t) - (2c_1 + 2c_2 + c_3)\sin(2t)$$

$$x3(t) \rightarrow c_3 \cos(2t) + (2c_1 + 2c_2 + c_3)\sin(2t)$$

4.25 problem problem 25

Internal problem ID [339]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 25.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 5x_1(t) + 5x_2(t) + 2x_3(t)$$

$$x'_2(t) = -6x_1(t) - 6x_2(t) - 5x_3(t)$$

$x_3'(t) = 6x_1(t) + 6x_2(t) + 5x_3(t)$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 111

$$x_1(t) = c_1 + c_2 e^{2t} \sin(3t) + c_3 e^{2t} \cos(3t)$$

$$x_2(t) = -c_2 e^{2t} \sin(3t) + c_2 e^{2t} \cos(3t) - c_3 e^{2t} \cos(3t) - c_3 e^{2t} \sin(3t) - c_1$$

$$x_3(t) = e^{2t} (c_2 \sin(3t) + \sin(3t) c_3 - c_2 \cos(3t) + \cos(3t) c_3)$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 122

DSolve[{x1'[t]==5*x1[t]+5*x2[t]+2*x3[t],x2'[t]==-6*x1[t]-6*x2[t]-5*x3[t],x3'[t]==6*x1[t]+6*x

$$x1(t) \rightarrow (c_1 + c_2 + c_3)e^{2t}\cos(3t) + (c_1 + c_2)e^{2t}\sin(3t) - c_2 - c_3$$

 $x2(t) \rightarrow -c_3e^{2t}\cos(3t) - (2c_1 + 2c_2 + c_3)e^{2t}\sin(3t) + c_2 + c_3$

$$x3(t) \rightarrow e^{2t}(c_3\cos(3t) + (2c_1 + 2c_2 + c_3)\sin(3t))$$

4.26 problem problem 26

Internal problem ID [340]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 26.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 3x_1(t) + x_3(t)$$

$$x'_2(t) = 9x_1(t) - x_2(t) + 2x_3(t)$$

$$x'_3(t) = -9x_1(t) + 4x_2(t) - x_3(t)$$

With initial conditions

$$[x_1(0) = 0, x_2(0) = 0, x_3(0) = 17]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 64

$$x_1(t) = 4 e^{3t} + e^{-t} \sin(t) - 4 e^{-t} \cos(t)$$

$$x_2(t) = 9 e^{3t} - 9 e^{-t} \cos(t) - 2 e^{-t} \sin(t)$$

$$x_3(t) = 17 e^{-t} \cos(t)$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 62

$$x1(t) \to e^{-t} (4e^{4t} + \sin(t) - 4\cos(t))$$

 $x2(t) \to e^{-t} (9e^{4t} - 2\sin(t) - 9\cos(t))$
 $x3(t) \to 17e^{-t}\cos(t)$

4.27 problem problem 38

Internal problem ID [341]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 38.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = x_1(t)$$

$$x'_2(t) = 2x_1(t) + 2x_2(t)$$

$$x'_3(t) = 3x_2(t) + 3x_3(t)$$

$$x'_4(t) = 4x_3(t) + 4x_4(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 75

$$x_1(t) = c_4 e^t$$

$$x_2(t) = -2c_4 e^t + c_3 e^{2t}$$

$$x_3(t) = c_2 e^{3t} - 3c_3 e^{2t} + 3c_4 e^t$$

$$x_4(t) = c_1 e^{4t} - 4c_2 e^{3t} + 6c_3 e^{2t} - 4c_4 e^t$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 128

DSolve[{x1'[t]==1*x1[t]+0*x2[t]+0*x3[t]+0*x4[t],x2'[t]==2*x1[t]+2*x2[t]+0*x3[t]+0*x4[t],x3'[

$$\begin{aligned} & \text{x1}(t) \to c_1 e^t \\ & \text{x2}(t) \to e^t \big(2c_1 \big(e^t - 1 \big) + c_2 e^t \big) \\ & \text{x3}(t) \to e^t \Big(3c_1 \big(e^t - 1 \big)^2 + e^t \big(3c_2 \big(e^t - 1 \big) + c_3 e^t \big) \Big) \\ & \text{x4}(t) \to e^t \Big(4c_1 \big(e^t - 1 \big)^3 + e^t \Big(6c_2 \big(e^t - 1 \big)^2 + e^t \big(4c_3 \big(e^t - 1 \big) + c_4 e^t \big) \Big) \Big) \end{aligned}$$

4.28 problem problem 39

Internal problem ID [342]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 39.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -2x_1(t) + 9x_4(t)$$

$$x'_2(t) = 4x_1(t) + 2x_2(t) - 10x_4(t)$$

$$x'_3(t) = -x_3(t) + 8x_4(t)$$

$$x'_4(t) = x_4(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 61

$$x_1(t) = 3c_4 e^t + c_2 e^{-2t}$$

$$x_2(t) = c_1 e^{2t} - 2c_4 e^t - c_2 e^{-2t}$$

$$x_3(t) = 4c_4 e^t + c_3 e^{-t}$$

$$x_4(t) = c_4 e^t$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 103

$$x1(t) \to e^{-2t} (3c_4(e^{3t} - 1) + c_1)$$

$$x2(t) \to e^{-2t} (c_1(e^{4t} - 1) + (c_2 - c_4)e^{4t} - 2c_4e^{3t} + 3c_4)$$

$$x3(t) \to e^{-t} (4c_4(e^{2t} - 1) + c_3)$$

$$x4(t) \to c_4e^t$$

4.29 problem problem 40

Internal problem ID [343]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 40.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 2x_1(t)$$

$$x'_2(t) = -21x_1(t) - 5x_2(t) - 27x_3(t) - 9x_4(t)$$

$$x'_3(t) = 5x_3(t)$$

$$x'_4(t) = -21x_3(t) - 2x_4(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 61

$$x_1(t) = c_4 e^{2t}$$

$$x_2(t) = -3c_4 e^{2t} - 3c_2 e^{-2t} + c_1 e^{-5t}$$

$$x_3(t) = c_3 e^{5t}$$

$$x_4(t) = -3c_3 e^{5t} + c_2 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: $86\,$

$$\begin{array}{l} x1(t) \to c_1 e^{2t} \\ x2(t) \to e^{-5t} \left(-3c_1 \left(e^{7t} - 1 \right) - 3(3c_3 + c_4) \left(e^{3t} - 1 \right) + c_2 \right) \\ x3(t) \to c_3 e^{5t} \\ x4(t) \to e^{-2t} \left(c_4 - 3c_3 \left(e^{7t} - 1 \right) \right) \end{array}$$

4.30 problem problem 41

Internal problem ID [344]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 41.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 4x_1(t) + x_2(t) + x_3(t) + 7x_4(t)$$

$$x'_2(t) = x_1(t) + 4x_2(t) + 10x_3(t) + x_4(t)$$

$$x'_1(t) = x_1(t) + 10x_1(t) + 4x_1(t) + x_2(t)$$

$$x_3'(t) = x_1(t) + 10x_2(t) + 4x_3(t) + x_4(t)$$

$$x_4'(t) = 7x_1(t) + x_2(t) + x_3(t) + 4x_4(t)$$

With initial conditions

$$[x_1(0) = 3, x_2(0) = 1, x_3(0) = 1, x_4(0) = 3]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 62

 $dsolve([diff(x_1(t),t) = 4*x_1(t)+x_2(t)+x_3(t)+7*x_4(t), diff(x_2(t),t) = x_1(t)+4*x_4(t), diff(x_2(t),t) = x_4(t)+x_4(t)$

$$x_1(t) = e^{15t} + 2e^{10t}$$

$$x_2(t) = 2e^{15t} - e^{10t}$$

$$x_3(t) = 2e^{15t} - e^{10t}$$

$$x_4(t) = e^{15t} + 2e^{10t}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 70

DSolve[{x1'[t]==4*x1[t]+1*x2[t]+1*x3[t]+7*x4[t],x2'[t]==1*x1[t]+4*x2[t]+10*x3[t]+1*x4[t],x3'

$$x1(t) \to e^{10t} (e^{5t} + 2)$$

$$x2(t) \rightarrow e^{10t}(2e^{5t}-1)$$

$$x3(t) \rightarrow e^{10t}(2e^{5t}-1)$$

$$x4(t) \to e^{10t} (e^{5t} + 2)$$

4.31 problem problem 42

Internal problem ID [345]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 42.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = -40x_1(t) - 12x_2(t) + 54x_3(t)$$

$$x_2'(t) = 35x_1(t) + 13x_2(t) - 46x_3(t)$$

$$x_3'(t) = -25x_1(t) - 7x_2(t) + 34x_3(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 59

dsolve([diff(x_1(t),t)=-40*x_1(t)-12*x_2(t)+54*x_3(t),diff(x_2(t),t)=35*x_1(t)+13*x_2

$$x_1(t) = c_1 + c_2 e^{2t} + c_3 e^{5t}$$

$$x_2(t) = c_2 e^{2t} - \frac{3c_3 e^{5t}}{2} - \frac{c_1}{3}$$

$$x_3(t) = c_2 e^{2t} + \frac{c_3 e^{5t}}{2} + \frac{2c_1}{3}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 181

 $DSolve[{x1'[t] == -40*x1[t] - 12*x2[t] + 54*x3[t], x2'[t] == 35*x1[t] + 13*x2[t] - 46*x3[t], x3'[t] == -25*x1[t] + 13*x2[t] + 13*x$

$$x1(t) \rightarrow c_1(-5e^{2t} - 6e^{5t} + 12) - c_2(e^{2t} + 2e^{5t} - 3) + c_3(7e^{2t} + 8e^{5t} - 15)$$

$$\mathbf{x}2(t) \to c_1 \left(-5e^{2t} + 9e^{5t} - 4 \right) + c_2 \left(-e^{2t} + 3e^{5t} - 1 \right) + c_3 \left(7e^{2t} - 12e^{5t} + 5 \right)$$

$$x3(t) \rightarrow c_1(-5e^{2t} - 3e^{5t} + 8) - c_2(e^{2t} + e^{5t} - 2) + c_3(7e^{2t} + 4e^{5t} - 10)$$

4.32 problem problem 43

Internal problem ID [346]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 43.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -20x_1(t) + 11x_2(t) + 13x_3(t)$$

$$x'_2(t) = 12x_1(t) - x_2(t) - 7x_3(t)$$

$$x_3'(t) = -48x_1(t) + 21x_2(t) + 31x_3(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 72

$$x_1(t) = c_1 e^{4t} + c_2 e^{-2t} + c_3 e^{8t}$$

$$x_2(t) = c_1 e^{4t} - \frac{c_2 e^{-2t}}{3} - c_3 e^{8t}$$

$$x_3(t) = c_1 e^{4t} + \frac{5c_2 e^{-2t}}{3} + 3c_3 e^{8t}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 554

DSolve[{x1'[t]==20*x1[t]+11*x2[t]+13*x3[t],x2'[t]==12*x1[t]-1*x2[t]-7*x3[t],x3'[t]==-48*x1[t]

$$\begin{aligned} \text{x1}(t) &\to c_2 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{11 \# 1e^{\# 1t} - 68e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ &+ c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{13 \# 1e^{\# 1t} - 64e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ &+ c_1 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 \right. \\ &- 4576 \&, \frac{\# 1^2 e^{\# 1t} - 30 \# 1e^{\# 1t} + 116e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ &\times 2(t) &\to 12c_1 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1e^{\# 1t} - 3e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ &- c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{7 \# 1e^{\# 1t} - 296e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ &+ c_2 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{4 \# 1e^{\# 1t} - 17e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ &+ 3c_2 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{4 \# 1e^{\# 1t} - 17e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ &+ c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{7 \# 1e^{\# 1t} - 316e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ &+ c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1^2 e^{\# 1t} - 19 \# 1e^{\# 1t} - 152e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \\ &+ c_3 \text{RootSum} \left[\# 1^3 - 50 \# 1^2 + 1208 \# 1 - 4576 \&, \frac{\# 1^2 e^{\# 1t} - 19 \# 1e^{\# 1t} - 152e^{\# 1t}}{3 \# 1^2 - 100 \# 1 + 1208} \& \right] \end{aligned}$$

4.33 problem problem 44

Internal problem ID [347]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 44.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = 147x_1(t) + 23x_2(t) - 202x_3(t)$$

$$x_2'(t) = -90x_1(t) - 9x_2(t) + 129x_3(t)$$

$$x_3'(t) = 90x_1(t) + 15x_2(t) - 123x_3(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 74

 $dsolve([diff(x_1(t),t)=147*x_1(t)+23*x_2(t)-202*x_3(t),diff(x_2(t),t)=-90*x_1(t)-9*x_2(t)+23*x_2(t)-202*x_3(t),diff(x_2(t),t)=-90*x_1(t)-9*x_2(t)$

$$x_1(t) = e^{6t}c_1 + c_2e^{-3t} + c_3e^{12t}$$

$$x_2(t) = \frac{e^{6t}c_1}{7} - \frac{2c_2e^{-3t}}{3} - \frac{3c_3e^{12t}}{5}$$

$$x_3(t) = \frac{5e^{6t}c_1}{7} + \frac{2c_2e^{-3t}}{3} + \frac{3c_3e^{12t}}{5}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 188

DSolve[{x1'[t]==147*x1[t]+23*x2[t]-202*x3[t],x2'[t]==-90*x1[t]-9*x2[t]+129*x3[t],x3'[t]==90*

$$\begin{split} & \text{x1}(t) \to \frac{1}{6}e^{-3t} \big(6c_1 \big(10e^{15t} - 9 \big) + c_2 \big(7e^{9t} + 5e^{15t} - 12 \big) - c_3 \big(-7e^{9t} + 85e^{15t} - 78 \big) \big) \\ & \text{x2}(t) \to \frac{1}{6}e^{-3t} \big(-36c_1 \big(e^{15t} - 1 \big) + c_2 \big(e^{9t} - 3e^{15t} + 8 \big) + c_3 \big(e^{9t} + 51e^{15t} - 52 \big) \big) \\ & \text{x3}(t) \to \frac{1}{6}e^{-3t} \big(36c_1 \big(e^{15t} - 1 \big) + c_2 \big(5e^{9t} + 3e^{15t} - 8 \big) - c_3 \big(-5e^{9t} + 51e^{15t} - 52 \big) \big) \end{split}$$

4.34 problem problem 45

Internal problem ID [348]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 45.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 9x_1(t) - 7x_2(t) - 5x_3(t)$$

$$x'_2(t) = -12x_1(t) + 7x_2(t) + 11x_3(t) + 9x_4(t)$$

$$x'_3(t) = 24x_1(t) - 17x_2(t) - 19x_3(t) - 9x_4(t)$$

$$x'_4(t) = -18x_1(t) + 13x_2(t) + 17x_3(t) + 9x_4(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 105

$$x_1(t) = c_1 + c_2 e^{3t} + c_3 e^{6t} + c_4 e^{-3t}$$

$$x_2(t) = \frac{c_2 e^{3t}}{2} - c_3 e^{6t} + c_4 e^{-3t} + 2c_1$$

$$x_3(t) = \frac{c_2 e^{3t}}{2} + 2c_3 e^{6t} + c_4 e^{-3t} - c_1$$

$$x_4(t) = \frac{c_2 e^{3t}}{2} - c_3 e^{6t} - c_4 e^{-3t} + c_1$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 430

 $DSolve[{x1'[t] == 9*x1[t] - 7*x2[t] - 5*x3[t] + 0*x4[t], x2'[t] == -12*x1[t] + 7*x2[t] + 11*x3[t] + 9*x4[t], x2'[t] == -12*x1[t] + 7*x2[t] + 11*x3[t] + 9*x4[t], x2'[t] == -12*x1[t] + 7*x2[t] + 11*x3[t] + 9*x4[t], x2'[t] == -12*x1[t] + 7*x2[t] + 11*x3[t] + 9*x4[t], x2'[t] == -12*x1[t] + 7*x2[t] + 11*x3[t] + 9*x4[t], x2'[t] == -12*x1[t] + 7*x2[t] + 11*x3[t] + 9*x4[t], x2'[t] == -12*x1[t] + 7*x2[t] + 11*x3[t] + 9*x4[t], x2'[t] == -12*x1[t] + 11*x3[t] + 11*x3[$

$$\begin{split} \mathbf{x}1(t) &\to \frac{1}{3}e^{-3t} \big(c_1 \big(6e^{3t} - 6e^{6t} + 6e^{9t} - 3 \big) \\ &\quad - \big(e^{3t} - 1 \big) \, \big(c_2 \big(4e^{6t} + 3 \big) + c_3 \big(-3e^{3t} + 5e^{6t} + 3 \big) + 3c_4 e^{3t} \big(e^{3t} - 1 \big) \big) \big) \\ \mathbf{x}2(t) &\to \frac{1}{3}e^{-3t} \big(-3c_1 \big(-4e^{3t} + e^{6t} + 2e^{9t} + 1 \big) + c_2 \big(-6e^{3t} + 2e^{6t} + 4e^{9t} + 3 \big) \\ &\quad + \big(e^{3t} - 1 \big) \, \big(c_3 \big(9e^{3t} + 5e^{6t} - 3 \big) + 3c_4 e^{3t} \big(e^{3t} + 2 \big) \big) \big) \\ \mathbf{x}3(t) &\to c_1 \big(-e^{-3t} - e^{3t} + 4e^{6t} - 2 \big) + c_2 \bigg(e^{-3t} + \frac{2e^{3t}}{3} - \frac{8e^{6t}}{3} + 1 \bigg) \\ &\quad + c_3 e^{-3t} + \frac{4}{3}c_3 e^{3t} - \frac{10}{3}c_3 e^{6t} + c_4 e^{3t} - 2c_4 e^{6t} + 2c_3 + c_4 \\ \mathbf{x}4(t) &\to \frac{1}{3} \big(c_1 \big(3e^{-3t} - 3e^{3t} - 6e^{6t} + 6 \big) + c_2 \big(-3e^{-3t} + 2e^{3t} + 4e^{6t} - 3 \big) - 3c_3 e^{-3t} + 4c_3 e^{3t} \\ &\quad + 5c_3 e^{6t} + 3c_4 e^{3t} + 3c_4 e^{6t} - 6c_3 - 3c_4 \big) \end{split}$$

4.35 problem problem 46

Internal problem ID [349]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 46.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 13x_1(t) - 42x_2(t) + 106x_3(t) + 139x_4(t)$$

$$x'_2(t) = 2x_1(t) - 16x_2(t) + 52x_3(t) + 70x_4(t)$$

$$x'_3(t) = x_1(t) + 6x_2(t) - 20x_3(t) - 31x_4(t)$$

$$x'_4(t) = -x_1(t) - 6x_2(t) + 22x_3(t) + 33x_4(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 123

$$x_1(t) = c_1 e^{4t} + c_2 e^{-4t} + c_3 e^{2t} + c_4 e^{8t}$$

$$x_2(t) = c_1 e^{4t} + \frac{2c_2 e^{-4t}}{3} + 2c_3 e^{2t} - \frac{2c_4 e^{8t}}{3}$$

$$x_3(t) = -c_1 e^{4t} - \frac{c_2 e^{-4t}}{3} + 2c_3 e^{2t} + c_4 e^{8t}$$

$$x_4(t) = c_1 e^{4t} + \frac{c_2 e^{-4t}}{3} - c_3 e^{2t} - c_4 e^{8t}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 449

 $DSolve[{x1'[t] == 13*x1[t] - 42*x2[t] + 106*x3[t] + 139*x4[t], x2'[t] == 2*x1[t] - 16*x2[t] + 52*x3[t] + 70*x}$

$$\begin{split} \mathbf{x}1(t) &\to \frac{1}{4}e^{-4t} \left(c_1 \left(4e^{8t} + 3e^{12t} - 3 \right) - 6c_2 \left(2e^{8t} + e^{12t} - 3 \right) + 4c_3 e^{6t} + 32c_3 e^{8t} + 12c_3 e^{12t} \right. \\ &\quad + 4c_4 e^{6t} + 44c_4 e^{8t} + 15c_4 e^{12t} - 48c_3 - 63c_4 \big) \\ \mathbf{x}2(t) &\to \frac{1}{2}e^{-4t} \left(-\left(c_1 \left(-2e^{8t} + e^{12t} + 1 \right) \right) + 2c_2 \left(-3e^{8t} + e^{12t} + 3 \right) + 4c_3 e^{6t} + 16c_3 e^{8t} \right. \\ &\quad - 4c_3 e^{12t} + 4c_4 e^{6t} + 22c_4 e^{8t} - 5c_4 e^{12t} - 16c_3 - 21c_4 \big) \\ \mathbf{x}3(t) &\to \frac{1}{4}e^{-4t} \left(c_1 \left(-4e^{8t} + 3e^{12t} + 1 \right) - 6c_2 \left(-2e^{8t} + e^{12t} + 1 \right) + 8c_3 e^{6t} - 32c_3 e^{8t} \right. \\ &\quad + 12c_3 e^{12t} + 8c_4 e^{6t} - 44c_4 e^{8t} + 15c_4 e^{12t} + 16c_3 + 21c_4 \big) \\ \mathbf{x}4(t) &\to \frac{1}{4}e^{-4t} \left(c_1 \left(4e^{8t} - 3e^{12t} - 1 \right) + 6c_2 \left(-2e^{8t} + e^{12t} + 1 \right) - 4c_3 e^{6t} + 32c_3 e^{8t} - 12c_3 e^{12t} \right. \\ &\quad - 4c_4 e^{6t} + 44c_4 e^{8t} - 15c_4 e^{12t} - 16c_3 - 21c_4 \big) \end{split}$$

4.36 problem problem 47

Internal problem ID [350]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 47.

ODE order: 1. ODE degree: 1.

Solve

$$\begin{aligned} x_1'(t) &= 23x_1(t) - 18x_2(t) - 16x_3(t) \\ x_2'(t) &= -8x_1(t) + 6x_2(t) + 7x_3(t) + 9x_4(t) \\ x_3'(t) &= 34x_1(t) - 27x_2(t) - 26x_3(t) - 9x_4(t) \\ x_4'(t) &= -26x_1(t) + 21x_2(t) + 25x_3(t) + 12x_4(t) \end{aligned}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 124

$$dsolve([diff(x_1(t),t)=23*x_1(t)-18*x_2(t)-16*x_3(t)+0*x_4(t),diff(x_2(t),t)=-8*x_1(t)+0*x_4(t),diff(x_2(t),t)=-8*x_1(t)+0*x_4(t),diff(x_2(t),t)=-8*x_1(t)+0*x_4(t)$$

$$x_1(t) = c_1 e^{3t} + c_2 e^{6t} + c_3 e^{9t} + c_4 e^{-3t}$$

$$x_2(t) = 2c_1 e^{3t} + \frac{c_2 e^{6t}}{2} - c_3 e^{9t} + c_4 e^{-3t}$$

$$x_3(t) = -c_1 e^{3t} + \frac{c_2 e^{6t}}{2} + 2c_3 e^{9t} + \frac{c_4 e^{-3t}}{2}$$

$$x_4(t) = c_1 e^{3t} + \frac{c_2 e^{6t}}{2} - c_3 e^{9t} - \frac{c_4 e^{-3t}}{2}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 469

 $DSolve[{x1'[t] == 23*x1[t] - 18*x2[t] - 16*x3[t] + 0*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 6*x2[t] + 7*x3[t] + 9*x4[t], x2'[t] == -8*x1[t] + 9*x4[t], x2'[$

$$x1(t) \to \frac{1}{3}e^{-3t} \left(c_1 \left(9e^{6t} - 8e^{9t} + 8e^{12t} - 6 \right) \right. \\ \left. - \left(e^{3t} - 1 \right) \left(6c_2 \left(e^{3t} + e^{9t} + 1 \right) + c_3 \left(6e^{3t} - 3e^{6t} + 7e^{9t} + 6 \right) + 3c_4 e^{6t} \left(e^{3t} - 1 \right) \right) \right) \\ x2(t) \to \frac{1}{3}e^{-3t} \left(-2c_1 \left(-9e^{6t} + 2e^{9t} + 4e^{12t} + 3 \right) + 3c_2 \left(-4e^{6t} + e^{9t} + 2e^{12t} + 2 \right) \right. \\ \left. + \left(e^{3t} - 1 \right) \left(c_3 \left(-6e^{3t} + 12e^{6t} + 7e^{9t} - 6 \right) + 3c_4 e^{6t} \left(e^{3t} + 2 \right) \right) \right) \\ x3(t) \to \frac{1}{3}e^{-3t} \left(c_1 \left(-9e^{6t} - 4e^{9t} + 16e^{12t} - 3 \right) + 3c_2 \left(2e^{6t} + e^{9t} - 4e^{12t} + 1 \right) + 9c_3 e^{6t} \right. \\ \left. + 5c_3 e^{9t} - 14c_3 e^{12t} + 3c_4 e^{6t} + 3c_4 e^{9t} - 6c_4 e^{12t} + 3c_3 \right) \\ x4(t) \to \frac{1}{3}e^{-3t} \left(c_1 \left(9e^{6t} - 4e^{9t} - 8e^{12t} + 3 \right) + 3c_2 \left(-2e^{6t} + e^{9t} + 2e^{12t} - 1 \right) - 9c_3 e^{6t} \right. \\ \left. + 5c_3 e^{9t} + 7c_3 e^{12t} - 3c_4 e^{6t} + 3c_4 e^{9t} + 3c_4 e^{12t} - 3c_3 \right)$$

4.37 problem problem 48

Internal problem ID [351]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 48.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 47x_1(t) - 8x_2(t) + 5x_3(t) - 5x_4(t)$$

$$x'_2(t) = -10x_1(t) + 32x_2(t) + 18x_3(t) - 2x_4(t)$$

$$x'_3(t) = 139x_1(t) - 40x_2(t) - 167x_3(t) - 121x_4(t)$$

$$x'_4(t) = -232x_1(t) + 64x_2(t) + 360x_3(t) + 248x_4(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 125

$$dsolve([diff(x_1(t),t)=47*x_1(t)-8*x_2(t)+5*x_3(t)-5*x_4(t),diff(x_2(t),t)=-10*x_1(t)$$

$$x_1(t) = c_1 e^{48t} + c_2 e^{16t} + c_3 e^{32t} + c_4 e^{64t}$$

$$x_2(t) = -\frac{c_1 e^{48t}}{3} + 2c_2 e^{16t} + \frac{5c_3 e^{32t}}{2} + c_4 e^{64t}$$

$$x_3(t) = \frac{c_1 e^{48t}}{3} - c_2 e^{16t} + \frac{c_3 e^{32t}}{2} + 2c_4 e^{64t}$$

$$x_4(t) = \frac{2c_1 e^{48t}}{3} + 2c_2 e^{16t} - \frac{c_3 e^{32t}}{2} - 3c_4 e^{64t}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 448

DSolve[{x1'[t]==47*x1[t]-8*x2[t]+5*x3[t]-5*x4[t],x2'[t]==-10*x1[t]+32*x2[t]+18*x3[t]-2*x4[t]

$$\begin{split} \mathbf{x}1(t) &\to \frac{1}{16} e^{16t} \big(c_1 \big(-38e^{16t} - 6e^{32t} + 27e^{48t} + 33 \big) \\ &\quad - \big(e^{16t} - 1 \big) \left(8c_2 \big(e^{16t} + e^{32t} - 1 \big) + c_3 \big(9e^{16t} + 39e^{32t} - 53 \big) + c_4 \big(7e^{16t} + 25e^{32t} - 27 \big) \big) \right) \\ \mathbf{x}2(t) &\to \frac{1}{16} e^{16t} \big(c_1 \big(-95e^{16t} + 2e^{32t} + 27e^{48t} + 66 \big) - 8c_2 \big(-5e^{16t} + e^{48t} + 2 \big) \\ &\quad - \big(e^{16t} - 1 \big) \left(c_3 \big(49e^{16t} + 39e^{32t} - 106 \big) + c_4 \big(31e^{16t} + 25e^{32t} - 54 \big) \big) \right) \\ \mathbf{x}3(t) &\to \frac{1}{16} e^{16t} \big(c_1 \big(-19e^{16t} - 2e^{32t} + 54e^{48t} - 33 \big) + 8c_2 \big(e^{16t} - 2e^{48t} + 1 \big) + 31c_3 e^{16t} \\ &\quad + 10c_3 e^{32t} - 78c_3 e^{48t} + 17c_4 e^{16t} + 6c_4 e^{32t} - 50c_4 e^{48t} + 53c_3 + 27c_4 \big) \\ \mathbf{x}4(t) &\to -\frac{1}{16} e^{16t} \big(c_1 \big(-19e^{16t} + 4e^{32t} + 81e^{48t} - 66 \big) + 8c_2 \big(e^{16t} - 3e^{48t} + 2 \big) + 31c_3 e^{16t} \\ &\quad - 20c_3 e^{32t} - 117c_3 e^{48t} + 17c_4 e^{16t} - 12c_4 e^{32t} - 75c_4 e^{48t} + 106c_3 + 54c_4 \big) \end{split}$$

4.38 problem problem 49

Internal problem ID [352]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 49.

ODE order: 1. ODE degree: 1.

Solve

$$x'_{1}(t) = 139x_{1}(t) - 14x_{2}(t) - 52x_{3}(t) - 14x_{4}(t) + 28x_{5}(t)$$

$$x'_{2}(t) = -22x_{1}(t) + 5x_{2}(t) + 7x_{3}(t) + 8x_{4}(t) - 7x_{5}(t)$$

$$x'_{3}(t) = 370x_{1}(t) - 38x_{2}(t) - 139x_{3}(t) - 38x_{4}(t) + 76x_{5}(t)$$

$$x'_{4}(t) = 152x_{1}(t) - 16x_{2}(t) - 59x_{3}(t) - 13x_{4}(t) + 35x_{5}(t)$$

$$x'_{5}(t) = 95x_{1}(t) - 10x_{2}(t) - 38x_{3}(t) - 7x_{4}(t) + 23x_{5}(t)$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 132

$$dsolve([diff(x_1(t),t)=139*x_1(t)-14*x_2(t)-52*x_3(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_4(t)+28*x_5(t),diff(x_2(t)-14*x_5(t),diff(x_2(t)-14*x_5(t),diff(x_3(t)-14*x_5$$

$$x_1(t) = c_3 e^{3t} + c_4 e^{9t} + c_5 e^{-3t}$$

$$x_2(t) = \frac{e^{6t}c_1}{6} + 7c_3 e^{3t} + c_2$$

$$x_3(t) = c_3 e^{3t} + \frac{5c_4 e^{9t}}{2} + 3c_5 e^{-3t}$$

$$x_4(t) = c_3 e^{3t} + c_4 e^{9t} + c_5 e^{-3t} + \frac{e^{6t}c_1}{6} - \frac{c_2}{3}$$

$$x_5(t) = c_3 e^{3t} + \frac{e^{6t}c_1}{6} + \frac{c_4 e^{9t}}{2} + c_5 e^{-3t} + \frac{c_2}{3}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 2676

Too large to display

4.39 problem problem 50

Internal problem ID [353]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.3, The eigenvalue method for linear systems. Page 395

Problem number: problem 50.

ODE order: 1. ODE degree: 1.

Solve

$$x'_{1}(t) = 9x_{1}(t) + 13x_{2}(t) - 13x_{6}(t)$$

$$x'_{2}(t) = -14x_{1}(t) + 19x_{2}(t) - 10x_{3}(t) - 20x_{4}(t) + 10x_{5}(t) + 4x_{6}(t)$$

$$x'_{3}(t) = -30x_{1}(t) + 12x_{2}(t) - 7x_{3}(t) - 30x_{4}(t) + 12x_{5}(t) + 18x_{6}(t)$$

$$x'_{4}(t) = -12x_{1}(t) + 10x_{2}(t) - 10x_{3}(t) - 9x_{4}(t) + 10x_{5}(t) + 2x_{6}(t)$$

$$x'_{5}(t) = 6x_{1}(t) + 9x_{2}(t) + 6x_{4}(t) + 5x_{5}(t) - 15x_{6}(t)$$

$$x'_{6}(t) = -14x_{1}(t) + 23x_{2}(t) - 10x_{3}(t) - 20x_{4}(t) + 10x_{5}(t)$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 135

 $dsolve([diff(x_1(t),t)=9*x_1(t)+13*x_2(t)+0*x_3(t)+0*x_4(t)+0*x_5(t)-13*x_6(t),diff(x_1(t),t)=9*x_1(t)+13*x_2(t)+0*x_1$

$$x_1(t) = c_5 e^{-4t} + c_6 e^{9t}$$

$$x_2(t) = c_6 e^{9t} + c_4 e^{3t} + e^{-7t} c_3$$

$$x_3(t) = e^{-7t} c_3 - e^{11t} c_2 + e^{5t} c_1$$

$$x_4(t) = e^{11t} c_2 + c_4 e^{3t} + e^{-7t} c_3$$

$$x_5(t) = e^{11t} c_2 + e^{5t} c_1 + c_5 e^{-4t}$$

$$x_6(t) = c_6 e^{9t} + c_5 e^{-4t} + c_4 e^{3t} + e^{-7t} c_3$$

✓ Solution by Mathematica

Time used: 0.107 (sec). Leaf size: 1882

Too large to display

5	Section 7.6, Multiple Eigenvalue Solutions.												
	Examples. Page 437												
5.1	problem Example 1												
5.2	problem Example 3												

5.3

5.4

5.1 problem Example 1

Internal problem ID [354]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437

Problem number: Example 1.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 9x_1(t) + 4x_2(t)$$

$$x'_2(t) = -6x_1(t) - x_2(t)$$

$$x'_3(t) = 6x_1(t) + 4x_2(t) + 3x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 58

$$x_1(t) = c_2 e^{3t} + c_3 e^{5t}$$

$$x_2(t) = -\frac{3c_2 e^{3t}}{2} - c_3 e^{5t}$$

$$x_3(t) = c_2 e^{3t} + c_3 e^{5t} + c_1 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 113

DSolve[{x1'[t]==9*x1[t]+4*x2[t]+0*x3[t],x2'[t]==-6*x1[t]-1*x2[t]+0*x3[t],x3'[t]==6*x1[t]+4*x

$$x1(t) \to e^{3t} \left(c_1 \left(3e^{2t} - 2 \right) + 2c_2 \left(e^{2t} - 1 \right) \right)$$

$$x2(t) \to -e^{3t} \left(3c_1 \left(e^{2t} - 1 \right) + c_2 \left(2e^{2t} - 3 \right) \right)$$

$$x3(t) \to \int_1^t 3x(K[1]) dK[1] + \frac{6}{5} c_1 \left(e^{5t} - 1 \right) + \frac{4}{5} c_2 \left(e^{5t} - 1 \right) + c_3$$

5.2 problem Example 3

Internal problem ID [355]

 $\bf Book:$ Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437

Problem number: Example 3.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = x_1(t) - 3x_2(t)$$

$$x'_2(t) = 3x_1(t) + 7x_2(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $dsolve([diff(x_1(t),t)=1*x_1(t)-3*x_2(t),diff(x_2(t),t)=3*x_1(t)+7*x_2(t)],singsol=all(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_2(t)=1*x_1(t)+1*x_1(t)=1*x_1(t)+1*x_1(t)=1*x_1(t)+1*x_1(t)=1*x_1(t)+1*x_1(t)=1*x_1(t)+1*x_1(t)=1$

$$x_1(t) = e^{4t}(c_2t + c_1)$$

$$x_2(t) = -\frac{e^{4t}(3c_2t + 3c_1 + c_2)}{3}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: $46\,$

DSolve[{x1'[t]==1*x1[t]-3*x2[t],x2'[t]==3*x1[t]+7*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolu

$$x1(t) \to -e^{4t}(c_1(3t-1) + 3c_2t)$$

 $x2(t) \to e^{4t}(3(c_1 + c_2)t + c_2)$

5.3 problem Example 4

Internal problem ID [356]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437

Problem number: Example 4.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = x_2(t) + 2x_3(t)$$

$$x'_2(t) = -5x_1(t) - 3x_2(t) - 7x_3(t)$$

$$x'_3(t) = x_1(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 75

$$x_1(t) = -e^{-t} (c_3 t^2 + c_2 t - 2c_3 t + c_1 - c_2)$$

$$x_2(t) = -e^{-t} (c_3 t^2 + c_2 t + 4c_3 t + c_1 + 2c_2 - 2c_3)$$

$$x_3(t) = e^{-t} (c_3 t^2 + c_2 t + c_1)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 134

DSolve[{x1'[t]==0*x1[t]+1*x2[t]+2*x3[t],x2'[t]==-5*x1[t]-3*x2[t]-7*x3[t],x3'[t]==1*x1[t]+0*x

$$x1(t) \to \frac{1}{2}e^{-t}\left(c_1\left(-2t^2+2t+2\right)-c_2(t-2)t+c_3(4-3t)t\right)$$

$$x2(t) \to \frac{1}{2}e^{-t}\left(-\left((2c_1+c_2+3c_3)t^2\right)-2(5c_1+2c_2+7c_3)t+2c_2\right)$$

$$x3(t) \to \frac{1}{2}e^{-t}\left((2c_1+c_2+3c_3)t^2+2(c_1+c_3)t+2c_3\right)$$

5.4 problem Example 6

Internal problem ID [357]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437

Problem number: Example 6.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = x_3(t)$$

$$x'_2(t) = x_4(t)$$

$$x'_3(t) = -2x_1(t) + 2x_2(t) - 3x_3(t) + x_4(t)$$

$$x'_4(t) = 2x_1(t) - 2x_2(t) + x_3(t) - 3x_4(t)$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 95

$$x_1(t) = c_2 + c_3 e^{-2t} + c_4 e^{-2t} t$$

$$x_2(t) = -c_3 e^{-2t} - c_4 e^{-2t} t + c_4 e^{-2t} + c_2 + c_1 e^{-2t}$$

$$x_3(t) = -e^{-2t} (2c_4 t + 2c_3 - c_4)$$

$$x_4(t) = -e^{-2t} (-2c_4 t + 2c_1 - 2c_3 + 3c_4)$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 210 $\,$

DSolve[{x1'[t]==0*x1[t]+0*x2[t]+1*x3[t]+0*x4[t],x2'[t]==0*x1[t]+0*x2[t]+0*x3[t]+1*x4[t],x3'[t]

$$x1(t) \to \frac{1}{4}e^{-2t} \left(2c_1 \left(2t + e^{2t} + 1 \right) + 2c_2 \left(-2t + e^{2t} - 1 \right) + c_3 e^{2t} + 2c_3 t + c_4 e^{2t} - 2c_4 t - c_3 - c_4 \right)$$

$$x2(t) \to \frac{1}{4}e^{-2t} \left(2c_1 \left(-2t + e^{2t} - 1 \right) + 2c_2 \left(2t + e^{2t} + 1 \right) + c_3 e^{2t} - 2c_3 t + c_4 e^{2t} + 2c_4 t - c_3 - c_4 \right)$$

$$x3(t) \to e^{-2t} \left(\left(-2c_1 + 2c_2 - c_3 + c_4 \right)t + c_3 \right)$$

$$x4(t) \to e^{-2t} \left(\left(2c_1 - 2c_2 + c_3 - c_4 \right)t + c_4 \right)$$

6	Section 7.	6,	\mathbf{N}	Iu	ltij	ple	E	Cig	en	va	\mathbf{lu}	e	So	lu	tic	n	s.	F	a	ge
	451																			
6.1	problem problem	n 1																		94
6.2	problem problem	n 2																		95
6.3	problem problem	ı 3																		96
6.4	problem problem	ı 4																		97
6.5	problem problem	ı 5																		98
6.6	problem problem	n 6																		99
6.7	problem problem	n 7																		100
6.8	problem problem	1 8																•		101
6.9	problem problem	ı 9																		102
6.10	problem problem	ı 10																•		103
6.11	problem problem	ı 11																•	•	104
6.12	problem problem	n 12																		105
6.13	problem problem	ı 13																		106
6.14	problem problem	n 14																		107
6.15	problem problem	n 15																		108
6.16	problem problem	ı 16																		109
6.17	problem problem	ı 17																		110
6.18	problem problem	ı 18																		111
6.19	problem problem	ı 19																		112
6.20	problem problem	n 20																		113
6.21	problem problem	n 21																		114
6.22	problem problem	n 22																		115
6.23	problem problem	n 23																		116
6.24	problem problem	n 24																		117
6.25	problem problem	ı 25																		119
6.26	problem problem	n 26																		120
6.27	problem problem	ı 27																		121
6.28	problem problem	n 28																		122
6.29	problem problem	ı 29																		123
6.30	problem problem	ı 30																		124
6.31	problem problem	ı 31																		125
6.32	problem problem	ı 32																		127
6.33	problem problem	ı 33																		129
6.34	problem problem	ı 34																		130

6.1 problem problem 1

Internal problem ID [358]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 1.

ODE order: 1.
ODE degree: 1.

Solve

$$x_1'(t) = -2x_1(t) + x_2(t)$$

$$x_2'(t) = -x_1(t) - 4x_2(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

dsolve([diff(x__1(t),t)=-2*x__1(t)+1*x__2(t),diff(x__2(t),t)=-1*x__1(t)-4*x__2(t)],singsol=a

$$x_1(t) = e^{-3t}(c_2t + c_1)$$

 $x_2(t) = -e^{-3t}(c_2t + c_1 - c_2)$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 42

DSolve[{x1'[t]==-2*x1[t]+1*x2[t],x2'[t]==-1*x1[t]-4*x2[t]},{x1[t],x2[t]},t,IncludeSingularSo

$$x1(t) \to e^{-3t}(c_1(t+1) + c_2t)$$

$$x2(t) \rightarrow e^{-3t}(c_2 - (c_1 + c_2)t)$$

6.2 problem problem 2

Internal problem ID [359]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 2.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 3x_1(t) - x_2(t)$$

$$x'_2(t) = x_1(t) + x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

 $dsolve([diff(x_1(t),t)=3*x_1(t)-1*x_2(t),diff(x_2(t),t)=1*x_1(t)+1*x_2(t)],singsol=all(t)=1*x_1(t)+1*x_2(t)]$

$$x_1(t) = e^{2t}(c_2t + c_1)$$

 $x_2(t) = e^{2t}(c_2t + c_1 - c_2)$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 44

DSolve[{x1'[t]==3*x1[t]-1*x2[t],x2'[t]==1*x1[t]+1*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolu

$$x1(t) \rightarrow e^{2t}(c_1(t+1) - c_2t)$$

 $x2(t) \rightarrow e^{2t}((c_1 - c_2)t + c_2)$

6.3 problem problem 3

Internal problem ID [360]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 3.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = x_1(t) - 2x_2(t)$$

$$x'_2(t) = 2x_1(t) + 5x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

$$x_1(t) = e^{3t}(c_2t + c_1)$$

$$x_2(t) = -\frac{e^{3t}(2c_2t + 2c_1 + c_2)}{2}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: $46\,$

DSolve[{x1'[t]==1*x1[t]-2*x2[t],x2'[t]==2*x1[t]+5*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolu

$$x1(t) \rightarrow -e^{3t}(c_1(2t-1) + 2c_2t)$$

 $x2(t) \rightarrow e^{3t}(2(c_1 + c_2)t + c_2)$

6.4 problem problem 4

Internal problem ID [361]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 4.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = 3x_1(t) - x_2(t)$$

$$x_2'(t) = x_1(t) + 5x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

$$x_1(t) = e^{4t}(c_2t + c_1)$$

 $x_2(t) = -e^{4t}(c_2t + c_1 + c_2)$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 42

DSolve[{x1'[t]==3*x1[t]-1*x2[t],x2'[t]==1*x1[t]+5*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolv

$$x1(t) \rightarrow -e^{4t}(c_1(t-1)+c_2t)$$

$$x2(t) \rightarrow e^{4t}((c_1+c_2)t+c_2)$$

6.5 problem problem 5

Internal problem ID [362]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 5.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 7x_1(t) + x_2(t)$$

$$x'_2(t) = -4x_1(t) + 3x_2(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

$$x_1(t) = e^{5t}(c_2t + c_1)$$

$$x_2(t) = -e^{5t}(2c_2t + 2c_1 - c_2)$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 45

$$x1(t) \rightarrow e^{5t}(2c_1t + c_2t + c_1)$$

 $x2(t) \rightarrow e^{5t}(c_2 - 2(2c_1 + c_2)t)$

6.6 problem problem 6

Internal problem ID [363]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 6.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_1(t) - 4x_2(t)$$

$$x'_2(t) = 4x_1(t) + 9x_2(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve([diff(x_1(t),t)=1*x_1(t)-4*x_2(t),diff(x_2(t),t)=4*x_1(t)+9*x_2(t)],singsol=all(t)=1.$

$$x_1(t) = e^{5t}(c_2t + c_1)$$

$$x_2(t) = -\frac{e^{5t}(4c_2t + 4c_1 + c_2)}{4}$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 46

DSolve[{x1'[t]==1*x1[t]-4*x2[t],x2'[t]==4*x1[t]+9*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolu

$$x1(t) \rightarrow -e^{5t}(c_1(4t-1) + 4c_2t)$$

 $x2(t) \rightarrow e^{5t}(4(c_1 + c_2)t + c_2)$

6.7 problem problem 7

Internal problem ID [364]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 7.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = 2x_1(t)$$

$$x'_2(t) = -7x_1(t) + 9x_2(t) + 7x_3(t)$$

$$x'_3(t) = 2x_3(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 43

dsolve([diff(x_1(t),t)=2*x_1(t)+0*x_2(t)+0*x_3(t),diff(x_2(t),t)=-7*x_1(t)+9*x_2(t)+7

$$x_1(t) = c_3 e^{2t}$$

 $x_2(t) = -c_2 e^{2t} + c_3 e^{2t} + c_1 e^{9t}$
 $x_3(t) = c_2 e^{2t}$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 60

DSolve[{x1'[t]==2*x1[t]+0*x2[t]+0*x3[t],x2'[t]==-7*x1[t]+9*x2[t]+7*x3[t],x3'[t]==0*x1[t]+0*x

$$x1(t) \to c_1 e^{2t}$$

 $x2(t) \to e^{2t} \left(-\left(c_1(e^{7t} - 1)\right) + (c_2 + c_3)e^{7t} - c_3 \right)$
 $x3(t) \to c_3 e^{2t}$

6.8 problem problem 8

Internal problem ID [365]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 8.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 25x_1(t) + 12x_2(t)$$

$$x'_2(t) = -18x_1(t) - 5x_2(t)$$

$$x'_3(t) = 6x_1(t) + 6x_2(t) + 13x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 60

$$x_1(t) = c_2 e^{7t} + c_3 e^{13t}$$

$$x_2(t) = -\frac{3c_2 e^{7t}}{2} - c_3 e^{13t}$$

$$x_3(t) = \frac{c_2 e^{7t}}{2} + \frac{c_3 e^{13t}}{2} + e^{13t} c_1$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.005 (sec).}} \text{ Leaf size: } 107$

DSolve[{x1'[t]==25*x1[t]+12*x2[t]+0*x3[t],x2'[t]==-18*x1[t]-5*x2[t]+0*x3[t],x3'[t]==6*x1[t]+

$$x1(t) \to e^{7t} \left(c_1 \left(3e^{6t} - 2 \right) + 2c_2 \left(e^{6t} - 1 \right) \right) x2(t) \to -e^{7t} \left(3c_1 \left(e^{6t} - 1 \right) + c_2 \left(2e^{6t} - 3 \right) \right) x3(t) \to e^{7t} \left(c_1 \left(e^{6t} - 1 \right) + c_2 \left(e^{6t} - 1 \right) + c_3 e^{6t} \right)$$

6.9 problem problem 9

Internal problem ID [366]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 9.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -19x_1(t) + 12x_2(t) + 84x_3(t)$$

$$x'_2(t) = 5x_2(t)$$

$$x'_3(t) = -8x_1(t) + 4x_2(t) + 33x_3(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 52

$$x_1(t) = c_1 e^{9t} + c_2 e^{5t}$$

$$x_2(t) = c_3 e^{5t}$$

$$x_3(t) = \frac{c_1 e^{9t}}{3} + \frac{2c_2 e^{5t}}{7} - \frac{c_3 e^{5t}}{7}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 94

$$\begin{aligned} & \text{x1}(t) \to e^{5t} \big(c_1 \big(7 - 6e^{4t} \big) + 3(c_2 + 7c_3) \left(e^{4t} - 1 \right) \big) \\ & \text{x2}(t) \to c_2 e^{5t} \\ & \text{x3}(t) \to e^{5t} \big(-2c_1 \big(e^{4t} - 1 \big) + c_2 \big(e^{4t} - 1 \big) + c_3 \big(7e^{4t} - 6 \big) \big) \end{aligned}$$

6.10 problem problem 10

Internal problem ID [367]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 10.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -13x_1(t) + 40x_2(t) - 48x_3(t)$$

$$x'_2(t) = -8x_1(t) + 23x_2(t) - 24x_3(t)$$

$$x'_3(t) = 3x_3(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 52

$$x_1(t) = c_1 e^{3t} + c_2 e^{7t}$$

$$x_2(t) = \frac{2c_1 e^{3t}}{5} + \frac{c_2 e^{7t}}{2} + \frac{6c_3 e^{3t}}{5}$$

$$x_3(t) = c_3 e^{3t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 98

$$DSolve[{x1'[t] == -13*x1[t] + 40*x2[t] - 48*x3[t], x2'[t] == -8*x1[t] + 23*x2[t] - 24*x3[t], x3'[t] == 0*x1[t] + 23*x2[t] - 24*x3[t] + 23*x2[t] - 24*x3[t] + 23*x2[t] - 24*x3[t] + 23*x2[t] + 2$$

$$x1(t) \to e^{3t} \left(c_1 \left(5 - 4e^{4t} \right) + 2(5c_2 - 6c_3) \left(e^{4t} - 1 \right) \right) x2(t) \to -e^{3t} \left(2c_1 \left(e^{4t} - 1 \right) + c_2 \left(4 - 5e^{4t} \right) + 6c_3 \left(e^{4t} - 1 \right) \right) x3(t) \to c_3 e^{3t}$$

6.11 problem problem 11

Internal problem ID [368]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 11.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -3x_1(t) - 4x_3(t)$$

$$x'_2(t) = -x_1(t) - x_2(t) - x_3(t)$$

$$x'_3(t) = x_1(t) + x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 59

$$x_1(t) = e^{-t}(c_3t + c_2)$$

$$x_2(t) = \frac{(-c_3t^2 - 2c_2t + c_3t + 4c_1)e^{-t}}{4}$$

$$x_3(t) = -\frac{e^{-t}(2c_3t + 2c_2 + c_3)}{4}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 81

 $DSolve[{x1'[t] == -3*x1[t] + 0*x2[t] - 4*x3[t], x2'[t] == -1*x1[t] - 1*x2[t] - 1*x3[t], x3'[t] == 1*x1[t] + 0*x2[t] - 1*x2[t] - 1*x3[t], x3'[t] == 1*x1[t] + 0*x2[t] - 1*x2[t] - 1*x2[t$

$$x1(t) \to e^{-t}(-2c_1t - 4c_3t + c_1)$$

$$x2(t) \to \frac{1}{2}e^{-t}((c_1 + 2c_3)t^2 - 2(c_1 + c_3)t + 2c_2)$$

$$x3(t) \to e^{-t}((c_1 + 2c_3)t + c_3)$$

6.12 problem problem 12

Internal problem ID [369]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 12.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -x_1(t) + x_3(t)$$

$$x'_2(t) = -x_2(t) + x_3(t)$$

$$x_3'(t) = x_1(t) - x_2(t) - x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 62

$$x_1(t) = \frac{(c_3t^2 + 2c_2t + 2c_1)e^{-t}}{2}$$

$$x_2(t) = \frac{e^{-t}(c_3t^2 + 2c_2t + 2c_1 - 2c_3)}{2}$$

$$x_3(t) = e^{-t}(c_3t + c_2)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 89

DSolve[{x1'[t]==-1*x1[t]+0*x2[t]+1*x3[t],x2'[t]==0*x1[t]-1*x2[t]+1*x3[t],x3'[t]==1*x1[t]-1*x

$$x1(t) \to \frac{1}{2}e^{-t}(c_1(t^2+2) + t(2c_3 - c_2t))$$

$$x2(t) \to \frac{1}{2}e^{-t}((c_1 - c_2)t^2 + 2c_3t + 2c_2)$$

$$x3(t) \to e^{-t}((c_1 - c_2)t + c_3)$$

6.13 problem problem 13

Internal problem ID [370]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 13.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = -x_1(t) + x_3(t)$$

$$x_2'(t) = x_2(t) - 4x_3(t)$$

$$x_3'(t) = x_2(t) - 3x_3(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 54

$$x_1(t) = \frac{(c_3t^2 + 2c_2t + 2c_1)e^{-t}}{2}$$

$$x_2(t) = e^{-t}(2c_3t + 2c_2 + c_3)$$

$$x_3(t) = e^{-t}(c_3t + c_2)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 78

DSolve[{x1'[t]==-1*x1[t]+0*x2[t]+1*x3[t],x2'[t]==0*x1[t]+1*x2[t]-4*x3[t],x3'[t]==0*x1[t]+1*x

$$x1(t) \rightarrow \frac{1}{2}e^{-t}(t((c_2 - 2c_3)t + 2c_3) + 2c_1)$$

$$x2(t) \rightarrow e^{-t}(2c_2t - 4c_3t + c_2)$$

$$x3(t) \rightarrow e^{-t}((c_2 - 2c_3)t + c_3)$$

6.14 problem problem 14

Internal problem ID [371]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 14.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_3(t)$$

$$x'_2(t) = -5x_1(t) - x_2(t) - 5x_3(t)$$

$$x'_3(t) = 4x_1(t) + x_2(t) - 2x_3(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 72

$$x_1(t) = e^{-t} (c_3 t^2 + c_2 t + c_1)$$

$$x_2(t) = -e^{-t} (5c_3 t^2 + 5c_2 t + 5c_1 - 2c_3)$$

$$x_3(t) = -e^{-t} (c_3 t^2 + c_2 t - 2c_3 t + c_1 - c_2)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 119

 $DSolve[{x1'[t] == 0 * x1[t] + 0 * x2[t] + 1 * x3[t], x2'[t] == -5 * x1[t] - 1 * x2[t] - 5 * x3[t], x3'[t] == 4 * x1[t] + 1 * x1[t] +$

$$x1(t) \to \frac{1}{2}e^{-t} \left(c_1 \left(5t^2 + 2t + 2 \right) + t(c_2 t + 2c_3) \right)$$

$$x2(t) \to \frac{1}{2}e^{-t} \left(-5(5c_1 + c_2)t^2 - 10(c_1 + c_3)t + 2c_2 \right)$$

$$x3(t) \to \frac{1}{2}e^{-t} \left(-\left((5c_1 + c_2)t^2 \right) + 2(4c_1 + c_2 - c_3)t + 2c_3 \right)$$

6.15 problem problem 15

Internal problem ID [372]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 15.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -2x_1(t) - 9x_2(t)$$

$$x'_2(t) = x_1(t) + 4x_2(t)$$

$$x'_3(t) = x_1(t) + 3x_2(t) + x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 47

$$x_1(t) = e^t(c_3t + c_2)$$

$$x_2(t) = -\frac{e^t(3c_3t + 3c_2 + c_3)}{9}$$

$$x_3(t) = \frac{e^t(-c_3t + 3c_1 - c_2)}{3}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 62

DSolve[{x1'[t]==-2*x1[t]-9*x2[t]-0*x3[t],x2'[t]==1*x1[t]+4*x2[t]-0*x3[t],x3'[t]==1*x1[t]+3*x

$$x1(t) \to -e^t(c_1(3t-1) + 9c_2t)$$

$$x2(t) \rightarrow e^t((c_1 + 3c_2)t + c_2)$$

$$x3(t) \rightarrow e^t((c_1 + 3c_2)t + c_3)$$

6.16 problem problem 16

Internal problem ID [373]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 16.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_1(t)$$

$$x'_2(t) = -2x_1(t) - 2x_2(t) - 3x_3(t)$$

$$x'_3(t) = 2x_1(t) + 3x_2(t) + 4x_3(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 39

$$x_1(t) = c_3 e^t$$

$$x_2(t) = e^t (c_2 t + c_1)$$

$$x_3(t) = -\frac{e^t (3c_2 t + 3c_1 + c_2 + 2c_3)}{3}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 57

DSolve[{x1'[t]==1*x1[t]+0*x2[t]-0*x3[t],x2'[t]==-2*x1[t]-2*x2[t]-3*x3[t],x3'[t]==2*x1[t]+3*x

$$x1(t) \to c_1 e^t$$

 $x2(t) \to e^t (-2c_1 t - 3(c_2 + c_3)t + c_2)$
 $x3(t) \to e^t (2c_1 t + 3(c_2 + c_3)t + c_3)$

6.17 problem problem 17

Internal problem ID [374]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 17.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = x_1(t)$$

$$x'_2(t) = 18x_1(t) + 7x_2(t) + 4x_3(t)$$

$$x'_3(t) = -27x_1(t) - 9x_2(t) - 5x_3(t)$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 41

$$x_1(t) = c_3 e^t$$

$$x_2(t) = e^t (c_2 t + c_1)$$

$$x_3(t) = -\frac{e^t (6c_2 t + 6c_1 - c_2 + 18c_3)}{4}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 63

DSolve[{x1'[t]==1*x1[t]+0*x2[t]-0*x3[t],x2'[t]==18*x1[t]+7*x2[t]+4*x3[t],x3'[t]==-27*x1[t]-9

$$x1(t) \rightarrow c_1 e^t$$

 $x2(t) \rightarrow e^t (2(9c_1 + 3c_2 + 2c_3)t + c_2)$
 $x3(t) \rightarrow e^t (c_3 - 3(9c_1 + 3c_2 + 2c_3)t)$

6.18 problem problem 18

Internal problem ID [375]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 18.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = x_1(t)$$

$$x'_2(t) = x_1(t) + 3x_2(t) + x_3(t)$$

$$x'_3(t) = -2x_1(t) - 4x_2(t) - x_3(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

 $dsolve([diff(x_1(t),t)=1*x_1(t)+0*x_2(t)-0*x_3(t),diff(x_2(t),t)=1*x_1(t)+3*x_2(t)+1*x_1(t)+3*x_2(t)+1*x_1(t)+3*x_1(t)$

$$x_1(t) = c_3 e^t$$

$$x_2(t) = e^t (c_2 t + c_1)$$

$$x_3(t) = -e^t (2c_2 t + 2c_1 - c_2 + c_3)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 54

DSolve[{x1'[t]==1*x1[t]+0*x2[t]-0*x3[t],x2'[t]==1*x1[t]+3*x2[t]+1*x3[t],x3'[t]==-2*x1[t]-4*x

$$x1(t) \rightarrow c_1 e^t$$

 $x2(t) \rightarrow e^t((c_1 + 2c_2 + c_3)t + c_2)$
 $x3(t) \rightarrow e^t(c_3 - 2(c_1 + 2c_2 + c_3)t)$

6.19 problem problem 19

Internal problem ID [376]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 19.

ODE order: 1. ODE degree: 1.

Solve

$$\begin{aligned} x_1'(t) &= x_1(t) - 4x_2(t) - 2x_4(t) \\ x_2'(t) &= x_2(t) \\ x_3'(t) &= 6x_1(t) - 12x_2(t) - x_3(t) - 6x_4(t) \\ x_4'(t) &= -4x_2(t) - x_4(t) \end{aligned}$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 53

$$x_1(t) = c_2 e^t + c_3 e^{-t}$$

$$x_2(t) = c_4 e^t$$

$$x_3(t) = 3c_2 e^t + e^{-t}c_1$$

$$x_4(t) = -2c_4 e^t + c_3 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 114

 $DSolve[{x1'[t] == 1 * x1[t] - 4 * x2[t] + 0 * x3[t] - 2 * x4[t], x2'[t] == 0 * x1[t] + 1 * x2[t] + 0 * x3[t] + 0 * x4[t], x3'[t] + 0 * x4[t], x3$

$$\begin{split} & \text{x1}(t) \rightarrow e^{-t} \big((c_1 - 2c_2 - c_4) e^{2t} + 2c_2 + c_4 \big) \\ & \text{x2}(t) \rightarrow c_2 e^t \\ & \text{x3}(t) \rightarrow e^{-t} \big(3c_1 \big(e^{2t} - 1 \big) - 6c_2 \big(e^{2t} - 1 \big) - 3c_4 e^{2t} + c_3 + 3c_4 \big) \\ & \text{x4}(t) \rightarrow e^{-t} \big(c_4 - 2c_2 \big(e^{2t} - 1 \big) \big) \end{split}$$

6.20 problem problem 20

Internal problem ID [377]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 20.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 2x_1(t) + x_2(t) + x_4(t)$$

$$x'_2(t) = 2x_2(t) + x_3(t)$$

$$x'_3(t) = 2x_3(t) + x_4(t)$$

$$x'_4(t) = 2x_4(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 78

 $dsolve([diff(x_1(t),t)=2*x_1(t)+1*x_2(t)+0*x_3(t)+1*x_4(t),diff(x_2(t),t)=0*x_1(t)+2*x_1(t)+1*x_2(t)+1*x_3(t)+1*x_4(t),diff(x_1(t),t)=0*x_1(t)+2*x_1(t)+1*$

$$x_1(t) = \frac{(c_4t^3 + 3c_3t^2 + 6c_2t + 6c_4t + 6c_1)e^{2t}}{6}$$

$$x_2(t) = \frac{(c_4t^2 + 2c_3t + 2c_2)e^{2t}}{2}$$

$$x_3(t) = (c_4t + c_3)e^{2t}$$

$$x_4(t) = c_4e^{2t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: $96\,$

DSolve[{x1'[t]==2*x1[t]+1*x2[t]+0*x3[t]+1*x4[t],x2'[t]==0*x1[t]+2*x2[t]+1*x3[t]+0*x4[t],x3'[

$$x1(t) \to \frac{1}{6}e^{2t} \left(t \left(c_4 t^2 + 3c_3 t + 6c_2 + 6c_4 \right) + 6c_1 \right)$$

$$x2(t) \to \frac{1}{2}e^{2t} \left(t \left(c_4 t + 2c_3 \right) + 2c_2 \right)$$

$$x3(t) \to e^{2t} \left(c_4 t + c_3 \right)$$

$$x4(t) \to c_4 e^{2t}$$

6.21 problem problem 21

Internal problem ID [378]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 21.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -x_1(t) - 4x_2(t)$$

$$x'_2(t) = x_1(t) + 3x_2(t)$$

$$x'_3(t) = x_1(t) + 2x_2(t) + x_3(t)$$

$$x'_4(t) = x_2(t) + x_4(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 63

$$x_1(t) = -e^t (2c_4t + 2c_3 - c_4)$$

$$x_2(t) = e^t (c_4t + c_3)$$

$$x_3(t) = e^t (c_4t + c_1 + c_3)$$

$$x_4(t) = \frac{(c_4t^2 + 2c_3t + 2c_2)e^t}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 91

$$DSolve[{x1'[t] == -1*x1[t] - 4*x2[t] + 0*x3[t] + 0*x4[t], x2'[t] == 1*x1[t] + 3*x2[t] + 0*x3[t] + 0*x4[t], x3'[t] + 0*x4[t], x3'[t], x3'[t] + 0*x4[t], x3'[t] + 0*x4[t], x3'[t] + 0*x4[t], x3'[t], x3'[t] + 0*x4[t], x3'[t], x3'[t] + 0*x4[t], x3'[t], x3'[t], x3'[t] + 0*x4[t], x3'[t], x3'[t],$$

$$x1(t) \to -e^{t}(c_{1}(2t-1) + 4c_{2}t)$$

$$x2(t) \to e^{t}((c_{1} + 2c_{2})t + c_{2})$$

$$x3(t) \to e^{t}((c_{1} + 2c_{2})t + c_{3})$$

$$x4(t) \to \frac{1}{2}e^{t}(c_{1}t^{2} + 2c_{2}(t+1)t + 2c_{4})$$

6.22 problem problem 22

Internal problem ID [379]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 22.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = x_1(t) + 3x_2(t) + 7x_3(t)$$

$$x'_2(t) = -x_2(t) - 4x_3(t)$$

$$x'_3(t) = x_2(t) + 3x_3(t)$$

$$x'_4(t) = -6x_2(t) - 14x_3(t) + x_4(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 78

 $\frac{dsolve([diff(x_1(t),t)=1*x_1(t)+3*x_2(t)+7*x_3(t)+0*x_4(t),diff(x_2(t),t)=0*x_1(t)-1*x_1(t)+1*x_2(t)+1*x_1($

$$x_1(t) = \frac{(-c_4t^2 - 2c_3t - 7c_4t + 4c_2)e^t}{4}$$

$$x_2(t) = e^t(c_4t + c_3)$$

$$x_3(t) = -\frac{e^t(2c_4t + 2c_3 + c_4)}{4}$$

$$x_4(t) = \frac{(c_4t^2 + 2c_3t + 7c_4t + 2c_1)e^t}{2}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 99

DSolve[{x1'[t]==1*x1[t]+3*x2[t]+7*x3[t]+0*x4[t],x2'[t]==0*x1[t]-1*x2[t]-4*x3[t]+0*x4[t],x3'[t]

$$x1(t) \to \frac{1}{2}e^{t}(c_{2}t(t+6) + 2c_{3}t(t+7) + 2c_{1})$$

$$x2(t) \to -e^{t}(c_{2}(2t-1) + 4c_{3}t)$$

$$x3(t) \to e^{t}((c_{2} + 2c_{3})t + c_{3})$$

$$x4(t) \to e^{t}(c_{2}(-t)(t+6) - 2c_{3}t(t+7) + c_{4})$$

6.23 problem problem 23

Internal problem ID [380]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 23.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 39x_1(t) + 8x_2(t) - 16x_3(t)$$

$$x'_2(t) = -36x_1(t) - 5x_2(t) + 16x_3(t)$$

$$x'_3(t) = 72x_1(t) + 16x_2(t) - 29x_3(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 67

$$x_1(t) = c_2 e^{3t} + c_3 e^{-t}$$

$$x_2(t) = -c_2 e^{3t} - c_3 e^{-t} + c_1 e^{3t}$$

$$x_3(t) = \frac{7c_2 e^{3t}}{4} + 2c_3 e^{-t} + \frac{c_1 e^{3t}}{2}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 127

DSolve[{x1'[t]==39*x1[t]+8*x2[t]-16*x3[t],x2'[t]==-36*x1[t]-5*x2[t]+16*x3[t],x3'[t]==72*x1[t]

$$x1(t) \to e^{-t} \left(c_1 \left(10e^{4t} - 9 \right) + 2(c_2 - 2c_3) \left(e^{4t} - 1 \right) \right) x2(t) \to e^{-t} \left(-9c_1 \left(e^{4t} - 1 \right) - c_2 \left(e^{4t} - 2 \right) + 4c_3 \left(e^{4t} - 1 \right) \right) x3(t) \to e^{-t} \left(18c_1 \left(e^{4t} - 1 \right) + 4c_2 \left(e^{4t} - 1 \right) + c_3 \left(8 - 7e^{4t} \right) \right)$$

6.24 problem problem 24

Internal problem ID [381]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 24.

ODE order: 1. ODE degree: 1.

Solve

$$x_1'(t) = 28x_1(t) + 50x_2(t) + 100x_3(t)$$

$$x_2'(t) = 15x_1(t) + 33x_2(t) + 60x_3(t)$$

$$x_3'(t) = -15x_1(t) - 30x_2(t) - 57x_3(t)$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 67

$$x_1(t) = c_2 e^{3t} + c_3 e^{-2t}$$

$$x_2(t) = \frac{3c_2 e^{3t}}{5} + \frac{3c_3 e^{-2t}}{5} + c_1 e^{3t}$$

$$x_3(t) = -\frac{11c_2 e^{3t}}{20} - \frac{3c_3 e^{-2t}}{5} - \frac{c_1 e^{3t}}{2}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 229

DSolve[{x1'[t]==28*x1[t]+50*x2[t]+100*x3[t],x2'[t]==15*x1[t]+33*x2[t]+60*x3[t],x3'[t]==-15*x

$$x1(t) \to \frac{1}{57} e^{t/2} \left(19(3c_1 - 5c_2)e^{5t/2} + 95c_2 \cos\left(\frac{5\sqrt{95}t}{2}\right) + \sqrt{95}(6c_1 + 13c_2 + 24c_3) \sin\left(\frac{5\sqrt{95}t}{2}\right) \right)$$

$$x2(t) \to \frac{1}{95} e^{t/2} \left(95c_2 \cos\left(\frac{5\sqrt{95}t}{2}\right) + \sqrt{95}(6c_1 + 13c_2 + 24c_3) \sin\left(\frac{5\sqrt{95}t}{2}\right) \right)$$

$$x3(t) \to \frac{e^{t/2} \left(95(3c_1 - 5c_2)e^{5t/2} - 95(3c_1 - 5c_2 + 12c_3) \cos\left(\frac{5\sqrt{95}t}{2}\right) + \sqrt{95}(69c_1 + 197c_2 + 276c_3) \sin\left(\frac{5\sqrt{95}t}{2}\right) \right)$$

$$1140$$

6.25 problem problem 25

Internal problem ID [382]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 25.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -2x_1(t) + 17x_2(t) + 4x_3(t)$$

$$x'_2(t) = -x_1(t) + 6x_2(t) + x_3(t)$$

$$x'_3(t) = x_2(t) + 2x_3(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 62

$$dsolve([diff(x_1(t),t)=-2*x_1(t)+17*x_2(t)+4*x_3(t),diff(x_2(t),t)=-1*x_1(t)+6*x_2(t)+6*x_3(t),diff(x_2(t),t)=-1*x_1(t)+6*x_2(t)+6*x_3(t),diff(x_3(t),t)=-1*x_1(t)+6*x_2(t)+6*x_3(t)+$$

$$x_1(t) = e^{2t} (c_3 t^2 + c_2 t + 8c_3 t + c_1 + 4c_2 - 2c_3)$$

$$x_2(t) = e^{2t} (2c_3 t + c_2)$$

$$x_3(t) = e^{2t} (c_3 t^2 + c_2 t + c_1)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 105

$$x1(t) \to \frac{1}{2}e^{2t} \left(-\left(c_1(t^2 + 8t - 2)\right) + c_2t(4t + 34) + c_3t(t + 8) \right)$$

$$x2(t) \to e^{2t} \left(\left(-c_1 + 4c_2 + c_3\right)t + c_2 \right)$$

$$x3(t) \to \frac{1}{2}e^{2t} \left(\left(-c_1 + 4c_2 + c_3\right)t^2 + 2c_2t + 2c_3 \right)$$

6.26 problem problem 26

Internal problem ID [383]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 26.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 5x_1(t) - x_2(t) + x_3(t)$$

$$x'_2(t) = x_1(t) + 3x_2(t)$$

$$x'_3(t) = -3x_1(t) + 2x_2(t) + x_3(t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 62

 $dsolve([diff(x_1(t),t)=5*x_1(t)-1*x_2(t)+1*x_3(t),diff(x_2(t),t)=1*x_1(t)+3*x_2(t)+0*x_1(t)+3*x_2(t)+0*x_1(t)+3*x_1(t)$

$$x_1(t) = e^{3t}(2c_3t + c_2)$$

$$x_2(t) = e^{3t}(c_3t^2 + c_2t + c_1)$$

$$x_3(t) = e^{3t}(c_3t^2 + c_2t - 4c_3t + c_1 - 2c_2 + 2c_3)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 105

DSolve[{x1'[t]==5*x1[t]-1*x2[t]+1*x3[t],x2'[t]==1*x1[t]+3*x2[t]+0*x3[t],x3'[t]==-3*x1[t]+2*x

$$x1(t) \to e^{3t}(2c_1t - c_2t + c_3t + c_1)$$

$$x2(t) \to \frac{1}{2}e^{3t}((2c_1 - c_2 + c_3)t^2 + 2c_1t + 2c_2)$$

$$x3(t) \to \frac{1}{2}e^{3t}(c_3(t^2 - 4t + 2) + 2c_1(t - 3)t - c_2(t - 4)t)$$

6.27 problem problem 27

Internal problem ID [384]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 27.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -3x_1(t) + 5x_2(t) - 5x_3(t)$$

$$x'_2(t) = 3x_1(t) - x_2(t) + 3x_3(t)$$

$$x'_3(t) = 8x_1(t) - 8x_2(t) + 10x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 58

$$x_1(t) = e^{2t}(c_3t + c_2)$$

$$x_2(t) = \frac{e^{2t}(-3c_3t + 5c_1 - 3c_2)}{5}$$

$$x_3(t) = \frac{e^{2t}(-8c_3t + 5c_1 - 8c_2 - c_3)}{5}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 174

$$x1(t) \to \frac{1}{3}e^{2t} \left(-5(c_1 + c_3)\cos\left(\sqrt{3}t\right) - 5\sqrt{3}(c_1 - c_2 + c_3)\sin\left(\sqrt{3}t\right) + 8c_1 + 5c_3 \right)$$

$$x2(t) \to \frac{1}{3}e^{2t} \left(3c_2\cos\left(\sqrt{3}t\right) + \sqrt{3}(4c_1 - 3c_2 + 4c_3)\sin\left(\sqrt{3}t\right) \right)$$

$$x3(t) \to \frac{1}{3}e^{2t} \left(8(c_1 + c_3)\cos\left(\sqrt{3}t\right) + 8\sqrt{3}(c_1 - c_2 + c_3)\sin\left(\sqrt{3}t\right) - 8c_1 - 5c_3 \right)$$

6.28 problem problem 28

Internal problem ID [385]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 28.

ODE order: 1.
ODE degree: 1.

Solve

$$x'_1(t) = -15x_1(t) - 7x_2(t) + 4x_3(t)$$

$$x'_2(t) = 34x_1(t) + 16x_2(t) - 11x_3(t)$$

$$x'_3(t) = 17x_1(t) + 7x_2(t) + 5x_3(t)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 73

$$x_1(t) = e^{2t} (c_3 t^2 + c_2 t + c_1)$$

$$x_2(t) = -\frac{e^{2t} (833c_3 t^2 + 833c_2 t + 42c_3 t + 833c_1 + 21c_2 - 8c_3)}{343}$$

$$x_3(t) = \frac{e^{2t} (14c_3 t + 7c_2 + 2c_3)}{49}$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 124

$$x1(t) \to \frac{1}{2}e^{2t} \left(c_1 \left(119t^2 - 34t + 2 \right) + 7c_2 t (7t - 2) + c_3 t (21t + 8) \right)$$

$$x2(t) \to -\frac{1}{2}e^{2t} \left(17(17c_1 + 7c_2 + 3c_3)t^2 + (-68c_1 - 28c_2 + 22c_3)t - 2c_2 \right)$$

$$x3(t) \to e^{2t} \left((17c_1 + 7c_2 + 3c_3)t + c_3 \right)$$

6.29 problem problem 29

Internal problem ID [386]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 29.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = -x_1(t) + x_2(t) + x_3(t) - 2x_4(t)$$

$$x'_2(t) = 7x_1(t) - 4x_2(t) - 6x_3(t) + 11x_4(t)$$

$$x'_3(t) = 5x_1(t) - x_2(t) + x_3(t) + 3x_4(t)$$

$$x'_4(t) = 6x_1(t) - 2x_2(t) - 2x_3(t) + 6x_4(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 120

$$x_1(t) = e^{-t}(c_4t + c_3)$$

$$x_2(t) = -3c_4e^{-t}t - 3c_3e^{-t} + c_4e^{-t} + e^{2t}tc_1 + c_2e^{2t}$$

$$x_3(t) = -c_4e^{-t}t - c_3e^{-t} - e^{2t}tc_1 - 2c_1e^{2t} - c_2e^{2t}$$

$$x_4(t) = -2c_4e^{-t}t - 2c_3e^{-t} - c_1e^{2t}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 196

$$\begin{aligned} & \text{x1}(t) \to e^{-t}((c_2 + c_3 - 2c_4)t + c_1) \\ & \text{x2}(t) \to e^{-t}(c_1(e^{3t}(3 - 2t) - 3) - 3c_2t - c_3e^{3t} - 3c_3t + 2c_4e^{3t} - c_4e^{3t}t + 6c_4t + c_2 + c_3 - 2c_4) \\ & \text{x3}(t) \to e^{-t}(c_1(e^{3t}(2t + 1) - 1) + c_3e^{3t} - t(-c_4(e^{3t} + 2) + c_2 + c_3)) \\ & \text{x4}(t) \to e^{-t}(2c_1(e^{3t} - 1) - 2(c_2 + c_3 - 2c_4)t + c_4e^{3t}) \end{aligned}$$

6.30 problem problem 30

Internal problem ID [387]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 30.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 2x_1(t) + x_2(t) - 2x_3(t) + x_4(t)$$

$$x'_2(t) = 3x_2(t) - 5x_3(t) + 3x_4(t)$$

$$x'_3(t) = -13x_2(t) + 22x_3(t) - 12x_4(t)$$

$$x'_4(t) = -27x_2(t) + 45x_3(t) - 25x_4(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 89

$$dsolve([diff(x_1(t),t)=2*x_1(t)+1*x_2(t)-2*x_3(t)+1*x_4(t),diff(x_2(t),t)=0*x_1(t)+3*x_2(t)-2*x_3(t)+1*x_4(t),diff(x_2(t),t)=0*x_1(t)+3*x_2(t)-2*x_3(t)+1*x_4(t),diff(x_2(t),t)=0*x_1(t)+3*x_2(t)-2*x_3(t)+1*x_4(t),diff(x_2(t),t)=0*x_1(t)+3*x_2(t)-2*x_3(t)+1*x_4(t),diff(x_2(t),t)=0*x_2(t)+1*x_3(t)+1*x_4(t),diff(x_2(t),t)=0*x_4(t)+1*x_4$$

$$x_1(t) = \frac{(-c_2t + 3c_1)e^{2t}}{3}$$

$$x_2(t) = e^{-t}(c_4t + c_3)$$

$$x_3(t) = (-e^{-3t}(c_4t + c_3 - c_4) + c_2)e^{2t}$$

$$x_4(t) = -3c_3e^{-t} - 3c_4e^{-t}t + 2c_4e^{-t} + \frac{5c_2e^{2t}}{3}$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 161

$$\begin{aligned} & \text{x1}(t) \to e^{2t}((c_2 - 2c_3 + c_4)t + c_1) \\ & \text{x2}(t) \to e^{-t}(4c_2t - 5c_3t + 3c_4t + c_2) \\ & \text{x3}(t) \to e^{-t}(c_2(-4t - 3e^{3t} + 3) + c_3(5t + 6e^{3t} - 5) - 3c_4(t + e^{3t} - 1)) \\ & \text{x4}(t) \to e^{-t}(c_2(-12t - 5e^{3t} + 5) + 5c_3(3t + 2e^{3t} - 2) - c_4(9t + 5e^{3t} - 6)) \end{aligned}$$

6.31 problem problem 31

Internal problem ID [388]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 31.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 35x_1(t) - 12x_2(t) + 4x_3(t) + 30x_4(t)$$

$$x'_2(t) = 22x_1(t) - 8x_2(t) + 3x_3(t) + 19x_4(t)$$

$$x'_3(t) = -10x_1(t) + 3x_2(t) - 9x_4(t)$$

$$x'_4(t) = -27x_1(t) + 9x_2(t) - 3x_3(t) - 23x_4(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 117

$$x_1(t) = \frac{e^t(-6c_4t^2 - 6c_3t - 4c_4t + 3c_1 - 6c_2 - 2c_3)}{3}$$

$$x_2(t) = \frac{e^t(-3c_4t^2 - 3c_3t - 16c_4t + 3c_1 - 3c_2 - 8c_3 + 6c_4)}{9}$$

$$x_3(t) = e^t(c_4t^2 + c_3t + c_2)$$

$$x_4(t) = -\frac{e^t(-18c_4t^2 - 18c_3t - 6c_4t + 9c_1 - 18c_2 - 3c_3 - 2c_4)}{9}$$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 207

 $DSolve[{x1'[t] == 35*x1[t] - 12*x2[t] + 4*x3[t] + 30*x4[t], x2'[t] == 22*x1[t] - 8*x2[t] + 3*x3[t] + 19*x4[t]}$

$$x1(t) \to e^{t} \left(c_{1} \left(21t^{2} + 34t + 1 \right) - 3c_{2}t(3t + 4) + c_{3}t(3t + 4) + 6c_{4}t(3t + 5) \right)$$

$$x2(t) \to \frac{1}{2} e^{t} \left((7c_{1} - 3c_{2} + c_{3} + 6c_{4})t^{2} + 2(22c_{1} - 9c_{2} + 3c_{3} + 19c_{4})t + 2c_{2} \right)$$

$$x3(t) \to \frac{1}{2} e^{t} \left(-3(7c_{1} - 3c_{2} + c_{3} + 6c_{4})t^{2} - 2(10c_{1} - 3c_{2} + c_{3} + 9c_{4})t + 2c_{3} \right)$$

$$x4(t) \to e^{t} \left(-3(7c_{1} - 3c_{2} + c_{3} + 6c_{4})t^{2} - 3(9c_{1} - 3c_{2} + c_{3} + 8c_{4})t + c_{4} \right)$$

6.32 problem problem 32

Internal problem ID [389]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 32.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 11x_1(t) - x_2(t) + 26x_3(t) + 6x_4(t) - 3x_5(t)$$

$$x'_2(t) = 3x_2(t)$$

$$x'_3(t) = -9x_1(t) - 24x_3(t) - 6x_4(t) + 3x_5(t)$$

$$x'_4(t) = 3x_1(t) + 9x_3(t) + 5x_4(t) - x_5(t)$$

$$x'_5(t) = -48x_1(t) - 3x_2(t) - 138x_3(t) - 30x_4(t) + 18x_5(t)$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 107

$$dsolve([diff(x_1(t),t)=11*x_1(t)-1*x_2(t)+26*x_3(t)+6*x_4(t)-3*x_5(t),diff(x_2(t),t)=11*x_1(t)-1*x_2(t)+11*x_1(t)-1*x_2(t)+11*x_1(t)-1*x_2(t)+11*x_1(t)-1*x_2(t)+11*x_1(t)-1*x_1(t)-1*x_2(t)+11*x_1(t)-$$

$$x_1(t) = (-(c_3 + c_5) e^t + c_1) e^{2t}$$

$$x_2(t) = c_5 e^{3t}$$

$$x_3(t) = c_3 e^{3t} + c_4 e^{2t}$$

$$x_4(t) = -\frac{c_3 e^{3t}}{3} - \frac{c_4 e^{2t}}{3} + c_2 e^{3t}$$

$$x_5(t) = \frac{16c_3 e^{3t}}{3} + 8c_4 e^{2t} + 2c_2 e^{3t} - 3c_5 e^{3t} + 3c_1 e^{2t}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 211

DSolve[{x1'[t]==11*x1[t]-1*x2[t]+26*x3[t]+6*x4[t]-3*x5[t],x2'[t]==0*x1[t]+3*x2[t],x3'[t]==-9

$$x1(t) \rightarrow e^{2t} (c_1(9e^t - 8) - (c_2 - 26c_3 - 6c_4 + 3c_5) (e^t - 1))$$

$$x2(t) \rightarrow c_2 e^{3t}$$

$$x3(t) \to -e^{2t} \left(9c_1(e^t - 1) + c_3(26e^t - 27) + 3(2c_4 - c_5)(e^t - 1)\right)$$

$$x4(t) \rightarrow e^{2t} (3c_1(e^t - 1) + 9c_3(e^t - 1) + 3c_4e^t - c_5e^t - 2c_4 + c_5)$$

$$x5(t) \rightarrow -e^{2t} \left(48c_1(e^t - 1) + 3c_2(e^t - 1) + 138c_3e^t + 30c_4e^t - 16c_5e^t - 138c_3 - 30c_4 + 15c_5 \right)$$

6.33 problem problem 33

Internal problem ID [390]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 33.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 3x_1(t) - 4x_2(t) + x_3(t)$$

$$x'_2(t) = 4x_1(t) + 3x_2(t) + x_4(t)$$

$$x'_3(t) = 3x_3(t) - 4x_4(t)$$

$$x'_4(t) = 4x_3(t) + 3x_4(t)$$

✓ Solution by Maple

Time used: 0.453 (sec). Leaf size: 140

$$dsolve([diff(x_1(t),t)=3*x_1(t)-4*x_2(t)+1*x_3(t)+0*x_4(t),diff(x_2(t),t)=4*x_1(t)+3*x_4(t),diff(x_2(t),t)=4*x_1(t)+3*x_2(t)+1*x_3(t)+0*x_4(t),diff(x_2(t),t)=4*x_1(t)+3*x_2(t)+1*x_3(t)+0*x_4(t)+1*x_4$$

$$x_{1}(t) = \frac{e^{3t}(4\cos(4t)c_{4}t + 4\sin(4t)c_{3}t + 4c_{1}\cos(4t) + 4c_{2}\sin(4t) - \sin(4t)c_{4})}{4}$$

$$x_{2}(t) = -\frac{e^{3t}(4\cos(4t)c_{3}t - 4\sin(4t)c_{4}t + 4c_{2}\cos(4t) - c_{4}\cos(4t) - 4c_{1}\sin(4t))}{4}$$

$$x_{3}(t) = e^{3t}(c_{4}\cos(4t) + c_{3}\sin(4t))$$

$$x_{4}(t) = -e^{3t}(\cos(4t)c_{3} - \sin(4t)c_{4})$$

✓ Solution by Mathematica

Time used: 0.1 (sec). Leaf size: 120

$$x1(t) \to e^{3t}((c_3t + c_1)\cos(4t) - (c_4t + c_2)\sin(4t))$$

$$x2(t) \to e^{3t}((c_4t + c_2)\cos(4t) + (c_3t + c_1)\sin(4t))$$

$$x3(t) \to e^{3t}(c_3\cos(4t) - c_4\sin(4t))$$

$$x4(t) \to e^{3t}(c_4\cos(4t) + c_3\sin(4t))$$

6.34 problem problem 34

Internal problem ID [391]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451

Problem number: problem 34.

ODE order: 1. ODE degree: 1.

Solve

$$x'_1(t) = 2x_1(t) - 8x_3(t) - 3x_4(t)$$

$$x'_2(t) = -18x_1(t) - x_2(t)$$

$$x'_3(t) = -9x_1(t) - 3x_2(t) - 25x_3(t) - 9x_4(t)$$

$$x'_4(t) = 33x_1(t) + 10x_2(t) + 90x_3(t) + 32x_4(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 252

$$x_1(t) = \frac{e^{2t}(3\cos(3t)c_3t + 3\cos(3t)c_4t + 3\sin(3t)c_3t - 3\sin(3t)c_4t + 3c_1\cos(3t) + 3c_2\cos(3t) + \cos(3t)c_4t}{18}$$

 $\frac{dsolve([diff(x_1(t),t)=2*x_1(t)+0*x_2(t)-8*x_3(t)-3*x_4(t),diff(x_2(t),t)=-18*x_1(t)-8*x_1(t)-8*x_1(t)-8*x_1(t)+18*x_1(t)+18*x_1(t)-18*x_1(t)+$

$$x_2(t) = e^{2t}(\cos(3t) c_4 t + \sin(3t) c_3 t + c_2 \cos(3t) + c_1 \sin(3t))$$

$$x_3(t) = -\frac{e^{2t}(\cos(3t) c_3 + \cos(3t) c_4 + \sin(3t) c_3 - \sin(3t) c_4)}{6}$$

$$x_4(t)$$

$$= \frac{e^{2t}(3\cos(3t)c_3t - 3\cos(3t)c_4t - 3\sin(3t)c_3t - 3\sin(3t)c_4t + 3c_1\cos(3t) - 3c_2\cos(3t) + 10\cos(3t)c_3t}{10\cos(3t)c_4t - 3\sin(3t)c_3t - 3\sin(3t)c_4t + 3c_1\cos(3t) + 10\cos(3t)c_3t}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 482

 $DSolve[{x1'[t] == 2*x1[t] + 0*x2[t] - 8*x3[t] - 3*x4[t], x2'[t] == -18*x1[t] - 1*x2[t] + 0*x3[t] + 0*x4[t], x3[t] + 0*x4[t], x3[t], x3[t] + 0*x4[t], x3[t], x3[t] + 0*x4[t], x3[t], x3[t] + 0*x4[t], x3[t], x3[t]$

$$\begin{split} \mathbf{x}1(t) &\to \frac{1}{2}e^{(2-3i)t} \big(c_1 \big(e^{6it} (1+3it) - 3it + 1 \big) + i \big(3c_3 + c_4 \big) \left(-1 + e^{6it} \right) \\ &\quad + t \big(ic_2 \big(-1 + e^{6it} \big) + c_3 \big((1+9i)e^{6it} + (1-9i) \big) + 3ic_4 \big(-1 + e^{6it} \big) \big) \big) \\ \mathbf{x}2(t) &\to -\frac{1}{2}e^{(2-3i)t} \big(c_1 \big((9-9i)t + e^{6it} ((9+9i)t - 3i) + 3i \big) \\ &\quad + c_2 \big((3-3i)t + e^{6it} (-1 + (3+3i)t) - 1 \big) + 10ic_3 e^{6it} + (30+24i)c_3 e^{6it} t \\ &\quad + (30-24i)c_3t + 3ic_4 e^{6it} + (9+9i)c_4 e^{6it}t + (9-9i)c_4t - 10ic_3 - 3ic_4 \big) \\ \mathbf{x}3(t) &\to \frac{1}{2}e^{(2-3i)t} \big(3ic_1 \big(-1 + e^{6it} \big) + ic_2 \big(-1 + e^{6it} \big) + (1+9i)c_3 e^{6it} + 3ic_4 e^{6it} + (1-9i)c_3 e^{6it} \big) \\ \mathbf{x}4(t) &\to \frac{1}{2}e^{(2-3i)t} \big(c_1 \big(3t + e^{6it} (3t - 10i) + 10i \big) + c_2 \big(t + e^{6it} (t - 3i) + 3i \big) - 27ic_3 e^{6it} \\ &\quad + (9-i)c_3 e^{6it}t + (9+i)c_3t + (1-9i)c_4 e^{6it} + 3c_4 e^{6it}t + 3c_4t + 27ic_3 + (1+9i)c_4 \big) \end{split}$$

7 Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615

7.1	problem problem	1															133
7.2	problem problem	2													 		134
7.3	problem problem	3													 . .		135
7.4	problem problem	4													 		136
7.5	problem problem	5													 . .		137
7.6	problem problem	6													 		138
7.7	problem problem	7													 		139
7.8	problem problem	8													 		140
7.9	problem problem	9													 		141
7.10	problem problem	10 .						•									142
7.11	problem problem	11 .													 		143
7.12	problem problem	12 .						•							 		144
7.13	problem problem	13 .													 		145
7.14	problem problem	14 .						•									146
7.15	problem problem	15 .				•		•							 		147
7.16	problem problem	16 .						•									148
7.17	problem problem	17 .				•		•							 		149
7.18	problem problem	18 .	•		 •	•		•	•		•				 		150
7.19	problem problem	19 .				•		•							 		151
7.20	problem problem	20 .	•		 •	•		•	•		•				 		152
7.21	problem problem	21 .						•									153
7.22	problem problem	22 .	•		 •	•		•	•		•				 		154
7.23	problem problem	23 .						•							 		155
7.24	problem problem	26(a)													 , .		157

7.1 problem problem 1

Internal problem ID [392]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x)=y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5\right)y(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 37

AsymptoticDSolveValue[$y'[x] == y[x], y[x], \{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{x^5}{120} + \frac{x^4}{24} + \frac{x^3}{6} + \frac{x^2}{2} + x + 1 \right)$$

7.2 problem problem 2

Internal problem ID [393]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615

Problem number: problem 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

Order:=6;

dsolve(diff(y(x),x)=4*y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + 4x + 8x^2 + \frac{32}{3}x^3 + \frac{32}{3}x^4 + \frac{128}{15}x^5\right)y(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 37

AsymptoticDSolveValue[$y'[x]==4*y[x],y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{128x^5}{15} + \frac{32x^4}{3} + \frac{32x^3}{3} + 8x^2 + 4x + 1 \right)$$

7.3 problem problem 3

Internal problem ID [394]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615

Problem number: problem 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$2y' + 3y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

Order:=6;

dsolve(2*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{3}{2}x + \frac{9}{8}x^2 - \frac{9}{16}x^3 + \frac{27}{128}x^4 - \frac{81}{1280}x^5\right)y(0) + O(x^6)$$

Solution by Mathematica

 $\overline{\text{Time used: 0.001 (sec). Leaf size: 41}}$

AsymptoticDSolveValue $[2*y'[x]+3*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(-\frac{81x^5}{1280} + \frac{27x^4}{128} - \frac{9x^3}{16} + \frac{9x^2}{8} - \frac{3x}{2} + 1 \right)$$

7.4 problem problem 4

Internal problem ID [395]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

 ${f Section}$: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2yx + y' = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

Order:=6;

dsolve(diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - x^2 + \frac{1}{2}x^4\right)y(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 20

AsymptoticDSolveValue[$y'[x]+2*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x)
ightarrow c_1 \left(rac{x^4}{2} - x^2 + 1
ight)$$

7.5 problem problem 5

Internal problem ID [396]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

 ${f Section}:$ Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - x^2 y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

Order:=6; dsolve(diff(y(x),x)=x^2*y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^3}{3}\right)y(0) + O(x^6)$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 15

AsymptoticDSolveValue[$y'[x] == x^2*y[x], y[x], \{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{x^3}{3} + 1\right)$$

7.6 problem problem 6

Internal problem ID [397]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615

Problem number: problem 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(-2+x)y' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

Order:=6;

dsolve((x-2)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \frac{1}{16}x^4 + \frac{1}{32}x^5\right)y(0) + O(x^6)$$

Solution by Mathematica

 $\overline{\text{Time used: 0.001 (sec). Leaf size: 41}}$

AsymptoticDSolveValue[$(x-2)*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(\frac{x^5}{32} + \frac{x^4}{16} + \frac{x^3}{8} + \frac{x^2}{4} + \frac{x}{2} + 1 \right)$$

7.7 problem problem 7

Internal problem ID [398]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

 ${f Section}:$ Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(2x - 1)y' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

Order:=6; dsolve((2*x-1)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = (32x^5 + 16x^4 + 8x^3 + 4x^2 + 2x + 1)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 31

AsymptoticDSolveValue[$(2*x-1)*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 (32x^5 + 16x^4 + 8x^3 + 4x^2 + 2x + 1)$$

7.8 problem problem 8

Internal problem ID [399]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615

Problem number: problem 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2(x+1)y'-y=0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

Order:=6;

dsolve(2*(x+1)*diff(y(x),x)=y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5\right)y(0) + O(x^6)$$

Solution by Mathematica

 $\overline{\text{Time used: 0.001 (sec). Leaf size: 41}}$

 $\label{eq:asymptoticDSolveValue} AsymptoticDSolveValue [2*(x+1)*y'[x]==y[x],y[x],\{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{7x^5}{256} - \frac{5x^4}{128} + \frac{x^3}{16} - \frac{x^2}{8} + \frac{x}{2} + 1 \right)$$

7.9 problem problem 9

Internal problem ID [400]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

 ${f Section}:$ Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(x-1)y' + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

Order:=6; dsolve((x-1)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

$$y(x) = (6x^5 + 5x^4 + 4x^3 + 3x^2 + 2x + 1)y(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 31

AsymptoticDSolveValue[$(x-1)*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 (6x^5 + 5x^4 + 4x^3 + 3x^2 + 2x + 1)$$

7.10 problem problem 10

Internal problem ID [401]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615

Problem number: problem 10.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2(x-1)y' - 3y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

Order:=6; dsolve(2*(x-1)*diff(y(x),x)=3*y(x),y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{3}{2}x + \frac{3}{8}x^2 + \frac{1}{16}x^3 + \frac{3}{128}x^4 + \frac{3}{256}x^5\right)y(0) + O(x^6)$$

Solution by Mathematica

 $\overline{\text{Time used: 0.001 (sec). Leaf size: 41}}$

 $\label{eq:asymptoticDSolveValue} A symptotic DSolveValue [2*(x-1)*y'[x] == 3*y[x], y[x], \{x,0,5\}]$

$$y(x) \to c_1 \left(\frac{3x^5}{256} + \frac{3x^4}{128} + \frac{x^3}{16} + \frac{3x^2}{8} - \frac{3x}{2} + 1 \right)$$

7.11 problem problem 11

Internal problem ID [402]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615

Problem number: problem 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x\$2)=y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{1}{2}x^2 + \frac{1}{24}x^4\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

Solution by Mathematica

 $\overline{\text{Time used: 0.001 (sec). Leaf size: 42}}$

AsymptoticDSolveValue[$y''[x] == y[x], y[x], \{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{120} + \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{24} + \frac{x^2}{2} + 1\right)$$

7.12 problem problem 12

Internal problem ID [403]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615

Problem number: problem 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x\$2)=4*y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + 2x^2 + \frac{2}{3}x^4\right)y(0) + \left(x + \frac{2}{3}x^3 + \frac{2}{15}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.001 (sec). Leaf size: 40}}$

AsymptoticDSolveValue[$y''[x]==4*y[x],y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{2x^5}{15} + \frac{2x^3}{3} + x\right) + c_1 \left(\frac{2x^4}{3} + 2x^2 + 1\right)$$

7.13 problem problem 13

Internal problem ID [404]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615

Problem number: problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 9y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x\$2)+9*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{9}{2}x^2 + \frac{27}{8}x^4\right)y(0) + \left(x - \frac{3}{2}x^3 + \frac{27}{40}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.001 (sec). Leaf size: 42}}$

AsymptoticDSolveValue[$y''[x]+9*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{27x^5}{40} - \frac{3x^3}{2} + x\right) + c_1 \left(\frac{27x^4}{8} - \frac{9x^2}{2} + 1\right)$$

7.14 problem problem 14

Internal problem ID [405]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y = x$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

Order:=6;

dsolve(diff(y(x),x\$2)+y(x)=x,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5\right)D(y)\left(0\right) + \frac{x^3}{6} - \frac{x^5}{120} + O\left(x^6\right)$$

✓ Solution by Mathematica

 $\overline{\text{Time used: 0.043 (sec). Leaf size: 56}}$

 $\label{lem:asymptoticDSolveValue} A symptoticDSolveValue[y''[x]+y[x]==x,y[x],\{x,0,5\}]$

$$y(x) \rightarrow -\frac{x^5}{120} + \frac{x^3}{6} + c_2 \left(\frac{x^5}{120} - \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{24} - \frac{x^2}{2} + 1\right)$$

7.15 problem problem 15

Internal problem ID [406]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

Order:=6;

dsolve(x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \frac{c_1}{x} + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 9

AsymptoticDSolveValue[$x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o rac{c_1}{x}$$

7.16 problem problem 16

Internal problem ID [407]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2y'x - y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

Order:=6; dsolve(2*x*diff(y(x),x)=y(x),y(x),type='series',x=0);

$$y(x) = c_1 \sqrt{x} + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 11

AsymptoticDSolveValue $[2*x*y'[x]==y[x],y[x],\{x,0,5\}]$

$$y(x) \to c_1 \sqrt{x}$$

7.17 problem problem 17

Internal problem ID [408]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y'x^2 + y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

```
Order:=6;
dsolve(x^2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
```

No solution found

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 11

AsymptoticDSolveValue $[x^2*y'[x]+y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_1 e^{\frac{1}{x}}$$

7.18 problem problem 18

Internal problem ID [409]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^3y' - 2y = 0$$

With the expansion point for the power series method at x = 0.

X Solution by Maple

Order:=6;
dsolve(x^3*diff(y(x),x)=2*y(x),y(x),type='series',x=0);

No solution found

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 13

AsymptoticDSolveValue $[x^3*y'[x]==2*y[x],y[x],\{x,0,5\}]$

$$y(x) \to c_1 e^{-\frac{1}{x^2}}$$

7.19 problem problem 19

Internal problem ID [410]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + 4y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 3]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

 $\overline{\text{Time used: 0.0 (sec)}}$. Leaf size: 14

Order:=6;

dsolve([diff(y(x),x\$2)+4*y(x)=0,y(0) = 0, D(y)(0) = 3],y(x),type='series',x=0);

$$y(x) = 3x - 2x^3 + \frac{2}{5}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

$$y(x) \to \frac{2x^5}{5} - 2x^3 + 3x$$

7.20 problem problem 20

Internal problem ID [411]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 4y = 0$$

With initial conditions

$$[y(0) = 2, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6;

dsolve([diff(y(x),x\$2)-4*y(x)=0,y(0) = 2, D(y)(0) = 0],y(x),type='series',x=0);

$$y(x) = 2 + 4x^2 + \frac{4}{3}x^4 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 17

$$y(x) \to \frac{4x^4}{3} + 4x^2 + 2$$

7.21 problem problem 21

Internal problem ID [412]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

 ${f Section}:$ Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' - 2y' + y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

Order:=6;

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);

$$y(x) = x + x^{2} + \frac{1}{2}x^{3} + \frac{1}{6}x^{4} + \frac{1}{24}x^{5} + O(x^{6})$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 29

$$y(x) \rightarrow \frac{x^5}{24} + \frac{x^4}{6} + \frac{x^3}{2} + x^2 + x$$

7.22 problem problem 22

Internal problem ID [413]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

 ${f Section}$: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$y'' + y' - 2y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -2]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

Order:=6;

dsolve([diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=0,y(0) = 1, D(y)(0) = -2],y(x),type='series',x=0)

$$y(x) = 1 - 2x + 2x^{2} - \frac{4}{3}x^{3} + \frac{2}{3}x^{4} - \frac{4}{15}x^{5} + O(x^{6})$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 34

$$y(x) \rightarrow -\frac{4x^5}{15} + \frac{2x^4}{3} - \frac{4x^3}{3} + 2x^2 - 2x + 1$$

7.23 problem problem 23

Internal problem ID [414]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615

Problem number: problem 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x^2y'' + y'x^2 + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 907

Order:=6; $dsolve(x^2*diff(y(x),x$2)+x^2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);$

$$y(x) = \sqrt{x} \left(c_2 x^{\frac{i\sqrt{3}}{2}} \left(1 - \frac{1}{2} x + \frac{i\sqrt{3} + 3}{8i\sqrt{3} + 16} x^2 + \frac{-i\sqrt{3} - 5}{48i\sqrt{3} + 96} x^3 \right) \right)$$

$$+ \frac{1}{384} \frac{(i\sqrt{3} + 5) (i\sqrt{3} + 7)}{(i\sqrt{3} + 4) (i\sqrt{3} + 2)} x^4 - \frac{1}{3840} \frac{(i\sqrt{3} + 7) (i\sqrt{3} + 9)}{(i\sqrt{3} + 4) (i\sqrt{3} + 2)} x^5 + O(x^6) \right)$$

$$+ c_1 x^{-\frac{i\sqrt{3}}{2}} \left(1 - \frac{1}{2} x + \frac{\sqrt{3} + 3i}{8\sqrt{3} + 16i} x^2 + \frac{-\sqrt{3} - 5i}{48\sqrt{3} + 96i} x^3 + \frac{3i\sqrt{3} - 8}{576i\sqrt{3} - 480} x^4 - \frac{1}{3840} \frac{(\sqrt{3} + 7i) (\sqrt{3} + 9i)}{(\sqrt{3} + 4i) (\sqrt{3} + 2i)} x^5 + O(x^6) \right) \right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 886

AsymptoticDSolveValue[$x^2*y''[x]+x^2*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$\begin{split} y(x) & \to \left(\frac{(-1)^{2/3} \left(1 - (-1)^{2/3}\right) \left(2 - (-1)^{2/3}\right) \left(3 - (-1)^{2/3}\right) \left(4 - (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(4 - (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(3 - (-1)^{2/3}\right) \left(1 + (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(1 - (-1)^{2/3}\right) \left(2 - (-1)^{2/3}\right) \left(3 - (-1)^{2/3}\right) x^4 \\ & - \frac{(-1)^{2/3} \left(1 - (-1)^{2/3}\right) \left(2 - (-1)^{2/3}\right) \left(1 + (2 - (-1)^{2/3}) \left(3 - (-1)^{2/3}\right)\right) \left(1 + (2 - (-1)^{2/3}) \left(3 - (-1)^{2/3}\right)\right) \left(1 + (2 - (-1)^{2/3}) \left(1 - (-1)^{2/3}\right)\right) \left(1 - (-1)^{2/3} \left(1 - (-1)^{2/3}\right) \right) \\ & - \frac{(-1)^{2/3} \left(1 - (-1)^{2/3}\right) \left(2 - (-1)^{2/3}\right) \left(2 - (-1)^{2/3}\right)}{\left(1 - (-1)^{2/3} \left(1 - (-1)^{2/3}\right)\right) \left(1 + (1 - (-1)^{2/3}) \left(2 - (-1)^{2/3}\right)\right)} \\ & + \frac{(-1)^{2/3} x}{1 - (-1)^{2/3}} \\ & + 1 \right) c_1 x^{-(-1)^{2/3}} + \left(- \frac{\sqrt[3]{-1} \left(1 + \sqrt[3]{-1}\right) \left(1 + \sqrt[3]{-1}\right) \left(1 + \sqrt[3]{-1}\right) \left(2 + \sqrt[3]{-1}\right) \left(1 + \sqrt[3]{-1}\right) \left(3 + \sqrt[3]{-1}\right)} \right) \\ & + \sqrt[3]{-1} \left(1 + \sqrt[3]{-1}\right) \left(1 + \sqrt[3]{-1}\right)$$

7.24 problem problem 26(a)

Internal problem ID [415]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power

series. Page 615

Problem number: problem 26(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - y^2 = 1$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 6

 $dsolve([diff(y(x),x)=1+y(x)^2,y(0)=0],y(x), singsol=all)$

$$y(x) = \tan(x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 7

 $DSolve[\{y'[x]==1+y[x]^2,\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \tan(x)$$

8 Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

8.1	problem pro	oblem	1.	•	•	•		•				 •	 	•		 	•	•	159
8.2	problem pro	oblem	2 .													 			160
8.3	problem pro	oblem	3.													 			161
8.4	problem pro	oblem	4 .													 			162
8.5	problem pro	oblem	5.													 			163
8.6	problem pro	oblem	6.													 			164
8.7	problem pro	oblem	7.				 	•					 	•		 			165
8.8	problem pro	oblem	8.					•					 			 		•	166
8.9	problem pro	oblem	9.				 						 			 			167
8.10	problem pro	oblem	10					•					 			 		•	168
8.11	problem pro	oblem	11					•		 •			 			 	•		169
8.12	problem pro	oblem	12					•					 			 		•	170
8.13	problem pro	oblem	13					•		 •			 			 	•		171
8.14	problem pro	oblem	14					•					 			 		•	172
	problem pro							•		 •			 			 	•		173
8.16	problem pro	oblem	16					•		 •			 	•		 	•		174
	problem pro							•		 •			 			 	•		175
8.18	problem pro	oblem	18					•		 •			 			 	•		176
	problem pro							•		 •	•		 	•		 	•	•	177
	problem pro							•		 •			 			 	•		178
8.21	problem pro	oblem	21					•		 •			 	•		 	•		179
	problem pro							•		 •			 	•		 	•		180
	problem pro							•		 •	•		 	•		 	•	•	181
	problem pro							•		 •	•		 	•		 	•	•	182
8.25	problem pro	oblem	25					•		 •			 			 	•		183
	problem pro							•		 •			 	•		 	•		184
	problem pro							•			•	 •	 			 	•	•	185
8.28	problem pro	oblem	28										 			 		•	186
8.29	problem pro	oblem	29					•		 •			 	•		 	•		187
	problem pro						 				•		 			 	•	•	188
	problem pro											 •	 			 	•		189
8.32	problem pro	oblem	34				 						 			 			190

8.1 problem problem 1

Internal problem ID [416]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^2 - 1)y'' + 4y'x + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

Order:=6; $dsolve((x^2-1)*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = (x^4 + x^2 + 1) y(0) + (x^5 + x^3 + x) D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 26

AsymptoticDSolveValue[$(x^2-1)*y''[x]+4*x*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2(x^5 + x^3 + x) + c_1(x^4 + x^2 + 1)$$

8.2 problem problem 2

Internal problem ID [417]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^2 + 2)y'' + 4y'x + 2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

 $dsolve((x^2+2)*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{4}x^4\right)y(0) + \left(x - \frac{1}{2}x^3 + \frac{1}{4}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 68

AsymptoticDSolveValue[$(x^2+2)*y''[x]+4*y'[x]+2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 \left(-rac{x^5}{30} - rac{x^4}{12} + rac{x^3}{3} - rac{x^2}{2} + 1
ight) + c_2 \left(-rac{x^5}{15} - rac{x^4}{12} + rac{x^3}{2} - x^2 + x
ight)$$

8.3 problem problem 3

Internal problem ID [418]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + y'x + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

dsolve(diff(y(x),x\$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{8}x^4\right)y(0) + \left(x - \frac{1}{3}x^3 + \frac{1}{15}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: $42\,$

AsymptoticDSolveValue[$y''[x]+x*y'[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{15} - \frac{x^3}{3} + x\right) + c_1 \left(\frac{x^4}{8} - \frac{x^2}{2} + 1\right)$$

8.4 problem problem 4

Internal problem ID [419]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(x^2 + 1) y'' + 6y'x + 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve((x^2+1)*diff(y(x),x\$2)+6*x*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(3x^4 - 2x^2 + 1\right)y(0) + \left(x - \frac{5}{3}x^3 + \frac{7}{3}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time $\overline{\text{used: 0.001 (sec)}}$. Leaf size: 60

AsymptoticDSolveValue[$(x^2+1)*y''[x]+6*y'[x]+4*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_1 \left(4x^5 - 5x^4 + 4x^3 - 2x^2 + 1\right) + c_2 \left(\frac{77x^5}{15} - \frac{13x^4}{2} + \frac{16x^3}{3} - 3x^2 + x\right)$$

8.5 problem problem 5

Internal problem ID [420]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$(x^2 + 1) y'' + 2y'x = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6; dsolve((x^2+1)*diff(y(x),x\$2)+2*x*diff(y(x),x)=0,y(x),type='series',x=0);

$$y(x) = y(0) + \left(x - \frac{1}{3}x^3 + \frac{1}{5}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 25

AsymptoticDSolveValue[$(x^2-3)*y''[x]+2*x*y'[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^5}{45} + \frac{x^3}{9} + x\right) + c_1$$

8.6 problem problem 6

Internal problem ID [421]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(x^2 - 1)y'' - 6y'x + 12y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

Order:=6; dsolve((x^2-1)*diff(y(x),x\$2)-6*x*diff(y(x),x)+12*y(x)=0,y(x),type='series',x=0);

$$y(x) = (x^4 + 6x^2 + 1) y(0) + (x^3 + x) D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 25

AsymptoticDSolveValue[$(x^2-1)*y''[x]-6*x*y'[x]+12*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2(x^3 + x) + c_1(x^4 + 6x^2 + 1)$$

8.7 problem problem 7

Internal problem ID [422]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 7.

ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 3) y'' - 7y'x + 16y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; dsolve($(x^2+3)*diff(y(x),x$2)-7*x*diff(y(x),x)+16*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{8}{3}x^2 + \frac{8}{27}x^4\right)y(0) + \left(x - \frac{1}{2}x^3 + \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time $\overline{\text{used: 0.001 (sec)}}$. Leaf size: 42

AsymptoticDSolveValue[$(x^2+3)*y''[x]-7*x*y'[x]+16*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^5}{120} - \frac{x^3}{2} + x\right) + c_1 \left(\frac{8x^4}{27} - \frac{8x^2}{3} + 1\right)$$

8.8 problem problem 8

Internal problem ID [423]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,

$$(-x^2 + 2) y'' - y'x + 16y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; $dsolve((2-x^2)*diff(y(x),x$2)-x*diff(y(x),x)+16*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(2x^4 - 4x^2 + 1\right)y(0) + \left(x - \frac{5}{4}x^3 + \frac{7}{32}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

AsymptoticDSolveValue[$(2-x^2)*y''[x]-x*y'[x]+16*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{7x^5}{32} - \frac{5x^3}{4} + x\right) + c_1(2x^4 - 4x^2 + 1)$$

8.9 problem problem 9

Internal problem ID [424]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(x^2 - 1)y'' + 8y'x + 12y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6; $dsolve((x^2-1)*diff(y(x),x$2)+8*x*diff(y(x),x)+12*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(15x^4 + 6x^2 + 1\right)y(0) + \left(x + \frac{10}{3}x^3 + 7x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time $\overline{\text{used: 0.001 (sec)}}$. Leaf size: 36

AsymptoticDSolveValue[$(x^2-1)*y''[x]+8*x*y'[x]+12*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(7x^5 + \frac{10x^3}{3} + x\right) + c_1 \left(15x^4 + 6x^2 + 1\right)$$

8.10 problem problem 10

Internal problem ID [425]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$3y'' + xy' - 4y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

dsolve(3*diff(y(x),x\$2)+x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{2}{3}x^2 + \frac{1}{27}x^4\right)y(0) + \left(x + \frac{1}{6}x^3 + \frac{1}{360}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: $42\,$

AsymptoticDSolveValue[$3*y''[x]+x*y'[x]-4*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{360} + \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^4}{27} + \frac{2x^2}{3} + 1\right)$$

8.11 problem problem 11

Internal problem ID [426]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$5y'' - 2y'x + 10y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

Order:=6;

dsolve(5*diff(y(x),x\$2)-2*x*diff(y(x),x)+10*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - x^2 + \frac{1}{10}x^4\right)y(0) + \left(\frac{4}{375}x^5 - \frac{4}{15}x^3 + x\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 40

AsymptoticDSolveValue[$5*y''[x]-2*x*y'[x]+10*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_2 \left(\frac{4x^5}{375} - \frac{4x^3}{15} + x \right) + c_1 \left(\frac{x^4}{10} - x^2 + 1 \right)$$

8.12 problem problem 12

Internal problem ID [427]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 12.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - y'x^2 - 3yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6;

 $dsolve(diff(y(x),x\$2)-x^2*diff(y(x),x)-3*x*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 + \frac{x^3}{2}\right)y(0) + \left(x + \frac{1}{3}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

 $AsymptoticDSolveValue[y''[x]-x^2*y'[x]-3*x*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\frac{x^4}{3} + x\right) + c_1 \left(\frac{x^3}{2} + 1\right)$$

8.13 problem problem 13

Internal problem ID [428]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + y'x^2 + 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6;

 $dsolve(diff(y(x),x$2)+x^2*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{x^3}{3}\right)y(0) + \left(x - \frac{1}{4}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x^2*y'[x]+2*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{4} \right) + c_1 \left(1 - \frac{x^3}{3} \right)$$

8.14 problem problem 14

Internal problem ID [429]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6;

dsolve(diff(y(x),x\$2)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^3}{6}\right)y(0) + \left(x - \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[$y''[x]+x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^4}{12} \right) + c_1 \left(1 - \frac{x^3}{6} \right)$$

8.15 problem problem 15

Internal problem ID [430]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' + x^2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6;

 $dsolve(diff(y(x),x$2)+x^2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{x^4}{12}\right)y(0) + \left(x - \frac{1}{20}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: $28\,$

AsymptoticDSolveValue[$y''[x]+x^2*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_2 \left(x - \frac{x^5}{20} \right) + c_1 \left(1 - \frac{x^4}{12} \right)$$

8.16 problem problem 16

Internal problem ID [431]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 + 1) y'' + 2y'x - 2y = 0$$

With initial conditions

$$[y(0) = 0, y'(0) = 1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

Order:=6; dsolve([(1+x^2)*diff(y(x),x\$2)+2*x*diff(y(x),x)-2*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='s

$$y(x) = x$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 4

$$y(x) \to x$$

8.17 problem problem 17

Internal problem ID [432]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x - 2y = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = 0]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 9

dsolve([diff(y(x),x\$2)+x*diff(y(x),x)-2*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0

$$y(x) = x^2 + 1$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

$$y(x) \to -\frac{x^5}{120} + \frac{x^3}{6} + x$$

8.18 problem problem 18

Internal problem ID [433]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 18.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$y'' + (x - 1)y' + y = 0$$

With initial conditions

$$[y(1) = 2, y'(1) = 0]$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6;

 $dsolve([diff(y(x),x\$2)+(x-1)*diff(y(x),x)+y(x)=0,y(1)=2,\ D(y)(1)=0],y(x),type='series',x=0,y(1)=0$

$$y(x) = 2 - (x - 1)^{2} + \frac{1}{4}(x - 1)^{4} + O((x - 1)^{6})$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 21 $\,$

$$y(x) \to \frac{1}{4}(x-1)^4 - (x-1)^2 + 2$$

8.19 problem problem 19

Internal problem ID [434]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 19.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(-x^{2} + 2x) y'' - 6(x - 1) y' - 4y = 0$$

With initial conditions

$$[y(1) = 0, y'(1) = 1]$$

With the expansion point for the power series method at x = 1.

✓ Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 14

 $dsolve([(2*x-x^2)*diff(y(x),x$2)-6*(x-1)*diff(y(x),x)-4*y(x)=0,y(1)=0,D(y)](1)=1],y(x),t(x)=0$

$$y(x) = (x-1) + \frac{5}{3}(x-1)^3 + \frac{7}{3}(x-1)^5 + O((x-1)^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: $24\,$

$$y(x) \to \frac{7}{3}(x-1)^5 + \frac{5}{3}(x-1)^3 + x - 1$$

8.20 problem problem 20

Internal problem ID [435]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 20.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 - 6x + 10) y'' - 4(x - 3) y' + 6y = 0$$

With initial conditions

$$[y(3) = 2, y'(3) = 0]$$

With the expansion point for the power series method at x = 3.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

Order:=6; $dsolve([(x^2-6*x+10)*diff(y(x),x$2)-4*(x-3)*diff(y(x),x)+6*y(x)=0,y(3) = 2, D(y)(3) = 0],y(x)=0$

$$y(x) = -6x^2 + 36x - 52$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 12

AsymptoticDSolveValue[$\{(x^2-6*x+10)*y''[x]-4*(x-3)*y'[x]+6*y[x]==0,\{y[3]==2,y'[3]==0\}\},y[x],$

$$y(x) \to 2 - 6(x - 3)^2$$

8.21 problem problem 21

Internal problem ID [436]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$(4x^2 + 16x + 17)y'' - 8y = 0$$

With initial conditions

$$[y(-2) = 1, y'(-2) = 0]$$

With the expansion point for the power series method at x = -2.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

Order:=6; $dsolve([(4*x^2+16*x+17)*diff(y(x),x$2)=8*y(x),y(-2) = 1, D(y)(-2) = 0],y(x),type='series',x=0$

$$y(x) = 4x^2 + 16x + 17$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 12

$$y(x) \to 4(x+2)^2 + 1$$

8.22 problem problem 22

Internal problem ID [437]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^{2} + 6x) y'' + (3x + 9) y' - 3y = 0$$

With initial conditions

$$[y(-3) = 1, y'(-3) = 0]$$

With the expansion point for the power series method at x = -3.

✓ Solution by Maple

Order:=6;

Time used: 0.0 (sec). Leaf size: 14

Time used. 0.0 (see). Dear size. 14

 $y(x) = 1 - \frac{1}{6}(x+3)^2 - \frac{5}{648}(x+3)^4 + O((x+3)^6)$

Time used: 0.001 (sec). Leaf size: 23

AsymptoticDSolveValue[$(x^2+6*x)*y''[x]+(3*x+9)*y'[x]-3*y[x]==0,{y[-3]==1,y'[-3]==0}},y[x],{x}$

 $dsolve([(x^2+6*x)*diff(y(x),x$2)+(3*x+9)*diff(y(x),x)-3*y(x)=0,y(-3)=1,D(y)(-3)=0],y(x)=0$

$$y(x) \to -\frac{5}{648}(x+3)^4 - \frac{1}{6}(x+3)^2 + 1$$

8.23 problem problem 23

Internal problem ID [438]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + (x+1)y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6;

dsolve(diff(y(x),x\$2)+(1+x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{30}x^5\right)y(0) + \left(x - \frac{1}{6}x^3 - \frac{1}{12}x^4 + \frac{1}{120}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63

AsymptoticDSolveValue[$y''[x]+(1+x)*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(\frac{x^5}{120} - \frac{x^4}{12} - \frac{x^3}{6} + x\right) + c_1 \left(\frac{x^5}{30} + \frac{x^4}{24} - \frac{x^3}{6} - \frac{x^2}{2} + 1\right)$$

8.24 problem problem 24

Internal problem ID [439]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^2 - 1)y'' + 2y'x + 2yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

Order:=6; $dsolve((x^2-1)*diff(y(x),x$2)+2*x*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 + \frac{1}{3}x^3 + \frac{1}{5}x^5\right)y(0) + \left(x + \frac{1}{3}x^3 + \frac{1}{6}x^4 + \frac{1}{5}x^5\right)D(y)(0) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time $\overline{\text{used: 0.001 (sec)}}$. Leaf size: 49

AsymptoticDSolveValue[$(x^2+1)*y''[x]+2*x*y'[x]+2*x*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^5}{5} - \frac{x^3}{3} + 1\right) + c_2 \left(\frac{x^5}{5} - \frac{x^4}{6} - \frac{x^3}{3} + x\right)$$

8.25 problem problem 25

Internal problem ID [440]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 25.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x^2 + x^2y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

Order:=6;

 $dsolve(diff(y(x),x\$2)+x^2*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);$

$$y(x) = \left(1 - \frac{x^4}{12}\right)y(0) + \left(x - \frac{1}{12}x^4 - \frac{1}{20}x^5\right)D(y)(0) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 35

$$y(x) \to c_1 \left(1 - \frac{x^4}{12}\right) + c_2 \left(-\frac{x^5}{20} - \frac{x^4}{12} + x\right)$$

8.26 problem problem 26

Internal problem ID [441]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 26.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(x^3 + 1) y'' + yx^4 = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

Order:=6; dsolve((1+x^3)*diff(y(x),x\$2)+x^4*y(x)=0,y(x),type='series',x=0);

$$y(x) = y(0) + D(y)(0)x + O(x^{6})$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 10

AsymptoticDSolveValue[$(1+x^3)*y''[x]+x^4*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 x + c_1$$

8.27 problem problem 27

Internal problem ID [442]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 27.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y'x + y(2x^2 + 1) = 0$$

With initial conditions

$$[y(0) = 1, y'(0) = -1]$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

Order:=6;

 $dsolve([diff(y(x),x$2)+x*diff(y(x),x)+(2*x^2+1)*y(x)=0,y(0)=1,\ D(y)(0)=-1],y(x),type='setangle' = 0$

$$y(x) = 1 - x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{24}x^4 + \frac{1}{30}x^5 + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 49

AsymptoticDSolveValue[$\{(x^2+1)*y''[x]+2*x*y'[x]+2*x*y[x]==0,\{\}\},y[x],\{x,0,5\}$]

$$y(x) \to c_1 \left(\frac{x^5}{5} - \frac{x^3}{3} + 1\right) + c_2 \left(\frac{x^5}{5} - \frac{x^4}{6} - \frac{x^3}{3} + x\right)$$

8.28 problem problem 28

Internal problem ID [443]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 28.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' + y e^{-x} = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

Order:=6;

dsolve(diff(y(x),x\$2)+exp(-x)*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{40}x^5\right)y(0) + \left(x - \frac{1}{6}x^3 + \frac{1}{12}x^4 - \frac{1}{60}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[$y''[x]+Exp[-x]*y[x]==0,y[x],\{x,0,5\}$]

$$y(x) \rightarrow c_2 \left(-\frac{x^5}{60} + \frac{x^4}{12} - \frac{x^3}{6} + x \right) + c_1 \left(-\frac{x^5}{40} + \frac{x^3}{6} - \frac{x^2}{2} + 1 \right)$$

8.29 problem problem 29

Internal problem ID [444]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 29.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\cos(x)y'' + y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

Order:=6;

dsolve(cos(x)*diff(y(x),x\$2)+y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{x^2}{2}\right)y(0) + \left(x - \frac{1}{6}x^3 - \frac{1}{60}x^5\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 35

AsymptoticDSolveValue[$Cos[x]*y''[x]+y[x]==0,y[x],\{x,0,5\}$]

$$y(x) o c_1 \left(1 - \frac{x^2}{2}\right) + c_2 \left(-\frac{x^5}{60} - \frac{x^3}{6} + x\right)$$

8.30 problem problem 30

Internal problem ID [445]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 30.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$xy'' + \sin(x)y' + yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

Order:=6;

dsolve(x*diff(y(x),x\$2)+sin(x)*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

$$y(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{60}x^5\right)y(0) + \left(x - \frac{1}{2}x^2 + \frac{1}{18}x^4 - \frac{7}{360}x^5\right)D(y)(0) + O\left(x^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue $[x*y''[x]+Sin[x]*y'[x]+x*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \rightarrow c_2 \left(-\frac{7x^5}{360} + \frac{x^4}{18} - \frac{x^2}{2} + x \right) + c_1 \left(-\frac{x^5}{60} + \frac{x^3}{6} - \frac{x^2}{2} + 1 \right)$$

8.31 problem problem 33

Internal problem ID [446]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 33.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$y'' - 2y'x + 2\alpha y = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 63

. .

$$y(x) = \left(1 - \alpha x^2 + \frac{\alpha(\alpha - 2) x^4}{6}\right) y(0) + \left(x - \frac{(\alpha - 1) x^3}{3} + \frac{(\alpha^2 - 4\alpha + 3) x^5}{30}\right) D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 78

 $A symptotic DSolve Value [y''[x]-2*x*y'[x]+2*\\[Alpha]*y[x]==0,y[x],\{x,0,5\}]$

$$y(x) \to c_2 \left(\frac{\alpha^2 x^5}{30} - \frac{2\alpha x^5}{15} + \frac{x^5}{10} - \frac{\alpha x^3}{3} + \frac{x^3}{3} + x \right) + c_1 \left(\frac{\alpha^2 x^4}{6} - \frac{\alpha x^4}{3} - \alpha x^2 + 1 \right)$$

8.32 problem problem 34

Internal problem ID [447]

Book: Differential equations and linear algebra, 4th ed., Edwards and Penney

Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

Problem number: problem 34.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$y'' - yx = 0$$

With the expansion point for the power series method at x = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

Order:=6;

dsolve(diff(y(x),x\$2)=x*y(x),y(x),type='series',x=0);

$$y(x) = \left(1 + \frac{x^3}{6}\right)y(0) + \left(x + \frac{1}{12}x^4\right)D(y)(0) + O(x^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: $28\,$

AsymptoticDSolveValue[$y''[x] == x*y[x], y[x], \{x,0,5\}$]

$$y(x) \to c_2 \left(\frac{x^4}{12} + x\right) + c_1 \left(\frac{x^3}{6} + 1\right)$$